WorldWideScience

Sample records for bronchial epithelial beas-2b

  1. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  2. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    International Nuclear Information System (INIS)

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-01

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H 2 O 2 ) and superoxide dismutase 2 (SOD2, antioxidant against O 2 ·− ) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The

  3. Identification of PM{sub 10} characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B)

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Heuvel, Rosette, E-mail: rosette.vandenheuvel@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Den Hond, Elly, E-mail: elly.denhond@wiv-isp.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Govarts, Eva, E-mail: eva.govarts@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Colles, Ann, E-mail: ann.colles@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Koppen, Gudrun, E-mail: gudrun.koppen@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Staelens, Jeroen, E-mail: j.staelens@vmm.be [Flanders Environment Agency (VMM), Unit Air, Kronenburgstraat 45, 2000 Antwerp (Belgium); Mampaey, Maja, E-mail: maja.mampaey@lne.vlaanderen.be [LNE (Environment, Nature and Energy Department), Flemish Government, Koning Albert II-laan 20, 1000 Brussels (Belgium); Janssen, Nicole, E-mail: nicole.janssen@rivm.nl [National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven (Netherlands); Schoeters, Greet, E-mail: greet.schoeters@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Department of Biomedical Sciences, 2000 Antwerp (Belgium)

    2016-08-15

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM{sub 10} in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013–2014 PM{sub 10} was sampled (24 h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM{sub 10}, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM{sub 10} particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM{sub 10} (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM{sub 10} particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM{sub 10} characteristics and biological effects of PM{sub 10} were assessed by

  4. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM2.5 organic extract from Puerto Rico

    International Nuclear Information System (INIS)

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.

    2010-01-01

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM 2.5 ) in Puerto Rico. Organic extracts from PM 2.5 collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM 2.5 organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM 2.5 consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1β and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM 2.5 organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.

  5. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis.

    Science.gov (United States)

    Oya, Elisabeth; Ovrevik, Johan; Arlt, Volker M; Nagy, Eszter; Phillips, David H; Holme, Jørn A

    2011-11-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.

  6. Toxicological Impact of Air Pollution Particulate Matter PM 2.5 Collected under Urban Industrial or Rural Influence Occurrence of Oxidative Stress and Inflammatory Reaction in BEAS 2B Human Bronchial Epithelial Cells Corrected Version

    International Nuclear Information System (INIS)

    Dergham, M.; Billet, S; Verdin, A.; Courcot, D.; Cazier, F.; Pirouz, Sh.; Garcon, G.

    2011-01-01

    Exposure to air pollution Particulate Matter (PM) is one of the risk factors involved in the high incidence of respiratory and cardio-vascular diseases. In this work, to integrate inter-seasonal and inter-site variations, fine particle (PM2.5) samples have been collected in spring-summer 2008) and autumn 2008-winter 2009, in Dunkerque (France) under urban or industrial influence, and in Rubrouck (France), under rural influence. Attention was paid to characterize their physico-chemical characteristics, and to determine their ability to induce oxidative stress and inflammatory response in a human bronchial epithelial cell model (BEAS-2B cell line). Physico-chemical characterization of the six PM samples showed their heterogeneities and complexities depending upon their respective natural and/or anthropogenic emission sources. Lung cytotoxicity of these air pollution PM2.5 samples, as shown in BEAS-2B cells, might rely on the induction of oxidative stress conditions and particularly on the excessive inflammatory response. (author)

  7. Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-The FuelHealth project.

    Science.gov (United States)

    Skuland, Tonje S; Refsnes, Magne; Magnusson, Pål; Oczkowski, Michał; Gromadzka-Ostrowska, Joanna; Kruszewski, Marcin; Mruk, Remigiusz; Myhre, Oddvar; Lankoff, Anna; Øvrevik, Johan

    2017-06-01

    Biodiesel fuel fuels are introduced at an increasing extent as a more carbon-neutral alternative to reduce CO 2 -emissions, compared to conventional diesel fuel. In the present study we have investigated the impact of increasing the use of 1st generation fatty acid methyl ester (FAME) biodiesel from current 7% blend (B7) to 20% blend (B20), or by increasing the biodiesel content by adding 2nd generation hydrotreated vegetable oil (HVO) based biodiesel (SHB; Synthetic Hydrocarbon Biofuel) on toxicity of diesel exhaust particles (DEP) in an in vitro system. Human bronchial epithelial BEAS-2B cells were exposed for 4 and 20h to DEP from B7, B20 and SHB at different concentrations, and examined for effects on gene expression of interleukin 6 (IL-6), CXCL8 (IL-8), CYP1A1 and heme oxygenase-1 (HO-1). The results show that both B20 and SHB were more potent inducers of IL-6 expression compared to B7. Only B20 induced statistically significant increases in CXCL8 expression. By comparison the rank order of potency to induce CYP1A1 was SHB>B7>B20. No statistically significant difference were observed form HO-1 expression, suggesting that the differences in cytokine responses were not due to oxidative stress. The results show that even moderate increases in biodiesel blends, from 7% to 20%, may increase the proinflammatory potential of emitted DEP in BEAS-2B cells. This effect was observed for both addition of 1st generation FAME and 2nd generation HVO biodiesel. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    International Nuclear Information System (INIS)

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  9. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    Science.gov (United States)

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Sun, Hong; Cartularo, Laura A. [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2016-02-15

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  11. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A.; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  12. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  13. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2010-01-01

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC 50 of MWCNT was 12 μg/ml, whereas that of asbestos (crocidolite) was 678 μg/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 μg/ml. BEAS-2B cells were exposed to 2, 5, or 10 μg/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-κB or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-κB was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-κB, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  14. MiR-146a regulates PM1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells.

    Science.gov (United States)

    Liu, Limin; Wan, Chong; Zhang, Wei; Guan, Longfei; Tian, Guoxiong; Zhang, Fang; Ding, Wenjun

    2018-04-18

    Exposure to particulate matter (PM) leads to kinds of cardiopulmonary diseases, such as asthma, COPD, arrhythmias, lung cancer, etc., which are related to PM-induced inflammation. We have found that PM 2.5 (aerodynamics diameter <2.5 µm) exposure induces inflammatory response both in vivo and in vitro. Since the toxicity of PM is tightly associated with its size and components, PM 1 (aerodynamics diameter <1.0 µm) is supposed to be more toxic than PM 2.5 . However, the mechanism of PM 1 -induced inflammation is not clear. Recently, emerging evidences prove that microRNAs play a vital role in regulating inflammation. Therefore, we studied the regulation of miR-146a in PM 1 -induced inflammation in human lung bronchial epithelial BEAS-2B cells. The results show that PM 1 induces the increase of IL-6 and IL-8 in BEAS-2B cells and up-regulates the miR-146a expression by activating NF-κB signaling pathway. Overexpressed miR-146a prevents the nuclear translocation of p65 through inhibiting the IRAK1/TRAF6 expression, and downregulates the expression of IL-6 and IL-8. Taken together, these results demonstrate that miR-146a can negatively feedback regulate PM 1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells. © 2018 Wiley Periodicals, Inc.

  15. A Cross-Talk Between NFAT and NF-κB Pathways is Crucial for Nickel-Induced COX-2 Expression in Beas-2B Cells

    Science.gov (United States)

    Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.

    2013-01-01

    Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220

  16. Selective ATP-Binding Cassette Subfamily C Gene Expression and Proinflammatory Mediators Released by BEAS-2B after PM2.5, Budesonide, and Cotreated Exposures

    Directory of Open Access Journals (Sweden)

    Jarline Encarnación-Medina

    2017-01-01

    Full Text Available ATP-binding cassette subfamily C (ABCC genes code for phase III metabolism proteins that translocate xenobiotic (e.g., particulate matter 2.5 (PM2.5 and drug metabolites outside the cells. IL-6 secretion is related with the activation of the ABCC transporters. This study assesses ABCC1–4 gene expression changes and proinflammatory cytokine (IL-6, IL-8 release in human bronchial epithelial cells (BEAS-2B exposed to PM2.5 organic extract, budesonide (BUD, used to control inflammation in asthmatic patients, and a cotreatment (Co-T: PM2.5 and BUD. A real-time PCR assay shows that ABCC1 was upregulated in BEAS-2B exposed after 6 and 7 hr to PM2.5 extract or BUD but downregulated after 6 hr of the Co-T. ABCC3 was downregulated after 6 hr of BUD and upregulated after 6 hr of the Co-T exposures. ABCC4 was upregulated after 5 hr of PM2.5 extract, BUD, and the Co-T exposures. The cytokine assay revealed an increase in IL-6 release by BEAS-2B exposed after 5 hr to PM2.5 extract, BUD, and the Co-T. At 7 hr, the Co-T decreases IL-6 release and IL-8 at 6 hr. In conclusion, the cotreatment showed an opposite effect on exposed BEAS-2B as compared with BUD. The results suggest an interference of the BUD therapeutic potential by PM2.5.

  17. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-01-15

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  18. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    International Nuclear Information System (INIS)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  19. TIPE2 Inhibits the Expression of Asthma-Related Inflammatory Factors in Hyperstretched Bronchial Epithelial Cells Through the Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Sun, Xinrong; Chen, Lu; Yan, Wen

    2017-06-01

    Childhood asthma, an airway inflammatory disease, is a serious threat to the child's quality of life. Recently, TIPE2 expression was reported to be decreased in children with asthma. Therefore, additional studies focusing on TIPE2 might provide an approach for treating childhood asthma. In this study, we found that TIPE2 was poorly expressed in hyperstretched human bronchial epithelial cells (BEAS-2B). TIPE2 overexpression also significantly suppressed the stretch-induced secretion of asthma-related inflammatory factors (TNF-α, TSLP, MMP-9, and VEGF). In contrast, TIPE2 inhibition significantly promoted the secretion of TNF-α, TSLP, MMP-9, and VEGF. Furthermore, overexpression of TIPE2 remarkably inhibited the activation of Wnt/β-catenin in hyperstretched BEAS-2B cells, while siTIPE2 activated Wnt/β-catenin in hyperstretched BEAS-2B cells. Further analysis showed that the Wnt/β-catenin signal inhibitor Dkk-1 could further enhance the TIPE2-induced suppression of Wnt/β-catenin signaling, which also suppressed the siTIPE2-induced secretion of TNF-α, TSLP, MMP-9, and VEGF in hyperstretched BEAS-2B cells. Dkk-1 reversed the effects of siRNA-TIPE2 on Wnt/β-catenin signaling and inflammatory cytokines. In summary, we have exhibited that TIPE2 inhibited the expression of asthma-related inflammatory factors in hyperstretched BEAS-2B cells by suppressing the Wnt/β-catenin signaling pathway. TIPE2 may be involved in airway inflammation during asthma attack, and it may be used as a potential therapeutic target for bronchial epithelial inflammation in childhood asthma.

  20. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    Directory of Open Access Journals (Sweden)

    Haniu H

    2014-04-01

    Full Text Available Hisao Haniu,1,2 Naoto Saito,2,3 Yoshikazu Matsuda,4 Tamotsu Tsukahara,5 Yuki Usui,1,6,7 Kayo Maruyama,2,3 Seiji Takanashi,1 Kaoru Aoki,1 Shinsuke Kobayashi,1 Hiroki Nomura,1 Manabu Tanaka,1 Masanori Okamoto,1 Hiroyuki Kato1 1Department of Orthopaedic Surgery, Shinshu University School of Medicine, Nagano, Japan; 2Insutitute for Biomedical Sciences, Shinshu University, Nagano, Japan; 3Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Nagano, Japan; 4Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Saitama, Japan; 5Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan; 6Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan; 7Aizawa Hospital, Sports Medicine Center, Nagano, Japan Abstract: This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs and cup-stacked carbon nanotubes (CSCNTs on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively – and three CSCNTs of different lengths (CS-L, 20–80 µm; CS-S, 0.5–20 µm; and CS-M, of intermediate length were tested. Human bronchial epithelial (BEAS-2B and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 µg/mL, and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT

  1. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    International Nuclear Information System (INIS)

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin

    2016-01-01

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  2. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-07-15

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  3. Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro.

    Science.gov (United States)

    Koike, Eiko; Yanagisawa, Rie; Takigami, Hidetaka; Takano, Hirohisa

    2014-03-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in consumer products. Humans can be exposed to PBDEs mainly through the inhalation of air or dust. Thus, PBDEs can affect respiratory and immune systems. In the present study, we investigated whether PBDEs stimulate bronchial epithelial cells. We examined commercial penta-BDE (DE-71), octa-BDE (DE-79), and deca-BDE (DE-83R). Human bronchial epithelial cells (BEAS-2B) were exposed to each PBDE for 24h. Subsequently, the expression of intercellular adhesion molecule-1 (ICAM-1) and proinflammatory cytokines were investigated. DE-71 and DE-79, but not DE-83R, significantly increased the expression of ICAM-1, interleukin-6 (IL-6), and IL-8 in BEAS-2B. Because these remarkable effects were observed with DE-71, we further investigated the underlying intracellular mechanisms. DE-71 promoted epidermal growth factor receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and p38 mitogen-activated protein kinase effectively blocked the increase of IL-6 and IL-8. Furthermore, antagonists of thyroid hormone receptor and aryl hydrocarbon receptor significantly suppressed the increase in IL-6 and/or IL-8 production. In conclusion, penta- and octa-BDE, but not deca-BDE, might promote the expression of proinflammatory proteins in bronchial epithelial cells possibly by activating protein kinases and/or stimulating nuclear receptors related to subsequent activation of transcriptional factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. p52-Bcl3 complex promotes cyclin D1 expression in BEAS-2B cells in response to low concentration arsenite

    International Nuclear Information System (INIS)

    Wang, Feng; Shi, Yongli; Yadav, Santosh; Wang, He

    2010-01-01

    Arsenic is a well-recognized human carcinogen that causes a number of malignant diseases, including lung cancer. Previous studies have indicated that cyclin D1 is frequently over-expressed in many cancer types. It is also known that arsenite exposure enhances cyclin D1 expression, which involves NF-κB activation. However, the mechanism between cyclin D1 and the NF-κB pathway has not been well studied. This study was designed to characterize the underlying mechanism of induced cell growth and cyclin D1 expression in response to low concentration sodium arsenic (NaAsO 2 ) exposure through the NF-κB pathway. Cultured human bronchial epithelial cells, BEAS-2B, were exposed to low concentration sodium arsenite for the indicated durations, and cytotoxicity, gene expression, and protein activity were assessed. To profile the canonical and non-canonical NF-κB pathways involved in cell growth and cyclin D1 expression induced by low concentration arsenite, the NF-κB-specific inhibitor-phenethyl caffeate (CAPE) and NF-κB2 mRNA target sequences were used, and cyclin D1 expression in BEAS-2B cells was assessed. Our results demonstrated that exposure to low concentration arsenite enhanced BEAS-2B cells growth and cyclin D1 mRNA and protein expression. Activation and nuclear localization of p52 and Bcl3 in response to low concentration arsenite indicated that the non-canonical NF-κB pathway was involved in arsenite-induced cyclin D1 expression. Moreover, we further demonstrated that p52/Bcl3 complex formation enhanced cyclin D1 expression through the cyclin D1 gene promoter via its κB site. The up-regulation of cyclin D1 mediated by the p52-Bcl3 complex in response to low concentration arsenite might be important in assessing the health risk of low concentration arsenite and understanding the mechanisms of the harmful effects of arsenite.

  5. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  6. LINE-1 couples EMT programming with acquisition of oncogenic phenotypes in human bronchial epithelial cells.

    Science.gov (United States)

    Reyes-Reyes, Elsa M; Aispuro, Ivan; Tavera-Garcia, Marco A; Field, Matthew; Moore, Sara; Ramos, Irma; Ramos, Kenneth S

    2017-11-28

    Although several lines of evidence have established the central role of epithelial-to-mesenchymal-transition (EMT) in malignant progression of non-small cell lung cancers (NSCLCs), the molecular events connecting EMT to malignancy remain poorly understood. This study presents evidence that Long Interspersed Nuclear Element-1 (LINE-1) retrotransposon couples EMT programming with malignancy in human bronchial epithelial cells (BEAS-2B). This conclusion is supported by studies showing that: 1) activation of EMT programming by TGF-β1 increases LINE-1 mRNAs and protein; 2) the lung carcinogen benzo(a)pyrene coregulates TGF-β1 and LINE-1 mRNAs, with LINE-1 positioned downstream of TGF-β1 signaling; and, 3) forced expression of LINE-1 in BEAS-2B cells recapitulates EMT programming and induces malignant phenotypes and tumorigenesis in vivo . These findings identify a TGFβ1-LINE-1 axis as a critical effector pathway that can be targeted for the development of precision therapies during malignant progression of intractable NSCLCs.

  7. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  8. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  9. Xianyu decoction attenuates the inflammatory response of human lung bronchial epithelial cell.

    Science.gov (United States)

    Yu, Chenyi; Xiang, Qiangwei; Zhang, Hailin

    2018-06-01

    Xianyu decoction (XD), a Chinese experience recipe, shows inhibitory effects on lung cancer. However, the potential functions of XD on pneumonia were unknown. This study aimed to investigate the effect of XD on inflammatory response of childhood pneumonia. Human lung bronchial epithelial cell line BEAS-2B was cultured in different doses of LPS with or without XD treatment. The expression of miR-15a and IKBKB were altered by transfection assay. RT-PCR and western blot were used to evaluate the effects of XD and miR-15a mimic/inhibitor on the expression levels of miR-15a, IKBKB, p65 and IκBα. ELISA was used to determine the levels of CRP, IL-6 and IL-8. High expression of miR-15a was observed in serum and cell model of pneumonia. miR-15a promoted the expression of inflammatory cytokines IL-6, IL-8, CRP and IKBKB in vitro. XD treatment downregulated the level of miR-15a in pneumonia children. In addition, XD reduced the expression of inflammatory cytokines and the phosphorylation levels of p65 and IκBα by inhibition of miR-15a and IKBKB expression in LPS-stimulated BEAS-2B cells. XD downregulated the level of miR-15a in serum of pneumonia children. Additionally, XD inhibited inflammatory response in LPS-stimulated BEAS-2B cells possibly by blocking IKBKB/NF-κB signal pathway which was regulated by miR-15a. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    Science.gov (United States)

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Patnaik

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNAs (ribonucleic acids that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls. CONCLUSIONS/SIGNIFICANCE: Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.

  12. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Hirotaka Matsuzaki

    Full Text Available Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL8, growth-related oncogene (GRO, and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C, although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C. In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  13. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    Science.gov (United States)

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  14. Grain dust induces IL-8 production from bronchial epithelial cells: effect on neutrophil recruitment.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, S S; Kwon, O J

    2000-06-01

    There have been several investigations suggesting an involvement of activated neutrophils in the development of grain dust (GD)-induced occupational asthma. Interleukin-8 in the sputa from GD-induced asthmatic patients increased significantly after the exposure to GD. To confirm IL-8 production from bronchial epithelial cells when exposed to GD, and to evaluate the role of IL-8 on neutrophil recruitment. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four different concentrations ranging from 1 to 200 microg/mL of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production and neutrophil chemotaxis, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant derived from subjects with GD-induced asthma exposed to 10 microg/mL of GD, and then compared with those without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Neutrophil chemotactic activity of the culture supernatant was determined by modified Boyden chamber method. Interleukin-8 production and neutrophil chemotactic activity from bronchial epithelial cells significantly increased with additions of GD in a dose-dependent manner (P < .05, respectively), and were significantly augmented with additions of PBMC supernatant (P < .05, respectively) at each concentration. Close correlation was noted between neutrophil chemotactic activity and IL-8 level (r = 0.87, P < .05). Compared with the untreated sample, pre-treatment of anti-IL-8 antibody induced a significant suppression (up to 67.2%) of neutrophil chemotactic activity in a dose-dependent manner. These results suggest that IL-8 produced from bronchial epithelial cells may be a major cytokine, which induces neutrophil migration into the airways when exposed to GD.

  15. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways.

    Science.gov (United States)

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  17. Grain dust induces IL-8 production from bronchial epithelial cells: the effect of dexamethasone on IL-8 production.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, H Y; Kwon, O J; Choi, D C

    1999-04-01

    Recent publications have suggested an active participation of neutrophils to induce bronchoconstriction after inhalation of grain dust (GD). To further understand the role of neutrophils in the pathogenesis of GD-induced asthma, this investigation was designed to determine whether human bronchial epithelial cells could produce IL-8 production and to observe the effect of dexamethasone on IL-8 production. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four concentrations (1 to 200 microg/mL) of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant, which was derived from the culture of PBMC from a GD-induced asthmatic subject under the exposure to 10 microg/mL of GD, and compared with those cultured without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. To evaluate the effect of dexamethasone on IL-8 production, four concentrations (5 to 5000 ng/mL) of dexamethasone were pre-incubated for 24 hours and the same experiments were repeated. There was significant production of IL-8 from bronchial epithelial cells with additions of GD in a dose-dependent manner (P < .05), which was significantly augmented with additions of PBMC supernatant (P < .05) at each concentration. Compared with the untreated sample, pretreatment of dexamethasone could induced a remarkable inhibitions (15% to 55%) of IL-8 production from bronchial epithelial cells in a dose-dependent manner. These results suggest that IL-8 production from bronchial epithelial cells may contribute to neutrophil recruitment occurring in GD-induced airway inflammation. The downregulation of IL-8 production by dexamethasone from bronchial epithelial cells may contribute to the efficacy of this compound in

  18. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  19. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Huang, Dong-Yang [Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Lau, Andy T.Y., E-mail: andytylau@stu.edu.cn [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China)

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  20. Three-Dimensional Human Bronchial-Tracheal Epithelial Tissue-Like Assemblies (TLAs) as Hosts for Severe Acute Respiratory Syndrome (SARS)-CoV Infection

    Science.gov (United States)

    Suderman, M. T.; McCarthy, M.; Mossell, E.; Watts, D. M.; Peters, C. J.; Shope, R.; Goodwin, T. J.

    2006-01-01

    A three-dimensional (3-D) tissue-like assembly (TLA) of human bronchial-tracheal mesenchymal (HBTC) cells with an overlay of human bronchial epithelial (BEAS-2B) cells was constructed using a NASA Bioreactor to survey the infectivity of SARS-CoV. This TLA was inoculated with a low passage number Urbani strain of SARS-CoV. At selected intervals over a 10-day period, media and cell aliquots of the 3-D TLA were harvested for viral titer assay and for light and electron microscopy examination. All viral titer assays were negative in both BEAS-2B two-dimensional monolayer and TLA. Light microscopy immunohistochemistry demonstrated antigen-antibody reactivity with anti-SARS-CoV polyclonal antibody to spike and nuclear proteins on cell membranes and cytoplasm. Coronavirus Group 2 cross-reactivity was demonstrated by positive reaction to anti-FIPV 1 and anti-FIPV 1 and 2 antibodies. TLA examination by transmission electron microscopy indicated increasing cytoplasmic vacuolation with numerous electron-dense bodies measuring 45 to 270 nm from days 4 through 10. There was no evidence of membrane blebbing, membrane duplication, or fragmentation of organelles in the TLAs. However, progressive disruption of endoplasmic reticulum was observed throughout the cells. Antibody response to SARS-CoV specific spike and nucleocapsid glycoproteins, cross-reactivity with FIPV antibodies, and the cytoplasmic pathology suggests this HBTE TLA model is permissive to SARS-CoV infection.

  1. The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells.

    Science.gov (United States)

    Kyung, Sun Young; Kim, Yu Jin; Son, Eun Suk; Jeong, Sung Hwan; Park, Jeong Woong

    2018-04-01

    Recent studies show that mitophagy, the autophagy-dependent turnover of mitochondria, mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure and contributes to the development of emphysema in vivo during chronic cigarette smoke (CS) exposure, although the underlying mechanisms remain unclear. In this study, we investigated the role of mitophagy in the regulation of CSE-exposed lung bronchial epithelial cell (Beas-2B) death. We also investigated the role of a phosphodiesterase 4 inhibitor, roflumilast, in CSE-induced mitophagy-dependent cell death. Our results demonstrated that CSE induces mitophagy in Beas-2B cells through mitochondrial dysfunction and increased the expression levels of the mitophagy regulator protein, PTEN-induced putative kinase-1 (PINK1), and the mitochondrial fission protein, dynamin-1-like protein (DRP1). CSE-induced epithelial cell death was significantly increased in Beas-2B cells exposed to CSE but was decreased by small interfering RNA-dependent knockdown of DRP1. Treatment with roflumilast in Beas-2B cells inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting the expression of phospho-DRP1 and -PINK1. Roflumilast protected against cell death and increased cell viability, as determined by the lactate dehydrogenase release test and the MTT assay, respectively, in Beas-2B cells exposed to CSE. These findings suggest that roflumilast plays a protective role in CS-induced mitophagy-dependent cell death. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  2. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Science.gov (United States)

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  3. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  4. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts

    Directory of Open Access Journals (Sweden)

    Luketich James D

    2004-12-01

    Full Text Available Abstract Background Non-neuronal cells, including those derived from lung, are reported to express nicotinic acetylcholine receptors (nAChR. We examined nAChR subunit expression in short-term cultures of human airway cells derived from a series of never smokers, ex-smokers, and active smokers. Methods and Results At the mRNA level, human bronchial epithelial (HBE cells and airway fibroblasts expressed a range of nAChR subunits. In multiple cultures of both cell types, mRNA was detected for subunits that constitute functional muscle-type and neuronal-type pentomeric receptors. Two immortalized cell lines derived from HBE cells also expressed muscle-type and neuronal-type nAChR subunits. Airway fibroblasts expressed mRNA for three muscle-type subunits (α1, δ, and ε significantly more often than HBE cells. Immunoblotting of HBE cell and airway fibroblast extracts confirmed that mRNA for many nAChR subunits is translated into detectable levels of protein, and evidence of glycosylation of nAChRs was observed. Some minor differences in nAChR expression were found based on smoking status in fibroblasts or HBE cells. Nicotine triggered calcium influx in the immortalized HBE cell line BEAS2B, which was blocked by α-bungarotoxin and to a lesser extent by hexamethonium. Activation of PKC and MAPK p38, but not MAPK p42/44, was observed in BEAS2B cells exposed to nicotine. In contrast, nicotine could activate p42/44 in airway fibroblasts within five minutes of exposure. Conclusions These results suggest that muscle-type and neuronal-type nAChRs are functional in airway fibroblasts and HBE cells, that prior tobacco exposure does not appear to be an important variable in nAChR expression, and that distinct signaling pathways are observed in response to nicotine.

  5. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Wei-Xia; He, Min-Di; Mao, Lin [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Qian, Feng-Hua [Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Li, Yu-Ming [Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing 400038 (China); Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Zhou, Zhou, E-mail: lunazhou00@163.com [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China)

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  6. Lung fibroblasts may play an important role in clearing apoptotic bodies of bronchial epithelial cells generated by exposure to PHMG-P-containing solution.

    Science.gov (United States)

    Park, Eun-Jung; Park, Sung-Jin; Kim, Sanghwa; Lee, Kyuhong; Chang, Jaerak

    2018-04-01

    Polyhexamethylene guanidine (PHMG) has been widely used in the industry owing to its excellent biocidal, anti-corrosive, and anti-biofouling properties. In Korea, consumers exposed to PHMG-phosphate (PHMG-P)-containing humidifier disinfectant have begun to suffer from fibrotic lung injury-related symptoms for unknown reasons. However, no appropriate treatment has yet been found because the detail toxic mechanism has not been identified. Herein, we first studied the toxic mechanism of PHMG-P-containing solution using human normal bronchial epithelial cells (BEAS-2B cells). When exposed for 24 h, PHMG-P-containing solution rapidly decreased cell viability from around 6 h after exposure and significantly increased of the phosphatidylserine exposure and the LDH release. At 6 h of exposure, the material contained in the solution was found to be bound to the cell membrane and the inner wall of vacuoles, and damaged the cell membrane and organelles. In addition, a significant increase of IFN-γ was observed among cytokines, the expression of apoptosis-, autophagy-, and membrane and DNA damage-related proteins was also enhanced. Meanwhile, the level of intracellular ROS and the secretion of IL-8 and CXCL-1, which are chemokines for professional phagocytes, decreased. Thus, we treated dead BEAS-2B cells to lung fibroblasts (HFL-1), non-professional phagocytes, and then we observed that the dead cells rapidly attached to HFL-1 cells and were taken up. Additionally, increased secretion of IL-8 and CXCL-1 was observed in the cells. Based on these results, we suggest that pulmonary exposure to PHMG-P induces apoptosis of bronchial epithelial cells and lung fibroblasts might play an important role in the clearance of the apoptotic debris. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells

    International Nuclear Information System (INIS)

    Carter, Charleata A.; Hamm, Jonathan T.

    2009-01-01

    Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-κB (NF-κB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-α and NF-κB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30 μg/ml CSC significantly activated PKC-α, while CSC doses above 20 μg/ml CSC significantly activated NF-κB. As NF-κB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30 μg/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30 μg/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-α, NF-κB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.

  8. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin

    International Nuclear Information System (INIS)

    Cachon, Boris Fresnel; Firmin, Stéphane; Verdin, Anthony; Ayi-Fanou, Lucie

    2014-01-01

    After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM 2.5 and PM >2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5–96 μg/cm 2 ) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm 2 to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators. Highlights: • The aim of this study was to investigate the toxic potential of collected particles. • Toxicological effects were determined by using human bronchial epithelial cells. • Both particles induced oxidative stress, proinflammatory response and cell alterations. • Metabolizing enzymes were linked to proinflammatory responses and cell alterations. • Oxidative stress was highly correlated to the proinflammatory mediators. -- This study evidences the toxic potential of African fine and coarse particulate matters on respiratory epithelial cells

  9. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Gurr, J.-R.; Wang, Alexander S.S.; Chen, C.-H.; Jan, K.-Y.

    2005-01-01

    Ultrafine titanium dioxide (TiO 2 ) particles have been shown to exhibit strong cytotoxicity when exposed to UVA radiation, but are regarded as a biocompatible material in the absence of photoactivation. In contrast to this concept, the present results indicate that anatase-sized (10 and 20 nm) TiO 2 particles in the absence of photoactivation induced oxidative DNA damage, lipid peroxidation, and micronuclei formation, and increased hydrogen peroxide and nitric oxide production in BEAS-2B cells, a human bronchial epithelial cell line. However, the treatment with anatase-sized (200 and >200 nm) particles did not induce oxidative stress in the absence of light irradiation; it seems that the smaller the particle, the easier it is for the particle to induce oxidative damage. The photocatalytic activity of the anatase form of TiO 2 was reported to be higher than that of the rutile form. In contrast to this notion, the present results indicate that rutile-sized 200 nm particles induced hydrogen peroxide and oxidative DNA damage in the absence of light but the anatase-sized 200 nm particles did not. In total darkness, a slightly higher level of oxidative DNA damage was also detected with treatment using an anatase-rutile mixture than with treatment using either the anatase or rutile forms alone. These results suggest that intratracheal instillation of ultrafine TiO 2 particles may cause an inflammatory response

  10. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    International Nuclear Information System (INIS)

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM 10 and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM 10 collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM 10 exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  11. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuejiao [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000 (China); Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China)

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  12. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    International Nuclear Information System (INIS)

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-01-01

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  13. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Directory of Open Access Journals (Sweden)

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  14. Hexavalent chromium causes the oxidation of thioredoxin in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2008-01-01

    Hexavalent chromium [Cr(VI)] species such as chromates are cytotoxic. Inhalational exposure is a primary concern in many Cr-related industries and their immediate environments, and bronchial epithelial cells are directly exposed to inhaled Cr(VI). Chromates are readily taken up by cells and are reduced to reactive Cr species which may also result in the generation of reactive oxygen species (ROS). The thioredoxin (Trx) system has a key role in the maintenance of cellular thiol redox balance and is essential for cell survival. Cells normally maintain the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins largely in the reduced state. Redox Western blots were used to assess the redox status of the thioredoxins in normal human bronchial epithelial cells (BEAS-2B) incubated with soluble Na 2 CrO 4 or insoluble ZnCrO 4 for different periods of time. Both chromates caused a dose- and time-dependent oxidation of Trx2 and Trx1. Trx2 was more susceptible in that it could all be converted to the oxidized form, whereas a small amount of reduced Trx1 remained even after prolonged treatment with higher Cr concentrations. Only one of the dithiols, presumably the active site, of Trx1 was oxidized by Cr(VI). Cr(VI) did not cause significant GSH depletion or oxidation indicating that Trx oxidation does not result from a general oxidation of cellular thiols. With purified Trx and thioredoxin reductase (TrxR) in vitro, Cr(VI) also resulted in Trx oxidation. It was determined that purified TrxR has pronounced Cr(VI) reducing activity, so competition for electron flow from TrxR might impair its ability to reduce Trx. The in vitro data also suggested some direct redox interaction between Cr(VI) and Trx. The ability of Cr(VI) to cause Trx oxidation in cells could contribute to its cytotoxic effects, and could have important implications for cell survival, redox-sensitive cell signaling, and the cells' tolerance of other oxidant insults

  15. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Myers, Charles R.; Myers, Judith M.

    2009-01-01

    Inhalation is a common form of exposure to acrolein, a toxic reactive volatile aldehyde that is a ubiquitous environmental pollutant. Bronchial epithelial cells would be directly exposed to inhaled acrolein. The thioredoxin (Trx) system is essential for the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, thioredoxin reductase (TrxR) maintains the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins in the reduced state, and the thioredoxins keep the peroxiredoxins (Prx) reduced, thereby supporting their peroxidase function. The effects of acrolein on TrxR, Trx and Prx in human bronchial epithelial (BEAS-2B) cells were determined. A 30-min exposure to 5 μM acrolein oxidized both Trx1 and Trx2, although significant effects were noted for Trx1 at even lower acrolein concentrations. The effects on Trx1 and Trx2 could not be reversed by treatment with disulfide reductants. TrxR activity was inhibited 60% and >85% by 2.5 and 5 μM acrolein, respectively. The endogenous electron donor for TrxR, NADPH, could not restore its activity, and activity did not recover in cells during a 4-h acrolein-free period in complete medium. The effects of acrolein on TrxR and Trx therefore extend beyond the duration of exposure. While there was a strong correlation between TrxR inhibition and Trx1 oxidation, the irreversible effects on Trx1 suggest direct effects of acrolein rather than loss of reducing equivalents from TrxR. Trx2 did not become oxidized until ≥90% of TrxR was inhibited, but irreversible effects on Trx2 also suggest direct effects of acrolein. Prx1 (cytosolic) and Prx3 (mitochondrial) shifted to a largely oxidized state only when >90 and 100% of their respective Trxs were oxidized. Prx oxidation was readily reversed with a disulfide reductant, suggesting that Prx oxidation resulted from lack of reducing equivalents from Trx and not direct reaction with acrolein. The effects of acrolein on the thioredoxin system and

  16. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro.

    Science.gov (United States)

    Lindberg, Hanna K; Falck, Ghita C-M; Suhonen, Satu; Vippola, Minnamari; Vanhala, Esa; Catalán, Julia; Savolainen, Kai; Norppa, Hannu

    2009-05-08

    Despite the increasing industrial use of different nanomaterials, data on their genotoxicity are scant. In the present study, we examined the potential genotoxic effects of carbon nanotubes (CNTs; >50% single-walled, approximately 40% other CNTs; 1.1 nm x 0.5-100 microm; Sigma-Aldrich) and graphite nanofibres (GNFs; 95%; outer diameter 80-200 nm, inner diameter 30-50 nm, length 5-20 microm; Sigma-Aldrich) in vitro. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay and the micronucleus assay (cytokinesis-block method) in human bronchial epithelial BEAS 2B cells cultured for 24h, 48h, or 72h with various doses (1-100 microg/cm(2), corresponding to 3.8-380 microg/ml) of the carbon nanomaterials. In the comet assay, CNTs induced a dose-dependent increase in DNA damage at all treatment times, with a statistically significant effect starting at the lowest dose tested. GNFs increased DNA damage at all doses in the 24-h treatment, at two doses (40 and 100 microg/cm(2)) in the 48-h treatment (dose-dependent effect) and at four doses (lowest 10 microg/cm(2)) in the 72-h treatment. In the micronucleus assay, no increase in micronucleated cells was observed with either of the nanomaterials after the 24-h treatment or with CNTs after the 72-h treatment. The 48-h treatment caused a significant increase in micronucleated cells at three doses (lowest 10 microg/cm(2)) of CNTs and at two doses (5 and 10 microg/cm(2)) of GNFs. The 72-h treatment with GNFs increased micronucleated cells at four doses (lowest 10 microg/cm(2)). No dose-dependent effects were seen in the micronucleus assay. The presence of carbon nanomaterial on the microscopic slides disturbed the micronucleus analysis and made it impossible at levels higher than 20 microg/cm(2) of GNFs in the 24-h and 48-h treatments. In conclusion, our results suggest that both CNTs and GNFs are genotoxic in human bronchial epithelial BEAS 2B cells in vitro. This activity may be due to the fibrous nature

  17. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  18. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate.

    Science.gov (United States)

    Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro

    2013-03-08

    Silver (Ag) possesses antibacterial activity and has been used in wound dressings and deodorant powders worldwide. However, the metabolic behavior and biological roles of Ag in mammals have not been well characterized. In the present study, we exposed human bronchial epithelial cells (BEAS-2B) to AgNO3 and investigated uptake and intracellular distribution of Ag, expression of metallothionein (MT), generation of reactive oxygen species (ROS), and changes in mitochondrial respiration. The culture medium concentration of Ag decreased with time and stabilized at 12h. The concentration of both Ag and MT in the soluble cellular fraction increased up to 3h and then decreased, indicating that cytosolic Ag relocated to the insoluble fraction of the cells. The levels of mRNAs for the major human MT isoforms MT-I and MT-II paralleled with the protein levels of Ag-MT. The intensity of fluorescence derived from ROS was elevated in the mitochondrial region at 24h. Ag decreased mitochondrial oxygen consumption in a dose-dependent manner and the activity of mitochondrial complex I-IV enzymes was significantly inhibited following exposure to Ag. In a separate experiment, we found that hydrogen peroxide (H2O2) at concentrations as low as 0.001% (equivalent to the concentration of H2O2 in Ag-exposed cells) removed Ag from MT. These results suggest MT was decomposed by cytosolic H2O2, and then Ag released from MT relocated to insoluble cellular fractions and inhibited electron chain transfer of mitochondrial complexes, which eventually led to cell damage. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Science.gov (United States)

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  20. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Vee, Marc; Jouan, Elodie; Lecureur, Valérie [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Fardel, Olivier, E-mail: olivier.fardel@univ-rennes1.fr [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes (France)

    2016-01-01

    The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC{sub 50} values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development. - Highlights: • The amino acid transporter LAT1/CD98hc is up-regulated in DEPe-treated lung cells. • The aryl hydrocarbon receptor is involved in DEPe-triggered induction of LAT1/CD98hc.

  1. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  2. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    International Nuclear Information System (INIS)

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-01-01

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway

  3. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis.

    Science.gov (United States)

    Fan, Yu; Wang, Ye; Wang, Ke

    2015-12-18

    Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell

  4. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  5. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    International Nuclear Information System (INIS)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  6. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Perkins Timothy N

    2012-02-01

    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  7. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  8. Alveolar epithelial permeability in bronchial asthma in children

    International Nuclear Information System (INIS)

    Oishi, Takuji

    1993-01-01

    To evaluate alveolar epithelial permeability (k ep ) in children with bronchial asthma, 99m Tc-DTPA (diethylene triamine penta acetate) aerosol lung inhalation scintigraphies were performed. There was no correlation between the k ep value and the severity of asthma. On the other hand, out of 10 cases which had no aerosol deposition defect in the lung field, 4 showed high k ep values on the whole lung field and 7 had high k ep value areas, particularly apparent in the upper lung field. These results suggest that even when the central airway lesions are mild, severe damage exists in the alveolar region of the peripheral airway. (author)

  9. Primary study on the lesions and specific proteins in BEAS-2B cells induced with the 2009 A (H1N1) influenza virus.

    Science.gov (United States)

    Fang, Shisong; Zhang, Kaining; Wang, Ting; Wang, Xin; Lu, Xing; Peng, Bo; Wu, Weihua; Zhang, Ran; Chen, Shiju; Zhang, Renli; Xue, Hong; Yu, Muhua; Cheng, Jinquan

    2014-12-01

    In order to investigate the lesions and proteins with differential expression in cells infected with the 2009 A (H1N1) virus and to determine the specific proteins involved in cell damage, the present study has been performed. BEAS-2B cells were infected with the 2009 A (H1N1) influenza virus or the seasonal H1N1 influenza virus for 12, 24, 48, and 72 h, and cell cycle and apoptosis were analyzed with flow cytometry. Total cellular proteins were extracted and underwent two-dimensional gel electrophoresis. The differentially expressed proteins underwent mass spectrometry for identification. The results showed that after 12 h, cells infected with the virus strain sourced from severe cases had the highest apoptosis rate (P cells infected with the virus strain sourced from fatal cases and severe cases had the highest apoptosis rate (P cells infected with virus strains from fatal cases and ordinary cases had the highest apoptosis rate (P cell cycle arrest mainly at the G0/G1 phase. Eighteen differentially expressed proteins were identified, including galectin-1, cofilin-1, protein DJ-1, proteasome subunit α type-5, macrophage migration inhibitory factor, translationally controlled tumor protein, profilin 1, and interferon α-2. Galectin-1 was specifically observed in BEAS-2B infected with 2009 A (H1N1) influenza viruses, and cofilin-1 was specifically observed in BEAS-2B cells in the late stage of 2009 A (H1N1) influenza virus infection. In conclusion, differential effects of the 2009 A (H1N1) influenza virus and seasonal H1N1 influenza virus were identified on the cell cycle and apoptosis, and galectin-1 may play a role in cell apoptosis induced by 2009 A (H1N1) influenza virus.

  10. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.

    Science.gov (United States)

    Hawley, B; Volckens, J

    2013-02-01

    Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.

  11. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    Science.gov (United States)

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  12. Nicotinamide N-Methyltransferase Suppression Participates in Nickel-Induced Histone H3 Lysine9 Dimethylation in BEAS-2B Cells

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-04-01

    Full Text Available Background: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM to S-adenosylhomocysteine (SAH. However, the role of NNMT in nickel-induced histone methylation remains unclear. Methods: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2 for 72 h or 200 μM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9 mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3 and dickkopf1 (DKK1, were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+ to reduced NAD (NADH and SAM/SAH ratio were determined. Results: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2, suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1, and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. Conclusions: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.

  13. IL-13 induces a bronchial epithelial phenotype that is profibrotic

    Directory of Open Access Journals (Sweden)

    Dinh Bao T

    2008-03-01

    Full Text Available Abstract Background Inflammatory cytokines (e.g. IL-13 and mechanical perturbations (e.g. scrape injury to the epithelium release profibrotic factors such as TGF-β2, which may, in turn, stimulate subepithelial fibrosis in asthma. We hypothesized that prolonged IL-13 exposure creates a plastic epithelial phenotype that is profibrotic through continuous secretion of soluble mediators at levels that stimulate subepithelial fibrosis. Methods Normal human bronchial epithelial cells (NHBE were treated with IL-13 (0, 0.1, 1, or 10 ng/ml for 14 days (day 7 to day 21 following seeding at an air-liquid interface during differentiation, and then withdrawn for 1 or 7 days. Pre-treated and untreated NHBE were co-cultured for 3 days with normal human lung fibroblasts (NHLF embedded in rat-tail collagen gels during days 22–25 or days 28–31. Results IL-13 induced increasing levels of MUC5AC protein, and TGF-β2, while decreasing β-Tubulin IV at day 22 and 28 in the NHBE. TGF-β2, soluble collagen in the media, salt soluble collagen in the matrix, and second harmonic generation (SHG signal from fibrillar collagen in the matrix were elevated in the IL-13 pre-treated NHBE co-cultures at day 25, but not at day 31. A TGF-β2 neutralizing antibody reversed the increase in collagen content and SHG signal. Conclusion Prolonged IL-13 exposure followed by withdrawal creates an epithelial phenotype, which continuously secretes TGF-β2 at levels that increase collagen secretion and alters the bulk optical properties of an underlying fibroblast-embedded collagen matrix. Extended withdrawal of IL-13 from the epithelium followed by co-culture does not stimulate fibrosis, indicating plasticity of the cultured airway epithelium and an ability to return to a baseline. Hence, IL-13 may contribute to subepithelial fibrosis in asthma by stimulating biologically significant TGF-β2 secretion from the airway epithelium.

