WorldWideScience

Sample records for bromosulfophthalein

  1. Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase.

    Science.gov (United States)

    Passamonti, Sabina; Cocolo, Alessandra; Braidot, Enrico; Petrussa, Elisa; Peresson, Carlo; Medic, Nevenka; Macri, Francesco; Vianello, Angelo

    2005-07-01

    Bilitranslocase is a rat liver plasma membrane carrier, displaying a high-affinity binding site for bilirubin. It is competitively inhibited by grape anthocyanins, including aglycones and their mono- and di-glycosylated derivatives. In plant cells, anthocyanins are synthesized in the cytoplasm and then translocated into the central vacuole, by mechanisms yet to be fully characterized. The aim of this work was to determine whether a homologue of rat liver bilitranslocase is expressed in carnation petals, where it might play a role in the membrane transport of anthocyanins. The bromosulfophthalein-based assay of rat liver bilitranslocase transport activity was implemented in subcellular membrane fractions, leading to the identification of a bromosulfophthalein carrier (K(M) = 5.3 microm), which is competitively inhibited by cyanidine 3-glucoside (Ki = 51.6 microm) and mainly noncompetitively by cyanidin (Ki = 88.3 microm). Two antisequence antibodies against bilitranslocase inhibited this carrier. In analogy to liver bilitranslocase, one antibody identified a bilirubin-binding site (Kd = 1.7 nm) in the carnation carrier. The other antibody identified a high-affinity binding site for cyanidine 3-glucoside (Kd = 1.7 microm) on the carnation carrier only, and a high-affinity bilirubin-binding site (Kd = 0.33 nm) on the liver carrier only. Immunoblots showed a putative homologue of rat liver bilitranslocase in both plasma membrane and tonoplast fractions, isolated from carnation petals. Furthermore, only epidermal cells were immunolabeled in petal sections examined by microscopy. In conclusion, carnation petals express a homologue of rat liver bilitranslocase, with a putative function in the membrane transport of secondary metabolites.

  2. Radioisotope diagnostics in auxiliary liver transplantation in miniature swine

    Energy Technology Data Exchange (ETDEWEB)

    Buchali, K.; Nawroth, R.; Sydow, K.; Pahlig, H.; Wolff, H. (Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite))

    1985-01-01

    Experiences in the blood flow measurement (/sup 133/Xe washing out) and function test (/sup 133/I-bromosulfophthalein, /sup 99m/Tc-IDA) in auxiliary liver transplantation in miniature swine are reported. Normal values for global blood flow (70 (35-144) ml/100 g x min) and the bromosulfophthalein half-time (6.5 +- 2.4 min) were defined preoperatively. Selective blood flow measurements were carried out invasively after transplantation. Only insufficient experience was obtained in scintiscanning of liver and biliary ducts because of graft insufficiency.

  3. Hypoxia inducible factor-1αaccumulation in steatotic liver preservation:Role of nitric oxide

    Institute of Scientific and Technical Information of China (English)

    Mohamed; Amine; Zaouali; Ismail; Ben; Mosbah; Eleonora; Boncompagni; Hassen; Ben; Abdennebi; Maria; Teresa; Mitjavila; Ramon; Bartrons; Isabel; Freitas; Antoni; Rimola; Joan; Roselló-Catafau

    2010-01-01

    AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand ...

  4. Ga-68-labeled tetrabromophthalein (Ga-68 BP-IDA) for positron imaging of hepatobiliary function: concise communication

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, J.; Matys, R.; Hauser, H.; Clorius, J.H.; Maier-Borst, W.

    1983-07-01

    The chemical synthesis of an iminodiacetic-acid-substituted tetrabromo-o-cresolphthalein (BP-IDA), which complexes Ga-68 tightly is described. The liver uptake, bile excretion, and urinary excretion of the complex were examined in rats. Maximum liver uptake reached 60%, and 1-h cumulative bile excretion was 75% of injected dose. Urinary excretion in rats with ligated common bile duct remained below 1%. Competitive action of exogenous billirubin on hepatobiliary excretion of the Ga complex was less pronounced than that of bromosulfophthalein. The absolute activity determination of the positron emitter Ga-68, the high accumulation in the liver, the low urinary excretion, and the weak competition from exogeneous bilirubin are promising features of this radiopharmaceutical for the quantitative study of hepatobillary function.

