Sample records for bromoform

  1. Nutrient limitation in two marine diatoms inhibits release of bromoform

    African Journals Online (AJOL)

    Bromoform released from phytoplankton and kelp in the ocean is the largest known carrier of bromine to the atmosphere. The photoproducts of atmospheric bromoform catalyse ozone depletion. Laboratory investigations were conducted into the link between nutrient limitation and bromoform production using axenic ...

  2. Effect of trihalomethanes (chloroform and bromoform) on human haematological count. (United States)

    Lodhi, Asna; Hashmi, Imran; Nasir, Habib; Khan, Romana


    With the increasing concerns about the harmful effects of disinfection products, the process of chlorination is becoming questionable. Bromoform and chloroform are among the most frequently occurring disinfection by-products. Haematological parameters are an important indicator of human well-being which is why the prime objective of the current study was to conduct a dose-response assessment to investigate the effects of trihalomethanes on human haematological count. Blood samples of healthy subjects were exposed to different concentrations (10, 30 and 50 μg/mL) of chloroform and bromoform in vitro to analyse how these compounds affected the haematological count with increasing dose concentrations. Headspace gas chromatography analysis was also conducted on samples to assess the difference between measured and spiked values of doses. The results indicated that the damage caused by bromoform was statistically more significant as compared to chloroform. Haemoglobin (HGB) and mean corpuscular haemoglobin concentration levels lowered as they were significantly affected (p 0.05).

  3. Hugoniot and refractive indices of bromoform under shock compression

    Directory of Open Access Journals (Sweden)

    Q. C. Liu


    Full Text Available We investigate physical properties of bromoform (liquid CHBr3 including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity−particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ∼21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ∼26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  4. Modeling the interaction of ozone with chloroform and bromoform under conditions close to stratospheric (United States)

    Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.


    The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.

  5. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: [Department of Oceanography, University of Cape Town, 7701 (South Africa)


    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  6. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska


    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere database ( Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the

  7. Development of a Simplified, Cost Effective GC-ECD Methodology for the Sensitive Detection of Bromoform in the Troposphere (United States)

    Kuyper, Brett; Labuschagne, Casper; Philibert, Raïssa; Moyo, Nicholas; Waldron, Howard; Reason, Chris; Palmer, Carl


    Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways. Until quite recently, a limited number of studies existed (compared to other marine volatile organic compounds (VOCs)), mainly due to the analytical challenge(s) presented by the low environmental mixing ratios. In this work we detail the development of a simplified, cost effective method to detect and quantify bromoform in environmental air samples. Air samples (1.5 L) were preconcentrated onto a precooled adsorbent (Carbopack X/Carboxen 1016) trap. These samples were injected by means of rapid thermal desorption for separation and detection by GC-ECD. The system was calibrated by means of a custom-built permeation oven. A linear system response was achieved, having a detection limit of 0.73 ± 0.09 ppt. A range of environmental samples was analysed to demonstrate the ability of the technique to separate and identify bromoform from air samples. The results showed that bromoform concentrations typically averaged 24.7 ± 17.3 ppt in marine air samples, 68.5 ± 26.3 ppt in Cape Town urban air samples and 33.9 ± 40.5 ppt in simulated biomass burning plumes (SBBP). PMID:23202011

  8. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation. (United States)

    Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc


    Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.

  9. Bromoform and Dibromomethane Emission During the SHIVA Western Pacific 2011 Field Campaign: A 3-D Model Case Study (United States)

    Mantle, Hannah; Hossaini, Ryan; Chipperfield, Martyn


    Halogenated very short-lived species (VSLS) with atmospheric lifetimes of Weather Forecasts analyses, has 60 vertical levels from the surface to ~60 km and a horizontal resolution of 2.8°x2.8°. Previous work using TOMCAT into halogenated VSLS emission and transport has involved the use of fixed surface mixing ratios of 1.2 pptv bromoform and dibromomethane in the bottom two layers of the model surface in the Tropics (Hossaini et al., 2010). Although an accurate representation of surface mixing ratios of these VSLS, the use of spatially varying emission fluxes should allow for improved accuracy in model predictions. The EU-funded SHIVA Malaysia 2011 field campaign provided a comprehensive VSLS dataset obtained in a region where these source gases have the potential to reach the stratosphere and deplete ozone. Observations of VSLS were collected during November and December 2011 on board the DLR Falcon aircraft during sixteen local flights. Fourteen of these flights have been used in this study due to technical difficulties experienced on the remaining two flights. Four emission scenarios, including both top-down and bottom-up approaches derived from airborne measurements and ocean fluxes of VSLS, were used in TOMCAT and each scenario was compared to observations of bromoform and dibromomethane collected during the SHIVA campaign. The mean bias of each emission scenario against the SHIVA observations was calculated for all fourteen flights considered. Results indicate that the bottom-up emission scenario, derived from measured oceanic fluxes of bromoform and dibromomethane, matches the SHIVA observed values of both major VSLS source gases more closely than that of the top-down emission scenarios (0.16 pptv total mean bias for both bromoform and dibromomethane for all fourteen flights considered). Although slightly underestimating the SHIVA observed values, all other emission scenarios overestimate the observations of bromoform by a greater magnitude. Dibromomethane

  10. Monitoring and factors affecting levels of airborne and water bromoform in chlorinated seawater swimming pools. (United States)

    Boudenne, Jean-Luc; Parinet, Julien; Demelas, Carine; Manasfi, Tarek; Coulomb, Bruno


    Water and air quality of eight seawater swimming pools using chlorine disinfection was measured during four sampling campaigns, spread on one full-year, and in four thalassotherapy centers located in Southeast of France. Concentrations of trihalomethanes (THMs) in air and in water as well as concentrations of parameters, including nonpurgeable organic carbon (NPOC), free residual chlorine (Clf), pH, Kjeldhal Nitrogen (KN), salinity, conductivity, bromide ions and, water and air temperature, were measured. Water and air samples were collected in triplicates morning - at the opening of the pools -, noon and night - at the closing of the pools -, in summer and winter. Data analysis was performed by Principal Component Analysis (PCA) and rotated component matrix, from both data quality and other parameters such as TOC, aromaticity (UV254), pH, hygrometry, and free residual chlorine (Clf). This statistical analysis demonstrates a high correlation between TOC, Clf and UV254 and THM levels found in air and water, particularly for the major ones (CHBr3 in water: 300.0μg/L mean, 1029.0μg/L maximum; CHBr3 in air: 266.1μg/m3 mean, 1600.0μg/m3 maximum, and CHClBr2 in water: 18.9μg/L mean, 81.0μg/L maximum; CHClBr2 in air: 13.6μg/m3 mean, 150.0μg/m3 maximum). These high levels of bromoform (CHBr3) are particularly worrisome in such health institutions, even these levels do not exceed the Permissible Exposure Limit (PEL) of 5mg/m3 as an 8hour time-weighted average currently fixed by various administrations, such as Occupational Safety and Health Administration (OSHA). Copyright © 2017. Published by Elsevier B.V.

  11. The alkaline comet assay used in evaluation of genotoxic damage of drinking water disinfection by-products (bromoform and chloroform

    Directory of Open Access Journals (Sweden)

    Messaouda Khallef


    Full Text Available The alkaline comet assay (pH 12.3 is a useful method for monitoring genotoxic effects of environmental pollutants in the root nuclei of Allium cepa and various plants; it allows the detection of single- and double-strand breaks, incomplete excision-repair sites and cross-links. It has been introduced to detect even small changes in DNA structure. It is a technically simple, highly sensitive, fast and economic test which detects in vitro and in vivo genotoxicity (DNA integrity and packing mode in any cell types examined, and requires just a few cells for its execution (Liman et al., 2011; Yıldız et al., 2009. Chloroform and bromoform are the most important trihalomethanes found in drinking water. Different concentrations of bromoform (25, 50, 75and 100µg/ml and chloroform (25, 50, 100 and 200 µg/ml were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 µg/ml as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests using one-way analysis of variance (ANOVA were employed and p<0.05 was accepted as the test of significance. Comet assay results showed that DNA damage was significant at p <0.05 for the different concentrations of chloroform and bromoform compared to the negative control which has a damage rate equal to 3.5 ± 0.7 and the positive control which has damage rate equal to 13.5 ± 2.12. The exposure of root tip cells to these disinfection by-products increases DNA damage. All concentrations examined in this study of bromoform and chloroform cause significant harm, which could be due to DNA damage induced by oxidative stress. The measurement of DNA damage in the nuclei of higher plant tissues is a new area of study with SCGE. This assay could be incorporated into in situ monitoring of atmosphere, water and soil: the comet assay allows a fast detection without

  12. Ames and random amplified polymorphic DNA tests for the validation of the mutagenic and/or genotoxic potential of the drinking water disinfection by-products chloroform and bromoform. (United States)

    Khallef, Messaouda; Cenkci, Süleyman; Akyil, Dilek; Özkara, Arzu; Konuk, Muhsin; Benouareth, Djamel Eddine


    Chloroform and Bromoform are two abundant trihalomethanes found in Algerian drinking water. The investigation of the mutagenic hazard of these disinfection by-products was studied by Ames test as prokaryotic bioassay to show their mutagenic effects. For this, Salmonella typhimurium TA98 and TA100 strains were employed. Both chloroform and bromoform showed a direct mutagenic effect since the number of revertant colonies gradually increase in dose-dependent manner with all concentrations tested with the two bacterial strains and these were both in the absence and presence of S9 metabolic activation. The genotoxic hazard was also studied by random amplified polymorphic DNA test on the root cells of Allium cepa as eukaryotic bioassay. DNA extracted from the roots of the onion were incubated at different concentrations of chloroform and bromoform and then amplified by polymerase chain reaction. This was based on demonstrating a major effect of disappearance of bands compared to roots incubated in the negative control (distilled water). The results showed that these two compounds affected genomic DNA by breaks although by mutations.

  13. Toxicology and carcinogenesis studies of tribromomethane (bromoform) (CAS No. 75-25-2) in F344/N rats and B6C3f1 mice (gavage studies). Technical report series

    Energy Technology Data Exchange (ETDEWEB)

    Melnick, R.L.


    Toxicology and carcinogenesis studies were conducted by administering doses of 0, 100, or 200 mg/kg tribromomethane in corn oil by gavage, 5 days per week for a period of 103 weeks, to groups of 50 rats of each sex and 50 female mice. Groups of 50 male mice were administered 0, 50, or 100 mg/kg tribromomethane on the same schedule. Under the conditions of these 2-year gavage studies, there was some evidence of carcinogenic activity of tribromomethane for male F344/N rats and clear evidence of carcinogenic activity for female F344/N rats, based on increased incidence of uncommon neoplasms of the large intestine. Reduced survival for male rats given 200 mg/kg tribromomethane lowered the sensitivity of the group to detect a carcinogenic response. Chemically related noneoplastic lesions included fatty change and active chronic inflammation of the liver in male and female rats, minimal necrosis of the liver in male rats, and mixed cell foci of the liver in female rats. There was no evidence of carcinogenic activity for male B6C3F1 mice given 50 or 100 mg/kg tribromomethane or for female B6C3F1 mice given 100 or 200 mg/kg; male mice might have been able to tolerate a higher dose. Survival of the female mice was reduced, partly due to a utero-ovarian infection.

  14. Modeling of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.


    Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan)

  15. The possible effect of the bioaccumulation of disinfectant by ...

    African Journals Online (AJOL)

    In early 1970s, some volatile halogenated organic compounds such as chloroform were identified in chlorinated surface waters containing high levels of natural organic material. Generally, the trihalomethanes (THMs), including chloroform, bromodicholoromethane, dibromochloromethane and bromoform were the most ...

  16. Prediction of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.


    OA fund TU Delft Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Car-bontetrachloride, Carbontetrabromide) by NF

  17. The Impact of Mixture Composition, Mixing Ratio and Dose on the Interactions among the Four Trihalomethanes (THMs) Regulated in Drinking Water (United States)

    Oxidizing disinfectants reduce microbial contamination but react with inorganic and organic materials in water forming disinfection byproducts (DBPs). The U.S. EPA regulates 4 THM DBPs (chloroform, CHCI3; bromodichloromethane, BDCM; chlorodibromomethane, CDBM; bromoform, CHBr3) a...

  18. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids (United States)

    Chlorination of drinking water results in the formation of hundreds of disinfection byproducts (DBPs), the most prevalent are trihalomethanes (THMs) and haloacetic acids (HAAs). Four THMs (chloroform, bromodichloromethane, chlorodibromomethane, bromoform) and five HAAs (chloroac...

  19. Aggregation and Breakup of Colloidal Particle Aggregates in Shear Flow, Studied with Video Microscopy

    NARCIS (Netherlands)

    Tolpekin, V.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.


    We used video microscopy to study the behavior of aggregating suspensions in shear flow. Suspensions consisted of 920 nm diameter silica spheres, dispersed in a methanol/bromoform solvent, to which poly(ethylene glycol) (M = 35.000 g) was added to effect weak particle aggregation. With our solvent

  20. Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure. (United States)

    Lourencetti, Carolina; Grimalt, Joan O; Marco, Esther; Fernandez, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis


    This first study of trihalomethanes (THMs) in swimming pools using bromine agents for water disinfection under real conditions shows that the mixtures of these compounds are largely dominated by bromoform in a similar process as chloroform becomes the dominant THM in pools disinfected with chlorine agents. Bromoform largely predominates in air and water of the pool installations whose concentration changes are linearly correlated. However, the air concentrations of bromoform account for about 6-11% of the expected concentrations according to theoretical partitioning defined by the Henry law. Bromoform in exhaled air of swimmers is correlated with the air concentrations of this disinfectant by-product in the pool building. Comparison of the THM exhaled air concentrations between swimmers and volunteers bathing in the water without swimming or standing in the building outside the water suggest that physical activity enhance exposure to these disinfectant by-products. They also indicate that in swimming pools, besides inhalation, dermal absorption is a relevant route for the incorporation of THMs, particularly those with lower degree of bromination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Implementing a protocol for selection and prioritisation of organic ...

    African Journals Online (AJOL)


    Jul 9, 2012 ... guiding principle was the relevance of the organic contami- nants and .... Other water utilities. Organic contaminants currently analysed for in drinking water. BTEX, THMs, DOC, phenols. Department of Agriculture. Banned, restricted and frequently-used pesticides in ... ane and bromoform) and HAA5 (the 5.

  2. East African Journal of Sciences - Vol 4, No 2 (2010)

    African Journals Online (AJOL)

    Competitive Adsorption of Chloroform and Bromoform Using Commercial Bituminous and Coconut Based Granular Activated Carbons · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. T Zinabu, 59-64. ...

  3. The use of thymol as a biocide in rainwater samples (United States)

    Gillett, R. W.; Ayers, G. P.

    An essential requirement for any rainwater composition study based on sampling periods longer than that of individual events, is the selection of a biocide which prevents the biological degradation of rainwater organic acids, such as formic and acetic acid. In this report data are presented from a series of tests of biocidal activity of several compounds. Chloroform was confirmed as an effective rainwater biocide which quantitatively preserves formic acid from biological degradation in rainwater. Of the compounds tested, only bromoform and thymol (2-isopropyl-5-methyl phenol) were as effective as chloroform in preventing biological degradation of formic acid in rainwater. However, since bromoform produced an acid on standing, probably hydrobromic acid, it was unsuitable for use as a biocide. Therefore only thymol was found to be suitable as a biocide in rainwater collected in south-eastern Australia. As thymol is a solid, and hence non-volatile, it offers some advantage over the traditional use of chloroform.

  4. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water


    Glòria Carrasco-Turigas; Villanueva, Cristina M.; Fernando Goñi; Panu Rantakokko; Nieuwenhuijsen, Mark J.


    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-conta...

  5. The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment. (United States)

    Wever, Ron; van der Horst, Michael A


    Vanadium haloperoxidases differ strongly from heme peroxidases in substrate specificity and stability and in contrast to a heme group they contain the bare metal oxide vanadate as a prosthetic group. These enzymes specifically oxidize halides in the presence of hydrogen peroxide into hypohalous acids. These reactive halogen intermediates will react rapidly and aspecifically with many organic molecules. Marine algae and diatoms containing these iodo- and bromoperoxidases produce short-lived brominated methanes (bromoform, CHBr3 and dibromomethane CH2Br2) or iodinated compounds. Some seas and oceans are supersaturated with these compounds and they form an important source of bromine to the troposphere and lower stratosphere and contribute significantly to the global budget of halogenated hydrocarbons. This perspective focuses, in particular, on the biosynthesis of these volatile compounds and the direct or indirect involvement of vanadium haloperoxidases in the production of huge amounts of bromoform and dibromomethane. Some of the global sources are discussed and from the literature a picture emerges in which oxidized brominated species generated by phytoplankton, seaweeds and cyanobacteria react with dissolved organic matter in seawater, resulting in the formation of intermediate brominated compounds. These compounds are unstable and decay via a haloform reaction to form an array of volatile brominated compounds of which bromoform is the major component followed by dibromomethane.

