WorldWideScience

Sample records for bronsted acid catalyzed

  1. Synthesis of 1,1-Diborylalkenes through a Bronsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron

    OpenAIRE

    Morinaga, Akira; Nagao, Kazunori; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-01-01

    A method for the synthesis of 1,1-diborylalkenes through a Bronsted base catalyzed reaction between terminal alkynes and bis(pinacolato)diboron has been developed. The procedure allows direct synthesis of functionalized 1,1-diborylalkenes from various terminal alkynes including propiolates, propiolamides, and 2-ethynylazoles.

  2. Bronsted acid site number evaluation using isopropylamine decomposition on Y-zeolite contaminated with vanadium in a simultaneous DSC-TGA analyzer

    International Nuclear Information System (INIS)

    Osorio Perez, Yonnathan; Forero, Liliam Alexandra Palomeque; Torres, Diana Vanessa Cristiano; Trujillo, Carlos Alexander

    2008-01-01

    Acid-site catalyzed decomposition of isopropylamine was followed in a simultaneous DSC-TGA analyzer. USY zeolite samples with and without vanadium were studied. Results show that acid sites number decreases linearly with vanadium concentration in zeolite indicating that vanadium neutralizes acid sites on catalyst and the metal is able to move on the surface of the solid. The neutralizing species probably contain only one vanadium atom. The reaction enthalpy plus desorption heat of the products show that vanadium preferentially neutralizes the strongest acid sites on the zeolite. The application of the simultaneous DSC-TGA technique to quantify Bronsted acid sites on solids by this reaction is novel

  3. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qianqian; Han, Ying [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Lin, Hechun, E-mail: hclin@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Zhang, Yuanyuan; Duan, Chungang [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Peng, Hui, E-mail: hpeng@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2017-03-15

    One dimensional coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO{sub 4}{sup 2-} ions to generate a 1-D chain, and all oxygen atoms in SO{sub 4}{sup 2-} groups are connected to three nearest Gd atoms in µ{sup 3}:η{sup 1}:η{sup 1}:η{sup 2} fashion. Gd, S and N from SO{sub 4}{sup 2-} and NO{sub 3}{sup -} are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH=7 T. - Graphical abstract: Coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] was obtained mediated by Bronsted acid Ionic Liquid, which presents a 1-D chains collected by SO{sub 4}{sup 2-} groups. Magnetic susceptibility of the polymer reveals weak antiferromagnetic interactions between the Gd(III) ions with the relatively large magneto-caloric effect of –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH= 7T.

  4. A computational study of the stretching frequencies of Bronsted acid sites in SAPO STA-7: preliminary comparison with infrared

    Czech Academy of Sciences Publication Activity Database

    Déroche, I.; Maurin, G.; Llewellyn, P.; Castro, M.; Wright, P. A.; Voláková, Martina; Čejka, Jiří

    2007-01-01

    Roč. 170, - (2007), s. 1660-1667 ISSN 0167-2991 Grant - others:Marie Curie Scholarship(XE) MRTN-CT-2004-005503 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK Keywords : Bronsted acid * SAPO STA-7 material * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.307, year: 2005

  5. NH{sub 3} adsorption on the Lewis and Bronsted acid sites of MoO{sub 3} (0 1 0) surface: A cluster DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Fan, Junyan [Foundation Department, Shanxi Police Academy, No. 27 Second Section of Old Jinci Road, Taiyuan 030021, Shanxi (China); Zuo, Zhijun [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Zhe, E-mail: lizhe@tyut.edu.cn [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhang, Jinshan [College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2014-01-01

    The adsorption of NH{sub 3} on the Lewis and Bronsted acid sites of MoO{sub 3} (0 1 0) surface has been investigated based on the density functional theory (DFT) method using the clusters models. The calculated results indicate that NH{sub 3} could strongly adsorb on both the Lewis and Bronsted acid sites in the form of NH{sub 3} species and NH{sub 4}{sup +} respectively, whereas the adsorption on the Lewis acid site is found to be more favorable energetically than that on the Bronsted acid site. For the Lewis acid site Mulliken population analysis shows a donation of lone pairs from NH{sub 3} to the surface and activation of N–H bond. The overlaps of N-s, N-p and Mo-d orbitals suggest the strong interaction between N and Mo atoms. For the Bronsted acid site N–H bond is also activated by the formation of NH{sub 4}{sup +} species. The hybridizations between H and O atoms as well as N and H atoms are the major reasons for strong chemical adsorption of NH{sub 3} and the existence of NH{sub 4}{sup +} species, which partly attributed to the presence of N–H… O hydrogen bonds. Furthermore, the formation of a second Lewis acid site at adjacent or diagonal site results in slight changes of adsorption stability, structural changes and charge redistributions, suggesting its small influence on NH{sub 3} adsorption.

  6. Bronsted acid-functionalized choline chloride-butane sultone for the ...

    Indian Academy of Sciences (India)

    M P PADMA PRIYA

    2018-03-21

    Mar 21, 2018 ... Choline chloride and 1,4-butane sultone were combined to obtain a sulphonic acid-functionalized ..... Knifton J F and Sanderson J R 1990 Method for produc- ... alkenes via the Knoevenagel condensation Tetrahedron. Lett.

  7. Selectivity Enhancement in methylamine synthesis via postsynthesis modification of bronsted acidic mordenite

    NARCIS (Netherlands)

    Grundling, C.; Gründling, Christian; Mirth, G.C.; Eder-Mirth, Gabriele C.; Lercher, J.A.

    1996-01-01

    Methylamine synthesis from methanol and ammonia over parent and modified Brønsted acidic mordenites is studied byin situinfrared spectroscopy and kinetic analysis to elucidate the role of elementary steps for activity and selectivity.In situinfrared spectroscopy reveals that all methylammonium ions

  8. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    OpenAIRE

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4...

  9. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions.

    Science.gov (United States)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-16

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = Ti(IV), Cu(II), Al(III), Sn(IV), Fe(III), Cr(III), Zr(IV) and Zn(II); for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with Ti(x)H(3-4x)PW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (Ti(x)H(3-4x)PW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  10. catalyzed oxidation of some amino acids by acid bromate

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl- ... A suitable mechanism in agreement with observed kinetics has been ..... In acidic solution of potassium bromate quick .... Annual Review of Biochemistry.

  11. SUPPLEMENTARY INFORMATION Bronsted acid functionalised ...

    Indian Academy of Sciences (India)

    raji

    In the above spectrum, the broad peak at 3307 cm-1 was due to stretching vibrations of. –CH2–OH group. The broadness of the peak could be due to hydrogen bonding of hydroxyl group with chloride in the zwitter ion. The –CH2 stretching vibrations were observed at 1473 cm-1. The –CH3 stretching vibrations were ...

  12. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is

  13. Bronsted imidazolium ionic liquids: Synthesis and comparison of their catalytic activities as pre-catalyst for biodiesel production through two stage process

    International Nuclear Information System (INIS)

    Elsheikh, Y.A.; Man, Zakaria; Bustam, M.A.; Yusup, Suzana; Wilfred, C.D.

    2011-01-01

    In the present work, study was undertaken to prepare biodiesel via a two-step transesterification process. The high free fatty acids (FFA) value contained in the crude palm oil (CPO), which cause several problems with the straight alkaline-catalyzed, were converted to fatty acid methyl esters (FAME) before introducing KOH-catalyzed transesterification step. In order to evaluate their catalytic activities, three Bronsted acidic imidazoliums were investigated. These ionic liquids (ILs) appeared to be promising candidates to replace conventional acidic catalyst for biodiesel production due to their unique properties. Among them, a longer side chains 1-butyl-3-methyl-imidazolium hydrogensulfate (BMIMHSO 4 ) was found to be more superior to the other two catalysts. Based on the experimental results, a catalyst (BIMHSO 4 ) concentration of 4.5 wt.%, methanol/CPO molar ratio of 12:1, a temperature of 160 o C, and agitation speed of 600 rpm provided a final CPO acid value lower than 1.0 mg KOH/CPO within 120 min. The second alkali-catalyze step was performed at agitation speed of 600 rpm, 60 o C, 1.0% KOH for 50 min. The final biodiesel product in 98.4% yield was analyzed by gas chromatography (GC). The determined physicochemical important properties of POME were confirmed with American Standards for Testing Material (ASTM).

  14. Effects of Bronsted acidity in the mechanism of selective oxidation of propane to acetone on CaY zeolite at room temperature.

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2005-01-01

    The importance of Brønsted acid sites for partial oxidation of propane to acetone in CaY was investigated by in situ FTIR spectroscopy. With an increasing number of protons in Ca-Y, Volcano plots were observed for (1) amount of adsorbed propane; (2) initial acetone formation rate; (3) total amount

  15. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  16. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    DEFF Research Database (Denmark)

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.

    2009-01-01

    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...... no effect on their reactivity: both electron-rich and electron-poor aryl chlorides and bromides or triflates led to good yields. Ortho-substituted aryl halides and heteroaryl halides, however, did not undergo the title reaction....

  17. Decomposition of peracetic acid catalyzed by vanadium complexes

    International Nuclear Information System (INIS)

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-01-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0 2 and small amounts of CO 2 , the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO 2 is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V 5+ ions and peracetic acid and the slow conversion of this complex into the observed products

  18. Acid base catalyzed transesterification kinetics of waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P.; Rajvanshi, Shalini [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee (India)

    2011-01-15

    The present study reports the results of kinetics study of acid base catalyzed two step transesterification process of waste cooking oil, carried out at pre-determined optimum temperature of 65 C and 50 C for esterification and transesterification process respectively under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1%(w/w) for H{sub 2}SO{sub 4} and NaOH and 400 rpm of stirring. The optimum temperature was determined based on the yield of ME at different temperature. Simply, the optimum concentration of H{sub 2}SO{sub 4} and NaOH was determined with respect to ME Yield. The results indicated that both esterification and transesterification reaction are of first order rate reaction with reaction rate constant of 0.0031 min{sup -1} and 0.0078 min{sup -1} respectively showing that the former is a slower process than the later. The maximum yield of 21.50% of ME during esterification and 90.6% from transesterification of pretreated WCO has been obtained. This is the first study of its kind which deals with simplified kinetics of two step acid-base catalyzed transesterification process carried under the above optimum conditions and took about 6 h for complete conversion of TG to ME with least amount of activation energy. Also various parameters related to experiments are optimized with respect to ME yield. (author)

  19. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  20. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    Science.gov (United States)

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. MOLYBDENUM CATALYZED ACID PEROXIDE BLEACHING OF EUCALYPTUS KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Marcos S. Rabelo

    2008-08-01

    Full Text Available Molybdenum catalyzed peroxide bleaching (PMo Stage consists of pulp treatment with hydrogen peroxide under acidic conditions in the presence of a molybdenum catalyst. Molybdenum is applied in catalytic doses (50-200 mg/kg pulp and may originate from various sources, including (NH46Mo7O24.4H2O, Na2MoO4.2H2O, siliconmolybdate, etc. This work is aimed at optimizing the PMo stage and evaluating its industrial application in the OAZDP sequence. Optimum PMo stage conditions for bleaching eucalyptus pulp were 90 ºC, pH 3.5, 2 h, 0.1 kg/adt Mo and 5 kg/adt H2O2. The PMo stage was more efficient to remove pulp hexenuronic acids than lignin. Its efficiency decreased with increasing pH in the range of 1.5-5.5, while it increased with increasing temperature and peroxide and molybdenum doses. The application of the PMo stage as replacement for the A-stage of the AZDP sequence significantly decreased chlorine dioxide demand. The PMo stage caused a decrease of 20-30% in the generation of organically bound chlorine. The quality parameters of the pulp produced during the PMo stage mill trial were comparable to those obtained with the reference A-stage.

  2. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  3. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2009-01-01

    The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y...

  4. Solid Acid-Catalyzed Cellulose Hydrolysis Monitored by In Situ ATR-IR Spectroscopy

    NARCIS (Netherlands)

    Zakzeski, J.; Grisel, R.J.H.; Smit, A.T.; Weckhuysen, B.M.

    2012-01-01

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and

  5. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...... oven (Scheme ii). A limitation of the heterocoupling process is the concomitant dehalogenation of the aryl halide and homocoupling of the Grignard reagent leading low to moderate yields of the desired heterocoupling product. The mechanism of the cross-coupling process was investigated by performing two...

  6. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately...

  7. Pd(II)-Catalyzed Enantioselective C-H Olefination of Diphenylacetic Acids

    Science.gov (United States)

    Shi, Bing-Feng; Zhang, Yang-Hui; Lam, Jonathan K.; Wang, Dong-Hui; Yu, Jin-Quan

    2009-01-01

    Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acid substrates has been achieved through the use of mono-protected chiral amino acid ligands. The absolute configuration of the resulting olefinated products is consistent with that of a proposed C-H insertion intermediate. PMID:20017549

  8. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  9. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  10. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  11. Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification

    Directory of Open Access Journals (Sweden)

    M. Claudia Montiel

    2012-04-01

    Full Text Available Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR, with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG; however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed.

  12. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids.

    Science.gov (United States)

    Liu, Rui; Yang, Zhenyu; Ni, Yuxin; Song, Kaixuan; Shen, Kai; Lin, Shaohui; Pan, Qinmin

    2017-08-04

    Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carboxylic acids (including β,β-disubstituted acrylic acids) was developed and optimized, which provided a mild and convenient method for the highly challenging synthesis of β-quaternary carbons substituted carboxylic acids.

  13. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  14. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  15. Mechanism of Brønsted acid catalyzed conversion of carbohydrates

    NARCIS (Netherlands)

    Yang, G.; Pidko, E.A.; Hensen, E.J.M.

    2012-01-01

    A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and

  16. Furfural production from fruit shells by acid-catalyzed hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2006-01-21

    Pentosans are hydrolyzed to pentoses by dilute mineral acid hydrolysis. The main source of pentosans is hemicelluloses. Furfural can be produced by the acid hydrolysis of pentosan from fruit shells such as hazelnut, sunflower, walnut, and almond of agricultural wastes. Further dehydration reactions of the pentoses yield furfural. The hydrolysis of each shell sample was carried out in dilute sulfuric acid (0.05 to 0.200 mol/l), at high temperature (450-525 K), and short reaction times (from 30 to 600 s). (author)

  17. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guohou [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); Dong, Hua [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China); School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 China (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 China (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 China (China)

    2013-10-15

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. {sup 29}Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. - Graphical abstract: The morphologies and microstructures of acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were observed by scanning electron microscope and transmission electron microscope. MBGMs-A exhibits a dense structure and a porous can be observed in MBGMs-B. The microspheres have a quick inducing-apatite formation ability and show a sustained release of alendronate (AL). Highlights: • A rapid method was reported to prepare mesoporous bioactive glass microspheres. • The addition of ammonia significantly shortens the preparation time. • Acid and acid-alkali co-catalyzed microspheres were studied for the first time. • The materials exhibited excellent in vitro bioactivity and

  18. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    Red seaweed, Kappaphycus alvarezii, holds great promise for use in biofuel production due to its high carbohydrate content. In this study, we investigated the effect of fermentation inhibitors to the K. alvarezii hydrolysate on cell growth and ethanol fermentation. In addition, detoxification of fermentation inhibitors was performed to decrease the fermentation inhibitory effect. 5-Hydroxymethylfurfural and levulinic acid, which are liberated from acidic hydrolysis, was also observed in the hydrolysate of K. alvarezii. These compounds inhibited ethanol fermentation. In order to remove these inhibitors, activated charcoal and calcium hydroxide were introduced. The efficiency of activated charcoals was examined and over-liming was used to remove the inhibitors. Activated charcoal was found to be more effective than calcium hydroxide to remove the inhibitors. Detoxification by activated charcoal strongly improved the fermentability of dilute acid hydrolysate in the production of bioethanol from K. alvarezii with Saccharomyces cerevisiae. The optimal detoxifying conditions were found to be below an activated charcoal concentration of 5%.

  19. preparation of bicyclic lactones using lewis acids catalyzed ene

    African Journals Online (AJOL)

    Administrator

    The synthesis of the cis-fused bicyclic lactones relies extensively on the Lewis acid ... having an allylic hydrogen (an"ene") and a compound containing an electron .... observed that the lithium enolate obtained from 3-methyl-2(5H)- furanone ...

  20. Acid-catalyzed rearrangements of flavans to novelbenzofuran derivatives

    Science.gov (United States)

    Richard W. Hemingway; Weiling Peng; Anthony H. Conner; Petrus J. Steynberg; Jan P. Steynberg

    1998-01-01

    The objective of this work was to define reactions that occur when proanthocyanidins and their derivatives are reacted in the presence of acid catalysts. Pure compounds (either as the free phenols, the methyl ether, or the methyl ether-acetate derivatives) were isolated by a variety of chromatographic methods. Proof of their structure was based mainly on 2D-NMR, as...

  1. Boric Acid Catalyzed Convenient Synthesis of Benzimidazoles in Aqueous Media

    OpenAIRE

    Poor Heravi, Mohammad Reza; Ashori, Marjan

    2013-01-01

    Synthesis of benzimidazoles has been developed by the o-phenylenediamine with aldehydes using boric acid an efficient catalyst under mild reaction conditions in aqueous media. The product is applicable to aryl and heteroaryl aldehydes. This reaction led to the formation of benzimidazoles new derivatives in good yields. The FT-IR, 19F-NMR, 1H-NMR, 13C-NMR spectra and elemental analysis confirm the structure of compounds.

  2. Boric Acid Catalyzed Convenient Synthesis of Benzimidazoles in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Poor Heravi

    2013-01-01

    Full Text Available Synthesis of benzimidazoles has been developed by the o-phenylenediamine with aldehydes using boric acid an efficient catalyst under mild reaction conditions in aqueous media. The product is applicable to aryl and heteroaryl aldehydes. This reaction led to the formation of benzimidazoles new derivatives in good yields. The FT-IR, 19F-NMR, 1H-NMR, 13C-NMR spectra and elemental analysis confirm the structure of compounds.

  3. Development of Fluorous Lewis Acid-Catalyzed Reactions

    Directory of Open Access Journals (Sweden)

    Joji Nishikido

    2006-08-01

    Full Text Available Organic synthetic methodology in the 21st century aims to conform to the principles of green sustainable chemistry (GSC and we may expect that in the future, the realization of GSC will be an important objective for chemical industries. An important aim of synthetic organic chemistry is to implement waste-free and environmentally-benign industrial processes using Lewis acids as versatile as aluminum choride. A key technological objective of our work in this area has been to achieve a “catalyst recycling system that utilizes the high activity and structural features of fluorous Lewis acid catalysts”. Thus, we have developed a series of novel fluorous Lewis acid catalysts, namely the ytterbium(III, scandium(III, tin(IV or hafnium(IV bis(perfluoroalkanesulfonylamides or tris(perfluoro- alkanesulfonylmethides. Our catalysts are recyclable and effective for acylations of alcohols and aromatics, Baeyer-Villiger reactions, direct esterifications and transesterifications in a fluorous biphasic system (FBS, in supercritical carbon dioxide and on fluorous silica gel supports.

  4. Heteropoly acid catalyzed hydrolysis of glycogen to glucose

    International Nuclear Information System (INIS)

    Klein, Miri; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2015-01-01

    Complete conversion of glycogen to glucose is achieved by using H 3 PW 12 O 40 ·nH 2 O (HPW) and H 4 SiW 12 O 40 ·nH 2 O (HSiW) as catalysts for the hydrolysis under optimized hydrothermal conditions (mass fraction of catalyst 2.4%, 373 K and 2 h reaction time). The reusability of the catalyst (HPW) was demonstrated. In addition to carrying out the glycogen hydrolysis in an autoclave, other novel methods such as microwave irradiation and sonication have also been investigated. At higher mass fraction of the heteropoly acids (10.5%), glycogen could be completely converted to glucose under microwave irradiation. Sonication of an aqueous solution of glycogen in the presence of HPW and HSiW also yielded glucose. Thus, heteropoly acids are efficient, environmentally friendly and reusable catalysts for the conversion of glycogen to glucose. - Highlights: • Hydrothermal, microwave and sonication based methods of hydrolysis. • Heteropoly acids are green catalysts for glycogen hydrolysis. • Glycogen from cyanobacteria is demonstrated as a potential feedstock for glucose

  5. Synthesis of Trisubstituted Imidazoles Using Lewis and Bronsted Acid Catalysts

    OpenAIRE

    Hekmatshoar, Rahim; HEKMATSHOAR, Rahim; JAHANBAKHSHI, Hajar; MOUSAVIZADEH, Farnoosh; RAHNAMAFAR, Reyhane

    2010-01-01

    An efficient and one-pot method for the preparation of trisubstituted imidazoles by condensation of benzil, different aldehydes and ammonium acetate in the presence of  a catalytic amount of NiSO4.7H2O or H3BO3 under different conditions is reported.                    Key Words: Trisubstituted imidazoles, Multi-component &a...

  6. Ozonation of clofibric acid catalyzed by titanium dioxide.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2009-09-30

    The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.

  7. Lewis acid catalyzed transformations of Z-ligustilide

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Maria Yolanda [Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos (Mexico); Delgado, Guillermo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    Some Lewis acid mediated reactions of Z-ligustilide (1), a bioactive constituent of the medicinal species Ligusticum porteri, were investigated. These reactions provided varying mixtures of Z-butylidenephthalide (7), E-butylidenephthalide (8), n-butyphthalide (13), and novel linear dimeric phthalides (9-12) as the main products. The formation of the dimers occurred in low yields and with regio and situ-selectivity. Initial competitive O- and C- complexation of the Lewis acid with Z-ligustilide promoted the formation of the dimers occurred in low yields and with regio and situ- selectivity. Initial competitive O- and C- complexation of the Lewis acid with Z-ligustilide promoted the formation of carbocations at C(8), C(6) and C(7), which were stabilized by the addition of the C(6')-C(7') olefin of a second unit of the starting material, to provide cations at C(6') and C(7'). Subsequent isomerizations and elimination of the catalyst afforded the dimeric products 9-12. The yields and structure of the products are quite dependent on variations of the reaction conditions and the catalyst employed. [Spanish] Se investigaron algunas reacciones de Z-ligustilidas (1), un constituyente bioactivo de la planta medicinal Ligusticum porteri, catalizadas por acidos de Lewis. Estas reacciones produjeron mezclas variables de Z-butilidenftalida (7), E-butilidenftalida (8), n-butilftalida (13), y ftalidos dimetricos lineales novedosos (9-12) como productos principales. La formacion de los dimeros procedio en rendimientos bajos y con regio- y situ-selectividad. La O- y C- complejacion competitiva inicial del acido de Lewis con Z-lingustilida promueve la formacion de cationes en C(8), C(6) y C(7), los cuales son estabilizados por la adicion de la olefina C(6')-C(7') de una segunda unidad de la materia prima para generar los cationes en C(6')-C(7'). Isomerizaciones subsecuentes y la eliminacion del catalizador conducen a los productos dimericos 9

  8. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  9. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  10. Aspergillus niger whole-cell catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids.

    Science.gov (United States)

    Rajapriya, Govindaraju; Morya, Vivek Kumar; Mai, Ngoc Lan; Koo, Yoon-Mo

    2018-04-01

    Synthesis of caffeic acid ester essentially requires an efficient esterification process to produce various kinds of medicinally important ester derivatives. In the present study, a comprehensive and comparative analysis of whole-cell catalyzed caffeic acid esters production in ionic liquids (ILs) media was performed. Olive oil induced mycelial mass of halotolerant Aspergillus niger (A.niger) EXF 4321 was freeze dried and used as a catalyst. To ensure maximum solubilization of caffeic acid for highest substrate loading several ILs were screened and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf 2 N]) was found to have the maximum solubility and favoured for enzymatic activity of freeze dried mycelia. The whole-cell catalyzed synthesis of caffeic acid phenethyl ester (CAPE) conditions were optimized and bioconversion up to 84% was achieved at a substrate molar ratio of 1:20 (caffeic acid:2-phenyl ethanol), 30°C for 12h. Results obtained during this study were encouraging and helpful to design a bioreactor system to produce caffeic acid derived esters. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. On the Brønsted acid-catalyzed homogeneous hydrolysis of furans.

    Science.gov (United States)

    Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G

    2013-11-01

    Furan affairs: Electronic structure calculations of the homogeneous Brønsted acid-catalyzed hydrolysis of 2,5-dimethylfuran show that proton transfer to the β-position is rate-limiting and provides support that the hydrolysis follows general acid catalysis. By means of projected Fukui indices, we show this to be the case for unsubstituted, 2-, and 2,5-substituted furans with electron-donating groups. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Base catalyzed transesterification of acid treated vegetable oil blend for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar Ali [Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak 31750 (Malaysia)

    2010-10-15

    Biodiesel can be produced from low cost non-edible oils and fats. However, most of these sources are of high free fatty acid content which requires two stage transesterification to reduce the acid value and produce biodiesel. The acid treatment step is usually followed by base transesterification since the latter can yield higher conversions of methyl esters at shorter reaction time when compared with acid catalyzed reaction. In the current study, base transesterification in the second stage of biodiesel synthesis is studied for a blend of crude palm/crude rubber seed oil that had been characterized and treated with acid esterification. Optimum conditions for the reaction were established and effect of each variable was investigated. The base catalyzed transesterification favored a temperature of 55 C with methanol/oil molar ratio of 8/1 and potassium hydroxide at 2% (ww{sup -1}) (oil basis). The conversion of methyl esters exceeded 98% after 5 h and the product quality was verified to match that for biodiesel with international standards. (author)

  13. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.

    2015-04-16

    We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acid and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.

  14. Esterification of Oleic Acid for Biodiesel Production Catalyzed by SnCl2: A Kinetic Investigation

    Directory of Open Access Journals (Sweden)

    Marcio J. da Silva

    2008-09-01

    Full Text Available The production of biodiesel from low-cost raw materials which generally contain high amounts of free fatty acids (FFAs is a valuable alternative that would make their production costs more competitive than petroleum-derived fuel. Currently, the production of biodiesel from this kind of raw materials comprises a two-stage process, which requires an initial acid-catalyzed esterification of the FFA, followed by a basecatalyzed transesterification of the triglycerides. Commonly, the acid H2SO4 is the catalyst on the first step of this process. It must be said, however, that major drawbacks such as substantial reactor corrosion and the great generation of wastes, including the salts formed due to neutralization of the mineral acid, are negative and virtually unsurmountable aspects of this protocol. In this paper, tin(II chloride dihydrate (SnCl2·2H2O, an inexpensive Lewis acid, was evaluated as catalyst on the ethanolysis of oleic acid, which is the major component of several fat and vegetable oils feedstocks. Tin chloride efficiently promoted the conversion of oleic acid into ethyl oleate in ethanol solution and in soybean oil samples, under mild reaction conditions. The SnCl2 catalyst was shown to be as active as the mineral acid H2SO4. Its use has relevant advantages in comparison to mineral acids catalysts, such as less corrosion of the reactors and as well as avoiding the unnecessary neutralization of products. Herein, the effect of the principal parameters of reaction on the yield and rate of ethyl oleate production has been investigated. Kinetic measurements revealed that the esterification of oleic acid catalyzed by SnCl2·2H2O is first-order in relation to both FFAs and catalyst concentration. Experimentally, it was verified that the energy of activation of the esterification reaction of oleic acid catalyzed by SnCl2 was very close those reported for H2SO4.

  15. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    Science.gov (United States)

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  16. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  17. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  18. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.

    Science.gov (United States)

    Jeong, Tae Su; Choi, Chang Ho; Lee, Ji Ye; Oh, Kyeong Keun

    2012-07-01

    Acid-catalyzed hydrothermal hydrolysis is one path to cellulosic glucose and subsequently to its dehydration end products such as hydroxymethyl furfural (HMF), formic acid and levulinic acid. The effect of sugar decomposition not only lowers the yield of fermentable sugars but also forms decomposition products that inhibit subsequent fermentation. The present experiments were conducted with four different acid catalysts (H(2)SO(4), HNO(3), HCl, and H(3)PO(4)) at various acid normalities (0.5-2.1N) in batch reactors at 180-210 °C. From the results, H(2)SO(4) was the most suitable catalyst for glucose production, but glucose decomposition occurred during the hydrolysis. The glucose production was maximized at 160.7 °C, 2.0% (w/v) H(2)SO(4), and 40 min, but resulted in a low glucan yield of 33.05% due to the decomposition reactions, which generated formic acid and levulinic acid. The highest concentration of levulinic acid, 7.82 g/L, was obtained at 181.2 °C, 2.0% (w/v) H(2)SO(4), and 40 min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Biodiesel Production from Spent Fish Frying Oil Through Acid-Base Catalyzed Transesterification

    Directory of Open Access Journals (Sweden)

    Abdalrahman B. Fadhil

    2012-06-01

    Full Text Available Biodiesel fuels were prepared from a special type of frying oil namely spent fish frying oil through two step transesterification viz. acid-base catalyzed transesterification. Hydrochloric acid and potassium hydroxide with methanol were used for this purpose. The oil was pre-treated with (1.0 wt% HCl and methanol to reduce free fatty acids content of the oil. Then, conditions of the base catalyzed step such as base concentration, reaction temperature, methanol to oil molar ratio and reaction time were optimized. The study raveled that, 0.50% KOH w/w of oil; a 6:1 methanol to oil molar ratio; a reaction temperature of 60°C and a duration of 1h were the optimal conditions because they resulted in high biodiesel yield. Fuel properties of the products were assessed and found better than those of the parent oil. Furthermore, they met the specified limits according to the ASTM standards. Thin layer chromatography was used as a simple technique to monitor the transesterification of the oil. Blending of the optimal biodiesel sample with petro diesel using specified volume percentages was done as well. The results indicated that biodiesel had slight effect on the values of the assessed properties.

  20. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Moritz W.; Rodriguez-Niño, Daniella; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-01-01

    The impact of support morphology and composition on the intrinsic activity of Ni supported on MFI-type zeolite was explored in the hydrodeoxygenation of methyl stearate, tristearate, and algae oil (mixture of triglycerides). The nano-sized structure of the support (self-pillared nanosheets) is beneficial for the activity of the catalysts. Higher Ni dispersion and concomitant higher reaction rates were obtained on nano-structured supports than on zeolite with conventional morphology. Rates normalized to accessible Ni atoms (TOF), however, varied little with support morphology. Acidity of the support increases the rate of Ni-catalyzed C-O hydrogenolysis per surface metal site.