  14. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  15. Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Sun, Pengling; Gao, Ai

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are manufactured worldwide for a wide range of applications and the toxic effect of TNPs on biological systems is gaining attention. Autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials. MicroRNA 34a (miR34a) acts as a tumor suppressor gene by targeting many oncogenes, but how it affects autophagy induced by TNPs is not completely understood. Here, we observed the activation of TNP-induced autophagy through monodansylcadaverine staining and LC3-I/LC3-II conversion. Meanwhile, the transmission electron microscope ultrastructural analysis showed typical morphological characteristics in autophagy process. We detected the expression of miR34a and B-cell lymphoma/leukemia-2 (Bcl-2). In addition, the underlying mechanism of TNP-induced autophagy was performed using overexpression of miR34a by lentivirus vector transfection. Results showed that TNPs induced autophagy generation evidently. Typical morphological changes in the process of autophagy were observed by the transmission electron microscope ultrastructural analysis and LC3-I/LC3-II conversion increased significantly in TNP-treated cells. Meanwhile, TNPs induced the downregulation of miR34a and increased the expression of Bcl-2. Furthermore, overexpressed miR34a decreased the expression of Bcl-2 both in messenger RNA and protein level, following which the level of autophagy and cell death rate increased after the transfected cells were incubated with TNPs for 24 hours. These findings provide the first evidence that overexpressed miR34a enhanced TNP-induced autophagy and cell death through targeted downregulation of Bcl-2 in BEAS-2B cells. PMID:27226226

  16. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or

  17. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  18. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  19. Quercetogetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy.

    Science.gov (United States)

    Son, Eun Suk; Kim, Se-Hee; Ryter, Stefan W; Yeo, Eui-Ju; Kyung, Sun Young; Kim, Yu Jin; Jeong, Sung Hwan; Lee, Chang Soo; Park, Jeong-Woong

    2018-04-01

    Recent studies demonstrate that the autophagy-dependent turnover of mitochondria (mitophagy) mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure, and contributes to emphysema development in vivo during chronic cigarette smoke (CS)-exposure, although the underlying mechanisms remain unclear. Here, we investigated the role of mitophagy in regulating apoptosis in CSE-exposed human lung bronchial epithelial cells. Furthermore, we investigated the potential of the polymethoxylated flavone antioxidant quercetogetin (QUE) to inhibit CSE-induced mitophagy-dependent apoptosis. Our results demonstrate that CSE induces mitophagy in epithelial cells via mitochondrial dysfunction, and causes increased expression levels of the mitophagy-regulator protein PTEN-induced putative kinase-1 (PINK1) and the mitochondrial fission protein dynamin-1-like protein (DRP-1). CSE induced epithelial cell death and increased the expression of the apoptosis-related proteins cleaved caspase-3, -8 and -9. Caspase-3 activity was significantly increased in Beas-2B cells exposed to CSE, and decreased by siRNA-dependent knockdown of DRP-1. Treatment of epithelial cells with QUE inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting phospho (p)-DRP-1 and PINK1 expression. QUE suppressed mitophagy-dependent apoptosis by inhibiting the expression of cleaved caspase-3, -8 and -9 and downregulating caspase activity in human bronchial epithelial cells. These findings suggest that QUE may serve as a potential therapeutic in CS-induced pulmonary diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    International Nuclear Information System (INIS)

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-01-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and β-naphthylamine (β-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H 2 O 2 or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  1. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  2. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  3. Critical role of constitutive type I interferon response in bronchial epithelial cell to influenza infection.

    Directory of Open Access Journals (Sweden)

    Alan C-Y Hsu

    Full Text Available Innate antiviral responses in bronchial epithelial cells (BECs provide the first line of defense against respiratory viral infection and the effectiveness of this response is critically dependent on the type I interferons (IFNs. However the importance of the antiviral responses in BECs during influenza infection is not well understood. We profiled the innate immune response to infection with H3N2 and H5N1 virus using Calu-3 cells and primary BECs to model proximal airway cells. The susceptibility of BECs to influenza infection was not solely dependent on the sialic acid-bearing glycoprotein, and antiviral responses that occurred after viral endocytosis was more important in limiting viral replication. The early antiviral response and apoptosis correlated with the ability to limit viral replication. Both viruses reduced RIG-I associated antiviral responses and subsequent induction of IFN-β. However it was found that there was constitutive release of IFN-β by BECs and this was critical in inducing late antiviral signaling via type I IFN receptors, and was crucial in limiting viral infection. This study characterizes anti-influenza virus responses in airway epithelial cells and shows that constitutive IFN-β release plays a more important role in initiating protective late IFN-stimulated responses during human influenza infection in bronchial epithelial cells.

  4. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation.

    Directory of Open Access Journals (Sweden)

    Laurie-Anne Payet

    Full Text Available The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF, leads to the retention of the protein in the endoplasmic reticulum (ER. The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(- cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.

  5. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  6. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress–mediated apoptosis: possible implication in asthma

    Science.gov (United States)

    Merendino, Anna M.; Paul, Catherine; Vignola, Antonio M.; Costa, Maria A.; Melis, Mario; Chiappara, Giuseppina; Izzo, V.; Bousquet, J.; Arrigo, André-Patrick

    2002-01-01

    Inflammation of the human bronchial epithelium, as observed in asthmatics, is characterized by the selective death of the columnar epithelial cells, which desquamate from the basal cells. Tissue repair initiates from basal cells that resist inflammation. Here, we have evaluated the extent of apoptosis as well as the Hsp27 level of expression in epithelial cells from bronchial biopsy samples taken from normal and asthmatic subjects. Hsp27 is a chaperone whose expression protects against oxidative stress. We report that in asthmatic subjects the basal epithelium cells express a high level of Hsp27 but no apoptotic morphology. In contrast, apoptotic columnar cells are devoid of Hsp27 expression. Moreover, we observed a decreased resistance to hydrogen peroxide–induced apoptosis in human bronchial epithelial 16–HBE cells when they were genetically modified to express reduced levels of Hsp27. PMID:12482203

  7. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    Science.gov (United States)

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  8. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    Science.gov (United States)

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  9. The innate immune response of equine bronchial epithelial cells is altered by training.

    Science.gov (United States)

    Frellstedt, Linda; Gosset, Philippe; Kervoaze, Gwenola; Hans, Aymeric; Desmet, Christophe; Pirottin, Dimitri; Bureau, Fabrice; Lekeux, Pierre; Art, Tatiana

    2015-01-17

    Respiratory diseases, including inflammatory airway disease (IAD), viral and bacterial infections, are common problems in exercising horses. The airway epithelium constitutes a major physical barrier against airborne infections and plays an essential role in the lung innate immune response mainly through toll-like receptor (TLR) activation. The aim of this study was to develop a model for the culture of equine bronchial epithelial cells (EBEC) in vitro and to explore EBEC innate immune responses in trained horses. Bronchial epithelial biopsies were taken from 6 adult horses during lower airway endoscopy. EBEC were grown in vitro by an explant method. The innate immune response of EBEC was evaluated in vitro by treatment with TLR ligands. TLR3 is the most strongly expressed TLR at the mRNA level in EBEC and stimulation of EBEC with Poly(I:C), an analog of viral dsRNA, triggers a strong secretion of IFN-β, TNF-α, IL-6 and CXCL8. We further evaluated the EBEC innate immune response in horses that underwent a 4-month-training program. While training had no effect on TLR mRNA expression in EBEC as well as in bronchial biopsies, it increased the production of IFN-β after stimulation with a TLR3 ligand and decreased the secretion of TNF-α and IL-6 after stimulation with a TLR2 and TLR3 ligand. These findings may be implicated in the increased risk for viral and bacterial infections observed in sport horses. Altogether, we report a successful model for the culture of EBEC that can be applied to the investigation of pathophysiologic conditions in longitudinal studies.

  10. Interleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells

    Science.gov (United States)

    Kreindler, James L.; Bertrand, Carol A.; Lee, Robert J.; Karasic, Thomas; Aujla, Shean; Pilewski, Joseph M.; Frizzell, Raymond A.; Kolls, Jay K.

    2009-01-01

    The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bronchial epithelial (HBE) cells. Furthermore, IL-17A levels are increased in sputum from patients during pulmonary exacerbations of cystic fibrosis. Therefore, we investigated the effects of IL-17A on basal, amiloride-sensitive, and forskolin-stimulated ion transport in mature, well-differentiated HBE cells. Exposure of HBE monolayers to IL-17A for 48 h induced a novel forskolin-stimulated bicarbonate secretion in addition to forskolin-stimulated chloride secretion and resulted in alkalinization of liquid on the mucosal surface of polarized cells. IL-17A-induced bicarbonate secretion was cystic fibrosis transmembrane conductance regulator (CFTR)-dependent, mucosal chloride-dependent, partially Na+-dependent, and sensitive to serosal, but not mucosal, stilbene inhibition. These data suggest that IL-17A modulates epithelial bicarbonate secretion and implicate a mechanism by which airway surface liquid pH changes may be abnormal in cystic fibrosis. PMID:19074559

  11. Inhibition of acrolein-stimulated MUC5AC production by fucoidan in human bronchial epithelial cells.

    Science.gov (United States)

    Pokharel, Yuba Raj; Yoon, Se Young; Kim, Sang Kyum; Li, Jian-Dong; Kang, Keon Wook

    2008-10-01

    Fucoidan, a marine sulfated polysaccharide has both antithrombotic and anti-inflammatory effects. We determined the effect of fucoidan on MUC5AC expression in a human bronchial epithelial cell line, NCI-H292. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that fucoidan inhibited MUC5AC expression and protein secretion in cells stimulated with acrolein, a toxic aldehyde present in tobacco smoke. The activation of both nuclear factor-kappa B (NF-kappa B) and activator protein 1 (AP-1) are key steps in the transcriptional activation of MUC5AC. We found that the acrolein-mediated transactivation of MUC5AC was selectively dependent on AP-1 activation and was suppressed by fucoidan. Fucoidan-induced AP-1 inhibition and MUC5AC repression might be associated with fucoidan's protective effects against respiratory diseases.

  12. Detection of genomic instability in normal human bronchial epithelial cells exposed to 238Pu

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Fukushima, N.H.; Neft, R.E.; Lechner, J.F.

    1994-01-01

    Alpha particle-emitting radon daughters constitute a risk for development of lung cancer in humans. The development of this disease involves multiple genetic alterations. These changes and the time course they follow are not yet defined despite numerous in vitro endeavors to transform human lung cells with various physical or chemical agents. However, genomic instability, characterized both by structural and numerical chromosomal aberrations and by elevated rates of point mutations, is a common feature of tumor cells. Further, both types of genomic instability have been reported in the noncancerous progeny of normal murine hemopoietic cells exposed in vitro to α-particles. The purpose of this investigation was to determine if genomic instability is also a prominent feature of normal human bronchial epithelial cells exposed to α-particle irradiation from the decay of inhaled radon daughters

  13. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Science.gov (United States)

    Aug, Argo; Altraja, Siiri; Kilk, Kalle; Porosk, Rando; Soomets, Ursel; Altraja, Alan

    2015-01-01

    E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  14. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Argo Aug

    Full Text Available E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1 to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  15. Effect of COPD treatments on MRP1-mediated transport in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Margaretha van der Deen

    2008-10-01

    Full Text Available Margaretha van der Deen1, Sandra Homan1, Hetty Timmer-Bosscha1, Rik J Scheper2, Wim Timens3, Dirkje S Postma4, Elisabeth G de Vries1Departments of 1Medical Oncology, 3Pathology, 4Pulmonary Diseases, University Medical Center Groningen and University of Groningen, The Netherlands; 2Department of Pathology, VU University Medical Center, Amsterdam, The NetherlandsBackground: Smoking is the principle risk factor for development of chronic obstructive pulmonary disease (COPD. Multidrug resistance-associated protein 1 (MRP1 is known to protect against toxic compounds and oxidative stress, and might play a role in protection against smoke-induced disease progression. We questioned whether MRP1-mediated transport is influenced by pulmonary drugs that are commonly prescribed in COPD.Methods: The immortalized human bronchial epithelial cell line 16HBE14o- was used to analyze direct in vitro effects of budesonide, formoterol, ipratropium bromide and N-acetylcysteine (NAC on MRP1-mediated transport. Carboxyfluorescein (CF was used as a model MRP1 substrate and was measured with functional flow cytometry.Results: Formoterol had a minor effect, whereas budesonide concentration-dependently decreased CF transport by MRP1. Remarkably, addition of formoterol to the highest concentration of budesonide increased CF transport. Ipratropium bromide inhibited CF transport at low concentrations and tended to increase CF transport at higher levels. NAC increased CF transport by MRP1 in a concentration-dependent manner.Conclusions: Our data suggest that, besides their positive effects on respiratory symptoms, budesonide, formoterol, ipratropium bromide, and NAC modulate MRP1 activity in bronchial epithelial cells. Further studies are required to assess whether stimulation of MRP1 activity is beneficial for long-term treatment of COPD.Keywords: bronchus epithelium, COPD, drugs, MRP1, multidrug resistance, oxidative stress

  16. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  17. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  18. Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S

    2002-07-01

    Full Text Available Abstract Background To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC — the particulate fraction of tobacco smoke — were examined. Methods The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and Results NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK kinase (MEK, and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2, demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml or TNF-α (50 ng/ml had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls. Conclusion The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB.

  19. IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kelly M Adams

    Full Text Available The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A, which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4 as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease.

  20. Interleukin-13-induced MUC5AC is regulated by 15-lipoxygenase 1 pathway in human bronchial epithelial cells.

    Science.gov (United States)

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B; O'Donnell, Valerie; Wenzel, Sally E

    2009-05-01

    15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13-induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air-liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma.

  1. The effect of electronic cigarette and tobacco smoke exposure on COPD bronchial epithelial cell inflammatory responses

    Directory of Open Access Journals (Sweden)

    Higham A

    2018-03-01

    Full Text Available Andrew Higham,1,2 Declan Bostock,1 George Booth,2 Josiah V Dungwa,2 Dave Singh1,2 1Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK; 2Medicines Evaluation Unit, University Hospital of South Manchester, Manchester, UK Background: Electronic cigarettes (e-cigs are used to help smoking cessation. However, these devices contain harmful chemicals, and there are safety concerns. We have investigated the effects of e-cigs on the inflammatory response and viability of COPD bronchial epithelial cells (BECs.Methods: BECs from COPD patients and controls were exposed to e-cig vapor extract (ECVE and the levels of interleukin (IL-6, C-X-C motif ligand 8 (CXCL8, and lactate dehydrogenase release were measured. We also examined the effect of ECVE pretreatment on polyinosinic:polycytidylic acid (poly I:C-stimulated cytokine release from BECs. Parallel experiments using Calu-3 cells were performed. Comparisons were made with cigarette smoke extract (CSE.Results: ECVE and CSE caused an increase in the release of IL-6 and CXCL8 from Calu-3 cells. ECVE only caused toxicity in BECs and Calu-3 cells. Furthermore, ECVE and CSE dampened poly I:C-stimulated C-X-C motif ligand 10 release from both cell culture models, reaching statistical significance for CSE at an optical density of 0.3.Conclusion: ECVE caused toxicity and reduced the antiviral response to poly I:C. This raises concerns over the safety of e-cig use. Keywords: e-cigs, epithelial cells, COPD, air–liquid interface, cigarette smoke

  2. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  3. Primary Paediatric Bronchial Airway Epithelial Cell in Vitro Responses to Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Neil McInnes

    2016-03-01

    Full Text Available The bronchial airway epithelial cell (BAEC is the site for initial encounters between inhaled environmental factors and the lower respiratory system. Our hypothesis was that release of pro inflammatory interleukins (IL-6 and IL-8 from primary BAEC cultured from children will be increased after in vitro exposure to common environmental factors. Primary BAEC were obtained from children undergoing clinically indicated routine general anaesthetic procedures. Cells were exposed to three different concentrations of lipopolysaccharide (LPS or house dust mite allergen (HDM or particulates extracted from side stream cigarette smoke (SSCS. BAEC were obtained from 24 children (mean age 7.0 years and exposed to stimuli. Compared with the negative control, there was an increase in IL-6 and IL-8 release after exposure to HDM (p ≤ 0.001 for both comparisons. There was reduced IL-6 after higher compared to lower SSCS exposure (p = 0.023. There was no change in BAEC release of IL-6 or IL-8 after LPS exposure. BAEC from children are able to recognise and respond in vitro with enhanced pro inflammatory mediator secretion to some inhaled exposures.

  4. The species translation challenge-a systems biology perspective on human and rat bronchial epithelial cells.

    Science.gov (United States)

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.

  5. The species translation challenge—A systems biology perspective on human and rat bronchial epithelial cells

    Science.gov (United States)

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to ‘translate’ the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies. PMID:25977767

  6. Apple Flavonoids Suppress Carcinogen-Induced DNA Damage in Normal Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Vazhappilly Cijo George

    2017-01-01

    Full Text Available Scope. Human neoplastic transformation due to DNA damage poses an increasing global healthcare concern. Maintaining genomic integrity is crucial for avoiding tumor initiation and progression. The present study aimed to investigate the efficacy of an apple flavonoid fraction (AF4 against various carcinogen-induced toxicity in normal human bronchial epithelial cells and its mechanism of DNA damage response and repair processes. Methods and Results. AF4-pretreated cells were exposed to nicotine-derived nitrosamine ketones (NNK, NNK acetate (NNK-Ae, methotrexate (MTX, and cisplatin to validate cytotoxicity, total reactive oxygen species, intracellular antioxidants, DNA fragmentation, and DNA tail damage. Furthermore, phosphorylated histone (γ-H2AX and proteins involved in DNA damage (ATM/ATR, Chk1, Chk2, and p53 and repair (DNA-PKcs and Ku80 mechanisms were evaluated by immunofluorescence and western blotting, respectively. The results revealed that AF4-pretreated cells showed lower cytotoxicity, total ROS generation, and DNA fragmentation along with consequent inhibition of DNA tail moment. An increased level of γ-H2AX and DNA damage proteins was observed in carcinogen-treated cells and that was significantly (p≤0.05 inhibited in AF4-pretreated cells, in an ATR-dependent manner. AF4 pretreatment also facilitated the phosphorylation of DNA-PKcs and thus initiation of repair mechanisms. Conclusion. Apple flavonoids can protect in vitro oxidative DNA damage and facilitate repair mechanisms.

  7. Anti-inflammatory effects of antibacterials on human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Hatz Rudolf

    2009-09-01

    Full Text Available Abstract Background Human Bronchial epithelial cells (hu-BEC have been claimed to play a significant role in the pathogenesis of chronic inflammatory airway diseases like COPD. In this context IL-8 and GM-CSF have been shown to be key cytokines. Some antibiotics which are routinely used to treat lower respiratory tract infections have been shown to exert additional immunomodulatory or anti-inflammatory effects. We investigated whether these effects can also be detected in hu-BEC. Methods Hu-BEC obtained from patients undergoing lung resections were transferred to air-liquid-interface (ALI culture. These cultures were incubated with cefuroxime (CXM, 10-62.5 mg/l, azithromycin (AZM, 0.1-1.5 mg/l, levofloxacin (LVX, 1-8 mg/l and moxifloxacin (MXF, 1-16 mg/l. The spontaneous and TNF-α (10 ng/ml induced expression and release of IL-8 and GM-CSF were measured using PCR and ELISA in the absence or presence of these antibiotics. Results The spontaneous IL-8 and GM-CSF release was significantly reduced with MXF (8 mg/l by 37 ± 20% and 45 ± 31%, respectively (both p Conclusion Using ALI cultures of hu-BEC we observed differential effects of antibiotics on spontaneous and TNF-α induced cytokine release. Our data suggest that MXF and AZM, beyond bactericidal effects, may attenuate the inflammatory process mediated by hu-BEC.

  8. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection.

    Directory of Open Access Journals (Sweden)

    Tomoki Yoshikawa

    2010-01-01

    Full Text Available Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndrome-associated coronavirus (SARS-CoV. Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarray-based functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NFkappaB, activator protein (AP-1, and interferon regulatory factor (IRF-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i., resulting in the activation of many antiviral genes, including interferon (IFN-beta, -lambdas, inflammatory mediators, and many IFN-stimulated genes (ISGs. We also showed, for the first time, that IFN-beta and IFN-lambdas were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.

  9. Glucocorticoids can affect Pseudomonas aeruginosa (ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells.

    Science.gov (United States)

    Hussain, Rashida; Shahror, Rami; Karpati, Ferenc; Roomans, Godfried M

    2015-01-01

    Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.

  10. A ROS-dependent and Caspase-3-mediated apoptosis in sheep bronchial epithelial cells in response to Mycoplasma Ovipneumoniae infections.

    Science.gov (United States)

    Xue, Di; Li, Yanan; Jiang, Zhongjia; Deng, Guangcun; Li, Min; Liu, Xiaoming; Wang, Yujiong

    2017-05-01

    Mycoplasma Ovipneumoniae (M. ovipneumoniae) is a primary etiological agent of enzootic pneumonia in sheep and goats. It can enter and colonize ovine respiratory epithelial cells to establish an infection, which leads a serious cell death of epithelial cells. However, the nature of the interaction between pathogen of M. ovipneumoniae and host cells in the cell injury is currently not well understood. In this study, we investigated the epithelial cell apoptosis caused by an infection of M. ovipneumoniae in sheep primary air-liquid interface (ALI) epithelial cultures. The results showed that M. ovipneumoniae could specifically bind to ciliated cells at early stage of infection. Flow cytometric analysis demonstrated that an infection of M. ovipneumoniae induced a time-dependent cell apoptotic cell death, accompanied with an increased production of extracellular nitric oxide (NO), intracellular reactive oxygen species (ROS) production and activation of caspase-3 signaling in sheep bronchial epithelial cells. The induced cell apoptosis was further confirmed by a transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay. Interestingly, the M. ovipneumoniae-induced apoptosis and activation of caspase-3 were correlated with the production of ROS but not NO. Mechanistically, M. ovipneumoniae-induced cell apoptosis was mediated by a mechanism by increasing the expression of phosphorylation of p38 and pro-apoptotic proteins, and activating caspase-3, caspase-8 and poly ADP-ribose polymerase (PARP) cleavage. These results suggest a ROS-dependent and caspase-3-mediated cell apoptosis in sheep bronchial epithelial cells in response to M. ovipneumoniae infections. Copyright © 2017. Published by Elsevier B.V.

  11. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Science.gov (United States)

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  12. Interleukin-13–induced MUC5AC Is Regulated by 15-Lipoxygenase 1 Pathway in Human Bronchial Epithelial Cells

    Science.gov (United States)

    Zhao, Jinming; Maskrey, Ben; Balzar, Silvana; Chibana, Kazuyuki; Mustovich, Anthony; Hu, Haizhen; Trudeau, John B.; O'Donnell, Valerie; Wenzel, Sally E.

    2009-01-01

    Rationale: 15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. Objectives: To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13–induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. Methods: Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air–liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. Measurements and Main Results: Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. Conclusions: Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma. PMID:19218191

  13. Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment.

    Science.gov (United States)

    Vannitamby, Amanda; Seow, Huei Jiunn; Anderson, Gary; Vlahos, Ross; Thompson, Michelle; Steinfort, Daniel; Irving, Louis B; Bozinovski, Steven

    2017-12-01

    Matrix metalloproteinase-9 (MMP-9) is increased in a number of pathological lung conditions, where the proteinase contributes to deleterious remodelling of the airways. While both lung cancer and COPD are associated with increased MMP-9 expression, the cellular and molecular drivers of MMP-9 remain unresolved. In this study, MMP-9 transcript measured within the tumour region from patients with non-small-cell lung cancer (NSCLC) and coexisting COPD was found to be uniformly increased relative to adjacent tumour-free tissue. MMP-9 gene expression and immunohistochemistry identified tumour-associated neutrophils, but not macrophages, as a predominant source of this proteinase. In addition, PTEN gene expression was significantly reduced in tumour and there was evidence of epithelial MMP-9 expression. To explore whether PTEN can regulate epithelial MMP-9 expression, a small interfering (si)RNA knockdown strategy was used in Beas-2B bronchial epithelial cells. PTEN knockdown by siRNA selectively increased MMP-9 expression in response to lipopolysaccharide in a corticosteroid-insensitive manner. In summary, tumour-associated neutrophils represent an important source of MMP-9 in NSCLC, and loss of epithelial PTEN may further augment steroid-insensitive expression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. A lung cancer risk classifier comprising genome maintenance genes measured in normal bronchial epithelial cells.

    Science.gov (United States)

    Yeo, Jiyoun; Crawford, Erin L; Zhang, Xiaolu; Khuder, Sadik; Chen, Tian; Levin, Albert; Blomquist, Thomas M; Willey, James C

    2017-05-02

    Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation. Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening. After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96-0.99). The overall classification accuracy was 93% (95% CI 88%-98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone. The LCRT biomarker reported here displayed high accuracy and ease

  15. Monomethylarsonous Acid (MMAIII Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Emily G Notch

    Full Text Available Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa induced cytokine secretion by human bronchial epithelial cells (HBEC by inorganic sodium arsenite (iAsIII and two major metabolites, monomethylarsonous acid (MMAIII and dimethylarsenic acid (DMAV, at concentrations relevant to the U.S.Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa.

  16. Mutation induction in γ-irradiated primary human bronchial epithelial cells and molecular analysis of the HPRT- mutants

    International Nuclear Information System (INIS)

    Suzuki, Keiji; Hei, Tom K.

    1996-01-01

    We have examined various radiobiological parameters using commercially-available primary normal human bronchial epithelial (NHBE) cells, which can be subcultured more than 20 population doublings, and have established the mutation system in order to characterize the molecular changes in γ-irradiated primary cells. The survival curve, obtained after irradiation of cells with 137 Cs γ-rays, indicates that the D 0 , D q , and n values are 1.34 Gy, 1.12 Gy, and 2.3, respectively. The induction of HPRT - mutation was dose-dependent and the mutant fraction increased in a non-linear fashion. Since the doubling number of NHBE cells is limited, DNA was extracted directly from the single mutant colonies and alteration in the HPRT gene locus was analyzed using multiplex PCR technique. Among spontaneous mutants, the proportion with total and partial deletions of the gene was 10.0% (2/20) and 60.0% (12/20), respectively, while 30.0% (6/20) did not have any detectable changes in the nine exons examined. On the other hand, the fraction of total deletion increased by more than 2-fold among mutants induced by γ-rays in that 26.3% (10/38) of them showed the total gene deletions. Twenty-five out of 38 γ-induced mutants (65.8%) had partial deletions and 3 mutants (7.9%) had no detectable alteration. The present results showed that γ-irradiation efficiently induced HPRT gene mutation in primary human epithelial cells and that most of the induced mutants suffered larger deletions compared to that observed in spontaneous mutants. This system provides a useful tool for determination of mutagenicity and understanding the molecular mechanisms of environmental carcinogens in primary human bronchial cells

  17. In Vitro Toxicity of Naturally Occurring Silica Nanoparticles in C1 Coal 
in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Guangjian LI

    2012-10-01

    Full Text Available Background and objective China’s Xuan Wei County in Yunnan Province have the world’s highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. Methods ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring, control group (silica; industrial produced and crystalline silica was detected by assay used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT method, and the reactive oxygen species (ROS, lactate dehydrogenase (LDH were determined after 24 h-72 h exposed to these particles. Results ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Conclusion ①Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace;

  18. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells.

    Science.gov (United States)

    Hagiwara, Masaya; Maruta, Naomichi; Marumoto, Moegi

    2017-06-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left-right asymmetry, and disease pathogenesis of the human lung.

  19. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    International Nuclear Information System (INIS)

    Perkins, Timothy N.; Dentener, Mieke A.; Stassen, Frank R.; Rohde, Gernot G.; Mossman, Brooke T.; Wouters, Emiel F.M.; Reynaert, Niki L.

    2016-01-01

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  20. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Timothy N.; Dentener, Mieke A. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Stassen, Frank R. [Department of Medical Microbiology, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Rohde, Gernot G. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Mossman, Brooke T. [Department of Pathology, University of Vermont College of Medicine, Burlington, VT (United States); Wouters, Emiel F.M. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Reynaert, Niki L., E-mail: n.reynaert@maastrichtuniversity.nl [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands)

    2016-06-15

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  1. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis

    International Nuclear Information System (INIS)

    Liu Xiangde; Nelson, Amy; Wang Xingqi; Kanaji, Nobuhiro; Kim, Miok; Sato, Tadashi; Nakanishi, Masanori; Li Yingji; Sun Jianhong; Michalski, Joel; Patil, Amol; Basma, Hesham; Rennard, Stephen I.

    2009-01-01

    MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-ss1 plus cytomix (a mixture of IL-1ss, IFN-γ and TNF-α). TGF-ss1 plus cytomix (TCM) induced apoptosis in HBECs (3.4 ± 0.6% of control vs 83.1 ± 4.0% of TCM treated cells, p < 0.01), and this was significantly blocked by the miRNA-146a mimic (8.8 ± 1.5%, p < 0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.

  2. Calcitonin gene-related peptide promotes the wound healing of human bronchial epithelial cells via PKC and MAPK pathways.

    Science.gov (United States)

    Zhou, Yong; Zhang, Min; Sun, Guo-Ying; Liu, Yong-Ping; Ran, Wen-Zhuo; Peng, Li; Guan, Cha-Xiang

    2013-06-10

    Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide derived from the calcitonin gene. CGRP is widely distributed in the central and peripheral neuronal systems. In the lung, CGRP could modulate dendritic cell function, stimulate proliferation of alveolar epithelial cells and mediate lung injury in mice. In this study, we investigated the effect of CGRP on the wound healing of human bronchial epithelial cells (HBECs) in vitro. The results showed that CGRP accelerated the recovery of wound area of monolayer HBECs in a dose-dependent manner. CGRP inhibited the lipopolysaccharide-induced apoptosis in HBECs. The percentage of S phase and G2/M phase was increased in HBECs after CGRP treatment. CGRP upregulated the expression of Ki67 in a dose-dependent manner. Some pathway inhibitors were used to investigate the signal pathway in which CGRP was involved. We found out that PKC pathway inhibitor (H-7) and MAPK pathway inhibitor (PD98059) could partially attenuate the effect of CGRP, which indicated that CGRP might promote the wound healing of HBECs via PKC and/or MAPK dependent pathway by accelerating migration and proliferation, and inhibiting apoptosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  4. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedan, Jeffrey S., E-mail: jsf2@cdc.gov; Thompson, Janet A.; Meighan, Terence G.; Zeidler-Erdely, Patti C.; Antonini, James M.

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167–166.7 μg/cm{sup 2}) were applied apically to NHBEs. After 18 h transepithelial potential difference (V{sub t}), resistance (R{sub t}), and short circuit current (I{sub sc}) were measured. Particle effects on Na{sup +} and Cl¯ channels and the Na{sup +},K{sup +},2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167–16.7 μg/cm{sup 2}) increased basal V{sub t}. Only 16.7 μg/cm{sup 2} GMA-MS increased basal V{sub t} significantly. MMA-SS or GMA-MS exposure potentiated I{sub sc} responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R{sub t} were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V{sub t}, R{sub t}, and I{sub sc} at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na{sup +} transport and Na{sup +},K{sup +},2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na{sup +} absorption and decreased airway surface liquid could compromise defenses against infection. - Highlights: • Welding fume particle toxicity was investigated in human bronchial

  5. Characterising the mechanism of airway smooth muscle β2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    David Van Ly

    Full Text Available Rhinovirus (RV infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC. RV infection of primary human bronchial epithelial cells (HBEC for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF2α and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor

  6. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro

    International Nuclear Information System (INIS)

    Lindberg, Hanna K.; Falck, Ghita C.-M.; Singh, Rajinder; Suhonen, Satu; Järventaus, Hilkka; Vanhala, Esa; Catalán, Julia; Farmer, Peter B.; Savolainen, Kai M.; Norppa, Hannu

    2013-01-01

    Although some types of carbon nanotubes (CNTs) have been described to induce mesothelioma in rodents and genotoxic effects in various cell systems, there are few previous studies on the genotoxicity of CNTs in mesothelial cells. Here, we examined in vitro DNA damage induction by short multi-wall CNTs (MWCNTs; 10–30 nm × 1–2 μm) and single-wall CNTs (SWCNTs; >50% SWCNTs, ∼40% other CNTs; 1 dG) DNA adducts. In BEAS 2B cells, we also studied the induction of micronuclei (MN) by the CNTs using the cytokinesis-block method. The cells were exposed to the CNTs (5–200 μg/cm 2 , corresponding to 19–760 μg/ml) for 24 and 48 h in the comet assay and for 48 and 72 h in the MN and M 1 dG assays. Transmission electron microscopy (TEM) showed more MWCNT fibres and SWCNT clusters in BEAS 2B than MeT-5A cells, but no significant differences were seen in intracellular dose expressed as area of SWCNT clusters between TEM sections of the cell lines. In MeT-5A cells, both CNTs caused a dose-dependent induction of DNA damage (% DNA in comet tail) in the 48-h treatment and SWCNTs additionally in the 24-h treatment, with a statistically significant increase at 40 μg/cm 2 of SWCNTs and (after 48 h) 80 μg/cm 2 of both CNTs. SWCNTs also elevated the level of M 1 dG DNA adducts at 1, 5, 10 and 40 μg/cm 2 after the 48-h treatment, but both CNTs decreased M 1 dG adduct level at several doses after the 72-h treatment. In BEAS 2B cells, SWCNTs induced a statistically significant increase in DNA damage at 80 and 120 μg/cm 2 after the 24-h treatment and in M 1 dG adduct level at 5 μg/cm 2 after 48 h and 10 and 40 μg/cm 2 after 72 h; MWCNTs did not affect the level of DNA damage but produced a decrease in M 1 dG adducts in the 72-h treatment. The CNTs did not affect the level of MN. In conclusion, MWCNTs and SWCNTs induced DNA damage in MeT-5A cells but showed a lower (SWCNTs) or no (MWCNTs) effect in BEAS 2B cells, suggesting that MeT-5A cells were more sensitive to the DNA

  7. Inhibition of NFkappaB activation and IL-8 expression in human bronchial epithelial cells by acrolein.

    Science.gov (United States)

    Valacchi, Giuseppe; Pagnin, Elisa; Phung, Anh; Nardini, Mirella; Schock, Bettina C; Cross, Carroll E; van der Vliet, Albert

    2005-01-01

    Lipid oxidation and environmental pollutants are major sources of alpha,beta-unsaturated aldehydes such as acrolein and 4-hydroxynonenal. Acrolein (2-propenal), a major product of organic combustion such as tobacco smoke, represents the most reactive alpha,beta-unsaturated aldehyde, with high reactivity toward nucleophilic targets such as sulfhydryl groups. To investigate how acrolein affects respiratory tract cell activation, we exposed either primary (NHBE) or immortalized human bronchial epithelial cells (HBE1) to 0-25 microM acrolein, and determined effects on basal and tumor necrosis factor-alpha (TNFalpha)-induced production of the chemokine interleukin (IL)-8. Cell exposure to acrolein dose-dependently suppressed IL-8 mRNA levels in HBE1 cells (26, 40, and 79% at 5, 10, and 25 microM acrolein concentrations, respectively) and resulted in corresponding decreases in IL-8 production. Studies of nuclear factor-kappaB (NFkappaB) activation, an essential event in IL-8 production, showed decreased TNFalpha-induced NFkappaB activation by acrolein, illustrated by inhibition of nuclear translocation of NFkappaB and reduced IkappaBalpha degradation. Immunochemical analysis of IkappaB kinase (IKK), a redox-sensitive regulator of NFkappaB activation, indicated direct modification of the IKK beta-subunit by acrolein, suggesting that acrolein may act directly on IKK. In summary, our results demonstrate that acrolein can suppress inflammatory processes in the airways by inhibiting epithelial IL-8 production through direct or indirect inhibitory effects on NFkappaB activation.

  8. Measurement of IL-13–Induced iNOS-Derived Gas Phase Nitric Oxide in Human Bronchial Epithelial Cells

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D.; George, Steven C.

    2007-01-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl·s−1.cm−2) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air–liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 ± 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13–stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS. PMID:17347445

  9. Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells.

    Science.gov (United States)

    Suresh, Vinod; Mih, Justin D; George, Steven C

    2007-07-01

    Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl.s(-1.)cm(-2)) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air-liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 +/- 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13-stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS.

  10. Evaluation of E-Cigarette Liquid Vapor and Mainstream Cigarette Smoke after Direct Exposure of Primary Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Scheffler

    2015-04-01

    Full Text Available E-cigarettes are emerging products, often described as “reduced-risk” nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5–8 times lower and the oxidative stress levels 4.5–5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  11. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro.

    Science.gov (United States)

    Roth, Michèle; Usemann, Jakob; Bisig, Christoph; Comte, Pierre; Czerwinski, Jan; Mayer, Andreas C R; Beier, Konstantin; Rothen-Rutishauser, Barbara; Latzin, Philipp; Müller, Loretta

    2017-12-01

    Air pollution exposure, including passenger car emissions, may cause substantial respiratory health effects and cancer death. In western countries, the majority of passenger cars are driven by gasoline fuel. Recently, new motor technologies and ethanol fuels have been introduced to the market, but potential health effects have not been thoroughly investigated. We developed and verified a coculture model composed of bronchial epithelial cells (ECs) and natural killer cells (NKs) mimicking the human airways to compare toxic effects between pure gasoline (E0) and ethanol-gasoline-blend (E85, 85% ethanol, 15% gasoline) exhaust emitted from a flexfuel gasoline car. We drove a steady state cycle, exposed ECs for 6h and added NKs. We assessed exhaust effects in ECs alone and in cocultures by RT-PCR, flow cytometry, and oxidative stress assay. We found no toxic effects after exposure to E0 or E85 compared to air controls. Comparison between E0 and E85 exposure showed a weak association for less oxidative DNA damage after E85 exposure compared to E0. Our results indicate that short-term exposure to gasoline exhaust may have no major toxic effects in ECs and NKs and that ethanol as part of fuel for gasoline cars may be favorable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Adaptation to acrolein through upregulating the protection by glutathione in human bronchial epithelial cells: the materialization of the hormesis concept.

    Science.gov (United States)

    Sthijns, Mireille M J P E; Randall, Matthew J; Bast, Aalt; Haenen, Guido R M M

    2014-04-18

    Acrolein is a thiol reactive compound present in cigarette smoke and plays a pivotal role in the deleterious effects of smoking. Acrolein causes toxicity in human bronchial epithelial cells in a dose dependent manner. GSH forms the first line of defense against acrolein-induced toxicity. At high doses of acrolein (⩾10 μM) the capacity of the cellular protection by GSH is overwhelmed and GSH is not able to quench all the acrolein, resulting in cytotoxicity. At a relatively low dose of acrolein (3 μM), no cytotoxicity is observed due to protection by GSH. Moreover we found that exposure to a low dose of acrolein protects cells against the toxic effect of a second higher dose of acrolein. The adaptation to acrolein is induced via Nrf2 mediated gene expression of γ-glutamylcysteine synthetase leading to elevated GSH levels. This upregulation of the protection by GSH demonstrates a hormetic response to acrolein. Hormesis is an adaptive or compensatory response induced by a relatively subtle challenge of homeostasis by a toxic compound. Insight into the mechanism of hormesis is mandatory for a more accurate societal regulation of toxic compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Evaluation of E-cigarette liquid vapor and mainstream cigarette smoke after direct exposure of primary human bronchial epithelial cells.

    Science.gov (United States)

    Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela

    2015-04-08

    E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact  module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.

  14. Diagnosis of respiratory epithelial clearance abnormality in patients suffering from chemo-resistant pulmonary tuberculosis with comorbidity of bronchial mucosa O. M. Raznatovska, V. M. Khlystun

    Directory of Open Access Journals (Sweden)

    O. M. Raznatovska

    2018-04-01

    Full Text Available Respiratory epithelial clearance timely and early disorder diagnosis in patients suffering from chemo-resistant pulmonary tuberculosis (CRPTB concomitant pathology of the bronchial mucosa is an actual problem of modern phthisiology, the solution of which will allow the timely application of rational correction, which will increase the effectiveness of this category treatment among patients. Objective is to investigate the nature and features of respiratory epithelial clearance disorders among patients suffering from CRPTB with comorbidity of the bronchi mucous membrane by using the developed method of these disorders diagnosis. Materials and methods. The respiratory epithelial clearance state diagnosis was carried out among 133 patients with CRPTB at the beginning of the intensive phase of antimycobacterial therapy during fibrobronchoscopy, provided there is a concomitant specific pathology of the mucous membrane (including its combination with non-specific endobronchitis. Average age of patients was 36.5 ± 1.1 years old. There were 89 (66.9 % men and 44 (33.1 % women. The tracheobronchial tree diagnostic fibrobronchoscopy with further study of the respiratory epithelial clearance condition among patients suffering from CRPTB was carried out by V. M. Khlystun at Phthisiology and Pulmonology Department of Zaporizhzhia State Medical University in CI “Zaporizhzhia Regional Antituberculous Clinical Dispensary”. Criteria of patients including into the research: existence of resistance of tuberculosis mycobacteria to anti-mycobacterial drugs in patients with new and repeated cases of tuberculosis, existence of pathology of the mucosa of bronchi confirmed during fiberoptic bronchoscopy. Serious associated diseases (HIV infection/AIDS, diabetes mellitus, etc. were criteria of exception. The condition of bronchial mucosa was studied under narcotic anaesthesia by fiberoptic bronchoscopes of Olympus (Japan. Pathology of a bronchial tree was described

  15. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells.

    Science.gov (United States)

    Mishina, Kei; Shinkai, Masaharu; Shimokawaji, Tadasuke; Nagashima, Akimichi; Hashimoto, Yusuke; Inoue, Yoriko; Inayama, Yoshiaki; Rubin, Bruce K; Ishigatsubo, Yoshiaki; Kaneko, Takeshi

    2015-12-01

    Mucus hypersecretion and goblet cell hyperplasia are common features that characterize asthma. IL-13 increases mucin (MUC) 5AC, the major component of airway mucus, in airway epithelial cells. According to the literature, IL-13 receptor activation leads to STAT6 activation and consequent induction of chloride channel accessory 1 (CLCA1) gene expression, associated with the induction of MUC5AC. Heme oxygenase-1 (HO-1) is an enzyme that catalyzes oxidation of heme to biliverdin, and has anti-inflammatory and anti-oxidant properties. We examined the effects of HO-1 on mucin production and goblet cell hyperplasia induced by IL-13. Moreover, we assessed the cell signaling intermediates that appear to be responsible for mucin production. Normal human bronchial epithelial (NHBE) cells were grown at air liquid interface (ALI) in the presence or absence of IL-13 and hemin, a HO-1 inducer, for 14 days. Protein concentration was analyzed using ELISA, and mRNA expression was examined by real-time PCR. Histochemical analysis was performed using HE staining, andWestern blotting was performed to evaluate signaling transduction pathway. Hemin (4 μM) significantly increased HO-1 protein expression (p b 0.01) and HO-1 mRNA expression (p b 0.001). IL-13 significantly increased goblet cells, MUC5AC protein secretion (p b 0.01) and MUC5AC mRNA (p b 0.001), and these were decreased by hemin by way of HO-1. Tin protoporphyrin (SnPP)-IX, a HO-1 inhibitor, blocked the effect of hemin restoring MUC5AC protein secretion (p b 0.05) and goblet cell hyperplasia. Hemin decreased the expression of CLCA1 mRNA (p b 0.05) and it was reversed by SnPP-IX, but could not suppress IL-13-induced phosphorylation of STAT6 or SAM pointed domain-containing ETS transcription factor (SPDEF) and Forkhead box A2 (FOXA2) mRNA expression. In summary, HO-1 overexpression suppressed IL-13-induced goblet cell hyperplasia and MUC5AC production, and involvement of CLCA1 in the mechanism was suggested.