  6. Chlorine by-products in sea water at the Penly nuclear power plant. Measurement survey in May 1993; Residus de chloration en mer a Penly. Campagne de mesures de Mai 1993

    Energy Technology Data Exchange (ETDEWEB)

    Khalanski, M.; Delesmont, R.


    The objective of the measurement survey conducted at the Penly nuclear power plant on May 27 and 28, 1993, was to determine the distribution of residual oxidants and volatile organo-halogenated compounds (THM) concentrations in the discharge plume when both units of the plants are carrying out chlorination. The data collected provide a mapping of the chemical types analyzed and will serve in calibration of a numerical model to simulate the evolution of these compounds in the discharge plume. During the two days of measurements, quantitative analyses were performed on samples taken by helicopter, once at high tide and twice at low tide with mean tidal coefficients. The chlorine injection level ranged from 0.84 to 0.92 mg/l (ppm) in unit 1 and from 0.64 to 0.70 mg/l in unit 2. Residual oxidants were measured as Total Chlorine equivalents using the colorimetric DPD method. Bromoform accounted for 97.8 % of the THM generated by chlorination. Three minutes after injection of hypochlorite, in the discharge basin, bromoform reached 60 % of its maximum concentration (29.23 {mu}g/l). The maximum reaction yield of bromoform formation is 2,9 %. Three zones were defined according to their proximity to releases. In each zone, given the lake of precision in measurements, the concentration of residual oxidants found did not reach significant levels ({<=}0.03 mg/l). The bromoform concentration, on the contrary, reached measurable levels in each of the samples. Its distribution differs significantly from one zone to another: -release zone : 1.66{+-}0.40{mu}g/l -nearby zone: 0.44{+-}0.13{mu}g/l - distant zone : 0.26{+-}0.10{mu}g/l. Our analysis, which indicates a background level of the order of 0.1 {mu}g/l for the entire studied area, raises the question of possible other sources of bromoform, independent of discharge from Penly. (authors). 15 refs., 11 figs., 5 tabs., 4 annexes.

  7. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water (United States)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.


    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p NOM also related well to chloroform formation (R2 = 0.963, p NOM character was evident in the source water in summer when high temperatures and rainfall occurred. The results displayed are an indication that aromatic NOM were the main precursor to TTHM formation, more prominently during summer. Keywords: disinfection by

  8. Biogenic influence on the growth of ferromanganese micronodules in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    -- Elsevier Science Publishers B.V. 414 R BANNERJEE AND S.D. IYER a 63 lam mesh and the >63 ~tm fractions were dried and studied under the binocular microscope. Subsequent to this, heavy mineral separation was carried out using 1 : 1 bromoform and carbon... tetra- chloride in order to separate the micronodules from the > 63 !am fraction. After binocular micro- scopic observations the micronodules were fixed on aluminium stubs with a thin layer of adhesive. These stubs were coated with carbon and gold...

  9. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Michael, E-mail: [Department of Radiation Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute Detroit, Detroit, Michigan 48201 and Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202 (United States); Rakowski, Joseph T. [Department of Radiation Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute Detroit, Detroit, Michigan 48201 (United States)


    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of two days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner

  10. Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis

    Directory of Open Access Journals (Sweden)

    G. Amy


    Full Text Available Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide by NF (Filmtec, Saehan and RO (Filmtec, Saehan, Toray, Koch membranes were studied. Chloroform presented the lowest rejection due to small molar volume, equivalent width and length. Diclofenac and Primidone showed high rejections related to high molar volume and length. Dichloroacetic acid and Trichloroacetic acid presented good rejections caused by charge exclusion instead of steric hindrance mechanism influencing rejection. Bromoform and Trichloroethene showed low rejections due to small length and equivalent width. Carbontetrabromide, Perchloroethene and Carbontetrachloride with higher equivalent width than BF and TCE presented better rejections. A qualitative analysis of variables using Principal Component Analysis was successfully implemented for reduction of physical-chemical compound properties that influence membrane rejection of PhACs and organic compounds. Properties such as dipole moment, molar volume, hydrophobicity/hydrophilicity, molecular length and equivalent width were found to be important descriptors for simulation of membrane rejection. For membranes used in the experiments, we may conclude that charge repulsion was an important mechanism of rejection for ionic compounds. After analysis with Multiple Linear Regression, we also may conclude that membrane rejection of neutral compounds was well predicted by molar volume, length, equivalent width, hydrophobicity/hydrophilicity and dipole moment. Molecular weight was a poor descriptor variable for rejection modelling. We were able to provide acceptable statistical significance for important results.

  11. Dielectric relaxation in dipolar mixtures (United States)

    Sharma, Ashok K.; Agarwal, Vinod K.; Mansingh, Abhai


    Dielectric constants and losses have been measured at several microwave frequencies in the range 2.4-25 GHz for two binary mixtures: bromoform +1-bromonaphthalene (dipole moment ratio is about 1:1), and nitrobenzene +1-bromonaphthalene (dipole moment ratio is about 4:1). The dielectric data of each binary system have been analyzed in terms of two superimposed Debye regions. This analysis has been carried out to study the effect of internal field on the numerical values of the relative weights or amplitudes C1 and C2 in the dipolar mixtures. It is observed that the discrepancy between the numerical values of weight factors obtained from relaxation data and dipole moment and mole fractions of the binary mixture cannot be attributed to the internal field. For the bromoform +1-bromonaphthalene system, it has been found that both the Budo and Cole-Cole equation represent the system equally well, but for nitrobenzene +1-bromonaphthalene system the Cole distribution fits better than Budo's equation.

  12. Formation and speciation characteristics of brominated trihalomethanes in seawater chlorination. (United States)

    Padhi, R K; Sowmya, M; Mohanty, A K; Bramha, S N; Satpathy, K K


    Formation character of brominated-trihalomethanes (Br-THMs) in chlorinated seawater and its dependence on applied chlorine dose, reaction time, and temperature were investigated in the laboratory. Seawater was collected from the east coast of India and a chlorine dose of 1, 3, 5, and 10 ppm was each applied at a temperature of 20, 30, and 40 degrees C to investigate the yield and kinetics of Br-THMs formation. Qualitative and quantitative estimation of THM formation at various intervals of time ranging from 5 min to 168 h was determined by a gas chromatograph equipped with an electron capture detector (GC-ECD). Chlorine dose, chlorine contact time, and reaction temperature positively affected the load of THMs. The ratio of chlorine dose to halogen incorporation decreased from 12% to 5% with increasing applied chlorine dose from 1 to 10 ppm. Significant levels of THMs were found to be formed within 0.5 h of reaction, followed by a very slow rate of formation. Elevated temperature favored both increased rate of formation and overall THM yield. The formation order of different trihalomethane species at all studied temperatures was observed to be bromodichloromethane (CHCl2Br) < dibromochloromethane (CHClBr2) < bromoform (CHBr3). Formation of chloroform was not observed, and bromoform was the dominant (96% to 98%) among the three THM species formed.

  13. Cancer and non-cancer risk assessment of trihalomethanes in urban drinking water supplies of Pakistan. (United States)

    Amjad, Hira; Hashmi, Imran; Rehman, Muhammad Saif Ur; Ali Awan, M; Ghaffar, Sajeela; Khan, Zahiruddin


    This study aims at monitoring and risk assessment of trihalomethanes (THMs) such as chloroform, bromodichloromethane, dibromochloromethane and bromoform, in the drinking water supplies of Rawalpindi and Islamabad. THMs were monitored at twenty locations in these twin cities using solid phase micro extraction-gas chromatography (SPME-GC). Total concentration of THMs was ranged between 21 and 373μg/L, whereas both cities had an average total THMs concentration of 142 and 260μg/L, respectively. Chloroform was found as one the major contributor to the THMs concentration (>85%). The occurrence of THMs followed the given order: chloroform, bromodichloromethane>dibromochloromethane>bromoform. Lifetime cancer risk assessment of THMs was carried out using prediction models via different exposure routes (ingestion, inhalation and dermal). An average lifetime cancer risk was found to be 0.74×10(-4) and 1.24×10(-4) for Rawalpindi and Islamabad, respectively. The number of expected cancer cases per year could reach two cases for each city. Hazard index values were found below unity for both the cities implying that there would be no considerable non-cancer risk. Oral ingestion was found to be one of the main routes of exposure for both types of risk which was followed by inhalation and dermal routes. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006 (United States)

    Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle


    Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R

  15. Formation and modeling of disinfection by-products in drinking water of six cities in China. (United States)

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli


    Water quality parameters including TOC, UV(254), pH, chlorine dosage, bromide concentration and disinfection by-products were measured in water samples from 41 water treatment plants of six selected cities in China. Chloroform, bromodichloromethane, dibromochloromethane, dichloroacetic acid and trichloroacetic acid were the major disinfection by-products in the drinking water of China. Bromoform and dibromoacetic acid were also detected in many water samples. Higher concentrations of trihalomethanes and haloacetic acids were measured in summer compared to winter. The geographical variations in DBPs showed that TTHM levels were higher in Zhengzhou and Tianjin than other selected cities. And the HAA5 levels were highest in Changsha and Tianjin. The modeling procedure that predicts disinfection by-products formation was studied and developed using artificial neural networks. The performance of the artificial neural networks model was excellent (r > 0.84).

  16. Exposure assessment and the risk associated with trihalomethanes compounds in drinking water - doi: 10.5020/18061230.2012.p5

    Directory of Open Access Journals (Sweden)

    Aldo Pacheco Ferreira


    Full Text Available To measure the concentrations of trihalomethanes (THMs in marshland of Jacarepaguá drinking water, Rio de Janeiro-RJ, Brazil, and their associated risks. Methods: Two hundred houses were visited and samples were collected from consumer taps water. Risks estimates based on exposures were projected by employing deterministic and probabilistic approaches. Results: The THMs (dibromochloromethane, bromoform, chloroform, and bromodichloromethane ranged from 3.08 μg/l to 129.31 μg/l. Non-carcinogenic risks induced by ingestion of THMs were below the tolerable level (10 -6 . Conclusion: Data obtained in this research demonstrate that exposure to drinking water contaminants and associated risks were higher than the acceptable level.

  17. A van der Waals density functional study of chloroform and other trihalomethanes on graphene (United States)

    Åkesson, Joel; Sundborg, Oskar; Wahlström, Olof; Schröder, Elsebeth


    A computational study of chloroform (CHCl3) and other trihalomethanes (THMs) adsorbed on graphene is presented. The study uses the van der Waals density functional method to obtain adsorption energies and adsorption structures for these molecules of environmental concern. In this study, chloroform is found to adsorb with the H atom pointing away from graphene, with adsorption energy 357 meV (34.4 kJ/mol). For the other THMs studied the calculated adsorption energy values vary from 206 meV (19.9 kJ/mol) for fluoroform (CHF3) to 404 meV (39.0 kJ/mol) for bromoform (CHBr3). The corrugation of graphene as seen by the THMs is small, the difference in adsorption energy along the graphene plane is less than 6 meV for chloroform.

  18. Exposure assessment and the risk associated with trihalomethanes compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Aldo Pacheco Ferreira


    Full Text Available Objective: To measure the concentrations of trihalomethanes (THMs in marshland of Jacarepaguá drinking water, Rio de Janeiro-RJ, Brazil, and their associated risks. Methods: Two hundred houses were visited and samples were collected from consumer taps water. Risksestimates based on exposures were projected by employing deterministic and probabilistic approaches. Results: The THMs (dibromochloromethane, bromoform, chloroform, and bromodichloromethane ranged from 3.08 μg/l to 129.31 μg/l. Non-carcinogenic risks induced by ingestion of THMs were below the tolerable level (10-6. Conclusion: Dataobtained in this research demonstrate that exposure to drinking water contaminants andassociated risks were higher than the acceptable level.

  19. Reducing Tri halomethanes in the Aigues de Terrassa Potable Water Treatment Plant Using Potassium Permanganate; Reduccion de trihalometanos en la ETAP de Aigues de Terrassa. Tratamiento con permanganato potasico

    Energy Technology Data Exchange (ETDEWEB)

    Brull Fontsere, M.; Garcia Espejo, B.; Mellado Ruiz, J.


    Mina Publica de Aguas de Terrassa has changed the treatment in its potable water treatment plant which receivers water captured from the river Llobregat. This was prompted by the need to reduce the concentration of trihalomethanes (THM) in drinking water as provided for in Directive 98/83/EC, incorporated into Spanish law by means of Royal Decree 140/2003/. The company has moved the disinfecting stage to the end of the potabilising treatment process while simultaneously introducing the addition of potassium permanganate as apreoxidant. Given that the water in question in highly saline and also contains bromides, various compounds are generated among which bromoform is the most prominent followed, in decreasing rder of quantity, by dibromochloroethena and chloroform. However, the concentrations are much smallerthan those found prior to these changes so it can be concluded that have improved the supply and comply with current legislation. (Author)

  20. Trihalomethanes formation in marine environment in front of Nuweibaa desalination plant as a result of effluents loaded by chlorine residual

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hamed


    Full Text Available Trihalomethanes have been identified as the most important disinfection byproducts resulted from using chlorine in desalination plants. Nuweibaa desalination plant was chosen to study their effluents impacts on the marine environment in front of the plant in the coastal area of Gulf of Aqaba. Surface and bottom Water Samples were collected from nine locations in the outfall area of this desalination plant during spring and autumn 2014, and analyzed for water temperature, pH value, Salinity, Dissolved Oxygen, Biological oxygen demand, Oxidizible organic matter, Total, fixed and volatile suspended matter, residual chlorine (free and combined and trihalomethanes. High total chlorine dosage discharged from the desalination plant achieved high levels of trihalomethanes in the receiving seawater of the outfall area. It has been estimated that about 14524.65671 kg of BOD, 74123.4 kg of OOM, 166896.4375 kg of total suspended solids, 623.634 kg of free chlorine, 469.21 kg of combined chlorine, 206.64 kg of chloroform and 76.48 kg of bromoform are discharged annually from this plant into the Gulf of Aqaba affecting the marine ecosystems. The results of THMs showed that the two main forms of THMs formed in the receiving seawater were chloroform and bromoform and ranged between (5.09–156.59, (2.82–566.06 μg/L respectively. High pH and High combined chlorine concentrations favored the formation of high concentrations of chloroform.