  2. Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose-fructose mixtures

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Ringborg, Rolf Hoffmeyer; Grotkjær, Thomas

    2015-01-01

    allowing the use of the cheapest available source of fructose: high fructose corn syrup. The dehydration was catalyzed by hydrochloric acid and conducted in acetone-water mixtures, which ensured good selectivity towards HMF and eliminated precipitation of polymer by-products (insoluble humins). Through......Synthesis of 5-hydroxymethylfurfural (HMF) from hexoses has been studied extensively in the scientific literature. However, a process has yet to be implemented at industrial scale. In this paper the simultaneous dehydration of glucose and fructose was investigated, in order to develop a process......-products: soluble humins, glucose dimers, anhydroglucose, and formic acid. The reaction conditions in four different reactor configurations were optimized and compared using the kinetic model. It was found that a recirculating reactor setup is preferable, where the equilibrium controlled by-products (anhydroglucose...

  3. Negative resists for i-line lithography utilizing acid-catalyzed intramolecular dehydration reaction

    Science.gov (United States)

    Ueno, Takumi; Uchino, Shou-ichi; Hattori, Keiko T.; Onozuka, Toshihiko; Shirai, Seiichiro; Moriuchi, Noboru; Hashimoto, Michiaki; Koibuchi, S.

    1994-05-01

    Chemical amplification negative resist system composed of a novolak resin, a carbinol and an acid generator is investigated for i-line phase-shift lithography. The reaction in this resist is based on an acid-catalyzed intramolecular dehydration reaction. The dehydration products act as aqueous-base dissolution inhibitors, and carbinol compounds in unexposed areas work as dissolution promoters. The resist composed of a novolak resin, 1,4-bis((alpha) -hydroxyisopropyl) benzene (DIOL-1) and 2- naphthoylmethyltetramethylenesulfonium triflate (PAG-2) gives the best lithographic performance in terms of sensitivity and resolution. Line-and-space patterns of 0.275 micrometers are obtained using an i-line stepper (NA:0.45) in conjunction with a phase shifting mask.

  4. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  5. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS...... and liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors...... was not covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used...

  7. Application of acid-catalyzed hydrolysis of dispersed organic solvent in developing new microencapsulation process technology.

    Science.gov (United States)

    Lee, Honghwa; Lee, Sunhwa; Bhattacharjee, Himanshu; Sah, Hongkee

    2012-01-01

    The aim of this study was to evaluate a new microencapsulation technology employing an acid-catalyzed solvent extraction method in conjunction to an emulsion-based microencapsulation process. Its process consisted of emulsifying a dispersed phase of poly(D,L-lactide-co-glycolide) and isopropyl formate in an aqueous phase. This step was followed by adding hydrochloric acid to the resulting oil-in-water emulsion, in order to initiate the hydrolysis of isopropyl formate dissolved in the aqueous phase. Its hydrolysis caused the liberation of water-soluble species, that is, isopropanol and formic acid. This event triggered continual solvent leaching out of emulsion droplets, thereby initiating microsphere solidification. This new processing worked well for encapsulation of progesterone and ketoprofen that were chosen as a nonionizable model drug and a weakly acidic one, respectively. Furthermore, the structural integrity of poly(D,L-lactide-co-glycolide) was retained during microencapsulation. The new microencapsulation technology, being conceptually different from previous approaches, might be useful in preparing various polymeric particles.

  8. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.

    Science.gov (United States)

    Huang, Yong; Song, Liangliang; Gong, Lei; Meggers, Eric

    2015-12-01

    A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc = tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2-acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Amino acid-catalyzed conversion of citral : cis-trans isomerization and its conversion into 6-methyl-5-hepten-2-one and acetaldehyde

    NARCIS (Netherlands)

    Wolken, W.A.M.; Have, R. ten; Werf, M.J. van der

    2000-01-01

    Under alkaline conditions, amino acids or proteins catalyze the deacetylation of citral, a major aroma component, resulting in methylheptenone and acetaldehyde formation. 3-Hydroxycitronellal is an intermediate in this reaction. Amino acids also catalyze the cis-trans isomerization of the pure

  10. Laccase-catalyzed modification of PES membranes with 4-hydroxybenzoic acid and gallic acid

    NARCIS (Netherlands)

    Nady, N.; Schroën, C.G.P.H.; Franssen, M.C.R.; Mohy Eldin, M.S.; Zuilhof, H.; Boom, R.M.

    2012-01-01

    We here report on the performance of poly(ethersulfone) membranes modified with 4-hydroxybenzoic acid and gallic acid as substrates, and using laccase as biocatalyst under several modification conditions. The average flux of the base membrane was never reduced more than 20% (mostly below 10%

  11. Asymmetric Brønsted acid-catalyzed aza-Diels–Alder reaction of cyclic C-acylimines with cyclopentadiene

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2012-10-01

    Full Text Available A new chiral Brønsted acid-catalyzed aza-Diels–Alder reaction of cyclic C-acylimines with cyclopentadiene has been developed. The reaction provides optically active aza-tetracycles in good yields with high diastereo- and enantioselectivities under mild reaction conditions.

  12. Ru/Me-BIPAM-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes and α-Ketoesters

    Directory of Open Access Journals (Sweden)

    Momoko Watanabe

    2011-06-01

    Full Text Available A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(arylmethanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM achieved excellent enantioselectivities.

  13. (Salen)Ti(Ⅳ)-Catalyzed Asymmetric Ring-opening of meso Epoxides Using Dithiophosphorus Acid as the Nucleophile

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong ZHOU; Zhao Ming LI; Bing LIU; Kang Ying LI; Li Xin WANG; Guo Feng ZHAO; Qi Lin ZHOU; Chu Chi TANG

    2006-01-01

    The asymmetric ring-opening of epoxides with dithiophosphorus acids catalyzed by a (salen)Ti(Ⅳ) complex formed in situ from the reaction of Ti(OPr-i)4 and the chiral Schiff base derived from (1R,2R)-(+)-diaminocyclohexane was realized. The resulting products were obtained with low to good enantioselectivity (up to 73% ee).

  14. SOLVENT EFFECTS IN THE LIQUID-PHASE HYDRATION OF CYCLOHEXENE CATALYZED BY A MACROPOROUS STRONG ACID ION-EXCHANGE RESIN

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1992-01-01

    The liquid-phase hydration of cyclohexene, a pseudo first order reversible reaction catalyzed by a strong acid ion exchange resin, macroporous Amberlite XE 307, was investigated in solvent mixtures of water and sulfolane. A decrease by a factor of 3 and 6 is observed in the experimentally measured

  15. The Arabidopsis aldehyde oxidase 3 (AA03) gene product catalyzes the final step in abscisic acid biosynthesis in leaves

    NARCIS (Netherlands)

    Seo, M.; Peeters, A.J.M.; Koiwai, H.; Oritani, T.; Marion-Poll, A.; Zeevaart, J.A.D.; Koornneef, M.; Kamiya, Y.; Koshiba, T.

    2000-01-01

    Abscisic acid (ABA) is a plant hormone involved in seed development and germination and in responses to various environmental stresses. The last step of ABA biosynthesis involves oxidation of abscisic aldehyde, and aldehyde oxidase (EC 1.2.3.1) is thought to catalyze this reaction. An aldehyde

  16. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    Science.gov (United States)

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  17. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  18. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    Science.gov (United States)

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  19. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Science.gov (United States)

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  20. Pd(II)-Catalyzed Hydroxyl-Directed C–H Olefination Enabled by Mono-Protected Amino Acid Ligands

    Science.gov (United States)

    Lu, Yi; Wang, Dong-Hui; Engle, Keary M.

    2010-01-01

    A novel Pd(II)-catalyzed ortho-C–H olefination protocol has been developed using spatially remote, unprotected tertiary, secondary, and primary alcohols as the directing groups. Mono-N-protected amino acid ligands were found to promote the reaction, and an array of olefin coupling partners could be used. When electron-deficient alkenes were used, the resulting olefinated intermediates underwent subsequent Pd(II)-catalyzed oxidative intramolecular cyclization to give the corresponding pyran products, which could be converted into ortho-alkylated alcohols under hydrogenolysis conditions. The mechanistic details of the oxidative cyclization step are discussed and situated in the context of the overall catalytic cycle. PMID:20359184

  1. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rh(III) -Catalyzed C-H Olefination of Benzoic Acids under Mild Conditions using Oxygen as the Sole Oxidant.

    Science.gov (United States)

    Jiang, Quandi; Zhu, Changlei; Zhao, Huaiqing; Su, Weiping

    2016-02-04

    Phthalide skeletons have been synthesized for the first time through a Rh(III) -catalyzed C-H olefination of benzoic acids under mild conditions using oxygen as the sole oxidant. Aromatic acids bearing a variety of functional groups could react with diverse alkenes to afford the desired cyclized lactones or uncyclized alkenylarenes in moderate-to-excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recovery of slaughterhouse Animal Fatty Wastewater Sludge by conversion into Fatty Acid Butyl Esters by acid-catalyzed esterification.

    Science.gov (United States)

    Wallis, Christopher; Cerny, Muriel; Lacroux, Eric; Mouloungui, Zéphirin

    2017-02-01

    Two types of Animal Fatty Wastewater Sludges (AFWS 1 and 2) were analyzed and fully characterized to determine their suitability for conversion into biofuel. AFWS 1 was determined to be unsuitable as it contains 68.8wt.% water and only 32.3wt.% dry material, of which only around 80% is lipids to be converted. AFWS 2 has only 15.7wt.% water and 84.3wt.% dry material of which is assumed to 100% lipids as the protein and ash contents were determined to be negligible. The 4-dodecylbenzenesulfonic acid (DBSA) catalyzed esterification of AFWS with 1-butanol was performed in a novel batch reactor fitted with a drying chimney for the "in situ" removal of water and optimized using a non-conventional Doehlert surface response methodology. The optimized condition was found to be 1.66mol equivalent of 1-butanol (with respect to total fatty acid chains), 10wt.% of DBSA catalyst (with respect to AFWS) at 105°C for 3h. Fatty Acid Butyl Esters (FABEs) were isolated in good yields (95%+) as well as a blend of FABEs with 1-butanol (16%). The two potential biofuels were analyzed in comparison with current and analogous biofuels (FAME based biodiesel, and FABE products made from vegetable oils) and were found to exhibit high cetane numbers and flash point values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An Iterative O-Methyltransferase Catalyzes 1,11-Dimethylation of Aspergillus fumigatus Fumaric Acid Amides.

    Science.gov (United States)

    Kalb, Daniel; Heinekamp, Thorsten; Schieferdecker, Sebastian; Nett, Markus; Brakhage, Axel A; Hoffmeister, Dirk

    2016-10-04

    S-adenosyl-l-methionine (SAM)-dependent methyltransfer is a common biosynthetic strategy to modify natural products. We investigated the previously uncharacterized Aspergillus fumigatus methyltransferase FtpM, which is encoded next to the bimodular fumaric acid amide synthetase FtpA. Structure elucidation of two new A. fumigatus natural products, the 1,11-dimethyl esters of fumaryl-l-tyrosine and fumaryl-l-phenylalanine, together with ftpM gene disruption suggested that FtpM catalyzes iterative methylation. Final evidence that a single enzyme repeatedly acts on fumaric acid amides came from an in vitro biochemical investigation with recombinantly produced FtpM. Size-exclusion chromatography indicated that this methyltransferase is active as a dimer. As ftpA and ftpM homologues are found clustered in other fungi, we expect our work will help to identify and annotate natural product biosynthesis genes in various species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    Science.gov (United States)

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  6. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    Science.gov (United States)

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking

    Science.gov (United States)

    Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis

    2018-03-01

    The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.

  8. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study

    Directory of Open Access Journals (Sweden)

    Amrit P. Toor

    2011-05-01

    Full Text Available The kinetic behavior of esterification of lactic acid with isopropanol over an acidic cation exchange resin, Amberlyst 15, was studied under isothermal condition. Isopropyl lactate synthesized in this reaction is an important pharmaceutical intermediate. The experiments were carried out in a stirred batch reactor in the temperature range of 323.15 to 353.15 K. The effect of various parameters such as temperature, molar ratio and catalyst loading was studied. Variation in parameters on rate of reaction demonstrated that the reaction was intrinsically controlled. Kinetic modeling was performed using Eley-Rideal model which acceptably fits the experimental data. The activation energy was found to be 22.007 kJ/mol and frequency factor was 0.036809 l2 g-1 mol-1 min-1 for forward reaction. The value of entropy for the forward reaction was found to be 182.317 J K-1 mol-1 . © 2011 BCREC UNDIP. All rights reserved(Received: 19th January 2011, Revised: 16th March 2011; Accepted: 16th March 2011[How to Cite: A.P. Toor, M. Sharma, S. Thakur, and R. K. Wanchoo. (2011. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 39-45. doi:10.9767/bcrec.6.1.791.39-45][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.791.39-45 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/791 ] | View in  

  9. Theoretical Kinetic Study of the Formic Acid Catalyzed Criegee Intermediate Isomerization: Multistructural Anharmonicity and Atmospheric Implications

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-29

    We performed a theoretical study on the double hydrogen shift isomerization reaction of a six carbon atom Criegee intermediate (C6-CI), catalyzed by formic acid (HCOOH), to produce vinylhydroperoxide (VHP), C6-CI+HCOOH→VHP+HCOOH. This Criegee intermediate can serve as a surrogate for larger CIs derived from important volatile organic compounds like monoterpenes, whose reactivity is not well understood and are difficult to handle computationally. The reactant HCOOH exerts a pronounced catalytic effect on the studied reaction by lowering the barrier height, but the kinetic enhancement is hindered by the multistructural anharmonicity. First, the rigid ring-structure adopted by the saddle point to facilitate simultaneous transfer of two atoms does not allow formation of as many conformers as those formed by the reactant C6-CI. And second, the flexible carbon chain of C6-CI facilitates the formation of stabilizing intramolecular C–H···O hydrogen bonds; this stabilizing effect is less pronounced in the saddle point structure due to its tightness and steric effects. Thus, the contribution of the reactant C6-CI conformers to the multistructural partition function is larger than that of the saddle point conformers. The resulting low multistructural anharmonicity factor partially cancels out the catalytic effect of the carboxylic acid, yielding in a moderately large rate coefficient, k(298 K) = 4.9·10-13 cm3 molecule-1 s-1. We show that carboxylic acids may promote the conversion of stabilized Criegee intermediates into vinylhydroperoxides in the atmosphere, which generates OH radicals and leads to secondary organic aerosol, thereby affecting the oxidative capacity of the atmosphere and ultimately the climate.

  10. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds.

    Science.gov (United States)

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-06-15

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N-H groups are tolerated on the barbituric acid, with no complications arising from N-H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  11. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  12. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  13. Secondary deuterium isotope effects for acid-catalyzed hydrolysis of inosine and adenosine

    International Nuclear Information System (INIS)

    Romero, R.; Stein, R.; Bull, H.G.; Cordes, E.H.

    1978-01-01

    Kinetic α deuterium isotope effects have been measured for acid-catalyzed hydrolysis of inosine and adenosine. For inosine hydrolysis, values of k/sub H/k/sub D/ follow: in 1.0 M HCl, 1.21 and 1.20 at 25 and 50 0 C, respectively; in 0.1 M HCl, 1.19 and 1.18 at 25 and 50 0 C, respectively. For adenosine hydrolysis, k/sub H/k/sub D/ is 1.23 in 0.1 M HCl at 25 0 C. The values require that the transition states for hydrolysis of both the monocation and dication of inosine and the dication of adenosine have marked oxocarbonium ion character. Detailed mechanisms which accord with this and other experimental observations include (1) a classical Al mechanism in which the C--N bond is largely cleaved in the transition state; (2) a mechanism involving some form of nucleophilic participation by solvent in which bond cleavage is advanced relative to bond formation in the transition state; or (3) complete C--N bond cleavage with rate-determining diffusion apart of oxocarbonium ion and purine base. 53 references, 1 figure, 2 tables

  14. Hierarchical porous photoanode based on acid boric catalyzed sol for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Khatereh [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Abdizadeh, Hossein [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Golobostanfard, Mohammad Reza, E-mail: Mohammadreza.Golbostanfard@gmail.com [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Adelfar, Razieh [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Acid boric can thoroughly leads to the hierarchical porous titania structure. • Boron is introduced into titania lattice which causes slight blueshift of bandgap. • The optimized sol parameters are H{sub 3}BO{sub 3}/TTiP = 0.45, DI/TTiP = 4.5, and 0.17 M. • Optimized paste parameters is not changed compared to conventional pastes. • The DSSC based on H{sub 3}BO{sub 3} catalyzed sol shows promising efficiency of 2.91%. - Abstract: The hierarchical porous photoanode of the dye sensitized solar cell (DSSC) is synthesized through non-aqueous sol-gel method based on H{sub 3}BO{sub 3} as an acid catalyst and the efficiencies of the fabricated DSSC based on these photoanodes are compared. The sol parameters of 0.17 M, water mole ratio of 4.5, acid mole ratio of 0.45, and solvent type of ethanol are introduced as optimum parameters for photoanode formation without any detectable cracks. The optimized hierarchical photoanode mainly contains anatase phase with slight shift toward higher angles, confirming the doping of boron into titania structure. Moreover, the porous structure involves two ranges of average pore sizes of 20 and 635 nm. The diffuse reflectance spectroscopy (DRS) shows the proper scattering and blueshift in band gap. The paste parameters of solid:liquid, TiO{sub 2}:ethyl cellulose, and terpineol:ethanol equal to 11:89, 3.5:7.5, and 25:64, respectively, are assigned as optimized parameters for this novel paste. The photovoltaic properties of short circuit current density, open circuit voltage, fill factor, and efficiency of 5.89 mA/cm{sup 2}, 703 mV, 0.7, and 2.91% are obtained for the optimized sample, respectively. The relatively higher short circuit current of the main sample compared to other samples is mainly due to higher dye adsorption in this sample corresponding to its higher surface area and presumably higher charge transfer confirmed by low R{sub S} and R{sub ct} in electrochemical impedance spectroscopy data. Boric acid as

  15. Myeloperoxidase-catalyzed incorporation of amines into proteins: role of hypochlorous acid and dichloramines.

    Science.gov (United States)

    Thomas, E L; Jefferson, M M; Grisham, M B

    1982-11-23

    Myeloperoxidase-catalyzed oxidation of chloride (Cl-) to hypochlorous acid (HOCl) resulted in formation of mono- and dichloramine derivatives (RNHCl and RNCl2) of primary amines. The RNCl2 derivatives could undergo a reaction that resulted in incorporation of the R moiety into proteins. The probable mechanism was attack of RNCl2 or an intermediate formed in the decomposition of RNCl2 on histidine, tyrosine, and cystine residues and on lysine residues at high pH. Incorporation of radioactivity from labeled amines into stable, high molecular weight derivatives of proteins was measured by acid or acetone precipitation and by gel chromatography and electrophoresis. Whereas formation of RNCl2 was favored at low pH, the subsequent incorporation reaction was favored at high pH. Up to several hours were required for the maximum amount of incorporation, which was less than 10% of the label in RNCl2. For the amines tested, incorporation was in the order histamine greater than 1,2-diaminoethane greater than putrescine greater than taurine greater than lysine greater than glucosamine greater than leucine greater than methylamine. Initiation of the reaction required HOCl, and oxidized forms of bromide, iodide, or thiocyanate did not substitute. Inhibitors of incorporation fell into three classes. First, ammonia or amines competed with the labeled amine for reaction with HOCl, so that larger amounts of HOCl were required. Second, readily oxidized substances such as sulfhydryl or diketo compounds or thioethers (methionine) reduced RNCl2. Third, certain compounds competed with protein as the acceptor for the incorporation reaction. The amount required to block incorporation into protein depended on protein concentration. Among these inhibitors were imidazole compounds (histidine), phenols (tyrosine), and disulfides (glutathione disulfide, GSSG). Low yields of derivatives of histidine, tyrosine, and GSSG were detected by thin-layer chromatography. Acid-precipitable derivatives were

  16. Pd-catalyzed ethylene methoxycarbonylation with Brønsted acid ionic liquids as promoter and phase-separable reaction media

    DEFF Research Database (Denmark)

    Garcia-Suarez, Eduardo J.; Khokarale, Santosh Govind; Nguyen van Buu, Olivier

    2014-01-01

    Brønsted acid ionic liquids (BAILs) were prepared and applied as combined acid promoters and reaction media in Pd–phosphine catalyzed methoxycarbonylation of ethylene to produce methyl propionate. The BAILs served as alternatives to common mineral acids required for the reaction, e.g. methanesulf......Brønsted acid ionic liquids (BAILs) were prepared and applied as combined acid promoters and reaction media in Pd–phosphine catalyzed methoxycarbonylation of ethylene to produce methyl propionate. The BAILs served as alternatives to common mineral acids required for the reaction, e...

  17. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  18. Palladium-Catalyzed Decarboxylative γ-Olefination of 2,5-Cyclohexadiene-1-carboxylic Acid Derivatives with Vinyl Halides.

    Science.gov (United States)

    Chang, Chi-Hao; Chou, Chih-Ming

    2018-04-06

    This study explores a Pd-catalyzed decarboxylative Heck-type Csp 3 -Csp 2 coupling reaction of 2,5-cyclohexadiene-1-carboxylic acid derivatives with vinyl halides to provide γ-olefination products. The olefinated 1,3-cyclohexadienes can be further oxidized to produce meta-alkylated stilbene derivatives. Additionally, the conjugated diene products can also undergo a Diels-Alder reaction to produce a bicyclo[2.2.2]octadiene framework.

  19. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei; Tang, Yurong; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields

  20. The Mechanism of Rh-Catalyzed Transformation of Fatty Acids to Linear Alpha olefins

    Directory of Open Access Journals (Sweden)

    Sondre H. Hopen Eliasson

    2017-12-01

    Full Text Available Linear alpha olefins (LAOs are key commodity chemicals and petrochemical intermediates that are currently produced from fossil resources. Fatty acids are the obvious renewable starting material for LAOs, which can be obtained via transition-metal-catalyzed decarbonylative dehydration. However, even the best catalysts that have been obtained to date, which are based on palladium, are not active and stable enough for industrial use. To provide insight for design of better catalysts, we here present the first computationally derived mechanism for another attractive transition-metal for this reaction, rhodium. By comparing the calculated mechanisms and free energy profiles for the two metals, Pd and Rh, we single out important factors for a facile, low-barrier reaction and for a stable catalyst. While the olefin formation is rate limiting for both of the metals, the rate-determining intermediate for Rh is, in contrast to Pd, the starting complex, (PPh32Rh(COCl. This complex largely draws its stability from the strength of the Rh(I–CO bond. CO is a much less suitable ligand for the high-oxidation state Rh(III. However, for steric reasons, rhodium dissociates a bulkier triphenylphosphine and keeps the carbonyl during the oxidative addition, which is less favorable than for Pd. When compared to Pd, which dissociates two phosphine ligands at the start of the reaction, the catalytic activity of Rh also appears to be hampered by its preference for high coordination numbers. The remaining ancillary ligands leave less space for the metal to mediate the reaction.

  1. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2014-06-10

    The dehydrogenase PylD catalyzes the ultimate step of the pyrrolysine pathway by converting the isopeptide L-lysine-Nε-3R-methyl-D-ornithine to the 22nd proteinogenic amino acid. In this study, we demonstrate how PylD can be harnessed to oxidize various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings as constituents of pyrrolysine analogues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  3. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  4. 1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis to fatty acid methyl esters

    International Nuclear Information System (INIS)

    Sun, Yingqiang; Cooke, Peter; Reddy, Harvind K.; Muppaneni, Tapaswy; Wang, Jun; Zeng, Zheling; Deng, Shuguang

    2017-01-01

    Highlights: • [Bmim][HSO_4] catalyzed in-situ transesterification of wet algae. • [Bmim][HSO_4] served as both effective solvent and excellent acid catalyst. • Proposed a mechanism for [Bmim][HSO_4] catalyzed in-situ transesterification. • Identified cell walls and lipid droplets in algae using confocal imaging tests. • Obtained crude biodiesel yield about 95% in 30 min at 200 °C. - Abstract: 1-Butyl-3-methylimidazolium hydrogen sulfate ([Bmim][HSO_4]) is used as a solvent and an acid catalyst for in-situ extractive transesterification of wet Nannochloropsis with methanol. The reaction is supposed to be a five-step process: (1) wet algae cell wall dissolves in ionic liquid at reaction temperatures; (2) hydrogen ions and sulfate ions release from the ionization of HSO_4"−. The hydrogen ions (H"+) act as catalysts for accelerating the reactive extraction of triglyceride from wet Nannochloropsis; (3) hydrogen ions and methanol molecules transfer from bulk to active site of cells without passing through cell wall that is dissolved by ionic liquid; (4) in-situ transesterification of lipid (mainly triglycerides) with methanol; and (5) products transfer from inside of algae cells to outside of cells. The crude biodiesel yield of [Bmim][HSO_4] catalyzed in-situ transesterification is about 95.28% at reaction temperature of 200 °C, reaction time of 30 min, mass ratio of [Bmim][HSO_4] to wet Nannochloropsis of 0.9:1, and a mass ratio of methanol to wet algae of 3:1. It decreases to 81.23% after [Bmim][HSO_4] is recycled for 4 times, which indicates that [Bmim][HSO_4] catalyzed in-situ transesterification is an economic approach for biodiesel production from wet algae.

  5. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...

  6. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: Optimization by response surface methodology

    DEFF Research Database (Denmark)

    Zhou, D.Q.; Xu, Xuebing; Mu, Huiling

    2001-01-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S......-r = 2-6 mol/mol; and W-c = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di......-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; 8, = 5; E-1 = 14 wt %; W-c = 10 wt %; T-e = 65 degreesC. At these conditions, products with 55...

  7. Effect of Bronsted Acids and Bases, and Lewis Acid (Sn(2+)) on the Regiochemistry of the Reaction of Amines with Trifluoromethyl-β-diketones: Reaction of 3-Aminopyrrole to Selectively Produce Regioisomeric 1H-Pyrrolo[3,2-b]pyridines.

    Science.gov (United States)

    De Rosa, Michael; Arnold, David; Hartline, Douglas; Truong, Linda; Verner, Roman; Wang, Tianwei; Westin, Christian

    2015-12-18

    Reaction of 3-aminopyrrole (as its salt) with trifluoromethyl-β-diketones gave γ-1H-pyrrolo[3,2-b]pyridines via reaction at the less reactive carbonyl group. The trifluoromethyl group increased the electrophilicity of the adjacent carbonyl group and decreased the basicity of the hydroxyl group of the CF3 amino alcohol formed. This amino alcohol was formed faster, but its subsequent dehydration to the β-enaminone was slow resulting in the preferential formation of the γ-regioisomer. Reaction of 4,4,4-trifluoro-1-phenyl-1,3-butadione with 3-aminopyrrole was carried out using a series of 6 amine buffers. Yields of the α-1H-pyrrolo[3,2-b]pyridine increased as the pKa of the amine buffer decreased. Surprisingly the yield went down at higher pKas. There was a change in mechanism as the reaction mixture became more basic. With strong amines trifluoromethyl-β-diketones were present mainly or completely as the enolate. Under reductive conditions (3-nitropyrrole/Sn/AcOH/trifluoromethyl-β-diketone) the α-1H-pyrrolo[3,2-b]pyridine was the major product as a result of Lewis acid catalysis by Sn(2+). Similar α-regiochemistry was observed when the reaction of the 3-aminopyrrole salt with trifluoromethyl-β-diketones was carried out in the presence of base and tin(II) acetate.

  8. Lipase-Catalyzed Esterification of Ferulic Acid with Oleyl Alcohol in Ionic Liquid/Isooctane Binary Systems

    DEFF Research Database (Denmark)

    Chen, Bilian; Liu, Huanzhen; Guo, Zheng

    2011-01-01

    Lipase-catalyzed synthesis of ferulic acid oleyl alcohol ester in an ionic liquid (IL)/isooctane system was investigated. Considerable bioconversion and volumetric productivity were achieved in inexpensive 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6]) and 1-methyl-3-octylimidazolium....... Variations of the ratios of IL/isooctane and concentrations of oleyl alcohol also profoundly affected the volumetric productivity. To a higher extent, [Hmim][PF6]/isooctane and [Omim][PF6]/isooctane show similar reaction behaviors. Under the optimized reaction conditions (60 °C, 150 mg of Novozym 435 and 100...

  9. Nucleophilic addition to olefins. 7. Kinetic deuterium isotope effects as criterion for an enforced preassociation mechanism in the hydrolysis of substituted benzylidene Meldrum's acids

    International Nuclear Information System (INIS)

    Bernasconi, C.F.; Leonarduzzi, G.D.

    1982-01-01

    The hydrolysis of the title compounds occurs in four steps: (1) nucleophilic attack by water or hydroxide ion to form the addition complex T/sub OH/ - ; (2) carbon protonation of T/sub OH/ - to form T/sub OH/ 0 ; (3) oxygen deprotonation of T/sub OH/ 0 to form T/sub OH/ 0 - ; (4) collapse of the tetrahedral intermediate T/sub OH/ - into the respective benzaldehyde and Meldrum's acid anion. There is also a water-catalyzed collapse of T/sub OH/ 0 which becomes dominant in strongly acidic solution. In basic solution carbon protonation of T/sub OH/ - (step 2) is rate limiting; in strongly acidic media the water-catalyzed collapse of T/sub OH/ 0 is rate limiting for all substrates. In moderatly acidic solution two types of behavior were observed. With the p-nitro derivative step 4 is rate limiting at high, step 3 at low buffer concentrations. The latter situation is equivalent to a diffusion-controlled trapping mechanism in the reverse direction. With the parent and the p-methoxy derivative, collapse of T/sub OH/ 0 - occurs before the protonated base catalyst generated in step 3 can diffuse away; this is equivalent to an enforced preassociation mechanism in the reverse direction and is analogous to the reaction of thiol anions with acetaldehyde studied by Gilbert and Jencks. Our interpretation is strongly supported by (1) α secondary kinetic deuterium isotope effects which are large for the preassociation mechanism but essentially nil for the trapping mechanism and (2) by Bronsted #betta# values around 0.8 in the case of the preassociation mechanism and 1.0 for the trapping mechanism. The mechanism for the water-catalyzed collapse of T/sub OH/ 0 - is probably concerted, a conclusion which is supported by a large positive deviation from the Bronsted plot for base catalysis and by a large α secondary kinetic deuterium isotope effect

  10. Efficient Lewis Acid Ionic Liquid-Catalyzed Synthesis of the Key Intermediate of Coenzyme Q10 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2010-12-01

    Full Text Available An efficient synthesis of a valuable intermediate of coenzyme Q10 by microwave-assisted Lewis acidic ionic liquid (IL-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF4-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF4-AlCl3. The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF4-ZnCl2 showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds. This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ10 on an industrial scale.