  16. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

    Science.gov (United States)

    Iskandar, Anita R.; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  17. Comparison of gene expression profiles of normal human bronchial epithelial cells in 2D and 3D cultural conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — The experiment is part of a project to study DNA repair process after ionizing radiation in organotypic 3-dimentional human bronchial epithlial cell culture. Human...

  18. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles.

    Science.gov (United States)

    Fedan, Jeffrey S; Thompson, Janet A; Meighan, Terence G; Zeidler-Erdely, Patti C; Antonini, James M

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167-166.7μg/cm 2 ) were applied apically to NHBEs. After 18h transepithelial potential difference (V t ), resistance (R t ), and short circuit current (I sc ) were measured. Particle effects on Na + and Cl¯ channels and the Na + ,K + ,2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167-16.7μg/cm 2 ) increased basal V t . Only 16.7μg/cm 2 GMA-MS increased basal V t significantly. MMA-SS or GMA-MS exposure potentiated I sc responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R t were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V t , R t , and I sc at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na + transport and Na + ,K + ,2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na + absorption and decreased airway surface liquid could compromise defenses against infection. Published by Elsevier Inc.

  19. Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 WG® and Myco 500®, two commercial forms of folpet

    Directory of Open Access Journals (Sweden)

    Baldi Isabelle

    2007-09-01

    Full Text Available Abstract Background Pesticides, in particular folpet, have been found in rural and urban air in France in the past few years. Folpet is a contact fungicide and has been widely used for the past 50 years in vineyards in France. Slightly water-soluble and mostly present as particles in the environment, it has been measured at average concentration of 40.1 μg/m3 during its spraying, 0.16–1.2 μg/m3 in rural air and around 0.01 μg/m3 in urban air, potentially exposing both the workers and the general population. However, no study on its penetration by inhalation and on its respiratory toxicity has been published. The objective of this study was to determine the physicochemical characteristics of folpet particles (morphology, granulometry, stability in its commercial forms under their typical application conditions. Moreover, the cytotoxic effect of these particles and the generation of reactive oxygen species were assessed in vitro on respiratory cells. Results Granulometry of two commercial forms of folpet (Folpan 80WG® and Myco 500® under their typical application conditions showed that the majority of the particles (>75% had a size under 5 μm, and therefore could be inhaled by humans. These particles were relatively stable over time: more than 75% of folpet remained in the particle suspension after 30 days under the typical application conditions. The inhibitory concentration (IC50 on human bronchial epithelial cells (16HBE14o- was found to be between 2.89 and 5.11 μg/cm2 for folpet commercial products after 24 h of exposure. Folpet degradation products and vehicles of Folpan 80 WG® did not show any cytotoxicity at tested concentrations. At non-cytotoxic and subtoxic concentrations, Folpan 80 WG® was found to increase DCFH-DA fluorescence. Conclusion These results show that the particles of commercial forms of folpet are relatively stable over time. Particles could be easily inhaled by humans, could reach the conducting airways and are

  20. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation.

    Directory of Open Access Journals (Sweden)

    Renee W Y Chan

    Full Text Available Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004 and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998, the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of alpha2-6-linked sialic acid receptors and human airway trypsin-like (HAT protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the

  1. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  2. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    Science.gov (United States)

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  3. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Stéphane G. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Banner, David [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Chi, Le Thi Bao [Department of Microbiology, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Carlo Urbani Centre, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Leon, Alberto J. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); Xu, Luoling; Ran, Longsi [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Huang, Stephen S.H. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Farooqui, Amber [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  4. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    International Nuclear Information System (INIS)

    Paquette, Stéphane G.; Banner, David; Chi, Le Thi Bao; Leon, Alberto J.; Xu, Luoling; Ran, Longsi; Huang, Stephen S.H.; Farooqui, Amber

    2014-01-01

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development

  5. Effect of diesel exhaust generated by a city bus engine on stress responses and innate immunity in primary bronchial epithelial cell cultures.

    Science.gov (United States)

    Zarcone, M C; Duistermaat, E; Alblas, M J; van Schadewijk, A; Ninaber, D K; Clarijs, V; Moerman, M M; Vaessen, D; Hiemstra, P S; Kooter, I M

    2018-04-01

    Harmful effects of diesel emissions can be investigated via exposures of human epithelial cells, but most of previous studies have largely focused on the use of diesel particles or emission sources that are poorly representative of engines used in current traffic. We studied the cellular response of primary bronchial epithelial cells (PBECs) at the air-liquid interface (ALI) to the exposure to whole diesel exhaust (DE) generated by a Euro V bus engine, followed by treatment with UV-inactivated non-typeable Haemophilus influenzae (NTHi) bacteria to mimic microbial exposure. The effect of prolonged exposures was investigated, as well as the difference in the responses of cells from COPD and control donors and the effect of emissions generated during a cold start. HMOX1 and NQO1 expression was transiently induced after DE exposure. DE inhibited the NTHi-induced expression of human beta-defensin-2 (DEFB4A) and of the chaperone HSPA5/BiP. In contrast, expression of the stress-induced PPP1R15A/GADD34 and the chemokine CXCL8 was increased in cells exposed to DE and NTHi. HMOX1 induction was significant in both COPD and controls, while inhibition of DEFB4A expression by DE was significant only in COPD cells. No significant differences were observed when comparing cellular responses to cold engine start and prewarmed engine emissions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Diesel exhaust alters the response of cultured primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD) to non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Zarcone, Maria C; van Schadewijk, Annemarie; Duistermaat, Evert; Hiemstra, Pieter S; Kooter, Ingeborg M

    2017-01-28

    Exacerbations constitute a major cause of morbidity and mortality in patients suffering from chronic obstructive pulmonary disease (COPD). Both bacterial infections, such as those with non-typeable Haemophilus influenzae (NTHi), and exposures to diesel engine emissions are known to contribute to exacerbations in COPD patients. However, the effect of diesel exhaust (DE) exposure on the epithelial response to microbial stimulation is incompletely understood, and possible differences in the response to DE of epithelial cells from COPD patients and controls have not been studied. Primary bronchial epithelial cells (PBEC) were obtained from age-matched COPD patients (n = 7) and controls (n = 5). PBEC were cultured at the air-liquid interface (ALI) to achieve mucociliary differentiation. ALI-PBECs were apically exposed for 1 h to a stream of freshly generated whole DE or air. Exposure was followed by 3 h incubation in presence or absence of UV-inactivated NTHi before analysis of epithelial gene expression. DE alone induced an increase in markers of oxidative stress (HMOX1, 50-100-fold) and of the integrated stress response (CHOP, 1.5-2-fold and GADD34, 1.5-fold) in cells from both COPD patients and controls. Exposure of COPD cultures to DE followed by NTHi caused an additive increase in GADD34 expression (up to 3-fold). Importantly, DE caused an inhibition of the NTHi-induced expression of the antimicrobial peptide S100A7, and of the chaperone protein HSP5A/BiP. Our findings show that DE exposure of differentiated primary airway epithelial cells causes activation of the gene expression of HMOX1 and markers of integrated stress response to a similar extent in cells from COPD donors and controls. Furthermore, DE further increased the NTHi-induced expression of GADD34, indicating a possible enhancement of the integrated stress response. DE reduced the NTHi-induced expression of S100A7. These data suggest that DE exposure may cause adverse health effects in part by

  7. The concentrations of clinafloxacin in alveolar macrophages, epithelial lining fluid, bronchial mucosa and serum after administration of single 200 mg oral doses to patients undergoing fibre-optic bronchoscopy.

    Science.gov (United States)

    Honeybourne, D; Andrews, J M; Cunningham, B; Jevons, G; Wise, R

    1999-01-01

    The concentrations of clinafloxacin were measured in serum, bronchial mucosa, alveolar macrophages and epithelial lining fluid after single 200 mg oral doses of clinafloxacin had been administered to 15 subjects who were undergoing bronchoscopy. Concentrations were measured using a microbiological assay method. Mean concentrations in serum, bronchial mucosa, alveolar macrophages and epithelial lining fluid at a mean of 1.27 h post-dose were 1.54, 2.65, 15.60 and 2.71 mg/L respectively. These site concentrations exceeded the MIC90 for common respiratory pathogens and indicate that clinafloxacin is likely to be effective in the treatment of a wide range of respiratory tract infections.

  8. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells.

    Science.gov (United States)

    Liu, Yi; Luo, Fei; Wang, Bairu; Li, Huiqiao; Xu, Yuan; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Lu, Lu; Qin, Yu; Xiang, Quanyong; Liu, Qizhan

    2016-01-01

    Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  10. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ying Shen

    2014-01-01

    Full Text Available Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  11. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen

    International Nuclear Information System (INIS)

    Collier, I.E.; Wilhelm, S.M.; Eisen, A.Z.

    1988-01-01

    H-ras transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of preference are: gelatin, type IV collagen, type V collagen, fibronectin, and type VII collagen; but the enzyme does not cleave the interstitial collagens or laminin. This protease is identical to gelatinase isolated from normal human skin explants, normal human skin fibroblasts, and SV40-transformed human lung fibroblasts. Based on this ability to initiate the degradation of type IV collagen in a pepsin-resistant portion of the molecule, it will be referred to as type IV collagenase. This enzyme is most likely the human analog of type IV collagenase detected in several rodent tumors. Type IV collagenase consists of three domains. Type IV collagenase represents the third member of a newly recognized gene family coding for secreted extracellular matrix metalloproteases, which includes interstitial fibroblast collagenase and stromelysin

  12. TPX2 in malignantly transformed human bronchial epithelial cells by anti-benzo[a]pyrene-7,8-diol-9,10-epoxide

    International Nuclear Information System (INIS)

    Zhang Lijuan; Huang He; Deng Luyao; Chu Ming; Xu Lan; Fu Juanling; Zhu Yunlan; Zhang Xiuchun; Liu Shulin; Zhou Zongcan; Wang Yuedan

    2008-01-01

    In order to elucidate the function of the targeting protein for Xenopus kinesin-like protein 2 (Xklp2) (TPX2) in the malignant transformation of human bronchial epithelial cells induced by anti-benzo[a]pyrene-trans-7, 8-dihydrodiol-9, 10-epoxide (anti-BPDE), TPX2 was characterized in cells at both the gene and the protein levels. TPX2 was present at higher levels in 16HBE-C cells than in 16HBE cells as demonstrated by two-dimensional gel electrophoresis, immunocytochemistry, Western blot analysis and RT-PCR. TPX2 was also detected in lung squamous-cell carcinoma tissues by immunohistochemistry, but not in normal lung tissues. Depression of TPX2 by RNA interference in 16HBE-C cells led to a decrease in cell proliferation, S-phase cell cycle arrest and cell apoptosis. Abnormal TPX2 tyrosine phosphorylation was detected in 16HBE-C cells, and this could be inhibited, to different degrees, by tyrosine kinase inhibitors. Inhibiting tyrosine phosphorylation in 16HBE-C cells by three selected tyrosine protein kinase inhibitors, tyrphostin 47, AG112 and AG555, caused G 0 /G 1 -phase cell cycle arrest. Our results suggest that anti-BPDE can cause the over-expression of TPX2 and its aberrant tyrosine phosphorylation. Misregulation of TPX2 affects the cell cycle state, proliferation rates and apoptosis

  13. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  14. Cerium dioxide (CeO2) nanoparticles decrease arsenite (As(III)) cytotoxicity to 16HBE14o- human bronchial epithelial cells.

    Science.gov (United States)

    Zeng, Chao; Nguyen, Chi; Boitano, Scott; Field, Jim A; Shadman, Farhang; Sierra-Alvarez, Reyes

    2018-07-01

    The production and application of engineered nanoparticles (NPs) are increasing in demand with the rapid development of nanotechnology. However, there are concerns that some of these novel materials could lead to emerging environmental and health problems. Some NPs are able to facilitate the transport of contaminants into cells/organisms via a "Trojan Horse" effect which enhances the toxicity of the adsorbed materials. In this work, we evaluated the toxicity of arsenite (As(III)) adsorbed onto cerium dioxide (CeO 2 ) NPs to human bronchial epithelial cells (16HBE14o-) using the xCELLigence real time cell analyzing system (RTCA). Application of 0.5 mg/L As(III) resulted in 81.3% reduction of cell index (CI, an RTCA measure of cell toxicity) over 48 h when compared to control cells exposed to medium lacking As(III). However, when the cells were exposed to 0.5 mg/L As(III) in the presence of CeO 2 NPs (250 mg/L), the CI was only reduced by 12.9% compared to the control. The CeO 2 NPs had a high capacity for As(III) adsorption (20.2 mg/g CeO 2 ) in the bioassay medium, effectively reducing dissolved As(III) in the aqueous solution and resulting in reduced toxicity. Transmission electron microscopy was used to study the transport of CeO 2 NPs into 16HBE14o- cells. NP uptake via engulfment was observed and the internalized NPs accumulated in vesicles. The results demonstrate that dissolved As(III) in the aqueous solution was the decisive factor controlling As(III) toxicity of 16HBE14o- cells, and that CeO 2 NPs effectively reduced available As(III) through adsorption. These data emphasize the evaluation of mixtures when assaying toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  16. A single low dose of Fe ions can cause long-term biological responses in NL20 human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qianlin; Wang, Jingdong; Cao, Jianping; Yang, Hongying [Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou, Jiangsu (China); Liu, Wei [Soochow University, Department of Radiotherapy and Oncology, Second Affiliated Hospital, Suzhou, Jiangsu (China)

    2018-03-15

    Space radiation cancer risk may be a potential obstacle for long-duration spaceflight. Among all types of cancer space radiation may induce, lung cancer has been estimated to be the largest potential risk. Although previous animal study has shown that Fe ions, the most important contributor to the total dose equivalent of space radiation, induced a higher incidence of lung tumorigenesis per dose than X-rays, the underlying mechanisms at cellular level remained unclear. Therefore, in the present study, we investigated long-term biological changes in NL20 human bronchial epithelial cells after exposure to Fe ion or X-ray irradiation. We found that compared with sham control, the progeny of NL20 cells irradiated with 0.1 Gy of Fe ions showed slightly increased micronucleus formation, significantly decreased cell proliferation, disturbed cell cycle distribution, and obviously elevated intracellular ROS levels accompanied by reduced SOD1 and SOD2 expression, but the progeny of NL20 cells irradiated with 0.9 Gy of X-rays did not show any significant changes. More importantly, Fe ion exposure caused much greater soft-agar colony formation than X-rays did in the progeny of irradiated NL20 cells, clearly suggesting higher cell transformation potential of Fe ions compared with X-rays. These data may shed the light on the potential lung tumorigenesis risk from Fe ion exposure. In addition, ATM inhibition by Ku55933 reversed some of the changes in the progeny of Fe ion-irradiated cells but not others such as soft-agar colony formation, suggesting complex processes from DNA damage to carcinogenesis. These data indicate that even a single low dose of Fe ions can induce long-term biological responses such as cell transformation, etc., suggesting unignorable health risk from space radiation to astronauts. (orig.)

  17. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

    Science.gov (United States)

    Lipsa, Dorelia; Leva, Paolo; Barrero-Moreno, Josefa; Coelhan, Mehmet

    2016-11-16

    Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC 50 =1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC 50 =3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC 50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  19. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor

    Directory of Open Access Journals (Sweden)

    Baeza-Squiban Armelle

    2010-07-01

    Full Text Available Abstract Background Nowadays, effects of fine particulate matter (PM2.5 are well-documented and related to oxidative stress and pro-inflammatory response. Nevertheless, epidemiological studies show that PM2.5 exposure is correlated with an increase of pulmonary cancers and the remodeling of the airway epithelium involving the regulation of cell death processes. Here, we investigated the components of Parisian PM2.5 involved in either the induction or the inhibition of cell death quantified by different parameters of apoptosis and delineated the mechanism underlying this effect. Results In this study, we showed that low levels of Parisian PM2.5 are not cytotoxic for three different cell lines and primary cultures of human bronchial epithelial cells. Conversely, a 4 hour-pretreatment with PM2.5 prevent mitochondria-driven apoptosis triggered by broad spectrum inducers (A23187, staurosporine and oligomycin by reducing the mitochondrial transmembrane potential loss, the subsequent ROS production, phosphatidylserine externalization, plasma membrane permeabilization and typical morphological outcomes (cell size decrease, massive chromatin and nuclear condensation, formation of apoptotic bodies. The use of recombinant EGF and specific inhibitor led us to rule out the involvement of the classical EGFR signaling pathway as well as the proinflammatory cytokines secretion. Experiments performed with different compounds of PM2.5 suggest that endotoxins as well as carbon black do not participate to the antiapoptotic effect of PM2.5. Instead, the water-soluble fraction, washed particles and organic compounds such as polycyclic aromatic hydrocarbons (PAH could mimic this antiapoptotic activity. Finally, the activation or silencing of the aryl hydrocarbon receptor (AhR showed that it is involved into the molecular mechanism of the antiapoptotic effect of PM2.5 at the mitochondrial checkpoint of apoptosis. Conclusions The PM2.5-antiapoptotic effect in addition

  20. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Mullins, D'Anna N; Crawford, Erin L; Khuder, Sadik A; Hernandez, Dawn-Alita; Yoon, Youngsook; Willey, James C

    2005-01-01

    Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC. The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals. CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals. We conclude that CEBPG is the transcription factor primarily responsible for regulating

  1. Concentrations of garenoxacin in plasma, bronchial mucosa, alveolar macrophages and epithelial lining fluid following a single oral 600 mg dose in healthy adult subjects.

    Science.gov (United States)

    Andrews, J; Honeybourne, D; Jevons, G; Boyce, M; Wise, R; Bello, A; Gajjar, D

    2003-03-01

    A microbiological assay was used to measure concentrations of garenoxacin (BMS-284756) in plasma, bronchial mucosa (BM), alveolar macrophages (AM) and epithelial lining fluid (ELF), following a single 600 mg oral dose. Twenty-four healthy subjects were allocated into four nominal time intervals after the dose, 2.5-3.5, 4.5-5.5, 10.5-11.5 and 23.5-24.5 h. Mean concentrations in plasma, BM, AM and ELF, respectively, for the four nominal time windows were for 2.5-3.5 h 10.0 mg/L (S.D. 2.8), 7.0 mg/kg (S.D. 1.3), 106.1 mg/L (S.D. 60.3) and 9.2 mg/L (S.D. 3.6); 4.5-5.5 h 8.7 mg/L (S.D. 2.2), 6.0 mg/kg (S.D. 1.9), 158.6 mg/L (S.D. 137.4) and 14.3 mg/L (S.D. 8.2); 10.5-11.5 h 6.1 mg/L (S.D. 1.9), 4.0 mg/kg (S.D. 1.4), 76.0 mg/L (S.D. 47.7) and 7.9 mg/L (S.D. 4.6); and 23.5-24.5 h 2.1 mg/L (S.D. 0.5), 1.7 mg/kg (S.D. 0.7), 30.7 mg/L (S.D. 12.9) and 3.3 mg/L (S.D. 2.3). Concentrations at all sites exceeded MIC(90)s for the common respiratory pathogens Haemophilus influenzae (0.03 mg/L), Moraxella catarrhalis (0.015 mg/L) and Streptococcus pneumoniae (0.06 mg/L). These data suggest that garenoxacin should be effective in the treatment of community-acquired pneumonia and chronic obstructive pulmonary disease.

  2. Antioxidant ability and radiosensitivity in malignant transformed human bronchial epithelial cell line BEP2D induced by α-particle irradiation

    International Nuclear Information System (INIS)

    Gou Qiao; Zhang Wei; Wang Chunyan; Su Xu

    2011-01-01

    Objective: To investigate the antioxidant ability and radiosensitivity in the malignant transformed human bronchial epithelial cell line BEP2D induced by α-particle exposure. Methods: Glutathione Peroxidase (GPX), Catalase (CAT) and Glutathione (GSH) assay kits were employed to detect GPX and CAT enzyme abilities and the levels of GSH in BEP2D, RH21 (passage 21 of α-particle-irradiated BEP2D cells), and BERP35T-1 cells (derived from nude mice bearing malignant transformed cells generated from cells of passage 35 of α-particle-irradiated BEP2D cells). MTT assay were used to test the growth rate of BEP2D, RH21 and BERP35T-1 cells treated with 0, 30, 60, 90, 120, and 150 μmoL/L H 2 O 2 . Colony-forming test and MTT assay were used to examine the cell survival fraction and the growth rate of BEP2D, RH21 and BERP35T-1 cells exposed to 0, 2, 4, and 8 Gy of γ-rays,respectively. Results: GPX and CAT enzyme activities in RH21 and BERP35T-1 cells were obviously lower than in BEP2D (t=5.75-67.92, P<0.05). CAT enzyme activity in BERP35T-1 was lower than that in RH21 cells (t=22.25, P<0.01). Compared to BEP2D cells, decreased level of GSH was detected in BERP35T-1 cells (t=7.76, P<0.05), but there was no change in RH21. After treatment with 30, 60, 90, 120, and 150 μmol/L H 2 O 2 , the growth rates of BEP2D were all higher than those of BERP35T-1 cells (t=10.37-58.36, P<0.01). Meanwhile,the growth rates of BEP2D were all higher than those of RH21 cells after treatment with 60, 90, 120, and 150 μ mol/L H 2 O 2 (t =29.90-84.68, P<0.01). In addition,compared to BEP2D cells,decreased cell survival fraction and growth rate of BERP35T-1 cells were observed after irradiation with 2, 4, and 8 Gy of y-rays (t=5.87-34.17, P<0.05). The cell survival fraction and growth rate of RH21 were all lower than those of BEP2D cells at 4 and 8 Gy post-irradiation (t=6.33- 45.00, P<0.05). Conclusion: The function of antioxidant system decreased in the α-particle-induced transformed cells

  3. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2012-02-01

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from DeltaF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, alpha(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  4. Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2011-03-04

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  5. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation.

    Science.gov (United States)

    Zhou, C; Huang, C; Wang, J; Huang, H; Li, J; Xie, Q; Liu, Y; Zhu, J; Li, Y; Zhang, D; Zhu, Q; Huang, C

    2017-07-06

    Long noncoding RNAs (lncRNAs) are emerging as key factors in various fundamental cellular biological processes, and many of them are likely to have functional roles in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA, and the decreased MEG3 expression has been reported in multiple cancer tissues. However, nothing is known about the alteration and role of MEG3 in environmental carcinogen-induced lung tumorigenesis. Our present study, for the first time to the best of our knowledge, discovered that environmental carcinogen nickel exposure led to MEG3 downregulation, consequently initiating c-Jun-mediated PHLPP1 transcriptional inhibition and hypoxia-inducible factor-1α (HIF-1α) protein translation upregulation, in turn resulting in malignant transformation of human bronchial epithelial cells. Mechanistically, MEG3 downregulation was attributed to nickel-induced promoter hypermethylation via elevating DNMT3b expression, whereas PHLPP1 transcriptional inhibition was due to the decreasing interaction of MEG3 with its inhibitory transcription factor c-Jun. Moreover, HIF-1α protein translation was upregulated via activating the Akt/p70S6K/S6 axis resultant from PHLPP1 inhibition in nickel responses. Collectively, we uncover that nickel exposure results in DNMT3b induction and MEG3 promoter hypermethylation and expression inhibition, further reduces its binding to c-Jun and in turn increasing c-Jun inhibition of PHLPP1 transcription, leading to the Akt/p70S6K/S6 axis activation, and HIF-1α protein translation, as well as malignant transformation of human bronchial epithelial cells. Our studies provide a significant insight into understanding the alteration and role of MEG3 in nickel-induced lung tumorigenesis.

  6. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Chen, Chien-Ho; Wang, Y.-J.; Pestell, Richard G.; Albanese, Chris; Chen, R.-J.; Chang, M.-C.; Jeng, J.-H.; Lin, S.-Y.; Liang, Y.-C.; Tseng, H.; Lee, W.-S.; Lin, J.-K.; Chu, J.-S.; Chen, L.-C.; Lee, C.-H.; Tso, W.-L.; Lai, Y.-C.; Wu, C.-H.

    2005-01-01

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser 795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  7. Cadmium, cobalt and lead cause stress response, cell cycle deregulation and increased steroid as well as xenobiotic metabolism in primary normal human bronchial epithelial cells which is coordinated by at least nine transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Glahn, Felix; Wiese, Jan; Foth, Heidi [Martin-Luther-University, Halle-Wittenberg, Institute of Environmental Toxicology, Halle/Saale (Germany); Schmidt-Heck, Wolfgang; Guthke, Reinhard [Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena (Germany); Zellmer, Sebastian; Gebhardt, Rolf [University of Leipzig, Institute of Biochemistry, Medical Faculty, Leipzig (Germany); Golka, Klaus; Degen, Gisela H.; Hermes, Matthias; Schormann, Wiebke; Brulport, Marc; Bauer, Alexander; Bedawy, Essam [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany); Hergenroeder, Roland [ISAS, Institute for Analytical Sciences, Dortmund (Germany); Lehmann, Thomas [Translational Centre for Regenerative Medicine, Leipzig (Germany); Hengstler, Jan G. [IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund (Germany)

    2008-08-15

    Workers occupationally exposed to cadmium, cobalt and lead have been reported to have increased levels of DNA damage. To analyze whether in vivo relevant concentrations of heavy metals cause systematic alterations in RNA expression patterns, we performed a gene array study using primary normal human bronchial epithelial cells. Cells were incubated with 15{mu}g/l Cd(II), 25{mu}g/l Co(II) and 550{mu}g/l Pb(II) either with individual substances or in combination. Differentially expressed genes were filtered out and used to identify enriched GO categories as well as KEGG pathways and to identify transcription factors whose binding sites are enriched in a given set of promoters. Interestingly, combined exposure to Cd(II), Co(II) and Pb(II) caused a coordinated response of at least seven stress response-related transcription factors, namely Oct-1, HIC1, TGIF, CREB, ATF4, SRF and YY1. A stress response was further corroborated by up regulation of genes involved in glutathione metabolism. A second major response to heavy metal exposure was deregulation of the cell cycle as evidenced by down regulation of the transcription factors ELK-1 and the Ets transcription factor GABP, as well as deregulation of genes involved in purine and pyrimidine metabolism. A third and surprising response was up regulation of genes involved in steroid metabolism, whereby promoter analysis identified up regulation of SRY that is known to play a role in sex determination. A forth response was up regulation of xenobiotic metabolising enzymes, particularly of dihydrodiol dehydrogenases 1 and 2 (AKR1C1, AKR1C2). Incubations with individual heavy metals showed that the response of AKR1C1 and AKR1C2 was predominantly caused by lead. In conclusion, we have shown that in vivo relevant concentrations of Cd(II), Co(II) and Pb(II) cause a complex and coordinated response in normal human bronchial epithelial cells. This study gives an overview of the most responsive genes. (orig.)

  8. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  9. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-01-01

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  10. Utility of bronchial lavage fluids for epithelial growth factor receptor mutation assay in lung cancer patients: Comparison between cell pellets, cell blocks and matching tissue specimens

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Nakata, Rie; Negishi, Tatsuya; Yamamoto, Hiroshi; Shiina, Takayuki; Shigeto, Shohei; Matsuda, Kazuyuki; Kobayashi, Yukihiro; Honda, Takayuki

    2018-01-01

    The detection of epidermal growth factor receptor (EGFR) mutations is necessary for the selection of suitable patients with non-small cell lung cancer (NSCLC) for treatment with EGFR tyrosine kinase inhibitors. Cytology specimens are known to be suitable for EGFR mutation detection, although tissue specimens should be prioritized; however, there are limited studies that examine the utility of bronchial lavage fluid (BLF) in mutation detection. The purpose of the present study was to investigate the utility of BLF specimens for the detection of EGFR mutations using a conventional quantitative EGFR polymerase chain reaction (PCR) assay. Initially, quantification cycle (Cq) values of cell pellets, cell-free supernatants and cell blocks obtained from three series of 1% EGFR mutation-positive lung cancer cell line samples were compared for mutation detection. In addition, PCR analysis of BLF specimens obtained from 77 consecutive NSCLC patients, detecting EGFR mutations was validated, and these results were compared with those for the corresponding formalin-fixed paraffin-embedded (FFPE) tissue specimens obtained by surgical resection or biopsy of 49 of these patients. The Cq values for mutation detection were significantly lower in the cell pellet group (average, 29.58) compared with the other groups, followed by those in cell-free supernatants (average, 34.15) and in cell blocks (average, 37.12) for all three series (P<0.05). Mutational status was successfully analyzed in 77 BLF specimens, and the results obtained were concordant with those of the 49 matching FFPE tissue specimens. Notably, EGFR mutations were even detected in 10 cytological specimens that contained insufficient tumor cells. EGFR mutation testing with BLF specimens is therefore a useful and reliable method, particularly when sufficient cancer cells are not obtained. PMID:29399190

  11. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism.

    Science.gov (United States)

    Li, MinChao; Li, Qi; Yang, Gang; Kolosov, Victor P; Perelman, Juliy M; Zhou, Xiang Dong

    2011-09-01

    Cold air stimulus is a major environmental factor that exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8). To date, TRPM8 expression has not been characterized in the airway epithelium of patients with COPD. The role of TRPM8 channels in a series of airway responses induced by cold stimuli and the molecular and biochemical pathways of TRPM8 in regulating cold-induced responses are largely unknown. We sought to explore the role of TRPM8 in cold air-provoked mucus hypersecretion and the potential signaling pathway involved in this process. The expression of TRPM8 in the bronchial epithelium was examined by means of immunohistochemistry, RT-PCR, and Western blotting. TRPM8 receptor function and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) were characterized by means of Ca(2+) imaging and spatiotemporal dynamics of phospholipase C (PLC) δ1-pleckstrin homology-green fluorescent protein, respectively. The expression of MUC5AC mRNA and MUC5AC mucin protein was measured by using real-time PCR and ELISA, respectively. Four serine residues in the myristoylated alanine-rich C kinase substrate (MARCKS)-phosphorylation site domain were mutated to identify the function of MARCKS in TRPM8-mediated airway mucus hypersecretion. TRPM8 protein and mRNA expression were significantly increased in patients with COPD compared with expression seen in healthy subjects. Cold produced robust increases in intracellular Ca(2+) levels and promoted translocation of PLCδ1-pleckstrin homology-green fluorescent protein. Cold increased expression of MUC5AC mRNA and intracellular and secreted MUC5AC protein in a nonsustained way. Phosphorylation site domain-mutant MARCKS cDNA hindered MUC5AC secretion induced by cold. These results indicate that the TRPM8 receptor is involved in cold-induced mucus hypersecretion through the Ca(2

  12. Wnt5a Is Associated with Cigarette Smoke-Related Lung Carcinogenesis via Protein Kinase C

    OpenAIRE

    Whang, Young Mi; Jo, Ukhyun; Sung, Jae Sook; Ju, Hyun Jung; Kim, Hyun Kyung; Park, Kyong Hwa; Lee, Jong Won; Koh, In Song; Kim, Yeul Hong

    2013-01-01

    Wnt5a is overexpressed during the progression of human non-small cell lung cancer. However, the roles of Wnt5a during smoking-related lung carcinogenesis have not been clearly elucidated. We investigated the associations between Wnt5a and the early development of cigarette smoke related lung cancer using human bronchial epithelial (HBE) cells (NHBE, BEAS-2B, 1799, 1198 and 1170I) at different malignant stages established by exposure to cigarette smoke condensate (CSC). Abnormal up-regulation ...

  13. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Xu, Yuan; Li, Yuan; Li, Huiqiao; Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2013-01-01

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  14. Physico-chemical characterization of African urban aerosols (Abidjan in Cote d'Ivoire and Cotonou in Benin) and their toxic effects in human bronchial epithelial cells during the dry season 2016.

    Science.gov (United States)

    Adon, Jacques; Liousse, Cathy; Yoboue, Veronique; Baeza, Armelle; Akpo, Aristide; Bahino, Julien; Chiron, Christelle; Galy-Lacaux, Corinne; Keita, Sékou

    2017-04-01

    This study is a contribution to the WP2-DACCIWA program with the aim to characterize particulate pollution on domestic fire site, traffic sites and waste burning site of two West-African capitals (Abidjan, Cote d'Ivoire and Cotonou, Benin) and to study aerosol biological impacts on lung inflammation. Such an impact is still largely unknown, especially for the particles emitted by intense African traffic sources and domestic fires. In this context, fundamental research of this study is centered on the following key scientific question: what is the link between aerosol size differentiated composition and inflammation markers for the main combustion sources prevailing in South West Africa during dry and wet seasons? To tackle this question, intensive campaigns in Abidjan and Cotonou have been conducted in July 2015, January and July 2016, and January 2017. In this paper, we will present our first results for the campaign of January 2016. In terms of aerosol size differentiated composition, main aerosol components (mass, black carbon, organic carbon, water soluble particles ...) were measured. We may notice that PM measured for all the sites is generally higher than WHO norms. Organic carbon and dust particles are the two more important contributors for the ultra-fine and fine particle sizes with more organic carbon in Abidjan and dust particles in Cotonou respectively. In terms of in vitro biological studies on sampled aerosols on these sites, size-fractionated PM from the different sampling sites were compared for their ability to induce a proinflammatory response characterized by the release of the cytokine IL-6 by human bronchial epithelial cells. PM from waste burning site did not induce significant IL-6 release whatever the size fraction whereas PM from domestic fire were the most reactive especially the ultra-fine fraction. Ultra-fine particles from traffic (Abidjan and Cotonou) always induced a dose-dependent IL-6 release. A tentative cross-analysis between

  15. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines

    Science.gov (United States)

    2011-01-01

    Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients. PMID:21496221

  16. Concentrations in plasma, epithelial lining fluid, alveolar macrophages and bronchial mucosa after a single intravenous dose of 1.6 mg/kg of iclaprim (AR-100) in healthy men.

    Science.gov (United States)

    Andrews, J; Honeybourne, D; Ashby, J; Jevons, G; Fraise, A; Fry, P; Warrington, S; Hawser, S; Wise, R

    2007-09-01

    A validated microbiological assay was used to measure concentrations of iclaprim (AR-100) in plasma, bronchial mucosa (BM), alveolar macrophages (AM) and epithelial lining fluid (ELF) after a single 1.6 mg/kg intravenous 60 min iv infusion of iclaprim. Male volunteers were randomly allocated to three nominal sampling time intervals 1-2 h (Group A), 3-4 h (Group B) and 5.5-7.0 h (Group C) after the start of the drug infusion. Mean iclaprim concentrations in plasma, BM, AM and ELF, respectively, were for Group A 0.59 mg/L (SD 0.18), 0.51 mg/kg (SD 0.17), 24.51 mg/L (SD 21.22) and 12.61 mg/L (SD 7.33); Group B 0.24 mg/L (SD 0.05), 0.35 mg/kg (SD 0.17), 7.16 mg/L (SD 1.91) and 6.38 mg/L (SD 5.17); and Group C 0.14 mg/L (SD 0.05), no detectable level in BM, 5.28 mg/L (SD 2.30) and 2.66 mg/L (SD 2.08). Iclaprim concentrations in ELF and AM exceeded the MIC(90) for penicillin-susceptible Streptococcus pneumoniae (MIC90 0.06 mg/L), penicillin-intermediate S. pneumoniae (MIC90 2 mg/L), penicillin-resistant S. pneumoniae (MIC90 4 mg/L) for 7, 7 and 4 h, respectively, and Chlamydia pneumoniae (MIC90 0.5 mg/L) for 7 h. Mean iclaprim concentrations in ELF exceeded the MIC90 for Haemophilus influenzae (MIC90 4 mg/L) and Moraxella catarrhalis (MIC90 8 mg/L) for up to 4 and 2 h, respectively; in AM the MIC90 was exceeded for up to 7 h. Furthermore, the MIC90 for methicillin-resistant Staphylococcus aureus of 0.12 mg/L was exceeded at all sites for up to 7 h. These data suggest that iclaprim reaches lung concentrations that should be effective in the treatment of community-acquired pneumonia.

  17. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    Science.gov (United States)

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  18. Graphene-induced apoptosis in lung epithelial cells through EGFR

    Science.gov (United States)

    Tsai, Shih-Ming; Bangalore, Preeti; Chen, Eric Y.; Lu, David; Chiu, Meng-Hsuen; Suh, Andrew; Gehring, Matthew; Cangco, John P.; Garcia, Santiago G.; Chin, Wei-Chun

    2017-07-01

    Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

  19. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yixin [Department of Epidemiology, Shanghai Jiaotong University School of Public Health (China); Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Chen, Tingting [School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Steven S. [Biochemistry and Molecular Pharmaceutical, New York University School of Medicine (United States); Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Lioy, Paul [Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kluz, Thomas; Chen, Lung-Chi [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Wu, Zhuangchun, E-mail: wuzhuangchun@mail.njust.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Costa, Max, E-mail: max.costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States)

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC{sub 50} values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  20. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    International Nuclear Information System (INIS)

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC 50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  1. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  2. Typhoid fever as a triggering factor in acute and intractable bronchial asthma attack.

    Science.gov (United States)

    Wardhana; Surachmanto, Eko E; Datau, E A

    2013-10-01

    Typhoid fever is an enteric infection caused by Salmonella typhi. In Indonesia, typhoid fever is endemic with high incidence of the disease. In daily practice we frequently have patients with bronchial asthma, and it is becoming worse when these patients get typhoid fever. After oral ingestion, Salmonella typhi invades the the intestine mucosa after conducted by microbial binding to epithelial cells, destroying the microfold cells (M cell) then passed through the lamina propria and detected by dendritic cells (DC) which express a variety of pathogen recognition receptors on the surfaces, including Toll-Like Receptor (TLR). expressed on macrophages and on intestinal epithelial cells inducing degradation of IB, and translocation of NF-B (Nuclear Factor-Kappa Beta). This process initiates the induction of pro-inflammatory gene expression profile adhesion molecules, chemokines, adhesion molecules, and other proteins that induce and perpetuate the inflammation in host cells then will induce acute ant intractable attack of bronchial asthma. The role of typhoid fever in bronchial asthma, especially in persons with acute attack of bronchial asthma, is not well understood. In this article, we will discuss the role of typhoid fever in the bronchial asthma patients which may cause bronchial asthma significantly become more severe even triggering the acute and intractable attack of bronchial asthma. This fact makes an important point, to treat completely the typhoid fever in patients with bronchial asthma.

  3. BRONCHIAL ASTHMA SUPERVISION AMONG TEENAGERS

    Directory of Open Access Journals (Sweden)

    N.M. Nenasheva

    2008-01-01

    Full Text Available The article highlights the results of the act test based bronchial asthma supervision evaluation among teenagers and defines the interrelation of the objective and subjective asthma supervision parameters. The researchers examined 214 male teenagers aged from 16 to 18, suffering from the bronchial asthma, who were sent to the allergy department to verify the diagnosis. Bronchial asthma supervision evaluation was assisted by the act test. The research has showed that over a half (56% of teenagers, suffering from mild bronchial asthma, mention its un control course, do not receive any adequate pharmacotherapy and are consequently a risk group in terms of the bronchial asthma exacerbation. Act test results correlate with the functional indices (fev1, as well as with the degree of the bronchial hyperresponsiveness, which is one of the markers of an allergic inflammation in the lower respiratory passages.Key words: bronchial asthma supervision, act test, teenagers.

  4. Bronchial Thermoplasty in Asthma

    Directory of Open Access Journals (Sweden)

    Wayne Mitzner

    2006-01-01

    Full Text Available In this review we discuss the potential of a new procedure, termed Bronchial Thermoplasty to prevent serious consequences resulting from excessive airway narrowing. The most important factor in minimizing an asthmatic attack is limiting the degree of smooth muscle shortening. The premise that airway smooth muscle can be either inactivated or obliterated without any long-term alteration of other lung tissues, and that airway function will remain normal, albeit with reduced bronchoconstriction, has now been demonstrated in dogs, a subset of normal subjects, and mild asthmatics. Bronchial Thermoplasty may thus develop into a useful clinical procedure to effectively impair the ability for airway smooth muscle to reach the levels of pathologic narrowing that characterizes an asthma attack. It may also enable more successful treatment of asthma patients who are unresponsive to more conventional therapies. Whether this will remain stable for the lifetime of the patient still remains to be determined, but at the present time, there are no indications that the smooth muscle contractility will return. This successful preliminary experience showing that Bronchial Thermoplasty could be safely performed in patients with asthma has led to an ongoing clinical trial at a number of sites in Europe and North America designed to examine the effectiveness of this procedure in subjects with moderately severe asthma.

  5. Updating radon daughter bronchial dosimetry

    International Nuclear Information System (INIS)

    Harley, N.H.; Cohen, B.S.

    1990-01-01

    It is of value to update radon daughter bronchial dosimetry as new information becomes available. Measurements have now been performed using hollow casts of the human bronchial tree with a larynx to determine convective or turbulent deposition in the upper airways. These measurements allow a more realistic calculation of bronchial deposition by diffusion. Particle diameters of 0.15 and 0.2 μm were used which correspond to the activity median diameters for radon daughters in both environmental and mining atmospheres. The total model incorporates Yeh/Schum bronchial morphometry, deposition of unattached and attached radon daughters, build up and decay of the daughters and mucociliary clearance. The alpha dose to target cells in the bronchial epithelium is calculated for the updated model and compared with previous calculations of bronchial dose

  6. Impact of Persistent Intracellular Infections on the Processes of Airway Remodeling in Children with Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    O.Ye. Chernyshova

    2015-03-01

    Full Text Available The article presents information about the impact of persistent intracellular infections on the processes of airway remodeling in bronchial asthma in children. The influence of matrix metalloproteinases, tissue inhibitor of matrix metalloproteinase, transforming growth factor, antibodies to type III collagen, endothelin-1 on the processes of morphological reconstruction of the airway by way of smooth muscle hypertrophy, enhanced neovascularization, epithelial cell hyperplasia, collagen deposition, thickening of the basal membrane, observed in bronchial asthma in children, were described.

  7. Proteomic Responses of BEAS-2B Cells to Nontoxic and Toxic Chromium: Protein Indicators of Cytotoxicity Conversion

    Science.gov (United States)

    Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces...

  8. Proteome Profiling of BEAS-2B Cells Treated with Titanium Dioxide Reveals Potential Toxicity of and Detoxification Pathways for Nanomaterial

    Science.gov (United States)

    Oxidative stress is known to play important roles in nanomaterial-induced toxicities. However, the proteins and signaling pathways associated with nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify oxidative stress-responding toxicity pathways an...

  9. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    Science.gov (United States)

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  10. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  11. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    International Nuclear Information System (INIS)

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As 2 O 3

  12. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  13. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    International Nuclear Information System (INIS)

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin

    2007-01-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17β-estradiol (E 2 ) resulted from an interaction between TCDD and E 2 could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE 2 ), especially 4-MeOE 2 , accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E 2 . In the present study, we demonstrate unique accumulation of 4-MeOE 2 , as a result of TCDD/E 2 interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE 2 -treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE 2 -treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE 2 were unaffected by NAC. We concluded that 4-MeOE 2 accumulation resulting from TCDD and E 2 interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD

  14. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation.