  1. Occurrence of brominated disinfection byproducts in the air and water of chlorinated seawater swimming pools. (United States)

    Manasfi, Tarek; Temime-Roussel, Brice; Coulomb, Bruno; Vassalo, Laurent; Boudenne, Jean-Luc


    An undesirable consequence of disinfection is the formation of chemical contaminants known as disinfection byproducts (DBPs). Chronic exposure to DBPs has been linked to adverse health effects. The occurrence of DBPs in chlorinated pools filled with seawater (such as thalassotherapy pools and pools in spas) has received little attention so far. The present study evaluated the speciation and levels of disinfection byproducts in indoor swimming pools filled with seawater and treated with chlorine. Water and air samples were collected from three indoor swimming pools located in Southern France. Several classes of DBPs including trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetaldehydes were analyzed in water. Halogenated volatile organic compounds were analyzed in air. Extractable organic halides (EOX) contents were determined using combustion/micro-coulometry system. The speciation of DBPs identified in the three pools was predominantly brominated. The mean (arithmetic) concentration of bromoform, dibromoacetic acid, tribromoacetic acid, dibromoacetonitrile and bromal hydrate in the three pools was 79.2, 72.9, 59.9, 26.9 and 10.0μg/L, respectively. By weight, HAAs represented the most abundant chemical class followed by THMs. In air, bromoform was the most abundant THM occurring at a mean concentration of 133.2μg/m(3) in the three pools. The mean EOX level was 706μgCl(-)/L for the three pools. In average, the quantified DBPs accounted for only 14% of EOX, thus 86% of EOX remained unknown. Further research is warranted to identify the unknown DBPs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Preferential expression of a bromoperoxidase in sporophytes of a red alga, Pyropia yezoensis. (United States)

    Matsuda, Ryuya; Ozgur, Rengin; Higashi, Yuya; Takechi, Katsuaki; Takano, Hiroyoshi; Takio, Susumu


    A 2,158 bp cDNA (PyBPO1) encoding a bromoperoxidase (BPO) of 625 amino acids was isolated from Pyropia yezoensis. Phylogenetic analysis using amino acid sequences of BPOs suggested that P. yezoensis and cyanobacteria were grouped in the same clade and separated from brown algae. Genomic Southern blot analysis suggested that PyBPO1 existed as a single copy per haploid genome. RT-PCR revealed that PyBPO1 was actively expressed in filamentous sporophytes but repressed in leafy gametophytes under normal growth conditions. High expression levels of PyBPO1 in sporophytes were observed when sporophytes were grown under gametophyte conditions, suggesting that preferential expression of PyBPO1 occurs during the sporophyte phase. BPO activity of cell-free extracts from sporophytes and gametophytes was examined by activity staining on native PAGE gel using o-dianisidine. One activity band was detected in sporophyte sample, but not in gametophyte sample. In addition, we found that bromide and iodide were effective substrate, but chloride was not. BPO activity was observed-likely in chloroplasts-when sporophyte cells were incubated with o-dianisidine and hydrogen peroxide. Cellular BPO staining showed the same halogen preference identified by in-gel BPO staining. Based on GS-MS analysis, bromoform was detected in medium containing sporophytes. Bromoform was not detected under dark culture conditions but was detected in the culture exposed to low light intensity (5 μmol m(-2) s(-1)) and increased under a moderate light intensity (30 μmol m(-2) s(-1)).

  3. Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer

    Directory of Open Access Journals (Sweden)

    Rogerson Peter A


    risk for rectal cancer did not increase with total level of trihalomethanes, increasing levels of the component bromoform (measured in ug/day did correspond with an increase in odds ratios (OR = 1.85; 95% CI = 1.25 – 2.74 for rectal cancer. The highest quartiles of estimated consumption of bromoform (1.69–15.43 ug/day led to increased risk for rectal cancer (OR = 2.32; 95% CI = 1.22–4.39. Two other THMs were marginally associated with an increase in risk – chlorodibromomethane (OR = 1.78, 95% CI = 1.00–3.19 and bromodichloromethane (OR = 1.15; 95% CI = 1.00–1.32. Conclusion Levels of THMs in the water distribution system exhibited spatial variation that was partially due to variation in water age. We also observed a geographic pattern of increased risk of rectal cancer in areas with the highest levels of bromoform in the county.

  4. Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006) (United States)

    Burch, James B.; Everson, Todd M.; Seth, Ratanesh K.; Wirth, Michael D.; Chatterjee, Saurabh


    Exposure to trihalomethanes (or THMs: chloroform, bromoform, bromodichloromethane, and dibromochloromethane [DBCM]) formed via drinking water disinfection has been associated with adverse reproductive outcomes and cancers of the digestive or genitourinary organs. However, few studies have examined potential associations between THMs and liver injury in humans, even though experimental studies suggest that these agents exert hepatotoxic effects, particularly among obese individuals. This study examined participants in the National Health and Nutrition Examination Survey (1999–2006, N = 2781) to test the hypothesis that THMs are associated with liver injury as assessed by alanine aminotransferase (ALT) activity in circulation. Effect modification by body mass index (BMI) or alcohol consumption also was examined. Associations between blood THM concentrations and ALT activity were assessed using unconditional multiple logistic regression to calculate prevalence odds ratios (ORs) with 95% confidence intervals (CIs) for exposure among cases with elevated ALT activity (men: >40 IU/L, women: >30 IU/L) relative to those with normal ALT, after adjustment for variables that may confound the relationship between ALT and THMs. Compared to controls, cases were 1.35 times more likely (95% CI: 1.02, 1.79) to have circulating DBCM concentrations exceeding median values in the population. There was little evidence for effect modification by BMI, although the association varied by alcohol consumption. Among non-drinkers, cases were more likely than controls to be exposed to DBCM (OR: 3.30, 95% CI: 1.37–7.90), bromoform (OR: 2.88, 95% CI: 1.21–6.81), or brominated THMs (OR: 4.00, 95% CI: 1.31–12.1), but no association was observed among participants with low, or moderate to heavy alcohol consumption. Total THM levels exceeding benchmark exposure limits continue to be reported both in the United States and globally. Results from this study suggest a need for further

  5. Comparison of two validated gas-chromatographic methods for the determination of trihalomethanes in drinking water Comparação de dois métodos cromatográficos validados para a dosagem de trialometanos em água potável

    Directory of Open Access Journals (Sweden)

    Maria Yumiko Tominaga


    Full Text Available In this paper the results obtained using two validated gas-chromatographic procedures on drinking water for the determination of trihalomethanes are compared. The volatile compounds, chloroform (CF, bromodichloromethane (BDCM, dibromochloromethane (DBCM and bromoform (BF were detected by purge and trap capillary column gas-chromatography with electrolytic conductivity detector ( ELCD and the simple and rapid gas-chromatographic method by electron capture detector (ECD after liquid-liquid extraction with n-pentane. For purge and trap ELCD method the response for the volatile compounds was linear for the concentrations of 0.5 to 40 µg/L. For liquid-liquid extraction ECD method the response was linear for the concentrations of 0.5 to 100 µg/L. The comparison of both methods was achieved by analyzing samples of drinking water collected in the city of São. Paulo, Brazil. The ratios of concentrations obtained by the two methods (ECD/ELCD were as follows: l.l3 ± 0.9 for chloroform; 0.93 ± 0.15 for BDCM and 0.92 ± 0.17 for DBCM. Bromoform was not detected in the drinking water samples. The ratio of 1.08 ± 0.047 for total triahalomethane - THMt ( the sum of the three compounds shows the equivalence of the compared methods.São comparados dois métodos cromatográficos validados para a determinação de trialometanos (clorofórmio, bromodiclorometano, dibromoclometano e bromofórmio em água potável. Os métodos cromatográficos de fase gasosa, a saber: com detetor de captura de elétrons precedido de extração líquido-líquido e com detetor de condutibilidade eletrolítica com "purge and trap" foram comparados em termos de sensibilidade, precisão e recuperação. O estudo demonstrou que os resultados dos dois procedimentos são equivalentes apresentando as mesmas vantagens quando comparados.

  6. Dissolved organic matter composition drives the marine production of brominated very short-lived substances. (United States)

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A


    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean.

  7. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water. (United States)

    Carter, Janet M; Moran, Michael J; Zogorski, John S; Price, Curtis V


    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  8. Nanodetection of the disinfection by-products on GC-MS techniques (United States)

    Ristoiu, Dumitru; Haydee, Melinda; Ristoiu, Tania


    Exposures to disinfection by-products (DBPs) in residential drinking water occur through multiple routes and vary across the population because of differences in the amount and ways people use water. Municipal water in the Romania is disinfected, with chlorine being the most common disinfectant agent. Disinfection of water, in additional to having the benefit of destroying microbes that can transmit diseases, has the drawback of producing a series of compounds known as disinfection by-products (DBPs). Chlorination produces many compounds containing chlorine and/or bromine, some of which have been shown to be carcinogenic, mutagenic, and/or teratogenic in animal studies. The most abundant class of DBPs that result from chlorination of drinking water are trihalomethanes (THMs) - chloroform (CHCl3), dichlorobromomethane (CHCl2Br), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3). The most predominant THM species was CHCl3 and it highest concentration was 85•106 ng/m3. The others THMs compounds concentration were lower, between 65•104 ng/m3 and 12•106 ng/m3. THMs compounds were analyzed on gas chromatography coupled with mass spectrometer detector (GC-MS) and head space technique (HS) was used for all analysis.

  9. Functionalization of polymer surfaces by medium frequency non-thermal plasma (United States)

    Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.


    This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.

  10. Ultraviolet radiation affects emission of ozone-depleting substances by marine macroalgae: results from a laboratory incubation study. (United States)

    Laturnus, Frank; Svensson, Teresia; Wiencke, Christian; Oberg, Gunilla


    The depletion of stratospheric ozone due to the effects of ozone-depleting substances, such as volatile organohalogens, emitted into the atmosphere from industrial and natural sources has increased the amount of ultraviolet radiation reaching the earth's surface. Especially in the subpolar and polar regions, where stratospheric ozone destruction is the highest, individual organisms and whole ecosystems can be affected. In a laboratory study, several species of marine macroalgae occurring in the polar and northern temperate regions were exposed to elevated levels of ultraviolet radiation. Most of the macroalgae released significantly more chloroform, bromoform, dibromomethane, and methyl iodide-all volatile organohalogens. Calculating on the basis of the release of total chlorine, bromine, and iodine revealed that, except for two macroalgae emitting chlorine and one alga emitting iodine, exposure to ultraviolet radiation caused macroalgae to emit significantly more total chlorine, bromine, and iodine. Increasing levels of ultraviolet radiation due to possible further destruction of the stratospheric ozone layer as a result of ongoing global atmospheric warming may thus increase the future importance of marine macroalgae as a source for the global occurrence of reactive halogen-containing compounds.

  11. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    Directory of Open Access Journals (Sweden)

    Glòria Carrasco-Turigas


    Full Text Available Disinfection by-products (DBPs are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4 (chloroform (TCM, bromodichloromethane (BDCM, dibromochloromethane (DBCM, and bromoform (TBM, MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97% and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  12. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system. (United States)

    Echardt, J; Kornmueller, A


    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria.

  13. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection (United States)

    Alexandrou, Lydon D.; Meehan, Barry J.; Morrison, Paul D.; Jones, Oliver A. H.


    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid–liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9–9.3 µg/L). PMID:28505068

  14. The effect of different boiling and filtering devices on the concentration of disinfection by-products in tap water. (United States)

    Carrasco-Turigas, Glòria; Villanueva, Cristina M; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J


    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  15. Volatile disinfection by-product analysis from chlorinated indoor swimming pools. (United States)

    Weaver, William A; Li, Jing; Wen, Yuli; Johnston, Jessica; Blatchley, Michael R; Blatchley, Ernest R


    Chlorination of indoor swimming pools is practiced for disinfection and oxidation of reduced compounds that are introduced to water by swimmers. However, there is growing concern associated with formation for chlorinated disinfection by-products (DBPs) in these settings. Volatile DBPs are of particular concern because they may promote respiratory ailments and other adverse health effects among swimmers and patrons of indoor pool facilities. To examine the scope of this issue, water samples were collected from 11 pools over a 6month period and analyzed for free chlorine and their volatile DBP content. Eleven volatile DBPs were identified: monochloramine (NH(2)Cl), dichloramine (NHCl(2)), trichloramine (NCl(3)), chloroform (CHCl(3)), bromoform (CHBr(3)), dichlorobromomethane (CHBrCl(2)), dibromochloromethane (CHBr(2)Cl), cyanogen chloride (CNCl), cyanogen bromide (CNBr), dichloroacetonitrile (CNCHCl(2)), and dichloromethylamine (CH(3)NCl(2)). Of these 11 DBPs, 10 were identified as regularly occurring, with CHBrCl(2) only appearing sporadically. Pool water samples were analyzed for residual chlorine compounds using the DPD colorimetric method and by membrane introduction mass spectrometry (MIMS). These two methods were chosen as complementary measures of residual chlorine, and to allow for comparisons between the methods. The DPD method was demonstrated to consistently overestimate inorganic chloramine content in swimming pools. Pairwise correlations among the measured volatile DBPs allowed identification of dichloromethylamine and dichloroacetonitrile as potential swimming pool water quality indicator compounds.

  16. Quantifying Sulfur-Containing Compounds Over the Santa Barbara Channel (United States)

    Black, J.; Hughes, S.; Blake, D. R.


    Carbonyl sulfide (OCS) is emitted to the atmosphere through the outgassing of ocean surface waters. OCS is also the primary source of sulfur-containing compounds in the stratosphere and contributes to the formation of the stratospheric sulfate layer. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected on the NASA DC-8 aircraft over the Santa Barbara Channel. Five additional surface samples were taken at various locations along the Santa Barbara Channel. The samples were analyzed using gas chromatography in the Rowland-Blake lab at UC Irvine, and compounds such as OCS, dimethyl sulfide (DMS), carbon disulfide (CS2), bromoform (CHBr3), and methyl iodide (CH3I) associated with ocean emissions and stratospheric aerosols were analyzed. These marine sourced compounds, excluding OCS, showed expected trends of dilution with increasing altitude. The surface samples from the Santa Barbara Channel all exhibited elevated concentrations of OCS in comparison to samples taken from the aircraft, with an average of 666 ± 12 pptv, whereas the average background concentration of OCS was 587 ± 19 pptv. SARP flights from 2009-2015 over the Santa Barbara Channel saw an average OCS concentration of 548 ± 26 pptv. Elevated levels of OCS have never been detected from the aircraft during SARP flights, indicating that OCS emissions must be measured using surface sampling if emission estimates from the ocean are to be evaluated.

  17. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. (United States)

    Manasfi, Tarek; De Méo, Michel; Coulomb, Bruno; Di Giorgio, Carole; Boudenne, Jean-Luc


    Exposure to disinfection byproducts (DBPs) in swimming pools has been linked to adverse health effects. Numerous DBPs that occur in swimming pools are genotoxic and carcinogenic. This toxicity is of a greater concern in the case of brominated DBPs that have been shown to have substantially greater toxicities than their chlorinated analogs. In chlorinated seawater swimming pools, brominated DBPs are formed due to the high content of bromide. Nevertheless, very little data is reported about DBP occurrence and mutagenicity of water in these pools. In the present study, three seawater and one freshwater swimming pools located in Southeastern France were investigated to determine qualitatively and quantitatively their DBP contents. An evaluation of the genotoxic properties of water samples of the freshwater pool and a seawater pool was conducted through the Salmonella assay (Ames test). The predominant DBPs identified in the freshwater pool were chlorinated species and included trichloroacetic acid, chloral hydrate, dichloroacetonitrile, 1,1,1-trichloropropanone and chloroform. In the seawater pools, brominated DBPs were the predominant species and included dibromoacetic acid, bromoform and dibromoacetonitile. Bromal hydrate levels were also reported. In both types of pools, haloacetic acids were the most prevalent chemical class among the analyzed DBP classes. The distribution of other DBP classes varied depending on the type of pool. As to genotoxicity, the results of Ames test showed higher mutagenicity in the freshwater pool as a consequence of its considerably higher DBP contents in comparison to the tested seawater pool. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. (United States)

    Parinet, Julien; Tabaries, Sophie; Coulomb, Bruno; Vassalo, Laurent; Boudenne, Jean-Luc


    Despite evidence of formation of brominated compounds in seawater swimming pools treated with chlorine, no data about exposure levels to these compounds have been reported. To address this issue, a survey has been carried out in four establishments (representing 8 pools) fed with seawater and devoted to relaxing and cure treatments (thalassotherapy centres located in Southeast of France). Carcinogenic and mutagenic brominated disinfection byproducts (trihalomethanes -THM- and halogenated acetic acids -HAA-) were quantified at varying levels, statistically related to organic loadings brought by bathers, and not from marine organic matter, and also linked to activities carried out in the pools (watergym vs swimming). Bromoform and dibromoacetic acid, the most abundant THM and HAA detected, were measured at levels up to 18-fold greater than the maximum contaminant levels of 60 and 80 μg/L fixed by US.EPA in drinking waters. The correlations between these disinfection byproducts and other environmental factors such as nitrogen, pH, temperature, free residual chlorine, UV(254), chloride and bromide concentrations, and daily frequentation were examined. Because thalassotherapy and seawater swimming pools (hotels, cruise ships,…) are increasing in use around the world and because carcinogenic and mutagenic brominated byproducts may be produced in chlorinated seawater swimming pools, specific care should be taken to assure cleanliness of users (swimmers and patients taking the waters) and to increase water circulation through media filters to reduce levels of brominated byproducts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection

    Directory of Open Access Journals (Sweden)

    Lydon D. Alexandrou


    Full Text Available Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs. The most common are the trihalomethanes (THMs such as trichloromethane (chloroform, dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform; these are commonly reported as a single value for total trihalomethanes (TTHMs. Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid–liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia. The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb. All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM compared to samples from final use locations (4.9–9.3 µg/L.