  11. β-Secondary and solvent deuterium kinetic isotope effects and the mechanisms of base- and acid-catalyzed hydrolysis of penicillanic acid

    International Nuclear Information System (INIS)

    Deraniyagala, S.A.; Adediran, S.A.; Pratt, R.F.

    1995-01-01

    β-Secondary and solvent deuterium kinetic isotope effects have been determined at 25 degrees C for the alkaline and acid-catalyzed hydrolysis of penicillanic acid. In order to determine the former isotope effect, [6,6- 2 H 2 ]dideuteriopenicillanic acid has been synthesized. In alkaline solution, the former isotope effect was found to be 0.95 ± 0.01. These values support the B AC 2 mechanism of hydrolysis with rate-determining formation of the tetrahedral intermediate that has been proposed for other β-lactams. The measured β-secondary kinetic isotope for the acid-catalyzed reaction was 1.00 ± 0.01. The data indicates that a likely pathway of acid-catalyzed hydrolysis would be that of an A AC 1 mechanism with an intermediate acylium ion. If this were so, the calculated β-secondary isotope effect per hydrogen coplanar with the breaking C-N bond and corrected for the inductive effect of deuterium would be 1.06 ± 0.01. This suggests an early A AC 1 transition state, which would be reasonable in this case because of destabilization of the N-protonated amide with respect to the acylium ion because of ring strain. The absence of specific participation by solvent in the transition state, as would be expected of an A AC 1 but not an associative mechanism, is supported by the strongly inverse solvent deuterium kinetic isotope effect of 0.25 ± 0.00 in 1 M HCl and 0.22 ± 0.01 in 33.3 wt % H 2 SO 4 . 1 fig., 3 tabs

  12. Noble metal-catalyzed homogeneous and heterogeneous processes in treating simulated nuclear waste media with formic acid

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Smith, H.D.

    1995-09-01

    Simulants for the Hanford Waste Vitrification Plant feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2 -, NO 3 -, and NO 2 - were used to study reactions of formic acid at 90 degrees C catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Such reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase and a microammonia electrode to analyze the NH 4 +/NH 3 in the liquid phase as a function of time. The following reactions have been studied in these systems since they are undesirable side reactions in nuclear waste processing: (1) Decomposition of formic acid to CO 2 + H 2 is undesirable because of the potential fire and explosion hazard of H 2 . Rhodium, which was introduced as soluble RhCl 3 -3H 2 O, was found to be the most active catalyst for H 2 generation from formic acid above ∼ 80 degrees C in the presence of nitrite ion. The H 2 production rate has an approximate pseudo first-order dependence on the Rh concentration, (2) Generation of NH 3 from the formic acid reduction of nitrate and/or nitrite is undesirable because of a possible explosion hazard from NH 4 NO 3 accumulation in a waste processing plant off-gas system. The Rh-catalyzed reduction of nitrogen-oxygen compounds to ammonia by formic acid was found to exhibit the following features: (a) Nitrate rather than nitrite is the principal source of NH 3 . (b) Ammonia production occurs at the expense of hydrogen production. (c) Supported rhodium metal catalysts are more active than rhodium in any other form, suggesting that ammonia production involves heterogeneous rather than homogeneous catalysis

  13. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2010-06-01

    The application of waste frying oil (WFO) mixed with rapeseed oil as a feedstock for the effective production of fatty acid methyl esters (FAME) in a lipase-catalyzed process was investigated. The response surface methodology (RSM) was used to optimize the interaction of four variables: the percentage of WFO in the mixed feedstock, the methanol-to-oil ratio, the dosage of Novozym 435 as a catalyst and the temperature. Furthermore, the addition of methanol to the reaction mixture in a second step after 8 h was shown to effectively diminish enzyme inhibition. Using this technique, the model predicted the optimal conditions that would reach 100% FAME, including a methanol-to-oil molar ratio of 3.8:1, 100% (wt) WFO, 15% (wt) Novozym 435 and incubation at 44.5 degrees C for 12 h with agitation at 200 rpm, and verification experiments confirmed the validity of the model. According to the model, the addition of WFO increased FAME production yield, which is largely due to its higher contents of monoacylglycerols, diacylglycerols and free fatty acids (in comparison to rapeseed oil), which are more available substrates for the enzymatic catalysis. Therefore, the replacement of rapeseed oil with WFO in Novozym 435-catalyzed processes could diminish biodiesel production costs since it is a less expensive feedstock that increases the production yield and could be a potential alternative for FAME production on an industrial scale. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Primary and secondary kinetic isotope effects in the acid-catalyzed dehydration of 1,1'-diadamantylmethylcarbinol in aqueous acetic acid

    International Nuclear Information System (INIS)

    Lomas, J.S.

    1981-01-01

    The sulfuric acid catalyzed dehydration of 1,1'-diadamantyl-methylcarbinol in anhydrous acetic acid proceeds exclusively to 1,1'-bis(1-adamantyl)ethylene. The secondary deuterium isotope effect of 1.32 found for this reaction shows that carbonium ion formation from the protonated alcohol is rate determining. In the presence of water, however, capture of the carbonium ion competes with deprotonation, introducing a primary isotope effect. Consequently, the overall KIE rises, reaching 3.18 for 80% aqueous acetic acid. Analysis of the KIE for 80 to 100% aqueous acetic acid is consistent with a simple classical mechanism involving reversible formation of the intermediate carbonium ion. The primary isotope effect upon deprotonation is at the most 2.98, indicative of an asymmetric transition state close to the carbonium ion

  15. Acid and Base Catalyzed Hydrolysis of Cyanophycin for the Biobased Production of Nitrogen Containing Chemicals

    NARCIS (Netherlands)

    Könst, P.M.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    While growing on side-streams of the agro-industries, engineered microorganisms can produce ethanol and simultaneously bind L-aspartic acid and L-arginine in equimolar amounts in the polyamino acid cyanophycin. In this way, widely available amino acids can be isolated and utilized as an alternative

  16. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin

    Directory of Open Access Journals (Sweden)

    Amrit Pal Toor

    2011-05-01

    Full Text Available Esters are an important pharmaceutical intermediates and very useful perfumery agents. In this study the esterification of acetic acid with n-butanol and iso-butanol over an acidic cation exchange resin, Amberlyst 15 were carried out. The effects of certain parameters such as temperature, catalyst loading, initial molar ratio between reactants on the rate of reaction were studied. The experiments were conducted in a stirred batch reactor in the temperature range of 351.15 K to 366.15K.Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled.The activation energy for the esterification of acetic acid with n-butanol and iso butanol is found to be 28.45 k J/mol and 23.29 kJ/mol respectively. ©2011 BCREC UNDIP. All rights reserved.(Received: 16th December 2010, Revised: 19th March 2011; Accepted: 7th April 2011[How to Cite: A.P. Toor, M. Sharma, G. Kumar, and R. K. Wanchoo. (2011. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 23-30. doi:10.9767/bcrec.6.1.665.23-30][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.665.23-30 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/665 ] | View in 

  17. A kinetic mechanistic study of acid-catalyzed alkylation of isobutane with C4-olefins at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, B.M.

    1978-01-01

    A kinetic and mechanistic study of sulfuric acid-catalyzed alkylation of isobutane with C/sub 4/-Olefins at Low Temperatures(-20/sup 0/ to 0/sup 0/C) was based on a new two-step reaction sequence in which the desired first-step reactions are between acid and olefin to form sulfates and the desired second-step reactions are between sulfates and isobutane to form mostly trimethylpentanes. Linear butenes formed stable sulfates that formed alkylates of exceptionally high quality, up to 100 Research octane, whereas isobutylene and trimethylpentene mainly polymerized during the first step, and the alkylate produced had only 90 Research octane. Trimethylpentanes and dimethylhexanes, when contacted with concentrated sulfuric acid at -10/sup 0/ to +25/sup 0/C, degraded and isomerized to form C/sub 4/-C/sub 9/ and higher isoparaffins and acid-soluble hydrocarbons (conjunct polymers). For the two-step process and the degradation and isomerization reactions, kinetic models based on reaction at the interface were developed; but for isoolefins, a polymerization-cracking sequence (via C/sub 12/- and even C/sub 16/-olefins) is the preferred route. Commercial applications of the results are proposed.

  18. Acid-catalyzed reductive amination of aldoses with 8-aminopyrene-1,3,6-trisulfonate.

    Science.gov (United States)

    Evangelista, R A; Guttman, A; Chen, F T

    1996-02-01

    The reductive amination of monosaccharides with 8-aminopyrene-1,3,6-trisulfonate (APTS) in seven different organic acids including the commonly used acetic acid was investigated by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection. The correlation between the yields of the saccharide-APTS adducts and pKa of the organic acid catalyst is consistent with general acid catalysis of the rate-determining step of the reductive amination reaction. Derivatization in the presence of organic acids of higher strength than acetic acid produced substantially higher yields of APTS-sugar adducts, an effect which is more pronounced for N-acetylamino sugars. Optimum yields were obtained using citric acid as a catalyst. Conversion of a few nanomoles of neutral saccharides to the APTS derivatives is achieved at 75 degrees C in less than 60 min.

  19. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  20. Cascade Production of Lactic Acid from Universal Types of Sugars Catalyzed by Lanthanum Triflate.

    Science.gov (United States)

    Liu, Dajiang; Kim, Kwang Ho; Sun, Jian; Simmons, Blake A; Singh, Seema

    2018-02-09

    Lignocellulosic biomass conversion into value-added platform chemicals in the non-toxic, water-tolerant Lewis acid, and water solutions bears the hallmark of green chemistry. Lactic acid derived from biomass is an important chemical building block for biodegradable polymers such as polylactide. Herein, a universal method of converting lignocellulosic sugars into lactic acid using catalytic amount of water-stable Lewis acid La(OTf) 3 is demonstrated. The lignocellulosic sugars studied in this work include 1) pyrolytic sugars from pyrolysis oil, and 2) sugars derived from ionic liquid (IL)-pretreated biomass. Under moderate conditions (250 °C, 1 h), levoglucosan (major pyrolytic sugar), glucose, and xylose were converted into lactic acid with carbon-based molar yields of 75, 74, and 61 %, respectively. Furthermore, roughly 49 mol % (based on levoglucosan) and 74 wt % (relative to pretreated biomass) of lactic acid were obtained from the conversion of pyrolytic sugars and sugar-rich fraction after lignin removal from switchgrass, respectively. To our knowledge, this is the first reported conversion of pyrolytic sugar into lactic acid by chemocatalysis and also lignocellulosic sugars are converted into lactic acid without hydrolysis. This approach could potentially be extended to other lignocellulosic sugars after simple removal of lignin from biomass pretreatment, rendering moderate to high yields of lactic acid. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review

    Directory of Open Access Journals (Sweden)

    Javier Francos

    2017-11-01

    Full Text Available The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

  2. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .3. EFFECT OF SULFOLANE ON THE EQUILIBRIUM CONVERSION

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The liquid-phase hydration of cyclohexene, a pseudo-first-order reversible reaction catalyzed by a strong acid ion-exchange resin, was investigated in solvent mixtures of water and sulfolane. Macroporous Amberlite XE 307 was used because of its superior catalytic activity. Chemical equilibrium

  3. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .2. EFFECT OF SULFOLANE ON THE REACTION-KINETICS

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The kinetics of the' hydration of cyclohexene, catalyzed by a strong acid ion-exchange resin, have been studied in a packed bed reactor at temperatures between 353 and 413 K and a pressure of 20 bar. The kinetic rate constants were measured as a function of temperature and solvent composition (0-90

  4. General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic alpha-amination of C-glycosylalkyl aldehydes.

    Science.gov (United States)

    Nuzzi, Andrea; Massi, Alessandro; Dondoni, Alessandro

    2008-10-16

    Non-natural axially and equatorially linked C-glycosyl alpha-amino acids (glycines, alanines, and CH2-serine isosteres) with either S or R alpha-configuration were prepared by D- and L-proline-catalyzed (de >95%) alpha-amination of C-glycosylalkyl aldehydes using dibenzyl azodicarboxylate as the electrophilic reagent.

  5. Convenient synthesis of benzothiazoles and benzimidazoles through Brønsted acid catalyzed cyclization of 2-amino thiophenols/anilines with β-diketones.

    Science.gov (United States)

    Mayo, Muhammad Shareef; Yu, Xiaoqiang; Zhou, Xiaoyu; Feng, Xiujuan; Yamamoto, Yoshinori; Bao, Ming

    2014-02-07

    Brønsted acid catalyzed cyclization reactions of 2-amino thiophenols/anilines with β-diketones under oxidant-, metal-, and radiation-free conditions are described. Various 2-substituted benzothiazoles/benzimidazoles are obtained in satisfactory to excellent yields. Different groups such as methyl, chloro, nitro, and methoxy linked on benzene rings were tolerated under the optimized reaction conditions.

  6. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  7. Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures

    NARCIS (Netherlands)

    Güvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Emiel J M

    2016-01-01

    The depolymerization of lignin model compounds and soda lignin by super Lewis acidic metal triflates has been investigated in a mixture of ethanol and water at 400 °C. The strong Lewis acids convert representative model compounds for the structure-forming linkages in lignin, namely α-O-4, 5-O-4

  8. Upgrading of bio-oil via acid-catalyzed reactions in alcohols : a mini review

    NARCIS (Netherlands)

    Hu, X.; Gunawan, R.; Mourant, D.; Mahmudul Hasan, M.D.; Wu, L.; Song, Y.; Lievens, C.; Li, C.Z.

    2017-01-01

    Bio-oil is a condensable liquid produced from the pyrolysis of biomass, which can be upgraded to biofuels. Bio-oil is corrosive as it contains significant amounts of carboxylic acids, creating difficulties in handling of bio-oil and applications of bio-oil. Acid-treatment of bio-oil in alcohols is

  9. Role of keto–enol tautomerization in a chiral phosphoric acid catalyzed asymmetric thiocarboxylysis of meso-epoxide: a DFT study

    KAUST Repository

    Ajitha, Manjaly John; Huang, Kuo-Wei

    2015-01-01

    The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X). The nucleophilic ring opening of epoxide by thiobenzoic acid was found to proceed via a concerted termolecular transition state with a simultaneous dual proton transfer to yield the β-hydroxy thioester product. Electrostatic interactions together with the steric environment inside the chiral catalyst play an important role in determining the enantioselectivity of the reaction.

  10. Role of keto–enol tautomerization in a chiral phosphoric acid catalyzed asymmetric thiocarboxylysis of meso-epoxide: a DFT study

    KAUST Repository

    Ajitha, Manjaly John

    2015-09-15

    The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X). The nucleophilic ring opening of epoxide by thiobenzoic acid was found to proceed via a concerted termolecular transition state with a simultaneous dual proton transfer to yield the β-hydroxy thioester product. Electrostatic interactions together with the steric environment inside the chiral catalyst play an important role in determining the enantioselectivity of the reaction.

  11. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  12. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids.

    Science.gov (United States)

    Fillion, Eric; Wilsily, Ashraf

    2006-03-08

    The asymmetric synthesis of all-carbon benzylic quaternary stereocenters has been successfully achieved through copper-catalyzed addition of dialkylzinc reagents to 5-(1-arylalkylidene) and 5-(dihydroindenylidene) Meldrum's acids in the presence of phosphoramidite ligand. The resulting benzyl-substituted Meldrum's acids and 1,1-disubstituted indanes were obtained in good yields and up to 99% ee. The significance of substituting the position para, meta, and ortho to the electrophilic benzylic center was highlighted. A benzyl Meldrum's acid product was further transformed to a 3,3-disubstituted 1-indanone and a beta,beta-disubstituted pentanoic acid.

  13. A green non-acid-catalyzed process for direct N=N-C group formation: comprehensive study, modeling, and optimization.

    Science.gov (United States)

    Khakyzadeh, Vahid; Zolfigol, Mohammad Ali; Derakhshan-Panah, Fatemeh; Jafarian, Majid; Miri, Mir Vahid; Gilandoust, Maryam

    2018-01-04

    The aim of this work is to introduce, model, and optimize a new non-acid-catalyzed system for a direct N[Formula: see text]N-C bond formation. By reacting naphthols or phenol with anilines in the presence of the sodium nitrite as nitrosonium ([Formula: see text] source and triethylammonium acetate (TEAA), a N[Formula: see text]N-C group can be formed in non-acid media. Modeling and optimization of the reaction conditions were investigated by response surface method. Sodium nitrite, TEAA, and water were chosen as variables, and reaction yield was also monitored. Analysis of variance indicates that a second-order polynomial model with F value of 35.7, a P value of 0.0001, and regression coefficient of 0.93 is able to predict the response. Based on the model, the optimum process conditions were introduced as 2.2 mmol sodium nitrite, 2.2 mL of TEAA, and 0.5 mL [Formula: see text] at room temperature. A quadratic (second-order) polynomial model, by analysis of variance, was able to predict the response for a direct N=N-C group formation. Predicted response values were in good agreement with the experimental values. Electrochemistry studies were done to introduce new Michael acceptor moieties. Broad scope, high yields, short reaction time, and mild conditions are some advantages of the presented method.

  14. Theoretical Study on the Aza-Diels-Alder Reaction Catalyzed by PHCl2 Lewis Acid via Pnicogen Bonding.

    Science.gov (United States)

    Yaghoobi, Fereshteh; Sohrabi Mahboub, Mahdi

    2018-03-15

    The reaction mechanism of the Aza-Diels-Alder (A-D-A) cycloaddition reaction between X 2 C═NNH 2 , where X = H, F, Cl, Br, and 1,3-butadiene catalyzed by a PHCl 2 Lewis acid was characterized using density functional theory calculations. The influences of various substituents of X on the studied reaction were analyzed using the activation strain model (ASM), which is also termed as the distortion-interaction model. Calculations showed that the smallest and largest values of the activation energies belong to the substituents of F and Br, respectively. The activation energy of the studied reactions was decreased within 8.6 kcal·mol -1 in the presence of PHCl 2 catalyst. Investigations showed that the pnicogen bonding is adequately capable of activating the A-D-A reaction. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis were implemented to understand the nature of C 4,Cbut ···C XIm and C 1,Cbut ···N XIm bonds at the TS structures. Additionally, the energy decomposition analysis (EDA) based on the ETS-NOCV scheme was used to characterize the nature of C 4,Cbut ···C XIm and C 1,Cbut ···N XIm bond. The results of the study mirror the fact that the PHCl 2 Lewis acid may be suggested as a simple suitable catalyst for experimental studies on the A-D-A reactions.

  15. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Murria, Priya [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Jiang, Yuan [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Xiao, Weihua [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; College of Engineering; Kenttämaa, Hilkka I. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Abu-Omar, Mahdi M. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Mosier, Nathan S. [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)

    2016-01-01

    Maleic acid (MA) and AlCl3self-assemble into catalytic complexes (Al–(MA)2–(OH)2(aq)) with improved selectivity for converting glucose to HMF, and levulinic acid.

  16. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  17. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    Science.gov (United States)

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  18. Brønsted acid ionic liquid catalyzed formation of pyruvaldehyde dimethylacetal from triose sugars

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2013-01-01

    A series of sulfonic acid functionalized ionic liquids (SO3H-ILs) have been synthesized, characterized and investigated as catalysts for the conversion of the triose sugars, 1,3-dihydroxyacetone (DHA) and glyceraldehyde (GLA), to pyruvaldehyde dimethylacetal (PADA) in methanol. Depending on the r......A series of sulfonic acid functionalized ionic liquids (SO3H-ILs) have been synthesized, characterized and investigated as catalysts for the conversion of the triose sugars, 1,3-dihydroxyacetone (DHA) and glyceraldehyde (GLA), to pyruvaldehyde dimethylacetal (PADA) in methanol. Depending...

  19. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    Science.gov (United States)

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  20. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  1. Lewis base additives improve the zeolite ferrierite-catalyzed synthesis of isostearic acid

    Science.gov (United States)

    Isostearic acid (IA) is of interest for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for IA production through isomerization of fatty aci...

  2. Thermal decomposition of dimethoxymethane and dimethyl carbonate catalyzed by solid acids and bases

    International Nuclear Information System (INIS)

    Fu Yuchuan; Zhu Haiyan; Shen Jianyi

    2005-01-01

    The thermal decomposition of dimethoxymethane (DMM) and dimethyl carbonate (DMC) on MgO, H-ZSM-5, SiO 2 , γ-Al 2 O 3 and ZnO was studied using a fixed bed isothermal reactor equipped with an online gas chromatograph. It was found that DMM was stable on MgO at temperatures up to 623 K, while it was decomposed over the acidic H-ZSM-5 with 99% conversion at 423 K. On the other hand, DMC was easily decomposed on the strong solid base and acid. The conversion of DMC was 76% on MgO at 473 K, and 98% on H-ZSM-5 at 423 K. It was even easier decomposed on the amphoteric γ-Al 2 O 3 . Both DMM and DMC were relatively stable on SiO 2 possessing little surface acidity and basicity. They were even more stable on ZnO with the conversion of DMM and DMC of about 1.5% at 573 K. Thus, metal oxides with either strong acidity or basicity are not suitable for the selective oxidation of DMM to DMC, while ZnO may be used as a component for the reaction

  3. Amidase-catalyzed production of nicotinic acid in batch and continuous stirred membrane reactors

    Czech Academy of Sciences Publication Activity Database

    Cantarella, M.; Cantarella, L.; Gallifuoco, A.; Intellini, R.; Kaplan, Ondřej; Spera, A.; Martínková, Ludmila

    2008-01-01

    Roč. 42, č. 3 (2008), s. 222-229 ISSN 0141-0229 R&D Projects: GA MŠk OC D25.002 Institutional research plan: CEZ:AV0Z50200510 Keywords : amidase * nicotinic acid bioproduction * temperature dependence Subject RIV: EE - Microbiology, Virology Impact factor: 2.375, year: 2008

  4. KSF-supported heteropoly acids catalyzed one-pot synthesis of α ...

    African Journals Online (AJOL)

    In the presence of KSF-supported heteropoly acid as a heterogeneous, reusable and inexpensive catalyst, three-component reactions between aldehydes or ketones, amines, and trimethylsilyl cyanide preceded to afford α-aminonitriles in excellent yields, very short reaction times, and low loading of catalyst. This catalyst ...

  5. Tannic acid Catalyzed an Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole

    Directory of Open Access Journals (Sweden)

    Shitole Nana Vikram

    2013-05-01

    Full Text Available Tannic acid (C76H52O46 has been found to be an efficient catalyst for one-pot synthesis of 2,4,5-triaryl substituted imidazoles by the reaction of an arylaldehyde, benzyl/benzoin and an ammonium acetate. The short reaction time and excellent yields making this protocol practical and economically attractive.

  6. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Güvenatam, B.; Heeres, E.H.J.; Pidko, E.A.; Hensen, E.J.M.

    2014-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400°C in water and ethanol. Lignin conversion in supercritical water led to formation of

  7. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    NARCIS (Netherlands)

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Ernie J. M.

    2016-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400 degrees C in water and ethanol. Lignin conversion in supercritical water led to

  8. the influence of acidity of zeolite H-BEA catalyzed isobutane/n-butene alkylation

    NARCIS (Netherlands)

    Nivarthy, G.S.; Seshan, Kulathuiyer; Lercher, J.A.

    1998-01-01

    The influence of the concentration of acid sites for isobutane/n-butene alkylation on zeolite BEA with varying degrees of Na+ ion exchange is reported. All catalysts studied showed complete n-butene conversion over a significant time-on-stream. Isooctanes were the dominating products over H-BEA,

  9. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N′-Diimine Ligand

    KAUST Repository

    Guan, Chao

    2016-12-17

    We report a ruthenium complex containing an N,N′-diimine ligand for the selective decomposition of formic acid to H and CO in water in the absence of any organic additives. A turnover frequency of 12000 h and a turnover number of 350 000 at 90 °C were achieved in the HCOOH/HCOONa aqueous solution. Efficient production of high-pressure H and CO (24.0 MPa (3480 psi)) was achieved through the decomposition of formic acid with no formation of CO. Mechanistic studies by NMR and DFT calculations indicate that there may be two competitive pathways for the key hydride transfer rate-determining step in the catalytic process.

  10. KSF-supported heteropoly acids catalyzed one-pot synthesis of α-aminonitriles

    Directory of Open Access Journals (Sweden)

    Ezzat Rafiee

    2010-08-01

    Full Text Available In the presence of KSF-supported heteropoly acid as a heterogeneous, reusable and inexpensive catalyst, three-component reactions between aldehydes or ketones, amines, and trimethylsilyl cyanide preceded to afford α-aminonitriles in excellent yields, very short reaction times, and low loading of catalyst. This catalyst was highly selective and other functional groups including carbon-carbon double bond, and heterocyclic moieties did not affect the reaction.

  11. Gold-catalyzed alkylation of silyl enol ethers with ortho-alkynylbenzoic acid esters

    Directory of Open Access Journals (Sweden)

    Yoshinori Yamamoto

    2011-05-01

    Full Text Available Unprecedented alkylation of silyl enol ethers has been developed by the use of ortho-alkynylbenzoic acid alkyl esters as alkylating agents in the presence of a gold catalyst. The reaction probably proceeds through the gold-induced in situ construction of leaving groups and subsequent nucleophilic attack on the silyl enol ethers. The generated leaving compound abstracts a proton to regenerate the silyl enol ether structure.

  12. Gas-phase studies of copper catalyzed aerobic cross coupling of thiol esters and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Tsybizová, A.; Schröder, Detlef; Roithová, J.; Henke, A.; Šrogl, Jiří

    2014-01-01

    Roč. 27, č. 3 (2014), s. 198-203 ISSN 0894-3230 R&D Projects: GA ČR GAP207/12/0846 Grant - others:GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : boronic acids * catalysis * copper * cross coupling * electrospray ionization * mass spectrometry * kinetic studies Subject RIV: CC - Organic Chemistry Impact factor: 1.380, year: 2014

  13. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    Science.gov (United States)

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-12-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g-1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg-1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g-1) and magnetism (Ms = 12.9 Am2 kg-1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls.

  14. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    Science.gov (United States)

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. KINETIC STUDY OF PALMITIC ACID ESTERIFICATION CATALYZED BY Rhizopus oryzae RESTING CELLS

    Directory of Open Access Journals (Sweden)

    JONH J MÉNDEZ

    2009-01-01

    Full Text Available ABSTRACT In the present study, a kinetic model for the biocatalytic synthesis of esters using Rhizopus oryzae resting cells is proposed. The kinetic study has been made in a range of 30-50 °C and atmospheric pressure. The Influence of operating variables, water content, pH, amount of mycelium was studied. Different values of temperature, initial mycelium concentration and acid/alcohol molar ratio were tested. Initial rates were estimated from the slope of the concentration of palmitic acid, or their corresponding ester at conversions of less than 10%, versus time and reported as mmol l-1 min -1. The values of kinetic constants were computed using the freeware program SIMFIT (http:\\\\www.simfit.man.ac.uk. Key words: bound lipase, esterification, fungal resting cells, Rhizopus oryzae, palmitic acid, propanol. RESUMEN En el presente estudio, un modelo cinético para la síntesis de esteres usando Rhizopus oryzae resting cells es propuesto. El estudio cinético fue realizado en un rango de temperatura de 30-50 ºC a presión atmosférica reducida. La influencia de las variables de operación tales como temperatura, pH y contenido de agua fueron estudiadas. Diferentes valores de concentración de micelio y relación molar de ácido/alcohol son ensayadas, Las velocidades iníciales se estimaron de la curva de concentración de acido palmítico, y su correspondiente conversión a ester en menos del 10%, frente a tiempo y reportadas en mmol I-1 min -1. Los valores de las constantes cinéticas fueron calculados usando el programa freeware SIMFIT (http:\\\\www.simfit.man.ac.uk. Palabras clave: Lipasas, esterificación, resting cells, Rhizopus oryzae, acido palmítico, propanol.

  16. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    Science.gov (United States)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    data, product identification confirms that a unimolecular specific acid-catalyzed mechanism is responsible for organic nitrate hydrolysis under acidic conditions. The free energies and enthalpies of the isobutyl nitrate hydrolysis intermediates and products were calculated using a hybrid density functional (ωB97X-V) to support the proposed mechanisms. These findings provide valuable information regarding the organic nitrate hydrolysis mechanism and its contribution to the fate of atmospheric NOx, aerosol phase processing, and BSOA composition.

  17. Acid, silver, and solvent-free gold-catalyzed hydrophenoxylation of internal alkynes

    Directory of Open Access Journals (Sweden)

    Marcia E. Richard

    2013-10-01

    Full Text Available A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.

  18. An intensified esterification process of palm oil fatty acid distillate catalyzed by delipidated rice bran lipase.

    Science.gov (United States)

    Chong, Fui Chin; Tey, Beng Ti; Dom, Zanariah Mohd; Ibrahim, Nordin; Rahman, Russly Abd; Ling, Tau Chuan

    2006-09-07

    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.

  19. A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid

    Directory of Open Access Journals (Sweden)

    Umesh P. Tarpada

    2017-05-01

    Full Text Available Polymer supported sulphanilic acid was found to be an effective heterogeneous catalyst for one pot synthesis of various quinoxaline derivatives from the condensation reaction between 1,2-diamines and 1,2-dicarbonyl compounds in ethanol. Synthesis was attempted under reflux as well as at room temperature using ethanol as the solvent to afford excellent yields. Heterogeneity of the catalyst allowed its recycling for five times with almost retention in catalytic activity. Prepared quinoxaline derivatives were also tested for their antioxidant activity by the FRAP assay method.

  20. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  1. Enhancement of lipase catalyzed-fatty acid methyl esters production from waste activated bleaching earth by nullification of lipase inhibitors.

    Science.gov (United States)

    Dwiarti, Lies; Ali, Ehsan; Park, Enoch Y

    2010-01-01

    This study sought to identify inhibitory factors of lipase catalyzed-fatty acid methyl esters (FAME) production from waste activated bleaching earth (wABE). During the vegetable oil refinery process, activated bleaching earth (ABE) is used for removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted from the wABE with methanol and evaluated by infra-red (IR) spectroscopy, which revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the lipase during FAME conversion from wABE. The inhibition by a mixture of chlorophyll a and b was found to be competitive. The inhibition of the enzymatic hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was competitive, while the inhibition by chlorophyll b alone was non-competitive. Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum FAME production rate improved 120-fold, as compared to that without the addition of KOH. The alkali-combined lipase significantly enhanced the FAME production rate from wABE, in spite of the presence of the plant pigments, and even when a lower amount of lipase was used as a catalyst.