    Science.gov (United States)

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K; Shao, Chunlin

    2015-07-10

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Matsuda, Yoshikazu; Usui, Yuki; Haniu, Hisao

    2013-01-01

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition

  16. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@kanazawa-med.ac.jp [Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan); Usui, Yuki [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2013-10-18

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.

  17. Reflexology and bronchial asthma

    DEFF Research Database (Denmark)

    Brygge, T; Heinig, J H; Collins, P

    2001-01-01

    Many asthma patients seek alternative or adjunctive therapies. One such modality is reflexology, whereby finger pressure is applied to certain parts of the body. The aim of the study was to examine the popular claim that reflexology treatment benefits bronchial asthma. Ten weeks of active...... or simulated (placebo) reflexology given by an experienced reflexologist, were compared in an otherwise blind, controlled trial of 20+20 outpatients with asthma. Objective lung function tests (peak flow morning and evening, and weekly spirometry at the clinic) did not change. Subjective scores (describing...... diaries was carried out. It was accompanied by a significant pattern compatible with subconscious unblinding, in that patients tended to guess which treatment they had been receiving. No evidence was found that reflexology has a specific effect on asthma beyond placebo influence....

  18. [Anesthesia in bronchial asthma].

    Science.gov (United States)

    Bremerich, D H

    2000-09-01

    Asthma is defined as a chronic inflammatory airway disease in response to a wide variety of provoking stimuli. Characteristic clinical symptoms of asthma are bronchial hyperreactivity, reversible airway obstruction, wheezing and dyspnea. Asthma presents a major public health problem with increasing prevalence rates and severity worldwide. Despite major advances in our understanding of the clinical management of asthmatic patients, it remains a challenging population for anesthesiologists in clinical practice. The anesthesiologist's responsibility starts with the preoperative assessment and evaluation of the pulmonary function. For patients with asthma who currently have no symptoms, the risk of perioperative respiratory complications is extremely low. Therefore, pulmonary function should be optimized preoperatively and airway obstruction should be controlled by using steroids and bronchodilators. Preoperative spirometry is a simple means of assessing presence and severity of airway obstruction as well as the degree of reversibility in response to bronchodilator therapy. An increase of 15% in FEV1 is considered clinically significant. Most asymptomatic persons with asthma can safely undergo general anesthesia with and without endotracheal intubation. Volatile anesthetics are still recommended for general anesthetic techniques. As compared to barbiturates and even ketamine, propofol is considered to be the agent of choice for induction of anesthesia in asthmatics. The use of regional anesthesia does not reduce perioperative respiratory complications in asymptomatic asthmatics, whereas it is advantageous in symptomatic patients. Pregnant asthmatic and parturients undergoing anesthesia are at increased risk, especially if regional anesthetic techniques are not suitable and prostaglandin and its derivates are administered for abortion or operative delivery. Bronchial hyperreactivity associated with asthma is an important risk factor of perioperative bronchospasm. The

  19. Bilateral renal dysplasia, nephroblastomatosis, and bronchial stenosis. A new syndrome?

    Science.gov (United States)

    Rodriguez, Maria Matilde; Correa-Medina, Mayrin; Whittington, Elizabeth E

    2015-06-01

    Bilateral nephroblastomatosis (NB) is an uncommon renal anomaly characterized by multiple confluent nephrogenic rests scattered through both kidneys, with only a limited number of cases reported in the medical literature. Some of these children may have associated either Perlman or Beckwith-Wiedemann syndrome and others do not demonstrate syndromic features. We report a full-term boy with anteverted nose, bilateral bronchial stenosis due to lack of cartilage, bilateral obstructive renal dysplasia and NB with glomeruloid features. The infant had visceromegaly, but neither gigantism nor hemihypertrophy. Immunohistochemistry for PAX2 (Paired box gene-2) and WT-1 (Wilms Tumor 1) were strongly positive in the areas of NB. GLEPP-1 (Glomerular Epithelial Protein) did not stain the areas of NB with a glomeruloid appearance, but was positive in the renal glomeruli as expected. We found neither associated bronchial stenosis nor the histology of NB resembling giant glomeruli in any of the reported cases of NB.

  20. Bronchial dosimeter for radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, T.K.; Yu, K.N.; Nikezic, D.; Haque, A.K.M.M. [City University of Hong Kong, Hong Kong (China); Vucic, D. [Faculty of Technology, University of Nis, Lescovac (Yugoslavia)

    2000-05-01

    Traditionally, assessments of the bronchial dose from radon progeny were carried out by measuring the unattached fraction (f{sub p}) of potential alpha energy concentration (PAEC), the total PAEC, activity median diameters (AMDs) and equilibrium factor, and then using dosimetric lung models. A breakthrough was proposed by Hopke et al. (1990) to use multiple metal wire screens to mimic the deposition properties of radon progeny in the nasal (N) and tracheobronchial (T-B) regions directly. In particular, they were successful in using four layers of 400-mesh wire screens with a face velocity of 12 cm s{sup -1} for the simulation of radon progeny deposition in the T-B region. Oberstedt and Vanmarcke (1995) carried out precise calibrations for the system, and named the system as the 'bronchial dosimeter'. Based on these, Yu and Guan (1998) proposed a portable bronchial dosimeter similar to a normal measurement system for radon progeny or PAEC and consisted of only a single sampler and employed only one 400-mesh wire screen and one filter. However, all these 'bronchial dosimeters' in fact only determined the fraction of potential alpha energy from radon progeny deposited in the T-B region, which required certain assumptions and calculations to further give the final bronchial dose. In the present work, a true 'bronchial dosimeter' was designed, which consisted of three 400-mesh wire screens and a filter. With a face velocity of 11 cm s{sup -1}, the deposition pattern on the wire screens was found to satisfactorily match the variation of the dose conversion factor (in the unit of mSv/WLM) with the size of radon progeny from 1 to 1000 nm. In this way, this bronchial dosimeter directly gave the bronchial dose from the alpha counts recorded on the wire-screens and the filter paper. With the development of this bronchial dosimeter, the present practice of 'dose estimation' from large-scale radon surveys can be replaced by large

  1. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  2. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system.

    Science.gov (United States)

    Shibuya, Kiyoshi; Fujiwara, Taiki; Yasufuku, Kazuhiro; Alaa, Mohamed; Chiyo, Masako; Nakajima, Takahiro; Hoshino, Hidehisa; Hiroshima, Kenzo; Nakatani, Yukio; Yoshino, Ichiro

    2011-05-01

    We investigated the capabilities of an endo-cytoscopy system (ECS) that enables microscopic imaging of the tracheobronchial tree during bronchoscopy, including normal bronchial epithelium, dysplastic mucosa and squamous cell carcinoma. The newly developed ECS has a 3.2 mm diameter that can be passed through the 4.2 mm working channel of a mother endoscope for insertion of the ECS. It has a high magnification of 570× on a 17 in. video monitor. Twenty-two patients (7 squamous cell carcinoma, 11 squamous dysplasia and 4 after PDT therapies) were underwent white light, NBI light and AFI bronchoscopy. Both abnormal areas of interest and normal bronchial mucosa were stained with 0.5% methylene blue and examined with ECS at high magnification (570×). Histological examinations using haematoxylin and eosin staining were made of biopsied specimens. Analyzed ECS images were compared with the corresponding histological examinations. In normal bronchial mucosa, ciliated columnar epithelial cells were visible. In bronchial squamous dysplasia, superficial cells with abundant cytoplasm were arranged regularly. In squamous cell carcinoma, large, polymorphic tumor cells showed increased cellular densities with irregular stratified patterns. These ECS images corresponded well with the light-microscopic examination of conventional histology. ECS was useful for the discrimination between normal bronchial epithelial cells and dysplastic cells or malignant cells during bronchoscopy in real time. This novel technology has an excellent potential to provide in vivo diagnosis during bronchoscopic examinations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Engineered human broncho-epithelial tissue-like assemblies

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  4. Physiotherapy and bronchial mucus transport

    NARCIS (Netherlands)

    van der Schans, CP; Postma, DS; Koeter, GH; Rubin, BK

    Cough and expectoration of mucus are the best-known symptoms in patients with pulmonary disease, The most applied intervention for these symptoms is the use of chest physiotherapy to increase bronchial mucus transport and reduce retention of mucus in the airways, Chest physiotherapy interventions

  5. Bronchial arteries: anatomy, function, hypertrophy, and anomalies.

    Science.gov (United States)

    Walker, Christopher M; Rosado-de-Christenson, Melissa L; Martínez-Jiménez, Santiago; Kunin, Jeffrey R; Wible, Brandt C

    2015-01-01

    The two main sources of blood supply to the lungs and their supporting structures are the pulmonary and bronchial arteries. The bronchial arteries account for 1% of the cardiac output but can be recruited to provide additional systemic circulation to the lungs in various acquired and congenital thoracic disorders. An understanding of bronchial artery anatomy and function is important in the identification of bronchial artery dilatation and anomalies and the formulation of an appropriate differential diagnosis. Visualization of dilated bronchial arteries at imaging should alert the radiologist to obstructive disorders that affect the pulmonary circulation and prompt the exclusion of diseases that produce or are associated with pulmonary artery obstruction, including chronic infectious and/or inflammatory processes, chronic thromboembolic disease, and congenital anomalies of the thorax (eg, proximal interruption of the pulmonary artery). Conotruncal abnormalities, such as pulmonary atresia with ventricular septal defect, are associated with systemic pulmonary supply provided by aortic branches known as major aortopulmonary collaterals, which originate in the region of the bronchial arteries. Bronchial artery malformation is a rare left-to-right or left-to-left shunt characterized by an anomalous connection between a bronchial artery and a pulmonary artery or a pulmonary vein, respectively. Bronchial artery interventions can be used successfully in the treatment of hemoptysis, with a low risk of adverse events. Multidetector computed tomography helps provide a vascular road map for the interventional radiologist before bronchial artery embolization. RSNA, 2015

  6. Rare anomalies of the architecture of the bronchial tree

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, W.; Eger, H.

    1986-12-01

    Six cases of rare bronchial anomalies are presented (3 complete rightsided hyparterial bronchial distributions, 1 partial rightsided hyparterial bronchial supply of the upper lobe, 2 cases of atresia of the left apico-posterior bronchus). Emphasis is placed on the bronchographic elucidation of the changed bronchial segmental topic if additive or subtractive bronchial anomalies are found endoscopically especially with regard to preoperative aspects.

  7. Bronchial arterial RI-angiography

    International Nuclear Information System (INIS)

    Miyazono, Nobuaki; Inoue, Hiroki; Kanetsuki, Ichiro; Takeshita, Tuyoshi; Mukai, Hiroyuki; Moriyama, Takaaki; Nakabeppu, Yoshiaki; Nakajo, Masayuki

    1992-01-01

    Thirteen bronchial arterial perfusion studies were performed in a total of 13 patients with lung tumors (11 cases of lung cancer, one metastatic tumor and one abscess), utilizing 99m TcO 4 - or 99m Tc-labeled macroaggregated albumin ( 99m Tc-MAA). Regions of interest (ROI) of the same size were set over areas of tumor, the mediastinum and healthy lung areas, and each ROI count was calculated by a nuclear medicine computer during an acquisition time period of 20 min with each tracer for 7 min to evaluate tumor part perfusion. The count ratios of tumor to healthy parts ranged from 1.7 to 6.5 (mean±s.d.; 3.8±1.9) in the 99m TcO 4 - group (10 patients) and from 130 to 230 (mean±s.d.; 163±30) in the 99m Tc-MAA group (3 patients), respectively. Tumor reduction rates 2 weeks after CDDP bronchial artery infusion therapy correlated positively to the count ratio in the 99m TcO 4 - lung cancer group, although significant correlation was not obtained. This study suggests that bronchial arterial infusion of anticancer agents may result in higher concentrations of anticancer agents in the tumors than with systemic chemotherapy and chemoembolic materials may exert more potent anticancer effects on tumors than nonparticulated anticancer agents. (author)

  8. Social networks and bronchial asthma.

    Science.gov (United States)

    D'Amato, Gennaro; Cecchi, Lorenzo; Liccardi, Gennaro; D'Amato, Maria; Stanghellini, Giovanni

    2013-02-01

    To focus on both positive and negative aspects of the interaction between asthmatic patients and the social networks, and to highlight the need of a psychological approach in some individuals to integrate pharmacological treatment is the purpose of review. There is evidence that in some asthmatic patients, the excessive use of social networks can induce depression and stress triggering bronchial obstruction, whereas in others their rational use can induce beneficial effects in terms of asthma management. The increasing asthma prevalence in developed countries seen at the end of last century has raised concern for the considerable burden of this disease on society as well as individuals. Bronchial asthma is a disease in which psychological implications play a role in increasing or in reducing the severity of bronchial obstruction. Internet and, in particular, social media are increasingly a part of daily life of both young and adult people, thus allowing virtual relationships with peers sharing similar interests and goals. Although social network users often disclose more about themselves online than they do in person, there might be a risk for adolescents and for sensitive individuals, who can be negatively influenced by an incorrect use. However, although some studies show an increased risk of depression, other observations suggest beneficial effects of social networks by enhancing communication, social connection and self-esteem.

  9. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  10. Imaging diagnosis of bronchial asthma and related diseases

    International Nuclear Information System (INIS)

    Sakai, Fumikazu; Fujimura, Mikihiko; Kimura, Fumiko; Fujimura, Kaori; Hayano, Toshio; Nishii, Noriko; Machida, Haruhiko; Toda, Jo; Saito, Naoko

    2002-01-01

    We describe imaging features of bronchial asthma and related diseases. The practical roles of imaging diagnosis are the evaluation of severity and complications of bronchial asthma and differential diagnosis of diseases showing asthmatic symptoms other than bronchial asthma. (author)

  11. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  12. Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fen; Sun, Hong; Kluz, Thomas; Clancy, Hailey A.; Kiok, Kathrin; Costa, Max, E-mail: Max.Costa@nyumc.org

    2012-01-15

    Hexavalent chromium [Cr(VI)] is a human carcinogen that results in the generation of reactive oxygen species (ROS) and a variety of DNA lesions leading to cell death. Epigallocatechin-3-gallate (EGCG), the major polyphenol present in green tea, possesses potent antioxidative activity capable of protecting normal cells from various stimuli-induced oxidative stress and cell death. Here we demonstrated that co-treatment with EGCG protected human normal bronchial epithelial BEAS-2B cells from Cr(VI)-induced cell death in a dose-dependent manner. Cr(VI) induces apoptosis as the primary mode of cell death. Co-treatment of BEAS-2B cells with EGCG dose-dependently suppressed Cr(VI)-induced apoptosis. Fluorescence microscopic analyses and quantitative measurement revealed that EGCG significantly decreased intracellular levels of ROS induced by Cr(VI) exposure. Using a well-established K{sup +}/SDS precipitation assay, we further showed that EGCG was able to dose-dependently reduce DNA–protein cross-links (DPC), lesions that could be partially attributed to Cr(VI)-induced oxidative stress. Finally, analyses of Affymetrix microarray containing 28,869 well-annotated genes revealed that, among the 3412 genes changed more than 1.5-fold by Cr(VI) treatment, changes of 2404 genes (70%) were inhibited by pretreatment of EGCG. Real-time PCR confirmed the induction of 3 genes involved in cell death and apoptosis by Cr(VI), which was eliminated by EGCG. In contrast, Cr(VI) reduced the expression of 3 genes related to cellular defense, and this reduction was inhibited by EGCG. Our results indicate that EGCG protects BEAS-2B cells from Cr(VI)-induced cytotoxicity presumably by scavenging ROS and modulating a subset of genes. EGCG, therefore, might serve as a potential chemopreventive agent against Cr(VI) carcinogenesis. -- Highlights: ► EGCG protected human normal bronchial epithelial BEAS-2B cells from Cr(VI)-induced cell death and apoptosis. ► EGCG significantly decreased

  13. [Cytomorphological analysis of remodeling of the bronchial wall in different types of bronchial asthma].

    Science.gov (United States)

    Gereng, E A; Sukhodolo, I V; Pleshko, R I; Ogorodova, L M; Selivanova, P A; Dziuman, A N

    2012-01-01

    The objective of the present work was to search for the tissue and cellular markers of remodeling of bronchial mucosa in the patients with different clinical forms of bronchial asthma (BA). The use of up-to-date morphometric techniques has demonstrated that mild and moderately severe forms of bronchial asthma are accompanied by the development of Th2-immune response associated with increased production of interleukin-4 and marked degranulation of eosinophilic granulocytes resulting in desquamation of epithelium and goblet cell hyperplasia. The severe BA phenotype of "chronic asthma with fixed obstruction" is associated with the development of non-atopic inflammation in the bronchial mucous membrane that manifests itself as the increased concentration of interleukin-8 in bronchial mucosa and its neutrophilic infiltration leading to the development of pronounced subepithelial fibrosis, thickening of the basal membrane, and atrophy of epithelium. Specific structural changes in bronchial mucosa of the patients presenting with BA underlie functional disturbances that cause severe bronchial obstructive syndrome.

  14. BRONCHIAL FRACTURE FOLLOWING BLUNT CHEST TRAUMA*

    African Journals Online (AJOL)

    1971-01-02

    Jan 2, 1971 ... reversal of bronchiectasis after re-anastomosing the two bronchial ends, it is felt that this is the exception rather than the rule. Coxatto and Lanari," in their study of the pathogenesis of bronchiectasis, feel that where there is complete obstruction to the distal bronchus, bronchial secretion will cease before ...

  15. Clinical applications of virtual navigation bronchial intervention.

    Science.gov (United States)

    Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2018-01-01

    In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments

  16. [Thoracic surgery for patients with bronchial asthma].

    Science.gov (United States)

    Iyoda, A; Satoh, Y

    2012-07-01

    Thoracic surgery poses a risk for complications in the respiratory system. In particular, for patients with bronchial asthma, we need to care for perioperative complications because it is well known that these patients frequently have respiratory complications after surgery, and they may have bronchial spasms during surgery. If we can get good control of their bronchial asthma, we can usually perform surgery for these patients without limitations. For safe postoperative care, it is desirable that these patients have stable asthma conditions that are well-controlled before surgery, as thoracic surgery requires intrabronchial intubation for anesthesia and sometimes bronchial resection. These stimulations to the bronchus do not provide for good conditions because of the risk of bronchial spasm. Therefore, we should use the same agents that are used to control bronchial asthma if it is already well controlled. If it is not, we have to administer a β₂ stimulator, aminophylline, or steroidal agents for good control. Isoflurane or sevoflurane are effective for the safe control of anesthesia during surgery, and we should use a β₂ stimulator, with or without inhalation, or steroidal agents after surgery. It is important to understand that we can perform thoracic surgery for asthma patients if we can provide perioperative control of bronchial asthma, although these patients still have severe risks.

  17. Paramyxovirus Infection Mimics In Vivo Cellular Dynamics in Three-Demensional Human Bronchio-Epithelial Tissue-Like Assemblies

    Science.gov (United States)

    Deatly, Anne M.; Lin, Yen-Huei; McCarthy, Maureen; Chen, Wei; Miller, Lynn Z.; Quiroz, Jorge; Nowak, Becky M.; Lerch, Robert A.; Udem, Stephen A.; Goodwin, Thomas J.

    2012-01-01

    , cotton rat, guinea pig, ferret, and hamster) fail to accurately imitate viral replication and human disease states (8). Lacking an authentic model has impeded the development and evaluation of live, attenuated vaccine candidates. Development of a physiologically relevant in vitro tissue culture model that reproduces characteristics of the HRE, the primary target of RSV and PIV3, would aid in predicting clinical attenuation and safety of vaccine candidates. Successful tissue engineering of a 3D human intestinal model using novel NASA technology inspired the development of a tri-culture 3D model for the HRE. Sequential layering of primary mesenchymal cells (comprised of normal human fibroblasts and endothelial cells) followed by BEAS-2B epithelial cells derived from human bronchi and tracheae were recapitulated on Cultisphere and/or cytodex3 microcarriers in cylindrical vessels that rotate horizontally creating an organized epithelial structure. Horizontal rotation randomizes the gravity vector modeling aspects of microgravity. Mesenchymal and epithelial cells grown under these conditions reproduce the structural organization, multi-cellular complexity, and differentiation state of the HRE. The opportunity to study respiratory viruses in a nasal epithelium model is invaluable because the most promising respiratory virus vaccine candidates are live attenuated viruses for intranasal administration. Here we characterize the interactions of respiratory viruses and epithelial cells grown under modeled microgravity in comparison to gravity-ladened monolayers. 3D HBE TLAs and traditional monolayers (2D) are infected at 35 C, the upper temperature of the upper HRE, to simulate in vivo infection conditions. Growth kinetics of wild type (wt) RSV and PIV3 viruses were compared in 2D and 3D cells to that of strains attenuated in humans or rhesus macaques. This novel 3D HBE model also offers an opportunity to study whether the epithelial cell function, especially in host defenses

  18. Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Tzvia Abramson

    Full Text Available Filamentous hemagglutinin (FHA is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-kappaB transcription factor family in these host cell responses, we examined the effect of FHA on NF-kappaB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection.Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-kappaB pathway, as manifested by the degradation of cytosolic IkappaB alpha, by NF-kappaB DNA binding, and by the subsequent secretion of NF-kappaB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IkappaB alpha, and the failure of TNF-alpha to activate NF-kappaB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells.These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-kappaB activation, and perhaps lead to a compromised immune response to this bacterial pathogen.

  19. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Diabate, Silvia; Plaumann, Diana; Uebel, Caroline; Weiss, Carsten [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen (Germany); Bergfeldt, Britta [Karlsruhe Institute of Technology, Institute of Technical Chemistry, Eggenstein-Leopoldshafen (Germany)

    2011-12-15

    Combustion-derived nanoparticles as constituents of ambient particulate matter have been shown to induce adverse health effects due to inhalation. However, the components inducing these effects as well as the biological mechanisms are still not fully understood. The fine fraction of fly ash particles collected from the electrostatic precipitator of a municipal solid waste incinerator was taken as an example for real particles with complex composition released into the atmosphere to study the mechanism of early biological responses of BEAS-2B human lung epithelial cells. The studies include the effects of the water-soluble and -insoluble fractions of the fly ash and the well-studied carbon black nanoparticles were used as a reference. Fly ash induced reactive oxygen species (ROS) and increased the total cellular glutathione (tGSH) content. Carbon black also induced ROS generation; however, in contrast to the fly ash, it decreased the intracellular tGSH. The fly ash-induced oxidative stress was correlated with induction of the anti-oxidant enzyme heme oxygenase-1 and increase of the redox-sensitive transcription factor Nrf2. Carbon black was not able to induce HO-1. ROS generation, tGSH increase and HO-1 induction were only induced by the insoluble fraction of the fly ash, not by the water-soluble fraction. ROS generation and HO-1 induction were markedly inhibited by pre-incubation of the cells with the anti-oxidant N-acetyl cysteine which confirmed the involvement of oxidative stress. Both effects were also reduced by the metal chelator deferoxamine indicating a contribution of bioavailable transition metals. In summary, both fly ash and carbon black induce ROS but only fly ash induced an increase of intracellular tGSH and HO-1 production. Bioavailable transition metals in the solid water-insoluble matrix of the fly ash mostly contribute to the effects. (orig.)

  20. Classification, staging and radiotherapy of bronchial carcinoma

    International Nuclear Information System (INIS)

    Noordijk, E.M.

    1983-01-01

    This thesis reports a study performed to evaluate the stage classification of bronchial carcinoma published by Thomas in 1963. The study was done in the radiotherapy department of a teaching hospital, and had three parts: a comparative analysis of the classifications and stage divisions described in the literature on bronchial carcinoma; an evaluation of the theoretical basis of the classification system introduced by Thomas as well as of the practical applicability of the division into stages, with respect to the assessment of the prognosis and the choice of therapy; and an analysis of various aspects of irradiation as well as of a number of prognostic factors in bronchial carcinoma. (Auth.)

  1. Rare anomalies of the architecture of the bronchial tree

    International Nuclear Information System (INIS)

    Scheel, W.; Eger, H.

    1986-01-01

    Six cases of rare bronchial anomalies are presented (3 complete rightsided hyparterial bronchial distributions, 1 partial rightsided hyparterial bronchial supply of the upper lobe, 2 cases of atresia of the left apico-posterior bronchus). Emphasis is placed on the bronchographic elucidation of the changed bronchial segmental topic if additive or subtractive bronchial anomalies are found endoscopically especially with regard to preoperative aspects. (orig.) [de

  2. The content of mucin MUC-2, -3 and -4 antigens in the bronchial mucosa membrane of chronic obstructive pulmonary disease patients during acute exacerbation - initial report.

    Science.gov (United States)

    Kovalenko, Svetlana; Dorofieiev, Andrey

    2017-01-01

    Changes in mucin production and dyscrinia are common features of inflammation in chronic obstructive pulmonary disease (COPD). Immunohistochemical assessment of MUC-2, MUC-3, MUC-4 expression in the integumentary epithelium, goblet cells, the epithelium of mucous glands and stroma fusiform cells of the bronchial mucosa of COPD patients during an infectious and noninfectious exacerbation was performed. 30 patients with stage III COPD were enrolled to the study. Patients were divided into 2 groups: group A - 14 patients with non-infectious acute exacerbation of COPD (AECOPD) and group B - 16 patients with infectious AECOPD. Fiberoptic bronchoscopy (FBS) and in vivo bronchial biopsy of bronchial mucosa were implemented to determine the extent and nature of bronchial inflammation. The optical density of specific color in bronchial structures was assessed using immunohistochemical staining to MUC-2, -3 and -4 antigens by means of primary monoclonal antibodies to these proteins, and visualization system Dako EnVision + System, Peroxidase (AEC). We detected that in different types of bronchial mucosa epithelial cells, during acute infectious exacerbation, a decrease of antigens MUC-2 and MUC-3 expression of a various degree may occur. This phenomenon in the stroma fusiform cells in AECOPD may be a sign of epithelial-mesenchymal transition, that may play a role in the development of an inflammatory process and progression of fibrosis in COPD.

  3. Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells

    Czech Academy of Sciences Publication Activity Database

    Líbalová, Helena; Rössner ml., Pavel; Vrbová, Kristýna; Brzicová, Táňa; Sikorová, Jitka; Vojtíšek-Lom, M.; Beránek, V.; Kléma, J.; Cigánek, M.; Neča, J.; Pěnčíková, K.; Machala, M.; Topinka, Jan

    2016-01-01

    Roč. 17, č. 11 (2016), s. 1833 E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GA13-01438S; GA MŠk(CZ) LO1508; GA MŠk(CZ) LM2015073 Institutional support: RVO:68378041 Keywords : diesel * alternative fuel s * diesel exhaust particles Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.226, year: 2016

  4. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    Science.gov (United States)

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  5. Permanent Cortical Blindness After Bronchial Artery Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Doorn, Colette S. van, E-mail: cvandoorn@gmail.com; De Boo, Diederick W., E-mail: d.w.deboo@amc.uva.nl [Academic Medical Centre, Department of Radiology (Netherlands); Weersink, Els J. M., E-mail: e.j.m.weersink@amc.uva.nl [Academic Medical Centre, Department of Pulmonology (Netherlands); Delden, Otto M. van, E-mail: o.m.vandelden@amc.uva.nl; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Lienden, Krijn P. van, E-mail: k.p.vanlienden@amc.uva.nl [Academic Medical Centre, Department of Radiology (Netherlands)

    2013-12-15

    A 35-year-old female with a known medical history of cystic fibrosis was admitted to our institution for massive hemoptysis. CTA depicted a hypertrophied bronchial artery to the right upper lobe and showed signs of recent bleeding at that location. Bronchial artery embolization (BAE) was performed with gelfoam slurry, because pronounced shunting to the pulmonary artery was present. Immediately after BAE, the patient developed bilateral cortical blindness. Control angiography showed an initially not opacified anastomosis between the embolized bronchial artery and the right subclavian artery, near to the origin of the right vertebral artery. Cessation of outflow in the bronchial circulation reversed the flow through the anastomosis and allowed for spill of embolization material into the posterior circulation. Unfortunately the cortical blindness presented was permanent.

  6. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohui

    2008-05-01

    Full Text Available Abstract Background Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal and intrathoracic (bronchial epithelium in healthy current and never smokers. Results Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome", we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure. Conclusion Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for

  7. Alterations in Bronchial Airway miRNA Expression for Lung Cancer Detection.

    Science.gov (United States)

    Pavel, Ana B; Campbell, Joshua D; Liu, Gang; Elashoff, David; Dubinett, Steven; Smith, Kate; Whitney, Duncan; Lenburg, Marc E; Spira, Avrum

    2017-11-01

    We have previously shown that gene expression alterations in normal-appearing bronchial epithelial cells can serve as a lung cancer detection biomarker in smokers. Given that miRNAs regulate airway gene expression responses to smoking, we evaluated whether miRNA expression is also altered in the bronchial epithelium of smokers with lung cancer. Using epithelial brushings from the mainstem bronchus of patients undergoing bronchoscopy for suspected lung cancer (as part of the AEGIS-1/2 clinical trials), we profiled miRNA expression via small-RNA sequencing from 347 current and former smokers for which gene expression data were also available. Patients were followed for one year postbronchoscopy until a final diagnosis of lung cancer ( n = 194) or benign disease ( n = 153) was made. Following removal of 6 low-quality samples, we used 138 patients (AEGIS-1) as a discovery set to identify four miRNAs (miR-146a-5p, miR-324-5p, miR-223-3p, and miR-223-5p) that were downregulated in the bronchial airway of lung cancer patients (ANOVA P cancer patients (GSEA FDR lung cancer significantly improves its performance (AUC) in the 203 samples (AEGIS-1/2) serving an independent test set (DeLong P lung cancer, and that they may regulate cancer-associated gene expression differences. Cancer Prev Res; 10(11); 651-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Bronchial arteries: an arteriosclerosis-resistant circulation.

    Science.gov (United States)

    Kotoulas, Christophoros; Melachrinou, Maria; Konstantinou, George N; Alexopoulos, Dimitrios; Dougenis, Dimitrios

    2010-01-01

    Until now, it is unknown whether and to what extent arteriosclerotic disease affects the bronchial arteries. We conducted this pilot study to estimate the prevalence of arteriosclerosis of the bronchial arteries, to correlate it with certain clinicolaboratory arteriosclerotic parameters or any coexistent coronary artery disease (CAD) and to validate the clinical significance. Bronchial arteries 10-15 mm long were obtained from 40 patients with a mean age of 62.3 years who underwent major thoracic procedures. Their medical history and detailed clinical and laboratory arteriosclerotic risk factors were documented. The mean diameter of bronchial artery specimens was 0.97 mm. Histology revealed medial calcific sclerosis only in 1 patient (2.5%) without simultaneous, established atherosclerotic lesions or narrowing of the lumen. Furthermore, the vessel diameter was significantly correlated not only with the advanced stage of the disease (p = 0.031), but also with the proximal occlusion of the bronchial tree (p = 0.042). We noted a marginally not significant correlation between arteriosclerosis and metabolic syndrome (p = 0.075), independent from a history of CAD (p = 0.84). Bronchial arteries exhibit only medial calcific sclerosis. CAD and chronic obstructive pulmonary disease do not seem to affect them in terms of atherosclerotic alteration findings or vessel diameter changes. The bronchial resistance to arteriosclerosis might support the mediastinal status quo through their anastomoses, contributing to all its structures, and might be indirect evidence of a different physiological function of the bronchial endothelium, which needs to be further investigated. Copyright 2009 S. Karger AG, Basel.

  9. Recent developments regarding periostin in bronchial asthma

    Directory of Open Access Journals (Sweden)

    Kenji Izuhara

    2015-09-01

    Full Text Available Although it is currently recognized that bronchial asthma is not a single disease but a syndrome, we have not yet made use of our new understanding of this heterogeneity as we treat asthma patients. To increase the efficacy of anti-asthma drugs and to decrease costs, it is important to stratify asthma patients into subgroups and to develop therapeutic strategies for each subgroup. Periostin has recently emerged as a biomarker for bronchial asthma, unique in that it is useful not in diagnosis but in categorizing asthma patients. We first found that periostin is a novel component of subepithelial fibrosis in bronchial asthma downstream of IL-13 signals. Thereafter, it was shown that periostin can be a surrogate biomarker of type 2 immune responses, the basis of the notion that a detection system of serum periostin is potentially a companion diagnostic for type 2 antagonists. Furthermore, we have recently shown that serum periostin can predict resistance or hyporesponsiveness to inhaled corticosteroids, based on its contribution to tissue remodeling or fibrosis in bronchial asthma. Thus, serum periostin has two characteristics as a biomarker for bronchial asthma: it is both a surrogate biomarker of type 2 immune responses and a biomarker reflecting tissue remodeling or fibrosis. We can take advantage of these characteristics to develop stratified medicine in bronchial asthma.

  10. Prevention of Bronchial Hyperplasia by EGFR Pathway Inhibitors in an Organotypic Culture Model

    Science.gov (United States)

    Lee, Jangsoon; Ryu, Seung-Hee; Kang, Shin Myung; Chung, Wen-Cheng; Gold, Kathryn Ann; Kim, Edward S.; Hittelman, Walter N.; Hong, Waun Ki; Koo, Ja Seok

    2011-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection or prevention strategies are urgently needed to increase survival. Hyperplasia is the first morphologic change that occurs in the bronchial epithelium during lung cancer development, followed by squamous metaplasia, dysplasia, carcinoma in situ, and invasive tumor. The current study was designed to determine the molecular mechanisms that control bronchial epithelium hyperplasia. Using primary normal human tracheobronchial epithelial (NHTBE) cells cultured using the 3-dimensional organotypic method, we found that the epidermal growth factor receptor (EGFR) ligands EGF, transforming growth factor-alpha, and amphiregulin induced hyperplasia, as determined by cell proliferation and multilayered epithelium formation. We also found that EGF induced increased cyclin D1 expression, which plays a critical role in bronchial hyperplasia; this overexpression was mediated by activating the mitogen-activated protein kinase pathway but not the phosphoinositide 3-kinase/Akt signaling pathway. Erlotinib, an EGFR tyrosine kinase inhibitor, and U0126, a MEK inhibitor, completely inhibited EGF-induced hyperplasia. Furthermore, a promoter analysis revealed that the activator protein-1 transcription factor regulates EGF-induced cyclin D1 overexpression. Activator protein-1 depletion using siRNA targeting its c-Jun component completely abrogated EGF-induced cyclin D1 expression. In conclusion, we demonstrated that bronchial hyperplasia can be modeled in vitro using primary NHTBE cells maintained in a 3-dimensional (3-D) organotypic culture. EGFR and MEK inhibitors completely blocked EGF-induced bronchial hyperplasia, suggesting that they have a chemopreventive role. PMID:21505178

  11. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  12. Cancer Stem-Like Cells Accumulated in Nickel-Induced Malignant Transformation

    Science.gov (United States)

    Wang, Lei; Fan, Jia; Hitron, John Andrew; Son, Young-Ok; Wise, James T.F.; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Nickel compounds are known as human carcinogens. Chronic environmental exposure to nickel is a worldwide health concern. Although the mechanisms of nickel-induced carcinogenesis are not well understood, recent studies suggest that stem cells/cancer stem cells are likely important targets. This study examines the role of cancer stem cells in nickel-induced cell transformation. The nontransformed human bronchial epithelial cell line (Beas-2B) was chronically exposed to nickel chloride for 12 months to induce cell transformation. Nickel induced Beas-2B cell transformation, and cancer stem-like cells were enriched in nickel-transformed cell (BNiT) population. The BNiT cancer stem-like cells demonstrated enhanced self-renewal and distinctive differentiation properties. In vivo tumorigenesis studies show that BNiT cancer stem-like cells possess a high tumor-initiating capability. It was also demonstrated that superoxide dismutase 1 was involved in the accumulation of cancer stem-like cells; the regulation of superoxide dismutase 1 expression was different in transformed stem-like cells and nontransformed. Overall, the accumulation of stem-like cells and their enhanced stemness functions contribute to nickel-induced tumorigenesis. Our study provides additional insight into the mechanisms by which metals or other chemicals can induce carcinogenesis. PMID:26962057

  13. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  14. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  15. Radiological study of bronchial mucoid impaction

    International Nuclear Information System (INIS)

    Yu Xiaoyi; Yan Hongzhen; Wang Tongde; Gan Chunlan; Liu Wei; Wang Linhui

    1999-01-01

    Objective: To evaluate the radiological findings of bronchial mucoid impaction in 28 patients in order to improve diagnostic efficacy. Methods: Standard posteroanterior high voltage radiographs were performed in all 28 cases. Among them CT scans were taken in 14 cases, while 3 patients underwent HRCT examination at the same time. Twenty-two patients had a history of expectoration of mucous plugs; in one case with pulmonary atelectasis, a mucous plug was picked out through bronchoscopy. The other 5 cases experienced a lung operation, and a tumor and bronchial mucoid impaction were discovered. Results: Radiographs showed most mucoid impaction as thick, branching structures resembling branches of tree; others were in the shapes of spherical, small clubs, and cuttle fish. In one patient, pulmonary atelectasis was the only radiographic finding. Similarly on CT, most bronchial mucoid impaction were likened to tree branches; the rest presented as small clubs and bunches of grape. A prominent feature of bronchial mucoid impaction, either on plain radiograph or on CT, was that its axis pointed to the hilum, completely consistent with the branching and distribution of the bronchi, and accompanied by bronchiectasis. Conclusions: It is an optimal approach to exploit plain radiograph combined with CT to find out bronchial mucoid impaction. An awareness of its clinical and radiological features may improve better understanding and recognition of the disease

  16. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control

    International Nuclear Information System (INIS)

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2011-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.

  17. Streptococcus pneumoniae-Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol.

    Science.gov (United States)

    Zahlten, Janine; Kim, Ye-Ji; Doehn, Jan-Moritz; Pribyl, Thomas; Hocke, Andreas C; García, Pedro; Hammerschmidt, Sven; Suttorp, Norbert; Hippenstiel, Stefan; Hübner, Ralf-Harto

    2015-06-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia worldwide. During pneumococcal pneumonia, the human airway epithelium is exposed to large amounts of H2O2 as a product of host and pathogen oxidative metabolism. Airway cells are known to be highly vulnerable to oxidant damage, but the pathophysiology of oxidative stress induced by S. pneumoniae and the role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant systems of the host are not well characterized. For gluthation/gluthathion disulfide analysis BEAS-2B cells, primary broncho-epithelial cells (pBEC), explanted human lung tissue and mouse lungs were infected with different S. pneumoniae strains (D39, A66, R6x, H2O2/pneumolysin/LytA- deficient mutants of R6x). Cell death was proven by LDH assay and cell viability by IL-8 ELISA. The translocation of Nrf2 and the expression of catalase were shown via Western blot. The binding of Nrf2 at the catalase promoter was analyzed by ChIP. We observed a significant induction of oxidative stress induced by S. pneumoniae in vivo, ex vivo, and in vitro. Upon stimulation, the oxidant-responsive transcription factor Nrf2 was activated, and catalase was upregulated via Nrf2. The pneumococci-induced oxidative stress was independent of S. pneumoniae-derived H2O2 and pneumolysin but depended on the pneumococcal autolysin LytA. The Nrf2 inducer resveratrol, as opposed to catalase, reversed oxidative stress in lung epithelial cells. These observations indicate a H2O2-independent induction of oxidative stress in lung epithelial cells via the release of bacterial factors of S. pneumoniae. Resveratrol might be an option for prevention of acute lung injury and inflammatory responses observed in pneumococcal pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Clinical, radiographic, and bronchial cytologic features of cats with bronchial disease: 65 cases (1980-1986)

    International Nuclear Information System (INIS)

    Moise, N.S.; Wiedenkeller, D.; Yeager, A.E.; Blue, J.T.; Scarlett, J.

    1989-01-01

    Medical records, radiographs, and bronchial cytologic abnormalities of 65 cats with bronchial disease were reviewed. Bronchial disease was defined as abnormality of the lower airways to the exclusion of disease originating or mainly involving the alveoli, interstitium, vasculature, or pleura. Cats with bronchial disease were more likely to be female and older. Siamese cats were over represented and had more chronic disease. In order of frequency, the following clinical signs were reported: coughing, dyspnea, occasional sneezing, wheezing, and vomiting. Radiography revealed prominent bronchial markings, with some cats having collapse of the middle lobe of the right lung (n = 7), overinflation of the lungs (n = 9), or aerophagia (n = 13). Of 65 bronchial washes, 58 were considered exudative, with the predominant cell type being eosinophil in 24%, neutrophil in 33%, macrophage in 22%, and mixed population of cells in 21%. Cultures for bacteria were considered positive in 24% of the cats. Circulating eosinophilia was not helpful in predicting the predominant cell type in bronchial cytologic exudates. Hyperproteinemia without dehydration was present in a third of the cats, indicating an immunologic response. Half the cats had resolution of clinical signs, whereas half the cats required continuing medication with bronchodilators, antimicrobial agents, or corticosteroids

  19. Detection of early lung cancer lesions in surgical resections and in bronchial and transbronchial biopsies

    International Nuclear Information System (INIS)

    Rott, T.; Jerse, M.; Tercelj, M.; Erzen, J.

    2006-01-01

    Background. Overall bad prognosis of lung cancer is mostly due to too late detection of early lung cancer, which may be treated with good success. Therefore, different diagnostic methods are developing for more efficient detection of early lung cancer: besides modern radiological, bronchoscopic methods with additional fluorescence techniques, quantitative cytological investigations, also histological and molecular investigations are included. Histology may reveal early preinvasive lung cancer lesions, associated early during multistep lung carcinogenesis with molecular genetic changes. Patients and methods. Preinvasive epithelial lung cancer lesions we searched in two groups of patients. In the first group of 316 patients from the period March 2003 - August 2006, 498 bronchial and transbronchial biopsies were examined for squamous metaplasia and dysplasia, carcinoma in situ, and invasive tumours. In the second group of 238 patients from the period January 2004 - August 2006, resected primary lung tumours were analysed for preinvasive and invasive neuroendocrine tumours and atypical adenomatous hyperplasia. Results. The most frequent changes in bronchial and transbronchial biopsies were squamous metaplasia (46.5%), simple or goblet cell hyperplasia of the bronchial epithelium (44.3%), malignant tumours (20.66%) and squamous dysplasia (16.1%), but rare carcinoma in situ (0.63%). Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia was found in 15 (6.3%) cases in the vicinity of 238 resected lung cancer specimens, carcinoid in 12 patients (5%), and mostly combined large cell neuroendocrine cancer in 21 patients (8.8%). Atypical adenomatous hyperplasia was found in 2 patients. Conclusions. Classical histological analysis should be focused on detection of early preinvasive epithelial lung cancer lesions. Additional available molecular investigations may reveal gradual genetic changes characteristic for a series of the preinvasive epithelial histological changes

  20. Chronic Pulmonary Aspergillosis Complicating Bronchial Atresia

    Directory of Open Access Journals (Sweden)

    Mazen O. Al-Qadi

    2014-01-01

    Full Text Available Bronchial atresia is a rare pulmonary developmental anomaly characterized by the presence of a focal obliteration of a segmental or lobar bronchial lumen. The lung distal to the atretic bronchus is typically emphysematous along with the presence of mucus filled ectatic bronchi (mucoceles. BA is usually asymptomatic but pulmonary infections can rarely develop in the emphysematous lung distal to the atretic bronchus. We present a unique case of chronic pulmonary aspergillosis (CPA in a patient with BA with no evidence of immune dysfunction. The patient was treated initially with voriconazole and subsequently underwent surgical excision of the involved area. On follow-up, she has done extremely well with no evidence for recurrence. In summary, we describe the first case of chronic pulmonary aspergillosis in an immunocompetent patient with bronchial atresia.

  1. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    Science.gov (United States)

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  2. Radiodiagnosis of filled retention bronchial cysts and lung tuberculomes

    International Nuclear Information System (INIS)

    Gudz', A.E.