  20. Biological and statistical approaches for modeling exposure to specific trihalomethanes and bladder cancer risk. (United States)

    Salas, Lucas A; Cantor, Kenneth P; Tardon, Adonina; Serra, Consol; Carrato, Alfredo; Garcia-Closas, Reina; Rothman, Nathaniel; Malats, Núria; Silverman, Debra; Kogevinas, Manolis; Villanueva, Cristina M


    Lifetime exposure to trihalomethanes (THM) has been associated with increased risk of bladder cancer. We explored methods of analyzing bladder cancer risk associated with 4 THM (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) as surrogates for disinfection by-product (DBP) mixtures in a case-control study in Spain (1998-2001). Lifetime average concentrations of THM in the households of 686 incident bladder cancer cases and 750 matched hospital-based controls were calculated. Several exposure metrics were modeled through conditional logistic regression, including the following analyses: total THM (μg/L), cytotoxicity-weighted sum of total THM (pmol/L), 4 THM in separate models, 4 THM in 1 model, chloroform and the sum of brominated THM in 1 model, and a principal-components analysis. THM composition, concentrations, and correlations varied between areas. The model for total THM was stable and showed increasing dose-response trends. Models for separate THM provided unstable estimates and inconsistent dose-response relationships. Risk estimation for specific THM is hampered by the varying composition of the mixture, correlation between species, and imprecision of historical estimates. Total THM (μg/L) provided a proxy measure of DBPs that yielded the strongest dose-response relationship with bladder cancer risk. A variety of metrics and statistical approaches should be used to evaluate this association in other settings.

  1. Cometabolism of Trihalomethanes by Nitrosomonas europaea (United States)

    Wahman, David G.; Katz, Lynn E.; Speitel, Gerald E.


    The ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) was shown to degrade low concentrations (50 to 800 μg/liter) of the four trihalomethanes (trichloromethane [TCM], or chloroform; bromodichloromethane [BDCM]; dibromochloromethane [DBCM]; and tribromomethane [TBM], or bromoform) commonly found in treated drinking water. Individual trihalomethane (THM) rate constants (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}k_{1_{THM}}\\end{equation*}\\end{document}) increased with increasing THM bromine substitution, with TBM > DBCM > BDCM > TCM (0.23, 0.20, 0.15, and 0.10 liters/mg/day, respectively). Degradation kinetics were best described by a reductant model that accounted for two limiting reactants, THMs and ammonia-nitrogen (NH3-N). A decrease in the temperature resulted in a decrease in both ammonia and THM degradation rates with ammonia rates affected to a greater extent than THM degradation rates. Similarly to the THM degradation rates, product toxicity, measured by transformation capacity (Tc), increased with increasing THM bromine substitution. Because both the rate constants and product toxicities increase with increasing THM bromine substitution, a water's THM speciation will be an important consideration for process implementation during drinking water treatment. Even though a given water sample may be kinetically favored based on THM speciation, the resulting THM product toxicity may not allow stable treatment process performance. PMID:16332776

  2. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection. (United States)

    Alexandrou, Lydon D; Meehan, Barry J; Morrison, Paul D; Jones, Oliver A H


    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid-liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9-9.3 µg/L).

  3. Effect of water quality and operational parameters on trihalomethanes formation potential in Dez River water, Iran

    Directory of Open Access Journals (Sweden)

    Bahman Ramavandi


    Full Text Available This study assesses the influence of the total organic carbon (TOC content, chlorine quantity, water temperature, bromide ion concentration, and seasonal variations on trihalomethanes (THMs formation potential (THMFP in Dez River water in Iran. The water temperature and TOC content had a significant effect on THMFP. Further, the experimental results showed that increasing the concentration of bromide ions enhances the formation of dibromochloromethane and bromoform. It was found that the THMFP in Dez River water during summer times was relatively higher than 100 µg/L, maximum contaminant level for THMs in drinking water. By increasing the reaction time until 80 h, the THMFP was gradually increased and reached to 177.4 µg/L. The most abundant fraction of natural organic matter in the river was hydrophobic acid fraction (49.4 μg/L. Overall, our study demonstrated that however the THMFP of Dez River water was relatively high but a usual waterworks could effectively reduce THMFP.

  4. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    Energy Technology Data Exchange (ETDEWEB)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia (Spain); Prado, Celia; Periago, Juan F. [Institute of Safety and Occupational Health (ISSL), Murcia (Spain); Grimalt, Joan O., E-mail: [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia (Spain)


    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m{sup -3} in the swimming pool studies and between 97 and 460 ng m{sup -3} in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  5. Maps showing mineralogical data for nonmagnetic heavy-mineral concentrates in the Talkeetna Quadrangle, Alaska (United States)

    Tripp, R.B.; Karlson, R.C.; Curtin, G.C.


    Reconnaissance geochemical and mineralogical sampling was done in the Talkeetna Quadrangle during 1975 and 1976 as part of the Alaska Mineral Resource Assessment Program (AMRAP). These maps show the distribution of gold, scheelite, chalcopyrite, arsenopyrite, galena, fluorite, cinnabar, and malachite in the nonmagnetic fraction of heavy-mineral concentrates. Heavy-mineral concentrate samples were collected at 812 sites from active stream channels. The heavy-mineral concentrates were obtained by panning stream sediment in the field to remove most of the light minerals. The panned samples were then sieved through a 20-mesh (0.8 mm) sieve in the laboratory, and the minus-20-mesh fraction was further separated with bromoform (specific gravity, 2.86) to remove any remaining light-mineral grains. Magnetite and other strongly magnetic heavy minerals were removed from the heavy-mineral fraction by use of a hand magnet. The remaining sample was passed through a Frantz Isodynamic Separator and a nonmagnetic fraction was examined for its mineralogical content with the aid of a binocular microscope and an x-ray diffractometer. The nonmagnetic concentrates primarily contain phyllite fragments, muscovite, sphene, zircon, apatite, tourmaline, rutile, and anatase. Most ore and ore-related minerals also occur in this fraction.

  6. Disinfection by-products and extractable organic compounds in South African tap water

    Directory of Open Access Journals (Sweden)

    Carien Nothnagel


    Full Text Available An important step in urban purification of drinking water is disinfection by e.g. chlorination where potential pathogenic micro-organisms in the water supply are killed. The presence of organic material in natural water leads to the formation of organic by- products during disinfection. Over 500 of these disinfection by-products (DBPs have been identified and many more are estimated to form during the disinfection step. Several DBPs such as trihalomethanes (THMs, which is carcinogenic, poses serious health risks to the community. There is very few quantitative data available which realizes the actual levels of these compounds present in drinking water. The levels of four THMs present in drinking water were measured. It included chloroform, bromodichloromethane, chlorodibromomethane and bromoform. Although microbiological parameters are considered to get more attention than disinfection by-products, the measurement of the levels of these compounds in South-African drinking water is essential together with establishing minimum acceptable concentration levels. The target range for total trihalomethanes (TTHMs established by the US EPA at the end of 2003 is 0-0.08ug/mL. The aim of this paper is to create an awareness of the problem as well as presenting preliminary results obtained with the method of analysis. Preliminary results indicate that urgent attention must be given to the regulation and monitoring of DBPs in South African drinking water.

  7. Characterization of the metabolic interaction between trihalomethanes and chloroacetic acids using rat liver microsomes. (United States)

    St-Pierre, Annie; Krishnan, Kannan; Tardif, Robert


    The aim of this study was to investigate the in vitro metabolism of trihalomethanes (THMs) in the presence of trichloroacetic acid (TCA), dichloracetic acid (DCA), monochloroacetic acid (MCA), and 4-methylpyrazole (4-MP) using liver microsomes from male Sprague-Dawley rats. Using the vial equilibration technique, initial experiments were carried out with starting concentrations of approximately 40 ppm THMs and 12-22 mM chloroacetic acids. The results indicated a mutual metabolic inhibition between THMs present as binary or quaternary mixtures. Although DCA and MCA had no influence on THMs, TCA produced a marked inhibition of the metabolism of all THMs: chloroform (CHCl3) (55%), bromodichloromethane (BDCM) (34%), dibromochloromethane (DBCM) (30%), and bromoform (TBM) (23%). The presence of 4-MP also reduced THM metabolism, the importance of which decreased in the following order: CHCl3 > BDCM > DBCM = TBM. In further vial equilibration experiments, using 9-140 ppm as starting concentrations of THMs, enzyme kinetic parameters (i.e., Michaelis constant, K(m), and maximum velocity, V(max)) were determined both in the absence and in the presence of TCA (12.2 mM). Results are consistent with a competitive inhibition between TCA and CHCl3, whereas the metabolic inhibition of BDCM and TMB by TCA was non-competitive. As for DBCM, results suggest a more complex pattern of inhibition. These results suggest that CYP2E1 is involved in the metabolism of THMs as well as in the metabolic interaction between THMs and TCA.

  8. Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol. (United States)

    Liu, Kuo; Lu, Junhe; Ji, Yuefei


    Formation of halogenated disinfection by-products (DBPs) in sulfate radical [Formula: see text] based oxidation processes attracted considerable attention recently. However, the underlying reaction pathways have not been well explored. This study focused on the transformation of Br(-) in cobalt activated peroxymonosulfate (Co(2+)/PMS) oxidation process. Phenol was added as a model compound to mimic the reactivity of natural organic matter (NOM). It was revealed that Br(-) was efficiently transformed to reactive bromine species (RBS) including free bromine and bromine radicals (Br, [Formula: see text] , etc.) in Co(2+)/PMS system. [Formula: see text] played a principal role during this process. RBS thus generated resulted in the bromination of phenol and formation brominated DBPs (Br-DBPs) including bromoform and bromoacetic acids, during which brominated phenols were detected as the intermediates. Br-DBPs were further degraded by excessive [Formula: see text] and transformed to bromate ultimately. Free bromine was also formed in the absence of Co(2+), suggesting Br(-) could be oxidized by PMS per se. Free bromine was incorporated to phenol sequentially leading to Br-DBPs as well. However, Br-DBPs could not be further transformed in the absence of [Formula: see text] . This is the first study that elucidated the comprehensive transformation map of Br(-) in PMS oxidation systems, which should be taken into consideration when PMS was applied to eliminate contamination in real practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sources of short-lived bromocarbons in the Iberian upwelling system

    Directory of Open Access Journals (Sweden)

    S. Raimund


    Full Text Available Seawater concentrations of the four brominated trace gases, dibromomethane (CH2Br2, bromodichloromethane (CHBrCl2, dibromochloromethane (CHBr2Cl and bromoform (CHBr3 were measured at different depths of the water column in the Iberian upwelling off Portugal during summer 2007. Statistical analysis of the data set revealed three distinct clusters, caused by different sea surface temperature. Bromocarbon concentrations were elevated in recently upwelled and aged upwelled waters (mean values of 30 pmol l−1 for CHBr3, while concentrations in the open ocean were significantly lower (7.4 pmol l−1 for CHBr3. Comparison with other productive marine areas revealed that the Iberian upwelling had higher halocarbon concentrations than the Mauritanian upwelling. However, the concentrations off the Iberian Peninsula were still much lower than those of coastal macroalgal-influenced waters or those of Polar regions dominated by cold water adapted diatoms. Correlations with biological variables and marker pigments indicated that phytoplankton was a source of bromocarbon in the open ocean. By contrast, in upwelled water masses along the coast, halocarbons showed weaker correlations to marker pigments but were significantly influenced by the tidal frequency. Our results indicate a strong intertidal coastal source of bromocarbon and transport by surface currents of these enriched waters towards the upwelling region.

  10. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru


    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  11. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Preciado, Diana [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain); Matamoros, Victor, E-mail: [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Bayona, Josep M. [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain)


    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L{sup -1} and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L{sup -1}, on average). The estimated concentration of micropollutants in crops ranged from < 1 to 7677 ng kg{sup -1}, with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 {mu}g per person and week ({Sigma} 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  12. Effective Laboratory Method of Chromite Content Estimation in Reclaimed Sands

    Directory of Open Access Journals (Sweden)

    Ignaszak Z.


    Full Text Available The paper presents an original method of measuring the actual chromite content in the circulating moulding sand of foundry. This type of material is applied for production of moulds. This is the case of foundry which most frequently perform heavy casting in which for the construction of chemical hardening mould is used, both the quartz sand and chromite sand. After the dry reclamation of used moulding sand, both types of sands are mixed in various ratios resulting that in reclaimed sand silos, the layers of varying content of chromite in mixture are observed. For chromite recuperation from the circulating moulding sand there are applied the appropriate installations equipped with separate elements generating locally strong magnetic field. The knowledge of the current ratio of chromite and quartz sand allows to optimize the settings of installation and control of the separation efficiency. The arduous and time-consuming method of determining the content of chromite using bromoform liquid requires operational powers and precautions during using this toxic liquid. It was developed and tested the new, uncomplicated gravimetric laboratory method using powerful permanent magnets (neodymium. The method is used in the production conditions of casting for current inspection of chromite quantity in used sand in reclamation plant.

  13. Sources and occurrence of chloroform and other trihalomethanes in drinking-water supply wells in the United States, 1986-2001 (United States)

    Ivahnenko, Tamara; Zogorski, J.S.


    Chloroform and three other trihalomethanes (THMs)--bromodichloromethane, dibromochloromethane, and bromoform--are disinfection by-products commonly produced during the chlorination of water and wastewater. Samples of untreated ground water from drinking-water supply wells (1,096 public and 2,400 domestic wells) were analyzed for THMs and other volatile organic compounds (VOCs) during 1986-2001, or compiled, as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This report provides a summary of potential sources of THMs and of the occurrence and geographical distribution of THMs in samples from public and domestic wells. Evidence for an anthropogenic source of THMs and implications for future research also are presented. Potential sources of THMs to both public and domestic wells include the discharge of chlorinated drinking water and wastewater that may be intentional or inadvertent. Intentional discharge includes the use of municipally supplied chlorinated water to irrigate lawns, golf courses, parks, gardens, and other areas; the use of septic systems; or the regulated discharge of chlorinated wastewater to surface waters or ground-water recharge facilities. Inadvertent discharge includes leakage of chlorinated water from swimming pools, spas, or distribution systems for drinking water or wastewater sewers. Statistical analyses indicate that population density, the percentage of urban land, and the number of Resource Conservation and Recovery Act hazardous-waste facilities near sampled wells are significantly associated with the probability of detection of chloroform, especially for public wells. Domestic wells may have several other sources of THMs, including the practice of well disinfection through shock chlorination, laundry wastewater containing bleach, and septic system effluent. Chloroform was the most frequently detected VOC in samples from drinking-water supply wells (public and domestic wells) in the United States. Although

  14. In-situ BrO measurements in the upper troposphere / lower stratosphere. Validation of the ENVISAT satellite measurements and photochemical model studies

    Energy Technology Data Exchange (ETDEWEB)

    Hrechanyy, S.


    and SCOUT-O3 in the 15-20 km altitude regime are at the low side of comparable DOAS measurements a CLaMS study of the evolution of Bry from the source gases has been carried out. For this purpose an ensemble of trajectories rising from the lower troposphere to the TTL within 6 to more than 90 days were initialized with observed mixing ratios in the boundary layer of all important organic bromine source gases and the free-up of Bry by chemical and photochemical reactions was simulated. Bromoform, CHBr3, was found to be the main source of inorganic bromine at the tropopause. The derived tropospheric lifetime of bromoform is 33 days. The modelled BrO mixing ratio at the tropopause (less than 2.5 pptv) is consistent with HALOX measurements which do not detect significant amounts of BrO there (<1-2 pptv). Therefore measurements of more than 4 pptv (as retrieved from SCIAMACHY) can only be explained trough processes not included in the model. (orig.)