  2. Lipase-catalyzed esterification of lactic acid with straight-chain alcohols

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Xu, Xuebing; Tan, Tianwei

    2005-01-01

    Enzymatic synthesis of esters of lactic acid and straight-chain alcohols with different chain lengths (C6–C18) were investigated in batch reactions with hexadecanol (C16) as the model alcohol. Cyclohexane was the best solvent for higher ester yields, and the best biocatalyst was the immobilized...... Candida antarctica lipase B (Novozym 435) as well as the textile-immobilized Candida sp. lipase. A method was established to obtain ester yields in the range of 71 to 82% for the different alcohols, and the most favorable conditions for the esterification reaction using Novozym 435 were an equimolar ratio...... of lactic acid to alcohol, each at a concentration of 120 mM each; a 50°C reaction temperature; 190 rpm shaking speed; and the addition of 100 mg molecular sieves (4 Å) for drying. The ester yield increased with increasing lipase load, and a yield of 79.2% could be obtained after 24 h of reaction at 20 wt...

  3. Optimization of oligoglycerol fatty acid esters preparation catalyzed by Lipozyme 435

    Directory of Open Access Journals (Sweden)

    Wan, F. L.

    2015-09-01

    Full Text Available Oli goglycerol fatty acid esters (OGEs are an important kind of polyglycerol fatty acid esters (PGEs which have been widely used as emulsifiers in food, medicine and cosmetic industries. The aim of this study was to investigate the preparation of OGEs by the esterification of olig oglycerol with linoleic acid in a solvent- free system using Lipozyme 435 as the catalyst. The effects of substrate molar ratio, reaction time, reaction temperature, enzyme dosage, and water addition on the efficiency of esterification (EE were studied. Single factor experiments and response surface methodology (RSM were employed to optimize the reaction parameters. The optimum conditions were obtained as follows: reaction time 4.52 h, reaction temperature 90 °C, enzyme dosage 2 wt% (based on the total substrate mass, the molar ratio of oligoglycerol to linoleic acid 1.59:1 and no water addition. Under these conditions, the experimental EE (95.82±0.22% fitted well with that predicted by RSM (96.15%. Similar results were obtained when the process was scaled up to a production of 500 g in a pilot bubble column reactor (BCR. The enzyme maintained 98.2% of the relative activity after 10 batches of reaction in the BCR. Electro spray ionization mass spectrum was employed to rapidly analyze the esterification products, and most species of OGEs have been identified.Los ésteres grasos de oligoglicerol (OGEs son una clase importante de ésteres de ácidos grasos de poliglicerol (PGE que han sido ampliamente utilizados como emulsionantes en alimentación, medicina y en la industria cosmética. El objetivo de este estudio fue investigar la preparación de OGEs mediante la esterificación de oligoglicerol con ácido linoleico en un sistema libre de disolvente utilizando Lipozyme 435 como catalizador. Se estudiaron los efectos en la eficiencia de esterificación (EE de la relación molar de sustratos, de los tiempos de reacción, las temperaturas de reacción, la dosis de la

  4. Convenient enzymatic resolution of (R,S)-2-methylbutyric acid catalyzed by immobilized lipases.

    Science.gov (United States)

    Mittersteiner, Mateus; Linshalm, Bruna Luiza; Vieira, Ana Paula Furlan; Brondani, Patrícia Bulegon; Scharf, Dilamara Riva; de Jesus, Paulo Cesar

    2018-01-01

    The application of several immobilized lipases has been explored in the enantioselective esterification of (R,S)-2-methylbutyric acid, an insect pheromone precursor. With the use of Candida antarctica B, using hexane as solvent, (R)-pentyl 2-methylbutyrate was prepared in 2 h with c 40%, ee p 90%, and E = 35, while Thermomyces lanuginosus leads to c 18%, ee p 91%, and E = 26. The (S)-enantiomer was obtained by the use of Candida rugosa or Rhizopus oryzae (2-h reaction, c 34% and 35%, ee p 75 and 49%, and E = 10 and 4, respectively). Under optimal conditions, the effect of the solvent, the molar ratio, and the nucleophile were evaluated. © 2017 Wiley Periodicals, Inc.

  5. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  6. An Intensified Esterification Process of Palm Oil Fatty Acid Distillate Catalyzed by Delipidated Rice Bran Lipase

    Directory of Open Access Journals (Sweden)

    Fui Chin Chong

    2006-01-01

    Full Text Available An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD and glycerol in hexane, through a packed-bed reactor (PBR filled with 10 kg of delipidated rice bran lipase (RBL. The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61% was achieved at a reaction temperature of 65°C, using silica gels as the water-removal agent. Thin-layer chromatography (TLC analysis showed that the major composition of the esterified product was diacylglycerol.

  7. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sulfur tolerance of Pt/mordenites for benzene hydrogenation. Do Bronsted acid sites participate in hydrogenation?

    NARCIS (Netherlands)

    Simon, L.; van Ommen, J.G.; Jentys, A.; Lercher, J.A.

    2002-01-01

    The comparison of Pt electronic properties studied by in situ XANES and the kinetic study of benzene hydrogenation strongly suggests that the hydrogenation of benzene on Pt/mordenites occurs along two parallel reaction pathways. The routes proposed include (i) the monofunctional hydrogenation of

  9. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein

    OpenAIRE

    Urbanowicz, Breeanna R.; Peña, Maria J.; Ratnaparkhe, Supriya; Avci, Utku; Backe, Jason; Steet, Heather F.; Foston, Marcus; Li, Hongjia; O’Neill, Malcolm A.; Ragauskas, Arthur J.; Darvill, Alan G.; Wyman, Charles; Gilbert, Harry J.; York, William S.

    2012-01-01

    The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid ...

  10. Regio-, Diastereo-, and Enantioselective Nitroso-Diels-Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids.

    Science.gov (United States)

    Pous, Jonathan; Courant, Thibaut; Bernadat, Guillaume; Iorga, Bogdan I; Blanchard, Florent; Masson, Géraldine

    2015-09-23

    Chiral phosphoric acid-catalyzed asymmetric nitroso-Diels-Alder reaction of nitrosoarenes with carbamate-dienes afforded cis-3,6-disubstituted dihydro-1,2-oxazines in high yields with excellent regio-, diastereo-, and enantioselectivities. Interestingly, we observed that the catalyst is able not only to control the enantioselectivity but also to reverse the regioselectivity of the noncatalyzed nitroso-Diels-Alder reaction. The regiochemistry reversal and asynchronous concerted mechanism were confirmed by DFT calculations.

  11. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  12. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony; Lefebvre, Quentin; Rueping, Magnus

    2016-01-01

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  13. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony

    2016-06-20

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  14. Palladium-Catalyzed Asymmetric Allylic Alkylation of 4-Substituted Isoxazolidin-5-ones: Straightforward Access to β2,2 -Amino Acids.

    Science.gov (United States)

    Nascimento de Oliveira, Marllon; Arseniyadis, Stellios; Cossy, Janine

    2018-04-03

    We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β 2,2 -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Predicting Alkylate Yield and its Hydrocarbon Composition for Sulfuric Acid Catalyzed Isobutane Alkylation with Olefins Using the Method of Mathematical Modeling

    OpenAIRE

    Nurmakanova, А. Е.; Ivashkina, Elena Nikolaevna; Ivanchina, Emilia Dmitrievna; Dolganov, I. A.; Boychenko, S. S.

    2015-01-01

    The article provides the results of applied mathematical model of isobutane alkylation with olefins catalyzed by sulfuric acid to predict yield and hydrocarbon composition of alkylate caused by the changes in the feedstock composition and process parameters. It is shown that the alkylate produced from feedstock with less mass fraction of isobutane has lower octane value. Wherein the difference in composition of the feedstock contributes to antiknock index by the amount of 1.0-2.0 points.

  16. Optimization of Two-Step Acid-Catalyzed Hydrolysis of Oil Palm Empty Fruit Bunch for High Sugar Concentration in Hydrolysate

    Directory of Open Access Journals (Sweden)

    Dongxu Zhang

    2014-01-01

    Full Text Available Getting high sugar concentrations in lignocellulosic biomass hydrolysate with reasonable yields of sugars is commercially attractive but very challenging. Two-step acid-catalyzed hydrolysis of oil palm empty fruit bunch (EFB was conducted to get high sugar concentrations in the hydrolysate. The biphasic kinetic model was used to guide the optimization of the first step dilute acid-catalyzed hydrolysis of EFB. A total sugar concentration of 83.0 g/L with a xylose concentration of 69.5 g/L and a xylose yield of 84.0% was experimentally achieved, which is in well agreement with the model predictions under optimal conditions (3% H2SO4 and 1.2% H3PO4, w/v, liquid to solid ratio 3 mL/g, 130°C, and 36 min. To further increase total sugar and xylose concentrations in hydrolysate, a second step hydrolysis was performed by adding fresh EFB to the hydrolysate at 130°C for 30 min, giving a total sugar concentration of 114.4 g/L with a xylose concentration of 93.5 g/L and a xylose yield of 56.5%. To the best of our knowledge, the total sugar and xylose concentrations are the highest among those ever reported for acid-catalyzed hydrolysis of lignocellulose.

  17. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  18. Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Bronsted-Evans-Polanyi Relations

    DEFF Research Database (Denmark)

    Ferrin, P.; Simonetti, D.; Kandoi, S.

    2009-01-01

    calculations necessary to describe trends in activity and selectivity across metal and alloy surfaces, thus extending the reach of DFT to more complex systems. In-this work, the well-known family of Bronsted-Evans-Polanyi (BEP) correlations, connecting minima with maxima in the potential energy surface...... on a subset of these surfaces are calculated. Experiments on supported catalysts verify that this simple model is reasonably accurate in describing reactivity trends across metals, suggesting that the combination of BEP and scaling relations may substantially reduce the cost of DFT calculations required...

  19. A Highly Stereocontrolled, One-Pot Approach toward Pyrrolobenzoxazinones and Pyrroloquinazolinones through a Lewis Acid-Catalyzed [3 + 2]-Cycloannulation Process.

    Science.gov (United States)

    Boomhoff, Michael; Ukis, Rostyslav; Schneider, Christoph

    2015-08-21

    We report herein a stereocontrolled [3 + 2]-cycloheteroannulation of bis-silyl dienediolate 1 with 2-aminobenzoic acid- and 2-aminobenzamide-derived imines to furnish highly substituted pyrrolo[1,2-a]benzoxazinones 3 and pyrrolo[1,2-a]quinazolinones 4, respectively, in good overall yields. This one-pot process rapidly generates molecular complexity and comprises a Lewis acid-catalyzed, vinylogous Mannich reaction of 1 followed by an intramolecular N,O-acetal- and N,N-aminal formation, respectively, which proceeds with good to excellent stereocontrol.

  20. Kinetics and mechanism of OsOsub(4) catalyzed oxidation of chalcones by Cesub(4) in aqueous acetic sulfuric acid media

    International Nuclear Information System (INIS)

    Srinivasulu, P.V.; Adinarayana, M.; Sethuram, B.; Rao, T.N.

    1985-01-01

    Kinetics of OsOsub(4) catalyzed oxidation of chalcones by Cesup(4+) was studied in aqueous acetic-sulfuric acid medium in the temperature range 313 to 338 K. The order in oxidant is zero while the order with respect to substrate and catalyst are each fractional. The rate of the reaction decreased with increase in percentage of acetic acid while [Hsup(+)] had practically no effect on the rate. The rates of various substituted chalcones are given. A mechanism in which formation of a cyclic ester between chalcone and OsOsub(4) in a fast step followed by its decomposition in a rate-determining step is envisaged. (author)

  1. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    Science.gov (United States)

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  2. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    Science.gov (United States)

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  3. Assessing College Students' Understanding of Acid Base Chemistry Concepts

    Science.gov (United States)

    Wan, Yanjun Jean

    2014-01-01

    Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…

  4. Density functional theory analysis of the reaction pathway for methane oxidation to acetic acid catalyzed by Pd2+ in sulfuric acid.

    Science.gov (United States)

    Chempath, Shaji; Bell, Alexis T

    2006-04-12

    Density functional theory has been used to investigate the thermodynamics and activation barriers associated with the direct oxidation of methane to acetic acid catalyzed by Pd2+ cation in concentrated sulfuric acid. Pd2+ cations in such solutions are ligated by two bisulfate anions and by one or two molecules of sulfuric acid. Methane oxidation is initiated by the addition of CH4 across one of the Pd-O bonds of a bisulfate ligand to form Pd(HSO4)(CH3)(H2SO4)2. The latter species will react with CO to produce Pd(HSO4)(CH3CO)(H2SO4)2. The most likely path to the final products is found to be via oxidation of Pd(HSO4)(CH3)(H2SO4)2 and Pd(HSO4)(CH3CO)(H2SO4)2 to form Pd(eta2-HSO4)(HSO4)2(CH3)(H2SO4) and Pd(eta2-HSO4)(HSO4)2(CH3CO)(H2SO4), respectively. CH3HSO4 or CH3COHSO4 is then produced by reductive elimination from the latter two species, and CH(3)COOH is then formed by hydrolysis of CH3COHSO4. The loss of Pd2+ from solution to form Pd(0) or Pd-black is predicted to occur via reduction with CO. This process is offset, though, by reoxidation of palladium by either H2SO4 or O2.

  5. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  6. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Maldonado, Gretchen; Assary, Rajeev S.; Dumesic, James A; Curtiss, Larry A

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  7. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    Science.gov (United States)

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  8. Hydrolyses of 2- and 4-fluoro N-heterocycles. 3. Nucleophilic catalysis by buffer bases in the general acid catalyzed hydrolysis of 4-fluoroquinaldine

    International Nuclear Information System (INIS)

    Muscio, O.J. Jr.; Theobald, P.G.; Rutherford, D.R.

    1989-01-01

    Pseudo-first-order rate constants and catalytic rate constants are reported for the buffer-catalyzed hydrolysis of 4-fluoroquinaldine (1) in carboxylic acid and phosphoric acid buffers. The buffer catalysis is consistent with specific acid, general base catalysis. Hydrolyses in 99% 18 O-labeled acetate, indicate that the predominant catalytic mode for the acetic acid/acetate buffer system is nucleophilic catalysis by the acetate anion coupled with specific acid catalysis. The other buffers presumably react in a similar manner. A Broensted-type plot of the catalytic rate constants for hydrolysis of protonated 1 has a slope of 0.57, with formate deviating positively from the line determined by acetate, chloroacetate, monohydrogen phosphate, and water. This Broensted slope is less than that found for hydrolysis of the 2-fluoro-1-methylpyridinium ion, 2, but is still within the range expected for aromatic nucleophilic substitution. Rate constants and 18 O-labeling results for hydrolysis in acetate buffer are also reported for 4-acetoxyquinaldine (3), the proposed intermediate in the acetate-catalyzed hydrolysis of 1. 15 references, 5 figures, 3 tables

  9. Additional Nucleophile-Free FeCl3-Catalyzed Green Deprotection of 2,4-Dimethoxyphenylmethyl-Protected Alcohols and Carboxylic Acids.

    Science.gov (United States)

    Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao

    2016-01-01

    The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.

  10. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    Science.gov (United States)

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  12. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  13. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  14. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts

    NARCIS (Netherlands)

    Notre, le J.E.L.; Witte-van Dijk, S.C.M.; Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2014-01-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200–2508C without any external added pressure, conditions

  15. Redox potential monitoring as a method to control unwanted noble metal-catalyzed hydrogen generation from formic acid treatment of simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.

    1998-01-01

    Simulants for the Hanford Waste Vitrification Plant feed containing the major nonradioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 - , and NO 2 - were used to study redox potential changes in reactions of formic acid at 90 C catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Such reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase and a redox electrode to follow redox potential changes as a function of time. In the initial phase of formic acid addition to nitrite-containing feed simulants, the redox potential of the reaction mixture rises typically to +400 mV relative to the Al/AgCl electrode because of the generation of the moderately strongly oxidizing nitrous acid. No H 2 production occurs at this stage of the reaction as long as free nitrous acid is present. After all of the nitrous acid has been destroyed by reduction to N 2 O and NO and disproportionation to NO/NO 3 - , the redox potential of the reaction mixture becomes more negative than the Ag/AgCl electrode. The experiments outlined in this paper suggest the feasibility of controlling the production of H 2 by limiting the amount of formic acid used and monitoring the redox potential during formic acid treatment

  16. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Five-, Six-, and Seven-Membered β-Substituted Cyclic Enones: Enantioselective Construction of All-Carbon Quaternary Stereocenters

    KAUST Repository

    Kikushima, Kotaro; Holder, Jeffrey C.; Gatti, Michele; Stoltz, Brian M.

    2011-01-01

    The first enantioselective Pd-catalyzed construction of all-carbon quaternary stereocenters via 1,4-addition of arylboronic acids to β-substituted cyclic enones is reported. Reaction of a wide range of arylboronic acids and cyclic enones using a

  17. Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process

    International Nuclear Information System (INIS)

    Nagayama, Shuhei; Kajihara, Koichi; Kanamura, Kiyoshi

    2012-01-01

    Highlights: ► Silica glasses doped by LaF 3 nanocrystals are obtained by HF-catalyzed sol–gel method. ► The processing time (∼1 week) is much shorter than that of previous studies. ► The uptake of SiF groups in the glass matrix greatly reduces the SiOH concentration. ► Effects of sintering conditions and properties of Er 3+ -doped samples are presented. - Abstract: Silica glasses doped with LaF 3 nanocrystals were prepared by HF-catalyzed sol–gel method. HF was used both as fluorine source and as catalyst of the sol–gel reaction, making it possible to shorten the processing time with reducing the concentration of SiOH groups to ∼10 18 cm −3 . The resultant glasses are transparent at visible spectral range, and the optical loss at the ultraviolet absorption edge is dominated by the Rayleigh scattering from LaF 3 crystallites. The size of LaF 3 crystallites increases with an increase in the sintering temperature and time, and is smaller than ∼40 nm in samples showing good visible transparency. Green upconversion photoluminescence is observed in an Er 3+ -doped sample under excitation at 980 nm.

  18. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    Science.gov (United States)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  19. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    Science.gov (United States)

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  20. In situ detection of denitrifying bacteria by mRNA-targeted nucleic acid probes and catalyzed reporter deposition

    DEFF Research Database (Denmark)

    Kofoed, Michael Vedel; Stief, Peter; Poulsen, Morten

    can be designed to target a broader range of denitrifying bacteria; however, they require two-pass CARD-FISH, which may result in (too) high background fluorescence. In a first application example, habitat-specific polynucleotide probes were used to quantify bacteria expressing narG and nos...... reduction of nitrate to dinitrogen gas, is essential for the removal of fixed nitrogen from natural and engineered ecosystems. However, community structure and activity dynamics of denitrifying bacteria in most systems are poorly understood, partially due to difficulties in identifying and quantifying...... and catalyzed fluorescent reporter deposition (CARD-FISH). The general feasibility of the approach was first tested with pure cultures of Pseudomonas stutzeri and various denitrifying and nitrate-reducing isolates. Detailed studies of probe specificity and hybridization conditions using Clone-FISH of nar...

  1. Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes

    Directory of Open Access Journals (Sweden)

    Kundu Kshama

    2014-01-01

    Full Text Available (±-Camphor-10-sulfonic acid (CSA catalyzed condensation of 2-naphthol with both aliphatic/aromatic aldehydes at 80°C yielded 14-alkyl/aryl-dibenzoxanthenes as the sole product in high yields. However, the same condensation with benzaldehyde at 25°C afforded a mixture of intermediate 1,1-bis-(2-hydroxynaphthylphenylmethane and 14-phenyl-dibenzoxanthene while the condensation with aliphatic aldehydes at 25°C furnished the corresponding 14-alkyl-dibenzoxanthenes as the sole product. Moreover, condensation of 2-naphthol with aromatic/aliphatic aldehydes with low catalyst loading (2 mol% was greatly accelerated under microwave irradiation to afford the corresponding 14-aryl/alkyl-dibenzoxanthenes as the sole product in high yields.

  2. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    International Nuclear Information System (INIS)

    Mizuno, Kouichi; Matsuzaki, Masahiro; Kanazawa, Shiho; Tokiwano, Tetsuo; Yoshizawa, Yuko; Kato, Misako

    2014-01-01

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl- 14 C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with

  3. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Matsuzaki, Masahiro [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kanazawa, Shiho [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Tokiwano, Tetsuo; Yoshizawa, Yuko [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kato, Misako [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  4. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    Science.gov (United States)

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  5. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  6. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    International Nuclear Information System (INIS)

    Santos, Michel D.; Lopes, Norberto P.; Iamamoto, Yassuko

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  7. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michel D.; Lopes, Norberto P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: npelopes@fcfrp.usp.br; Iamamoto, Yassuko [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Quimica

    2008-07-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  8. Synthesis and characterization of poly(lactic acid)/ montmorillonite nanocomposites by in situ polycondensation catalyzed by non-metal-based compound.

    Science.gov (United States)

    Kaewprapan, Kulwadee; Phattanarudee, Siriwan

    2012-01-01

    Poly(lactic acid)/montmorillonite nanocomposites were prepared by using non-toxic catalysts, i.e., phthalic acid and succinimide, via in situ polycondensation in presence of silicate. Concentrations of catalysts and clay were varied in a range of 0-3% wt and 0-0.5% wt, respectively. The reaction condition was controlled at 180 degrees C for 24 hr under a reduced pressure. Viscosity average molecular weight of the synthesized polymers and nanocomposites were characterized and compared using an Ubbelohde viscometer. Pattern of silicate distribution in the composites was investigated by X-ray diffraction to correlate with thermal properties evaluated by differential scanning calorimetry and thermogravimetric analysis. The results showed that the addition of catalysts at 2% wt gave the highest product yield (55-60%). The presence of silicate affected on molecular weight reduction, and the diffracted patterns suggested an intercalated structure. With a small amount of added filler, a significant improvement in thermal property and crystallinity of the resultant composites was obtained compared to those of the catalyzed polymers, in which the composites with succinimide exhibited overall better thermal stability and higher crystallinity than the ones prepared with phthalic acid.

  9. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification.

    Science.gov (United States)

    Zhang, Yue; Wong, Wing-Tak; Yung, Ka-Fu

    2013-11-01

    Due to the high content (25-50%) of free fatty acid (FFA), crude rice bran oil usually requires a two steps conversion or one step conversion with very harsh condition for simultaneous esterification and transesterification. In this study, chlorosulfonic acid modified zirconia (HClSO3-ZrO2) with strong acidity and durability is prepared and it shows excellent catalytic activity toward simultaneous esterification and transesterification. Under a relative low reaction temperature of 120 °C, HClSO3-ZrO2 catalyzes a complete conversion of simulated crude rice bran oil (refined oil with 40 wt% FFA) into biodiesel and the conversion yield keep at above 92% for at least three cycles. Further investigation on the tolerance towards FFA and water reveals that it maintains high activity even with the presence of 40 wt% FFA and 3 wt% water. It shows that HClSO3-ZrO2 is a robust and durable catalyst which shows high potential to be commercial catalyst for biodiesel production from low grade feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Acid-catalyzed rearrangements of flavan-4-phloroglucinol derivatives to novel 6-hydroxyphenyl-6a,llb-dihydro-6H-[1]benzofuro[2,3-c]-chromenes and hydroxyphenyl-3,2'-spirobi[dihydro[l]benzofurans

    Science.gov (United States)

    Petrus J. Steynberg; Jan P. Steynberg; Richard W. Hemingway; Daneel Ferreira; G. Wayne McGraw

    1997-01-01

    Acetic acid-catalyzed cleavage of proanthocyanidins in the presence of phloroglucinol gives a series of 2R procyanidin- and prodelphinidin-phloroglucinol adducts together with a novel 2S all-cis derivative implicating cleavage of the pyran ring and subsequent inversion of stereochernistry at C-2c. These flavan-4-phloroglucinol adducts also suffer dehydration to...

  11. MASS SPECTROMETRIC IDENTIFICATION OF AN AZOBENZENE DERIVATIVE PRODUCED BY SMECTITE-CATALYZED CONVERSION OF 3-AMINO-4-HYDROXPHENYLARSONIC ACID

    Science.gov (United States)

    We report here the first evidence of a possible mechanism for the formation of an azobenzene arsonic acid compound in the environment The compound was formed when 3-amino-4-hydroxyphenylarsonic acid (3-amino-HPAA) was added to aqueous suspensions of smectite clay The 3-amino-HPAA...

  12. An N-Linked Bidentate Phosphoramidite Ligand (N-Me-BIPAM for Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to α,β-Unsaturated Ketones

    Directory of Open Access Journals (Sweden)

    Norio Miyaura

    2012-12-01

    Full Text Available A new bidentate phosphoramidite (N-Me-BIPAM based on Shibasaki’s N-linked BINOL was synthesized. This ligand appears to be highly effective for rhodium-catalyzed asymmetric conjugated addition of arylboronic acids to α,β-unsaturated enones. The reaction of ortho-substituted arylboronic acid with acyclic and cyclic enones provides the corresponding products in good yields and enantioselectivities.

  13. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2014-01-01

    various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings

  14. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei

    2018-01-04

    The present invention provides a class of catalyst compounds that can safely and effectively release hydrogen gas from a chemical substrate without producing either noxious byproducts or byproducts that will deactivate the catalyst. The present invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain stable under the reaction conditions required for an effective hydrogen production system. Described herein are compounds for use as catalysts, as well as methods for producing hydrogen from formic acid and/or a formate using the disclosed catalysts. The methods include contacting formic acid and/or a formate with a catalyst as described herein, as well as methods of producing formic acid and/or a formate using the disclosed catalyst and methods for generating electricity using the catalysts described herein.

  15. Hydrogen generation from formic acid catalyzed by a metal complex under amine-free and aqueous conditions

    KAUST Repository

    Huang, Kuo-Wei; Guan, Chao; Pan, Yupeng; Hu, Jinsong; Li, Huaifeng

    2018-01-01

    invention provides catalysts used to produce hydrogen that has a satisfactory and sufficient lifespan (measured by turnover number (TON)), that has stability in the presence of moisture, air, acid, or impurities, promote a rapid reaction rate, and remain

  16. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    Science.gov (United States)

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  17. Environment-friendly green chemistry approaches for an efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by tannic acid

    Directory of Open Access Journals (Sweden)

    Rajesh K. Singh

    2018-01-01

    Full Text Available A new, facile, cost-effective and environment-friendly protocol is reported for the synthesis of 1-amidoalkyl-2-naphthols exploring tannic acid as a novel, cheap and biodegradable catalyst. β-naphthol is condensed with substituted aromatic aldehydes and various amides using catalytic amount of tannic acid in the absence of solvent under thermal (hot plate and oil bath and microwave irradiation techniques. This green protocol offers many advantages such as short reaction time, use of environment-friendly and cheap catalyst and good to excellent yields.

  18. Horseradish peroxidase-catalyzed oligomerization of ferulic acid on a template of a tyrosine-containing tripeptide

    NARCIS (Netherlands)

    Oudgenoeg, G.; Dirksen, E.; Ingemann, S.; Hilhorst, R.; Gruppen, H.; Boeriu, C.G.; Piersma, S.R.; Berkel, W.J.H. van; Laane, C.; Voragen, A.G.J.

    2002-01-01

    Ferulic acid (FA) is an abundantly present phenolic constituent of plant cell walls. Kinetically controlled incubation of FA and the tripeptide Gly-Tyr-Gly (GYG) with horseradish peroxidase and H2O2 yielded a range of new cross-linked products. Two predominant series of hetero-oligomers of FA linked

  19. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...... of a wide range of aryl ketones in good yields and in short reaction times with minimum amounts of waste...

  20. SYNTHESIS OF METHYL TERT-BUTYL ETHER CATALYZED BY ACIDIC ION-EXCHANGE RESINS - INFLUENCE OF THE PROTON ACTIVITY

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The catalytic activity of various strong acid ion-exchange resins on the synthesis of methyl tert-butyl ether (MtBE) from methanol and isobutene has been investigated. Relative to Amberlyst 15, Kastel CS 381 and Amberlyst CSP have similar rate constants, whereas Duolite ES 276 and Amberlyst XE 307

  1. Lewis Acid Catalyzed Conversion of 5-Hydroxymethylfurfural to 1,2,4-Benzenetriol, an Overlooked Biobased Compound.

    Science.gov (United States)

    Kumalaputri, Angela J; Randolph, Caelan; Otten, Edwin; Heeres, Hero J; Deuss, Peter J

    2018-03-05

    5-Hydroxymethylfurfural (HMF) is a platform chemical that can be produced from renewable carbohydrate sources. HMF can be converted to 1,2,4-benzenetriol (BTO) which after catalytic hydrodeoxygenation provides a route to cyclohexanone and cyclohexanol. This mixture, known as KA oil, is an important feedstock for polymeric products such as nylons which use benzene as feedstock that is obtained from the BTX fraction produced in oil refineries. Therefore, the conversion of HMF to BTO provides a renewable, alternative route toward products such as nylons. However, BTO is usually considered an undesired byproduct in HMF synthesis and is only obtained in small amounts. Here, we show that Lewis acid catalysts can be utilized for the selective conversion of HMF to BTO in subsuper critical water. Overall, up to 54 mol % yield of BTO was achieved at 89% HMF conversion using ZnCl 2 . ZnCl 2 and similarly effective Zn(OTf) 2 and Fe(OTf) 2 are known as relatively soft Lewis acids. Other Lewis acid like Hf(OTf) 4 and Sc(OTf) 3 gave increased selectivity toward levulinic acid (up to 33 mol %) instead of BTO, a well-known HMF derivative typically obtained by acid catalysis. Catalytic hydrodeoxygenation of BTO toward cyclohexanone in water was achieved in up to 45% yield using 5 wt % Pd on Al 2 O 3 combined with AlCl 3 or Al(OTf) 3 as catalysts. Additionally, a mild selective oxygen induced dimerization pathway of BTO to 2,2',4,4',5,5'-hexahydroxybiphenyl (5,5'-BTO dimer) was identified.