  5. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    Science.gov (United States)

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine.

  6. The combination of atorvastatin and ethanol is not more hepatotoxic to rats than the administration of each drug alone

    Directory of Open Access Journals (Sweden)

    D.T. Ito

    2007-03-01

    Full Text Available Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.

  7. Involvement of intestinal permeability in the oral absorption of clarithromycin and telithromycin.

    Science.gov (United States)

    Togami, Kohei; Hayashi, Yoshiaki; Chono, Sumio; Morimoto, Kazuhiro

    2014-09-01

    The involvement of intestinal permeability in the oral absorption of clarithromycin (CAM), a macrolide antibiotic, and telithromycin (TEL), a ketolide antibiotic, in the presence of efflux transporters was examined. In order independently to examine the intestinal and hepatic availability, CAM and TEL (10 mg/kg) were administered orally, intraportally and intravenously to rats. The intestinal and hepatic availability was calculated from the area under the plasma concentration-time curve (AUC) after administration of CAM and TEL via different routes. The intestinal availabilities of CAM and TEL were lower than their hepatic availabilities. The intestinal availability after oral administration of CAM and TEL increased by 1.3- and 1.6-fold, respectively, after concomitant oral administration of verapamil as a P-glycoprotein (P-gp) inhibitor. Further, an in vitro transport experiment was performed using Caco-2 cell monolayers as a model of intestinal epithelial cells. The apical-to-basolateral transport of CAM and TEL through the Caco-2 cell monolayers was lower than their basolateral-to-apical transport. Verapamil and bromosulfophthalein as a multidrug resistance-associated proteins (MRPs) inhibitor significantly increased the apical-to-basolateral transport of CAM and TEL. Thus, the results suggest that oral absorption of CAM and TEL is dependent on intestinal permeability that may be limited by P-gp and MRPs on the intestinal epithelial cells.

  8. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis

    Institute of Scientific and Technical Information of China (English)

    Anabel Brandoni; María Herminia Hazelhoff; Romina Paula Bulacio; Adriana Mónica Torres

    2012-01-01

    Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct.The absorption,distribution and elimination of drugs are impaired during this pathology.Prolonged cholestasis may alter both liver and kidney function.Lactam antibiotics,diuretics,non-steroidal anti-inflammatory drugs,several antiviral drugs as well as endogenous compounds are classified as organic anions.The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds.It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions.The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis,such as multidrug resistanceassociated protein 2,organic anion transporting polypeptide 1,organic anion transporter 3,bilitranslocase,bromosulfophthalein/bilirubin binding protein,organic anion transporter 1 and sodium dependent bile salt transporter.The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions.

  9. Near‑infrared fluorescence imaging of prostate cancer using heptamethine carbocyanine dyes.

    Science.gov (United States)

    Yuan, Jianlin; Yi, Xiaomin; Yan, Fei; Wang, Fuli; Qin, Weijun; Wu, Guojun; Yang, Xiaojian; Shao, Chen; Chung, Leland W K

    2015-02-01

    Near‑infrared fluorescence (NIRF) imaging is an attractive novel modality for the detection of cancer. A previous study defined two organic polymethine cyanine dyes as ideal NIRF probes, IR‑783 and its derivative MHI‑148, which have excellent optical characteristics, superior biocompatibility and cancer targeting abilities. To investigate the feasibility of NIRF dye‑mediated prostate cancer imaging, dye uptake and subcellular co‑localization were investigated in PC‑3, DU‑145 and LNCaP human prostate cancer cells and RWPE‑1 normal prostate epithelial cells. Different organic anion transporting peptide (OATP) inhibitors were utilized to explore the potential role of the OATP subtype, including the nonspecific OATP inhibitor bromosulfophthalein, the OATP1 inhibitor 17β‑estradiol, the selective OATP1B1 inhibitor rifampicin and the selective OATP1B3 inhibitor cholecystokinin octapeptide. NIRF dyes were also used for the simulated detection of circulating tumor cells and the rapid detection of prostate cancer in human prostate cancer tissues and prostate cancer xenografts in mouse models. The results revealed that the cancer‑specific uptake of these organic dyes in prostate cancer cells occurred primarily via OATP1B3. A strong NIRF signal was detected in prostate cancer tissues, but not in normal tissues that were stained with IR‑783. Prostate cancer cells were recognized with particular NIR fluorescence in isolated mononuclear cell mixtures. The results of the present study demonstrated that NIRF dye‑mediated imaging is a feasible and practicable method for prostate cancer detection, although further investigative studies are required before clinical translation.