  15. Study of the texture of porous solids using a technique of {gamma} ray absorption; Application de l'absorption du rayonnement {gamma} a l'etude de la texture des solides poreux

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires


    A technique, which enables us to measure locally total porosity, open porosity and pore size distribution is developed. The total porosity is calculated from the bulk density. A gamma absorption gauge is set up fitted with a Cs137 source. This enables the determination of the density by layers of carbonaceous samples in a practically automatic way. By taking adequate precautions it is possible to obtain the density with a maximum error {delta}{rho} {<=} 0,005 g/cm{sup 3}. The open porosity is evaluated by the absorption method after impregnation with bromoform. A new mercury porosimeter is developed using the absorption probe for the measurement of mercury infiltrated into the porous sample. Due to the localized character of exploration by this technique, the variations of porous texture in a heterogeneous sample can be studied. Used as a classical porosimeter, in the case of homogeneous samples, this apparatus is capable of exploring the equivalent diameters of pores between 500 {mu} and 0.14 {mu} with a maximum error {delta}P {<=} 0.002. The possibility of exploration of heterogeneous samples, with the facility of determination of porosities due to macro-pores combined with the non-limiting character of the method in the field of high pressures differentiates this apparatus from all the porosimeters of former conception. Examples of utilization of this technique in the case of graphite-gas reactions are presented. (author) [French] On a developpe une technique permettant la mesure localisee de la porosite totale, de la porosite ouverte et de la repartition de la taille de pores. La porosite totale est calculee a partir de la densite apparente. On a mis au point une jauge d'absorption du rayonnement gamma munie d'une source de Cs137. Celle-ci nous a permis de determiner la densite par couches d'echantillons cylindriques carbones d'une facon pratiquement automatique. En prenant les precautions adequates, il est possible d'obtenir la densite

  16. Streamflow and Water-Quality Characteristics for Wind Cave National Park, South Dakota, 2002-03 (United States)

    Heakin, Allen J.


    permanent fisheries criterion in numerous samples from all three streams. Two samples from Highland Creek also exceeded the coldwater marginal fisheries criterion for water temperature. Mean concentrations of ammonia, orthophosphate, and phosphorous were higher for the upstream site on Beaver Creek than for other water-quality sampling sites. Concentrations of E. coli, fecal coliform, and total coliform bacteria also were higher at the upstream site on Beaver Creek than for any other site. Samples for the analysis of benthic macroinvertebrates were collected from one site on each of the three streams during July 2002 and May 2003. The benthic macroinvertebrate data showed that Beaver Creek had lower species diversity and a higher percentage of tolerant species than the other two streams during 2002, but just the opposite was found during 2003. However, examination of the complete data set indicates that the quality of water at the upstream site was generally poorer than the quality of water at the downstream site. Furthermore, the quality of water at the upstream site on Beaver Creek is somewhat degraded when compared to the quality of water from Highland and Cold Spring Creeks, indicating that anthropogenic activities outside the park probably are affecting the quality of water in Beaver Creek. Samples for the analysis of wastewater compounds were collected at least twice from four of the five water-quality sampling sites. Bromoform, phenol, caffeine, and cholesterol were detected in samples from Cold Spring Creek, but only phenol was detected at concentrations greater than the minimum reporting level. Concentrations of several wastewater compounds were estimated in samples collected from sites on Beaver Creek, including phenol, para-cresol, and para-nonylphenol-total. Phenol was detected at both sites on Beaver Creek at concentrations greater than the minimum reporting level. Bromoform; para-cresol; ethanol,2-butoxy-phosphate; and cholesterol were detected

  17. Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source (United States)

    Hepach, Helmke; Quack, Birgit; Tegtmeier, Susann; Engel, Anja; Bracher, Astrid; Fuhlbrügge, Steffen; Galgani, Luisa; Atlas, Elliot L.; Lampel, Johannes; Frieß, Udo; Krüger, Kirstin


    Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.

  18. Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source

    Directory of Open Access Journals (Sweden)

    H. Hepach


    Full Text Available Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3 and dibromomethane (CH2Br2 correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI of up to 58.1 pmol L−1 and diiodomethane (CH2I2 of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt, CH2ClI (up to 2.5 ppt and CH2I2 (3.3 ppt above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.

  19. Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle


    Full Text Available The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP, chemical transport, and chemistry-climate models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short-lived tracers (with a lifetime of 6 h within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to be different between the models, even among those which source their forcing data from the same NWP model (ECMWF. The differences are less pronounced for longer lived tracers, however they could have implications for modelling the halogen burden of the lowermost stratosphere through transport of species such as bromoform, or short-lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are strongly influenced by the convective transport parameterisations, and different boundary layer mixing parameterisations also have a large impact on the modelled tracer profiles. Preferential locations for rapid transport from the surface into the upper troposphere are similar in all models, and are mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, models do not indicate that upward transport is highest over western Africa.

  20. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao


    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  1. Response of halocarbons to ocean acidification in the Arctic

    Directory of Open Access Journals (Sweden)

    F. E. Hopkins


    Full Text Available The potential effect of ocean acidification (OA on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June–July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~ 50 m3 mesocosms were studied under a range of pCO2 treatments from ~ 185 μatm to ~ 1420 μatm. In general, the response of halocarbons to pCO2 was subtle, or undetectable. A large number of significant correlations with a range of biological parameters (chlorophyll a, microbial plankton community, phytoplankton pigments were identified, indicating a biological control on the concentrations of halocarbons within the mesocosms. The temporal dynamics of iodomethane (CH3I alluded to active turnover of this halocarbon in the mesocosms and strong significant correlations with biological parameters suggested a biological source. However, despite a pCO2 effect on various components of the plankton community, and a strong association between CH3I and biological parameters, no effect of pCO2 was seen in CH3I. Diiodomethane (CH2I2 displayed a number of strong relationships with biological parameters. Furthermore, the concentrations, the rate of net production and the sea-to-air flux of CH2I2 showed a significant positive response to pCO2. There was no clear effect of pCO2 on bromocarbon concentrations or dynamics. However, periods of significant net loss of bromoform (CHBr3 were found to be concentration-dependent, and closely correlated with total bacteria, suggesting a degree of biological consumption of this halocarbon in Arctic waters. Although the effects of OA on halocarbon concentrations were marginal, this study provides invaluable information on the production and cycling of halocarbons in a region of the world's oceans likely to experience rapid environmental change in the coming decades.

  2. Presence and seasonal variation of trihalomethanes (THMs) levels in drinking tap water in Mostaganem Province in northwest Algeria. (United States)

    El-Attafia, Benhamimed; Soraya, Moulessehoul


    The use of chlorine to disinfect water, produces various disinfection byproducts such as trihalomethanes (THMs). These compounds are formed when free available chlorine reacts with natural organic matter in raw water during water disinfection. Epidemiologic studies have shown an association between long-term exposure to THMs and an increased risk of cancer, all of them are suspected of having carcinogenic effects. The aim of this study was to determine the presence of THMs in the drinking tap water of Mostaganem Province (Algeria) in order to assess the seasonal variation in trihalomethane levels in tap water and to identify the season of high risk to the consumer. This analytical study was conducted in Mostaganem Province, Algeria in March, July, September and December 2015. Primarily, we proceeded to collect 30 samples from different areas of Mostaganem Province which were marked with a higher level of residual chlorine for the year 2015; secondly, we utilised the HS-SPME method for determination of trihalomethanes in drinking tap water over a period of four months. For comparison of trihalomethanes values, we used ANOVA. The results obtained show variability in total THM concentrations from one district to another, with a maximum of 198 μg/l recorded in the Achaacha district during July, but the lowest value 07.84 μg/l is noted at Salamandre city during the same period, noting that these values decrease progressively during the winter period. Our drinking tap water samples include a large quantity of THMs with different concentrations, where the dibromochloromethane and the bromoform constitute the major portion of THMs.

  3. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Trevitt, Adam J.; Wilson, Kevin R.; Leone, Stephen R.


    The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and the result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.

  4. Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    Directory of Open Access Journals (Sweden)

    J. Aschmann


    Full Text Available Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3 and dibromomethane (CH2Br2, assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach.

  5. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: health risk assessment for drinking water consumers. (United States)

    Emmanuel, Evens; Pierre, Marie Gisèle; Perrodin, Yves


    Contamination of natural aquatic ecosystems by hospital wastewater is a major environmental and human health issue. Disinfectants, pharmaceuticals, radionuclides and solvents are widely used in hospitals for medical purposes and research. After application, some of these substances combine with hospital effluents and, in industrialised countries, reach the municipal sewer network. In certain developing countries, hospitals usually discharge their wastewater into septic tanks equipped with diffusion wells. The discharge of chemical compounds from hospital activities into the natural environment can lead to the pollution of water resources and risks for human health. The aim of this article is to present: (i) the steps of a procedure intended to evaluate risks to human health linked to hospital effluents discharged into a septic tank equipped with a diffusion well; and (ii) the results of its application on the effluents of a hospital in Port-au-Prince. The procedure is based on a scenario that describes the discharge of hospital effluents, via septic tanks, into a karstic formation where water resources are used for human consumption. COD, Chloroform, dichlomethane, dibromochloromethane, dichlorobromomethane and bromoform contents were measured. Furthermore, the presence of heavy metals (chrome, nickel and lead) and faecal coliforms were studied. Maximum concentrations were 700 NPP/100 ml for faecal coliforms and 112 mg/L for COD. A risk of infection of 10(-5) infection per year was calculated. Major chemical risks, particularly for children, relating to Pb(II), Cr(III), Cr(VI) and Ni(II) contained in the ground water were also characterised. Certain aspects of the scenario studied require improvement, especially those relating to the characterisation of drugs in groundwater and the detection of other microbiological indicators such as protozoa, enterococcus and viruses.

  6. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. (United States)

    Xu, Pei; Drewes, Jörg E; Bellona, Christopher; Amy, Gary; Kim, Tae-Uk; Adam, Marc; Heberer, Thomas


    The rejection of emerging trace organics by a variety of commercial reverse osmosis (RO), nanofiltration (NF), and ultra-low-pressure RO (ULPRO) membranes was investigated using TFC-HR, NF-90, NF-200, TFC-SR2, and XLE spiral membrane elements (Koch Membrane Systems, Wilmington, Massachusetts) to simulate operational conditions for drinking-water treatment and wastewater reclamation. In general, the presence of effluent organic matter (EfOM) improved the rejection of ionic organics by tight NF and RO membranes, as compared to a type-II water matrix (adjusted by ionic strength and hardness), likely as a result of a decreased negatively charged membrane surface. Rejection of ionic pharmaceutical residues and pesticides exceeded 95% by NF-90, XLE, and TFC-HR membranes and was above 89% for the NF-200 membrane. Hydrophobic nonionic compounds, such as bromoform and chloroform, exhibited a high initial rejection, as a result of both hydrophobic-hydrophobic solute-membrane interactions and steric exclusion, but rejection decreased significantly after 10 hours of operation because of partitioning of solutes through the membranes. This resulted in a partial removal of disinfection byproducts by the RO membrane TFC-HR. In a type-II water matrix, the effect of increasing feed water recoveries on rejection of hydrophilic ionic and nonionic compounds was compound-dependent and not consistent for different membranes. The presence of EfOM, however, could neutralize the effect of hydrodynamic operating condition on rejection performance. The ULPRO and tight NF membranes were operated at lower feed pressure, as compared to the TFC-HR, and provided a product water quality similar to a conventional RO membrane, regarding trace organics of interest.

  7. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools. (United States)

    Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis


    This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Comparison of Spot and Time Weighted Averaging (TWA Sampling with SPME-GC/MS Methods for Trihalomethane (THM Analysis

    Directory of Open Access Journals (Sweden)

    Don-Roger Parkinson


    Full Text Available Water samples were collected and analyzed for conductivity, pH, temperature and trihalomethanes (THMs during the fall of 2014 at two monitored municipal drinking water source ponds. Both spot (or grab and time weighted average (TWA sampling methods were assessed over the same two day sampling time period. For spot sampling, replicate samples were taken at each site and analyzed within 12 h of sampling by both Headspace (HS- and direct (DI- solid phase microextraction (SPME sampling/extraction methods followed by Gas Chromatography/Mass Spectrometry (GC/MS. For TWA, a two day passive on-site TWA sampling was carried out at the same sampling points in the ponds. All SPME sampling methods undertaken used a 65-µm PDMS/DVB SPME fiber, which was found optimal for THM sampling. Sampling conditions were optimized in the laboratory using calibration standards of chloroform, bromoform, bromodichloromethane, dibromochloromethane, 1,2-dibromoethane and 1,2-dichloroethane, prepared in aqueous solutions from analytical grade samples. Calibration curves for all methods with R2 values ranging from 0.985–0.998 (N = 5 over the quantitation linear range of 3–800 ppb were achieved. The different sampling methods were compared for quantification of the water samples, and results showed that DI- and TWA- sampling methods gave better data and analytical metrics. Addition of 10% wt./vol. of (NH42SO4 salt to the sampling vial was found to aid extraction of THMs by increasing GC peaks areas by about 10%, which resulted in lower detection limits for all techniques studied. However, for on-site TWA analysis of THMs in natural waters, the calibration standard(s ionic strength conditions, must be carefully matched to natural water conditions to properly quantitate THM concentrations. The data obtained from the TWA method may better reflect actual natural water conditions.

  9. MEH-PPV hypsochromic shifts in halogenated solvents induced by {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Bronze-Uhle, Erika S. [DF-FC, UNESP - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, 17033-360 Bauru, SP (Brazil); Borin, Joao F. [Labtools, Av. Bandeirantes, 3900 Ed Supera sl 06 - Campus USP, 14040-900 Ribeirao Preto (Brazil); Batagin-Neto, Augusto [UNESP - Univ Estadual Paulista, POSMAT - Programa de Pos-Graduacao em Ciencia e Tecnologia de Materiais, Bauru, SP (Brazil); Alves, Marcelo C.O. [Instituto de Ciencias Exatas e Tecnologicas, Universidade Paulista, Av. Carlos Consoni, 10, 14024-270 Ribeirao Preto (Brazil); Graeff, Carlos F.O., E-mail: [DF-FC, UNESP - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, 17033-360 Bauru, SP (Brazil)


    Highlights: Black-Right-Pointing-Pointer Solutions with halogenated solvents presented hypsochromic shifts. Black-Right-Pointing-Pointer The effect is not observed in toluene, where halogen atoms are absent. Black-Right-Pointing-Pointer The solvent performs a key role in the process. Black-Right-Pointing-Pointer The shifts is associated to radical formation. - Abstract: The development of materials, devices, and methods that allow for the detection of low doses of ionizing radiation is an important research area. In this sense, conjugated polymers have been proposed as promising dosimetric materials. In particular, polymer solutions and composites have been appointed as high-sensitivity systems, but there is no satisfactory understanding of the effects induced by radiation in these systems. Further investigations are therefore necessary for the achievement of more sensitive systems. In this paper, the effect of gamma-ray radiation on different alkyl halide and toluene solutions of poly [2-methoxy-5-(2 Prime -ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) is reported. To this end, samples were irradiated with a {sup 60}Co gamma-ray source at room temperature, using doses of up to 30 Gy. Chloroform, dichloromethane, bromoform, dibromomethane, a mixture of dichloromethane and diiodomethane, and toluene were employed as solvents. The MEH-PPV concentration in the solutions fell in the range of 0.005-0.225 mg mL{sup -1}. Irradiation of the MEH-PPV alkyl halide solutions was followed by UV-vis spectroscopy measurements, and a blue shift in the main MEH-PPV UV-vis absorption peak was detected. The results revealed that the gamma-ray radiation effects depend on the nature of the solvent and on the concentration of the polymer, thereby indicating that they are associated with the formation of a radical. By selection of a suitable solvent and of an appropriate polymer concentration, a simple dosimeter can be constructed for medical applications as well as other uses.