  2. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    Science.gov (United States)

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  3. Efficient Synthesis of Functionalized 1-oxo-1-phenyl-2-acetic Acids through Ru(II)-catalyzed Transfer Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaowei; Gong, Binwei; Meng, Yanqiu [Shenyang Univ. of Chemical Technology, Shenyang (Korea, Republic of); Yan, Yunnan [Gannan Medical Univ., Ganzhou (Korea, Republic of); Tang, Xiaobo; Eric Xu, H.; Yi, Wei [Chinese Academy of Sciences, Shanghai (China); Li, Qiu [Univ. of Science and Technology of China, Suzhou (China)

    2013-10-15

    A new and alternative method for the efficient synthesis of indanylacetic acid 2 has been developed. The methodology used RuCl(p-cymene)[(R,R)-TsDPEN] as the catalyst and formic acid-triethylamine as the hydrogen source at room temperature under solvent-free conditions, and the reactions have excellent chemoselectivity and good compatibility of substrates. Used our developed method as the starting step, gram scale synthesis of GR24 was achieved smoothly with an overall yield of 72%. All the results suggested that further development of such methodology may be of interest. Further work to establish the mechanistic reasons for selectivity and to further explore the synthetic scope of this mode of transfer hydrogenation is in progress. The synthetic SL analog, GR24 is a very potent germination stimulant, which is widely used in parasitic weed research to stimulate germination and as a standard for comparison of new germinating agents. Owing to the prevalence of GR24, its total synthesis constitutes a hot area of research. So far all known synthetic routes of GR24 used indanylacetic acid 2 as a key intermediate, for which very few methods of building compound 2 have been reported.

  4. Teachers' Perceptions of the Teaching of Acids and Bases in Swedish Upper Secondary Schools

    Science.gov (United States)

    Drechsler, Michal; Van Driel, Jan

    2009-01-01

    We report in this paper on a study of chemistry teachers' perceptions of their teaching in upper secondary schools in Sweden, regarding models of acids and bases, especially the Bronsted and the Arrhenius model. A questionnaire consisting of a Likert-type scale was developed, which focused on teachers' knowledge of different models, knowledge of…

  5. Lewis acid catalyzed [3 + 2] annulation of ketenimines with donor-acceptor cyclopropanes: an approach to 2-alkylidenepyrrolidine derivatives.

    Science.gov (United States)

    Alajarin, Mateo; Egea, Adrian; Orenes, Raul-Angel; Vidal, Angel

    2016-11-02

    The [3 + 2] annulation reaction of C,C,N-trisubstituted ketenimines with donor-acceptor cyclopropanes bearing aryl, styryl and vinyl substituents at the C2 position, triggered by the Lewis acid Sc(OTf) 3 , supplies highly substituted pyrrolidines. Activated cyclopropanes fused to naphthalene and [1]benzopyrane nuclei are also suitable substrates in similar transformations, yielding partially saturated benz[g]indoles and [1]benzopyran[4,3-b]pyrroles. An intramolecular version of this ketenimine/cyclopropane [3 + 2] annulation has also been developed leading to the pyrrolo[2,1-a]isoindole framework.

  6. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of D-Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water

    NARCIS (Netherlands)

    Fachri, Boy A.; Abdilla, Ria M.; van de Bovenkamp, Henk H.; Rasrendra, Carolus B.; Heeres, Hero J.

    2015-01-01

    Levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) have been identified as promising biomass-derived platform chemicals. A kinetic study on the conversion of D-fructose to HMF and LA in water using sulfuric acid as the catalyst has been performed in batch setups. The experiments were carried out

  8. A computational study on Lewis acid-catalyzed diastereoselective acyclic radical allylation reactions with unusual selectivity dependence on temperature and epimer precursor.

    Science.gov (United States)

    Georgieva, Miglena K; Santos, A Gil

    2014-12-05

    In stereoselective radical reactions, it is accepted that the configuration of the radical precursor has no impact on the levels of stereoinduction, as a prochiral radical intermediate is planar, with two identical faces, independently of its origin. However, Sibi and Rheault (J. Am. Chem. Soc. 2000, 122, 8873-8879) remarkably obtained different selectivities in the trapping of radicals originated from two epimeric bromides, catalyzed by chelating Lewis acids. The selectivity rationalization was made on the basis of different conformational properties of each epimer. However, in this paper we show that the two epimers have similar conformational properties, which implies that the literature proposal is unable to explain the experimental results. We propose an alternative mechanism, in which the final selectivity is dependent on different reaction rates for radical formation from each epimer. By introducing a different perspective of the reaction mechanism, our model also allows the rationalization of different chemical yields obtained from each epimer, a result not rationalized by the previous model. Adaptation to other radical systems, under different reaction conditions, is also possible.

  9. Selective Oxidation of Glycerol to Glyceric Acid in Base-Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide

    KAUST Repository

    Tan, Hua

    2016-04-18

    Pt supported on KOH-activated mesoporous carbon (K-AMC) was used to catalyze glycerol oxidation under base-free conditions at room temperature. To study the relationship between the carbon surface chemistry and the catalytic performance of the K-AMC-based Pt catalysts, different levels of surface oxygen functional groups (SOFGs) on the AMC supports were induced by thermal treatment at different temperatures under inert or H2 gas. A strong effect of the surface chemistry was observed on AMC-supported Pt catalysts for glycerol oxidation. The presence of carboxylic acid groups impedes the adsorption of glycerol, which leads to the reduction of catalytic activity, whereas the presence of high-desorption-temperature SOFGs, such as phenol, ether, and carbonyl/quinone groups, provide hydrophilicity to the carbon surface that improves the adsorption of glycerol molecules on Pt metal surface, which is beneficial for the catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    Science.gov (United States)

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  11. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    Science.gov (United States)

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

  12. Sustainable production of a new generation biofuel by lipase-catalyzed esterification of fatty acids from liquid industrial waste biomass.

    Science.gov (United States)

    Foukis, Athanasios; Gkini, Olga A; Stergiou, Panagiota-Yiolanda; Sakkas, Vasilios A; Dima, Agapi; Boura, Konstantina; Koutinas, Athanasios; Papamichael, Emmanuel M

    2017-08-01

    In this work we suggest a methodology comprising the design and use of cost-effective, sustainable, and environmentally friendly process for biofuel production compatible with the market demands. A new generation biofuel is produced using fatty acids, which were generated from acidogenesis of industrial wastes of bioethanol distilleries, and esterified with selected alcohols by immobilized Candida antarctica Lipase-B. Suitable reactors with significant parameters and conditions were studied through experimental design, and novel esterification processes were suggested; among others, the continuous removal of the produced water was provided. Finally, economically sustainable biofuel production was achieved providing high ester yield (<97%) along with augmented concentration (3.35M) in the reaction mixtures at relatively short esterification times, whereas the immobilized lipase maintained over 90% of its initial esterifying ability after reused for ten cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    KAUST Repository

    Álvarez, Andrea

    2017-06-28

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

  14. Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies

    International Nuclear Information System (INIS)

    Rettie, A.E.; Boberg, M.; Rettenmeier, A.W.; Baillie, T.A.

    1988-01-01

    The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is a more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction

  15. Hydrolysis of palm oil catalyzed by acid%棕榈油的酸催化水解工艺研究

    Institute of Scientific and Technical Information of China (English)

    张玲玲; 王晖

    2015-01-01

    以棕榈油为原料进行常压酸催化水解工艺研究。考察了反应时间、反应温度、催化剂用量、油水质量比及乳化剂用量对棕榈油水解反应的影响,得出棕榈油一次酸催化水解的最佳反应条件:反应时间7 h,反应温度100℃,催化剂浓硫酸用量7.5%,油水质量比1∶1,乳化剂磺酸用量0.5%;在最佳反应条件下棕榈油水解产物酸值(KOH)为192.77 mg/g,水解率达到91.96%。并研究出一套循环水解的工艺流程,实现油脂水解产物的循环利用,提高了水相中甘油的含量。%The hydrolysis of palm oil catalyzed by acid was studied. The effects of reaction time,reaction temperature,catalyst dosage,mass ratio of oil to water and emulsifier dosage on the hydrolysis of palm oil were investigated. The optimal reaction conditions of palm oil hydrolysis were obtained as follows:reaction time 7 h,reaction temperature 100℃,mass ratio of oil to water 1∶1,dosage of sulfonic acid used as emul-sifier 0. 5% and catalyst( concentrated sulfonic acid) dosage 7. 5%. Under the optimal reaction condi-tions,the acid value of the hydrolysates was up to 192. 77 mgKOH/g and the hydrolysis rate of palm oil was 91. 96%. A circulated hydrolysis process was designed, then the recycling of hydrolysates was real-ized,and the content of glycerin in the aqueous phase increased.

  16. An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-02-01

    Full Text Available We report here an efficient and green method for Biginelli condensation reaction of aldehydes, β-ketoesters and urea or thiourea catalyzed by Brønsted acidic ionic liquid [Btto][p-TSA] under solvent-free conditions. Compared to the classical Biginelli reaction conditions, the present method has the advantages of giving good yields, short reaction times, near room temperature conditions and the avoidance of the use of organic solvents and metal catalyst.

  17. Mutable Lewis and Bronsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine-(15)N

    Czech Academy of Sciences Publication Activity Database

    Gurinov, A. A.; Rozhkova, Yu. A.; Zukal, Arnošt; Čejka, Jiří; Shenderovich, I, G.

    2011-01-01

    Roč. 27, č. 19 (2011), s. 12115-12123 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701; GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503 Keywords : 15N NMR * post-synthesis alumination * phase Beckmann rearrangement Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.186, year: 2011

  18. Optimization of renewable levulinic acid production from glucose conversion catalyzed by Fe/HY zeolite catalyst in aqueous medium

    International Nuclear Information System (INIS)

    Ramli, Nur Aainaa Syahirah; Amin, Nor Aishah Saidina

    2015-01-01

    Highlights: • Dehydration of glucose as model compound to LA over Fe/HY zeolite catalyst. • RSM coupled with BBD for optimization of LA yield from glucose. • Optimization involving evaluation of four parameters gave 61.8% of optimum LA yield. • Direct conversion of OPF over Fe/HY zeolite yielded 17.6% LA with 54.8% efficiency. • Reusability of Fe/HY zeolite catalyst was tested for five successive cycles. - Abstract: Levulinic acid (LA) is a versatile chemical with numerous applications. In this study, the conversions of glucose and oil palm fronds (OPF) to LA have been conducted over 10% Fe/HY zeolite catalyst. The optimization of LA yield from glucose conversion using Box–Behnken design and response surface methodology reported 61.8% yield, which can be achieved at temperature 173.4 °C, reaction time 3.3 h, 0.93 g of glucose and 0.89 g 10% Fe/HY zeolite. The LA yield from OPF conversion conducted at the optimum conditions was 17.6% with 54.8% process efficiency. It was also observed that Fe leaching from 10% Fe/HY zeolite was insignificant and recycled 10% Fe/HY zeolite gave sufficient performance for five successive cycles. This study emphasizes the potential of Fe/HY zeolite catalyst for catalytic conversion of lignocellulosic biomass to LA

  19. Gold-catalyzed stereoselective cycloisomerization of allenoic acids for two types of common natural γ-butyrolactones.

    Science.gov (United States)

    Zhou, Jing; Fu, Chunling; Ma, Shengming

    2018-04-25

    γ-(E)-Vinylic and γ-alkylic γ-butyrolactones are two different types of lactones existing extensively in animals and plants and many of them show interesting biological activities. Nature makes alkylic γ-butyrolactones by many different enzymatic lactonization processes. Scientists have been mimicking the natural strategy by developing new catalysts. However, direct and efficient access to γ-(E)-vinylic γ-butyrolactones is still extremely limited. Here, we wish to present our modular allene approach, which provides an efficient asymmetric approach to (E)-vinylic γ-butyrolactones from allenoic acids by identifying a new gold complex as the catalyst. Based on this cycloisomerization strategy, the first syntheses of racemic xestospongiene and xestospongienes E, F, G, and H have been realized and the absolute configurations of the chiral centers in xestospongienes E and F have been revised. In addition, by applying a C-O bond cleavage-free hydrogenation, the syntheses of naturally occurring γ-alkylic γ-lactones, (R)-4-tetradecalactone, (S)-4-tetradecalactone, (R)-γ-palmitolactone, and (R)-4-decalactone, have also been achieved.

  20. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process.

    Science.gov (United States)

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-08-30

    We synthesized a novel magnetic composite, Fe3O4/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25°C with Acid Orange 7 (AO7) initial concentration of 25mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe3O4/Cu1.5Ni0.5Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe3O4/Cu(Ni)Cr-LDH to generate sulfate radicals (SO4(-)). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO4(-)), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe3O4/Cu(Ni)Cr-LDH composite could be applied widely for the treatment of organic dyes in wastewater. Copyright © 2014. Published by Elsevier B.V.

  1. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    Science.gov (United States)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  2. A kinetic study on the Novozyme 435-catalyzed esterification of free fatty acids with octanol to produce octyl esters.

    Science.gov (United States)

    Chowdhury, Avisha; Mitra, Debarati

    2015-01-01

    Octyl esters can serve as an important class of biolubricant components replacing their mineral oil counterparts. The purpose of the current work was to investigate the enzymatic esterification reaction of free fatty acids (FFA, from waste cooking oil) with octanol in a solvent-free system using a commercial lipase Novozyme 435. It was found that the esterificaton reaction followed the Ping-pong bi-bi kinetics with no inhibition by substrates or products within the studied concentration range. The maximum reaction rate was estimated to be 0.041 mol L(-1) g(-1) h(-1) . Additionally, the stability of Novozyme 435 in the current reaction system was studied by determining its activity and final conversion of FFA to esters after 12 successive utilizations. Novozyme 435 exhibited almost 100% enzyme activity up to 7 cycles of reaction and gradually decreased (by 5%) thereafter. The kinetic parameters evaluated from the study shall assist in the design of reactors for large-scale production of octyl esters from a cheap biomass source. The enzyme reusability data can further facilitate mass production by curtailing the cost of expensive enzyme consumption. © 2015 American Institute of Chemical Engineers.

  3. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process

    International Nuclear Information System (INIS)

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-01-01

    Graphical abstract: Organic dyes could be absorbed on the surface of the composite or dispersed in the solution. Sulfate radicals (SO 4 · − ) generated by the synergistic reaction between peroxymonosulfate (PMS) and the composite, attacked the organic functional groups of the dyes molecules both adsorbed on the composite surface and dispersed in the solution, which resulted in the degradation of AO7 dye. - Highlights: • A new composite was synthesized successfully via microwave hydrothermal method. • The complete degradation in the system of FLCN and PMS can be achieved. • The catalytic behavior of FLCN can be reused at least for five times. • The AO7 degradation mechanism in the system of FLCN and PMS was demonstrated. - Abstract: We synthesized a novel magnetic composite, Fe 3 O 4 /Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25 °C with Acid Orange 7 (AO7) initial concentration of 25 mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe 3 O 4 /Cu 1.5 Ni 0.5 Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe 3 O 4 /Cu(Ni)Cr-LDH to generate sulfate radicals (SO 4 · − ). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO 4 · − ), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe 3 O 4 /Cu(Ni)Cr-LDH composite could be applied widely for the

  5. Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units

    Czech Academy of Sciences Publication Activity Database

    Serrano, D. P.; García, R. A.; Vicente, G.; Linares, M.; Vitvarová, Dana; Čejka, Jiří

    2011-01-01

    Roč. 279, č. 2 (2011), s. 366-380 ISSN 0021-9517 Institutional research plan: CEZ:AV0Z40400503 Keywords : hierarchical zeolites * hybrid zeolitic-mesostructured materials * Bronsted and Lewis acid centres Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.002, year: 2011

  6. Diastereoselective and one-pot synthesis of trans-isoquinolonic acids via three-component condensation of homophthalic anhydride, aldehydes, and ammonium acetate catalyzed by aspartic acid

    Czech Academy of Sciences Publication Activity Database

    Ghorbani-Choghamarani, A.; Hajjami, M.; Norouzi, M.; Abbasityula, Y.; Eigner, Václav; Dušek, Michal

    2013-01-01

    Roč. 69, č. 32 (2013), s. 6541-6544 ISSN 0040-4020 Grant - others:AVČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : isoquinolonic acid * diastereoselective * aldehyde * homophthalic anhydride * ammonium acetate Subject RIV: CC - Organic Chemistry Impact factor: 2.817, year: 2013

  7. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  8. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Five-, Six-, and Seven-Membered β-Substituted Cyclic Enones: Enantioselective Construction of All-Carbon Quaternary Stereocenters

    KAUST Repository

    Kikushima, Kotaro

    2011-05-11

    The first enantioselective Pd-catalyzed construction of all-carbon quaternary stereocenters via 1,4-addition of arylboronic acids to β-substituted cyclic enones is reported. Reaction of a wide range of arylboronic acids and cyclic enones using a catalyst prepared from Pd(OCOCF(3))(2) and a chiral pyridinooxazoline ligand yields enantioenriched products bearing benzylic stereocenters. Notably, this transformation is tolerant to air and moisture, providing a practical and operationally simple method of synthesizing enantioenriched all-carbon quaternary stereocenters.

  9. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  10. Bioethanol production from paperboard mill sludge using acid-catalyzed bio-derived choline acetate ionic liquid pretreatment followed by fermentation process

    International Nuclear Information System (INIS)

    Farghaly, Ahmed; Elsamadony, Mohamed; Ookawara, Shinichi; Tawfik, Ahmed

    2017-01-01

    Highlights: • Total reducing sugar concentration depends on [ChO][OAc] ionic liquid to biomass ratio. • Acid-catalyzed ionic liquid significantly enhance pretreatment process. • Prolonged pretreatment duration degraded sugars into furans compounds. • Maximum net energy of 5.36 ± 0.30 kJ/g PMS obtained by using acid catalyst IL. - Abstract: Paperboard mill sludge (PMS) composed of cellulose, hemicellulose, lignin and ash contents of 36.72 ± 2.81, 32.91 ± 1.75, 22.89 ± 0.56, and 7.48 ± 0.39%, respectively. Enzymatic hydrolysis process followed by fermentation of native PMS provided an ethanol yield of 0.36 ± 0.01 g/L which equivalent to net gain energy of −0.84 ± 0.03 kJ/g PMS . Choline acetate ionic liquid [Cho][OAc] IL was extensively used as a solvent for PMS to upgrade the performance. Pretreatment with [Cho][OAc] IL/PMS ratio of 10% (w/w) for 1.0 h, at a temperature of 120 °C exhibited hemicellulose and lignin removal efficiency of 5.05 ± 0.52 and 14.71 ± 1.22%, respectively with 89.19 ± 5.62% cellulose recovery. This corresponded to net gain energy of 0.60 ± 0.04 kJ/g PMS based on ethanol yield from enzymatic saccharification process which was quite low due to a limited hemicellulose removal and glucose yield of 24.1 ± 1.4 g/L. [Cho][OAc] IL/PMS ratio of 10% (w/w) supplemented with 1% (v/v) HCl substantially improved the removal efficiency of hemicellulose (36.38 ± 4.51%), lignin (17.42 ± 1.19%) and cellulose (82.17 ± 4.28%) which provided the maximum net energy of 5.36 ± 0.30 kJ/g PMS .

  11. Dihydrolipoamide Dehydrogenases of Advenella mimigardefordensis and Ralstonia eutropha Catalyze Cleavage of 3,3′-Dithiodipropionic Acid into 3-Mercaptopropionic Acid ▿ †

    Science.gov (United States)

    Wübbeler, Jan Hendrik; Raberg, Matthias; Brandt, Ulrike; Steinbüchel, Alexander

    2010-01-01

    The catabolism of the disulfide 3,3′-dithiodipropionic acid (DTDP) is initiated by the reduction of its disulfide bond. Three independent Tn5::mob-induced mutants of Advenella mimigardefordensis strain DPN7T were isolated that had lost the ability to utilize DTDP as the sole source of carbon and energy and that harbored the transposon insertions in three different sites of the same dihydrolipoamide dehydrogenase gene encoding the E3 subunit of the pyruvate dehydrogenase multi-enzyme complex of this bacterium (LpdAAm). LpdAAm was analyzed in silico and compared to homologous proteins, thereby revealing high similarities to the orthologue in Ralstonia eutropha H16 (PdhLRe). Both bacteria are able to cleave DTDP into two molecules of 3-mercaptopropionic acid (3MP). A. mimigardefordensis DPN7T converted 3MP to 3-sulfinopropionic acid, whereas R. eutropha H16 showed no growth with DTDP as the sole carbon source but was instead capable of synthesizing heteropolythioesters using the resulting cleavage product 3MP. Subsequently, the genes lpdAAm and pdhLRe were cloned, heterologously expressed in Escherichia coli applying the pET23a expression system, purified, and assayed by monitoring the oxidation of NADH. The physiological substrate lipoamide was reduced to dihydrolipoamide with specific activities of 1,833 mkat/kg of protein (LpdAAm) or 1,667 mkat/kg of protein (PdhLRe). Reduction of DTDP was also unequivocally detected with the purified enzymes, although the specific enzyme activities were much lower: 0.7 and 0.5 mkat/kg protein, respectively. PMID:20833784

  12. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    Science.gov (United States)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  13. High Pressure Diels Alder Reactions of 1-Vinyl-2,2,6-trimethylcyclohexene Catalyzed by Chiral Lewis Acids; An Enantioselective Route to a Drimane Sesquiterpene Precursor.

    NARCIS (Netherlands)

    Knol, Joop; Meetsma, Auke; Feringa, Bernard

    1995-01-01

    The Diels Alder reaction of 1-vinyl-2,2,6-trimethylcyclohexene and 3-((E)-3-(methoxycarbonyl)propenoyl)-1,3-oxazolidin-2-one under high pressure, catalyzed by a chiral bis-imine copper(II) complex, yields a drimane sesquiterpene precursor in a highly regio- and diastereoselective manner with

  14. Synthesis of Diphenylamine Catalyzed by Zeolites

    Czech Academy of Sciences Publication Activity Database

    Hronec, M.; Cvengrošová, Z.; Čejka, Jiří

    2003-01-01

    Roč. 255, - (2003), s. 197-202 ISSN 0926-860X Institutional research plan: CEZ:AV0Z4040901 Keywords : zeolites beta * bentonite * Bronsted site Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  15. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian

    2016-04-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.

  16. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  17. Acid-base properties of 1-methyl-1,4-dilhydroborabenzene, CH3BC5H6

    International Nuclear Information System (INIS)

    Sullivan, S.A.; Sandford, H.; Beauchamp, J.L.; Ashe, A.J. III

    1978-01-01

    Ion cyclotron resonance techniques are employed to determine the gas-phase Bronsted and Lewis acidities as well as the Bronsted basicity of 1-methyl-1,4-dihydroborabenzene, CH 3 BC 5 H 6 . The ring proton is found to be highly acidic with PA(CH 3 BC 5 H 5 - ) = 337 +- 3 kcal/mol. This acidity results from the formation of 6π electron aromatic anion CH 3 BC 5 H 5 - , which is isoelectronic with toluene. Both the Lewis acidity toward F - as a reference base and the proton basicity of the parent molecule suggest that there is little interaction between the diene π system and the electron-deficient boron. This is further confirmed by the similarity of both negative and positive ion chemistry of the borabenzene to that of aliphatic boranes

  18. Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion.

    Science.gov (United States)

    Di, Junhua; Ma, Cuiluan; Qian, Jianghao; Liao, Xiaolong; Peng, Bo; He, Yucai

    2018-08-01

    In this study, chemo-enzymatic synthesis of furfuralcohol from biomass-derived xylose was successfully demonstrated by a sequential acid-catalyzed dehydration under microwave and whole-cells reduction. After dry dewaxed chestnut shells (CNS, 75 g/L) was acid-hydrolyzed with dilute oxalic acid (0.5 wt%) at 140 °C for 40 min, the obtained CNS-derived xylose (17.9 g/L xylose) could be converted to furfural at 78.8% yield with solid acid SO 4 2- /SnO 2 -Attapulgite (2.0 wt% catalyst loading) in the dibutyl phthalate-water (1:1, v:v) under microwave (600 W) at 180 °C for 10 min. In the dibutyl phthalate-water (1:1, v/v) media at 30 °C and pH 6.5, the furfural liquor (47.0 mM furfural) was biologically converted to furfuralcohol by recombinant Escherichia coli CCZU-Y10 whole-cells harboring an NADH-dependent reductase (PgCR) without extra addition of NAD + and glucose, and furfural was completely converted to furfuralcohol after 2.5 h. Clearly, this one-pot synthesis strategy can be effectively used for furfuralcohol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  20. Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO

    Directory of Open Access Journals (Sweden)

    Maryam Zirak

    2017-05-01

    Full Text Available Synthesis of pyrano-chromenes and pyrano-pyrans was developed by three-component reactions of kojic acid and aromatic aldehydes with dimethone and malononitrile, catalyzed with nano-Bi2O3-ZnO and nano-ZnO, respectively. Reactions proceeded smoothly and the corresponding heterocyclic products were obtained in good to high yields. Nano ZnO and nano Bi2O3-ZnO were prepared by sol-gel method and characterized by X-ray diffraction (XRD, energy-dispersive X-ray analysis (EDX, Fourier transform infrared (FT-IR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM techniques. Supporting Bi3+ on ZnO nanoparticles as Bi2O3, is the main novelty of this work. The simple reaction procedure, easy separation of products, low catalyst loading, reusability of the catalyst are some advantageous of this protocol.

  1. Atom-Economical Dimerization Strategy by the Rhodium-Catalyzed Addition of Carboxylic Acids to Allenes: Protecting-Group-Free Synthesis of Clavosolide A and Late-Stage Modification.

    Science.gov (United States)

    Haydl, Alexander M; Breit, Bernhard

    2015-12-14

    Natural products of polyketide origin with a high level of symmetry, in particular C2 -symmetric diolides as a special macrolactone-based product class, often possess a broad spectrum of biological activity. An efficient route to this important structural motif was developed as part of a concise and highly convergent synthesis of clavosolide A. This strategy features an atom-economic "head-to-tail" dimerization by the stereoselective rhodium-catalyzed addition of carboxylic acids to terminal allenes with the simultaneous construction of two new stereocenters. The excellent efficiency and selectivity with which the C2 -symmetric core structures were obtained are remarkable considering the outcome under classical dimerization conditions. Furthermore, this approach facilitates late-stage modification and provides ready access to potential new lead structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light.

    Science.gov (United States)

    Jia, Hanzhong; Chen, Hongxia; Nulaji, Gulimire; Li, Xiyou; Wang, Chuanyi

    2015-11-01

    The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  4. Kinetics and mechanism of aquation and formation reactions of carbonato complexes. XII. Deuterium solvent isotope effect on the rate of acid-catalyzed decarboxylation of the carbonatobis (ethylenediamine) cobalt(III) complex ion. A mechanistic reappraisal

    International Nuclear Information System (INIS)

    Harris, G.M.; Hyde, K.E.

    1978-01-01

    A recent study of the acid-catalyzed decarboxylation of the carbonatotetrakis(pyridine)cobalt(III) complex ion showed there to be rate acceleration in D 2 O solvent, consistent with a proton-preequilibration mechanism. This observation directly contradicts the results of a similar study made some years ago of the analogous ion, carbonatobis(ethylenediamine)cobalt(III), for which there appeared to be deceleration in D 2 O solvent. A reinvestigation of the latter reaction over a much wider acidity range has now shown the earlier work to be in error. The previously proposed generalized mechanism for aquation of chelated carbonato complex ions of the form CoN 4 CO 3 + (N 4 identical with various tetramine ligand groupings of uni-, bi-, or quadridentate type) has thus been revised to include a proton equilibration step. An unexpected complication arises in the interpretation of the data for the bis(ethylenediamine) complex ion in the acidity range 0.1 + ] + ] term, overtakes and exceeds the true first-order rate constant for CO 2 release. The interesting implications of this unusual first-order successive reaction system are fully explored in the context of the present study

  5. Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation.

    Science.gov (United States)

    Chávez-González, Mónica L; Guyot, Sylvain; Rodríguez-Herrera, Raul; Prado-Barragán, Arely; Aguilar, Cristóbal N

    2018-06-01

    Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.

  6. Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics

    NARCIS (Netherlands)

    Rokhina, E.V.; Makarova, K.; Lathinen, M.; Golovina, E.A.; As, van H.; Virkutyte, J.

    2013-01-01

    The combination of peracetic acid (PAA) and heterogeneous catalyst (MnO2) was used for the degradation of phenol in an aqueous solution in the presence of ultrasound irradiation (US). As a relevant source of free radicals (e.g. OH), peracetic acid was comprehensively studied by means of electron

  7. Acid properties of catalysts as studied by CO adsorption

    International Nuclear Information System (INIS)

    Knozinger, H.

    1992-01-01

    CO is a soft base and can therefore, be used as a highly specific probe for acid sites on oxide surfaces. Relative acidity sequences of Bronsted sites can be established based on the IR-hydroxyl frequency shifts when CO is adsorbed by H-bonding at 77 K. Coordination of CO onto coordinately unsaturated cation sites (Lewis acid sites) leads to cation-sensitive carbonyl stretching frequency shifts. The CO stretching band postions can be correlated with the electric field strength exerted by the cation. A universal correlation seems to exist. Applications of these principles for the study of binary oxides; zeolites, supported oxides and sulfides will be discussed in this paper

  8. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  9. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    Science.gov (United States)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  10. Kinetics of phosphotungstic acid catalyzed oxidation of propan-1,3-diol and butan-1,4-diol by N-chlorosaccharin

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Singh

    2011-09-01

    Full Text Available The kinetic studies of N-chlorosaccharin (NCSA oxidation of propan-1,3-diol and butan-1,4-diol have been reported in presence of phophotungstic acid and in aqueous acetic acid medium. The reactions follow first-order in NCSA and one to zero order with respect to substrate and phosphotungstic acid. Increase in the concentration of added perchloric acid increases the rate of oxidation. A negative effect on the oxidation rate is observed for solvent whereas the ionic strength does not influence the rate of reaction. Addition of the reaction product, saccharin, exhibited retarding effect. Various activation parameters have been evaluated. The products of the reactions were identified as the corresponding aldehydes. A suitable scheme of mechanism consistent with the experimental results has been proposed.

  11. CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available Furfural was oxidized to furoic acid by molecular oxygen under catalysis by 150nm-sized Ag2O/CuO (92% or simply CuO (86.6%. When 30 nm-size catalyst was used,the main product was a furfural Diels-Alder adduct. Detailed reaction conditions andregeneration of catalysts were investigated. Under optimal conditions, a series of aromaticand aliphatic aldehydes were oxidized to the corresponding acids in good yields.