    1987-01-01

    Radiological semiotics of filled retention bronchial cysts in 23 patients and of lung tuberculomes in 52 is studied on the basis of the data on roentgenography, tomography and bronchography. Characteristic radiological signs of retention bronchial cysts and tuberculomes are determined. Significance of each radiological sign for differential diagnosis of filled retention bronchial cysts and lung tuberculomes is estimated

  3. Bronchial carcinoid tumors: A rare malignant tumor

    African Journals Online (AJOL)

    2015-02-03

    Feb 3, 2015 ... Nigerian Journal of Clinical Practice • Sep-Oct 2015 • Vol 18 • Issue 5. Abstract. Bronchial carcinoid tumors (BCTs) are an uncommon group of lung tumors. They commonly affect the young adults and the middle aged, the same age group affected by other more common chronic lung conditions such as ...

  4. Associations between asthma and bronchial hyperresponsiveness ...

    African Journals Online (AJOL)

    Objectives. To determine asthma and allergy phenotypes in unselected urban black teenagers and to associate bronchial hyperresponsiveness (BHR) with asthma, other atopic diseases and allergen sensitisation. Methods. This was a cross-sectional study of 211 urban highschool black children of Xhosa ethnicity. Modified ...

  5. Bronchial hyperresponsiveness and anti-asthmatic therapy

    NARCIS (Netherlands)

    Kraan, Jan

    1990-01-01

    Many asthmatic patients experience shortness of breath or wheezing, when exposed to cold air, or irritants like baking fumes, exhaust gases or cigarette smoke. This clinical phenomenon has been called bronchial hypemsponsiveness (BHR), which is defined as an exaggerated broncho-obstructive response

  6. Increased polysomy of chromosome 7 in bronchial epithelium from patients at high risk for lung cancer

    International Nuclear Information System (INIS)

    Belinsky, S.A.; Neft, R.E.; Lechner, J.F.

    1995-01-01

    Current models of carcinogenesis suggest that tissues progress through multiple genetic and epigenetic changes which ultimately lead to development of invasive cancer. Epidemiologic studies of Peto, R.R. and J.A. Doll indicate that the accumulation of these genetic changes over time, rather than any single unique genetic change, is probably responsible for development of the malignant phenotype. The bronchial epithelium of cigarette smokers is diffusely exposed to a broad spectrum of carcinogens, toxicants, and tumor promoters contained in tobacco smoke. This exposure increases the risk of developing multiple, independent premalignant foci throughout the lower respiratory tract that may contain independent gene aberrations. This open-quotes field cancerizationclose quotes theory is supported by studies that have demonstrated progressive histologic changes distributed throughout the lower respiratory tract of smokers. A series of autopsy studies demonstrated that cigarette smokers exhibit premalignant histologic changes ranging from hyperplasia and metaplasia to severe dysplasia and carcinoma in situ diffusely throughout the bronchial mucosa. The proximal bronchi appear to exhibit the greatest number of changes, particularly at bifurcations. The results described are the first to quantitate the frequency for a chromosome aberration in open-quotes normalclose quotes bronchial epithelial cells

  7. Increased polysomy of chromosome 7 in bronchial epithelium from patients at high risk for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Neft, R.E.; Lechner, J.F. [and others

    1995-12-01

    Current models of carcinogenesis suggest that tissues progress through multiple genetic and epigenetic changes which ultimately lead to development of invasive cancer. Epidemiologic studies of Peto, R.R. and J.A. Doll indicate that the accumulation of these genetic changes over time, rather than any single unique genetic change, is probably responsible for development of the malignant phenotype. The bronchial epithelium of cigarette smokers is diffusely exposed to a broad spectrum of carcinogens, toxicants, and tumor promoters contained in tobacco smoke. This exposure increases the risk of developing multiple, independent premalignant foci throughout the lower respiratory tract that may contain independent gene aberrations. This {open_quotes}field cancerization{close_quotes} theory is supported by studies that have demonstrated progressive histologic changes distributed throughout the lower respiratory tract of smokers. A series of autopsy studies demonstrated that cigarette smokers exhibit premalignant histologic changes ranging from hyperplasia and metaplasia to severe dysplasia and carcinoma in situ diffusely throughout the bronchial mucosa. The proximal bronchi appear to exhibit the greatest number of changes, particularly at bifurcations. The results described are the first to quantitate the frequency for a chromosome aberration in {open_quotes}normal{close_quotes} bronchial epithelial cells.

  8. Morphology of bronchial epithelium in rodent streptozotocin-induced diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Oksana Anatolyevna Pivovarova

    2013-12-01

    Full Text Available Aim. To study the morphology of bronchial epithelium in a rodent streptozotocin-induced (STZ diabetes mellitus.Materials and Methods. Diabetes mellitus was introduced in 47 white Wistar rats aged 5–6 months (body weight 234.0±2.64 g. 43 white Wistar rats of the same age were used as control subjects (body weight 242.0±2.13. Diabetes was induced by single intraperitoneal injection of STZ (SIGMA, USA 60 mg/kg in 0.1 M citrate buffer, pH 4.5.Results. A statistically significant decrease in the total epithelial area by 25.9% was observed in the study group, accompanied by a reduction of the supranuclear zone by 22.1% vs. the control group.Conclusion. We found that bronchial mucous membrane in rodents with STZ-induced diabetes mellitus exhibits signs of atrophy and partial loss of mucous production by bronchial secretory cells.

  9. Tomatidine Attenuates Airway Hyperresponsiveness and Inflammation by Suppressing Th2 Cytokines in a Mouse Model of Asthma

    Directory of Open Access Journals (Sweden)

    Chieh-Ying Kuo

    2017-01-01

    Full Text Available Tomatidine is isolated from the fruits of tomato plants and found to have anti-inflammatory effects in macrophages. In the present study, we investigated whether tomatidine suppresses airway hyperresponsiveness (AHR and eosinophil infiltration in asthmatic mice. BALB/c mice were sensitized with ovalbumin and treated with tomatidine by intraperitoneal injection. Airway resistance was measured by intubation analysis as an indication of airway responsiveness, and histological studies were performed to evaluate eosinophil infiltration in lung tissue. Tomatidine reduced AHR and decreased eosinophil infiltration in the lungs of asthmatic mice. Tomatidine suppressed Th2 cytokine production in bronchoalveolar lavage fluid. Tomatidine also blocked the expression of inflammatory and Th2 cytokine genes in lung tissue. In vitro, tomatidine inhibited proinflammatory cytokines and CCL11 production in inflammatory BEAS-2B bronchial epithelial cells. These results indicate that tomatidine contributes to the amelioration of AHR and eosinophil infiltration by blocking the inflammatory response and Th2 cell activity in asthmatic mice.

  10. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium.

    Science.gov (United States)

    Arason, Ari Jon; Jonsdottir, Hulda R; Halldorsson, Skarphedinn; Benediktsdottir, Berglind Eva; Bergthorsson, Jon Thor; Ingthorsson, Saevar; Baldursson, Olafur; Sinha, Satrajit; Gudjonsson, Thorarinn; Magnusson, Magnus K

    2014-01-01

    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.

  11. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    Science.gov (United States)

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  cancer-associated gene expression alterations between the two airway sites ( P  lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  13. Detection of trisomy 7 in bronchial cells from uranium miners

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, J.F.; Neft, R.E.; Belinsky, S.A. [and others

    1995-12-01

    New Mexico was the largest producer of uranium in the western world during 1960s and 1970s. Investigators at the University of New Mexico School of Medicine`s Epidemiology and Cancer Control Program have been conducting epidemiological studies on uranium miners over the past 2 decades. Currently, this cohort includes more than 3600 men who had completed at least 1 y of underground work experience in New Mexico by December 31, 1976. These miners, who are now in their 5th through 7th decades, the age when lung cancer incidence is highest, are at high risk for developing this disease because they were exposed to high levels of radon progeny in the mines, and they also smoked tobacco. However, not all people comparably exposed develop lung cancer; in fact, the lifetime risk of lung cancer for the smoking uranium miners has been projected by epidemiological analyses to be no higher than 50%. Therefore, the identification of gene alterations in bronchial epithelium would be a valuable tool to ascertain which miners are at greatest risk for lung cancer. The underlying significance of the current effort confirms the hypothesis that chronic exposure to high concentrations of {alpha}-particles and tobacco smoke produces genetically altered lung epithelial cells throughout the respiratory tract of some susceptible individuals before they develop clinical disease.

  14. Detection of trisomy 7 in bronchial cells from uranium miners

    International Nuclear Information System (INIS)

    Lechner, J.F.; Neft, R.E.; Belinsky, S.A.

    1995-01-01

    New Mexico was the largest producer of uranium in the western world during 1960s and 1970s. Investigators at the University of New Mexico School of Medicine's Epidemiology and Cancer Control Program have been conducting epidemiological studies on uranium miners over the past 2 decades. Currently, this cohort includes more than 3600 men who had completed at least 1 y of underground work experience in New Mexico by December 31, 1976. These miners, who are now in their 5th through 7th decades, the age when lung cancer incidence is highest, are at high risk for developing this disease because they were exposed to high levels of radon progeny in the mines, and they also smoked tobacco. However, not all people comparably exposed develop lung cancer; in fact, the lifetime risk of lung cancer for the smoking uranium miners has been projected by epidemiological analyses to be no higher than 50%. Therefore, the identification of gene alterations in bronchial epithelium would be a valuable tool to ascertain which miners are at greatest risk for lung cancer. The underlying significance of the current effort confirms the hypothesis that chronic exposure to high concentrations of α-particles and tobacco smoke produces genetically altered lung epithelial cells throughout the respiratory tract of some susceptible individuals before they develop clinical disease

  15. New method in radiotherapy of bronchial carcinoma

    International Nuclear Information System (INIS)

    Macha, H.N.; Mai, J.; Stadler, M.; Koch, K.; Loddenkemper, R.; Krumhaar, D.; Schumacher, W.; Lungenklinik Heckeshorn, Berlin; Staedtisches Rudolf-Virchow-Krankenhaus, Berlin

    1986-01-01

    106 patients with inoperable malignant tumours constricting the central bronchial tree underwent endobronchial small-field radiotherapy with iridium-192 at high dose between June 1983 and September 1985. Treatment was performed using the computer-guided after-loading technique and a flexible bronchoscope under local anaesthesia. In complete occlusion of a bronchus by the tumour, a neodymium YAG-laser was applied (57 patients) to allow insertion of the afterloading probe. Endoscopy showed tumour regression in 75% of the patients, accompanied by clinical improvement. Pulmonary function tests, arterial blood gas analyses and pulmonary perfusion scans yielded a highly significant improvement of data after treatment. The procedure also proved effective upon exhaustion of external radiation. Apart from its positive palliation, endobronchial small-field radiotherapy using high doses of iridium-192 also has a curative effect, thus opening up a new approach to the therapy of advanced bronchial carcinoma. (orig.) [de

  16. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Audrey Dieudonné

    Full Text Available Scavenger receptors and Toll-like receptors (TLRs cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (dsRNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.

  17. Radioaerosol inhalation lung scintigraphy in bronchial asthma

    International Nuclear Information System (INIS)

    Chiba, Takashi

    1993-01-01

    A study on obstructive changes in airways and mucociliary clearance in children and youth with bronchial asthma was performed. Radioaerosol inhalation lung scintigraphies using 99T c-human serum albumin (HSA) were applied to 50 children and youth with bronchial asthma. The deposition patterns of the radioaerosol and aerosol clearance curves were evaluated. Abnormal deposition patterns, which consisted of non-homogeneous distribution and/or hot spot formation, were likely to be seen in patients with asthmatic attacks at the time of measurements. However, a few asymptomatic patients also revealed abnormal deposition patterns. The deposition patterns were related to FEV 1.0 %, MMF, V 50 and V 25 , but especially to FEV 1.0 %. As an index of mucociliary clearance, β, the rate constant of the 99m Tc-HSA aerosol clearance curve, was introduced. β was significantly lower in patients with abnormal aerosol deposition patterns than in normal persons. β was also significantly lower in patients undergoing asthmatic attack at the time of the measurements than in asymptomatic patients. β correlated negatively with FEV 1.0 %, MMF, V 50 and V 25 , but especially with FEV 1.0 %. Although patients with long term affection or moderate-to-severe asthma tended to reveal abnormal deposition patterns and had low β values, these differences were not statistically significant. Radioaerosol inhalation lung scintigraphy with 99m Tc-HSA is useful for evaluating not only obstructive changes in the airways but also for evaluating mucociliary clearance in children with bronchial asthma. (author)

  18. CPAP increases bronchial reactivity in OSAS patients

    Directory of Open Access Journals (Sweden)

    P. Korczyski

    2008-06-01

    Full Text Available Continuous positive airways pressure (CPAP is a well known and safe method of treatment patients with obstructive sleep apnoea syndrome (OSAS. The effects of CPAP administration on the upper respiratory tract are known. However its effects on the lower respiratory tract still needs to be determined. Studies on bronchial hyperreactivity in patients treated by CPAP are contradictory. The aim of the study was to assess the influence of a 3-week CPAP treatment in patients with OSAS and to evaluate associations between changes in bronchial reactivity and clinical features of OSAS and lung function tests (LFT. Patients with newly diagnosed OSAS and lack of infection or chronic illness of the respiratory tract or other conditions which could influence bronchial hyperreactivity (BHR were included. Investigations were performed in 101 patients. There were 88 males and 13 females, mean age 51.5±11.2 years and BMI 32.6±5.4 kg·m–2. Qualified patients were randomly divided into 2 groups: 76 patients to CPAP treatment group, 25 control group. Both groups did not differ in anthropometrics features, severity of OSAS and LFT. Metacholine challenge test (MchCT was performed at baseline and repeated after 3 weeks. Analysis of the individual results showed that in 11 patients the MchCT was positive (6 in the CPAP and 5 in the control groups. After 3 weeks in the group of CPAP treated patients an increase of BHR was noted. Log PC20M decreased from 1.38±0.3 to 1.26±0.5 (p<0.05. The number of patients with a positive result in the MchCT increased from 6 to 16 patients. There was no significant change in BHR in the control group. It was found that CPAP treated patients with BHR were older, had less severe OSAS and lower FEV1 (p<0.05. In none of the patients positive result of BHR did no affect compliance to CPAP treatment. Conclusions: CPAP therapy increases bronchial reactivity, but does not affect compliance to treatment.

  19. Radioaerosol Inhalation Imaging in Bronchial Asthma

    International Nuclear Information System (INIS)

    Kim, Bum Soo; Park, Young Ha; Park, Jeong Mi; Chung, Myung Hee; Chung, Soo Kyo; Shinn, Kyung Sub; Bahk, Yong Whee

    1991-01-01

    Radioaerosol inhalation imaging (RII) has been used in radionuclide pulmonary studies for the past 20 years. The method is well accepted for assessing regional ventilation because of its usefulness, easy fabrication and simple application system. To evaluate its clinical utility in the study of impaired regional ventilation in bronchial asthma, we obtained and analysed RIIs in 31 patients (16 women and 15 men; age ranging 21-76 years) with typical bronchial asthma at the Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical college, from January, 1988 to August, 1989. Scintiscans were obtained with radioaerosol produced by a HARC(Bhabha Atomic Research Center, India) nebulizer with 15 mCi of 99m Tc-phytate. The scanning was performed in anterior, posterior and lateral projections following 5-minute inhalation of radioaerosol on sitting position. The scans were analysed and correlated with the results of pulmonary function study and the findings of chest radiography. Fifteen patients had concomitant lung perfusion image with 99m Tc-MAA. Follow-up scans were obtained in 5 patients after bronchodilator therapy. 1 he patients were divided into (1) attack type (4 patients), (2) resistant type (5 patients), (3) remittent type (10 patients) and (4) bronchitic type (12 patients). Chest radiography showed hyperinflation, altered pulmonary vascularity, thickening of the bronchial wall and accentuation of hasal interstitial markings in 26 of the 31 patients. Chest radiographs were normal in the remaining 5 patients. Regardless of type, the findings of RII were basically the same, and characterized by the deposition of radioaerosol in the central parts or in the main respiratory air ways along with mottled nonsegmental ventilation defects in the periphery. Peripheral parenchymal defects were more extensive than that of expected findings from clinical symptoms, pulmonary function test and chest radiograph. Broomstick sign was present in 1.7 patients

  20. Proteomic Assessment of Biochemical Pathways That Are Critical to Nickel-Induced Toxicity Responses in Human Epithelial Cells

    Science.gov (United States)

    Ge, Yue; Bruno, Maribel; Haykal-Coates, Najwa; Wallace, Kathleen; Andrews, Debora; Swank, Adam; Winnik, Witold; Ross, Jeffrey A.

    2016-01-01

    Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses and protein response-based biochemical pathways represents a key mechanism through which nickel induces cytotoxicity and carcinogenesis. To identify protein responses and biochemical pathways that are critical to nickel-induced toxicity responses, we measured cytotoxicity and changes in expression and phosphorylation status of 14 critical biochemical pathway regulators in human BEAS-2B cells exposed to four concentrations of nickel using an integrated proteomic approach. A subset of the pathway regulators, including interleukin-6, and JNK, were found to be linearly correlated with cell viability, and may function as molecular determinants of cytotoxic responses of BEAS-2B cells to nickel exposures. In addition, 128 differentially expressed proteins were identified by two dimensional electrophoresis (2-DE) and mass spectrometry. Principal component analysis, hierarchical cluster analyses, and ingenuity signaling pathway analysis (IPA) identified putative nickel toxicity pathways. Some of the proteins and pathways identified have not previously been linked to nickel toxicity. Based on the consistent results obtained from both ELISA and 2-DE proteomic analysis, we propose a core signaling pathway regulating cytotoxic responses of human BEAS-2B cells to nickel exposures, which integrates a small set of proteins involved in glycolysis and gluconeogenesis pathways, apoptosis, protein degradation, and stress responses including inflammation and oxidative stress. PMID:27626938

  1. Evaluation of Drug Utilization Pattern for Patients of Bronchial ...

    African Journals Online (AJOL)

    Evaluation of Drug Utilization Pattern for Patients of Bronchial Asthma in a Government Hospital of Saudi Arabia. ... Background: Bronchial asthma is a social and economic healthcare burden. Drug utilization studies are ... Salbutamol and budesonide were the most common from each group, respectively. 89.5% of the ...

  2. [Safe local anesthesia in patients with bronchial asthma].

    Science.gov (United States)

    Anisimova, E N; Gromovik, M V

    The paper presents the analysis of studies of local anesthesia in patients with bronchial asthma. It was found that the diagnosis of hypersensitivity to sodium metabisulfite in patients with bronchial asthma must be optimized for development of local anesthesia selection algorithm in outpatient dentistry.

  3. The therapeutic evaluation and mechanism on treating bronchial ...

    African Journals Online (AJOL)

    ... the level of bronchial responsiveness, which proved a better curative effect of Chinese medicine. The mechanism is probably due to relieving the airway inflammation by keeping the balance between Th1 and Th2 cells. Keywords: Ziyinqingre prescription; cough; bronchial hyper-responsiveness; therapeutic mechanism ...

  4. Assessment of quality of life among children with bronchial asthma ...

    African Journals Online (AJOL)

    Background: The global disease burden associated with bronchial asthma has continued to increase particularly among children. Asthma-related quality of life is a health related assessment of disease impact on patient and care givers. Aim: To determine the perceived quality of life (QOL) among children with bronchial ...

  5. Bronchial asthma among workers in Alexandria and its association ...

    African Journals Online (AJOL)

    Introduction: Many workers in Alexandria are exposed to a variety of occupational and environmental allergens and/or irritants that predispose them to the development of bronchial asthma. The present study was conducted to determine the role of occupational exposure as a determinant of occurrence of bronchial asthma ...

  6. December 2004 45 Bronchial Asthma, Allergic Rhinitis and chole

    African Journals Online (AJOL)

    user

    2004-12-02

    Dec 2, 2004 ... Background: Gallbladder has not been associated with any allergic condition what so ever. However, certain patients with bronchial asthma and cholelithiasis have reported to the author improvement in their asthmatic attack after cholecystectomy. Methods: This was an observational study on 22 bronchial ...

  7. X-ray diagnosis of bronchial obstruction in chronic pneumonia

    International Nuclear Information System (INIS)

    Mamilyaev, R.M.

    1981-01-01

    Combined radiobronchological examination of patients with chronic pneumonia in the phase of reverse development of the disease has been performed. Severity, localization and extent of bronchial obstruction have been studied, depending on the phase of chronic pneumonia and aspects of lung tissue alterations. Bronchial lesions characteristic of chronic pneumonia were defined, as well as importance of x-ray examination methods for bronchial obstruction diagnosis. Three types of bronchial obstruction were distinguished: bronchoconstriction, bronchodilatation and their combination. With regard to the character and severity of bronchial and pulmonary tissue lesions 3 variants of chronic pneumonia are offered to be differentiated: bronchitic, bronchoectatic, and abscess-forming. The main significance in diagnosis of chronic pneumonia is attributed to combined x-ray examination, which also includes radiobronchological investigation in the first two variants of the disease [ru

  8. Bronchial and pulmonary scintigraphy with radioactively marked aerosols

    International Nuclear Information System (INIS)

    Wuerstle, T.

    1982-01-01

    In 97 patients with bronchitis, bronchial asthma, tuberculosis, sarcoidosis, pneumoconiosis, or tumors the mucociliary clearance and/or deposit pattern after inhalation of radioactively marked aerosols (1 mCi 99m Tc sulfur colloid) was studied. Normal values of the mucociliary 30 min. clearance for the central bronchial/lung periphery are 21%/15%. There was a decreased clearance with bronchitis (11/8%), bronchial asthma, emphysema, tuberculosis, sarcoidosis, trachiobronchial amyloidosis, pleural scarring or interstitial pneumona. Increased clearance (29/19%) was shown with pneumoconiosis. The correlation of deposit pattern and disease, for example, bronchitis, bronchial asthma, bullous emphysema, pleural scarring, partial lung resection, bronchopneumonia, or bronchial restriction, is described. In comparison of aerosol scintigraphy to perfusion scintigraphy and ventilation with gaseous xenon, the aerosol scintigraphy is superior to xenon for certain indications. The aerosol particles, which are larger in comparison to xenon, settle easier by obstructions or flow variations and thereby give better clinical indications of regional differences. (orig.) [de

  9. Detection of bronchial breathing caused by pneumonia.

    Science.gov (United States)

    Gross, V; Fachinger, P; Penzel, Th; Koehler, U; von Wichert, P; Vogelmeier, C

    2002-06-01

    The classic auscultation with stethoscope is the established clinical method for the detection of lung diseases. The interpretation of the sounds depends on the experience of the investigating physician. Therefore, a new computer-based method has been developed to classify breath sounds from digital lung sound recordings. Lung sounds of 11 patients with one-sided pneumonia and bronchial breathing were recorded on both the pneumonia side and on contralateral healthy side simultaneously using two microphones. The spectral power for the 300-600 Hz frequency band was computed for four respiratory cycles and normalized. For each breath, the ratio R between the time-segments (duration = 0.1 s) with the highest inspiratory and highest expiratory flow was calculated and averaged. We found significant differences in R between the pneumonia side (R = 1.4 +/- 1.3) and the healthy side (R = 0.5 +/- 0.5; p = 0.003 Wilcoxon-test) of lung. In 218 healthy volunteers we found R = 0.3 +/- 0.2 as a reference-value. The differences of ratio R (delta R) between the pneumonia side and the healthy side (delta R = 1.0 +/- 0.9) were significantly higher compared to follow-up studies after recovery (delta R = 0.0 +/- 0.1, p = 0.005 Wilcoxon-test). The computer based detection of bronchial breathing can be considered useful as part of a quantitative monitoring of patients at risk to develop pneumonia.

  10. Usefulness of antioxidant drugs in bronchial asthma

    International Nuclear Information System (INIS)

    Jawad, F.H.; Atabee, H.G.A.; Sahib, A.S.

    2010-01-01

    Bronchial asthma is a clinical syndrome with possible correlation to oxidative stress, therefore the effectiveness of some antioxidant drugs has been studied in management of chronic bronchial asthma. Methods: This study was carried out in the Al- Kadhimia Teaching Hospital between December 2008 to May 2009 on 56 patients of both sexes who were randomly allocated to 7 groups, plus 10 healthy volunteers as control group. Each group was given one of the following drugs: vitamin E, vitamin C, combination of vitamin E and C, selenium, zinc, allopurinol and garlic oil, in addition to their classical treatment of asthma and their pulmonary function tests were conducted as well as measuring the levels of serum zinc, calcium, and malondialdehyde (MDA) before and after treatment. Results: All asthmatic patients were suffering from oxidative stress and this was detected by measuring the level of serum MDA which was 2-3 folds more than the control group, and all antioxidants except allopurinol showed a beneficial effect of different degrees in the pulmonary function tests accompanied with clinical improvement of patients' condition and marked decrease in the number of daily attacks. Antioxidants can compensate the oxidative stress that correlates with asthma, can reduce the symptoms of asthma, and improve pulmonary functions. (author)

  11. Metastatic urachal carcinoma in bronchial brush cytology

    Directory of Open Access Journals (Sweden)

    Fatima Zahra Aly

    2013-01-01

    Full Text Available Urachal carcinoma is rare comprising less than 1% of all bladder carcinomas. Metastases of urachal carcinoma have been reported to meninges, brain, ovary, lung, and maxilla. Cytologic features of metastatic urachal carcinoma have not been previously reported. We present a case of metastatic urachal adenocarcinoma in bronchial brushings and review the use of immunohistochemistry in its diagnosis. A 47-year-old female was seen initially in 2007 with adenocarcinoma of the bladder dome for which she underwent partial cystectomy. She presented in 2011 with a left lung mass and mediastinal adenopathy. Bronchoscopy showed an endobronchial lesion from which brushings were obtained. These showed numerous groups of columnar cells with medium sized nuclei and abundant cytoplasm. The cells were positive for CK20 and CDX2 and negative for CK7. The cytomorphological findings were similar to those in the previous resection specimen and concurrent biopsy. This is the first case report of bronchial brushings containing metastatic urachal carcinoma. No specific immunohistochemical profile is available for its diagnosis. The consideration of a second primary was a distinct possibility in this case due to the lapse of time from primary resection, absence of local disease, and lack of regional metastases.

  12. Leukocyte peroxidase and leptin: an associated link of glycemic tolerance and bronchial asthma?

    Directory of Open Access Journals (Sweden)

    Parco S

    2010-05-01

    Full Text Available Sergio ParcoImmunopathology Unit, Laboratory of the Department of Medicine, Children’s Hospital, IRCCS Burlo Garofolo, Trieste, ItalyAbstract: Recent observations suggest the presence of an interaction between leptin and the inflammatory system during bronchial asthma. Although there is evidence of a positive association between asthma and obesity in adults and children, little is yet known about the role of serum leptin, as a potential mediator for bronchial epithelial homeostasis, and intraleukocyte myeloperoxidase (MPO, a hemoprotein with a molecular weight of 140 kDa, expression of the inflammatory system, in asthmatic children. Glycemic tolerance is an important pathogenetic element in developing type 2 mellitus diabetes and a confirmed predictor of incident asthma-like symptoms in adults. This work is aimed at assessing a possible correlation between basal leukocyte myeloperoxidase levels, basal leptin and insulin-glycemic tolerance in obese children. Thirty obese children aged between 7 and 15 years were examined. The analyzed data showed a normal response to the insulinemic stimulus in children of both sexes whose basal leptin and MPO values, expressed as MPO intracellular index, werewithin the normal range.Keywords: leptin, myeloperoxidase, glycemic tolerance, asthma

  13. Surface to nuclear distances in human bronchial epithelium: Relationships to penetration by Rn daughters

    International Nuclear Information System (INIS)

    Baldwin, F.; Hovey, A.; McEwen, T.; O'Connor, R.; Unruh, H.; Bowden, D.H.

    1991-01-01

    Lung cancer in U miners is thought to be related to the inhalation of particulate Rn daughters. Since the depth of penetration by alpha particles is short, the thickness of the epithelium lining the bronchial tree may be a critical factor in the development of cancers at specific sites in the lung. The objectives of the study were to measure the thickness of the epithelium at all levels of the human bronchial tree, to determine the distances of epithelial nuclei from the mucociliary surface, and to compare these parameters in smokers and nonsmokers. Twenty-nine surgically removed specimens were examined; 26 were from smokers. No significant differences were found between smokers and nonsmokers, allowing us to treat the 29 cases as a homogeneous group. With progressive divisions of the bronchi, the epithelium decreases in thickness, and distances of nuclei from the surface are also less in the peripheral bronchi. Allowing for artefacts of tissue preparation, the mean distance from the mucociliary surface to the underlying nuclei varies between 17 and 38 microns

  14. Nobiletin Stimulates Chloride Secretion in Human Bronchial Epithelia via a cAMP/PKA-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Hao

    2015-08-01

    Full Text Available Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC in a human bronchial epithelial cell line (16HBE14o-, and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. Methods: The ISC measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca2+]i and cAMP were also quantified. Results: Nobiletin stimulated a concentration-dependent increase in ISC, which was due to Cl- secretion. The increase in ISC was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172, but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS, Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated ISC was also sensitive to a protein kinase A (PKA inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in ISC in a cystic fibrosis (CF cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca2+]i. Conclusion: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.

  15. Bronchial arterial infusion versus bronchial combined pulmonary arterial infusion for pulmonary metastatic tumors

    International Nuclear Information System (INIS)

    Dong Sheng; Dong Weihua; Jia Ningyang; Zhang Dianbo; Xiao Xiangsheng

    2008-01-01

    Objective: To evaluate the pulmonary metastatic tumor response to different ways of transcatheter arterial infusion. Methods: Thirty-five patients with pulmonary metastatic tumors were randomized divided into two groups: 15 patients with 49 lesions treated with bronchial arterial infusion (BAI) and 20 patients with 65 lesions treated with bronchial arterial infusion (BM)combined with pulmonary arterial infusion (PAI). The therapeutic response was assessed by the WHO evaluation criteria. Results: The total effective rate(CR + PR) of BAI was 65.3% (32/49), PAI + BAI was 61.5%(40/65) showing no statistical difference. The median survival time of BAI was 9 mo, BAI + PAI was 11.5 mo, demonstrating no statistical significance. Conclusions: BAI should be the primary treatment for pulmonary metastatic tumor. (authors)

  16. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    International Nuclear Information System (INIS)

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-α-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 μM) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-α and 5 μM sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction

  17. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.

    Science.gov (United States)

    Cheng, Xiao-Yu; Li, Yang-Yang; Huang, Cheng; Li, Jun; Yao, Hong-Wei

    2017-04-04

    Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.

  18. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Balakrishna Shrilatha

    2009-04-01

    Full Text Available Abstract Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs. Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230 as the EPFR because we have previously shown that it forms a EPFR on Cu(IIO surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH, glutathione peroxidase (GPx, and superoxide dismutase (SOD levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx. The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine

  19. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    Energy Technology Data Exchange (ETDEWEB)

    Lasalvia, Maria [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Castellani, Stefano [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); D’Antonio, Palma [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Perna, Giuseppe [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Carbone, Annalucia [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy); Colia, Anna Laura; Maffione, Angela Bruna [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Capozzi, Vito [Department of Clinical and Experimental Medicine, University of Foggia, Foggia (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Conese, Massimo, E-mail: massimo.conese@unifg.it [Department of Medical and Surgical Sciences, University of Foggia, Foggia (Italy)

    2016-10-15

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in

  20. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    International Nuclear Information System (INIS)

    Lasalvia, Maria; Castellani, Stefano; D’Antonio, Palma; Perna, Giuseppe; Carbone, Annalucia; Colia, Anna Laura; Maffione, Angela Bruna; Capozzi, Vito; Conese, Massimo

    2016-01-01

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the

  1. Effect of ipratropium bromide in bronchial asthma.

    Directory of Open Access Journals (Sweden)

    Taskar V

    1992-07-01

    Full Text Available The effect of inhalation of ipratropium bromide was evaluated in 20 patients with bronchial asthma. It was observed that there was no significant improvement in the forced vital capacity and the forced expired volume in one second, while there was significant improvement in the peak expiratory flow rate (PEFR measured at 9 pm, after inhalation of 2 puffs of ipratropium bromide aerosol (0.02mg/puff three to four times a day for 2 weeks. Since PEFR is a measure of large airway function and cholinergic mechanisms are primarily involved for airflow obstruction at large airways, improvement in PEFR by ipratropium bromide highlights its role as a useful bronchodilator in patients in whom vagal reflexes are responsible for the provocation of bronchoconstriction.

  2. [Diagnosis and differential diagnosis of bronchial asthma].

    Science.gov (United States)

    Gillissen, A; Bauer, T; Richter, F; Leonhardt, P

    2001-11-01

    Asthma and COPD (chronic obstructive pulmonary disease) are the most important obstructive pulmonary diseases. Patient's history and physical evaluation give major hints of the underlying disease. Further diagnostic measures comprise lung function analysis including spirometry, plethysmography and--in severe cases--blood gas analysis. Bronchial hyperreactivity may be quantified with an unspecific inhalative provocation test. In many cases allergic diseases are accompanied by asthma. Thus, allergy tests--particularly skin prick tests--have to be carried out. To further define an underlying allergy, in some cases even specific inhalative provocation tests have to be performed. X-ray of the thorax and other imaging techniques, detailed blood analysis, further diagnosis of the upper respiratory tract and the cardiac system may have to be carried out a) to quantify the effects of a severe form of asthma or COPD on other organs, and b) for differential diagnostic examinations.

  3. CT diagnosis of traumatic bronchial rupture in children

    International Nuclear Information System (INIS)

    Epelman, Monica; Ofer, Amos; Guralnik, Ludmila; Klein, Yoram; Best, Leal H.; Bentur, Lea; Traubici, Jeffrey

    2002-01-01

    Bronchial rupture is a rare and serious complication of blunt chest trauma in children. The diagnosis of this injury is challenging and requires a high degree of clinical suspicion. It is frequently associated with other severe injuries that may draw the focus of attention away from this potentially catastrophic but treatable injury. The radiographic findings of bronchial rupture have been reported in very few series. We report the findings in two children with bronchial rupture diagnosed by CT, in whom CT resulted in a significant change in patient management. (orig.)

  4. Superselective bronchial artery chemoembolization in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Gu Jianping; He Xu; Chen Liang; Su Haobo; Lou Wensheng; Fan Chunying

    2003-01-01

    Objective: To investigate the safety and the effect of superselective bronchial artery chemoembolization in the treatment of lung cancer. Methods: Three hundred and twenty-nine cases of lung cancer diagnosed by pathology and treated with simply bronchial artery infusion or superselective bronchial artery chemoembolization were investigated. (1) Simply bronchial artery infusion (n=221): 40-60 mg Cisplatin or 200-300 mg Carboplatin combined with 10-20 mg Mitomycin-C or 100-200 mg Etoposide were infused through the catheter which was placed in the bronchial artery trunk or intercostal-bronchial artery trunk after angiography, re-infusion was performed at 2-4 weeks intervals, 549 times of infusion were performed in 221 cases. (2) Superselective bronchial artery chemoembolization (n=108): microcatheter was superselectively inserted into the distal of feeding artery guided with road-map after selective angiography, then anticarcinogen (same as simply bronchial artery infusion) and embolic material were infused through microcatheter. 30-50 Gelfoam particles and/or 3-8 ml Lipiodol was used as embolic material. Chemoembolization was reperformed at 6-9 weeks intervals, 266 times of chemoembolization were done in 108 cases. Results: No severe complications such as spinal injury were found. 28 cases in 221 cases performed with simply bronchial infusion got complete response (CR), meanwhile, partial response (PR) in 79 cases, stable(S) in 88 cases, and processes (P) in 26 cases. The effective rate (CR + PR) was 48.4%, survival rate of 1 year and 2 years were 53.8% and 44.8%, respectively. In the 108 cases performed with superselective bronchial artery chemoembolization, there were 16 cases of CR, 53 cases of PR, 32 cases of S, and 7 cases of P. The effective rate (CR + PR) was 63.9%, survival rate of 1 year and 2 years were 77.8% and 65.7%, respectively. There were significant statistic differences in the effective rate and survival rate of 1 year and 2 years between the two

  5. Turbulent Dynamics of Epithelial Cell Cultures

    Science.gov (United States)

    Blanch-Mercader, C.; Yashunsky, V.; Garcia, S.; Duclos, G.; Giomi, L.; Silberzan, P.

    2018-05-01

    We investigate the large length and long time scales collective flows and structural rearrangements within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show that their area follows an exponential law with a constant mean value and their rotational frequency is size independent, both being characteristic features of the chaotic dynamics of active nematic suspensions. Indeed, we find that HBECs self-organize in nematic domains of several cell lengths. Nematic defects are found at the interface between domains with a total number that remains constant due to the dynamical balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well described by a hydrodynamic theory of extensile active nematics.

  6. Challenges in the Management of Bronchial Asthma Among Adults ...

    African Journals Online (AJOL)

    Challenges in the Management of Bronchial Asthma Among Adults in Nigeria: A Systematic ... Annals of Medical and Health Sciences Research ... Nigerian Thoracic Society, pharmaceutical industries, and the health‑care workers in general.

  7. Myocardial Infarction as a Complication of Bronchial Artery Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Labbé, Hugo, E-mail: hugo.labbe.1@ulaval.ca [Université Laval, Department of Medicine (Canada); Bordeleau, Simon [Université Laval, Department of Emergency Medicine (Canada); Drouin, Christine [Université Laval, Department of Anesthesiology and Critical Care Medicine (Canada); Archambault, Patrick [Université Laval, Department of Emergency Medicine (Canada)

    2017-03-15

    Bronchial artery embolization is now a common treatment for massive pulmonary hemoptysis if flexible bronchoscopy at the bedside failed to control the bleeding. Complications of this technique range from benign chest pain to devastating neurological impairments. We report the case of a 41-year-old man who developed an ST elevation myocardial infarction during bronchial artery embolization, presumably because of coronary embolism by injected particles. In this patient who had no previously known coronary artery disease, we retrospectively found a communication between the left bronchial artery and the circumflex coronary artery. This fistula was not visible on the initial angiographic view and likely opened because of the hemodynamic changes resulting from the embolization. This case advocates for careful search for bronchial-to-coronary arterial fistulas and the need for repeated angiographic views during embolization procedures.

  8. Thoracic lymphangiectasis presenting with chyloptysis and bronchial cast expectoration

    International Nuclear Information System (INIS)

    Orliaguet, O.; Beauclair, P.; Gavazzi, G.; Winckel, P.; Laporte, F.; Coulomb, M.; Ferretti, G.R.

    2002-01-01

    A 70-year-old man with recurrent undiagnosed episodes of bronchial cast expectoration and pulmonary infiltrates on chest radiography for 15 years is described. The diagnosis of chyloptysis was established by chemical analysis of the bronchial aspiration. We emphasize the radiological findings of this rare observation. The CT-associated lymphangiography showed mediastinal lymphangiectasis with retrograde opacification of mediastinal and hilar lymph nodes as well as submucosal lymphatic vessels protruding into the lumen of the tracheo-bronchial tree without evidence of thoracic duct obstruction as well as a ''crazy-paving appearance.'' Congenital incompetence of the valves of the lymphatic vessels originating from the thoracic duct is held to be the cause. Chyloptysis and pulmonary lymphatic disorder should be sought in cases of bronchial cast expectoration. (orig.)

  9. Imaging findings of bronchial atresia in fetuses, neonates and infants

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, Leonor; Meuli, Reto [University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Department of Diagnostic and Interventional Radiology, Lausanne (Switzerland); Vial, Yvan [University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Department of Obstetrics and Gynecology, Lausanne (Switzerland); Gengler, Carole [University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Department of Pathology, Lausanne (Switzerland)

    2016-03-15

    Congenital lung malformations are increasingly detected before birth. However, bronchial atresia is rarely identified in utero and not always recognized in neonates. There are two types of atresia: (1) proximal, located at the level of the mainstem or the proximal lobar bronchi, which is extremely rare and usually lethal during pregnancy, causing a tremendous volume increase of the distal involved lung with secondary hypoplasia of the normal lung, and (2) peripheral, located at the segmental/subsegmental bronchial level, which may present as an isolated lesion or as part of a complex congenital malformation. Prenatal findings are mostly nonspecific. Postnatal exams show overinflated lung areas and focal bronchial dilations. The typical fluid-filled bronchoceles are not always observed in neonates but develop progressively in the first months of life. This pictorial essay describes the spectrum of imaging findings of bronchial atresia in fetuses, neonates and infants. (orig.)

  10. Bronchial artery embolization in the treatment of massive hemoptysis

    International Nuclear Information System (INIS)

    Zubairi, Ali Bin Sarwar; Zubairi, M.A.; Irfan, M.; Tanveer-ul-Haq; Fatima, K.; Azeemuddin, M.

    2007-01-01

    Objective was to evaluate the efficacy of bronchial arteriography and bronchial artery embolization (BAE) in the management of massive hemoptysis in a developing Asian country. A retrospective review was carried out from March 2000 to March 2005 to evaluate the demographics, clinical presentation, radiographic studies, bronchoscopy results, and complications of bronchial arteriography and BAE at a tertiary care hospital in Pakistan. Fourteen patients (9males, 5 females) with a mean age of 49 years underwent bronchial arteriography and BAE for massive hemoptysis. Hemoptysis was caused by bronchiectasis (10 patients), active pulmonary tuberculosis (3 patients), and lung malignancy (one patient). A CT scan of the chest was carried out in 11 patients, which revealed bronchiectasis (8 patients), cavity with infiltrates (3 patients), and mass lesion (one patient). Bronchoscopy was performed in all patients. Bleeding lobe or segment was identified in 12 patients. Bronchial arteriography revealed hypervascularity (13 patients), bronchial artery hypertrophy (5 patients), hypervascularity with shunting (one patient), dense soft tissue staining (7 patients), extravasation of contrast (one patient) pseudoaneurysm (one patient). Bronchial artery embolization was carried out in all patients. Rebleeding occurred within 24 hours in 2 patients who underwent surgery and within one week another 2 patients who were managed with repeat BAE. The complication of embolization occurred in one patient (transverse myelitis). Thirteen patients improved and were discharged home. One patient with terminal lung carcinoma died due to cardiogenic shock secondary to acute myocardial infarction. Bronchial artery embolization is an effective method for management of massive hemoptysis in developing countries and has a low complication rate. (author)

  11. [State of higher nervous activity in women with bronchial asthma].

    Science.gov (United States)

    Zinchenko, T M

    2001-01-01

    A total of 103 women were examined with bronchial asthma, who demonstrated disturbances in the intrapsychic adaptation presenting as hystero-hypochondriacal and anxious alterations in the personality pattern with formation of a certain modus of thinking and behavior. Differences have been ascertained in the personality profile of patients with varying clinicopathogenetic forms of bronchial astma in those groups of patients differing in age, degree of severity of the condition duration of the analysis.

  12. Effect of aerosolized acetylcholine on bronchial blood flow.

    Science.gov (United States)

    Charan, N B; Carvalho, P; Johnson, S R; Thompson, W H; Lakshminarayan, S

    1998-08-01

    We studied the effects of aerosolized as well as intravenous infusion of acetylcholine on bronchial blood flow in six anesthetized sheep. Intravenous infusion of acetylcholine, at a dose of 2 microg/kg, increased bronchial blood flow from 45 +/- 15 (SE) to 74 +/- 30 ml/min, and vascular conductance increased by 76 +/- 22%. In contrast, aerosolized acetylcholine at doses of 2 and 20 microg/kg decreased bronchial vascular conductance by approximately 10%. At an aerosolized dose of 200 microg/kg, the bronchial vascular conductance increased by approximately 15%, and there was no further increase in conductance when the aerosolized dose was increased to 2,000 microg/kg. Pretreatment of animals with a nitric oxide synthase inhibitor, Nomega-nitro-L-arginine methyl ester hydrochloride, partially blocked the vasodilatory effects of intravenous acetylcholine and completely blocked the vasodilatory effects of high-dose aerosolized acetylcholine. These data suggest that aerosolized acetylcholine does not readily penetrate the vascular wall of bronchial circulatory system and, therefore, has minimal vasodilatory effects on the bronchial vasculature.