  10. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma


    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  11. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution (United States)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming


    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  12. Baseline blood trihalomethanes, semen parameters and serum total testosterone: a cross-sectional study in China. (United States)

    Zeng, Qiang; Li, Min; Xie, Shao-Hua; Gu, Long-Jie; Yue, Jing; Cao, Wen-Cheng; Zheng, Dan; Liu, Ai-Lin; Li, Yu-Feng; Lu, Wen-Qing


    Toxicological studies showed that trihalomethanes (THMs), the most abundant classes of disinfection by-products (DBPs) in drinking water, impaired male reproductive health, but epidemiological evidence is limited and inconsistent. This study aimed to examine the associations of baseline blood THMs with semen parameters and serum total testosterone in a Chinese population. We recruited 401 men seeking semen examination from the Reproductive Center of Tongji Hospital in Wuhan, China between April 2011 and May 2012. Baseline blood concentrations of THMs, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM) were measured using SPME-GC/ECD method. Semen quality and serum total testosterone were analyzed. Multivariable linear regressions were used to assess the associations of baseline blood THM concentrations with semen parameters and serum total testosterone levels. We found that baseline blood THM concentrations were not associated with decrements in sperm motility, sperm straight-line and curvilinear velocity. However, moderate levels of BDCM (β=-0.13 million; 95% CI: -0.22, -0.03) and DBCM (β=-4.74%; 95% CI: -8.07, -1.42) were associated with decreased sperm count and declined sperm linearity compared with low levels, respectively. Suggestive dose-response relationships were also observed between elevated blood TCM or ∑ THMs (sum of TCM, BDCM, DBCM and TBM) concentration and decreased sperm concentration (both p for trend=0.07), and between elevated blood DBCM concentration and decreased serum total testosterone (p for trend=0.07). Our results indicate that elevated THM exposure may lead to decreased sperm concentration and serum total testosterone. However, the effects of THM exposure on male reproductive health still warrant further studies in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Joint effects of trihalomethanes and trichloroacetic acid on semen quality: A population-based cross-sectional study in China. (United States)

    Zeng, Qiang; Zhou, Bin; He, Dong-Liang; Wang, Yi-Xin; Wang, Mu; Yang, Pan; Huang, Zhen; Li, Jin; Lu, Wen-Qing


    Exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) has been individually associated with adverse male reproductive effects; however, their joint male reproductive toxicity is largely unknown. This study aimed to explore the joint effects of THMs and trichloroacetic acid (TCAA) on semen quality in a Chinese population. A total of 337 men presenting to the Reproductive Center of Tongjing Hospital, in Wuhan, China to seek semen analysis were included this study. Baseline blood THMs [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and urinary TCAA were analyzed and dichotomized at their median levels. The joint effects of THMs and TCAA on below-reference semen quality parameters were evaluated by calculating the relative excess risk due to interaction (RERI). After adjusting for potential confounders, we found a suggestive synergistic effect between Br-THMs (sum of BDCM, DBCM, and TBM) and TCAA for below-reference sperm count (RERI = 2.14, 95% CI: -0.37, 4.91) (P = 0.076); men with high Br-THMs and TCAA levels (above the median) had 3.31 times (95% CI: 1.21, 9.07) elevated risk of having below-reference sperm count than men with low Br-THMs and TCAA levels (below the median). No apparent joint effects were observed between THMs and TCAA for other semen quality parameters. Our results suggest that co-exposure to Br-THMs and TCAA is associated with additive effects on decreased semen quality. However, further studies in a larger sample size and mechanistic studies are needed to confirm the findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparison of trihalomethanes in tap water and blood: a case study in the United States. (United States)

    Rivera-Núñez, Zorimar; Wright, J Michael; Blount, Benjamin C; Silva, Lalith K; Jones, Elizabeth; Chan, Ronna L; Pegram, Rex A; Singer, Philip C; Savitz, David A


    Epidemiological studies have used various measures to characterize trihalomethane (THM) exposures, but the relationship of these indicators to exposure biomarkers remains unclear. We examined temporal and spatial variability in baseline blood THM concentrations and assessed the relationship between these concentrations and several exposure indicators (tap water concentration, water-use activities, multiroute exposure metrics). We measured water-use activity and THM concentrations in blood and residential tap water from 150 postpartum women from three U.S. locations. Blood ΣTHM [sum of chloroform (TCM), bromodichloromethane (BDCM), dibromo-chloromethane (DBCM), and bromoform (TBM)] concentrations varied by site and season. As expected based on variable tap water concentrations and toxicokinetic properties, the proportion of brominated species (BDCM, DBCM, and TBM) in blood varied by site (site 1, 24%; site 2, 29%; site 3, 57%) but varied less markedly than in tap water (site 1, 35%; site 2, 75%; site 3, 68%). The blood-water ΣTHM Spearman rank correlation coefficient was 0.36, with correlations higher for individual brominated species (BDCM, 0.62; DBCM, 0.53; TBM, 0.54) than for TCM (0.37). Noningestion water activities contributed more to the total exposure metric than did ingestion, but tap water THM concentrations were more predictive of blood THM levels than were metrics that incorporated water use. Spatial and temporal variability in THM concentrations was greater in water than in blood. We found consistent blood-water correlations across season and site for BDCM and DBCM, and multivariate regression results suggest that water THM concentrations may be an adequate surro-gate for baseline blood levels.

  15. Blood Biomarkers of Late Pregnancy Exposure to Trihalomethanes in Drinking Water and Fetal Growth Measures and Gestational Age in a Chinese Cohort. (United States)

    Cao, Wen-Cheng; Zeng, Qiang; Luo, Yan; Chen, Hai-Xia; Miao, Dong-Yue; Li, Li; Cheng, Ying-Hui; Li, Min; Wang, Fan; You, Ling; Wang, Yi-Xin; Yang, Pan; Lu, Wen-Qing


    Previous studies have suggested that elevated exposure to disinfection by-products (DBPs) in drinking water during gestation may result in adverse birth outcomes. However, the findings of these studies remain inconclusive. The purpose of our study was to examine the association between blood biomarkers of late pregnancy exposure to trihalomethanes (THMs) in drinking water and fetal growth and gestational age. We recruited 1,184 pregnant women between 2011 and 2013 in Wuhan and Xiaogan City, Hubei, China. Maternal blood THM concentrations, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM), were measured as exposure biomarkers during late pregnancy. We estimated associations with gestational age and fetal growth indicators [birth weight, birth length, and small for gestational age (SGA)]. Total THMs (TTHMs; sum of TCM, BDCM, DBCM, and TBM) were associated with lower mean birth weight (-60.9 g; 95% CI: -116.2, -5.6 for the highest vs. lowest tertile; p for trend = 0.03), and BDCM and DBCM exposures were associated with smaller birth length (e.g., -0.20 cm; 95% CI: -0.37, -0.04 for the highest vs. lowest tertile of DBCM; p for trend = 0.02). SGA was increased in association with the second and third tertiles of TTHMs (OR = 2.91; 95% CI: 1.32, 6.42 and OR = 2.25; 95% CI: 1.01, 5.03; p for trend = 0.08). Our results suggested that elevated maternal THM exposure may adversely affect fetal growth. Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. 2016. Blood biomarkers of late pregnancy exposure to trihalomethanes in drinking water and fetal growth measures and gestational age in a Chinese cohort. Environ Health Perspect 124:536-541;

  16. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification. (United States)

    Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia


    Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.

  17. The influence of physicochemical properties on the internal dose of trihalomethanes in humans following a controlled showering exposure. (United States)

    Silva, Lalith K; Backer, Lorraine C; Ashley, David L; Gordon, Sydney M; Brinkman, Marielle C; Nuckols, John R; Wilkes, Charles R; Blount, Benjamin C


    Although disinfection of domestic water supply is crucial for protecting public health from waterborne diseases, this process forms potentially harmful by-products, such as trihalomethanes (THMs). We evaluated the influence of physicochemical properties of four THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) on the internal dose after showering. One hundred volunteers showered for 10 min in a controlled setting with fixed water flow, air flow, and temperature. We measured THMs in shower water, shower air, bathroom air, and blood samples collected at various time intervals. The geometric mean (GM) for total THM concentration in shower water was 96.2 μg/l. The GM of total THM in air increased from 5.8 μg/m(3) pre shower to 351 μg/m(3) during showering. Similarly, the GM of total-blood THM concentration increased from 16.5 ng/l pre shower to 299 ng/l at 10 min post shower. THM levels were significantly correlated between different matrices (e.g. dibromochloromethane levels) in water and air (r=0.941); blood and water (r=0.845); and blood and air (r=0.831). The slopes of best-fit lines for THM levels in water vs air and blood vs air increased with increasing partition coefficient of water/air and blood/air. The slope of the correlation plot of THM levels in water vs air decreased in a linear (r=0.995) fashion with increasing Henry's law constant. The physicochemical properties (volatility, partition coefficients, and Henry's law constant) are useful parameters for predicting THM movement between matrices and understanding THM exposure during showering.

  18. Environmental and personal determinants of the uptake of disinfection by-products during swimming. (United States)

    Font-Ribera, Laia; Kogevinas, Manolis; Schmalz, Christina; Zwiener, Christian; Marco, Esther; Grimalt, Joan O; Liu, Jiaqi; Zhang, Xiangru; Mitch, William; Critelli, Rossana; Naccarati, Alessio; Heederik, Dick; Spithoven, Jack; Arjona, Lourdes; de Bont, Jeroen; Gracia-Lavedan, Esther; Villanueva, Cristina M


    Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and trichloramine in air, and evaluated personal determinants. A total of 116 adults swam during 40min in a chlorinated indoor pool. We measured chloroform, bromodichloromethane, dibromochloromethane and bromoform in exhaled breath and TCAA in urine before and after swimming, trichloramine in air and several DBPs in water. Personal determinants included sex, age, body mass index (BMI), distance swum, energy expenditure, heart rate and 12 polymorphisms in GSTT1, GSTZ1 and CYP2E1 genes. Median level of exhaled total THMs and creatinine adjusted urine TCAA increased from 0.5 to 14.4µg/m(3) and from 2.5 to 5.8µmol/mol after swimming, respectively. The increase in exhaled brominated THMs was correlated with brominated THMs, haloacetic acids, haloacetonitriles, haloketones, chloramines, total organic carbon and total organic halogen in water and trichloramine in air. Such correlations were not detected for exhaled chloroform, total THMs or urine TCAA. Exhaled THM increased more in men, urine TCAA increased more in women, and both were affected by exercise intensity. Genetic variants were associated with differential increases in exposure biomarkers. Our findings suggest that, although affected by sex, physical activity and polymorphisms in key metabolizing enzymes, brominated THMs in exhaled breath could be used as a non-invasive DBP exposure biomarker in swimming pools with bromide-containing source waters. This warrants confirmation with new studies. Copyright © 2016 Elsevier Inc. All rights reserved.


    Directory of Open Access Journals (Sweden)



    Full Text Available Concentration of trihalomethanes (THM and precursors in drinking water within distribution networks. Water chlorination is the disinfection method most widely used, having however the disadvantage of producing trihalomethanes (THM as secondary compounds, which are included in the list of priority hazardous substances in water. THM formation is influenced by the raw water composition and chlorine from the disinfection process. This paper intends to highlight the individual values of the chemical compounds precursors of THM in the water network in order to correlate them with the evolution of THM concentration. The cities of Targu Mures and Zalau were chosen as the study area having surface waters with different degrees of contamination as the water source. Pre-treatment with potassium permanganate is used at the water treatment plant in Targu Mures, while pre-chlorination is used at the water treatment plant in Zalau. Water sampling was performed weekly between March-May, 2011 in three sampling points of each city, maintained during the period of study. Total THM and their compounds as well as THM precursors (oxidability, ammonium content, nitrites and nitrates were measured. The water supplied in the distribution network corresponded integrally to the quality standards in terms of the analyzed indicators, including THM concentrations. The higher average THM concentrations in Zalau (52.01±14 μg/L compared to Targu Mures (36.43±9.14 μg/L were expected as a result of precursors concentration. In terms of THM compounds, they had similar proportions in the two localities, chloroform being clearly predominant, followed by dichlorobromoform and dibromochloroform, while bromoform was not identified. Statistical data analysis showed that the presence of THM precursors is correlated with the THM levels but not sufficient for their generation, even if they can be considered in general the basis of a valid prediction.

  20. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)


    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  1. Investigation of Trihalomethanes in Drinking Water of Abbas Abad Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Kiani R


    Full Text Available Introduction: Chlorination is the most common and successful method for disinfection of drinking water, especially in developing countries. However, due to the probability of formation of disinfection by-products especially Trihalomethanes (THMs that are known as hazardous and usually carcinogenic compounds, this study was conducted to assess the investigation of THMs in drinking water of Abbas Abad water treatment plant in 2015. Methods: In this study, 81 water samples were gathered during autumn season of 2015. Temperature, pH, Ec, turbidity, and residual chlorine were measured on site. After samples preparation in the laboratory, THMs concentrations were determined using gas chromatography. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations (µg/l for bromodichloromethane were 1.47 ± 0.57 and 1.90 ± 0.26, for bromoform were 1.47 ± 0.35 and 2.36 ± 1.10, for dibromochloromethane were 1.47 ± 0.42 and 1.53 ± 0.55, and for chloroform were 3.40 ± 0.70 and 7.53 ± 1.00, and all compounds were determined for stations 1 and 3, respectively. Also comparing the mean concentrations of assessed THMs with ISIRI and World Health Organization (WHO Maximum Permissible Limits (MPL showed significant differences (P < 0.05. Thus, the mean concentrations of all Trihalomethanes compounds were significantly lower than the maximum permissible limits. Conclusions: Although the mean concentrations of THMs were lower than MPL, yet due to discharge of restaurants and gardens’ wastewater into the Abbas Abad River, pre-chlorination process of water in Abbas Abad water treatment plant, high retention time and increasing loss of foliage into the water, especially in autumn season, the formation of Trihalomethanes compounds could increase. Therefore, periodic monitoring of THMs in drinking water distribution network is recommended.

  2. Gene expression changes in blood RNA after swimming in a chlorinated pool. (United States)

    Salas, Lucas A; Font-Ribera, Laia; Bustamante, Mariona; Sumoy, Lauro; Grimalt, Joan O; Bonnin, Sarah; Aguilar, Maria; Mattlin, Heidi; Hummel, Manuela; Ferrer, Anna; Kogevinas, Manolis; Villanueva, Cristina M


    Exposure to disinfection by-products (DBP) such as trihalomethanes (THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40min in an indoor chlorinated pool. Blood samples were drawn and four THM (chloroform, bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents (METs). Gene expression in whole blood mRNA was evaluated using IlluminaHumanHT-12v3 Expression-BeadChip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1μg/m(3) for exhaled total THM (sum of the four THM). Exhaled THM increased on average 0.94μg/m(3) per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate (Log-fold change range: -0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies. Copyright © 2017. Published by Elsevier B.V.

  3. Processing wastes and waste-derived fuels containing brominated flame retardants

    Energy Technology Data Exchange (ETDEWEB)

    Tohka, A.; Zevenhoven, R.


    Brominated flame retardants (BFRs) are widely used, often together with antimony-based flame retardants, in electronic and electric equipment, furniture and office equipment. While this increases the fire safety for these products, the BFRs are problematic when thermal processes are used during the treatment of waste streams from these products, such as waste from electrical and electronic equipment (WEEE). Not only do the BFRs negatively effect the incineration of old furniture, they interfere with thermal processes that aim at the recovery of, for example, valuable metals from WEEE. A flame retardant should inhibit or suppress a combustion process and that's why they are used in products which would otherwise have a high risk of fire. Including flame retardant into products is one way to improve their fire safety relatively cheap way. Depending on their nature, flame retardants can act chemically and/or physically in solid, liquid or gas phase. They interfere with combustion during a particular stage of this process, e.g. during heating, decomposition, ignition or flame spread. For BFRs the high molecular weight provides numerous advantages from manufacturers' point of view are such as low volatility, low migration rates at surface, ease of handling. This report gives an overview of which and how much BFRs are found in various products and waste streams and what problems this may bring to thermal processes for recovery and recycling or during incineration or waste-to-energy processing. Also the formation of brominated analogues of dioxins and furans, PBDD/Fs (poly brominated dibenzo -p- dioxins and - furans) is addressed, and analytical methods that allow for the identification and measurement of concentrations of brominated chemicals during thermal processing of BFR-containing waste streams. Bromine-related corrosion and the ozone depleting properties of methyl bromide (bromoform) are mentioned but not discussed.

  4. Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS (2008) (United States)

    Christian, Kenneth E.; Brune, William H.; Mao, Jingqiu


    Developing predictive capability for future atmospheric oxidation capacity requires a detailed analysis of model uncertainties and sensitivity of the modeled oxidation capacity to model input variables. Using oxidant mixing ratios modeled by the GEOS-Chem chemical transport model and measured on the NASA DC-8 aircraft, uncertainty and global sensitivity analyses were performed on the GEOS-Chem chemical transport model for the modeled oxidants hydroxyl (OH), hydroperoxyl (HO2), and ozone (O3). The sensitivity of modeled OH, HO2, and ozone to model inputs perturbed simultaneously within their respective uncertainties were found for the flight tracks of NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) A and B campaigns (2008) in the North American Arctic. For the spring deployment (ARCTAS-A), ozone was most sensitive to the photolysis rate of NO2, the NO2 + OH reaction rate, and various emissions, including methyl bromoform (CHBr3). OH and HO2 were overwhelmingly sensitive to aerosol particle uptake of HO2 with this one factor contributing upwards of 75 % of the uncertainty in HO2. For the summer deployment (ARCTAS-B), ozone was most sensitive to emission factors, such as soil NOx and isoprene. OH and HO2 were most sensitive to biomass emissions and aerosol particle uptake of HO2. With modeled HO2 showing a factor of 2 underestimation compared to measurements in the lowest 2 km of the troposphere, lower uptake rates (γHO2 product of the uptake is H2O or H2O2, produced better agreement between modeled and measured HO2.