  12. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Mader, Steffen; Sako, Makoto; Sasai, Hiroaki; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  13. Asymmetric Brønsted Acid Catalyzed Substitution of Diaryl Methanols with Thiols and Alcohols for the Synthesis of Chiral Thioethers and Ethers

    KAUST Repository

    Chatupheeraphat, Adisak

    2016-03-08

    An enantioselective addition of thiols and alcohols to aza-ortho-quinone methides, starting from diaryl methanols, was developed. The asymmetric additions occur under mild reaction conditions in the presence of chiral phosphoric acids and furnish the corresponding adducts with excellent yields and enantioselectivities.

  14. Synthesis of .alpha.-Amino Acids via Asymmetric Phase Transfer-Catalyzed Alkylation of Achiral Niclkel(II) Complexes of Glycine-Derived Schiff bases

    Czech Academy of Sciences Publication Activity Database

    Belokon, Y. N.; Bespalova, N. B.; Churkina, T. D.; Císařová, I.; Ezernitskaya, M. G.; Harutyunyan, S. R.; Hrdina, R.; Kagan, H. B.; Kočovský, P.; Kochetkov, K. A.; Larionov, O. G.; Lysenko, K. A.; North, M.; Polášek, Miroslav; Peregudov, A. S.; Prisyazhnyuk, V. V.; Vyskočil, Š.

    2003-01-01

    Roč. 125, - (2003), s. 12860-12870 ISSN 0002-7863 R&D Projects: GA ČR GP203/01/D051 Institutional research plan: CEZ:AV0Z4040901 Keywords : .alpha.amino acids * achiral nickel(II) * glycine-derived schiff bases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.516, year: 2003

  15. Influence of acid-base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2-MgO materials

    NARCIS (Netherlands)

    Angelici, Carlo; Velthoen, Marjolein E. Z.; Weckhuysen, Bert M.; Bruijnincx, Pieter C. A.

    2015-01-01

    The Lebedev ethanol-to-butadiene process entails a complex chain of reactions that require catalysts to possess a subtle balance in the number and strength of acidic and basic sites. SiO2-MgO materials can be excellent Lebedev catalysts if properly prepared, as catalyst performance has been found to

  16. Synthesis of α-Amino Acids via Asymmetric Phase Transfer-Catalyzed Alkylation of Achiral Nickel(II) Complexes of Glycine-Derived Schiff Bases

    NARCIS (Netherlands)

    Belokon, Yuri N.; Bespalova, Natalia B.; Churkina, Tatiana D.; Císařová, Ivana; Ezernitskaya, Marina G.; Harutyunyan, Syuzanna R.; Hrdina, Radim; Kagan, Henri B.; Kočovský, Pavel; Kochetkov, Konstantin A.; Larionov, Oleg V.; Lyssenko, Konstantin A.; North, Michael; Polášek, Miroslav; Peregudov, Alexander S.; Prisyazhnyuk, Vladimir V.; Vyskočil, Štěpán

    2003-01-01

    Achiral, diamagnetic Ni(II) complexes 1 and 3 have been synthesized from Ni(II) salts and the Schiff bases, generated from glycine and PBP and PBA, respectively, in MeONa/MeOH solutions. The requisite carbonyl-derivatizing agents pyridine-2-carboxylic acid(2-benzoyl-phenyl)-amide (PBP) and

  17. Synthesis of 1-amidoalkyl-2-naphthols based on a three-component reaction catalyzed by boric acid as a solid heterogeneous catalyst under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Zahed Karimi-Jaberi

    2012-12-01

    Full Text Available An efficient method for the preparation of 1-amidoalkyl-2-naphthols has been described using a multi-component, one-pot condensation reaction of 2-naphthol, aldehydes and amides in the presence of boric acid under solvent-free conditions.DOI: http://dx.doi.org/10.4314/bcse.v26i3.18

  18. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  19. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming; Rueping, Magnus

    2018-01-01

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  20. The synthesis of mono- and diacetyl-9H-fluorenes. Reactivity and selectivity in the Lewis acid catalyzed Friedel-Crafts acetylation of 9H-fluorene

    DEFF Research Database (Denmark)

    Titinchi, Salam J. J.; Kamounah, Fadhil S.; Abbo, Hanna S.

    2008-01-01

    Friedel-Crafts acetylation of 9H-fluorene is an effective route for the preparation of mono- and diacetyl-9H-fluorenes. Using acetylchloride as the reagent and aluminum chloride as the Lewis acid catalyst the effect of the solvent polarity, the temperature, the reaction time and the mode of addit......Friedel-Crafts acetylation of 9H-fluorene is an effective route for the preparation of mono- and diacetyl-9H-fluorenes. Using acetylchloride as the reagent and aluminum chloride as the Lewis acid catalyst the effect of the solvent polarity, the temperature, the reaction time and the mode......,7-diacetyl-9H-fluorene was obtained in 5-11 % yield when carbon disulfide was used as the solvent. Acetylation of 9H-fluorene in dichloroethane and carbon disulfide, using an excess of acetyl chloride and aluminum chloride at reflux temperature, gives 2,7-diacetyl-9H-fluorene exclusively in high yields (> 97...

  1. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  2. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions

    DEFF Research Database (Denmark)

    Hansen, Thomas S.; Sádaba, Irantzu; Garcia, Eduardo

    2013-01-01

    containing promoters (NCPs) to obtain excellent yields. In acetonitrile a 95% DFF yield was obtained after 24h with ambient pressure of dioxygen at room temperature in the presence of different NCPs, which – to our knowledge – is the best result reported thus far for this reaction. The use of NCPs made...... it further possible to apply various traditional solvents, e.g. acetone, methanol and methyl isobutyl ketone for the reaction. The latter can be used as extraction solvent for HMF synthesis in aqueous media and thus integrate the two processes. Additionally, HMF was oxidized to 2,5-furandicarboxylic acid...

  3. Direct and remarkably efficient conversion of methane into acetic acid catalyzed by amavadine and related vanadium complexes. A synthetic and a theoretical DFT mechanistic study.

    Science.gov (United States)

    Kirillova, Marina V; Kuznetsov, Maxim L; Reis, Patrícia M; da Silva, José A L; da Silva, João J R Fraústo; Pombeiro, Armando J L

    2007-08-29

    Vanadium(IV or V) complexes with N,O- or O,O-ligands, i.e., [VO{N(CH2CH2O)3}], Ca[V(HIDPA)2] (synthetic amavadine), Ca[V(HIDA)2], or [Bu4N]2[V(HIDA)2] [HIDPA, HIDA = basic form of 2,2'-(hydroxyimino)dipropionic or -diacetic acid, respectively], [VO(CF3SO3)2], Ba[VO(nta)(H2O)]2 (nta = nitrilotriacetate), [VO(ada)(H2O)] (ada = N-2-acetamidoiminodiacetate), [VO(Hheida)(H2O)] (Hheida = 2-hydroxyethyliminodiacetate), [VO(bicine)] [bicine = basic form of N,N-bis(2-hydroxyethyl)glycine], and [VO(dipic)(OCH2CH3)] (dipic = pyridine-2,6-dicarboxylate), are catalyst precursors for the efficient single-pot conversion of methane into acetic acid, in trifluoroacetic acid (TFA) under moderate conditions, using peroxodisulfate as oxidant. Effects on the yields and TONs of various factors are reported. TFA acts as a carbonylating agent and CO is an inhibitor for some systems, although for others there is an optimum CO pressure. The most effective catalysts (as amavadine) bear triethanolaminate or (hydroxyimino)dicarboxylates and lead, in a single batch, to CH3COOH yields > 50% (based on CH4) or remarkably high TONs up to 5.6 x 103. The catalyst can remain active upon multiple recycling of its solution. Carboxylation proceeds via free radical mechanisms (CH3* can be trapped by CBrCl3), and theoretical calculations disclose a particularly favorable process involving the sequential formation of CH3*, CH3CO*, and CH3COO* which, upon H-abstraction (from TFA or CH4), yields acetic acid. The CH3COO* radical is formed by oxygenation of CH3CO* by a peroxo-V complex via a V{eta1-OOC(O)CH3} intermediate. Less favorable processes involve the oxidation of CH3CO* by the protonated (hydroperoxo) form of that peroxo-V complex or by peroxodisulfate. The calculations also indicate that (i) peroxodisulfate behaves as a source of sulfate radicals which are methane H-abstractors, as a peroxidative and oxidizing agent for vanadium, and as an oxidizing and coupling agent for CH3CO* and that (ii) TFA is

  4. Rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids to chromones: a highly enantioselective pathway for accessing chiral flavanones.

    Science.gov (United States)

    He, Qijie; So, Chau Ming; Bian, Zhaoxiang; Hayashi, Tamio; Wang, Jun

    2015-03-01

    Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4-addition of α,β-unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)-Ph-bod*, the 1,4-addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97% ee, 99% ee for most substrates). Ring-opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  6. Mechanistic Effects of Water on the Fe-Catalyzed Hydrodeoxygenation of Phenol. The Role of Brønsted Acid Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, Alyssa J. R. [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and; Wang, Yong [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and; Mei, Donghai [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and; McEwen, Jean-Sabin [The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, ∥Department of Physics; Institute for Integrated Catalysis and §Fundamental and

    2018-01-30

    A mechanistic understanding of the roles of water is essential for developing highly active and selective catalysts for hydrodeoxygenation (HDO) reactions since water is ubiquitous in such reaction systems. Here, we present a study for phenol HDO on Fe catalysts using density functional theory which examines the effect of water on three elementary pathways for phenol HDO using an explicit solvation model. The presence of water is found to significantly decrease activation barriers required by hydrogenation reactions via two pathways. First, the proton transfer in the hydrogen bonding network of the liquid water phase is nearly barrierless, which significantly promotes the direct through space tautomerization of phenol. Second, due to the high degree of oxophilicity on Fe, liquid water molecules are found to be easily dissociated into surface hydroxyl groups that can act as Brønsted acid sites. These sites dramatically promote hydrogenation reactions on the Fe surface. As a result, the hydrogen assisted dehydroxylation becomes the dominant phenol HDO pathway. This work provides new fundamental insights into aqueous phase HDO of biomass-derived oxygenates over Fe-based catalysts; e.g., the activity of Fe-based catalysts can be optimized by tuning the surface coverage of Brønsted acid sites via surface doping.

  7. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones.

    Science.gov (United States)

    Weilbeer, Claudia; Sickert, Marcel; Naumov, Sergei; Schneider, Christoph

    2017-01-12

    We disclose herein the first enantioselective aza-Diels-Alder reaction of β-alkyl-substituted vinylketene silyl-O,O-acetals and imines furnishing a broad range of optically highly enriched 4-alkyl-substituted 2-piperidones. As a catalyst for this one-pot reaction we employed a chiral phosphoric acid which effects a vinylogous Mannich reaction directly followed by ring-closure to the lactam. Subsequent fully diastereoselective transformations including hydrogenation, enolate alkylation, and lactam alkylation/reduction processes converted the cycloadducts into various highly substituted piperidines of great utility for the synthesis of natural products and medicinally active compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes.

    Science.gov (United States)

    Yamamoto, Yoshihiko

    2014-03-07

    Transition-metal (TM)-catalyzed hydroarylation reactions of alkynes have received much attention, because they enable the net insertion of alkyne C-C triple bonds into C-H bonds of aromatic precursors, resulting in regio- and stereo-selective formation of synthetically useful arylalkenes. Taking advantage of this feature, TM-catalyzed alkyne hydroarylations have been successfully used for the synthesis of heterocycles. TM-catalyzed alkyne hydroarylations can be classified into three major categories depending on the type of reaction and precursors involved: (1) palladium-catalyzed reductive Heck reactions of alkynes with aryl halides, (2) TM-catalyzed conjugate arylation reactions of activated alkynes with arylboronic acids, and (3) TM-catalyzed aromatic C-H alkenylations with alkynes. This review surveys heterocycle synthesis via TM-catalyzed hydroarylation of alkynes according to the above classification, with an emphasis on the scope and limitations, as well as the underlying mechanisms.

  9. Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation

    Directory of Open Access Journals (Sweden)

    Perumberkandgai A. Vivekanand

    2013-02-01

    Full Text Available Currently, ingenious new analytical and process experimental techniques which are environmentally benign techniques, viz., ultrasound irradiation, have become immensely popular in promoting various reactions. In this work, a novel soluble multi-site phase transfer catalyst (PTC viz., 1,4-bis-(propylmethyleneammounium chloridebenzene (BPMACB was synthesized and its catalytic efficiency was assessed by observing the kinetics of sonolytic polymerization of methacrylic acid butyl ester (MABE using potassium persulphate (PPS as an initiator. The ultrasound–multi-site phase transfer catalysis (US-MPTC-assisted polymerization reaction was compared with the silent (non-ultrasonic polymerization reaction. The effects of the catalyst and various reaction parameters on the catalytic performance were in detail investigated by following the kinetics of polymerization of MABE in an ethyl acetate-water biphasic system. From the detailed kinetic investigation we propose a plausible mechanism. Further the kinetic results demonstrate clearly that ultrasound-assisted phase-transfer catalysis significantly increased the reaction rate when compared to silent reactions. Notably, this environmentally benign and cost-effective process has great potential to be applied in various polymer industries.

  10. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Marie Stiborová

    2014-06-01

    Full Text Available This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI, to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(PH:quinone oxidoreductase (NQO1 and cytochromes P450 (CYP 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs and sulfotransferases (SULTs to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals. For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction.

  11. Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Science.gov (United States)

    Stiborová, Marie; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Martínek, Václav

    2014-01-01

    This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/2 enzymes was investigated with pure enzymes, enzymes present in subcellular cytosolic and microsomal fractions, selective inhibitors, and animal models (including knock-out and humanized animals). For the theoretical approaches, flexible in silico docking methods as well as ab initio calculations were employed. The results summarized in this review demonstrate that a combination of experimental and theoretical approaches is a useful tool to study the enzyme-mediated reaction mechanisms of 3-NBA and AAI reduction. PMID:24918288

  12. Rhodotorulaglutinis phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity

    Directory of Open Access Journals (Sweden)

    Marybeth C MacDonald

    2016-03-01

    Full Text Available Biotransformation of L-tyrosine methyl ester (L-TM to the methyl ester of para- hydroxycinnamic acid (p-HCAM using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26 enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5, temperature (37 C, speed of agitation (50 rpm, enzyme concentration (0.080 µM, and substrate concentration (0.50 mM. Under these conditions, the yield of the reaction was ~15% in 1 h incubation period and ~63% after an overnight (~18 h incubation period. The product (p-HCAM of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR. Fourier Transform Infra-Red spectroscopy (FTIR was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram positive and Gram negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications.

  13. Investigation of the Characteristic Properties of Glacial Acetic Acid-Catalyzed Carbon Xerogels and Their Electrochemical Performance for Use as Electrode Materials in Electrical Double-Layer Capacitors

    Directory of Open Access Journals (Sweden)

    Nguyen Khanh Nguyen Quach

    2017-01-01

    Full Text Available Glacial acetic acid was used as a catalyst in the preparation process of carbon xerogels from the condensation of resorcinol and formaldehyde for shortening significantly the gelation time. The effect of the resorcinol/catalyst ratio over a large range of 2 to 500, the solvent exchange manner with acetone, and the pyrolysis temperature of 700 to 1000°C on the characteristic properties of the carbon xerogels were investigated. A resorcinol/catalyst ratio of 2 and a pyrolysis temperature at 800°C were found to be the optimal condition for the preparation of carbon xerogels with a well-balanced porosity between micro- and mesopores, high surface area (577.62 m2g−1, and large pore volume (0.97 cm3g−1, which are appropriate for use as electrode materials in an electrical double-layer capacitor. The carbon xerogel electrodes that were prepared under these optimal conditions exhibited a good electrochemical performance with the highest specific capacitance of 169 Fg−1 in 6 M KOH electrolyte at a scan rate of 5 mVs−1 from cyclic voltammetry.

  14. Bronsted acidity of H-MCM-22 as probed by variable-temperature infrared spectroscopy of adsorbed CO and N-2

    Czech Academy of Sciences Publication Activity Database

    Delgado, M. R.; Bulánek, R.; Eliášová, Pavla; Arean, C. O.

    2014-01-01

    Roč. 227, MAY 2014 (2014), s. 45-49 ISSN 0920-5861 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : adsorption * hydrogen bonding * IR probe molecules Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.893, year: 2014

  15. Measuring the Bronsted acid strength of zeolites - does it correlate with the O-H frequency shift probed by a weak base?

    Czech Academy of Sciences Publication Activity Database

    Arean, C. O.; Delgado, M. R.; Nachtigall, P.; Thang, H. V.; Rubeš, M.; Bulánek, R.; Eliášová, Pavla

    2014-01-01

    Roč. 16, č. 21 (2014), s. 10129-10141 ISSN 1463-9076 R&D Projects: GA ČR GBP106/12/G015 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388955 Keywords : zeolites * catalysis * H-MSM+22 zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  16. Esterification from derivates of styrene by acetic acid using perchloric acid as a catalyzer; Esterificacion de derivados de estireno con acido acetico en presencia de acido perclorico como catalizador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de la Cuesta, P.J.; Rus Martinez, E.; Palomino sosa, R.; Palomino Perez, F. I. [Departamento deIngenieria Quimica, Facultad de Ciencias, Universidad de Malaga, Malaga (Spain)

    1995-11-01

    The present work is focused to develop the production of esters from derivatives of styrene by acetic acid using perchloric acid as a catalyst. The kinetics of the reaction was studied and analysis of the variables was carried out. 18 refs.

  17. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  18. The conversion of dimethyl ether over Pt/H-ZSM5. A bifunctional catalyzed reaction

    NARCIS (Netherlands)

    Engelen, C.W.R.; Wolthuizen, J.P.; Hooff, van J.H.C.; Imelik, B.; Naccache, C.; Coudurier, G.

    1985-01-01

    At low temperatures dimethylether mixed with hydrogen reacts over a platinum loaded H-ZSM5 catalyst selectivity to methane. Two successive steps can be distinguished; first the acid-catalyzed formation of a trimethyloxoniumion, followed by a metal-catalyzed hydrogenation to methane. Experiments with

  19. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  20. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  1. Atomic polar tensors and acid-base properties of metal-oxide building blocks

    International Nuclear Information System (INIS)

    Ferris, K.F.

    1993-02-01

    The sensitivity of the atomic polar tensor to compositional substituents is reported for the alkali silicate series. Rotational invariants, effective atomic charge (GAPT) and charge normalized anisotropy and dipole (α n and γ n ) are used to characterize the charge distribution and chemical environment of the atomic sites. Comparison of α n and γ n with a series of known Bronsted and Lewis acids and bases suggests that these rotational invariants may act as indicators for metal-oxide site acidities. Basis set and electron correlation particularly affect the determined effective charge, but show minimal effect on α and γ quantities

  2. Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Svelle, S.; Joensen, F.

    2009-01-01

    Lewis acid sites were generated, presumably from dislodged framework aluminium. Collidine, which is too bulky to enter the micropore system of ZSM-5, could access Lewis acidity, suggesting that these sites were predominantly generated on the external surface or in the newly created mesopores....... Additionally, by first saturating the zeolite surface with collidine and subsequently adsorbing CO, we show that barely any Lewis acidity was uncoordinated post-collidine saturation while the Bronsted acidity continuously was protected behind the micropore system. It is hypothesized from the present study...

  3. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  4. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  5. UDP-glucuronyltransferase-catalyzed deconjugation of bilirubin monoglucuronide

    NARCIS (Netherlands)

    Cuypers, H. T.; ter Haar, E. M.; Jansen, P. L.

    1984-01-01

    Bilirubin monoglucuronide is rapidly deconjugated when incubated with UDP and rat liver microsomal preparations at pH 5.1. The following evidence was found that this reaction is catalyzed by UDP-glucuronyltransferase: (i) unconjugated bilirubin and UDP-glucuronic acid were identified as the reaction

  6. Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds

    International Nuclear Information System (INIS)

    Wang, Xue; Lee, Yong Rok

    2013-01-01

    Rhodium(II)-catalyzed reactions of cyclic diazo compounds derived from barbituric acid and thiobarbituric acid with a variety of styrene moieties were examined. These reactions provide rapid synthetic routes to the preparations of spirobarbiturates and spirothiobarbiturates bearing cyclopropane rings

  7. Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue; Lee, Yong Rok [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2013-06-15

    Rhodium(II)-catalyzed reactions of cyclic diazo compounds derived from barbituric acid and thiobarbituric acid with a variety of styrene moieties were examined. These reactions provide rapid synthetic routes to the preparations of spirobarbiturates and spirothiobarbiturates bearing cyclopropane rings.

  8. Synthesis of DOTA-conjugated multimeric [Tyr3]octreotide peptides via a combination of Cu(I)-catalyzed "click" cycloaddition and thio acid/sulfonyl azide "sulfo-click" amidation and their in vivo evaluation.

    NARCIS (Netherlands)

    Yim, C.B.; Dijkgraaf, I.; Merkx, R.; Versluis, C.; Eek, A.; Mulder, G.E.; Rijkers, D.T.; Boerman, O.C.; Liskamp, R.M.

    2010-01-01

    Herein, we describe the design, synthesis, and biological evaluation of a series of DOTA-conjugated monomeric, dimeric, and tetrameric [Tyr(3)]octreotide-based analogues as a tool for tumor imaging and/or radionuclide therapy. These compounds were synthesized using a Cu(I)-catalyzed 1,3-dipolar

  9. Vanadium-Catalyzed Enantioselective Desymmetrization of meso-Secondary Allylic Alcohols and Homoallylic Alcohols

    OpenAIRE

    Li, Zhi; Zhang, Wei; Hisashi Yamamoto, H.

    2008-01-01

    Vanadium-catalyzed epoxidation has extended substrate scope. In addition to various bis-allylic alcohols, bis-homoallylic alcohols can also be desymmetrized using our Vanadium-Bis-hydroxamic acid complexes.

  10. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    Energy Technology Data Exchange (ETDEWEB)

    Settle, Amy E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berstis, Laura R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Shuting [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hu, Haiming [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-12

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.

  11. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  12. Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-09-01

    Full Text Available The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.

  13. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  14. Preparation of biodiesel from waste cooking oil via two-step catalyzed process

    International Nuclear Information System (INIS)

    Wang Yong; Liu Pengzhan; Ou Shiyi; Zhang Zhisen

    2007-01-01

    Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. In this research, a two step catalyzed process was adopted to prepare biodiesel from waste cooking oil whose acid value was 75.92 ± 0.036 mgKOH/g. The free fatty acids of WCO were esterified with methanol catalyzed by ferric sulfate in the first step, and the triglycerides (TGs) in WCO were transesterified with methanol catalyzed by potassium hydroxide in the second step. The results showed that ferric sulfate had high activity to catalyze the esterification of free fatty acids (FFA) with methanol, The conversion rate of FFA reached 97.22% when 2 wt% of ferric sulfate was added to the reaction system containing methanol to TG in10:1 (mole ratio) composition and reacted at 95 deg. C for 4 h. The methanol was vacuum evaporated, and transesterification of the remained triglycerides was performed at 65 deg. C for 1 h in a reaction system containing 1 wt% of potassium hydroxide and 6:1 mole ratio of methanol to TG. The final product with 97.02% of biodiesel, obtained after the two step catalyzed process, was analyzed by gas chromatography. This new process has many advantages compared with the old processes, such as no acidic waste water, high efficiency, low equipment cost and easy recovery of the catalyst

  15. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  16. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  17. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.; Alghamdi, Miasser; Poater, Albert; Falivene, Laura; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi

    2015-01-01

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  18. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  19. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  20. Nitroreductase catalyzed biotransformation of CL-20

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-01-01

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C 6 H 6 N 12 O 12 ) and produced a key metabolite with mol. wt. 346Da corresponding to an empirical formula of C 6 H 6 N 10 O 8 which spontaneously decomposed in aqueous medium to produce N 2 O, NH4+, and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20 - ) which upon initial N-denitration also produced metabolite C 6 H 6 N 10 O 8 . The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e] pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01nmolmin -1 mg of protein -1 , respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20

  1. Alkenylation of Arenes and Heteroarenes with Alkynes.

    Science.gov (United States)

    Boyarskiy, Vadim P; Ryabukhin, Dmitry S; Bokach, Nadezhda A; Vasilyev, Aleksander V

    2016-05-25

    This review is focused on the analysis of current data on new methods of alkenylation of arenes and heteroarenes with alkynes by transition metal catalyzed reactions, Bronsted/Lewis acid promoted transformations, and others. The synthetic potential, scope, limitations, and mechanistic problems of the alkenylation reactions are discussed. The insertion of an alkenyl group into aromatic and heteroaromatic rings by inter- or intramolecular ways provides a synthetic route to derivatives of styrene, stilbene, chalcone, cinnamic acid, various fused carbo- and heterocycles, etc.

  2. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  3. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  4. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    International Nuclear Information System (INIS)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C.

    2013-01-01

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  5. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  6. Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2}/La{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Zhang, Xiao-Dong; Sun, Li; Zhang, Jie; Xu, Hai-Peng [Energy Research Institute of Shandong Academy of Sciences, Jinan 250014 (China)

    2010-01-15

    A new type of solid superacid catalyst with the composition of SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2} loaded with lanthanum was prepared by precipitation and impregnation. The catalytic performance for the synthesis of fatty acid methyl ester from fatty acid and methanol was investigated. The influences of preparation conditions on catalyst performance were studied, the optimum results of which showed that amount of La(NO{sub 3}){sub 3} was 0.1 wt.%, the concentration of H{sub 2}SO{sub 4} for impregnation was 0.5 mol l{sup -1} and calcination temperature was 550 C. In addition, the effects of reaction parameters on esterification efficiency were also studied. With the catalyst amount of 5 wt.%, methanol amount of 1 ml/g fatty acid (FA) and reaction duration of 5 h at 60 C, the conversion ratio could reach above 95%. The catalyst recycled without any treatments could exhibit high activity with the conversion efficiency of above 90% after being reused five times. (author)

  7. Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Shu-wen; Liu, Li-jun; Zhang, Qian; Wang, Liang-yin [Liaocheng University, Liaocheng (China)

    2012-04-15

    Silica supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology

  8. Iron Catalyzed Cycloaddition of Alkynenitriles and Alkynes

    Science.gov (United States)

    D’Souza, Brendan R.; Lane, Timothy K.

    2011-01-01

    The combination of Fe(OAc)2 and an electron-donating, sterically-hindered pyridyl bisimine ligand catalyzes the cycloaddition of alkynenitriles and alkynes. A variety of substituted pyridines were obtained in good yields. PMID:21557582

  9. Heterogeneously Catalyzed Endothermic Fuel Cracking

    Science.gov (United States)

    2016-08-28

    reactor was circumferentially delivered from a 4.2 kW array consisting of 4 independently PID controlled fiber insulated heaters (Zircar ceramics, FIH...the H-ZSM- 5 lattice and Brønsted acid site characteristics” Micropor . Mesopor. Mater., 222 (2016) 256−270. DISTRIBUTION A: Distribution...distribution on the H-ZSM-5 lattice and Brønsted acid site characteristics" Micropor . Mesopor. Mater., 222 (2016) 256-270. S. M. Opalka, H. Huang

  10. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Guo, Lin; Rueping, Magnus

    2018-01-01

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  11. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones.

    Science.gov (United States)

    Takaki, Ken; Hino, Makoto; Ohno, Akira; Komeyama, Kimihiro; Yoshida, Hiroto; Fukuoka, Hiroshi

    2017-01-01

    Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  12. NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones

    Directory of Open Access Journals (Sweden)

    Ken Takaki

    2017-08-01

    Full Text Available Thiazolium carbene-catalyzed reactions of 1,2-diketones and 1,2,3-triketones with enones and ynones have been investigated. The diketones gave α,β-double acylation products via unique Breslow intermediates isolable as acid salts, whereas the triketones formed stable adducts with the NHC instead of the coupling products.

  13. Unprecedentedly mild direct Pd-catalyzed arylation of oxazolo[4,5-b]pyridine

    DEFF Research Database (Denmark)

    Zhuravlev, Fedor

    2006-01-01

    Pd-catalyzed C-2 arylation of oxazolo[4,5-b]pyridine proceeds efficiently at 30 degrees C and tolerates a variety of aryl halides, including derivatized amino acids for which no racemization was observed during the reaction. Experimental evidence for facile deprotonation of oxazolo[4,5-b...

  14. The Isomerization of (-)-Menthone to (+)-Isomenthone Catalyzed by an Ion-Exchange Resin

    Science.gov (United States)

    Ginzburg, Aurora L.; Baca, Nicholas A.; Hampton, Philip D.

    2014-01-01

    A traditional organic chemistry laboratory experiment involves the acid-catalyzed isomerization of (-)-menthone to (+)-isomenthone. This experiment generates large quantities of organic and aqueous waste, and only allows the final ratio of isomers to be determined. A "green" modification has been developed that replaces the mineral acid…

  15. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian

    2018-05-09

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  16. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory...

  17. Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid

    NARCIS (Netherlands)

    Brouwer, Thomas; Blahusiak, Marek; Babic, Katarina; Schuur, Boelo

    2017-01-01

    Levulinic acid (LA) can be produced from lignocellulosic materials via hydroxylation followed by an acid-catalyzed conversion of hexoses. Inorganic homogeneous catalysts are mostly used, in particular sulphuric acid, yielding a mixture of LA with sulphuric acid, formic acid (FA) and furfural.

  18. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  19. PEG1000-Based Dicationic Acidic Ionic Liquid Catalyzed One-Pot Synthesis of 4-Aryl-3-Methyl-1-Phenyl-1H-Benzo[h]pyrazolo [3,4-b]quinoline-5,10-Diones via Multicomponent Reactions

    Directory of Open Access Journals (Sweden)

    Yi-Ming Ren

    2015-09-01

    Full Text Available A novel and green approach for efficient and rapid synthesis of 4-aryl-3-methyl-1-phenyl-1H-benzo[h]pyrazolo[3,4-b]quinoline-5,10-diones has been accomplished by the one-pot condensation reaction of aromatic aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5-amine and 2-hydroxynaphthalene-1,4-dione using PEG1000-based dicationic acidic ionic liquid (PEG1000-DAIL as a catalyst was reported. Recycling studies have shown that the PEG1000-DAIL can be readily recovered and reused several times without significant loss of activity. The key advantages are the short reaction time, high yields, simple workup, and recovered catalyst.