  10. Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells.

    Science.gov (United States)

    Feurstein, D; Holst, K; Fischer, A; Dietrich, D R

    2009-01-15

    Microcystins (MCs) are naturally occurring cyclic heptapeptides that exhibit hepato-, nephro- and possibly neurotoxic effects in mammals. Organic anion transporting polypeptides (rodent Oatp/human OATP) appear to be specifically required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on symptoms of neurotoxicity in MC-intoxicated patients and the presence of Oatp/OATP at the blood-brain-barrier (BBB) and blood-cerebrospinal-fluid-barrier (BCFB) it is hypothesized that MCs can be transported across the BBB/BCFB in an Oatp/OATP-dependent manner and can induce toxicity in brain cells via inhibition of protein phosphatase (PP). To test these hypotheses, the presence of murine Oatp (mOatp) in primary murine whole brain cells (mWBC) was investigated at the mRNA and protein level. MC transport was tested by exposing mWBCs to three different MC-congeners (MC-LR, -LW, -LF) with/without co-incubation with the OATP/Oatp-substrates taurocholate (TC) and bromosulfophthalein (BSP). Uptake of MCs and cytotoxicity was demonstrated via MC-Western blot analysis, immunocytochemistry, cell viability and PP inhibition assays. All MC congeners bound covalently and inhibited mWBC PP. MC-LF was the most cytotoxic congener followed by -LW and -LR. The lowest toxin concentration significantly reducing mWBC viability after 48 h exposure was 400 nM (MC-LF). Uptake of MCs into mWBCs was inhibited via co-incubation with excess TC (50 and 500 microM) and BSP (50 microM). MC-Western blot analysis demonstrated a concentration-dependent accumulation of MCs. In conclusion, the in vitro data support the assumed MC-congener-dependent uptake in a mOatp-associated manner and cytotoxicity of MCs in primary murine whole brain cells.

  11. Growth Hormone Alters the Glutathione S-Transferase and Mitochondrial Thioredoxin Systems in Long-Living Ames Dwarf Mice

    Science.gov (United States)

    Rojanathammanee, Lalida; Rakoczy, Sharlene

    2014-01-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH’s actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance. PMID:24285747

  12. [Effect of gomisin A (TJN-101), a lignan compound isolated from Schisandra fruits, on liver function in rats].

    Science.gov (United States)

    Takeda, S; Arai, I; Hasegawa, M; Tatsugi, A; Aburada, M; Hosoya, E

    1988-04-01

    TJN-101 [+)-(6S, 7S, R-biar)-5,6,7,8-tetrahydro-1,2,3,12-tetramethoxy- 6,7-dimethyl-10,11-methylenedioxy-6-dibenzo [a, c] cyclooctenol) is one of the lignan compounds isolated from Schisandra fruits. When TJN-101 was administered orally at the doses of 3-100 mg/kg/day for 4 days, bile secretion, hepatic excretion of dye or hepatic hemodynamics 24 hr after the last dose was investigated in comparison with the phenobarbital (100 mg/kg/day)-treated group. Bile flow was dose-dependently increased; in contrast, biliary concentration of bile acids was decreased in TJN-101 (30 and 100 mg/kg/day)-treated groups. Similar changes were also observed in the phenobarbital-treated group. These results suggested that the enhancement of bile secretion caused by TJN-101 or phenobarbital was due to an increase of a bile acid-independent fraction. In the bromosulfophthalein (BSP) clearance test for liver function, both TJN-101 (30 and 100 mg/kg/day) and phenobarbital accelerated the disappearance from the blood and biliary excretion of BSP. Hepatic hemodynamics was examined by the hydrogen clearance method and measurement of liver wet and dry weight. Liver blood flow tended to increase in the TJN-101 (10-100 mg/kg/day) or phenobarbital-treated group. On the other hand, TJN-101 (3-100 mg/kg/day) or phenobarbital hardly altered the water content of the liver. These results suggested that the liver enlargement caused by both compounds was not accompanied with hepatic edema and that the enhancement of bile secretion or hepatic excretion of BSP might be related to an increase of liver blood flow.