  5. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)


    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  6. Halogen species in the marine boundary layer between Singapore and Wellington, New Zealand (United States)

    Harris, N. R.; Johnston, P. V.; Kreher, K.; Harvey, M.; Hay, T.; Robinson, A.; Ashfold, M.; Archibald, A.; Pyle, J. A.; Huang, R.; Hoffmann, T.


    We report measurements of organic and inorganic short-lived halogen species made during a cruise of the NIWA research vessel Tangaroa as it sailed from Singapore to Wellington, New Zealand in November and December 2010. The organic species measured with the Dirac gas chromatograph include CHBr3, CH2Br2, CHBr2Cl, CHBrCl2, CH2BrCl, CH3I and CHClI. The inorganic species include I2 (measured with denuder tubes), and IO and BrO were measured with a MAX-DOAS as were O3 and NO2. A cloud nuclei counter worked successfully for the first half of the cruise. In general the halocarbon concentrations declined with increasing latitude, with values for bromoform and dibromomethane of 1.5 to 2 ppt at the equator and 0.5 to 1 ppt in the Tasman Sea off Wellington. Higher values and higher variability were observed near coastlines, most dramatically in and near the Torres Strait when they reached as high as 30 ppt and 5 ppt respectively. Similar behaviour was seen in the other bromocarbons. Molecular iodine levels typically varied between 10 and 50 ppt, similar to those observed at northern mid-latitudes (Mace Head, Ireland). Significantly elevated values of I2 (60 to 100 ppt) were seen near the Torres Strait. Greater variability of I2 was observed in shallower waters. In contrast, BrO levels were below the detection limit of about 0.5-1 ppt for the whole cruise. IO was observed in with peak values of around 1 ppt in the Torres Strait, and with higher values in the tropical seas than in the Tasman Sea. The occurrence of such low IO values in the presence of high I2 values is currently a mystery and is being investigated with a photochemical box model.

  7. Exposição humana a trialometanos presentes em água tratada Human exposure to trihalomethanes in drinking water

    Directory of Open Access Journals (Sweden)

    Maria Y Tominaga


    Full Text Available Realizou-se uma revisão bibliográfica do período de 1974-1998, no MEDLINE, sobre compostos orgânicos halogenados derivados de hidrocarbonetos denominados de trialometanos. Muitos deles, reconhecidamente carcinogênicos para diferentes espécies animais, podem ser encontrados freqüentemente, inclusive entre nós, em águas tratadas e enviadas à população urbana. É o caso de compostos como o clorofórmio, bromodiclorometano, clorodibromometano e bromofórmio, resultantes da halogenação de precursores, principalmente substâncias húmicas e fúlvicas presentes na água que será tratada (clorada. Assim, descreve-se sua formação, fontes de exposição humana bem como os aspectos toxicológicos de maior importância: disposição cinética e espectro dos efeitos tóxicos (carcinogênicos, mutagênicos e teratogênicos decorrentes de exposições a longo prazo e baixas concentrações. Níveis seguros de exposição propostos são também fornecidos.Halogenated hydrocarbon compounds, some of them recognized as carcinogenic to different animal species can be found in drinking water. Chloroform, bromodichloromethane, dibromochloromethane and bromoform are the most important trihalomethanes found in potable water. They are produced in natural waters during chlorinated desinfection by the halogenation of precursors, specially humic and fulvic compounds. The review, in the MEDLINE covers the period from 1974 to 1998, presents the general aspects of the formation of trihalomethanes, sources of human exposure and their toxicological meaning for exposed organisms: toxicokinetic disposition and spectrum of toxic effects (carcinogenic, mutagenic and teratogenic.

  8. Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents. (United States)

    Boudjellaba, D; Dron, J; Revenko, G; Démelas, C; Boudenne, J-L


    Chlorination is one of the most widely used techniques for biofouling control in large industrial units, leading to the formation of halogenated chlorination by-products (CBPs). This study was carried out to evaluate the distribution and the dispersion of these compounds within an industrialised bay hosting multiple chlorination discharges issued from various industrial processes. The water column was sampled at the surface and at 7 m depth (or bottom) in 24 stations for the analysis of CBPs, and muscle samples from 15 conger eel (Conger conger) were also investigated. Temperature and salinity profiles supported the identification of the chlorination releases, with potentially complex patterns. Chemical analyses showed that bromoform was the most abundant CBP, ranging from 0.5 to 2.2 μg L(-1) away from outlets (up to 10 km distance), and up to 18.6 μg L(-1) in a liquefied natural gas (LNG) regasification plume. However, CBP distributions were not homogeneous, halophenols being prominent in a power station outlet and dibromoacetonitrile in more remote stations. A seasonal effect was identified as fewer stations revealed CBPs in summer, probably due to the air and water temperatures increases favouring volatilisation and reactivity. A simple risk assessment of the 11 identified CBPs showed that 7 compounds concentrations were above the potential risk levels to the local marine environment. Finally, conger eel muscles presented relatively high levels of 2,4,6-tribromophenol, traducing a generalised impregnation of the Gulf of Fos to CBPs and a global bioconcentration factor of 25 was determined for this compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination]. (United States)

    Yang, Zhe; Sun, Ying-xue; Shi, Na; Hu, Hong-ying


    The characteristics of dissolved organic matter (DOM) and brominated disinfection by-products ( Br-DBPs ) during a seawater desalination ultrafiltration (UF) combined reverse osmosis (RO) process were studied. The seawater contained high level of bromide ion (45.6-50.9 mg x L(-1)) and aromatic compounds with specific ultraviolet absorbance ( SUVA) of 3.6-6.0 L x (mg x m)(-1). The tryptophan-like aromatic protein, fulvic acid-like and soluble microbial by-product-like were the main fluorescent DOM in the seawater. After pre-chlorination of the seawater, the concentrations of DBPs was significantly increased in the influent of UF, which was dominantly the Br-DBPs. Bromoform (CHBr3) accounted for 70.48% - 91.50% of total trihalomethanes (THMs), dibromoacetic acid (Br2CHCO2H) occupied 81.14% - 100% of total haloacetic acids (HAAs) and dibromoacetonitrile (C2HBr2N) occupied 83.77% - 87.45% of total haloacetonitriles ( HANs). The removal efficiency of THMs, HAAs and HANs by the UF membrane was 36.63% - 40.39%, 73.83% - 95.38% and 100%, respectively. The RO membrane could completely remove the HAAs, while a little of the THMs was penetrated. The antiestrogenic activity in the seawater was 0.35 - 0.44 mg x L(-1), which was increased 32% - 69% after the pre-chlorination. The DBPs and other bio-toxic organics which formed during the UF-RO process were finally concentrated in the UF concentrate and RO concentrate.

  10. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida


    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  11. Determination of volatile organic compounds in water by headspace solid-phase microextraction gas chromatography coupled to tandem mass spectrometry with triple quadrupole analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cervera, M.I. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain); Beltran, J., E-mail: [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain); Lopez, F.J.; Hernandez, F. [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat, E-12071 Castellon (Spain)


    relative standard deviations (RSDs) lower than 20%. The developed method was applied to surface water and wastewater from a wastewater treatment plant and from a municipal solid-waste treatment plant. Several compounds, like chloroform, benzene, trichloroethylene, toluene, tetrachloroethylene, dibromochloromethane, xylenes and bromoform were detected and confirmed in all the samples analyzed.

  12. Trace Gas Distributions and Correlations Observed In The Southern Ocean Atmosphere During the ORCAS Mission (United States)

    Atlas, E. L.; Schauffler, S.; Donets, V.; Apel, E. C.; Hornbrook, R. S.; Hills, A. J.; Stephens, B. B.; Kort, E. A.; Sweeney, C.; Gierach, M.


    The biologically productive waters of the Southern Ocean are potentially a significant source and sink for trace gases that impact atmospheric chemistry and climate. However, relatively little is known about the variations and atmospheric vertical structures of trace gases in this region. During January/February, 2016, we participated in the O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study, an airborne mission that included the measurement of a wide range of trace gases. This presentation will focus on a selection of gases measured from the Whole Air Sampler and from an in-situ GC/MS system (TOGA). The gases measured by these instruments included a range of reactive halocarbons produced by marine organisms in the surface ocean (e.g., dimethyl sulfide, bromoform, methyl iodide), produced from marine surface photochemistry (e.g., methyl nitrate), and introduced to the region from long-range transport (e.g., chlorinated solvents, CFCs and HCFCs, non-methane hydrocarbons). Distributions of these gases should reflect the biological productivity of the region, the surface flux rates, and the rates of atmospheric transport and mixing. The concentrations of biogenic trace gases that we measured in the marine boundary layer showed significant regional differences in concentrations and different seasonal changes over the course of the experiment. Vertical profiles of biogenic trace gases could be related to the surface sources, exchange with the free troposphere, and the photochemical lifetime of the different gases. Because of the potential relationship of biogenic trace gases to biological productivity in the surface ocean, the measurements will be compared to distributions of chlorophyll a, as observed remotely from the GV aircraft and from satellites. For trace gases with a large interhemispheric gradient and primarily northern hemisphere source (e.g. mainly anthropogenic sources), atmospheric vertical profiles showed an average increase in mixing ratio with

  13. Production and air-sea flux of halomethanes in the western subarctic Pacific in relation to phytoplankton pigment concentrations during the iron fertilization experiment (SEEDS II) (United States)

    Hashimoto, Shinya; Toda, Shuji; Suzuki, Koji; Kato, Shungo; Narita, Yasusi; Kurihara, Michiko K.; Akatsuka, Yoko; Oda, Hiroshi; Nagai, Takahiro; Nagao, Ippei; Kudo, Isao; Uematsu, Mitsuo


    Iron could play a key role in controlling phytoplankton biomass and productivity in high-nutrient, low-chlorophyll regions. As a part of the iron fertilization experiment carried out in the western subarctic Pacific from July to August 2004 (Subarctic Pacific iron Experiment for Ecosystem Dynamics Study II—SEEDS II), we analysed the concentrations of trace gases in the seawater for 12 d following iron fertilization. The mean concentrations of chlorophyll a in the mixed layer (5-30 m depth) increased from 0.94 to 2.81 μg L -1 for 8 d in the iron patch. The mean concentrations of methyl bromide (CH 3Br; 5-30 m depth) increased from 6.4 to 13.4 pmol L -1 for 11 d; the in-patch concentration increased relative to the out-patch concentration. A linear correlation was observed between the concentrations of 19'-hexanoyloxyfucoxanthin, which is a biomarker of several prymnesiophytes, and CH 3Br in the seawater. After fertilization, the air-sea flux of CH 3Br inside the patch changed from influx to efflux from the ocean. There was no clear evidence for the increase in saturation anomaly of methyl chloride (CH 3Cl) due to iron fertilization. Furthermore, CH 3Cl fluxes did not show a tendency to increase after fertilization of the patch. In contrast to CH 3Br, no change was observed in the concentrations of bromoform (in-patch day 11 and out-patch day 11: 1.7 and 1.7 pmol L -1), dibromomethane (2.1 and 2.2 pmol L -1), and dibromochloromethane (1.0 and 1.2 pmol L -1, respectively). The concentration of isoprene, which is known to have a relationship with chlorophyll a, did not change in this study. The responses of trace gases during SEEDS II differed from the previous findings ( in situ iron enrichment experiment—EisenEx, Southern Ocean iron experiment—SOFeX, and Subarctic Ecosystem Response to Iron Enrichment Study—SERIES). Thus, in order to estimate the concomitant effect of iron fertilization on the climate, it is important to assess the induction of biological

  14. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Kamilla M.S. [Department of Environmental Engineering, Technical University of Denmark (Denmark); Zortea, Raissa [Department of Land, Environment and Geotechnology Engineering, Polytechnic University of Turin (Italy); Piketty, Aurelia [Institute of Chemistry, Industrial and Chemical Engineering and Technology (INP-ENCIACET), National Polytechnic Institute of Toulouse (France); Vega, Sergio Rodriguez [Chemical Engineering, Complutense University of Madrid (Spain); Andersen, Henrik Rasmus, E-mail: [Department of Environmental Engineering, Technical University of Denmark (Denmark)


    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min{sup −1} for chloroform to 0.523 min{sup −1} for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m{sup −3} d{sup −1} and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m{sup −3} d{sup −1}, while 2.6 kWh m{sup −3} d{sup −1} was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m{sup −3} d{sup −1}. It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. - Highlights: ► UV irradiation is able to degrade all 12 investigated disinfection by-products. ► Bromine species are easier to remove than their chlorinated analogues. ► UV dose used for combined chlorine was comparable with doses required for DBP removal. ► Significant removal of some disinfection by-products in swimming pools is indicated.

  15. Subproductos halogenados de la cloración en el agua de consumo público Halogenated by-products of chlorination in tap water

    Directory of Open Access Journals (Sweden)

    J. Calderón


    Full Text Available Objetivo: La presencia de trihalometanos en el agua de diversas ciudades españolas está demostrada. Este estudio pretende analizar sus concentraciones en el agua de la ciudad de Barcelona. Métodos: Se analizan 151 muestras de agua recogidas durante el año 1998. Los análisis se realizaron en el laboratorio municipal mediante purge and trap y posterior determinación por cromatografía de gases acoplada a espectrofotometría de masas. Los resultados se presentan según el origen del agua: ríos Llobregat, Ter o mezcla. Resultados: En aguas del Ter los valores son relativamente bajos y predominan cloroformo y bromodiclorometano, mientras que en las del Llobregat son más elevados y predominan bromoformo y dibromoclorometano. Las aguas de mezcla presentan valores intermedios. Los valores totales alcanzados en las muestras procedentes del Llobregat superan los 100 µg/l. Conclusiones: Estos resultados muestran la necesidad de seguir corrigiendo la contaminación orgánica y los compuestos halogenados en el agua captada para el consumo humano en Barcelona.Objective: The presence of trihalomethanes in the water systems of several Spanish cities has been demonstrated. The aim of this study was to analyze trihalomethane concentrations in the water provided for human consumption in the city of Barcelona. Methods: We analyzed 151 water samples collected in 1998. The analyses were performed in the Public Health Laboratory of Barcelona using the purge-and-trap method and subsequent determination by gas chromatography and mass spectrometry. The results are presented according to the source of the water: the rivers of Llobregat or Ter, or a mixture of these. Results: Thrihalomethane concentrations in the water from Ter were relatively low, with a predominance of chloroform and bromodichloromethane, while concentrations in the water from Llobregat were much higher, with a predominance of bromoform and dibromochloromethane. Mixed water showed intermediate

  16. Evaluation of the influence of chloroacetic acids on the pharmacokinetics of trihalomethanes in the rat. (United States)

    St-Pierre, Annie; Krishnan, Kannan; Tardif, Robert


    Chloroacetic acids (monochloroacetic acid [MCA], dichloroacetic acid [DCA], and trichloroacetic acid [TCA]) and trihalomethanes (THMs: chloroform [CHCl(3)], bromodichloromethane [BDCM], dibromochloromethane [DBCM], and bromoform [TBM]) are common by-products of the chlorination of drinking water. The purpose of this study was to evaluate the influence of chloroacetic acids on the pharmacokinetics of trihalomethanes in the male Sprague-Dawley rat. In the first series of studies, groups of 5 animals were given, by intravenous injections, a single dose of 0.125 mmol/kg of one of the four THMs. Additional groups received a binary mixture containing 0.125 mmol/kg of a THM plus 0.125 mmol/kg of a chloroacetic acid. The venous blood concentrations of unchanged THMs were measured by headspace gas chromatography from 5 min to 6 h postadministration. The areas under the blood concentration versus time curves (AUCs) of CHCl(3), BDCM, and DBCM were increased by a factor of 3.5, 1.6, and 2, respectively, by coadministration of TCA. DCA coadministration resulted in an increase in the AUC of DBCM (x2.5) and TBM (x1.3), whereas MCA modified the Cmax (x1.5) and AUC (x1.8) of BDCM and the AUC of DBCM (x2.5). In the second series of experiments, animals received either a single dose of 0.03125 mmol/kg of one of the four THMs, a mixture containing 0.03125 mmol/kg of each of the four THMs (total dose = 0.125 mmol/kg), or a mixture containing 0.03125 mmol/kg of each of the four THMs plus 0.125 mmol/kg of either TCA or DCA. Results indicated that the AUCs of CHCl(3), BDCM, DBCM, and TBM were increased during coadministration compared to single administrations (+2.5-fold). Combined administration of the four THMs with TCA, and not DCA, resulted in an increase of the AUCs of THMs (CHCl(3): x11.7; BDCM, DBCM, and TBM: x3.9) and an increase in the Cmax of CHCl(3) (x1.9). Overall, these results indicate that, at the dose levels tested in this study, TCA alters the blood concentration profiles

  17. Finding the Missing Stratospheric Br(sub y): A Global Modeling Study of CHBr3 and CH2Br2 (United States)

    Liang, Q.; Stolarski, R. S.; Kawa, S. R.; Nielsen, J. E.; Douglass, A. R.; Rodriguez, J. M.; Blake, D. R.; Atlas, E. L.; Ott, L. E.