  20. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  1. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    International Nuclear Information System (INIS)

    Schuch, R.; Mukherjee, K.D.

    1987-01-01

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14 C-labeled substrates. Medium chain (C 12 plus C 14 ) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 45 0 C with methyl [1- 14 C]oleate, [1- 14 C]oleic acid, [carboxyl- 14 C]trioleoylglycerol, [1- 14 C]octadecenyl alcohol, and [U- 14 C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  2. Aluminium and titanium modified mesoporous TUD-1: A bimetal acid catalyst for Biginelli reaction

    Science.gov (United States)

    Pasupathi, M.; Santhi, N.; Pachamuthu, M. P.; Alamelu Mangai, G.; Ragupathi, C.

    2018-05-01

    Using a simple, non-surfactant template triethanolamine (TEA), bimetal (Al3+ and Ti4+ ions) incorporated mesoporous catalyst AlTiTUD-1 (Si/Al+Ti = 50) was synthesized. The catalyst was characterized by XRD (Low and High angle), N2 Sorption, FTIR, SEM, TEM, DR UV Visible, and pyridine adsorbed FT-IR techniques. The XRD and N2 sorption studies confirmed its amorphous, mesoporous nature, which possessed a BET surface area of 590 m2 g-1 and pore diameter of 4.4 nm. The Al3+ and Ti4+ co-ordination within the TUD-1 was evaluated by DR UV-Vis. Pyridine adsorbed FTIR revealed both Bronsted (B) and Lewis (L) acidity, which is responsible for the catalytic activity. The acid catalyst showed a good catalytic performance in Biginelli type multicomponent coupling reaction for the substituted aldehydes, ethyl acetoacetate and thiourea to yield about 70% in reflux condition.

  3. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    International Nuclear Information System (INIS)

    Su, Erzheng; Wei, Dongzhi

    2014-01-01

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application

  4. 3-methylcyclohexanone thiosemicarbazone: determination of E/Z isomerization barrier by dynamic high-performance liquid chromatography, configuration assignment and theoretical study of the mechanisms involved by the spontaneous, acid and base catalyzed processes.

    Science.gov (United States)

    Carradori, Simone; Cirilli, Roberto; Dei Cicchi, Simona; Ferretti, Rosella; Menta, Sergio; Pierini, Marco; Secci, Daniela

    2012-12-21

    Here, we report on the simultaneous direct HPLC diastereo- and enantioseparation of 3-methylcyclohexanone thiosemicarbazone (3-MCET) on a polysaccharide-based chiral stationary phase under normal-phase conditions. The optimized chromatographic system was employed in dynamic HPLC experiments (DHPLC), as well as detection technique in a batch wise approach to determine the rate constants and the corresponding free energy activation barriers of the spontaneous, base- and acid-promoted E/Z diastereomerization of 3-MCET. The stereochemical characterization of four stereoisomers of 3-MCET was fully accomplished by integrating the results obtained by chemical correlation method with those derived by theoretical calculations and experimental investigations of circular dichroism (CD). As a final goal, a deepened analysis of the perturbing effect exercised by the stationary phase on rate constant values measured through DHPLC determinations as a function of the chromatographic separation factor α of the interconverting species was successfully accomplished. This revealed quite small deviations from the equivalent kinetic values obtained by off-column batch wise procedure, and suggested a possible effective correction of rate constants measured by DHPLC approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    Science.gov (United States)

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  7. Production of Chemoenzymatic Catalyzed Monoepoxide Biolubricant: Optimization and Physicochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2012-01-01

    Full Text Available Linoleic acid (LA is converted to per-carboxylic acid catalyzed by an immobilized lipase from Candida antarctica (Novozym 435. This per-carboxylic acid is only intermediate and epoxidized itself in good yields and almost without consecutive reactions. Monoepoxide linoleic acid 9(12-10(13-monoepoxy 12(9-octadecanoic acid (MEOA was optimized using D-optimal design. At optimum conditions, higher yield% (82.14 and medium oxirane oxygen content (OOC (4.91% of MEOA were predicted at 15 μL of H2O2, 120 mg of Novozym 435, and 7 h of reaction time. In order to develop better-quality biolubricants, pour point (PP, flash point (FP, viscosity index (VI, and oxidative stability (OT were determined for LA and MEOA. The results showed that MEOA exhibited good low-temperature behavior with PP of −41°C. FP of MEOA increased to 128°C comparing with 115°C of LA. In a similar fashion, VI for LA was 224 generally several hundred centistokes (cSt more viscous than MEOA 130.8. The ability of a substance to resist oxidative degradation is another important property for biolubricants. Therefore, LA and MEOA were screened to measure their OT which was observed at 189 and 168°C, respectively.

  8. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    Science.gov (United States)

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  10. Heterocycles by Transition Metals Catalyzed Intramolecular Cyclization of Acetylene Compounds

    International Nuclear Information System (INIS)

    Vizer, S.A.; Yerzhanov, K.B.; Dedeshko, E.C.

    2003-01-01

    Review shows the new strategies in the synthesis of heterocycles, having nitrogen, oxygen and sulfur atoms, via transition metals catalyzed intramolecular cyclization of acetylenic compounds on the data published at the last 30 years, Unsaturated heterocyclic compounds (pyrroles and pyrroline, furans, dihydro furans and benzofurans, indoles and iso-indoles, isoquinolines and isoquinolinones, aurones, iso coumarins and oxazolinone, lactams and lactones with various substitutes in heterocycles) are formed by transition metals, those salts [PdCl 2 , Pd(OAc) 2 , HgCl 2 , Hg(OAc) 2 , Hg(OCOCF 3 ) 2 , AuCl 3 ·2H 2 O, NaAuCl 4 ·2H 2 O, CuI, CuCl], oxides (HgO) and complexes [Pd(OAc) 2 (PPh 3 )2, Pd(PPh 3 ) 4 , PdCl 2 (MeCN) 2 , Pd(OAc ) 2 /TPPTS] catalyzed intramolecular cyclization of acetylenic amines, amides, ethers, alcohols, acids, ketones and βdiketones. More complex hetero polycyclic systems typical for natural alkaloids can to obtain similar. Proposed mechanisms of pyrroles, isoquinolines, iso indoles and indoles, benzofurans and iso coumarins, thiazolopyrimidinones formation are considered. (author)

  11. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    functional group tolerance. Unfortunately, these -aryl tetramic acids were too unreactive and ring opening toward the synthesis of the building block did not succeed. However, -aryl tetramic acids are still interesting compounds due to their potential biological activity. The building block 3.15 (P1......-catalyzed enantioselective synthesis of diaryl amines, which is an important class of compounds (Chapter 4). For example it is found in the third generation anti-histaminic agent levocetirizine. Development of efficient synthetic routes is therefore of considerably interest. The rhodium-catalyzed enantioselective synthesis...

  12. Palladium-catalyzed Reppe carbonylation.

    Science.gov (United States)

    Kiss, G

    2001-11-01

    PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter

  13. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  14. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  15. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  16. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  17. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  18. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  19. Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Antonio A. Romero

    2012-07-01

    Full Text Available Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic materials.

  20. Zeolite-catalyzed additions of aromatic compounds to oleic acid

    Science.gov (United States)

    There is significant research interest in developing new materials from vegetable oils and animal fats. Biobased materials can be more environmentally friendly because they tend to have good biodegradability and are derived from renewable resources. In this talk, efficient approaches for the addit...

  1. LEWIS ACID CATALYZED FORMATION OF TETRAHYDROPYRANS IN IONIC LIQUID

    Science.gov (United States)

    Tetrahydropyrans are integral moieties in innumerable natural products and have inspired the development of a variety of different methodologies. A Prins-type cyclization involving the coupling of a homoallylic alcohol and an aldehyde in the presence of catalytic scandium triflat...

  2. Lipase-catalyzed kinetic resolution of branched chain fatty acids and their esters : a study towards the production of enantiopure 4-methyloctanoic acid = Lipase-gekatalyseerde kinetische resolutie van vertakte vetzuren en hun esters : een studie naar de productie van enantiomeer zuiver 4-methyloctaanzuur

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.

    2000-01-01

    Flavors and fragrances make an important contribution to the taste and smell of all kinds of food products both as natural occurring components and as additional flavors or fragrances. One of these flavor components is 4-methyloctanoic acid (4-MOA). This branched chain fatty acid

  3. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  4. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  5. Post-Ugi gold-catalyzed diastereoselective domino cyclization for the synthesis of diversely substituted spiroindolines

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-10-01

    Full Text Available An Ugi four-component reaction of propargylamine with 3-formylindole and various acids and isonitriles produces adducts which are subjected to a cationic gold-catalyzed diastereoselective domino cyclization to furnish diversely substituted spiroindolines. All the reactions run via an exo-dig attack in the hydroarylation step followed by an intramolecular diastereoselective trapping of the imminium ion. The whole sequence is atom economic and the application of a multicomponent reaction assures diversity.

  6. Kinetic Investigations on Pd(II) Catalyzed Oxidation of Some Amino ...

    African Journals Online (AJOL)

    Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl-threonine by acidic solution of potassium bromate in the presence of mercuric acetate, as a scavenger have been made in the temperature range of 30–45°C. The rate shows zero order kinetics in bromate [BrO3‾] and order of reaction is one with respect ...

  7. Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization.

    Science.gov (United States)

    Patel, Pitambar; Borah, Gongutri

    2016-12-22

    Herein we disclose the first report on the synthesis of oxindole derivatives from acetanilide via Ir(iii)-catalyzed intermolecular C-H functionalization with diazotized Meldrum's acid. A broad range of substituted anilides were found to react smoothly under the Ir(iii)-catalytic system to afford the corresponding N-protected oxindoles. The N-protecting groups, such as Ac, Bz or Piv, can be easily removed to furnish the oxindole. Various synthetic applications of the synthesized oxindole were also demonstrated.

  8. Rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes.

    Science.gov (United States)

    Li, Changkun; Kähny, Matthias; Breit, Bernhard

    2014-12-08

    A rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes to give branched N-allyl 2-pyridones is reported. Preliminary mechanistic studies support the hypothesis that the reaction was initiated from the more acidic 2-hydroxypyridine form, and the initial kinetic O-allylation product was finally converted into the thermodynamically more stable N-allyl 2-pyridones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent

    Science.gov (United States)

    Al-Kady, Ahmed S.; Ahmed, El-Sadat I.; Gaber, M.; Hussein, Mohamed M.; Ebeid, El-Zeiny M.

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  10. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    Science.gov (United States)

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  12. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  13. A review on biodiesel production using catalyzed transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Dennis Y.C.; Wu, Xuan; Leung, M.K.H. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2010-04-15

    Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats. (author)

  14. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  15. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    Science.gov (United States)

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  16. Importance of Vanadium-Catalyzed Oxidation of SO2to SO3in Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Colom, Juan M.; Alzueta, María U.; Christensen, Jakob Munkholt

    2016-01-01

    Low-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur andash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinderoxidation of SO2 to SO3, promoting the formation of sulfuric acid...

  17. Rhodium enalcarbenoids: direct synthesis of indoles by rhodium(II)-catalyzed [4+2] benzannulation of pyrroles.

    Science.gov (United States)

    Dawande, Sudam Ganpat; Kanchupalli, Vinaykumar; Kalepu, Jagadeesh; Chennamsetti, Haribabu; Lad, Bapurao Sudam; Katukojvala, Sreenivas

    2014-04-14

    Disclosed herein is the design of an unprecedented electrophilic rhodium enalcarbenoid which results from rhodium(II)-catalyzed decomposition of a new class of enaldiazo compounds. The synthetic utility of these enalcarbenoids has been successfully demonstrated in the first transition-metal-catalyzed [4+2] benzannulation of pyrroles, thus leading to substituted indoles. The new benzannulation has been applied to the efficient synthesis of the natural product leiocarpone as well as a potent adipocyte fatty-acid binding protein inhibitor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gold-catalyzed direct alkynylation of tryptophan in peptides using TIPS-EBX

    Directory of Open Access Journals (Sweden)

    Gergely L. Tolnai

    2016-04-01

    Full Text Available The selective functionalization of peptides containing only natural amino acids is important for the modification of biomolecules. In particular, the installation of an alkyne as a useful handle for bioconjugation is highly attractive, but the use of a carbon linker is usually required. Herein, we report the gold-catalyzed direct alkynylation of tryptophan in peptides using the hypervalent iodine reagent TIPS-EBX (1-[(triisopropylsilylethynyl]-1,2-benziodoxol-3(1H-one. The reaction proceeded in 50–78% yield under mild conditions and could be applied to peptides containing other nucleophilic and aromatic amino acids, such as serine, phenylalanine or tyrosine.

  19. On the mechanism of action of ribonucleases: dinucleotide cleavage catalyzed by imidazole and Zn2+.

    OpenAIRE

    Breslow, R; Huang, D L; Anslyn, E

    1989-01-01

    Cyclization/cleavage of the 2-(p-nitrophenyl) phosphate ester of propylene glycol is catalyzed by imidazole and, much more effectively, by Zn2+ with imidazole. In the latter case, the mechanism involves simultaneous Lewis acid/base catalysis. Similar Zn2+ and imidazole catalysis of cyclization/cleavage is seen with the dinucleotide 3',5'-UpU (uridylyluridine). Again, the zinc system is much more effective than is catalysis by imidazole alone, and in this case simultaneous Lewis acid/base cata...

  20. A review on production of biodiesel using catalyzed transesterification

    Science.gov (United States)

    Dash, Santosh Kumar; Lingfa, Pradip

    2017-07-01

    Biodiesel is arguably an important fuel for compression ignition engine as far as sustainability and environmental issues are concerned. It can be produced from both edible and non-edible vegetable oils and animal fats. Owing to higher viscosity, the utilization of crude vegetable oil is not advisable as it results engine failure. For reducing the viscosity and improving the other fuel characteristics comparable to that of diesel fuel, different approaches have been developed. However, transesterification process is very reliable, less costly and easy method compared to other methods. Due to more free fatty acids content in most of the non-edible vegetable oils, a pretreatment is employed to convert the acids to ester, then transesterified with suitable alcohol. Primarily yield of biodiesel depends upon the molar ratio of oil/alcohol, reaction temperature, reaction time, amount of catalyst, type of catalyst, stirring speed. Both homogeneous and heterogeneous catalysts are used for synthesis purposes. Heterogeneous catalysts are less costly, environmental benign and can be derived from natural resources. Enzymatic catalysts are more environmental benign than heterogeneous catalysts but are costly, which hinders its widespread research and utilization. This article reviews the results of prominent works and researches in the field of production of biodiesel via catalyzed transesterification process.

  1. Enzyme catalyzed oxidative cross-linking of feruloylated pectic polysaccharides from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz

    beet pulp as a potential starting material for production of pectin derived products which could help maintain the competitiveness of the sugar beet based industry. The overall objective of this study has been focusing on understanding the kinetics of enzyme catalyzed oxidative crosslinking......-linked by HRP catalysis in the presence of hydrogen peroxide (H2O2) to form ferulic acid dehydrodimers (diFAs). The composition of the substrate was analyzed by HPAEC, HPLC and MALDI-TOF, confirming the structural make up of the arabinan-oligosaccharide (Arabinose: 2.9- 3.4 mmol?g-1 DM; FA: 2.5-7.0 mg?g-1 DM......, identically composed, oil-in-water emulsion systems to study the effect of different methods of emulsion preparation on the emulsion stability in the presence of SBP and the kinetics of enzyme catalyzed oxidative gelation of SBP. The result shows that the different methods of emulsion preparation affect...

  2. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian

    2014-01-01

    The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities...... of thiophenol (PhSH) in a slurry of disodium hydrogen phosphate in dry DMF. Quantitative conversions into the resulting amide were observed within a few hours in the presence of equimolar amounts of thiophenol. Ab initio calculations showed that the reaction mechanism in DMF is similar to the well-known aqueous...... reaction mechanism. The energy barrier of the catalyzed amidation reaction is approximately 40 kJ mol(-1) lower than the non-catalyzed amidation reaction. At least partially this can be explained by a hydrogen bond from the amine to the π-electrons of the thiophenol, stabilizing the transition state...

  3. Metal-ion catalyzed polymerization in the eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Szostak, Jack W.

    2008-01-01

    The emergence of an RNA world requires among other processes the non-enzymatic, template-directed replication of genetic polymers such as RNA or related nucleic acids, possibly catalyzed by metal ions. The absence of uridilate derivative polymerization on adenine containing templates has been...... the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated Uridilate monomers in the presence of metal-ion catalysts could efficiently......-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions....

  4. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.

    Science.gov (United States)

    Deb, Arghya; Bag, Sukdev; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-01

    Palladium-catalyzed coupling between aryl halides and alkenes (Mizoroki-Heck reaction) is one of the most popular reactions for synthesizing complex organic molecules. The limited availability, problematic synthesis, and higher cost of aryl halide precursors (or their equivalents) have encouraged exploration of direct olefination of aryl carbon-hydrogen (C-H) bonds (Fujiwara-Moritani reaction). Despite significant progress, the restricted substrate scope, in particular noncompliance of unactivated aliphatic olefins, has discouraged the use of this greener alternative. Overcoming this serious limitation, we report here a palladium-catalyzed chelation-assisted ortho C-H bond olefination of phenylacetic acid derivatives with unactivated, aliphatic alkenes in good to excellent yields with high regio- and stereoselectivities. The versatility of this operationally simple method has been demonstrated through drug diversification and sequential C-H olefination for synthesizing divinylbenzene derivatives.

  5. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    Science.gov (United States)

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  7. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  8. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  9. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  10. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  11. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  12. Process limitations of a whole-cell P450 catalyzed reaction using a CYP153A-CPR fusion construct expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Lundemo, M. T.; Notonier, S.; Striedner, G.

    2016-01-01

    fatty acids at the terminal position. ω-Hydroxylated fatty acids can be used in the field of high-end polymers and in the cosmetic and fragrance industry. Here, we have identified the limitations for implementation of a whole-cell P450-catalyzed reaction by characterizing the chosen biocatalyst as well......Cytochrome P450s are interesting biocatalysts due to their ability to hydroxylate non-activated hydrocarbons in a selective manner. However, to date only a few P450-catalyzed processes have been implemented in industry due to the difficulty of developing economically feasible processes...

  13. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  14. Theoretical survey of muon catalyzed fusion

    International Nuclear Information System (INIS)

    Leon, M.

    1988-01-01

    The main steps in the muon-catalyzed d-t fusion cycle are given in this report. Most of the stages are very fast, and therefore do not contribute significantly to the cycling time. Thus at liquid H 2 densities (/phi/ = 1 in the standard convention) the time for stopping the negative muon, its subsequent capture and deexcitation to the ground state is estimated to be /approximately/ 10/sup/minus/11/ sec. 1 The muon spends essentially all of its time in either the (dμ) ground state, waiting for transfer to a (tμ) ground state to occur, or in the (tμ) ground state, writing for molecular formation to occur. Following the formation of this ''mesomolecule'' (actually a muonic molecular ion), deexcitation and fusion are again fast. Then the muon is (usually) liberated to go around again. We will discuss these steps in some detail. 5 refs., 3 figs

  15. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  16. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    Science.gov (United States)

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  19. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    Science.gov (United States)

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  20. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2016-12-01

    Full Text Available This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II- (via an induction period and copper(I-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethylpropargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II- and copper(I-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.

  1. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  2. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: preliminary study on incorporation and acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Balchen, Steen; Høy, Carl-Erik

    1998-01-01

    Effects of water content, reaction time and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied...... of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction...

  3. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  4. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    Science.gov (United States)

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-06

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.

  5. Catalyze and chemical inhibition of the R7T7 glass kinetics

    International Nuclear Information System (INIS)

    Gin, St.; Advocat, Th.

    1997-01-01

    This article highlights some phenomena likely to modify the glass alteration kinetics and/or the nature of the alteration products according to the chemical composition of the leaching water. It discusses experimental results showing that in neutral and basic media, the presence of inorganic anions or organic acid (simple carboxylic acid and humic acid) has relatively little effect on the long-term glass matrix alterability Actinide mobility appears to be more dependent on the concentration of complexing agents in the leaching solution. The behavior of phosphate ions, which may inhibit or catalyze the R7T7 glass alteration kinetics depending on the experimental conditions, is discussed; the gel microstructure can be related to the glass alteration kinetics by detailed examination of the alteration products. (authors)

  6. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    Science.gov (United States)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  7. Silver-Catalyzed Cyclopropanation of Alkenes Using N-Nosylhydrazones as Diazo Surrogates.

    Science.gov (United States)

    Liu, Zhaohong; Zhang, Xinyu; Zanoni, Giuseppe; Bi, Xihe

    2017-12-15

    An efficient silver-catalyzed [2 + 1] cyclopropanation of sterically hindered internal alkenes with diazo compounds in which room-temperature-decomposable N-nosylhydrazones are used as diazo surrogates is reported. The unexpected unique catalytic activity of silver was ascribed to its dual role as a Lewis acid activating alkene substrates and as a transition metal forming silver carbenoids. A wide range of internal alkenes, including challenging diarylethenes, were suitable for this protocol, thereby affording a variety of cyclopropanes with high efficiency in a stereoselective manner under mild conditions.

  8. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol

    DEFF Research Database (Denmark)

    Xuebin, Lu; Zhang, Y.; Angelidaki, Irini

    2009-01-01

    A central composite design of response surface method was used to optimize H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw, in respect to acid concentration (0.5-2%), treatment time (5-20 min) and solid content (10-20%) at 180 degrees C. Enzymatic hydrolysis and fermentation were also...... content for 10 min at 180 degrees C was found to be the most optimal condition for pretreatment of rapeseed straw for ethanol production. After pretreatment at the optimal condition and enzymatic hydrolysis, 75.12% total xylan and 63.17% total glucan were converted to xylose and glucose, respectively...

  9. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor

    OpenAIRE

    Gumel, Ahmad Mohammed; Annuar, M. S. M.

    2016-01-01

    Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra?) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115?mM?min?1 corresponding to catalytic efficiencies (k cat/K M) of 0.30 and 0.24?min?1?mM?1 as well a...

  10. Iodine-catalyzed diazo activation to access radical reactivity.

    Science.gov (United States)

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  11. -Heterocyclic Carbene Complexes of Mineral Acids

    KAUST Repository

    Brill, Marcel; Nahra, Fady; Gó mez-Herrera, Alberto; Zinser, Caroline; Cordes, David B.; Slawin, Alexandra M. Z.; Nolan, Steven P.

    2016-01-01

    We have synthesized and characterized new gold-N-heterocyclic carbene (NHC) complexes derived from the deprotonation of mineral acids. The use of sulfuric acid was a particularly interesting case. These complexes were tested in known gold-catalyzed reactions, such as the hydration of alkynes and the Meyer–Schuster rearrangement. They proved to be highly efficient in both reactions.

  12. -Heterocyclic Carbene Complexes of Mineral Acids

    KAUST Repository

    Brill, Marcel

    2016-11-08

    We have synthesized and characterized new gold-N-heterocyclic carbene (NHC) complexes derived from the deprotonation of mineral acids. The use of sulfuric acid was a particularly interesting case. These complexes were tested in known gold-catalyzed reactions, such as the hydration of alkynes and the Meyer–Schuster rearrangement. They proved to be highly efficient in both reactions.

  13. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.

    Science.gov (United States)

    Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth

    2013-09-01

    A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, Flynn William [Univ. of Arizona, Tucson, AZ (United States)

    1992-01-01

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using 14C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  15. RNA-Catalyzed Polymerization and Replication of RNA

    Science.gov (United States)

    Horning, D. P.; Samantha, B.; Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    In an effort to reconstruct RNA-based life, in vitro evolution was used to obtain an RNA polymerase ribozyme that can synthesize a variety of complex functional RNAs and can catalyze the exponential amplification of short RNAs.

  16. FeBr3-catalyzed dibromination of alkenes and alkynes

    Institute of Scientific and Technical Information of China (English)

    Yun Fa Zheng; Jian Yu; Guo Bing Yan; Xu Li; Song Luo

    2011-01-01

    The dibromination of alkenes and alkynes with bromosuccinimide and sodium bromide catalyzed by FeBr3 under mild conditions has been developed. The trans-dibromo compounds were exclusively obtained with excellent yields.

  17. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III

    Indian Academy of Sciences (India)

    triazol-3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkalinemedium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF],whereas the reaction ...

  18. Biodiesel production from Jatropha curcas oil catalyzed by whole ...

    African Journals Online (AJOL)

    my mord

    2013-07-03

    Jul 3, 2013 ... catalyzed by whole cells of Aureobasidium pullulans var. melanogenum ... friendly and renewable fuel that can be used directly in diesel engines ... methanol (or supercritical ethanol) transesterification is not commercially ...

  19. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III)

    Indian Academy of Sciences (India)

    Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF], whereas ... The rate laws associated with the reaction mechanisms ... activation and thermodynamic parameters have been computed and discussed.

  20. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  1. SOCl2 CATALYZED CYCLIZATION OF CHALCONES: SYNTHESIS ...

    African Journals Online (AJOL)

    Preferred Customer

    synthesised pyrazolines have been studied using Bauer-Kirby method. .... was separated with dichloromethane and the solid product was obtained on evaporation. ...... Hammett σ constants in alkenes, alkynes, acid chlorides and styrenes.

  2. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  3. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  4. Synthesis of "trans"-4,5-Bis-dibenzylaminocyclopent-2-Enone from Furfural Catalyzed by ErCl[subscript 3]·6H[subscript 2]O

    Science.gov (United States)

    Estevão, Mónica S.; Martins, Ricardo J. V.; Alfonso, Carlos A. M.

    2017-01-01

    An experiment exploring the chemistry of the carbonyl group for the one-step synthesis of "trans"-4,5- dibenzylaminocyclopent-2-enone is described. The reaction of furfural and dibenzylamine in the environmentally friendly solvent ethanol and catalyzed by the Lewis acid ErCl[subscript 3]·6H[subscript 2]O afforded the product in high…

  5. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  6. N-Benzylhydroxylamine addition to beta-aryl enoates. Enantioselective synthesis of beta-aryl-beta-amino acid precursors

    Science.gov (United States)

    Sibi; Liu

    2000-10-19

    Chiral Lewis acid catalyzed N-benzylhydroxylamine addition to pyrrolidinone-derived enoates afforded beta-aryl-beta-amino acid derivatives in high enantiomeric purity with moderate to very good chemical efficiency.

  7. Estolides Synthesis Catalyzed by Immobilized Lipases

    Directory of Open Access Journals (Sweden)

    Erika C. G. Aguieiras

    2011-01-01

    Full Text Available Estolides are vegetable-oil-based lubricants obtained from oleic acid or any source of hydroxy fatty acids. In this work, the estolides synthesis from oleic acid and methyl ricinoleate (biodiesel from castor oil, using immobilized commercial lipases (Novozym 435, Lipozyme RM-IM, and Lipozyme TL-IM in a solvent-free medium was investigated. Acid value was used to monitor the reaction progress by determining the consumption of acid present in the medium. Novozym 435 showed the best performance. Water removal improved the conversion. Novozym 435 was more active at atmospheric pressure. Novozym 435 was reused four times with conversion reaching 15% after the fourth reaction at 80°C. Estolides produced under the reaction conditions used in this work presented good properties, such as, low temperature properties as pour point (−24°C, viscosity (23.9 cSt at 40°C and 5.2 cSt at 100°C, and viscosity index (153.

  8. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  9. An Efficient One-Pot Synthesis of Pyrano[3,2-c]quinolin-2,5-dione Derivatives Catalyzed by L-Proline

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2012-11-01

    Full Text Available A series of 4-aryl-6-methyl-3,4-dihydro-2H-pyrano[3,2-c]quinolin-2,5(6H-diones were synthesized via the three-component reactions of aromatic aldehydes, 4-hydroxy-1-methylquinolin-2(1H-one, and Meldrum’s acid catalyzed by L-proline. The structures of the products were identified by spectroscopic analysis. A mechanism for this three-component reaction catalyzed by L-proline was proposed.

  10. Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent free system

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Mu, Huiling; Xu, Xuebing

    2005-01-01

    By-product formation is a serious problem in the lipase-catalyzed acyl exchange of phospholipids (PL). By-products are formed due to parallel hydrolysis reactions and acyl migration in the reaction system. A clear elucidation of these side reactions is important for practical operation in order...... to minimize by-products during reaction. In the present study we examined the Lipozyme RM IM-catalyzed acidolysis for the production of structured phospholipids between phosphatidylcholine (PC) and caprylic acid in the solvent free system. A five-factor response surface design was used to evaluate...

  11. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  12. A role of proton transfer in peroxidase-catalyzed process elucidated by substrates docking calculations

    Directory of Open Access Journals (Sweden)

    Ziemys Arturas

    2001-08-01

    Full Text Available Abstract Background Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs and N-aryl-N-hydroxy urethanes (AHUs revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3–5 orders of magnitude less than for oxidation of physiological phenol substrates, though the redox potential was similar. Results To explain the unexpectedly low reactivity of AHAs and AHUs we made ab initio calculations of the molecular structure of the substrates following in silico docking in the active center of the enzyme. Conclusions AHAs and AHUs were docked at the distal side of heme in the sites formed by hydrophobic amino acid residues that retarded a proton transfer and finally the oxidation rate. The analogous phenol substrates were docked at different sites permitting fast proton transfer in the relay of distal His and water that helped fast substrate oxidation.

  13. An alkali catalyzed trans-esterification of rice bran, cottonseed and waste cooking oil

    Directory of Open Access Journals (Sweden)

    Akhtar Faheem H.

    2014-01-01

    Full Text Available In this research work, biodiesel production by trans-esterification of three raw materials including virgin and used edible oil and non edible oil has been presented. A two step method following acidic and alkali catalyst was used for non edible oil due to the unsuitability of using the straight alkaline-catalyzed trans-esterification of high FFA present in rice bran oil. The acid value after processing for rice bran, cottonseed and waste cooking oil was found to be 0.95, 0.12 and 0.87 respectively. The influence of three variables on percentage yield i.e., methanol to oil molar ratio, reaction temperature and reaction time were studied at this stage. Cottonseed oil, waste cooking oil and rice bran oil showed a maximum yield of 91.7%, 84.1% and 87.1% under optimum conditions. Fuel properties of the three biodiesel satisfied standard biodiesel fuel results.

  14. Palladium-Catalyzed Asymmetric Quaternary Stereocenter Formation

    NARCIS (Netherlands)

    Gottumukkala, Aditya L.; Matcha, Kiran; Lutz, Martin; de Vries, Johannes G.; Minnaard, Adriaan J.