  13. Bronchial Artery Embolization for Massive Hemoptysis: a Retrospective Study

    Directory of Open Access Journals (Sweden)

    Ali Fani

    2013-05-01

    Full Text Available   Introduction: To assess the efficacy and safety of bronchial artery embolization in the treatment of massive hemoptysis.   Materials and Methods: A retrospective study on 46 patients (26 males and 20 females who were referred to the Razavi Hospital from April 2009 to May 2012 with massive hemoptysis and had bronchial artery embolization procedures. General characteristics of the patients including age, gender, etiology, and thorax computed tomograms, findings of bronchial angiographic, results of the embolization, complications related to bronchial artery embolization and clinical outcome during follow-up were reviewed. Results: The etiology included previous pulmonary tuberculosis in 20 cases, previous tuberculosis with bronchiectasis in 16 cases, bronchiectasis in 6 cases, and active pulmonary tuberculosis in one case. No identifiable causes could be detected in three patients. Moreover, massive hemoptysis was successfully and immediately controlled following the embolization procedure in all patients. One patient developed recurrent hemoptysis during one month following the procedure and was treated by re-embolization. No major procedure–related complication such as bronchial infarction was identified However none of the patientsexperienced neurological complications. Conclusion: Bronchial artery embolization is a safe and effective means of controlling massive hemoptysis and should be regarded as the first-line treatment for this condition.

  14. Effectiveness of thin-slice axial images of multidetector row CT for visualization of bronchial artery before bronchial arterial embolization

    International Nuclear Information System (INIS)

    Shida, Yoshitaka; Hasuo, Kanehiro; Aibe, Hitoshi; Kubo, Yuko; Terashima, Kotaro; Kinjo, Maya; Kamano, H.; Yoshida, Atsuko

    2008-01-01

    We assessed the ability of visualization of bronchial artery (BA) by using thin-slice axial images of 4-detector multidetector row CT in 65 patients with hemoptysis. In all patients, the origins of BA were well identified with observation of consecutive axial images with 1 mm thickness by paging method and bronchial arterial embolization (BAE) was performed successfully. Thin-slice axial images were considered to be useful to recognize BA and to perform BAE in patients with hemoptysis. (author)

  15. Role of airway epithelial barrier dysfunction in pathogenesis of asthma.

    Science.gov (United States)

    Gon, Yasuhiro; Hashimoto, Shu

    2018-01-01

    Bronchial asthma is characterized by persistent cough, increased sputum, and repeated wheezing. The pathophysiology underlying these symptoms is the hyper-responsiveness of the airway along with chronic airway inflammation. Repeated injury, repair, and regeneration of the airway epithelium following exposure to environmental factors and inflammation results in histological changes and functional abnormalities in the airway mucosal epithelium; such changes are believed to have a significant association with the pathophysiology of asthma. Damage to the barrier functions of the airway epithelium enhances mucosal permeability of foreign substances in the airway epithelium of patients with asthma. Thus, epithelial barrier fragility is closely involved in releasing epithelial cytokines (e.g., TSLP, IL-25, and IL-33) because of the activation of airway epithelial cells, dendritic cells, and innate group 2 innate lymphoid cells (ILC2). Functional abnormalities of the airway epithelial cells along with the activation of dendritic cells, Th2 cells, and ILC2 form a single immunopathological unit that is considered to cause allergic airway inflammation. Here we use the latest published literature to discuss the potential pathological mechanisms regarding the onset and progressive severity of asthma with regard to the disruption of the airway epithelial function. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  16. Depleted uranium induces neoplastic transformation in human lung epithelial cells.

    Science.gov (United States)

    Xie, Hong; LaCerte, Carolyne; Thompson, W Douglas; Wise, John Pierce

    2010-02-15

    Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.

  17. Magnetic resonance tomography (MRT) in bronchial carcinoma

    International Nuclear Information System (INIS)

    Felix, R.; Bittner, R.; Schoerner, W.; Weiss, T.

    1988-01-01

    Comparative studies were made of 47 patients suffering from histologically and cytologically confirmed bronchial carcinoma, using CT and MRT respectively. CT examinations were performed before and after intravenous administration of contrast medium, whereas the MR examinations were conducted via EEG-triggered T 1 and T 2 marked SE sequences in the axial and coronary planes. Both methods were assessed in respect of tumour visualisation and documentation of tumour spread. Staging of tumour and lymph nodes yielded largely concurring results for CT and MRT. Exceptions were seen in 7 of 10 patients with malignant involvement of the pericardium and in 3 of 27 patients with lymph node metastases located mediastinally and subcarinally where only MRT showed a positive involvement of the pericardium or lymph nodes (with possible consequences for the staging of the tumour or lymph nodes). Decisive advantages of MRT compared with CT were seen in the identification of infiltration of the aortic-wall, in the differentiation of the poststenotic syndrome, in the visualisation of the thoracic wall infiltration and functional information on blood flow rate in upper venolus obstruction caused by a carcinoma. (orig.) [de

  18. Lung function decline in bronchial asthma.

    Science.gov (United States)

    Cibella, Fabio; Cuttitta, Giuseppina; Bellia, Vincenzo; Bucchieri, Salvatore; D'Anna, Silvestre; Guerrera, Daniela; Bonsignore, Giovanni

    2002-12-01

    We evaluated the longitudinal changes in lung function and the factors associated with FEV(1) changes over time in a sample of asthmatic subjects. FEV(1) measures were recorded every 3 months over a 5-year follow-up period. To compare all subjects independently of body size, FEV(1) values were normalized for the subject's height at the third power. We evaluated the possible effect of age, baseline FEV(1), disease duration, and FEV(1) variability on the rate of change of FEV(1). We studied 142 subjects with asthma diagnosed on the basis of validated clinical and functional criteria. FEV(1) showed a linear decay with aging in each subject. For a subject 1.65 m in height, the median overall FEV(1) decay was 40.9 mL/yr. FEV(1) decay slopes were significantly influenced by age and sex, being steeper in younger male subjects. A significant interaction was found between age and baseline FEV(1): the FEV(1) decay was significantly higher among younger asthmatics with a poorer baseline functional condition. A longer disease duration was associated with a lower FEV(1) slope. FEV(1) variability was strongly associated with an increased rate of FEV(1) decline. FEV(1) decline in patients with bronchial asthma is significantly influenced by baseline FEV(1), disease duration, and FEV(1) variability. Moreover, the rate of FEV(1) decline seems to increase in younger subjects only when the baseline function is poorer.

  19. Influence of age on bronchial mucociliary transport

    International Nuclear Information System (INIS)

    Puchelle, E.; Zahm, J.-M.; Bertrand, A.

    1979-01-01

    Mucociliary clearance was measured in 19 healthy non-smoking male subjects, aged between 21 and 69, by analysing the decrease in bronchial radioactivity of an aerosol of resin particles (mean diameter 7.4 +- 1.5 μm) labelled with sup(99m)Tc. The mucociliary clearance was expressed as the percentage of radioactivity eliminated after 1 h. The measurements were made on two occasions with an average time lapse of 5 weeks. The intra- and inter-individual coefficients of variation were 15.6% and 41.5% respectively. The mucociliary clearance was significantly lower (P 54 years) than that observed (mean 34.1 +- s.d. 14.1%) in the younger subjects (21 to 37 years). A significant negative correlation (r=-0.472, P<0.05) was obtained between the ages of the healthy subjects and their mucociliary clearance. However, the fact that the results varied considerably within each age group suggests that factors other than age may have an effect on the mucociliary clearance. (author)

  20. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Aysun Adan Gökbulut

    2015-06-01

    Full Text Available INTRODUCTION: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey, on 232B4 chronic lymphocytic leukemia (CLL cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. METHODS: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. RESULTS: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. DISCUSSION AND CONCLUSION: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1.

  1. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    International Nuclear Information System (INIS)

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-01-01

    Research highlights: → Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. → HDAC inhibition decreases Nrf2 protein stability. → HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. → HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H 2 O 2 ) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H 2 O 2 -induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  2. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, Maurizio [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Ovrevik, Johan [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Mollerup, Steen [Section for Toxicology, National Institute of Occupational Health, N-0033 Oslo (Norway); Asare, Nana [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Longhin, Eleonora [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Dahlman, Hans-Jorgen [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Camatini, Marina [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Centre Research POLARIS, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Holme, Jorn A., E-mail: jorn.holme@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway)

    2011-08-01

    Highlights: {yields} PM2.5 induces mitotic arrest in BEAS-2B cells. {yields} PM2.5 induces DNA damage and activates DNA damage response. {yields} AhR regulated genes (Cyp1A1, Cyp1B1 and AhRR) are upregulated after PM exposure. {yields} Mitotic spindle assembly is perturbed in PM exposed cells. - Abstract: Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in 'classical' apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  3. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, Nicolas [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Thimmulappa, Rajesh [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E. [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Biswal, Shyam [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Ito, Kazuhiro [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom); Barnes, Peter J., E-mail: p.j.barnes@imperial.ac.uk [Airway Disease Section, National Heart and Lung Institute, Imperial College, London SW3 6LY (United Kingdom)

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  4. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-29

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  5. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    Science.gov (United States)

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-06-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.

  6. Features of Atopic Reactivity in Schoolchildren with Severe Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    U.I. Marusyk

    2014-11-01

    Full Text Available The study involved 30 students with severe bronchial asthma and 30 children with moderate to severe course. Patients with severe bronchial asthma revealed a clear tendency to increase the relative content of interleukin 4 in peripheral blood, which indirectly indicates the severity of inflammation in the bronchi. Almost every second child suffering from severe bronchial asthma reported an increase in the concentration of immunoglobulin E (more than 545.3 IU/ml, and the odds ratio was 1.9 (95% CI 1.1–3.4. In the group of patients with severe bronchial asthma, cases of increased skin sensitivity to household allergens were significantly more frequent compared to the second group. Thus, the size of hyperemia over 15.0 mm was recorded in 81.5 % of children of the first group and only in 51.9 % of persons (Pϕ < 0.05 in the second one. Clinical and epidemiological risk and diagnostic value of individual indicators of atopic reactivity were determined to verify the phenotype of severe bronchial asthma.

  7. Psychological dysfunctions in women with bronchial asthma

    Directory of Open Access Journals (Sweden)

    Natalia G. Astafieva

    2017-01-01

    Full Text Available Background. The importance of psychosocial factors in the management of bronchial asthma (BA is discussed in clinical guidelines, including in international and national clinical guidelines. However, a specific evaluation of their role as a cause of poor asthma control in susceptible patients is required. Aim. Assessment of psychological health of women with different levels of asthma control.Materials and methods. The study included 108 women with asthma observed in Saratov center for Allergology who were stratified into 3 groups according to the control level (good, partial, uncontrolled, according to GINA. In establishing a diagnosis of asthma, standard methods were used (medical history, symptoms, spirography. To assess the level of control, ACQ-5 (Asthma Control Questionnaire 5 items-self-administered was used, to assess the quality of life, questionnaires AQLQ-S (Asthma Quality of Life Questionnaire S; SF-36 (36-ltem MOS Short-Form Health Survey, a standardized and validated Russian version of the women’s health questionnaire WHQ (Women’s Health Questionnaire were used; for psychological diagnosis and evaluation of social and personal competencies that contribute to the preservation and improvement of human health (the intellectual, personal, emotional, physical, social, creative, spiritual aspects, integrated multimodal questionnaire was used. The comparison was conducted with a control group of men with bronchial asthma, comparable in age and level of control.Results. Women with poorly controlled asthma had worse performance of AQLQ-S (combined median score of 3,43 instead of 5,13 in the group of good control; p < 0,05; all scales of the SF-36, including the general condition (43,48 against 55,07, role of physical (25,93 against 57,76 and emotional problems (43,83 against 64,37; at p < 0.05. According to the WHQ questionnaire (the inverse relationship: the higher the score, the lower the quality of life in the group with poor control

  8. Delphi project in bronchial asthma. Two stages.

    Science.gov (United States)

    Fernández-Benítez, M; Ibero Iborra, M; Sanz Ortega, J; Garde Garde, J

    2010-01-01

    From the paediatric point of view, we have undertaken two Delphi studies into bronchial asthma. The first is related to the consensus known as the consensus document of the five associations. The second is more recent and has been undertaken with GEMA (the Spanish Guidelines on the Management of Asthma). The aim of this paper is to carry out a descriptive study comparing the 2 Delphi processes and to objectively assess if in some way behaviour over the past two years has changed as far as expert opinion is concerned. In the consensus document those points giving rise to most controversy were the treatment of children under three years of age and treatment with immunotherapy in allergic asthma. It is also necessary to highlight how important it was at that particular point in time to define the phenotypes of wheezing and the predictive index of asthma in children of less than 3 years of age. Of the 52 questions in the questionnaire, in 13.6% the panel of experts reached no consensus in their positions. Following GEMA the Delphi methodology, 56 questions were asked in the first round of the questionnaire, and consensus was reached in 87.5%. As regards the paediatric part relating to diagnosis and treatment in children, agreement was reached on all the questions in the first round. Agreement was reached in 8.92% questions in the second round. Clinical guidelines and consensus documents can modify behaviour towards an illness, both in the diagnosis and treatment. Copyright © 2010 SEICAP. Published by Elsevier Espana. All rights reserved.

  9. In vitro study of injury on human bronchial epithelial cells caused by gunpowder smog.

    Science.gov (United States)

    Lan, Xiaomei; Feng, Liang; Liu, Yifan; Zhou, Ying; Shao, Lingli; Pang, Wei; Lan, Yating; Wang, Chengbin

    2013-02-01

    Smog inhalation is associated with acute respiratory symptoms in exposed victims. However, despite the evidence from cell injury caused by smog, a stable and practical apparatus used to treat cells with smog is necessary. The aim of this study is to develop a cell research platform of smoke inhalation injury. In the smog-generation device, a wireless electromagnetic heater was used to ignite gunpowder and generate smog. The quality of black powder was checked by the black powder burn rate, and experimental smog was indirectly checked by the amount of cell damage. The temperature and humidity were set at 37 °C ± 1 °C and ≥95% in the smog-cells reaction chamber, respectively. Factors including gunpowder dosages, smog-exposure time, the cell density, modes of exposure, volumes of smog, test durations, volumes of the cell culture medium and combustion velocity were measured. Coefficient variation of different batches of gunpowder and smog were less than 4% and 9%, respectively. With larger gunpowder dosage and longer exposure time, cell injury appeared to increase. When cells were cultured in 4 × 10(4)/well density in culture medium (1 mL/well), exposed to more than 10 L smog with filter screens above plates, detected after 24 h culture in cell incubator and gunpowder burned out within 5 s, smog had the best effect on cell injury. In conclusion, the experimental device can produce test smog stably and safely. The apparatus treating cells with smog can induce cell injury effectively, and the injury is positively correlated with smog concentration and exposure time.

  10. Effect of COPD treatments on MRP1-mediated transport in bronchial epithelial cells

    NARCIS (Netherlands)

    van der Deen, Margaretha; Homan, Sandra; Timmer-Bosscha, Hetty; Scheper, Rik J; Timens, Wim; Postma, Dirkje S; de Vries, Elisabeth G.

    2008-01-01

    BACKGROUND: Smoking is the principle risk factor for development of chronic obstructive pulmonary disease (COPD). Multidrug resistance-associated protein 1 (MRP1) is known to protect against toxic compounds and oxidative stress, and might play a role in protection against smoke-induced disease

  11. Influenza enhances caspase-1 in bronchial epithelial cells from asthmatic volunteers and is associated with pathogenesis

    Science.gov (United States)

    Background: The leading cause of asthma exacerbation is respiratory viral infection. Innate antiviral defense pathways are altered in the asthmatic epithelium, yet involvement of inflammasome signaling in virus-induced asthma exacerbation is not known. Objective: This study com...

  12. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers

    Czech Academy of Sciences Publication Activity Database

    Hasan, Shakir; Kulkarni, N.N.; Asbjarnarson, A.; Linhartová, Irena; Osička, Radim; Šebo, Peter; Gudmundsson, H.

    2018-01-01

    Roč. 86, č. 3 (2018), č. článku e00445-17. ISSN 0019-9567 R&D Projects: GA ČR GA15-09157S; GA MZd(CZ) NV16-28126A; GA MŠk(CZ) LM2015064 Institutional support: RVO:61388971 Keywords : Bordetella pertussis * airway epithelia * CyaA Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.593, year: 2016

  13. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation.

    Directory of Open Access Journals (Sweden)

    Anna Chikova

    Full Text Available Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR. BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.

  14. Problematic diagnosis of bronchial foreign bodies in children

    International Nuclear Information System (INIS)

    Myllylae, V.; Paeivaensalo, M.; Seppaenen, U.; Hyrynkangas, K.; Linna, O.; Kortelainen, M.L.

    1987-01-01

    Bronchial foreign bodies by children are dangerous and require immediate therapeutic measures. Findings and significance of chest film in the diagnosis of bronchial foreign bodies in 24 children were analysed. All patients were symptomatic. 18 patients had an abnormal and 6 normal auscultation finding. In three cases the physician did not suspect aspiration, and the diagnosis was delayed, which caused the death of one child. Roentgenpositive foreign bodies were found in 8 and -negative in 16 cases. Secondary changes (obstructive emphysema, atelectasis, pneumonia) were seen in 16 cases. In emergency cases the chest films were analysed by physician and later by a radiologist, who found 88% of them to be abnormal. Fluoroscopy of expiratory chest film helps to detect the unilateral emphysema more distinctly. The diagnosis must always be confirmed with bronchoscopy and extraction thereby is the adequate treatment of bronchial bodies. (orig.) [de

  15. OMALIZUMAB FOR CHILDREN WITH BRONCHIAL ASTHMA: INDICATIONS TO APPLICATION

    Directory of Open Access Journals (Sweden)

    T.V. Kulichenko

    2007-01-01

    Full Text Available Antibodies to IgE are a totally new class of medications currently used to enhance the supervision over severe persistent atopic bronchial asthma. Omalizumab is the most well studied, first and only medication of this group, which is recommended for the application and is allowed for treatment of uncontrolled bronchial asthma among adults and children aged 12 and over in different countries of the world, including Russia. High omalizumab assisted treatment costs, as well as the need in the monthly visits to the doctor for the omalizumab injections are justified for the patients, requiring repeat hospitalizations, emergency medical aid, using high doses of the inhalation and/or systemic glucocorticosteroids. The article reviews the criteria for the selection of patients fit for omalizumab assisted treatment.Key words: omalizumab, anti-ige-antibodies, bronchial asthma, allergic rhinitis, treatment, children.

  16. Influence of a dexamethasone-eluting covered stent on tissue reaction: an experimental study in a canine bronchial model

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Hoon; Song, Ho-Young; Choi, Gi Bok; Kim, Tae-Hyung; Suh, Ji-Yeon [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center, Seoul (Korea); Seo, Tae-Seok [Gachon Medical School, Department of Radiology, Gil Medical Center, Inchon (Korea); Yuk, Soon Hong [Hannam University, Department of Polymer Science and Engineering, College of Engineering, Daejeon (Korea); Kim, Young-Hwa [Soonchunhyang University Chonan Hospital, Department of Radiology, Chonan (Korea); Cho, Yong-Mee [University of Ulsan College of Medicine, Department of Pathology, Asan Medical Center, Seoul (Korea)

    2005-06-01

    This study was designed to evaluate the feasibility and efficacy of a dexamethasone (DXM)-eluting, covered, self-expanding metallic stent to reduce tissue reaction following stent placement in a canine bronchial model. We placed a DXM-eluting, polyurethane-covered, self-expanding metallic stent (drug stent, DS) and a polyurethane-covered, self-expanding metallic stent (control stent, CS) alternately in each left main bronchus and left lower lobe bronchus in 12 dogs. The stents were 20 mm in diameter and length when fully expanded. The dose of DXM was approximately 36.7 mg in each DS, but was absent in the CS. The dogs were euthanased 1 week (n=4), 2 weeks (n=4) or 4 weeks (n=4) after stent placement. Histologic findings, such as epithelial erosion/ulcer or granulation tissue thickness, were obtained from the mid-portion of the bronchus, where the stent had been placed, and evaluated between DS and CS. There were no procedure-related complications or malpositioning of any of the bronchial stents. Stent migration was detected in one dog just before euthanasia 1 week following stent placement. Stent patency was maintained until euthanasia in all dogs. Epithelial erosion/ulcer (%) was significantly less in the DS (mean{+-}standard deviation, 46.88{+-}23.75) than in the CS (73.75{+-}14.08) (P=0.026) for all time-points. There was a decrease in epithelial erosion/ulcer as the follow-up period increased in both DS and CS. The granulation tissue thickness (mm) was less in DS (2.63{+-}2.05) than in CS (3.49{+-}2.95), although the difference was not significant (P=0.751) for all time-points. There was a tendency toward an increase in granulation tissue thickness and chronic lymphocytic infiltration as the follow-up period increased in both DS and CS. In conclusion, DXM-eluting, covered, self-expanding metallic stent seems to be effective in reducing tissue reaction secondary to stent placement in a canine bronchial model. (orig.)

  17. Influence of a dexamethasone-eluting covered stent on tissue reaction: an experimental study in a canine bronchial model

    International Nuclear Information System (INIS)

    Shin, Ji Hoon; Song, Ho-Young; Choi, Gi Bok; Kim, Tae-Hyung; Suh, Ji-Yeon; Seo, Tae-Seok; Yuk, Soon Hong; Kim, Young-Hwa; Cho, Yong-Mee

    2005-01-01

    This study was designed to evaluate the feasibility and efficacy of a dexamethasone (DXM)-eluting, covered, self-expanding metallic stent to reduce tissue reaction following stent placement in a canine bronchial model. We placed a DXM-eluting, polyurethane-covered, self-expanding metallic stent (drug stent, DS) and a polyurethane-covered, self-expanding metallic stent (control stent, CS) alternately in each left main bronchus and left lower lobe bronchus in 12 dogs. The stents were 20 mm in diameter and length when fully expanded. The dose of DXM was approximately 36.7 mg in each DS, but was absent in the CS. The dogs were euthanased 1 week (n=4), 2 weeks (n=4) or 4 weeks (n=4) after stent placement. Histologic findings, such as epithelial erosion/ulcer or granulation tissue thickness, were obtained from the mid-portion of the bronchus, where the stent had been placed, and evaluated between DS and CS. There were no procedure-related complications or malpositioning of any of the bronchial stents. Stent migration was detected in one dog just before euthanasia 1 week following stent placement. Stent patency was maintained until euthanasia in all dogs. Epithelial erosion/ulcer (%) was significantly less in the DS (mean±standard deviation, 46.88±23.75) than in the CS (73.75±14.08) (P=0.026) for all time-points. There was a decrease in epithelial erosion/ulcer as the follow-up period increased in both DS and CS. The granulation tissue thickness (mm) was less in DS (2.63±2.05) than in CS (3.49±2.95), although the difference was not significant (P=0.751) for all time-points. There was a tendency toward an increase in granulation tissue thickness and chronic lymphocytic infiltration as the follow-up period increased in both DS and CS. In conclusion, DXM-eluting, covered, self-expanding metallic stent seems to be effective in reducing tissue reaction secondary to stent placement in a canine bronchial model. (orig.)

  18. Treatment of distal bronchial stenosis after bilateral lung transplantation

    Directory of Open Access Journals (Sweden)

    S. V. Golovinskiy

    2017-01-01

    Full Text Available The effi ciency of lung transplantation is considerably limited by the complications associated with the bronchial pathologies. Despite the progress of the treatment methods, bronchial complications are still remaining as an actual problem in the postoperative period with frequency of occurrence from 7 to 29%. However, the bronchial stenosis are the most common bronchial complications after lung transplantation with mortality from 2 to 4%.Aim. To study an experience of our center of bronchial stenosis treatment in lung recipients. Materials and methods. 34 patients underwent lung transplantation from September 2014 to January 2017. 6 (16% of them had a stenosis of lobar or segmental bronchi from 84 to 494 postoperative day. 5 (83% of them have demonstrated multifocal lesions. In all of the cases there was performed an endoscopic bougienage, which involved a balloon dilatation and electrocoagulated incision of granular tissue under X-ray control. After that the patients were administrated by everolimus.Results. Restenosis was formed in 132,0 ± 94,2 postoperative day after primary treatment in all patients. In four cases (67% we used nitinol stent placement under X-ray control. There were no complications. In 3 cases stents were dislocated distally, so we needed to use repeated endoscopic bougienage to replace the stent. Using of everolimus has allowed to decrease the rate of restenosis, but it need future research.Conclusion. Distal bronchial stenosis after lung transplantation can be managed with endoscopic bougienage and stent placement. Adding everolimus has not signifi cantly affected the risk of frequency of restenosis.

  19. Empirical description of bronchial and nonbronchial arteries with MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hong, E-mail: yuhong.2002@hotmail.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Liu Shiyuan, E-mail: cjr.liushiyuan@vip.163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Li Huimin, E-mail: yuhongphd@163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Xiao Xiangsheng, E-mail: cjr.xxsh@vip.163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Dong Weihua, E-mail: dongweihua2000@163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China)

    2010-08-15

    Purpose: We aimed to retrospectively evaluate bronchial and nonbronchial systemic arteries using multi-detector row helical computed tomographic (MDCT) angiography in patients with pulmonary disorders. Materials and Methods: Thirty-nine patients (24 men, 15 women; mean age, 63.4 years; range, 20-82 years) with congenital and acquired pulmonary disorders of the bronchial and nonbronchial systemic arteries underwent multi-detector row helical computed tomographic angiography of the thorax using a 16-detector row scanner. Each of these patients had experienced an episode of hemoptysis. Computed tomographic angiogram data, which included maximum intensity projections, multiplanar reconstruction, and three-dimensional volume-rendered images, were used to retrospectively analyse the characteristics of the bronchial and nonbronchial systemic arteries. Results: We identified a total of 128 bronchial arteries (76 on the right side and 52 on the left) in 39 patients. We detected 42 nonbronchial systemic artery branches, including 19 internal mammary artery branches, 8 subclavian artery branches, 8 inferior phrenic artery branches, 5 intercostal artery branches, 1 thyrocervical trunk branch, and 1 celiac trunk branch. Thirty-five dilated and tortuous nonbronchial systemic arteries entered into the lung parenchyma and extended down to the lesions. Every case, except the one case of sequestration, was associated with pleural thickening where the vascular structures passed through the extrapleural fat. Conclusions: The variations in both the bronchial artery anatomy and the location and type of the nonbronchial arteries were great. Nonbronchial arteries may be a significant source of hemoptysis. MDCT angiography can be used to detect detailed anatomical information about the origins and courses of bronchial and nonbronchial systemic arteries and their pathophysiologic features.

  20. [Iatrogenic bronchial obstruction: study of 4 atopic children with bronchial obstruction induced by acetyl salicylic acid].

    Science.gov (United States)

    De Luca, L; Vuillemier, P L; Principe, A M; Petrillo, T

    1986-01-01

    The authors have studied the modification of the spirometric parameters in four atopic children, during nonallergic diet, after administration of ASA (400 mg). The examination of the respiratory functionality has showed a fall of parameters starting four hours after the challenge and with an increase of respiratory resistance. This bronchospastic reaction persisted for about eighteen hours to diminish 24 h. after administration of 400 mg of ASA. The study of spirometric values has showed a remarkable fall of MMEF, sign of small airways obstruction, but also of FEV1-CV for the involvement of the higher airways. The authors attribute the reaction to the metabolites of arachidonic acid (Leukotrienes) and to their different receptor site on the bronchial mucous membrane target cells. The authors conclude showing the gravity of injury that will induce imprudent administration of ASA in hypersensitive subject.

  1. A case of endobronchial lipoma mimicking bronchial asthma

    Directory of Open Access Journals (Sweden)

    Sevket Ozkaya

    2009-05-01

    Full Text Available Sevket Ozkaya1, Hasan Demir1, Serhat Findik21Samsun Chest Diseases and Thoracic Surgery Hospital, Samsun, Turkey; 2Department of Pulmonary Medicine, Faculty of Medicine, Ondokuz Mayis University, Kurupelit, Samsun, TurkeyAbstract: Endobronchial lipoma is a rare neoplasm of the tracheobronchial tree and it may cause irreversible pulmonary damage due to recurrent pneumonia. Rarely, it may mimic bronchial asthma. We present a 53-year-old woman with an endobronchial lipoma, which had been treated as a bronchial asthma for four years. She also had developed recurrent pneumonia three times.Keywords: endobronchial lipoma, asthma, radiology, bronchoscopy

  2. Cushing's syndrome associated with a bronchial adenoma. Possible periodic hormonogenesis.

    Science.gov (United States)

    Shapiro, M S; Gutman, A; Bruderman, I; Myers, B; Griffel, W B

    1975-09-01

    Diagnostic and therapeutic problems in a patient with ectopic ACTH syndrome caused by a malignant bronchial adenoma are discussed. Persistent Cushing's syndrome was present following apparent total adrenalectomy, but radioactive scanning with 131I-19-iodocholesterol showed the presence of residual adrenal tissue in the right suprarenal bed. Amelioration of the hypercortisolism occurred after removal of the bronchial adenoma. A paradoxical elevation of adrenocortical activity followed administration of dexamethasone and data are presented which suggest that periodic secretion of ACTH accounted for this phenomenon.

  3. Bronchial abnormalities found in a consecutive series of 40 brachycephalic dogs.

    Science.gov (United States)

    De Lorenzi, Davide; Bertoncello, Diana; Drigo, Michele

    2009-10-01

    To detect abnormalities of the lower respiratory tract (trachea, principal bronchi, and lobar bronchi) in brachycephalic dogs by use of endoscopy, evaluate the correlation between laryngeal collapse and bronchial abnormalities, and determine whether dogs with bronchial abnormalities have a less favorable postsurgical long-term outcome following correction of brachycephalic syndrome. Prospective case series study. 40 client-owned brachycephalic dogs with stertorous breathing and clinical signs of respiratory distress. Brachycephalic dogs anesthetized for pharyngoscopy and laryngoscopy between January 2007 and June 2008 underwent flexible bronchoscopy for systematic evaluation of the principal and lobar bronchi. For dogs that underwent surgical correction of any component of brachycephalic syndrome, owners rated surgical outcome during a follow-up telephone survey. Correlation between laryngeal collapse and bronchial abnormalities and association between bronchial abnormalities and long-term outcome were assessed. Pugs (n = 20), English Bulldogs (13), and French Bulldogs (7) were affected. A fixed bronchial collapse was recognized in 35 of 40 dogs with a total of 94 bronchial stenoses. Abnormalities were irregularly distributed between hemithoraces; 15 of 94 bronchial abnormalities were detected in the right bronchial system, and 79 of 94 were detected in the left. The left cranial bronchus was the most commonly affected structure, and Pugs were the most severely affected breed. Laryngeal collapse was significantly correlated with severe bronchial collapse; no significant correlation was found between severity of bronchial abnormalities and postsurgical outcome. Bronchial collapse was a common finding in brachycephalic dogs, and long-term postsurgical outcome was not affected by bronchial stenosis.

  4. IMMUNOLOGICAL MARKERS OF UNCONTROLLED ATOPIC BRONCHIAL ASTHMA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    M. V. Smolnikova

    2017-01-01

    Full Text Available Bronchial asthma is a prevalent chronic allergic disease of lungs at early ages. A priority  task in allergology  is to search  biological  markers  related  to uncontrolled atopic  bronchial asthma. Cytokines fulfill their distinct function in pathogenesis of atopic  bronchial asthma, participating at the initiation, development and persistence of allergic inflammation in airways, causing different  variations of clinical course of the disease (with  respect  to its acuteness, severity, frequency of exacerbations. The  present  work has studied  indices  of cellular  and  humoral links of immunity, as well as levels of some  pro and  anti-inflammatory cytokines in peripheral blood serum (IL-4, IL-10, IL-2 and TNFα, aiming to determine potential markers of uncontrolled atopic bronchial asthma in children. A group of Caucasian (European children was involved into the research: Cohort 1, moderate atopic  bronchial asthma with controlled course during the last 3 months (n = 59; Cohort 2, severe/moderate-severe atopic bronchial asthma with uncontrolled course of the disease within last 3 months (n = 51,  Cohort 3 – control, practically healthy  children without signs of atopy  (n = 33. All the  children included in the group with atopic  bronchial asthma underwent regular mono/combined basic therapy  at high/ intermediate therapeutic doses.  We performed a comparative analysis  of cell  population indices  reflecting certain cellular  immunity links,  and  determined significantly  lower  levels of CD3+   lymphocytes, as well as decrease in relative  and  absolute  contents of CD4+  and  CD8+  cells in the  cohort with  uncontrolled course of atopic  bronchial asthma, as compared with controlled-course cohort. When  evaluating concentrations  of cytokines in peripheral blood serum of the patients with controlled and uncontrolled atopic  bronchial asthma, we revealed  significantly  higher

  5. [Clinical characteristics and condition of the bronchial tree in patients with bronchial asthma and chronic obstructive pulmonary disease in combination with hyperoxaluria].

    Science.gov (United States)

    Fedoseev, G B; Petrova, M A; Shaĭlieva, L O; Kakliugin, A P; Zorina, M L; Sakharov, A N; Pavliukova, N O

    2007-01-01

    To evaluate peculiarities of a clinical course and changes in bronchial mucosa in bronchial asthma (BA) patients with chronic obstructive pulmonary disease (COPD) in combination with hyperoxaluria (HOU); informative value of some laboratory and device findings including oxalates assay in bronchial lavage fluid for specification of the diagnosis, role of oxalates in development of obstructive syndrome and choice of optimal therapy. Oxalates were examined in daily urine, bronchoalveolar lavage fluid and exhaled air condensate of 104 patients with BA and COPD, 77 of which had HOU and an atypical course of bronchial obstruction syndrome. Conception of airways inflammation in patients with oxalate metabolism disturbances is proposed. It is shown that insoluble oxalates participate in pathogenesis of bronchial obstruction. Oxalate metabolism disturbances are an important factor in pathogenesis of airways inflammation and development of bronchial obstruction in predisposed patients. Therefore, administration of insoluble oxalates lowering therapy may effectively prevent formation and progression of obstructive pulmonary diseases in this group of patients.

  6. The spatiotemporal organization of cilia activity drives multiscale circular flows of mucus in reconstituted human bronchial epithelium

    Science.gov (United States)

    Loiseau, Etienne; Gras, Delphine; Chanez, Pascal; Viallat, Annie

    2017-11-01

    Chronic respiratory diseases affect hundreds of millions of people worldwide. The bronchial epithelium is the first barrier to protect the respiratory tract via an innate mechanism called mucociliary clearance. It consists in the active transport of a sticky fluid, the mucus, via a myriad of cilia at the epithelial surface of the airways. The mucus traps inhaled pathogens and the protective role of the mucociliary clearance relies on the ability of the cilia to self-organize and coordinate their beating to transport the mucus over the full bronchial tree till its elimination through swallowing or expectoration. Despite a rich corpus of clinical studies, chronic respiratory diseases remain poorly understood and quantitative biophysical studies are still missing. Here we will present the physical mechanisms underlying the mucociliary transport. We will show how the cilia self-organize during the ciliogenesis and how the coordination of their beating direction leads to the formation of fluid flow patterns at the macroscopic scale. Finally, we will discuss the role of long range hydrodynamics interactions in this intricate coupled system. ANR MUCOCIL project, Grant ANR-13-BSV5-0015 and European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement n. PCOFUND-GA-2013-609102.

  7. Application of confocal Raman micro-spectroscopy for label-free monitoring of oxidative stress in living bronchial cells

    Science.gov (United States)

    Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.

    2018-02-01

    Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (pmicro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.

  8. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  9. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  10. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  11. Non-bronchial collateral supply from the left gastric artery in massive haemoptysis

    International Nuclear Information System (INIS)

    Sellars, N.; Belli, A.M.

    2001-01-01

    Two patients presented with recurrent, massive haemoptysis. Arteriography, including thoracoabdominal aortograms, revealed in both cases large non-bronchial collaterals arising from the left gastric artery. In the first case the non-bronchial collateral supplied the upper left lobe and in the second case it supplied the middle right lobe. Percutaneous embolisation of bronchial and non-bronchial collateral branches has become an accepted procedure in controlling massive or recurrent haemoptysis. Accurate identification of the non-bronchial collateral arterial feeders is essential for successful embolotherapy. (orig.)

  12. Helical CT in evaluation of the bronchial tree

    International Nuclear Information System (INIS)

    Perhomaa, M.; Laehde, S.; Rossi, O.; Suramo, I.

    1997-01-01

    Purpose: To establish a protocol for and to assess the value of helical CT in the imaging of the bronchial tree. Material and Methods: Noncontrast helical CT was performed in 30 patients undergoing fiberoptic bronchoscopy for different reasons. Different protocols were compared; they included overlapping 10 mm, 5 mm, or 3 mm slices and non-tilted, cephalad or caudal tilted images. Ordinary cross-sectional and multiplanar 2D reformats were applied for visualization of the bronchial branches. The effect of increasing the helical pitch was tested in one patient. Results: A total of 92.1-100% of the segmental bronchi present in the helical acquisitions were identified by the different protocols. The collimation had no significant impact on the identification of the bronchial branches, but utilization of 3-mm overlapping slices made it easier to distinguish the nearby branches and provided better longitudinal visualization of the bronchi in 2D reformats. The tilted scans illustrated the disadvantage of not covering all segmental bronchi in one breath-hold. An increase of the pitch from 1 to 1.5 did not cause noticeable blurring of the images. CT and bronchoscopic findings correlated well in the area accessible to bronchoscopy, but CT detected 5 additional pathological lesions (including 2 cancers) in the peripheral lung. Conclusion: Helical CT supplemented with bronchography-like 2D reformats provides an effective method complementary to bronchoscopy in the examination of the bronchial tree. (orig.)

  13. Regional lung function (133Xe-radiospirometry) in bronchial cancer

    International Nuclear Information System (INIS)

    Arborelius, M.; Kristersson, S.; Lindell, S.E.

    1976-01-01

    In a prospective study of all patients with bronchial cancer in the city of Malmoe, all patients considered for surgery were examined with regard to overall function (conventional spirometry) and regional lung function (133-Xe-radiospirometry). Out of 116 consecutive cases examined with 133-Xe-radiospirometry before surgery,

  14. Challenges in the Management of Bronchial Asthma Among Adults ...

    African Journals Online (AJOL)

    World‑wide, it is estimated that 300 million people are affected with bronchial asthma. .... years of study, design, the focus of the challenge (diagnosis, treatment .... nebulizer for delivering large bronchodilator doses in patients with severe acute ..... Limitations UK Findings, poster presented at the British. Thoracic Society.

  15. Assessment of Serum Vitamin D in Patients with Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Hisham E. Abd El Aaty

    2015-01-01

    Conclusions: Vitamin D deficiency was highly prevalent in asthmatic patients, there was a strong correlation between asthma severity and 25(OH vitamin D concentrations and there was a direct and a positive significant correlation between vitamin D levels and pulmonary function tests in asthmatic patients, so the measurement of serum vitamin D levels in patients with bronchial asthma is very useful.

  16. Bronchial asthma among workers in Alexandria and its association ...

    African Journals Online (AJOL)

    Noha S. Elshaer

    2011-06-23

    Jun 23, 2011 ... chest tightness and coughing particularly at night or in the early morning; (e) ... workers with bronchial asthma, bronchodilator treatment was withdrawn prior to ...... pared to subjects who had both active genes62; this finding ..... S-transferase genotypes GSTM1 and GSTT1 in cancer suscepti- bility. Cancer ...

  17. Features of Acute Treatment of Bronchial Obstruction Syndrome in Infants

    Directory of Open Access Journals (Sweden)

    Ye.N. Okhotnikova

    2012-04-01

    Full Text Available The paper is devoted to a problem of bronchial obstruction in infants. There have been considered the pathogenesis of this pathology, its clinical manifestation and complications, features of treatment focusing on combined therapy use (medication Berodual containing β2-agonist of fenoterol hydrobromide and anticholinergic drug ipratropium bromide.

  18. Processing bronchial sonograms to detect respiratory cycle fragments

    International Nuclear Information System (INIS)

    Bureev, A Sh; Zhdanov, D S; Zemlyakov, I Yu; Svetlik, M V

    2014-01-01

    This article describes the authors' results of work on the development of a method for the automated assessment of the state of the human bronchopulmonary system based on acoustic data. In particular, the article covers the method of detecting breath sounds on bronchial sonograms obtained during the auscultation process

  19. Allergic bronchopulmonary aspergillosis as a cause of bronchial ...

    African Journals Online (AJOL)

    Background: Allergic bronchopulmonary aspergillosis (ABPA) occurs in patients with asthma and cystic fibrosis. When aspergillus fumigatus spores are inhaled they grow in bronchial mucous as hyphae. It occurs in non immunocompromised patients and belongs to the hypersensitivity disorders induced by Aspergillus.

  20. Advice concerning the early diagnosis of bronchial carcinoma

    International Nuclear Information System (INIS)

    1982-01-01

    Bronchial carcinoma is in the Netherlands for men the most frequent type of cancer; the incidence in women is rising. In the Netherlands nowadays, per year about 7100 persons die of this disease which therefore constitutes an important public health problem. The request of advice asks - among other things - whether in the future the periodical X-ray examination of the thorax for the detection of tuberculosis of persons over 40 years can be continued for presymptomatic cases of bronchial carcinoma. The available relevant literature does not yet give indications that periodical mass radiography has any influence on the morbidity and mortality of the disease. On the other hand, literature describing clinical experience shows that the prognosis of patients with bronchial carcinoma, detected in an early presymptomatic stage, is essentially better than in the case of patients with symptomatic disease. A critical analysis of the literature does not furnish epidemiological arguments to recommend periodical mass radiography for bronchial carcinoma. However, because lungcancer forms an extremely important public health problem and because the scarcity of randomized; controlled studies in this field, the committee advises - from a scientific point of view - to perform such a study in one or preferably two regions in the Netherlands. A number of conditions are mentioned which such a study at least should meet. (Auth.)

  1. Modelling the effect of non-uniform radon progeny activities on transformation frequencies in human bronchial airways

    International Nuclear Information System (INIS)

    Fakir, H.; Hofmann, W.; Aubineau-Laniece, I.

    2006-01-01

    The effects of radiological and morphological source heterogeneities in straight and Y-shaped bronchial airways on hit frequencies and Micro-dosimetric quantities in epithelial cells have been investigated previously. The goal of the present study is to relate these physical quantities to transformation frequencies in sensitive target cells and to radon-induced lung cancer risk. Based on an effect-specific track length model, computed linear energy transfer (LET) spectra were converted to corresponding transformation frequencies for different activity distributions and source - target configurations. Average transformation probabilities were considerably enhanced for radon progeny accumulations and target cells at the carinal ridge, relative to uniform activity distributions and target cells located along the curved and straight airway portions at the same exposure level. Although uncorrelated transformation probabilities produce a linear dose - effect relationship, correlated transformations first increase depending on the LET, but then decrease significantly when exceeding a defined number of hits or cumulative exposure level. (authors)

  2. Increased wheeze but not bronchial hyperreactivity near power stations.

    Science.gov (United States)

    Halliday, J A; Henry, R L; Hankin, R G; Hensley, M J

    1993-08-01

    In a previous study a higher than expected prevalence of asthma was found in Lake Munmorah, a coastal town near two power stations, compared with another coastal control town. This study aimed to compare atopy, bronchial hyperreactivity, and reported symptoms of asthma in the power station town and a second control area with greater socioeconomic similarity. A cross sectional survey was undertaken. Lake Munmorah, a coastal town near two power stations, and Dungog, a country town in the Hunter Valley, NSW, Australia. All children attending kindergarten to year 6 at all schools in the two towns were invited to participate in 1990. The response rates for the questionnaire for reported symptoms and associated demographic data were 92% in Lake Munmorah and 93% in Dungog, with 84% and 90% of children respectively being measured for lung function, atopy, and bronchial reactivity. There were 419 boys and 432 girls aged 5 to 12 years. Main outcome measures were current wheeze and bronchial hyper-reactivity, defined as a fall in forced expiratory volume in 1 second (FEV1) or peak expiratory flow (PEF) of 20% or more. Current wheeze was reported in 24.8% of the Lake Munmorah children compared with 14.6% of the Dungog children. Bronchial hyper-reactivity was similar for both groups--25.2% in Lake Munmorah and 22.3% in Dungog. The mean baseline FEV1 was lower in Lake Munmorah than in Dungog (p power station town, but bronchial hyper-reactivity and skin test defined atopy were similar in the two communities. These results are consistent with the previous study and confirm the increased presence of reported symptomatic illness in the town near power stations.

  3. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury.

    Science.gov (United States)

    Rehman, Rakhshinda; Bhat, Younus Ahmad; Panda, Lipsa; Mabalirajan, Ulaganathan

    2013-03-01

    Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Activation of neurokinin-1 receptors during ozone inhalation contributes to epithelial injury and repair.

    Science.gov (United States)

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2008-09-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  5. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD

    Directory of Open Access Journals (Sweden)

    Postma Dirkje S

    2011-08-01

    Full Text Available Abstract Background Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis. Methods We studied the effects of cigarette smoke extract (CSE and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs from COPD patients, healthy smokers and non-smokers. Results We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups. Conclusions Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.

  6. Primary epithelial myoepithelial carcinoma of lung, reporting of a rare entity, its molecular histogenesis and review of the literature.

    Science.gov (United States)

    Arif, Farzana; Wu, Susan; Andaz, Shahriyour; Fox, Stewart

    2012-01-01

    Primary epithelial myoepithelial carcinoma of lung is a rare entity and is thought to arise from the submucosal bronchial glands distributed throughout the lower respiratory tract. Because of the rarity of this tumor, we describe one case of epithelial myoepithelial carcinoma arising in the bronchus intermedius and presenting as an endobronchial mass. A 57-year-old male patient presented with an incidental finding of an endobronchial mass located in the lumen of the right lower lobe bronchus and caused near total luminal occlusion of the bronchus. An endobronchial carcinoid tumor was entertained clinically. Subsequently the patient underwent an uneventful videothoracoscopic lobectomy of lower and middle lobes of the right lung. Morphologically and immunohistochemically the tumor was characterized by two cell populations with epithelial and myoepithelial cells forming duct-like structure. The final diagnosis of epithelial myoepithelial carcinoma of lung was rendered.

  7. Fetal-juvenile origins of point mutations in the adult human tracheal-bronchial epithelium: Absence of detectable effects of age, gender or smoking status

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Hiroko [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Toray Industries, Inc., New Frontiers Research Laboratories 10-1, Tebiro 6-chome, Kamakura, Kanagawa 248-8555 (Japan); Li-Sucholeiki, Xiao-Cheng [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Agencourt Bioscience Corp., 500 Cummings Center, Suite 2450, Beverly, MA 01915 (United States); Marcelino, Luisa A. [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Biomedical Engineering Department, Northwestern University, 633 Clark Street, Evanston, IL 60208 (United States); Gruhl, Amanda N. [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); Herrero-Jimenez, Pablo [Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139 (United States); SLC Ontario, 690 Dorval Drive, Suite 200, Oakville, Ontario L6K 3W7 Canada (Canada); Zarbl, Helmut [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Health Sciences Institute, 170 Freylinghuysen Road, Room 426, Piscataway, NJ 08854 (United States); Willey, James C. [Medical College of Ohio, 3120 Glendale Avenue, Room 12, Toledo, OH 43614 (United States); Furth, Emma E. [University of Pennsylvania Medical Center, Department of Pathology, 3400 Spruce Street, 6 Founders Building, Philadelphia, PA 19104 (United States); Morgenthaler, Stephan [Institute of Applied Mathematics, Swiss Federal Institute of Technology (EPFL), SB/IMA, 1015 Lausanne (Switzerland)] (and others)

    2008-11-10

    Allele-specific mismatch amplification mutation assays (MAMA) of anatomically distinct sectors of the upper bronchial tracts of nine nonsmokers revealed many numerically dispersed clusters of the point mutations C742T, G746T, G747T of the TP53 gene, G35T of the KRAS gene and G508A of the HPRT1 gene. Assays of these five mutations in six smokers have yielded quantitatively similar results. One hundred and eighty four micro-anatomical sectors of 0.5-6 x 10{sup 6} tracheal-bronchial epithelial cells represented en toto the equivalent of approximately 1.7 human smokers' bronchial trees to the fifth bifurcation. Statistically significant mutant copy numbers above the 95% upper confidence limits of historical background controls were found in 198 of 425 sector assays. No significant differences (P = 0.1) for negative sector fractions, mutant fractions, distributions of mutant cluster size or anatomical positions were observed for smoking status, gender or age (38-76 year). Based on the modal cluster size of mitochondrial point mutants, the size of the adult bronchial epithelial maintenance turnover unit was estimated to be about 32 cells. When data from all 15 lungs were combined the log 2 of nuclear mutant cluster size plotted against log 2 of the number of clusters of a given cluster size displayed a slope of {approx}1.1 over a range of cluster sizes from {approx}2{sup 6} to 2{sup 15} mutant copies. A parsimonious interpretation of these nuclear and previously reported data for lung epithelial mitochondrial point mutant clusters is that they arose from mutations in stem cells at a high but constant rate per stem cell doubling during at least ten stem cell doublings of the later fetal-juvenile period. The upper and lower decile range of summed point mutant fractions among lungs was about 7.5-fold, suggesting an important source of stratification in the population with regard to risk of tumor initiation.

  8. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    Science.gov (United States)

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  9. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  10. The design of trachea-main bronchial covered embranchment stent and the primary clinical application

    International Nuclear Information System (INIS)

    Han Xinwei; Wu Gang; Gao Xuemei; Li Yongdong; Wang Yanli; Ma Nan

    2004-01-01

    Objective: To design the trachea-main bronchus covered embranchment stent and study the primary treatment for thoracostomach main bronchial fistula and main bronchial stenosis. Methods: The stent was designed on the bases of the peculiar anatomic structure and the pathological changes of thoracostomach-main bronchial fistula and main bronchial stenosis. Under the fluoroscopic guidance, implantations were carried out in thoracostomach-carina fistula 1 case thoracostomach-left main bronchial fistula 1, thoracostomach-right main bronchial fistula and left main bronchial stenosis 1 case, altogether with 5 stents. Results: Stents were placed successfully, not only improving the breathing and living quality but also completing the closure of the ora of the thoracostomach-airway fistula with further vanishing of the choke after drinking and eating together with the inhalation pneumonia. The bronchus became normal in a main bronchial stenosis after the stent was taken out. Conclusions: Trachea-main bronchial covered embranchment stent could be used to close thoracostomach-airway fistula and to treat main bronchial benign/malignant stenosis. The procedure is simple and safe. (authors)

  11. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  12. Proteomic profiling of acrolein adducts in human lung epithelial cells

    Science.gov (United States)

    Spiess, Page C.; Deng, Bin; Hondal, Robert J.; Matthews, Dwight E.; van der Vliet, Albert

    2011-01-01

    Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology. PMID:21704744

  13. Oral tartrazine challenge in childhood asthma: effect on bronchial reactivity.

    Science.gov (United States)

    Hariparsad, D; Wilson, N; Dixon, C; Silverman, M

    1984-01-01

    Ten asthmatic children who gave a history of cough or wheeze after orange drinks, were tested for tartrazine sensitivity. On separate days, either oral tartrazine (1 mg) or a placebo capsule were administered double blind. Bronchial reactivity was measured before, 30 and 60 min after ingestion by means of a histamine-inhalation challenge test. There was no change in baseline lung function after tartrazine, but histamine sensitivity (PC20) increased significantly in four of the children. No response was obtained to a larger dose of tartrazine (10 mg) in four of the non-responders. Alteration in the bronchial reactivity after an oral challenge, appears to be a sensitive means of detecting tartrazine sensitivity.

  14. Pulmonary ventilation and perfusion scintigraphy in patients with bronchial asthma

    International Nuclear Information System (INIS)

    Ono, Seiji; Hoshi, Hiroaki; Watanabe, Katsushi.

    1988-01-01

    Pulmonary ventilation and perfusion scan using Xe-133 gas and Tc-99m MAA were performed in 18 patients with bronchial asthma to evaluate the regional pulmonary function. The scintigraphic findings were compared with the results of the auscultation and the conventional pulmonary functioning examination (%FVC, %FEV 1.0 ). Ventilation image showed abnormality in 12 (70.6%) out of the asymptomatic 17 patients and perfusion image showed abnormality in 7 (41.2%) out of 17 patients. These 7 patients with abnormality on perfusion image all showed abnormality on ventilation image. The grade of abnormality in scintigraphic findings was compatible with the values of %FVC and %FEV 1.0 . In conclusion Xe-133 ventilation and Tc-99m MAA perfusion scan were useful procedures to estimate the pulmonary function of patients with bronchial asthma. (author)

  15. Obscure pulmonary masses: bronchial impaction revealed by CT

    International Nuclear Information System (INIS)

    Pugatch, R.D.; Gale, M.E.

    1983-01-01

    Dilated bronchi impacted with mucus or tumor are recognized on standard chest radiographs because they are surrounded by aerated pulmonary parenchyma. When imaged in different projections, these lesions produce a variety of appearances that are generally familiar. This report characterizes less familiar computed tomographic (CT) findings in eight patients with pathologic bronchial distension of congenital, neoplastic, or infectious etiologies and correlates them with chest films. In seven patients, CT readily revealed dilated bronchi and/or regional lung hypodensity. In four of these cases, CT led to the initial suspicion of dilated bronchi. CT should be used early in the evaluation of atypical pulmonary mass lesions or to confirm suspected bronchial impaction because of the high probability it will reveal diagnostic features

  16. CT findings of the patients with bronchial asthma

    International Nuclear Information System (INIS)

    Katagiri, Shiro; Ohshima, Kazuki; Ohsawa, Takehiko.

    1996-01-01

    CT scans were obtained in 45 patients with bronchial asthma including 23 patients during asthmatic attack. CT findings were as follows. 1) In all cases, thickening of bronchial wall throughout from central to peripheral bronchi and without tapering and/or slight swelling of bronchovascular bundles were observed. 2) Characteristics findings in 23 patients with asthmatic attack, lobular and multilobular high attenuation area were observed in 17 patients (74%) and nonhomogeneous attenuation in lung fields were noticed in 13 patients (57%). 3) Multiple centrilobular sized high attenuation area were observed in 23 patients, but it was difficult to differenciation whether these findings were due to tiny nodules or to small vessels. In conclusion, further studies are needed to know which pathomorphological and/or pathophysiological conditions are underlying these CT findings. (author)

  17. Asthma control during the year after bronchial thermoplasty

    DEFF Research Database (Denmark)

    Cox, Gerard; Thomson, Neil C.; Rubin, Adalberto S.

    2007-01-01

    scheduled 2-week periods of abstinence from LABA at 3, 6, and 12 months. Airflow, airway responsiveness, asthma symptoms, the number of symptom-free days, use of rescue medication, and scores on the Asthma Quality of Life Questionnaire (AQLQ) and the Asthma Control Questionnaire (ACQ) were also assessed....... RESULTS: The mean rate of mild exacerbations, as compared with baseline, was reduced in the bronchial-thermoplasty group but was unchanged in the control group (change in frequency per subject per week, -0.16+/-0.37 vs. 0.04+/-0.29; P=0.005). At 12 months, there were significantly greater improvements......-thermoplasty group than in the control group but were similar during the period from 6 weeks to 12 months after treatment. CONCLUSIONS: Bronchial thermoplasty in subjects with moderate or severe asthma results in an improvement in asthma control. (ClinicalTrials.gov number, NCT00214526 [ClinicalTrials.gov].)....

  18. Sleeve resection for delayed presentation of traumatic bronchial transection.

    LENUS (Irish Health Repository)

    Mohamed, H Y

    2010-02-01

    Tracheobronchial disruption is uncommon in blunt chest trauma. Many of these patients die before reaching the hospital. In the majority of survivors diagnosis is occasionally delayed resulting in complications like airway stenosis and lung collapse. Thus it is important to have radiological follow up after severe thoracic trauma. Sleeve resection can be an excellent option to conserve lung tissue in delayed presentation of bronchial transection.

  19. Measurement of the thickness of the bronchial epithelium

    International Nuclear Information System (INIS)

    Bowden, D.H.; Baldwin, F.

    1989-02-01

    Cancer of the lung in uranium miners is thought to be related to the inhalation of gaseous radon daughters which become attached to molecules of water vapour or to dust particles. Since, the depth of tissue penetration by alpha particles is short, the thickness of the epithelium that lines the bronchial tree may be a critical factor in the development of cancers at specific sites in the lung. The objectives of the present study were: 1) to measure the thickness of human bronchial epithelium; 2) to determine the distribution and depth of the nuclei of basal cells in the bronchial epithelium; and 3) to compare these parameters in groups of smokers and non-smokers. Twenty-nine surgically removed specimens of the lung were examined (26 smokers, 3 non-smokers). The specimens were fixed and prepared for examination by light and electron microscopy. Blocks of tissue were oriented so that the maximum number of bronchi were cut in cross-section; measurements included bronchi of all sizes from bronchial generations (1≥ 9.01 mm) diameter to the smallest bronchioles, generations 7 - 16 (0.26 - 2.0 mm). Comparison of measurements in smokers and non-smokers show no significant differences, so that the 29 cases are considered to represent a homogeneous group. With progressive divisions of the bronchi, the epithelium decreases in thickness. Of more importance are the figures relating to the distance from the cell surface to the underlying nucleus. Here too, with the exception of goblet cells, the measurements are significantly smaller in generations 7 - 16 than in generation 1

  20. Bronchial hyperresponsiveness in patients with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Bulcun, Emel; Ekici, Mehmet; Ekici, Aydanur; Tireli, Gökhan; Karakoç, Tülay; Şentürk, Erol; Altınkaya, Volkan

    2013-01-01

    The relationship between obstructive sleep apnea syndrome (OSAS) and bronchial hyperresponsiveness (BHR) is not well known. In this study, we investigated the association between BHR and disease severity in patients with OSAS. Fourty seven (37 male/10 female) OSAS patients admitted with polysomnography enrolled to the study. Histamine bronchial challenge test was performed and body mass index (BMI, kg/m2) was calculated. Presence of BHR was diagnosed as positivity of bronchial provocative test (BPT) (PD values ≤ 16 mg/mL). Patients were questioned with Epworth sleepiness scale (ESS). Histamine bronchial challenge test was positive in 21 of 47 patients. There were significant negative correlations between PD 20 value and AHI (r= -0.47, p= 0.03), BMI (r= -0.45, p= 0.03), and ESS score (r= -0.45, p= 0.03) in the patients with BHR. In addition, AHI (p= 0.03), BMI (p= 0.02), ESS scores (p= 0.03) were higher in patients with BHR (21 patients) than in patients not having BHR (26 patients). Significant negative relation was found between PD 20 value and AHI (b=-0.45, p= 0.03) and significant positive relation was found between presence of BHR and AHI (p= 0.04), BMI (p= 0.03) independently of age and sex in multiple regression analysis. BHR is common in patients with OSAS. As severity of OSAS increased, severity of BHR increased. In addition, obesity may trigger presence of BHR in patients with OSAS.

  1. Cellular dosimetry for radon progeny alpha particles in bronchial tissue

    International Nuclear Information System (INIS)

    Mohamed, A.; Hofmann, W.; Balashazy, I.

    1996-01-01

    Inhaled radon progeny are deposited in different regions of the human bronchial tree as functions of particle size and flow rate. Following deposition and mucociliary clearance, the sensitive bronchial basal and secretory cells are irradiated by two different alpha particle sources: (i) radon progeny in the sol and/or gel phase of the mucous layer, and (ii) radon progeny within the bronchial epithelium. In the case of internally deposited radionuclides, direct measurement of the energy absorbed from the ionizing radiation emitted by the decaying radionuclides is rarely, if ever, possible. Therefore, one must rely on dosimetric models to obtain estimates of the spatial and temporal patterns of energy deposition in tissues and organs of the body. When the radionuclide is uniformly distributed throughout the volume of a tissue of homogeneous composition and when the size of the tissue is large compared to the range of the particulate emissions of the radionuclide, then the dose rate within the tissue is also uniform and the calculation of absorbed dose can proceed without complication. However, if non-uniformities in the spatial and temporal distributions of the radionuclide are coupled with heterogeneous tissue composition, then the calculation of absorbed dose becomes complex and uncertain. Such is the case with the dosimetry of inhaled radon and radon progeny in the respiratory tract. There are increasing demands to obtain a definitive explanation of the role of alpha particles emitted from radon daughters in the induction of lung cancer. Various authors have attempted to evaluate the dose to the bronchial region of the respiratory tract due to the inhalation of radon daughters

  2. Analysis of the patterns of bronchial obstruction at bronchography

    International Nuclear Information System (INIS)

    Huh, Suk; Kim, Yong Chul; Han, Sang Don; Lee, Yong Chul

    1981-01-01

    Of the bronchographic findings of 408 patients, performed in our hospital for recent 5 years, 108 cases showed definite bronchial obstruction, and 61 cases of those were selected and obstructive findings were evaluated. All that not confirmed were abandoned. For evaluation of the reliability of 9 braonchographic obstruction signs on applying to diagnose malignant or benign pulmonary diseases, each sign was identified and applied to each of the 61 confirmed cases. In addition, obstructed bronchi, distance of obstruction from the bifurcation site, and the direction of meniscus, if present, were evaluated. The results were follows: 1. The most frequent cause of bronchial obstruction was lung cancer (59.0%), and that of the benign obstruction was pulmonary tuberculosis (13.1%). 2. Amputation, asymmetric narrowing, thumbprint indentation, rat-tail narrowing and encasement signs were the most accurate signs of malignancy and were practically diagnostic ones. 3. The most frequent sign in lung cancer was sharp cutoff one, but it could be seen in lung abscess and in unresolved pneumonia, too. 4. Circumferential symmetric narrowing and regular concavity with a small central projection signs were specific ones to benignancy. 5. The most frequent obstruction sign in benign lung disease was gradual tapering sign, but it also could be seen in bronchogenic epidermoid and alveolar cell carcinoma. 6. Of all bronchial obstructions, 55.4% occurred at lobar bronchus and 77.4% of those were caused by lung cancer. 7. 77.2% of those obstruction which located within 3 times distance of the bronchial diameter at the nearest proximal bifurcation site, were lung cancer, but 75.0% of those located at over 3 times distance were benign pulmonary diseases. 8. There were no correlation of the direction of the meniscus at the obstructing end in differential diagnosis between benign and malignant pulmonary diseases

  3. Analysis of the patterns of bronchial obstruction at bronchography

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Suk; Kim, Yong Chul; Han, Sang Don; Lee, Yong Chul [National Medical Center, Seoul (Korea, Republic of)

    1981-12-15

    Of the bronchographic findings of 408 patients, performed in our hospital for recent 5 years, 108 cases showed definite bronchial obstruction, and 61 cases of those were selected and obstructive findings were evaluated. All that not confirmed were abandoned. For evaluation of the reliability of 9 braonchographic obstruction signs on applying to diagnose malignant or benign pulmonary diseases, each sign was identified and applied to each of the 61 confirmed cases. In addition, obstructed bronchi, distance of obstruction from the bifurcation site, and the direction of meniscus, if present, were evaluated. The results were follows: 1. The most frequent cause of bronchial obstruction was lung cancer (59.0%), and that of the benign obstruction was pulmonary tuberculosis (13.1%). 2. Amputation, asymmetric narrowing, thumbprint indentation, rat-tail narrowing and encasement signs were the most accurate signs of malignancy and were practically diagnostic ones. 3. The most frequent sign in lung cancer was sharp cutoff one, but it could be seen in lung abscess and in unresolved pneumonia, too. 4. Circumferential symmetric narrowing and regular concavity with a small central projection signs were specific ones to benignancy. 5. The most frequent obstruction sign in benign lung disease was gradual tapering sign, but it also could be seen in bronchogenic epidermoid and alveolar cell carcinoma. 6. Of all bronchial obstructions, 55.4% occurred at lobar bronchus and 77.4% of those were caused by lung cancer. 7. 77.2% of those obstruction which located within 3 times distance of the bronchial diameter at the nearest proximal bifurcation site, were lung cancer, but 75.0% of those located at over 3 times distance were benign pulmonary diseases. 8. There were no correlation of the direction of the meniscus at the obstructing end in differential diagnosis between benign and malignant pulmonary diseases.

  4. Use motion games in exercise with children with bronchial asthma

    Directory of Open Access Journals (Sweden)

    Viktoriya Polkovnyk-Markova

    2016-02-01

    Full Text Available Purpose: to analyze the possibility of using moving games in the rehabilitation of children with bronchial asthma. Material & Methods: the modern scientific literature on integrated prevention and treatment of children with asthma. Results: A high frequency of morphological and functional deviations at children with asthma. Classification and examples of mobile games, which can be used for this group of children. Conclusions: the results of modern research that show the effectiveness the use of physical rehabilitation, including moving games.

  5. Results of radiotherapy and chemotherapy in microcellular bronchial carcinoma

    International Nuclear Information System (INIS)

    Topuz, E.; Aldemir, O.; Toere, G.; Bilge, N.; Kural, N.

    1986-01-01

    At the Radiotherapeutic Department of the Faculty of Medicine in Istanbul, 35 masculine patients with microcellular bronchial carcinoma, limited disease, were treated for two years, i.e. between 1980 and 1981, with a combination of radiotherapy and chemotherapy. Nine out of these patients are tumor-free after at least 46 months, i.e. about four years. This corresponds to a tumor-free survival rate of 25.7%. (orig.) [de

  6. Aerosol lung inhalation scintigraphy in children with bronchial asthma

    International Nuclear Information System (INIS)

    Torii, Yoshikuni; Nakayama, Chikashi; Nakata, Hajime; Takahashi, Satomi; Tanaka, Masaaki; Koori, Tateo

    1988-01-01

    Aerosol lung inhalation scintigraphies performed on 37 children with bronchial asthma during asymptomatic periods were evaluated. The findings of their aerosol lung inhalation scintigrams were classified into 4 patterns, as type I: homogeneous distribution without hot spot formation, type II: peripheral homogeneity with central hot spot formation, type IIID (-): inhomogeneous distribution with hot spot formation, but without defect, and type IIID (+): with defect. These aerosol patterns were compared with those of previously reported adult cases and with the severity of bronchial asthma. Normal pattern of type I was found in 5 cases (12%) of our infantile asthmatics in contrast to previously reported adult cases, in which none of normal pattern was found. There were differences between type II and type III in both distribution and disappearance time of hot spot, which indicated that the two types differed from each other in radioaerosol deposition mechanism. There was no significant correlation between type I and type II in the severity of asthma and the frequency of asthmatic attack. Type II may be clinically considered to be the same type as type I. There is the statistically significant difference between type I, II and type III in the frequency of asthmatic attack, but not in the severity of asthma, although most of serious cases showed type III. Aerosol lung inhalation scintigraphy is a useful examination for children with bronchial asthma in which lung function tests may be difficult to perform. (author)

  7. [Identification and characterization of proteins from human bronchial secretion (author's transl)].

    Science.gov (United States)

    Laine, A; Hayem, A

    1976-03-01

    An analysis of bronchial mucus proteins was carried out by crossed immunoelectrophoresis. Before electrophoretic migration, sputum was treated with Ecteola-cellulose, which retains acid mucins. The proteins were then extracted by a phosphate/saline buffer pH 7.5. Crossed immunoelectrophoresis of the "bronchial extracts" was carried out with an anti-human serum: fifteen proteins were detected. Among them, IgA and protease inhibitiors play an important role in bronchial pathology. Bronchial extracts were also studied with immune serums against milk proteins, whole saliva and proteins of bronchial mucus. Bronchotransferrin, amylase and two esterases were characterized. Four other proteins were also detected with immune serums against bronchial mucus-proteins: their biological role is still unknown.

  8. The diagnostic value of multi-slice spiral CT virtual bronchoscopy in tracheal and bronchial disease

    International Nuclear Information System (INIS)

    Han Ying; Ma Daqing

    2006-01-01

    Objective: To assess the diagnostic value of multi-slice spiral CT virtual bronchoscopy (CTVB) in tracheal and bronchial disease. Methods: Forty-two patients including central lung cancer (n=35), endobronchial tuberculosis (n=3), intrabronchial benign tumor (n=3), and intrabronchial foreign body (n=1) were examined by using multi-slice spiral CT examinations. All the final diagnosis were proved by pathology except 1 patient with endoluminal foreign body was proved by clinic. All patients were scanned on GE Lightspeed 99 scanner, using 10 mm collimation, pitch of 1.35, and reconstructed at 1 mm intervals and 1.25 mm thickness. The chest images of transverse CT and virtual bronchoscopy were viewed by two separate radiologists who were familiar with the tracheal and bronchial anatomy. Results: Among the 42 patients, the tumor of trachea and bronchial lumen appeared as masses in 22 of 35 patients with central lung cancer and bronchial stenosis was found in 13 of 35 patients with central lung cancer, and bronchial wall thickening was revealed on transverse CT in all 35 cases. 3 patients of endobronchial tuberculosis showed bronchial lumen narrowing on CTVB, the bronchial wall thickening was revealed on transverse CT, and the length of the wall thickening was long. 3 patients with intrabronchial benign tumor showed nodules in trachea and bronchial lumen on CTVB, and without wall thickening on transverse CT. CTVB could detect the occlusion of bronchial lumen in 1 patient with intrabronchial foreign body and CTVB was able to visualize the areas beyond stenosis, and the bronchial wall was without thickening on transverse CT. Conclusion: Multi- slice spiral CTVB could reflect the morphology of tracheal and bronchial disease. Combined with transverse CT, it could provide diagnostic reference value for bronchial disease. (authors)

  9. Diagnosis of bronchial artery aneurysm by computed tomography: a case report

    Directory of Open Access Journals (Sweden)

    So Hyeon Bak, MD

    2017-09-01

    Full Text Available Bronchial artery aneurysm is a rare vascular abnormality, with an incidence of <1% based on diagnosis by selective bronchial angiography. It is manifested in various forms, ranging from an incidental finding on radiologic examination to life-threatening hemorrhage resulting from aneurysm rupture. We report a case of a 60-year-old man with a mediastinal bronchial artery aneurysm which was incidentally detected on chest computed tomography.

  10. PHARMACOECONOMIC ASPECT OF OMALIZUMAB APPLICATION AMONG THE PATIENTS, SUFFERING FROM THE BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    A.S. Kolbin

    2008-01-01

    Full Text Available In the given article, the authors discuss the most difficult issue of the pediatrics, which is the treatment of the severe bronchial asthma. Our columnist is professor A.S. Kolbin introduces omalizumab, a new medication from the monoclonal antibodies group, to our readers. It allows practitioners to control the severe persistent bronchial asthma. The article accentuates the clinical effectiveness and pharmacoeconomic aspects of the medication application.Key words: bronchial asthma, severe run, treatment, monoclonal antibodies, children.

  11. The clinical significance of the substance P in bronchoalveolar lavage fluid in patients with bronchial asthma

    International Nuclear Information System (INIS)

    Cui Bangping; Jiang Changbin

    2003-01-01

    Using radioimmunoassay to measure the substance P (SP) in bronchoalveolar lavage fluid in thirty patients with bronchial asthma and thirty healthy persons. Compered with healthy group (33.4±24.5 pmol/L), the SP in bronchial asthma group (240.2±18.7 pmol/L) increased significantly (p < 0.01). SP may play a role in the development of bronchial asthma

  12. Three-dimensional anatomical evaluation of bronchial artery with CT angiography

    International Nuclear Information System (INIS)

    Yu Hong; Li Huimin; Xiao Xiangsheng; Liu Shiyuan; Li Chengzhou; Tao Xiaofeng

    2006-01-01

    Objective: To evaluate the ability of CT angiography in identifying and demonstrating the origins and courses of bronchial arteries by using the three-dimensional reformation technique. Methods Four hundred and forty-three eases were examined with thin-section enhanced MSCT. Three-dimensional images of bronchial arteries were processed at the workstation. Spatial anatomical characters of the bronchial arteries using volume rendering(VR), muhiplanar reconstruction (MPR), and maxium intensity projection (MIP) were observed. Results: At least one bronchial artery was clearly displayed in VR in 359 eases. The right bronchial arteries mainly appeared to originate from the right intercostal artery (213/436, 48.85% ) and descending aorta (207/436, 47.48%), while the left bronchial arteries mainly from the descending aorta (363/371, 97.84%). The right bronchial arteries of the descending aorta were mainly arised from fight wall (95/207, 45.89%), and then the anterior wall (88/207, 42.51%), while the left bronchial arteries of the descending aorta mainly arised from anterior wall of the aorta (272/363, 74.93%). The common trunk originated from the descending aorta mainly positioned in the anterior wall (57/77, 74.03%). 49.31% (215/436) of the fight bronchial arteries were coursing across the posterior edge of the right main bronchi, 35.55% (155/436) coursing the inferior edge, while 60.11% (223/371) of left bronchial arteries coursing forward across the superior edger of the left main bronchi, the others coursing the inferior or the posterior edge. There were eleven bronchial artery distribution patterns, with the right and left ones predominating (192/359, 53.48%), and then two right and one left (63/359, 17.55%). Conclusion: The bronchial artery anatomy was complicated, and CT angiography could clearly visualize the features. (authors)

  13. The normal anatomy and variations of the bronchial arteries: evaluation with multidetector computed tomography.

    Science.gov (United States)

    Yener, Özlem; Türkvatan, Aysel; Yüce, Gökhan; Yener, Ali Ümit

    2015-02-01

    In this study, we aimed to reveal the normal anatomy and variations of the bronchial arterial system and to determine the sex distribution of these variations by retrospectively reviewing the images of patients who underwent thoracal multidetector computed tomographic angiography for various reasons. Multidetector computed tomographic images of a total of 208 patients (151 men; mean age, 59 years) were retrospectively reviewed to assess the normal anatomy and variations of the bronchial arterial system. A total of 531 bronchial arteries (median, 3; minimum, 1; maximum, 5; mean, 2.5) were detected. The number (mean diameter) of the right bronchial arteries were higher than the left bronchial arteries (290 [1.43 mm] and 241 [1.26 mm], respectively; P arteries were higher with men than with women (2.58 [1.45 mm] and 2.47 [1.32 mm], respectively; P artery, and, secondarily (13.46%), the combination of 2 right (1 intercostal-bronchial trunk and 1 bronchial artery) and 1 left bronchial arteries. Seventy-eight ectopic bronchial arteries were detected in 59 cases (28.3%). They most commonly originated from the aortic arch (37.2%), the descending aorta below the level of T6 (35.9%), or the aortic branches (16.7%). The number of right ectopic bronchial arteries was significantly higher than the left ectopic bronchial arteries (50 [64%] vs 28 [36%]; P arteries was statistically higher with men versus women (45 [29.8%] vs 14 [24.6%]; P arteries can vary substantially among individuals. Multidetector computed tomographic angiography enables a detailed road map of the bronchial arterial system to interventional radiologists and thoracic surgeons. Copyright © 2015 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Immediate and long-term outcomes of bronchial and non-bronchial systemic artery embolisation for the management of haemoptysis

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Joo-Young; Belli, Anna-Maria [St. George' s Hospital, Department of Radiology, London (United Kingdom)

    2010-03-15

    To evaluate the immediate and long-term results of arterial embolisation in the management of haemoptysis and to identify factors influencing outcome. A retrospective analysis was carried out of the medical records and angiograms of 50 patients who underwent transarterial embolisation for haemoptysis. The most frequent causes of haemoptysis included bronchiectasis (16%), active tuberculosis (12%) and aspergilloma (12%). A total of 126 bronchial and non-bronchial systemic arteries were embolised in 62 procedures. Immediate cessation of haemoptysis was achieved in 43 patients (86%). Haemoptysis was controlled in 36 patients (72%), recurred in 14 (28%) and 11 (22%) required repeat embolisation. The worst outcomes were observed in patients with aspergilloma: all six suffered recurrent bleeding and three (50%) died from massive haemoptysis. Aspergilloma was also associated with an increased risk of haemoptysis recurrence (p<0.05). A good clinical outcome was achieved in those with active tuberculosis and malignancy. Complication rates were low and included transient chest pain, false aneurysm and one case of lower limb weakness. Bronchial artery embolisation (BAE) is an effective and safe procedure for haemoptysis control in most cases. However, high recurrence and mortality rates are associated with aspergilloma. Early intervention with repeat embolisation is recommended in these patients and elective surgery should be considered. (orig.)

  15. High probability of comorbidities in bronchial asthma in Germany.

    Science.gov (United States)

    Heck, S; Al-Shobash, S; Rapp, D; Le, D D; Omlor, A; Bekhit, A; Flaig, M; Al-Kadah, B; Herian, W; Bals, R; Wagenpfeil, S; Dinh, Q T

    2017-04-21

    Clinical experience has shown that allergic and non-allergic respiratory, metabolic, mental, and cardiovascular disorders sometimes coexist with bronchial asthma. However, no study has been carried out that calculates the chance of manifestation of these disorders with bronchial asthma in Saarland and Rhineland-Palatinate, Germany. Using ICD10 diagnoses from health care institutions, the present study systematically analyzed the co-prevalence and odds ratios of comorbidities in the asthma population in Germany. The odds ratios were adjusted for age and sex for all comorbidities for patients with asthma vs. without asthma. Bronchial asthma was strongly associated with allergic and with a lesser extent to non-allergic comorbidities: OR 7.02 (95%CI:6.83-7.22) for allergic rhinitis; OR 4.98 (95%CI:4.67-5.32) allergic conjunctivitis; OR 2.41 (95%CI:2.33-2.52) atopic dermatitis; OR 2.47 (95%CI:2.16-2.82) food allergy, and OR 1.69 (95%CI:1.61-1.78) drug allergy. Interestingly, increased ORs were found for respiratory diseases: 2.06 (95%CI:1.64-2.58) vocal dysfunction; 1.83 (95%CI:1.74-1.92) pneumonia; 1.78 (95%CI:1.73-1.84) sinusitis; 1.71 (95%CI:1.65-1.78) rhinopharyngitis; 2.55 (95%CI:2.03-3.19) obstructive sleep apnea; 1.42 (95%CI:1.25-1.61) pulmonary embolism, and 3.75 (95%CI:1.64-8.53) bronchopulmonary aspergillosis. Asthmatics also suffer from psychiatric, metabolic, cardiac or other comorbidities. Myocardial infarction (OR 0.86, 95%CI:0.79-0.94) did not coexist with asthma. Based on the calculated chances of manifestation for these comorbidities, especially allergic and respiratory, to a lesser extent also metabolic, cardiovascular, and mental disorders should be taken into consideration in the diagnostic and treatment strategy of bronchial asthma. PREVALENCE OF CO-EXISTING DISEASES IN GERMANY: Patients in Germany with bronchial asthma are highly likely to suffer from co-existing diseases and their treatments should reflect this. Quoc Thai Dinh at Saarland

  16. Experimental studies in the bronchial circulation. Which is the ideal animal model?

    Science.gov (United States)

    Panagiotou, Ioannis; Tsipas, Panteleimon; Melachrinou, Maria; Alexopoulos, Dimitrios; Dougenis, Dimitrios

    2014-01-01

    Background The importance of the role of bronchial arteries is notable in modern days thoracic surgery. The significance of their anastomoses with adjusted structures has not yet been sufficiently rated, especially in cases of haemoptysis, heart-lung transplantations and treatment of aneurysms of the thoracic aorta. The need of a thorough study is more relevant than ever and appropriate laboratory animals are required. Methods We review the literature in order to highlight the ideal experimental animal for the implementation of pilot programs relative to the bronchial circulation. A comparative analysis of the anatomy of the bronchial arterial system in humans along with these of pigs, dogs, rats, and birds, as being the most commonly used laboratory animals, is presented in details. Results The pig has the advantage that the broncho-oesophageal artery usually originates from the aorta as a single vessel, which makes the recognition and dissection of the artery easy to perform. In dogs, there is significant anatomical variation of the origin of the bronchial arteries. In rats, bronchial artery coming from the aorta is a rare event while in birds the pattern of the bronchial artery tree is clearly different from the human analog. Conclusions The pig is anatomically and physiologically suited for experimental studies on the bronchial circulation. The suitable bronchial anatomy and physiology along with the undeniable usefulness of the pig in experimental research and the low maintenance cost make the pig the ideal model for experiments in bronchial circulation. PMID:25364530

  17. Relationship Between Expression of Interleukin-5 and Interleukin-13 by Epithelial Cells and Bronchiolar Changes in Pigs Infected with Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Rodríguez, F; Batista, M; Hernández, J N; Afonso, A M; Poveda, J B

    2016-01-01

    Mycoplasma hyopneumoniae (Mh) is a bacterium that specifically infects the surface of bronchi and bronchioles of pigs without invading the host cells, and it is considered to be the primary agent of porcine enzootic pneumonia (PEN). The present study investigates the morphological and immunohistological changes induced in bronchiolar epithelium by Mh infection. Lungs from 20 pigs with naturally occurring Mh pneumonia were compared with those from 10 uninfected controls. Bronchiolar epithelial height, inflammatory infiltration, hyperplasia of bronchus-associated lymphoid tissue (BALT) and mucin subtype MUC5AC-producing cells significantly increased in all infected animals. Mh antigen was detected in association with the cilia of the bronchial and bronchiolar epithelium. Interleukin (IL)-5 and IL-13 were expressed consistently by epithelial and mononuclear cells of the airways of infected animals. The expression of these cytokines in the bronchial and bronchiolar tissues is related to the histological changes of PEN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  19. Lung epithelial permeability and inhaled furosemide. Added dimensions in asthmatics

    International Nuclear Information System (INIS)

    Bhure, U.N.; Bhure, S.U.; Bhatt, B.M.; Mistry, S.; Pednekar, S.J.; Chari, V.V.; Desai, S.A.; Joshi, J.M.; Paidhungat, A.J.

    2009-01-01

    Lung clearance rates of inhaled 99m Tc-diethylene-triamine-pentaacetic acid (DTPA) aerosols constitute a sensitive index to evaluate the permeability changes characteristic of airway epithelial damage. It was thought that edema of the airway wall which is reported in asthma could be relieved with a diuretic like furosemide, helping to relieve the symptoms. We intended to study the effect of inhaled furosemide on lung epithelial permeability in asthmatics and smokers with the help of 99m Tc-DTPA lung clearance test (LCT). The study included three groups (n=15), viz. normal healthy controls, asymptomatic chronic smokers, and chronic persistent asthmatics. Each subject underwent the LCT twice, baseline and post-furosemide (Lasix) study, within a week's interval. The post-furosemide study was carried out 15 min after inhalation of 10 mg of lasix. Lung epithelial permeability was determined in terms of clearance half-life (T 1/2 ). The baseline mean T 1/2 values for controls, smokers, and asthmatics were 50.95±16.58, 20.81±5.47, 24.06±6.19 min, respectively. Post-lasix T 1/2 values were 50.83±15.84, 20.70±5.65, 41.27±15.07 min, respectively. There was a significant difference (P<0.001) in baseline and post-lasix clearance values in asthmatics only. Baseline lung epithelial permeability was altered in smokers and asthmatics compared to the controls. Furosemide was effective only in asthmatics in reverting the permeability almost back to the normal range. Inhaled furosemide was effective even in moderate and severe asthmatics. Furosemide has multiple mechanisms of action. It possibly acts at bronchial level in view of the pathology in asthmatics lying in the airways. (author)

  20. Ectopic origin of bronchial arteries: assessment with multidetector helical CT angiography

    International Nuclear Information System (INIS)

    Hartmann, Ieneke J.C.; Remy-Jardin, Martine; Menchini, Laura; Teisseire, Antoine; Khalil, Chadi; Remy, Jacques

    2007-01-01

    The purpose of this study was to determine non-invasively the frequency of ectopic bronchial arteries (BA) (i.e., bronchial arteries originating at a level of the descending aorta other than T5-T6 or from any aortic collateral vessel) on multidetector-row CT angiograms (CTA) obtained in patients with hemoptysis. Over a 5-year period (2000-2005), 251 consecutive patients with hemoptysis underwent multidetector-row CT angiography of the thorax. From this population, 37 patients were excluded because of a suboptimal CTA examination (n = 19), the presence of extensive mediastinal disease (n = 15) or severe chest deformation (n = 3) precluding any precise analysis of the bronchial arteries at CTA. Our final study group included 214 patients who underwent a thin-collimated CT angiogram (contrast agent: 300 to 350 mg/ml) on a 4- (n = 56), 16- (n = 119) and 64- (n = 39) detector-row scanner. The site of origin and distribution of bronchial arteries were analyzed on transverse CT scans, maximum intensity projections and volume-rendered images. The site of the ostium of a bronchial artery was coded as orthotopic when the artery originated from the descending aorta between the levels of the fifth and sixth thoracic vertebrae; all other bronchial arteries were considered ectopic. From the studied population, 137 (64%) patients had only orthotopic bronchial arteries, whereas 77 patients (36%) had at least one bronchial artery of ectopic origin. A total of 147 ectopic arteries were depicted, originating as common bronchial trunks (n = 23; 19%) or isolated right or left bronchial arteries (n = 101; 81%). The most frequent sites of origin of the 124 ostiums were the concavity of the aortic arch (92/124; 74%), the subclavian artery (13/124; 10.5%) and the descending aorta (10/124; 8.5%). The isolated ectopic bronchial arteries supplied the ipsilateral lung in all but three cases. Bronchial artery embolization was indicated in 26 patients. On the basis of CTA information, (1

  1. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    Science.gov (United States)

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  2. Computed Tomographic Window Setting for Bronchial Measurement to Guide Double-Lumen Tube Size.

    Science.gov (United States)

    Seo, Jeong-Hwa; Bae, Jinyoung; Paik, Hyesun; Koo, Chang-Hoon; Bahk, Jae-Hyon

    2018-04-01

    The bronchial diameter measured on computed tomography (CT) can be used to guide double-lumen tube (DLT) sizes objectively. The bronchus is known to be measured most accurately in the so-called bronchial CT window. The authors investigated whether using the bronchial window results in the selection of more appropriately sized DLTs than using the other windows. CT image analysis and prospective randomized study. Tertiary hospital. Adults receiving left-sided DLTs. The authors simulated selection of DLT sizes based on the left bronchial diameters measured in the lung (width 1,500 Hounsfield unit [HU] and level -700 HU), bronchial (1,000 HU and -450 HU), and mediastinal (400 HU and 25 HU) CT windows. Furthermore, patients were randomly assigned to undergo imaging with either the bronchial or mediastinal window to guide DLT sizes. Using the underwater seal technique, the authors assessed whether the DLT was appropriately sized, undersized, or oversized for the patient. On 130 CT images, the bronchial diameter (9.9 ± 1.2 mm v 10.5 ± 1.3 mm v 11.7 ± 1.3 mm) and the selected DLT size were different in the lung, bronchial, and mediastinal windows, respectively (p study, oversized tubes were chosen less frequently in the bronchial window than in the mediastinal window (6/110 v 23/111; risk ratio 0.38; 95% CI 0.19-0.79; p = 0.003). No tubes were undersized after measurements in these two windows. The bronchial measurement in the bronchial window guided more appropriately sized DLTs compared with the lung or mediastinal windows. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Treatment of bronchial obstruction in patients with pulmonary tuberculosis].

    Science.gov (United States)

    Shmelev, E I; Kuklina, G M; Kalinina, E E

    2004-01-01

    Whether the main points of treatment for bronchial obstructive syndrome (BOS) in chronic obstructive lung disease (COLD) can be adapted for patients with pulmonary tuberculosis (PT) was studied. For this purpose, 435 patients with PT with signs of BOS (forced expiratory volume at 1 second (FEV1) 70% of the normal values; 2) 229 patients with FEV1 69-50%; 3) 102 patients with FEV1 bronchial obstructive syndrome in patients with pulmonary tuberculosis was highly effective, promotes the amelioration of the degree of respiratory symptoms in patients with IPT by 2 to 8 times, in those with FCPT by more than 2-3 times, and in those with PS by 1.45-10 times. The differences in the efficiency of bronchodilator therapy depend on the baseline level of bronchial obstruction. In patients with pulmonary tuberculosis concurrent with BO, the use of current inhalation bronchodilator therapy results in a substantial increase in FEV1, which differentiates BOS in PT from COLD. The use of the proposed therapy in the multimodality treatment of patients with pulmonary tuberculosis showed no statistically significant differences in the changes in the degree of X-ray symptoms while this therapy permits acceleration of abacillation in patients with IPT by 16.8% and in those with FCPT by 14.8%. Effective bronchodilator therapy considerably enhances life quality in patients. Thus, early systematic and long-term performance of the bronchodilator therapy, based on the principles of bronchodilator therapy for COLD, in patients with PT concurrent with BOS may substantially enhance the efficiency of treatment in this category of patients.

  4. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Jie Ji

    Full Text Available Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents.In this study, we successfully established a combination of an exposure system (XposeALI with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC and fibroblast at air-liquid interface (ALI. Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd nanoparticles which sized 6-10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system.Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM and apical lavage medium (AM were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM.This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting.

  5. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.

    Directory of Open Access Journals (Sweden)

    Vinciane Saint-Criq

    Full Text Available Male cystic fibrosis (CF patients survive longer than females and lung exacerbations in CF females vary during the estrous cycle. Estrogen has been reported to reduce the height of the airway surface liquid (ASL in female CF bronchial epithelium. Here we investigated the effect of 17β-estradiol on the airway surface liquid height and ion transport in normal (NuLi-1 and CF (CuFi-1 bronchial epithelial monolayers. Live cell imaging using confocal microscopy revealed that airway surface liquid height was significantly higher in the non-CF cells compared to the CF cells. 17β-estradiol (0.1-10 nM reduced the airway surface liquid height in non-CF and CF cells after 30 min treatment. Treatment with the nuclear-impeded Estrogen Dendrimer Conjugate mimicked the effect of free estrogen by reducing significantly the airway surface liquid height in CF and non-CF cells. Inhibition of chloride transport or basolateral potassium recycling decreased the airway surface liquid height and 17β-estradiol had no additive effect in the presence of these ion transporter inhibitors. 17β-estradiol decreased bumetanide-sensitive transepithelial short-circuit current in non-CF cells and prevented the forskolin-induced increase in ASL height. 17β-estradiol stimulated an amiloride-sensitive transepithelial current and increased ouabain-sensitive basolateral short-circuit current in CF cells. 17β-estradiol increased PKCδ activity in CF and non-CF cells. These results demonstrate that estrogen dehydrates CF and non-CF ASL, and these responses to 17β-estradiol are non-genomic rather than involving the classical nuclear estrogen receptor pathway. 17β-estradiol acts on the airway surface liquid by inhibiting cAMP-mediated chloride secretion in non-CF cells and increasing sodium absorption via the stimulation of PKCδ, ENaC and the Na(+/K(+ATPase in CF cells.

  6. Development of Combining of Human Bronchial Mucosa Models with XposeALI® for Exposure of Air Pollution Nanoparticles.

    Science.gov (United States)

    Ji, Jie; Hedelin, Anna; Malmlöf, Maria; Kessler, Vadim; Seisenbaeva, Gulaim; Gerde, Per; Palmberg, Lena

    2017-01-01

    Exposure to agents via inhalation is of great concerns both in workplace environment and in the daily contact with particles in the ambient air. Reliable human airway exposure systems will most likely replace animal experiment in future toxicity assessment studies of inhaled agents. In this study, we successfully established a combination of an exposure system (XposeALI) with 3D models mimicking both healthy and chronic bronchitis-like mucosa by co-culturing human primary bronchial epithelial cells (PBEC) and fibroblast at air-liquid interface (ALI). Light-, confocal microscopy, scanning- and transmission electron microscopy, transepithelial electrical resistance (TEER) measurement and RT-PCR were performed to identify how the PBEC differentiated under ALI culture condition. Both models were exposed to palladium (Pd) nanoparticles which sized 6-10 nm, analogous to those released from modern car catalysts, at three different concentrations utilizing the XposeALI module of the PreciseInhale® exposure system. Exposing the 3D models to Pd nanoparticles induced increased secretion of IL-8, yet the chronic bronchitis-like model released significantly more IL-8 than the normal model. The levels of IL-8 in basal medium (BM) and apical lavage medium (AM) were in the same ranges, but the secretion of MMP-9 was significantly higher in the AM compared to the BM. This combination of relevant human bronchial mucosa models and sophisticated exposure system can mimic in vivo conditions and serve as a useful alternative animal testing tool when studying adverse effects in humans exposed to aerosols, air pollutants or particles in an occupational setting.

  7. The Role of Eosinophilic Cationic Proteins, Total IgE and Eosinophilia in Children with Bronchial Hyperresponsiveness

    Directory of Open Access Journals (Sweden)

    Ungureanu Adina

    2016-11-01

    Full Text Available Bronchial hyperreactivity (HRB, is defined as an excessive bronchial constriction that acts as an exaggerated bronchoconstrictor of the airways. This occurs as a secondary action of a nonspecific stimuli.

  8. [Activity and safety of fenspiride in bronchial hyperexudation (author's transl)].

    Science.gov (United States)

    de Labarthe, B; Gosset, X; Dourmap, C; Delaval, P; Le Rest, R

    This clinical trial of fenspiride (injectable and sustained-release 80 mg tablet) was carried out on patients selected because their bronchopathy was of a hypersecretory type. Interesting results were observed in 20 out of 37 cases, but they were often delayed. This group of patients included a high proportion of patients with major hypersecretion; the efficacy of fenspiride is often evident, (in 8 out of 11 cases) but it is unpredictable individually. It can be concluded from this trial that a long term treatment with fenspiride, well tolerated, can usefully be tried in patients with predominant signs of bronchial hyperexudation.

  9. Central bronchial carcinoid: Management of a case and anesthetic perspectives

    Directory of Open Access Journals (Sweden)

    D Goswami

    2016-01-01

    Full Text Available Obstructing lesions of the central airways present with a variety of symptoms and are often associated with pneumonia or asthma-like states. Anesthesia to these patients often presents challenges right from the preoperative stabilization of underlying lung condition, mask ventilation in the supine position to maintaining oxygenation and ventilation in the intraoperative and postoperative period. We present here a case of a young woman with a central bronchial tumor with significant airway obstruction with potential for major bleeding and subsequent anesthetic management without lung sacrificing measures and cardiopulmonary bypass assistance.

  10. Right main bronchial fracture resolution by digital thoracic drainage system.

    Science.gov (United States)

    Cortés Julián, Gildardo; Mier, José M; Iñiguez, Marco A; Guzmán de Alba, Enrique

    2016-03-01

    Tracheobronchial stenosis is common in the thoracic surgery service, and iatrogenic injury of the airway after manipulation is not infrequent. When a digital thoracic drainage system came onto the market, many advantages were evident. A 24-year-old woman with critical right main bronchial stenosis underwent airway dilation that was complicated by a tear with a massive air leak, resulting in a total right pneumothorax. We employed a pleural drain connected to a digital thoracic drainage system. The drain was removed 2 days after successful resolution of the air leak. © The Author(s) 2015.

  11. Bronchial carcinoid tumor: helical CT and virtual bronchoscopy

    International Nuclear Information System (INIS)

    Diez, Eduardo; Carrascosa, Patricia; Capunay, Carlos; Spinozzi, German; Abramson, Horacio; Berna, Miguel

    2001-01-01

    The authors reported a case of a 61 years old man with recurrent neumonia of the inferior right lobe diagnosed by a chest radiography. A complementary helical CT showed an endobronquial mass on the right intermediate bronchus. Virtual bronchoscopy contributed to a better definition of this lesion, confirmed by a real bronchoscopy. The lesion was diagnosed as a carcinoid tumor by a bronchial biopsy. After surgery (sleeve resection of the tumor) the patient did not show any recurrence of his broncho-neumonic clinical features. (author)

  12. Multifactorial dyspahgia complicated by esophago-bronchial fistula

    Directory of Open Access Journals (Sweden)

    Sebastian Julie

    2007-01-01

    Full Text Available Dysphagia in an elderly patient necessitates urgent clinical evaluation to exclude the possibility of an underlying esophageal malignancy. Atherosclerotic aortic aneurysms are common in old age, but dysphagia aortica resulting from compression of the esophagus by an aortic aneurysm is a rare cause for dysphagia. Development of a malignant esophago-airway fistula can occur from a variety of tumors, the most common of which is esophageal cancer. A case of longstanding dysphagia resulting from dysphagia aortica later developing an esophageal malignancy complicated by esophago-bronchial fistula is outlined in this unique case report.

  13. [Low power laser biostimulation in the treatment of bronchial asthma].

    Science.gov (United States)

    Milojević, Momir; Kuruc, Vesna

    2003-01-01

    Modern concept of acupuncture is based on the fact there are designated locations on the surface of human body, which are related to integrative systems of an organism by means of sensory nerves, correlating and synchronizing organ functioning, depending on external and internal conditions, by means of nervous and neurohumoral regulation of metabolic and regenerative processes, including also mobilisation of immunological, protective and antistress reactions. Apart from standard needle acupuncture, other methods of stimulating acupuncture points are also applied. Due to invention of low power lasers, irradiation laser acupuncture has been introduced into routine medical practice, characterised by painless and aseptic technique and outstanding clinical results. The investigation was aimed at defining therapeutic effects of low power laser irradiation by stimulating acupuncture points or local treatment of asthma. A prospective analysis included 50 patients treated at the Institute of Pulmonary Diseases in Sremska Kamenica during 2000, 2001 and 2002. Together with conservative treatment of present disease, these patients were treated with laser stimulation of acupuncture points in duration of ten days. During treatment changes of functional respiratory parameters were recorded. Results were compared with those in the control group. The control group consisted of the same number of patients and differed from the examination group only by not using laser stimulation. Patients with bronchial asthma presented with significant improvement (p lower frequency and intensity of attacks. The mechanism of laser stimulation activity in treatment of bronchial asthma is explained in detail, correlating our results to those obtained by other authors. A ten-day course of low-power laser stimulation of acupuncture points in patients with bronchial asthma improves both the lung function and gas exchange parameters. Positive effects of laser treatment in patients with bronchial asthma

  14. Clinical and Diagnostic Features of Bronchial Asthma in Children on the Background of Latent Food Allergy

    Directory of Open Access Journals (Sweden)

    V.M. Levytskyi

    2015-09-01

    Full Text Available Based on clinical and paraclinical examination of 112 children with bronchial asthma, there were studied the features of its course against the background of food allergy. It was found that only a set of clinical and paraclinical signs is the most important for the diagnosis of bronchial asthma in children on the background of latent food allergy.

  15. Lung function and bronchial responsiveness after Mycoplasma pneumoniae infection in early childhood

    DEFF Research Database (Denmark)

    Boysen, Birgitte Kjær; Jensen, Jørgen S; Nielsen, Kim G

    2008-01-01

    by whole-body plethysmography and bronchial hyperresponsiveness was assessed by cold, dry air hyperventilation. Neither baseline lung function nor bronchial response to cold dry air hyperventilation differed between M. pneumoniae-positive and -negative children: mean baseline lung function were 1.17 versus...

  16. Use of tracheal auscultation for the assessment of bronchial responsiveness in asthmatic children

    NARCIS (Netherlands)

    Sprikkelman, A. B.; Grol, M. H.; Lourens, M. S.; Gerritsen, J.; Heymans, H. S.; van Aalderen, W. M.

    1996-01-01

    BACKGROUND: It can be difficult to assess bronchial responsiveness in children because of their inability to perform spirometric tests reliably. In bronchial challenges lung sounds could be used to detect the required 20% fall in the forced expiratory volume in one second (FEV1). A study was

  17. Use of tracheal auscultation for the assessment of bronchial responsiveness in asthmatic children

    NARCIS (Netherlands)

    Sprikkelman, AB; Grol, MH; Lourens, MS; Gerritsen, J; Heymans, HSA; vanAalderen, WMC

    Background - It can be difficult to assess bronchial responsiveness in children because of their inability to perform spirometric tests reliably. In bronchial challenges lung sounds could be used to detect the required 20% fall in the forced expiratory volume in one second (FEV(1)). A study was

  18. An increase in bronchial responsiveness is associated with continuing or restarting smoking

    NARCIS (Netherlands)

    Chinn, S; Jarvis, D; Luczynska, CM; Ackermann-Liebrich, U; Anto, JM; Cerveri, [No Value; de Marco, R; Gislason, T; Heinrich, J; Janson, C; Kunzli, N; Leynaert, N; Neukirch, FO; Schouten, JP; Sunyer, J; Svanes, C; Wjst, M; Burney, PG

    2005-01-01

    Rationale: Bronchial responsiveness (BHR) has been found to be associated with smoking, atopy, and lower lung function in cross-sectional studies, but there is little information on determinants of change in adults. Objectives: To analyze change in bronchial responsiveness in an international

  19. Mediastinoscopic Bilateral Bronchial Release for Long Segmental Resection and Anastomosis of the Trachea

    OpenAIRE

    Kang, Jeong-Han; Park, In Kyu; Bae, Mi-Kyung; Hwang, Yoohwa

    2011-01-01

    The extent of resection and release of the trachea is important for successful anastomosis. Bilateral bronchial dissection is one of the release techniques for resection of the lower trachea. We present the experience of cervical video-assisted mediastinoscopic bilateral bronchial release for long segmental resection and anastomosis of the lower trachea.

  20. Left Circumflex Coronary Artery Fistula Connected to the Right Bronchial Artery Associated with Bronchiectasis: Multidetector CT and Coronary Angiography Findings

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyung Jin; Choo, Ki Seok [Dept. of Radiology, Medical Research Institute, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2013-04-15

    Coronary to bronchial artery fistula is a rare vascular anomaly secondary to enlargement of pre-existing vascular anastomosis between the coronary and bronchial arteries. This occurs when there is a constant disturbance of the pressure equilibrium involving either coronary or broncho-pulmonary disorder. Localized bronchiectasis is the most common related condition in patients with a coronary to bronchial artery fistula. Herein, we report on a case of a large left circumflex coronary artery to right bronchial artery fistula associated with bronchiectasis.

  1. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives.

    Science.gov (United States)

    Leclercq, Bérénice; Alleman, Laurent Yves; Perdrix, Esperanza; Riffault, Véronique; Happillon, Mélanie; Strecker, Alain; Lo-Guidice, Jean-Marc; Garçon, Guillaume; Coddeville, Patrice

    2017-07-01

    According to the literature, tiny amounts of transition metals in airborne fine particles (PM 2.5 ) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM 2.5 -bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM 2.5 towards the target bronchial compartment. Different fluids (H 2 O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM 2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM 2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM 2.5 -induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble

  2. Airway mucosal permeability in chronic bronchitics and bronchial asthmatics with hypersecretion

    International Nuclear Information System (INIS)

    Honda, I.; Shimura, S.; Sasaki, T.; Sasaki, H.; Takishima, T.; Nakamura, M.

    1988-01-01

    To determine airway mucosal permeability, radiolabeled albumin in sputum was examined on the basis of a 2-h period of sputum collection for as long as 8h after intravenous administration of 131 I-labeled human serum albumin. This technique was applied to 12 patients with bronchial asthma associated with hypersecretion or chronic bronchitis. Group A consisted of 6 asthmatics (2 females and 4 males, 56.0 +/- 6.4 yr of age, mean +/- SEM); Group B consisted of 6 bronchitics (3 females and 3 males, 53.8 +/- 6.5 yr of age). Between Groups A and B, there was no significant difference in sputum volume per day or in obstructive impairment. Radiolabeled albumin concentration (cpm/ml) was obtained from radiocount of each sputum sample and then divided by serum concentration at the time of each sampling (2, 4, 6, and 8 h after administration). Group B showed large values compared with those in Group A. In Group A, the ratios were 2.0 +/- 0.8, 2.5 +/- 0.5, 2.2 +/- 0.2, and 1.5 +/- 0.4% (mean +/- SEM) at 2, 4, 6, and 8 h after the administration, respectively, whereas in Group B, the ratios were 3.0 +/- 0.6, 7.0 +/- 1.8, 7.2 +/- 1.8, and 7.4 +/- 2.4%, respectively. The differences between Groups A and B were statistically significant (two-way analysis of variance). These findings suggest that an increase in airway mucosal permeability is due to mucosal epithelial damage by chronic inflammation in bronchitics and not to the underlying abnormality of asthma

  3. Digital video subtraction fluorography (DVSF) in the diagnosis of bronchial abnormality associated with congenital heart diseases

    International Nuclear Information System (INIS)

    Sano, Tetsuya; Arisawa, Jun; Nakajima, Toru

    1990-01-01

    To assess bronchial morphology and abnormality, 14 children with congenital heart diseases including 2 postoperative patients (age, 2 m.-4 yr) were studied by digital video subtraction fluorography (DVSF) using digital subtraction and image processing system (Philips, DVI-2). This newly developed technique clearly defined bronchial anatomy in all 14 patients. Bronchial situs could be determined in all 8 patients with complex heart anomalies. Out of 8 patients with respiratory distress in this study, obvious bronchial stenosis or obstruction was found by DVSF in 5 patients. Thus, DVSF image defined anatomies of main and lobar bronchi more clearly than previous noninvasive methods. Moreover, DVSF is noninvasive and easily performed even for small infants and critically ill patients. In conclusion, DVSF may be a useful technique to assess bronchial morphology and abnormality in patients with congenital heart diseases. (author)

  4. Expression of CD152 and CD137 on T regulatory cells in rhinitis and bronchial asthma patients

    Directory of Open Access Journals (Sweden)

    Enrique Rojas-Ramos

    2015-04-01

    Conclusions: Subjects with bronchial asthma and bronchial asthma and allergic rhinitis disorders have a deficiency of CD4+, CD25hight and FoxP3+ Treg in peripheral blood; however, subjects with bronchial asthma had a higher frequency of CD152+ and CD137+ Treg cells.

  5. Radiologic management of haemoptysis. Diagnostic and interventional bronchial arterial embolisation

    Energy Technology Data Exchange (ETDEWEB)

    Ittrich, H.; Adam, G. [Univ. Medical Center Hamburg, Hamburg (Germany). Diagnostic and Interventional Radiology Dept. and Clinic; Klose, H. [Univ. Medical Center Hamburg, Hamburg (Germany). Section Pneumology

    2015-04-15

    Hemoptysis can be a life-threatening pulmonary emergency with high mortality, is symptomatic of an underlying severe pulmonary disease and requires immediate diagnosis and treatment. Diagnostically, bronchoscopy, conventional chest x-ray and contrast-enhanced multislice computed tomography (MSCT) with CT angiography (CTA) provide information regarding the underlying pulmonary disease, bleeding site, the vascular anatomy of the bronchial arteries (BA) and extrabronchial branches, as well a basis for planning of endovascular intervention. Therapeutically, bronchial artery embolization (BAE) is a safe and effective technique in the hands of an experienced interventionist with profound knowledge of the BA anatomy and possible pitfalls as well as experience with first-line therapy of recurrent and massive hemoptysis or as an intervention prior to elective surgery. Recurrent episodes of hemoptysis are not uncommon and require a prompt repeat BAE after exclusion of extrabronchial systemic and pulmonary artery bleeding sources. This review article should give an overview of the history, anatomical and pathophysiological basics and the clinical context of hemoptysis and diagnosis, as well as a survey of management, treatment and results of BAE.

  6. Interactive navigation and bronchial tube tracking in virtual bronchoscopy.

    Science.gov (United States)

    Heng, P A; Fung, P F; Wong, T T; Siu, Y H; Sun, H

    1999-01-01

    An interactive virtual environment for simulation of bronchoscopy is developed. Medical doctor can safely plan their surgical bronchoscopy using the virtual environment without any invasive diagnosis which may risk the patient's health. The 3D pen input device of the system allows the doctor to navigate and visualize the bronchial tree of the patient naturally and interactively. To navigate the patient's bronchial tree, a vessel tracking process is required. While manual tracking is tedious and labor-intensive, fully automatic tracking may not be reliable. We propose a semi-automatic tracking technique called Intelligent Path Tracker which provides automation and enough user control during the vessel tracking. To support an interactive frame rate, we also introduce a new volume rendering acceleration technique, named as IsoRegion Leaping. The volume rendering is further accelerated by distributed rendering on a TCP/IP-based network of low-cost PCs. With these approaches, a 256 x 256 x 256 volume data of human lung, can be navigated and visualized at a frame rate of over 10 Hz in our virtual bronchoscopy system.

  7. Effect of lidocaine 2% on bacterial culture of bronchial fluid

    International Nuclear Information System (INIS)

    Samet, M.; Meybodi, F.A.A.; Mokarianpour, T.; Fallah, T.; Mongabadi, F.D.; Ayatollahi, J.; Shahcherghi, S.H.; Yazdi, M.H.A

    2017-01-01

    Objective:To evaluate the action of 2% lidocaine on the culture results of bronchial fluid in patients suspected of having lower respiratory tract infections. Study Design:Cross-sectional analytical study. Place and Duration of Study:Shahid Sadoughi Hospital, Yazd, Iran, from November 2014 to November 2015. Methodology:Patients suspected of lower respiratory tract infections referred to bronchoscopy unit of the Hospital were included. Those with incomplete questionnaire and bronchoscopy contraindication were excluded. Bronchial fluid was aspirated before and after local application of 2% lidocaine and cultured, according to the suspected clinical diagnosis. Finally, statistical analysis was performed using SPSS software, version 17.0. For statistical comparisons, McNemar's test was used. Level of significance was kept at p <0.05. Results:The mean age of the study population was 51.83 +-15.93 with a range of 25 - 80 years. Out of 130 patients, 60 patients had positive culture results. Nineteen (31.7%) cases had positive culture for tuberculosis and 41 (63.3%) cases had positive results for other bacteria before intervention that did not change after using 2% lidocaine (p=1). In 70 (53.84%) cases, results were negative before and after use of 2% lidocaine. Conclusion:No significant difference was found between culture results before and after the use of lidocaine. Therefore, lidocaine can be used during bronchoscopy to increase patient tolerance. (author)

  8. Lung abscess as a complication of bronchial thermoplasty.

    Science.gov (United States)

    Balu, Anandh; Ryan, Dorothy; Niven, Robert

    2015-09-01

    Bronchial thermoplasty (BT) is an emerging treatment modality for patients with difficult to treat asthma. It has been shown to be beneficial for symptom control and improves quality of life and reduces frequency of hospitalization. Safety data from the two major trials of BT indicate that patients who undergo these procedures are most likely to experience adverse respiratory events in the first six weeks post treatment. Lung abscess has never been reported as a direct complication of BT. In this case; we report a lung abscess as an immediate complication of BT, which we believe may be the first case. We describe a forty three year old Caucasian female presented three days post-bronchial thermoplasty with left sided chest pain radiating to the back associated with shortness of breath, wheeze and dry cough. She had also started to feel hot and cold and generally unwell. It remains unclear why this patient developed a lung abscess so acutely post BT treatment. It is important that safety data continues to be collated and published as the procedure becomes more widely available with further long term follow-up in particular.

  9. Imaging of the bronchial blood flow using RI-angiography

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Hirayama, Jiro; Kanai, Hisakata; Kobayashi, Toshio; Handa, Kenjiro

    1979-01-01

    RI-angiography with sup(99m)TcO 4 - was carried out using a scintillation camera with a digital minicomputer for the purpose of imaging of bronchial blood flow in various lung diseases, and as application of dual radioisotope techniques, other imagings such as tumor imaging with 197 HgCl 2 or 67 Ga-citrate and/or perfusion imaging with sup(99m)Tc-MAA, were performed simultaneously in patients remaining the same position, too. The image as a iso-count map extracted out of the image of 197 HgCl 2 , 67 Ga-citrate or sup(99m)Tc-MAA, was superimposed to the brightness image of RI-angiogram (aortic phase). By these procedures, the image of bronchial blood flow were obtained in some patients with lung cancer, pulmonary tuberculosis, lung abscess, and chronic bronchitis. The dual radioisotope techniques using RI-angiography and the other imaging were useful to make isotope diagnosis of lung diseases more reliable, and the image superimposition methods using RI-angiogram and the image of tumor of perfusion, were useful to improve anatomic orientation of the former. (author)

  10. [Preoperative Management of Patients with Bronchial Asthma or Chronic Bronchitis].

    Science.gov (United States)

    Hagihira, Satoshi

    2015-09-01

    Bronchial asthma is characterized by chronic airway inflammation. The primary goal of treatment of asthma is to maintain the state of control. According to the Japanese guidelines (JGL2012), long-term management consists of 4 therapeutic steps, and use of inhaled corticosteroids (ICS) is recommended at all 4 steps. Besides ICS, inhalation of long-acting β2-agonist (LABA) is also effective. Recently, omalizumab (a humanized antihuman IgE antibody) can be available for patients with severe allergic asthma. Although there is no specific strategy for preoperative treatment of patients with asthma, preoperative systemic steroid administration seemed to be effective to prevent asthma attack during anesthesia. The most common cause of chronic bronchitis is smoking. Even the respiratory function is within normal limits, perioperative management of patients with chronic bronchitis is often troublesome. The most common problem is their sputum. To minimize perioperative pulmonary complication in these patients, smoking cessation and pulmonary rehabilitation are essential. It is known that more than 1 month of smoking cessation is required to reduce perioperative respiratory complication. However, even one or two weeks of smoking cessation can decrease sputum secretion. In summary, preoperative optimization is most important to prevent respiratory complication in patients with bronchial asthma or chronic bronchitis.

  11. Successful Treatment of Bronchoesophageal Fistula With Esophageal and Bronchial Stenting

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Wang

    2011-04-01

    Full Text Available Bronchoesophageal fistula is reported in 5-10% of patients with esophageal cancer. In most of these cases, the insertion of a single stent, either a tracheobronchial or an esophageal stent, is sufficient to seal off the fistula. In this case we describe a 67-year-old man with esophageal cancer and complications of bronchoesophageal fistula, which resulted in repeated pneumonia and acute respiratory failure. Initially, two expandable metallic membranous esophageal stents were placed to cover the fistula. However, the esophageal stent failed to stop the air leak and dislodged into the stomach. Thereafter, a bronchial stent was placed at the right intermediate bronchus and successfully stopped the air leak. The patient was then weaned from the ventilator 1 week after the insertion of a bronchial stent. In conclusion, stenting in both the esophagus and airways should be considered when both are severely invaded by malignancy, when the airway is compressed, or when the fistula is insufficiently sealed by an esophageal stent.

  12. Sputum as a source of adipokines in bronchial asthma

    Directory of Open Access Journals (Sweden)

    V. N. Mineev

    2014-01-01

    Full Text Available Forty-four patients with allergic (ABA and non-allergic (NABA variants of bronchial asthma (BA were examined to evaluate levels of key adipokines (leptin, resistin, adiponectin in sputum in different variants of BA. Adipokines in sputum and blood plasma were measured by Enzyme-Linked Immunosorbent Assay (ELISA. The indices that reflect the percentage of adipokines in sputum regarding adipokines in plasma of the same patients were worked out to evaluate the ratio of levels of corresponding adipokines in plasma and sputum in patients with BA. Two regularities are clearly seen in the study: the first - levels of proinflammatory adipokines (leptin, resistin in sputum in ABA correlate directly with indicators of respiratory function but levels of anti-inflammatory adipokines (adiponectin in sputum correlate inversely with indicators of respiratory function; the second -correlation of levels of the studied adipokines with indicators of respiratory function are almost not revealed in NABA. The first regularity reflects the important fact that the content of adipokines in bronchial secretion is to a certain extent one of regulating local mechanisms in target organ controlled system levels of corresponding adipokines in exacerbation of BA.

  13. Multifocal Epithelial Hyperplasia.

    Science.gov (United States)

    Agnew, Caitlin; Alexander, Sherene; Prabhu, Neeta

    2017-01-15

    Multifocal epithelial hyperplasia is a rare disease associated with human papilloma virus types 13 and 32. Diagnosis is based on clinical and histopathological findings, and most lesions are asymptomatic and regress spontaneously with time. The purpose of this paper is to describe a five-year-old girl who presented with multiple intraoral lesions on the buccal mucosa and tongue, which regressed spontaneously in 15 months.

  14. Lung cancer exosomes as drivers of epithelial mesenchymal transition.

    Science.gov (United States)

    Rahman, Mohammad A; Barger, Jennifer F; Lovat, Francesca; Gao, Min; Otterson, Gregory A; Nana-Sinkam, Patrick

    2016-08-23

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells.

  15. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung

    Science.gov (United States)

    Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.

    2015-01-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985

  16. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  17. Bronchial morphometry in smokers: comparison with healthy subjects by using 3D CT

    International Nuclear Information System (INIS)

    Montaudon, Michel; Berger, Patrick; Marthan, Roger; Lederlin, Mathieu; Tunon-de-Lara, Jose Manuel; Laurent, Francois

    2009-01-01

    The assessment of airway dimensions in patients with airway disease by using computed tomography (CT) has been limited by the obliquity of bronchi, the ability to identify the bronchial generation, and the limited number of bronchial measurements. The aims of the present study were (i) to analyze cross-sectional bronchial dimensions after automatic orthogonal reconstruction of all visible bronchi on CT images, and (ii) to compare bronchial morphometry between smokers and nonsmokers. CT and pulmonary function tests were performed in 18 males separated into two groups: 9 nonsmokers and 9 smokers. Bronchial wall area (WA) and lumen area (LA) were assessed using dedicated 3D software able to provide accurate cross-sectional measurements of all visible bronchi on CT. WA/LA and WA/(WA+LA) ratios were computed and all parameters were compared between both groups. Smokers demonstrated greater WA, smaller LA, and consequently greater LA/WA and LA/(WA+LA) ratios than nonsmokers. These differences occurred downward starting at the fourth bronchial generation. 3D quantitative CT method is able to demonstrate significant changes in bronchial morphometry related to tobacco consumption. (orig.)

  18. [Bronchial reactivity and mucosal bioamines as criteria for acute bronchitis becoming chronic].

    Science.gov (United States)

    Artem'eva, E G; Latfullin, I A

    2002-01-01

    To study bronchial reactivity and sensitivity with consideration of histamine, serotonin and catecholamines concentration in bronchial mucosa in patients with acute bronchitis (AB) as possible criteria of its becoming chronic. Before the treatment 116 patients with verified AB were examined using inhalation provocative tests (IPT) with histamine, serotonin and obsidian in increasing doses. Also, external respiration function was studied. IPT were repeated after the course of treatment. 87 of 116 AB patients exhibited high bronchial sensitivity and reactivity to inhalations of histamine, serotonin, obsidian. In parallel, there was a rise in the levels of histamine and serotonin and a fall in the level of catecholamines in bronchial mucosa (alveolar macrophages, lymphocytes, neutrophils, mast and APUD-cells). Changes in monoamines concentration in bronchial mucosa were relevant to activity of bronchial inflammation and the presence of obstructive syndrome. Persistent bronchial hyperreactivity to inhalations of histamine and obsidian along with high histamine levels and low level of catecholamines in alveolar macrophages, lymphocytes and mucus is a criterion of bronchitis transformation to chronic one.

  19. Hypothalamic digoxin and hemispheric chemical dominance in relation to the pathogenesis of bronchial asthma.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces three key metabolites--digoxin (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), dolichol (regulator of N-glycosylation of proteins), and ubiquinone (free radical scavenger). The isoprenoid pathway was assessed in patients with bronchial asthma. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of bronchial asthma. The pathway was upregulated with increase in digoxin synthesis in bronchial asthma. There was an increase in tryptophan catabolites and a reduction in tyrosine catabolites in patients with bronchial asthma. The ubiquinone levels were low and lipid peroxidation increased in these patients. There was increase in dolichol and glycoconjugate levels and reduction in lysosomal stability in these patients. The cholesterol:phospholipid ratio was increased and glycoconjugate levels were reduced in the membranes of these patients. The patterns noticed in bronchial asthma were similar to those in patients with right hemispheric chemical dominance. Bronchial asthma occurs in right hemispheric chemically dominant individuals. Ninety percent of the patients with bronchial asthma were right-handed and left hemispheric dominant by the dichotic listening test. But their biochemical patterns were similar to those obtained in right hemispheric chemical dominance. Hemispheric chemical dominance is a different entity and has no correlation with handedness or the dichotic listening test.

  20. The findings of bronchial artery change in lung cancer with 16-slice CT

    International Nuclear Information System (INIS)

    Zeng Qingsi; Wu Xiaomei; Cen Renli; Zhang Chaoliang; Chen Yongfu

    2007-01-01

    Objective: To evaluate the difference of internal diameter of bronchial artery in big lung cancer, small lung cancer, and normal lung with multiple slice CT. Methods: MSCT angiographies of 44 patients with lung cancer confirmed by pathology were retrospectively analyzed, and 29 patients were with big lung cancer (≥3 cm) and 15 patients with small lung cancer (<3 cm). Contrast enhanced helical thin slice CT scan was performed in all patients. Three dimensional images of bronchial artery were processed on workstation. The internal diameter of bronchial artery was measured. Results: The diameter of bronchial artery was (1.9±0.4) mm in 15 small lung cancer and (2.5±0.5) mm in 29 big lung cancer, respectively. There was a significant difference in internal diameter of bronchial artery between big and small lung cancer (P<0.05). Conclusion: Bronchial artery in lung cancer is dilated, and the dilation of bronchial artery in big lung cancer is more prominent than in small lung cancer. (authors)

  1. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling

    International Nuclear Information System (INIS)

    Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Wang, Xin; Fan, Jia; Kim, Dong-Hern; Lee, Ju-Yeon; Zhang, Zhuo; Lee, Jeong-Chae; Shi, Xianglin

    2013-01-01

    Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3β/β-catenin signaling involved in Cr

  2. Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Wang, Xin; Fan, Jia; Kim, Dong-Hern; Lee, Ju-Yeon; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); School of Dentistry and Institute of Oral Biosciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States)

    2013-09-01

    Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3β/β-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active β-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3β, β-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3β/β-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3β/β-catenin signaling involved in Cr

  3. Continuous positive airway pressure treatment increases bronchial reactivity in obstructive sleep apnea patients.

    Science.gov (United States)

    Korczynski, Piotr; Gorska, Katarzyna; Przybylowski, Tadeusz; Bielicki, Piotr; Zielinski, Jan; Chazan, Ryszarda

    2009-01-01

    The effects of continuous positive airway pressure (CPAP) treatment on the function of the lower airways are poorly understood. One of the methods used to determine the influence of positive pressure breathing on lower airways is the bronchial hyperreactivity test. Some authors report that CPAP increases bronchial hyperreactivity, while others report decreases. To assess the influence of CPAP treatment on bronchial reactivity and the effects of bronchial hyperreactivity on compliance to CPAP treatment. The study group consisted of 101 obstructive sleep apnea syndrome patients (88 men and 13 women) with a mean age of 51 ± 11 years, mean apnea-hypopnea index of 53 ± 20 and mean body mass index of 32.6 ± 5.4. Patients were randomly assigned to a treatment group that received 3 weeks of CPAP therapy (group 1) or to a nontreatment control group (group 2). Pulmonary function tests and the methacholine bronchial provocation test were performed at baseline and 3 weeks later. There were no statistically significant differences between treated and control groups in anthropometry and polysomnography variables. At baseline, bronchial hyperreactivity was found in 6 patients from group 1 and 5 patients from group 2. A significant increase in bronchial reactivity was observed after CPAP treatment. Log PC20M decreased from 1.38 ± 0.30 at baseline to 1.26 ± 0.50 (p bronchial hyperreactivity during CPAP treatment were characterized by significantly lower FEV1, FVC and MEF50 values. CPAP produces statistically significant bronchial hyperreactivity. However, there were no clinical symptoms and it is not necessary to withdraw previous therapies. Copyright © 2009 S. Karger AG, Basel.

  4. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers

    Directory of Open Access Journals (Sweden)

    Tongtong Zhang

    2018-05-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths. Traditional chemotherapy causes serious toxicity due to the wide bodily distribution of these drugs. Curcumin is a potential anticancer agent but its low water solubility, poor bioavailability and rapid metabolism significantly limits clinical applications. Here we developed a liposomal curcumin dry powder inhaler (LCD for inhalation treatment of primary lung cancer. LCDs were obtained from curcumin liposomes after freeze-drying. The LCDs had a mass mean aerodynamic diameter of 5.81 μm and a fine particle fraction of 46.71%, suitable for pulmonary delivery. The uptake of curcumin liposomes by human lung cancer A549 cells was markedly greater and faster than that of free curcumin. The high cytotoxicity on A549 cells and the low cytotoxicity of curcumin liposomes on normal human bronchial BEAS-2B epithelial cells yielded a high selection index partly due to increased cell apoptosis. Curcumin powders, LCDs and gemcitabine were directly sprayed into the lungs of rats with lung cancer through the trachea. LCDs showed higher anticancer effects than the other two medications with regard to pathology and the expression of many cancer-related markers including VEGF, malondialdehyde, TNF-α, caspase-3 and BCL-2. LCDs are a promising medication for inhalation treatment of lung cancer with high therapeutic efficiency. Key words: Curcumin, Dry powder inhaler, Liposome, Primary lung cancer, Pulmonary delivery

  5. In vitro toxicity of zinc oxide nanoparticles: a review

    International Nuclear Information System (INIS)

    Pandurangan, Muthuraman; Kim, Doo Hwan

    2015-01-01

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn 2+ ] level. The mechanism for increased intracellular [Zn 2+ ] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca 2+ ] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines

  6. In vitro toxicity of zinc oxide nanoparticles: a review

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangan, Muthuraman; Kim, Doo Hwan, E-mail: frenzram1980@gmail.com [Konkuk University, Department of Bioresources and Food Sciences (Korea, Republic of)

    2015-03-15

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn{sup 2+}] level. The mechanism for increased intracellular [Zn{sup 2+}] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca{sup 2+}] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines.

  7. Discovery of novel xylosides in co-culture of basidiomycetes Trametes versicolor and Ganoderma applanatum by integrated metabolomics and bioinformatics

    Science.gov (United States)

    Yao, Lu; Zhu, Li-Ping; Xu, Xiao-Yan; Tan, Ling-Ling; Sadilek, Martin; Fan, Huan; Hu, Bo; Shen, Xiao-Ting; Yang, Jie; Qiao, Bin; Yang, Song

    2016-09-01

    Transcriptomic analysis of cultured fungi suggests that many genes for secondary metabolite synthesis are presumably silent under standard laboratory condition. In order to investigate the expression of silent genes in symbiotic systems, 136 fungi-fungi symbiotic systems were built up by co-culturing seventeen basidiomycetes, among which the co-culture of Trametes versicolor and Ganoderma applanatum demonstrated the strongest coloration of confrontation zones. Metabolomics study of this co-culture discovered that sixty-two features were either newly synthesized or highly produced in the co-culture compared with individual cultures. Molecular network analysis highlighted a subnetwork including two novel xylosides (compounds 2 and 3). Compound 2 was further identified as N-(4-methoxyphenyl)formamide 2-O-β-D-xyloside and was revealed to have the potential to enhance the cell viability of human immortalized bronchial epithelial cell line of Beas-2B. Moreover, bioinformatics and transcriptional analysis of T. versicolor revealed a potential candidate gene (GI: 636605689) encoding xylosyltransferases for xylosylation. Additionally, 3-phenyllactic acid and orsellinic acid were detected for the first time in G. applanatum, which may be ascribed to response against T.versicolor stress. In general, the described co-culture platform provides a powerful tool to discover novel metabolites and help gain insights into the mechanism of silent gene activation in fungal defense.

  8. Peripheral epithelial odontogenic tumor

    International Nuclear Information System (INIS)

    Carzoglio, J.; Tancredi, N.; Capurro, S.; Ravecca, T.; Scarrone, P.

    2006-01-01

    A new case of peripheral epithelial odontogenic tumor (Pindborg tumor) is reported. It is localized in the superior right gingival region, a less frequent site, and has the histopathological features previously reported. Immunochemical studies were performed, revealing a differential positive stain to cytokeratins in tumor cells deeply seated in the tumor mass, probably related to tumoral cell heterogeneity.Interestingly, in this particular case S-100 protein positive reactivity was also detected in arborescent cells intermingled with tumoral cells, resembling Langerhans cells. Even though referred in the literature in central Pindborg tumors, no references were found about their presence in peripheral tumors, like the one that is presented here

  9. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity...... subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum...

  10. Analysis of genomic instability in bronchial cells from uranium miners

    International Nuclear Information System (INIS)

    Neft, R.E.; Belinsky, S.A.; Gilliland, F.D.; Lechner, J.F.

    1994-01-01

    Epidemiological studies show that underground uranium miners have a radon progeny exposure-dependent increased risk for developing lung cancer. The odds ratio for lung cancer in uranium miners increase for all cumulative exposures above 99 Working Level Months. In addition, there is a strong multiplicative effect of cigarette smoking on the development of lung cancer in uranium miners. The purpose of this investigation was to determine whether or not early genetic changes, as indicated by genomic instability, can be detected in bronchial cells from uranium miners. Investigations of this nature may serve as a means of discovering sub-clinical disease and could lead to earlier detection of lung cancer and a better prognosis for the patient

  11. Randomized controlled study of CBT in bronchial asthma

    Directory of Open Access Journals (Sweden)

    Grover Naveen

    2007-01-01

    Full Text Available The aim of the present study was to find out efficacy of cognitive behavior therapy, as an adjunct to standard pharmacotherapy, in bronchial asthma. In a random-ized two-group design with pre-and post assessments, forty asthma patients were randomly allotted to two groups: self management group and cognitive behavior therapy group. Both groups were exposed to 6-8 weeks of intervention, asthma self management program and cognitive behavior therapy. Assessment measures used were-Semi structured interview schedule, Asthma Symptom Checklist, Asthma di-ary, Asthma Bother Profile, Hospital Anxiety & Depression Scale, AQLQ and Peak Expiratory Flow Rate. Within group comparison showed significant improvement in both groups at the post assessment. Between group comparisons showed that CBT group reported significantly greater change than that of SM group. Cognitive behavior therapy helps in improving the managment of asthma.

  12. [Poor tolerance of exertion during sports and bronchial hyperreactivity].

    Science.gov (United States)

    Potiron-Josse, M; Boutet, S; Ginet, J

    1992-11-01

    135 sportsmen and women, 55 girls, 80 boys, aged from 7 to 30 years, from various sports, who complained of bad tolerance of exertion were examined with an exercise test and isocapnic spontaneous hyperventilation. 61, about 45%, during a hyperventilation test had a fall of V.E.M.S. greater than or equal to 20%, showing bronchial hyperreactivity. After three tests, this fall index was greater than or equal to 50%. 68% of the positive responses were seen in boys and 2/3 of the subjects with a positive response were atopics. No other argument could be maintained from the questioning or clinical history to predict the positive or negative character of the hyperventilation (age, sporting level, symptoms, previous asthma or asthmatic, allergy). H.S.V.I. of the chests of a sporting population that complains of exertion intolerance, the