    Recent in situ and satellite measurements suggest a contribution of 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(exp -1) for CHBr3 and 57 Gg Br yr(exp -l) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (BrSLS) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CHzBr2 near the tropical tropopause and its contribution rapidly increases to 100% as altitude increases. More than 85% of the wet scavenging of Br(sub y)(sup VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br(sub y)(sup SLS) in the stratosphere is not sensitive to convection. Convective scavenging only

  18. Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon

    Directory of Open Access Journals (Sweden)

    A. Fiehn


    Full Text Available Halogenated very short-lived substances (VSLSs are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I and for the first time bromoform (CHBr3 and dibromomethane (CH2Br2, in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000–2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m−2 h−1, very strong source for CH2Br2 (930 pmol m−2 h−1, and an average source for CH3I (460 pmol m−2 h−1. The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime, convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2. The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the

  19. Valores de trihalometanos en agua de consumo de la provincia de Granada, España Trihalomethane levels in drinking water in the province of Granada (Spain

    Directory of Open Access Journals (Sweden)

    Carmen Freire


    -two tap water samples were collected in two campaigns during the winter and summer of 2006. An optimized procedure based on gas chromatography and mass spectrometry was used to determine concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform in the samples. Results: Total trihalomethane concentrations ranged from 0.14 to 18.75 μg/l in winter samples and from 0.01 to 31.87 μg/l in summer samples. The most abundant compound was chloroform. Mean trihalomethane concentrations were 10.13 in surface waters and 1.41 μg/l in ground waters. Conclusions: The trihalomethane levels found were considerably below the maximum permitted level of 100 μg/l in the European Union. The values obtained varied widely according to the type of water source: the highest concentrations were found in urban and sub-urban areas, where the water is largely of surface origin. The presence of trihalomethanes was lower than that reported in other Spanish regions.

  20. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH

    Directory of Open Access Journals (Sweden)

    Paramjeet Kaur Mithoo-Singh


    Full Text Available Five tropical seaweeds, Kappaphycus alvarezii (Doty Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner C. Agardh, Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient, 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3, dibro­momethane (CH2Br2, iodomethane (CH3I, diiodomethane (CH2I2, bromoiodomethane (CH2BrI, bromochlorometh­ane (CH2BrCl, bromodichloromethane (CHBrCl2, and dibro­mochloromethane (CHBr2Cl. These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of

  1. Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine. (United States)

    Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G


    This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental

  2. Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints

    Directory of Open Access Journals (Sweden)

    J. Aschmann


    Full Text Available Very short-lived substances (VSLS still represent a major factor of uncertainty in the quantification of stratospheric bromine loading. One of the major obstacles for short-lived source gases in contributing to the stratosphere is generally thought to be loss of inorganic bromine (Bry in the tropical tropopause layer (TTL due to dehydration. We use sensitivity calculations with a three-dimensional chemistry transport model comprising a consistent parametrization of convective transport and a comprehensive chemistry scheme to investigate the associated processes. The model considers the two most important bromine VSLS, bromoform (CHBr3 and dibromomethane (CH2Br2. The organic bromine source gases as well as the resulting profile of inorganic bromine in the model are consistent with available observations. In contrast to its organic precursors, Bry is assumed to have a significant sorption capacity regarding sedimenting liquid or frozen particles thus the fraction of intact source gases during their ascent through the TTL is a critical factor. We find that source gas injection is the dominant pathway into the stratosphere, about 50% of CHBr3 and 94% of CH2Br2 is able to overcome the cold point tropopause at approximately 17 km altitude, modulated by the interannual variability of the vertical transport efficiency. In fact, our sensitivity calculations indicate that the extent of source gas injection of CHBr3 is highly sensitive to the strength of convection and large-scale ascent; in contrast, modifying the photolysis or the destruction via OH yields a significantly smaller response. In principle, the same applies as well to CH2Br2, though it is considerably less responsive due to its longer lifetime. The next important aspect we identified is that the partitioning of available Bry from short-lived sources is clearly

  3. [Formation and changes of regulated trihalomethanes and haloacetic acids in raw water of Yangtze River, Huangpu River and different treatment processes and pipelines network]. (United States)

    Chen, Xin; Zhang, Dong; Lu, Yin-hao; Zheng, Wei-wei; Wu, Yu-xin; Wei, Xiao; Tian, Da-jun; Wang, Xia; Zhang, Hao; Guo, Shuai; Jiang, Song-hui; Qu, Wei-dong


    To investigate the pollutant levels of regulated disinfection by-products trihalomethanes (THMs) and haloacetic acids (HAAs) in raw water from the Huangpu River, the Yangtze River and different treatment processes and finished water, and to explore the changes tendency in transmission and distribution pipeline network. A total of 65 ml water samples with two replicates were collected from different raw water, corresponding treatment processes, finished water and six national surveillance points in main network of transmission and distribution, water source for A water plant and B, C water plant was the Huangpu River and the Yangtze River, respectively. Regulated THMs and HAAs above water samples were detected by gas chromatography. The total trihalomethanes (THM(4)) concentration in different treatment processes of A water plant was ND-9.64 µg/L, dichlorobromomethane was the highest (6.43 µg/L). The THM(4) concentration in B and C water plant was ND to 38.06 µg/L, dibromochloromethane (12.24 µg/L) and bromoform (14.07 µg/L) were the highest in the B and the C water plant respectively. In addition to trichloroacetic acid in A water plant from the raw water, the other HAAs came from different treatment processes. The total haloacetic acids (HAA(6)) concentration of different treated processes in A water plant was 3.21 - 22.97 µg/L, mobromoacetic acid (10.40 µg/L) was the highest. Dibromoacetic acid was the highest both in B (8.25 µg/L) and C (8.84 µg/L) water plant, HAA(6) concentration was ND to 27.18 µg/L. The highest and the lowest concentration of THM(4) were found from the main distribution network of C and A water plant respectively, but the concentration of HAA(6) in the main water pipes network of A water plant was the highest, and the lowest in C water plant. The THMs concentration was 21.11 - 31.18 µg/L in C water plant and 6.72 - 8.51 µg/L in A water plant. The concentration of HAA(6) was 25.02 - 37.31 µg/L in A water plant and 18.69 - 23

  4. Sediment transport mechanisms inferred from heavy mineral assemblages on the 2010 Chilean tsunami deposit (United States)

    Cascalho, João; Costa, Pedro; Lario, Javier


    Characterization of heavy mineral (HM) assemblages in tsunami deposits has been applied to infer inundation and backwash phases and to establish sediment sources. In ideal conditions and due to their specific density (>2.9 g/cm3), heavy minerals are the most suitable component of a sediment assemblage that can provide information regarding flow competence. Having these features in consideration, sandy tsunamigenic samples from Arauco and Mataquito areas (central Chile) were retrieved after the 27th of February 2010 tsunami that affected the Chilean coastline. Twenty seven samples (a total of 54 thin sections) tsunamigenic and beach samples were prepared to observe HM under the petrographic microscope. After dividing the samples in 4 fractions (500 µm), HM were separated using bromoform and two fractions (63- 125 µm and 125-500µm) were individually mounted using Canada balsam resin on glass slides. About 300 heavy minerals per slide were identified and counted. Both assemblages were mainly composed of magnetite, pyrrhotite, amphiboles, pyroxenes, olivine, micas and zircon (this specie particularly abundant in the finer fraction analyzed). In Arauco (Ar), average HM percentages in the 125-500 µm fraction was 17.9% while in Mataquito (Ma) it was 25.7%. In the 63-125 µm fraction HM average percentages were 36.9% and 56.1%, for Ar and Ma respectively. In the 125-500 µm fraction the percentage of magnetic minerals (the densest of the denser HM) correspond to 13.2% in Ar and 2.7% in Ma. While in the finer fraction these percentages are of 0.24% and 0.1% In Ar it was possible to perceive that the highest concentration in HM and magnetic minerals was observed in the NE sector (Llico) of the embayment, where the highest run-up was observed. In this specific sector an inland decrease of HM and magnetic minerals was detected along a 300m profile, with HM percentages varying from 27% to 9% and magnetic minerals from 16% to 5%, thus suggesting a progressive energy decrease

  5. Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon (United States)

    Fiehn, Alina; Quack, Birgit; Hepach, Helmke; Fuhlbrügge, Steffen; Tegtmeier, Susann; Toohey, Matthew; Atlas, Elliot; Krüger, Kirstin


    Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I) and for the first time bromoform (CHBr3) and dibromomethane (CH2Br2), in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000-2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m-2 h-1), very strong source for CH2Br2 (930 pmol m-2 h-1), and an average source for CH3I (460 pmol m-2 h-1). The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime), convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2). The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the Asian summer monsoon is lower than from previous

  6. Investigación de trihalometanos en agua potable del Estado Carabobo, Venezuela Trihalomethanes in the drinking water of Carabobo State, Venezuela

    Directory of Open Access Journals (Sweden)

    A. Sarmiento


    and 2001. THM concentrations were determined by gas chromatography using the headspace technique. The concentrations of the following THMs were measured: chloroform (CHCl3, bromoform (CHBr3, chlorodibromomethane (CHBr2Cl and bromodichloromethane (CHCl2Br. Results: The concentration of total THMs was between 47.84 µg/l and 94.23 µg/l. CHCl3 was the most commonly formed compound representing 83% of all THMs in the CRS I and 82% in the CRS II. The concentrations of total THMs in the CRS I, specifically in the Baja and San Diego networks, were significantly higher (p < 0.05 than permissible levels set by the American Environmental Protection Agency (80 µg/l for the sum of all four THMs. Conclusions: The results show that in the area studied there is a risk of adverse health effects due to THMs in drinking water, especially in the Baja and San Diego networks.

  7. Coastal water source of short-lived halocarbons in New England (United States)

    Zhou, Yong; Varner, Ruth K.; Russo, Rachel S.; Wingenter, Oliver W.; Haase, Karl B.; Talbot, Robert; Sive, Barkley C.


    Short-lived halocarbon tracers were used to investigate marine influences on air quality in a coastal region of New England. Atmospheric measurements made at the University of New Hampshire's Observing Station at Thompson Farm (TF) in Durham, New Hampshire, indicate that relatively large amounts of halocarbons are emitted from local estuarine and coastal oceanic regions. Bromine-containing halocarbons of interest in this work include bromoform (CHBr3) and dibromomethane (CH2Br2). The mean mixing ratios of CHBr3 and CH2Br2 from 11 January to 5 March 2002 were 2.6 pptv and 1.6 pptv, and from 1 June to 31 August 2002 mean mixing ratios were 5.9 pptv and 1.4 pptv, respectively. The mean mixing ratio of CHBr3 was not only highest during summer, but both CHBr3 and CH2Br2 exhibited large variability in their atmospheric mixing ratios during this season. We attribute the greater variability to increased production combined with faster atmospheric removal rates. Other seasonal characteristics of CHBr3 and CH2Br2 in the atmosphere, as well as the impact of local meteorology on their distributions at this coastal site, are discussed. Tetrachloroethene (C2Cl4) and trichloroethene (C2HCl3) were used to identify time periods influenced by urban emissions. Additionally, measurements of CHBr3, CH2Br2, C2Cl4, methyl iodide (CH3I), and ethyl iodide (C2H5I) were made at TF and five sites throughout the nearby Great Bay estuarine area between 18 and 19 August 2003. These measurements were used to elucidate the effect of the tidal cycle on the distributions of these gases. The mean mixing ratios of CHBr3, CH2Br2, CH3I, and C2H5I were ˜82%, 46%, 14%, and 17% higher, respectively, near the coast compared to inland sites, providing evidence for a marine source of short-lived halocarbons at TF. Correlation between the tidal cycle and atmospheric concentrations of marine tracers on the night of 18 August 2003 showed that the highest values for the brominated species occurred ˜2-3 hours

  8. Assessing the vulnerability of public-supply wells to contamination—Edwards aquifer near San Antonio, Texas (United States)

    Jagucki, Martha L.; Musgrove, MaryLynn; Lindgren, Richard J.; Fahlquist, Lynne; Eberts, Sandra M.


    This fact sheet highlights findings from the vulnerability study of a public-supply well field in San Antonio, Texas. The well field consists of six production wells that tap the Edwards aquifer. Typically, one or two wells are pumped at a time, yielding an average total of 20-21 million gallons per day. Water samples were collected from public-supply wells in the well field and from monitoring wells installed along general directions of flow to the well field. Samples from the well field contained some constituents of concern for drinking-water quality, including nitrate; the pesticide compounds atrazine, deethylatrazine, and simazine; and the volatile organic compounds tetrachloroethene (also called perchloroethene, or PCE), chloroform, bromoform, and dibromochloromethane. These constituents were detected in untreated water at concentrations much less than established drinking-water standards, where such standards exist. Overall, the study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well field in San Antonio, Texas: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) fast pathways for flow of groundwater through features formed or enlarged by dissolution of bedrock, (3) recharge characteristics of the aquifer, and (4) natural geochemical processes within the aquifer. A computer-model simulation of groundwater flow and transport was used to estimate the traveltime (or age) of water particles entering public-supply well W4 in the well field. Modeled findings show that almost half of the water reaching the public-supply well is less than 2 years old. Such a large percentage of very young water indicates that (1) contaminants entering the aquifer may be transported rapidly to the well, (2) there is limited time for chemical reactions to occur in the aquifer that may attenuate contaminants, and (3) should recharge water become contaminated with

  9. Status and understanding of groundwater quality in the central-eastside San Joaquin Basin, 2006: California GAMA Priority Basin Project (United States)

    Landon, Matthew K.; Belitz, Kenneth; Jurgens, Bryant C.; Kulongoski, Justin T.; Johnson, Tyler D.


    were detected frequently (detected in greater than 10 percent of samples): the trihalomethanes chloroform, bromoform, bromodichloromethane, and dibromochloromethane; the solvent PCE; the herbicides atrazine, simazine, and metolachlor, and special-interest constituent perchlorate.An assessment of understanding of the groundwater quality included sampling of understanding wells, some of which were perforated in shallower or deeper portions of the aquifer system than the primary aquifer, and analysis of correlations of groundwater quality with land use, depth, age classification, and other potential explanatory factors.The understanding assessment indicated that the concentrations of many constituents were related to depth and groundwater age. However, concentrations of individual constituents or constituent classes also were sometimes related to geochemical conditions, lateral position in the flow system, or land use.High and moderate relative-concentrations of uranium, nitrate, and total dissolved solids (TDS) were detected in some wells where the tops of perforations are within the upper 200 feet of the aquifer system. In wells with the depth to the top of perforations below this depth, concentrations were low. A similar pattern occurred for the sum of herbicide concentrations. These vertical water-chemistry patterns are consistent with the hydrogeologic setting, in which return flows from agricultural and urban land use are the major source of recharge, and withdrawals for irrigation and urban supply are the major source of discharge, resulting in substantial vertical components of groundwater flow.The decrease in concentrations of many constituents with depth reflects in part that groundwater gets older with depth. Tritium, helium-isotopes, and carbon-14 data were used to classify the predominant age of groundwater samples into three categories: modern (water that has entered the aquifer in the last 50 years), pre-modern (water that entered the aquifer more than 50