  13. Molecular cloning, expression and characterization of a functional GSTmu class from the cattle tick Boophilus annulatus.

    Science.gov (United States)

    Shahein, Yasser Ezzat; El Sayed El-Hakim, Amr; Abouelella, Amira Mohamed Kamal; Hamed, Ragaa Reda; Allam, Shaimaa Abdul-Moez; Farid, Nevin Mahmoud

    2008-03-25

    A full-length cDNA of a glutathione S-transferase (GST) was cloned from a cDNA library of the local Egyptian cattle tick Boophilus annulatus. The 672 bp cloned fragment was sequenced and showed an open reading frame encoding a protein of 223 amino acids. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the sequence is closely related to the mammalian mu-class GST. The cloned gene was expressed in E. coli under T7 promotor of pET-30b vector, and purified under native conditions. The purified enzyme appeared as a single band on 12% SDS-PAGE and has a molecular weight of 30.8 kDa including the histidine tag of the vector. The purified enzyme was assayed upon the chromogenic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the recombinant enzyme showed high level of activity even in the presence of the beta-galactosidase region on its 5' end and showed maximum activity at pH 7.5. The Km values for CDNB and GSH were 0.57 and 0.79 mM, respectively. The over expressed rBaGST showed high activity toward CDNB (121 units/mg protein) and less toward DCNB (29.3 units/mg protein). rBaGST exhibited peroxidatic activity on cumene hydroperoxide sharing this property with GSTs belonging to the GST alpha class. I50 values for cibacron blue and bromosulfophthalein were 0.22 and 8.45 microM, respectively, sharing this property with the mammalian GSTmu class. Immunoblotting revealed the presence of the GST molecule in B. annulatus protein extracts; whole tick, larvae, gut, salivary gland and ovary. Homologues to the GSTmu were also detected in other tick species as Hyalomma dromedarii and Rhipicephalus sp. while in Ornithodoros moubata, GSTmu homologue could not be detected.

  14. Pharmacokinetics, tissue distribution and excretion of a new photodynamic drug deuxemether.

    Science.gov (United States)

    Wang, Rui; Hao, Haiping; Wang, Guangji; Xie, Haitang; Xu, Meijuan; Wang, Wei; He, Hui; Li, Xiaoyu

    2008-03-28

    Deuxemether was a new photodynamic drug effective for many kinds of solid tumor therapy, which was mainly composed of 3-(or 8-)-(1-methoxyethyl)-8-(or 3-)-(1-hydroxyethyl)-deutero-porphyrin IX (MHD) and 3,8-di(1-methoxyethyl)-deuteroporphyrin IX (DMD). The aims of this study were to elucidate its pharmacokinetic characteristics, tissue distribution, plasma protein binding and excretion properties and underlying mechanisms of deuxemether in rats based on the simultaneous determination of MHD and DMD. The pharmacokinetic profiles of both MHD and DMD in rats after intravenous doses were linear and best fitted to a two compartment model, characterized with a rapid distribution phase (MHD: t(1/2)alpha, 0.09-0.14 h; DMD: t 1/2 alpha, 0.07-0.11h) and a relatively slow elimination phase (MHD: t 1/2 beta, 2.03-3.20 h; DMD: t 1/2 beta, 2.51-3.20 h). The tissue distributions of MHD and DMD in rats were rather limited as evidenced from their low distribution volume (0.75-1.70 L/kg) and the results of tissue distribution study. Protein binding of MHD and DMD were moderate (65.36-89.99% for MHD; 45.43-76.23% for DMD), independent of drug concentrations and similar between human and rat plasma over a concentration range of 0.50-50.0 microg/mL. Both MHD and DMD were predominantly (>74.1%) eliminated from rats as the parent drugs through the hepatobiliary systems and finally excreted into the feces. The multidrug resistance-associated proteins 2 (MRP2) inhibitors, bromosulfophthalein and probenecid, substantially inhibited the hepatobiliary elimination of MHD and DMD while the P-gp inhibitor digoxin had little effect, suggesting that MRP2 may contribute to the rapid and extensive hepatobiliary excretion of deuxemether. There were no significant differences between MHD and DMD for all pharmacokinetic characteristics studied. In conclusion, this study provided firstly the full pharmacokinetic characteristics and mechanisms of deuxemether, which would be helpful for its clinical