    2012-01-01

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of beta,beta-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl2, PhBOX, and AgSbF6, and

  15. Palladium-catalyzed asymmetric quaternary stereocenter formation

    NARCIS (Netherlands)

    Gottumukkala, A.L.; Matcha, K.; Lutz, M.; de Vries, J.G.; Minnaard, A.J.

    2012-01-01

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of β,β-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl2, PhBOX, and AgSbF6, and provides

  16. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  17. Gold(III)-Catalyzed Hydration of Phenylacetylene

    Science.gov (United States)

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  18. EFFICIENTONE-POT SYNTHESIS OF IMIDAZOLES CATALYZED ...

    African Journals Online (AJOL)

    component compression of an aldehyde and ammonium acetate with an ... temperature requirement, longer reaction time, highly acidic conditions, use of expensive ... of perovskite-type oxide La0.5Pb0.5MnO3(LPMO) nanoparticles and ... Determination of melting points were carried out using an Electro thermal type.

  19. Whey protein isolate with improved film properties through cross-linking catalyzed by small laccase from Streptomyces coelicolor.

    Science.gov (United States)

    Quan, Wei; Zhang, Chong; Zheng, Meixia; Lu, Zhaoxin; Lu, Fengxia

    2018-08-01

    The effects of small laccase (SLAC) from Streptomyces coelicolor on the properties of whey protein isolate (WPI) films were studied. WPI was catalyze by SLAC without phenolic acid assistance. Particle size distribution results showed that some complexes with higher relative molecular weight formed in WPI samples treated with SLAC. The content of α-helixes decreased while those of β-sheets and random coils increased following SLAC treatment according to circular dichroism results. Fourier transform infrared spectral analysis suggested that some conformational changes occurred in WPI following SLAC treatment. Analysis of WPI films prepared by casting after SLAC treatment indicated that their film properties were all improved, including mechanical properties, solubility, water vapor, oxygen and carbon dioxide barrier properties, film color, light transmission, transparency and thermal properties. Compared with that of the control film, some obvious differences in the morphology of the WPI films were observed following SLAC treatment. This report demonstrates that laccase can directly catalyze protein cross-linking, which may be useful to improve the performance of protein films. In this study, SLAC was applied to WPI edible film during the film-making process. The results showed that SLAC can catalyze WPI cross-linking without phenolic acid assistance, and WPI film properties were improved after SLAC treatment. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.

    Science.gov (United States)

    Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei

    2018-06-29

    The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recent advances in the ruthenium(ii)-catalyzed chelation-assisted C-H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2017-08-08

    The transition-metal-catalyzed chelation-assisted alkenylation at the inert C-H bond of aromatics with alkenes is one of the efficient methods to synthesize substituted vinylarenes in a highly regio- and stereoselective manner. Palladium, rhodium and ruthenium complexes are frequently used as catalysts for this type of transformation. The present review describes the recent advances in the ruthenium-catalyzed chelation-assisted alkenylation at the C-H bond of aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway. Several directing groups including 2-pyridyl, carbonyl, amidine, amide, amine, imidate, sulphonic acid, triazole, cyano, oxazolidinone and hydontoin are widely used in the reaction. The scope, limitation and mechanistic investigation of the alkenylation reactions are discussed elaborately. This feature article includes all the reported ruthenium-catalyzed alkenylation reactions via the deprotonation pathway until the end of March 2017.

  2. Theoretical study on the reaction mechanisms of Michael chirality addition between propionaldehyde and nitroalkene catalyzed by an enantioselective catalyst.

    Science.gov (United States)

    Zhou, Xinming; Li, Ling; Sun, Xuejun; Wang, Yajun; Du, Dongmei; Fu, Hui

    2018-06-01

    The asymmetric Michael addition between propionaldehyde and nitroalkene catalyzed by 8-(ethoxycarbonyl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid has obtained relatively high yields and excellent enantioselectivities at room temperature. In this study, the molecular structures and optical activity of the most stable conformation I are optimized at B3LYP/6-311++ G(d,p) level. We find that levorotatory conformation I catalyzing the same Michael addition can produce laevo-product A and dextrorotatory conformation I' can obtain the dextral-product A'. These results have guiding significance for further studying on the new chemzymes and the mechanism of the obtained different chiral products. © 2018 Wiley Periodicals, Inc.

  3. Mechanistic evidence for a ring-opening pathway in the Pd-catalyzed direct arylation of benzoxazoles

    DEFF Research Database (Denmark)

    Sanchez, R.S.; Zhuravlev, Fedor

    2007-01-01

    The direct Pd-catalyzed arylation of 5-substituted benzoxazoles, used as a mechanistic model for 1,3-azoles, was investigated experimentally and computationally. The results of the primary deuterium kinetic isotope effect, Hammett studies, and H/D exchange were shown to be inconsistent with the r......The direct Pd-catalyzed arylation of 5-substituted benzoxazoles, used as a mechanistic model for 1,3-azoles, was investigated experimentally and computationally. The results of the primary deuterium kinetic isotope effect, Hammett studies, and H/D exchange were shown to be inconsistent...... with the rate-limiting electrophilic or concerted palladation. A mechanism, proposed on the basis of kinetic and computational studies, includes generation of isocyanophenolate as the key step. The DFT calculations suggest that the overall catalytic cycle is facile and is largely controlled by the C-H acidity...

  4. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gó mez-Herrera, Alberto; Nahra, Fady; Brill, Marcel; Nolan, Steven P.; Cazin, Catherine S. J.

    2016-01-01

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  5. Sequential Functionalization of Alkynes and Alkenes Catalyzed by Gold(I) and Palladium(II) N-Heterocyclic Carbene Complexes

    KAUST Repository

    Gómez-Herrera, Alberto

    2016-08-22

    The iodination of terminal alkynes for the synthesis of 1-iodoalkynes using N-iodosuccinimide in the presence of a AuI-NHC (NHC=N-heterocyclic carbene) catalyst is reported. A series of aromatic alkynes was transformed successfully into the corresponding 1-iodoalkynes in good to excellent yields under mild reaction conditions. The further use of these compounds as organic building blocks and the advantageous choice of metal-NHC complexes as catalysts for alkyne functionalization were further demonstrated by performing selective AuI-catalyzed hydrofluorination to yield (Z)-2-fluoro-1-iodoalkenes, followed by a Suzuki–Miyaura cross-coupling with aryl boronic acids catalyzed by a PdII-NHC complex to access trisubstituted (Z)-fluoroalkenes. All methodologies can be performed sequentially with only minor variations in the optimized individual reaction conditions, maintaining high efficiency and selectivity in all cases, which therefore, provides straightforward access to valuable fluorinated alkenes from commercially available terminal alkynes.

  6. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  7. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    Science.gov (United States)

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  8. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  9. Cold, muon-catalyzed fusion - just another swarm experiment?

    International Nuclear Information System (INIS)

    Robson, R.E.

    1992-01-01

    The paper briefly reviewed the muon-catalyzed fusion cycle and indicated how it may be likened to a swarm experiment. In particular, it has been pointed out that an external electric field can influence the properties of a muon swarm (and reactive derivatives), just as it can for ion and electron swarms. Since n 0 is typically around liquid hydrogen densities, very large fields, E≥10 9 V/m, would be required to achieve the desired outcome. This is presently achievable in small regions of intense laser focus, but it remains to be seen whether muon-catalyzed fusion experiments can actually be influenced in this way. 20 refs., 4 figs

  10. Muon-catalyzed fusion theory - introduction and review

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1990-01-01

    Muon-catalyzed fusion (μCF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dtμ molecules in mixtures of deuterium and tritium. After a brief review of the subject's history, the dtμ catalysis cycle and the principle relations used in its analysis are described. Some of the important processes in the μCF cycle are then discussed. Finally, the status of current research is appraised. (author)

  11. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  12. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  13. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  14. Combined HPLC analysis of organic acids and furans formed during organosolv pulping of fiber hemp

    NARCIS (Netherlands)

    Gosselink, R.J.A.; Dam, van J.E.G.; Zomers, F.H.A.

    1995-01-01

    During organosolv pulping of fiber hemp (Cannabis sativa L) with a mixture of ethanol/water, delignification is catalyzed by released acetic acid and formic acid in the effluent. The major sources of acetic acid are the acetyl groups, as determined by means of the acetyl balance, whereas formic acid

  15. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.

    Science.gov (United States)

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2010-05-18

    Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained

  16. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ong, Hwai Chyuan; Harrison, Mark D.; Kusumo, Fitranto; Mazaheri, Hoora; Ilham, Zul

    2017-01-01

    Highlights: • Need for alternative energy has led to explore new feedstock. • Ocimum basilicum seeds oil was used as biodiesel feedstock. • Biodiesel was produced via lipase-catalyzed transesterification by Novozym. • Artificial neural network with genetic algorithm modelling was employed. - Abstract: The increasing global demand for fuel, limited fossil fuel resources, and increasing concern about the upturn in gaseous CO_2 emissions are the key drivers of research and development into sources of renewable liquid transport fuels, such as biodiesel. In the present work, we demonstrate biodiesel production from Ocimum basilicum (sweet basil) seed oil by lipase-catalyzed transesterification. Sweet basil seeds contain 22% oil on a dry weight basis. Artificial neural network with genetic algorithm modelling was used to optimize reaction. Temperature, catalyst concentration, time, and methanol to oil molar ratio were the input factors in the optimization study, while fatty acid methyl ester (FAME) yield was the key model output. FAME composition was determined by gas chromatography mass spectrometry. The optimized transesterification process resulted in a 94.58% FAME yield after reaction at 47 °C for 68 h in the presence of 6% w/w catalyst and a methanol to oil ratio of 10:1. The viscosity, density, calorific value, pour point, and cloud point of the biodiesel derived from sweet basil seed oil conformed to the EN 14214 and ASTM D6751 standard specifications. The antioxidant stability of the biodiesel did not meet these specifications but could be improved via the addition of antioxidant.

  17. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    Science.gov (United States)

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  18. Mechanistic aspects of the metal catalyzed alternating copolymerization of epoxides and carbon monoxide.

    Science.gov (United States)

    Allmendinger, Markus; Molnar, Ferenc; Zintl, Manuela; Luinstra, Gerrit A; Preishuber-Pflügl, Peter; Rieger, Bernhard

    2005-09-05

    The cobalt-catalyzed alternating copolymerization of epoxides and CO is a novel, direct approach to aliphatic polyesters, such as poly(hydroxybutyrate) (PHB). This reaction was found to be catalyzed by Ph3Si[Co(CO)4] (4) and pyridine affording in a first step the stable mono-insertion product Ph3Si-O-CH(CH3)-CH2-CO-Co(CO)4 (5). However, a profound mechanistic understanding, especially of the role of pyridine as the key component for the polymerization reaction was missing. ATR-IR online monitoring under catalytic conditions and DFT calculations were used to show that an acylpyridinium cation is formed by cleavage of the cobalt-acyl bond of 5 in the presence of pyridine. The Lewis acid thus generated activates the next incoming epoxide monomer for ring opening through [Co(CO)4]-. The catalytic cycle is completed by a subsequent CO insertion in the new cobalt-alkyl bond. The calculations are used to explore the energetic hypersurface of the polymerization reaction and are complemented by extended experimental investigations that also support the mechanistic hypotheses.

  19. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  20. Iron catalyzed conversion of NO into nitrosonium (NO+) and nitroxyl (HNO/NO-) species.

    Science.gov (United States)

    Stojanović, Srdjan; Stanić, Dragana; Nikolić, Milan; Spasić, Mihailo; Niketić, Vesna

    2004-11-01

    The conversion of NO into its congeners, nitrosonium (NO+) and nitroxyl (HNO/NO-) species, has important consequences in NO metabolism. Dinitrosyl iron complex (DNIC) combined with thiol ligands was shown to catalyze the conversion of NO into NO+, resulting in the synthesis of S-nitrosothiols (RSNO) both in vitro and in vivo. The formation mechanism of DNIC was proposed to involve the intermediate release of nitroxyl. Since the detection of hydroxylamine (as the product of a rapid reaction of HNO/NO- with thiols) is taken as the evidence for nitroxyl generation, we examined the formation of hydroxylamine, RSNO, and nitrite (the product of a rapid reaction of NO+ with water) in neutral solutions containing iron ions and thiols exposed to NO under anaerobic conditions. Hydroxylamine was detected in NO treated solutions of iron ions in the presence of cysteine, but not glutathione (GSH). The addition of urate, a major "free" iron-binding agent in humans, to solutions of GSH and iron ions, and the subsequent treatment of these solutions with NO increased the synthesis of GSNO and resulted in the formation of hydroxylamine. This caused a loss of urate and yielded a novel nitrosative/nitration product. GSH attenuated the urate decomposition to such a degree that it could be reflected as the function of GSH:urate. Results described here contribute to the understanding of the role of iron ions in catalyzing the conversion of NO into HNO/NO- and point to the role of uric acid not previously described.

  1. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    Science.gov (United States)

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  3. Recent developments in gold-catalyzed cycloaddition reactions

    Directory of Open Access Journals (Sweden)

    Fernando López

    2011-08-01

    Full Text Available In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  4. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    dium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H ... compounds. Its use- fulness may be due to its unequivocal stability, water. ∗ ... metals are known to catalyze many oxidation–reduction reactions because they ... prepared by dissolving potassium hexacyanoferrate(II). (SD Fine ...

  5. Amylase catalyzed synthesis of glycosyl acrylates and their polymerization

    NARCIS (Netherlands)

    Kloosterman, Wouter M.J.; Jovanovic, Danijela; Brouwer, Sander; Loos, Katja

    2014-01-01

    The enzymatic synthesis of novel (di)saccharide acrylates from starch and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate (2-HEA, 2-HEMA and 4-HBA) catalyzed by various commercially available amylase preparations is demonstrated. Both liquefaction and

  6. Straightforward uranium-catalyzed dehydration of primary amides to nitriles

    International Nuclear Information System (INIS)

    Enthaler, Stephan

    2011-01-01

    The efficient uranium-catalyzed dehydration of a variety of primary amides, using N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) as a dehydration reagent, to the corresponding nitriles has been investigated. With this catalyst system, extraordinary catalyst activities and selectivities were feasible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation.

    Science.gov (United States)

    Li, Ji-Tai; Liu, Xiao-Ru; Sun, Ming-Xuan

    2010-01-01

    Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17-75% yield at 40 degrees C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.

  8. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  9. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  10. Manganese-Catalyzed Aerobic Heterocoupling of Aryl Grignard Reagents

    DEFF Research Database (Denmark)

    Ghaleshahi, Hajar Golshahi; Antonacci, Giuseppe; Madsen, Robert

    2017-01-01

    An improved protocol has been developed for the MnCl2-catalyzed cross-coupling reaction of two arylmagnesium bromides under dioxygen. The reaction was achieved by using the Grignard reagents in a 2:1 ratio and 20 % of MnCl2. Very good yields of the heterocoupling product were obtained when the li...

  11. Hydroformylation of methyl oleate catalyzed by rhodium complexes

    International Nuclear Information System (INIS)

    Mendes, Ana Nery Furlan; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro

    2012-01-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H 2 ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  12. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming

    2018-05-08

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  13. DNA strand exchange catalyzed by molecular crowding in PEG solutions

    KAUST Repository

    Feng, Bobo; Frykholm, Karolin; Nordé n, Bengt; Westerlund, Fredrik

    2010-01-01

    DNA strand exchange is catalyzed by molecular crowding and hydrophobic interactions in concentrated aqueous solutions of polyethylene glycol, a discovery of relevance for understanding the function of recombination enzymes and with potential applications to DNA nanotechnology. © 2010 The Royal Society of Chemistry.

  14. Rhodium(iii)-catalyzed ortho-olefination of aryl phosphonates.

    Science.gov (United States)

    Chary, Bathoju Chandra; Kim, Sunggak

    2013-09-25

    Rhodium(iii)-catalyzed C-H olefination of aryl phosphonic esters is reported for the first time. In this mild and efficient process, the phosphonic ester group is utilized successfully as a new directing group. In addition, mono-olefination for aryl phosphonates is observed using a phosphonic diamide directing group.

  15. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  16. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    Science.gov (United States)

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  17. Highly selective cobalt-catalyzed hydrovinylation of styrene

    NARCIS (Netherlands)

    Grutters, M.M.P.; Müller, C.; Vogt, D.

    2006-01-01

    The hydrovinylation reaction is a codimerization of a 1,3-diene or vinyl arene and ethene with great potential for fine chemicals and pharmaceuticals. For the first time, enantioselective cobalt-catalyzed hydrovinylations of styrene were achieved with a cobalt-based system bearing a chiral

  18. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming; Maity, Bholanath; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  19. Norcoclaurine Synthase: Mechanism of an Enantioselective Pictet-Spengler Catalyzing Enzyme

    Directory of Open Access Journals (Sweden)

    Alberto Macone

    2010-03-01

    Full Text Available The use of bifunctional catalysts in organic synthesis finds inspiration in the selectivity of enzymatic catalysis which arises from the specific interactions between basic and acidic amino acid residues and the substrate itself in order to stabilize developing charges in the transition state. Many enzymes act as bifunctional catalysts using amino acid residues at the active site as Lewis acids and Lewis bases to modify the substrate as required for the given transformation. They bear a clear advantage over non-biological methods for their ability to tackle problems related to the synthesis of enantiopure compounds as chiral building blocks for drugs and agrochemicals. Moreover, enzymatic synthesis may offer the advantage of a clean and green synthetic process in the absence of organic solvents and metal catalysts. In this work the reaction mechanism of norcoclaurine synthase is described. This enzyme catalyzes the Pictet-Spengler condensation of dopamine with 4-hydroxyphenylacetaldehyde (4-HPAA to yield the benzylisoquinoline alkaloids central precursor, (S-norcoclaurine. Kinetic and crystallographic data suggest that the reaction mechanism occurs according to a typical bifunctional catalytic process.

  20. Effect of acidic seed on biogenic secondary organic aerosol growth

    Science.gov (United States)

    Czoschke, Nadine M.; Jang, Myoseon; Kamens, Richard M.

    Secondary organic aerosol (SOA) growth in the presence of acid aerosols was studied in twin 500 l Teflon bags and in a 4 m flow reactor. In Teflon bags, isoprene, acrolein and α-pinene were all made to react individually with ozone and exposed to either acid or non-acid inorganic seed aerosols to determine the effect of acid-catalyzed heterogeneous reactions on SOA growth. α-Pinene and ozone were made to react in a flow reactor to assess the immediate effect of mixing an acid aerosol with SOA at high and low relative humidity levels. In all cases, exposure to acid seed aerosol increased the amount of SOA mass produced. Fourier transform infrared spectra of the SOA in acid systems confirmed the transformation of carbonyl functional groups through acid-catalyzed heterogeneous reactions when SOAs formed in acidic environments or were exposed to acidic aerosols. Organic products initially produced from ozonation in the gas phase partition onto the inorganic seed aerosol and react heterogeneously with an acid catalyst forming low vapor pressure products. These acid-catalyzed heterogeneous reactions are implicated in generating the increased SOA mass observed in acidic aerosol systems as they transform predominantly gas phase compounds of high volatility into low vapor pressure predominantly particle phase products.

  1. Surface acidity of calcium phosphate and calcium hydroxyapatite: FTIR spectroscopic study of low-temperature CO adsorption

    International Nuclear Information System (INIS)

    Pekounov, Yassen; Chakarova, Kristina; Hadjiivanov, Konstantin

    2009-01-01

    The surface properties of calcium phosphate precursor (CP) and crystalline calcium hydroxyapatite (HA) prepared biomimetically have been studied by IR spectroscopy of adsorbed CO. Both samples are characterized by the absence of Bronsted acidity. Low-temperature CO adsorption on CP evacuated at 523 K leads to formation of only one family of Ca 2+ -CO species (2168 cm -1 ). The analysis indicates that the respective calcium ions on the surface are not isolated. Similar spectra were obtained with HA evacuated at 573 K. In this case, however, the Ca 2+ -CO band was detected at 2165 cm -1 due to enhanced lateral interaction between the adsorbed CO molecules. Another family of Ca 2+ sites (Ca 2+ -CO band at 2178 cm -1 ) was created after evacuation of the HA sample at 673 K. These sites were assumed to be a result of sample dehydroxylation. The results demonstrate the absence of any protonic acidity of the samples (i.e. P-OH surface groups) and weak electrostatic Lewis acidity caused by coordinatively unsaturated Ca 2+ cations.

  2. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    Science.gov (United States)

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  3. Lewis acid controlled regioselectivity in styrene hydrocyanation

    NARCIS (Netherlands)

    Bini, L.; Pidko, E.A.; Müller, C.; Santen, van R.A.; Vogt, D.

    2009-01-01

    According to present knowledge, the Ni-catalyzed hydrocyanation of styrene leads predominantly to the branched product 2-phenylpropionitrile (98%). We observed a dramatic inversion of the regioselectivity upon addition of a Lewis acid. Up to 83 % of the linear product 3-phenylpropionitrile was

  4. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  5. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG JinXian; WEI BangGuo; ZHAO LianBiao; HU YuLai; KANG LiQing

    2001-01-01

    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  6. Synthesis of heterocyclic compounds through palladium-catalyzed C-H cyclization processes.

    Science.gov (United States)

    Inamoto, Kiyofumi

    2013-01-01

    Herein, we describe our development of synthetic methods for heterocyclic compounds based on the palladium-catalyzed carbon-hydrogen bond (C-H) functionalization/intramolecular carbon-heteroatom (nitrogen or sulfur) bond formation process. By this C-H cyclization method, we efficiently prepared various N-heterocycles, including indazoles, indoles, and 2-quinolinones, as well as S-heterocycles such as benzothiazoles and benzo[b]thiophenes. Yields are typically good to high and good functional-group tolerance is observed for each process, thereby indicating that the method provides a novel, highly applicable synthetic route to the abovementioned biologically important heterocyclic frameworks. As an application of this approach, an auto-tandem-type, one-pot process involving the oxidative Heck reaction and subsequent C-H cyclization using cinnamamides and arylboronic acids as starting materials in the presence of a palladium catalyst was also developed for the rapid construction of the 2-quinolinone nucleus.

  7. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  8. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Facile access to amides and hydroxamic acids directly from nitroarenes.

    Science.gov (United States)

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  10. Improved synthesis of isostearic acid using zeolite catalysts

    Science.gov (United States)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  11. The Roles of Acids and Bases in Enzyme Catalysis

    Science.gov (United States)

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  12. Multi-objective optimization of two alkali catalyzed processes for biodiesel from waste cooking oil

    International Nuclear Information System (INIS)

    Patle, Dipesh S.; Sharma, Shivom; Ahmad, Z.; Rangaiah, G.P.

    2014-01-01

    Highlights: • Biodiesel processes use waste cooking oil and are close to industrial practice. • Detailed constituents of waste cooking oil and detailed kinetics are used. • Two complete processes are optimized for economic and environmental objectives. • Obtained trade-offs provide deeper understanding and alternative optimal solutions. - Abstract: In view of the finite availability and environmental concerns of fossil fuels, biodiesel is one of the promising fuel alternatives. This study considers waste cooking palm oil with 6% free fatty acids (FFA) as feed-stock, which facilitates its better utilization and promotes sustainability. Two biodiesel production processes (both involving esterification catalyzed by sulfuric acid and trans-esterification catalyzed by sodium hydroxide) are compared for economic and environmental objectives. Firstly, these processes are simulated, considering detailed constituents of palm oil and also detailed kinetics for both esterification and trans-esterification, in Aspen Plus simulator. Subsequently, both the processes are optimized considering profit, heat duty and organic waste as objectives, and using an Excel-based multi-objective optimization (EMOO) program for the elitist non-dominated sorting genetic algorithm-II (NSGA-II). The results show that the profit improves with the increase in heat duty, and that the profit increase is accompanied by larger amount of organic waste. Process 1 having three trans-esterification reactors produces significantly lower organic waste (by 32%), requires lower heat duty (by 39%) and slightly more profitable (by 1.6%) compared to Process 2 having a single trans-esterification reactor and also a different separation sequence. Overall, the obtained quantitative trade-offs between objectives enable better decision making about the process design for biodiesel production from waste cooking oil

  13. Palladium(II)-catalyzed desulfitative synthesis of aryl ketones from sodium arylsulfinates and nitriles: scope, limitations, and mechanistic studies.

    Science.gov (United States)

    Skillinghaug, Bobo; Sköld, Christian; Rydfjord, Jonas; Svensson, Fredrik; Behrends, Malte; Sävmarker, Jonas; Sjöberg, Per J R; Larhed, Mats

    2014-12-19

    A fast and efficient protocol for the palladium(II)-catalyzed production of aryl ketones from sodium arylsulfinates and various organic nitriles under controlled microwave irradiation has been developed. The wide scope of the reaction has been demonstrated by combining 14 sodium arylsulfinates and 21 nitriles to give 55 examples of aryl ketones. One additional example illustrated that, through the choice of the nitrile reactant, benzofurans are also accessible. The reaction mechanism was investigated by electrospray ionization mass spectrometry and DFT calculations. The desulfitative synthesis of aryl ketones from nitriles was also compared to the corresponding transformation starting from benzoic acids. Comparison of the energy profiles indicates that the free energy requirement for decarboxylation of 2,6-dimethoxybenzoic acid and especially benzoic acid is higher than the corresponding desulfitative process for generating the key aryl palladium intermediate. The palladium(II) intermediates detected by ESI-MS and the DFT calculations provide a detailed understanding of the catalytic cycle.

  14. Rhodium-catalyzed annulation of arenes with alkynes through weak chelation-assisted C-H activation.

    Science.gov (United States)

    Yang, Yudong; Li, Kaizhi; Cheng, Yangyang; Wan, Danyang; Li, Mingliang; You, Jingsong

    2016-02-18

    The purpose of this article is to give a brief review of weak chelation-assistance as a powerful means for the rhodium-catalyzed annulation of arenes with alkynes. The use of commonly occurring functional groups (e.g., ketones, aldehydes, carboxylic acids and alcohols) as the directing groups enriches the versatility of auxiliary ligands and extends the scope of products. This short article offers an overview on emerging procedures, highlights their advantages and limitations, and covers the latest progress in the rapid synthesis of organic functional materials and natural products.

  15. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    Science.gov (United States)

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  16. Synthesis of Carbocyclic Hydantocidins via Regioselective and Diastereoselective Phosphine-Catalyzed [3 + 2]-Cycloadditions to 5-Methylenehydantoins

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Tien Q.; Pyne, Stephen G.; Skelton, Brian W.; White, Allan H. (UWA); (Wollongong)

    2010-07-20

    The phosphine-catalyzed [3 + 2]-cycloaddition of 5-methylenehydantoins 4 with the ylides 5, derived from addition of tributylphosphine to the 2-butynoic acid derivatives, 6a-d, gives spiro-heterocyclic products. The camphor sultam derivative 6b gives optically active products. Noteable was that the ylides derived from ethyl 2-butynoate and the 3-(2-butynoyl)-1,3-oxazolidin-2-one derivatives 6c and 6d gave spiro-heterocyclic products with reverse regioselectivities. The N,N-dibenzylprotected cycloadduct has been converted to carbocyclic hydantocidin and 6,7-diepi-carbocyclic hydantocidin.

  17. Thermo-kinetics of lipase-catalyzed synthesis of 6-O-glucosyldecanoate.

    Science.gov (United States)

    Gumel, A M; Annuar, M S M; Heidelberg, T; Chisti, Y

    2011-10-01

    Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Preparative resolution of D,L-threonine catalyzed by immobilized phosphatase.

    Science.gov (United States)

    Scollar, M P; Sigal, G; Klibanov, A M

    1985-03-01

    Hydrolysis of L- and D-O-phosphothreonines catalyzed by four different phosphatases, alkaline phosphatases from calf intestine and E. coli and acid phosphatases from wheat germ and potato, has been kinetically studied. Alkaline phosphatases were found to have comparable reactivities towards the optical isomers. On the other hand, both acid phosphatases displayed a marked stereoselectivity, hydrolyzing the L-ester much faster than its D counterpart. Wheat germ acid phosphatase was the most stereoselective enzyme: V(L)/V(D) = 24 and K(m,L)/K(m,D) = 0.17. This enzyme was immobilized (in k-carrageenan gel, followed by crosslinking with glutaraldehyde) and used for the preparative resolution of D,L-threonine: the latter was first chemically O-phosphorylated and then asymmetrically hydrolyzed by the immobilized phosphatase. As a result, gram quantities of L-threonine of high optical purity and O-phospho-D-threonine were prepared. Immobilized wheat germ phosphatase has been tested for the resolution of other racemic alcohols: serine, 2-amino-1-butanol, 1-amino-2-propanol, 2-octanol, and menthol. In all those cases, the enzyme was either not sufficiently stereoselective or too slow for preparative resolutions.

  19. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope.

    Science.gov (United States)

    Yan, Youchun; Bornscheuer, Uwe T; Schmid, Rolf D

    2002-04-05

    High conversions in lipase-catalyzed syntheses of esters from free acyl donors and an alcohol requires efficient removal of water preferentially at temperatures compatible to enzyme activity. Using a lipase B from Candida antarctica (CAL-B)-mediated synthesis of sugar fatty-acid esters, we show that a mixture of ethyl methylketone (EMK) and hexane (best ratio: 4:1, vo/vo) allows efficient removal of water generated during esterification. Azeotropic distillation of the solvent mixture (composition: 26% EMK, 55% hexane, 19% water) takes place at 59 degrees C, which closely matches the optimum temperature reported for CAL-B. Water is then removed from the azeotrope by membrane vapor permeation. In case of glucose stearate, 93% yield was achieved after 48 h using an equimolar ratio of glucose and stearic acid. CAL-B could be reused for seven reaction cycles, with 86% residual activity after 14 d total reaction time at 59 degrees C. A decrease in fatty-acid chain length as well as increasing temperatures (75 degrees C) resulted in lower conversions. In addition, immobilization of CAL-B on a magnetic polypropylene carrier (EP 100) facilitated separation of the biocatalyst. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 31--34, 2002; DOI 10.1002/bit.10084

  20. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    NARCIS (Netherlands)

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; Ristanovic, Zoran; Kovarik, Libor; Arey, Bruce W.; Lercher, Johannes A.; Bare, Simon R.; Weckhuysen, Bert M.

    Zeolite catalysis is determined by a combination of pore architecture and Bronsted acidity. As Bronsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework