WorldWideScience

Sample records for bromine thermochemical cycle

  1. Development of the Hybrid Sulfur Thermochemical Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Summers, William A.; Steimke, John L

    2005-09-23

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  2. Open-loop thermochemical cycles for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Conger, W.L.

    1979-01-01

    The concept of open-loop thermochemical cycles (cycles which have additional or other feedstocks than water and produce materials in addition to hydrogen and oxygen) is introduced. Preliminary analysis of possible feedstocks available indicates substantial quantities of hydrogen could possibly be produced through open-cycles. The advantages of open-cycles include the conversion of unwanted waste products to useful products while producing hydrogen. A compilation of open processes which would have SO/sub 2/ in addition to water as feedstock and which would produce sulfuric acid in addition to hydrogen and oxygen is given.

  3. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  4. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  5. Hydrogen production via thermochemical cycles based on sulfur chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, M.A.; Conger, W.L.; Carty, R.H.; Funk, J.E.; Cox, K.E.

    1976-01-01

    A class of closed thermochemical cycles for hydrogen production based on sulfur chemistry is presented. This class is described by the following set of chemical reactions: M + H/sub 2/O reversible MO + H/sub 2/ (low temperature); MO + 0.5S reversible M + 0.5SO/sub 2/ (high temperature); M'O + 1.5SO/sub 2/ reversible M'SO/sub 4/ + 0.5S (low temperature); and M'SO/sub 4/ reversible M'O + SO/sub 2/ + 0.5O/sub 2/ (high temperature). Experimental investigation of some of the reactions is presented. Thermodynamic analysis indicates efficiencies of the range of 40 to 50 percent and sometimes higher. Not all of the reactions in the proposed cycles have been verified in the literature or through experimentation.

  6. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  7. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  8. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  9. Thermochemical and Vapor Pressure Behavior of Anthracene and Brominated Anthracene Mixtures.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2013-03-25

    The present work concerns the thermochemical and vapor pressure behavior of the anthracene (1) + 2-bromoanthracene (2) and anthracene (1) + 9-bromoanthracene (3) systems. Solid-liquid equilibrium temperature and differential scanning calorimetry studies indicate the existence of a minimum melting solid state near an equilibrium temperature of 477.65 K at x1 = 0.74 for the (1) + (2) system. Additionally, solid-vapor equilibrium studies for the (1) + (2) system show that the vapor pressure of the mixtures depends on composition, but does not follow ideal Raoult's law behaviour. The (1) + (3) system behaves differently from the (1) + (2) system. The (1) + (3) system has a solid solution like phase diagram. The system consists of two phases, an anthracene like phase and a 9-bromoanthracene like phase, while (1) + (2) mixtures only form a single phase. Moreover, experimental studies of the two systems suggest that the (1) + (2) system is in a thermodynamically lower energy state than the (1) + (3) system.

  10. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  11. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    Science.gov (United States)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  12. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  13. Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G. [Canada Research Chair Professor, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Suppiah, S. [Manager, Hydrogen Isotopes Technology Branch, AECL, Chalk River, Ontario K0J 1J0 (Canada); Lewis, M. [Chemist, Chemical Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Gabriel, K. [Associate Provost, Research, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Dincer, I.; Rosen, M.A. [Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Fowler, M. [Assistant Professor of Chemical Engineering, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1 (Canada); Rizvi, G. [Assistant Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Easton, E.B. [Assistant Professor of Chemistry, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Ikeda, B.M.; Pioro, I. [Associate Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe St., Oshawa, ON L1H 7K4 (Canada); Kaye, M.H.; Lu, L. [Assistant Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Spekkens, P. [Vice President of Science and Technology Development, Ontario Power Generation, 889 Brock Road, Pickering, Ontario (Canada); Tremaine, P. [Professor of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Canada); Mostaghimi, J. [Canada Research Chair Professor, Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 3E5 (Canada); Avsec, J. [Assistant Professor, Faculty of Energy Technology, Univ. of Maribor, Hocevarjev trg 1, 8270 Krsko (Slovenia); Jiang, J. [Professor and NSERC/UNENE Senior Industrial Research Chair, Electrical and Computer Engineering, Univ. of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2009-04-15

    This paper presents recent Canadian advances in nuclear-based production of hydrogen by electrolysis and the thermochemical copper-chlorine (Cu-Cl) cycle. This includes individual process and reactor developments within the Cu-Cl cycle, thermochemical properties, advanced materials, controls, safety, reliability, economic analysis of electrolysis at off-peak hours, and integrating hydrogen plants with Canada's nuclear power plants. These enabling technologies are being developed by a Canadian consortium, as part of the Generation IV International Forum (GIF) for hydrogen production from the next generation of nuclear reactors. (author)

  14. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  15. Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    OpenAIRE

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2013-01-01

    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbona...

  16. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    Science.gov (United States)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  17. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  18. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  19. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  20. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    OpenAIRE

    Rahul Bhosale; Anand Kumar; Fares AlMomani; Ujjal Ghosh; Mohammad Saad Anis; Konstantinos Kakosimos; Rajesh Shende; Marc A. Rosen

    2016-01-01

    The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and wat...

  1. HYDRGN - a computerized technique for the analysis of thermochemical water-splitting cycles

    Energy Technology Data Exchange (ETDEWEB)

    Carty, R. H.; Conger, W. L.; Funk, J. E.; Barker, R.

    1977-06-01

    The HYDRGN computer program was designed to analyze closed thermochemical cycles for the production of hydrogen from water. This report includes the basic theory, assumptions, and methods of calculation used in this analysis along with a description of the program and its use. The source program and necessary data bank are available from the University of Kentucky. These may be obtained by sending a magnetic tape (minimum length 1200 ft) and a written request specifying the type of computer and recording characteristics of the tape. A small fee is charged for the recording and handling of the tape.

  2. Thermochemical hydrogen production via a cycle using barium and sulfur: reaction between barium sulfide and water

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Conger, W.L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653 to 866/sup 0/C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. The rate of formation of hydrogen can be expressed as: RH2 = 1.07 x 10/sup -2/ exp (-3180/RT) (mol H/sub 2//mol BaS s). Hydrogen sulfide was produced during the initial period of reaction and the quantity of hydrogen sulfide formed during this period decreased as the temperature of reaction was increased.

  3. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  4. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  5. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  6. Copper chloride electrolyzer for the production of hydrogen via the copper-chlorine thermochemical cycle

    Science.gov (United States)

    Roy, Rahul Dev

    Hydrogen is considered a key element in solving the upcoming energy crisis, it is not the primary fuel source but an "energy carrier" similar to electricity and has to be produced using some other hydrogen rich source. Thermochemical water decomposition is a promising alternative to steam-methane reforming and electrolytic water splitting for a sustainable method of large-scale hydrogen production. The Copper-Chlorine thermochemical cycle is one of prime contenders among all the other thermochemical cycles being studied because of its low energy requirements compared to others and mild operating conditions, therefore making it available to be readily integrated to the available nuclear reactors or solar energy installations. This present work focuses on the study and development of a proton exchange membrane (PEM) electrolyzer cell for the Copper-Chlorine thermo chemical cycle to obtain a better understanding through experiments and models of this process. Different operating and design parameters such as temperature, flow rate, current density, membranes and gas diffusion layers were considered to reduce the voltage and hence increase the efficiency of the electrolyzer. The effects of catalyst and mass transfer were studied on the thin film electrode using a rotating disk electrode (RDE) setup. A mathematical model was also developed to monitor the performance of the electrolyzer by predicting the change in concentration of copper chloride in the system with respect to time. It is observed that flow rate and temperature plays a major role in decreasing the voltage drop. There was no effect of catalyst in the anode when compared to a bare anode at lower flow rates; but at higher flow rates there was significant decrease in voltage drop when a carbon cloth was placed at the anode end. High surface area carbon black has comparable activity towards CuCl oxidation with conventional catalyst like Platinum or Ruthenium oxide. It is also seen that mass transfers possess a

  7. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  8. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. (Houston Univ., TX (United States))

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  9. System and process for producing fuel with a methane thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  10. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  11. Occurrence of the Bunsen side reaction in the sulfur-iodine thermochemical cycle for hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Qiao-qiao ZHU; Yan-wei ZHANG; Zhi YING; Jun-hu ZHOU; Zhi-hua WANG; Ke-fa CEN

    2013-01-01

    This study aimed to establish a closed-cycle operation technology with high thermal efficiency in the thermochemical sulfur-iodine cycle for large-scale hydrogen production.A series of experimental studies were performed to investigate the occurrence of side reactions in both the H2SO4 and HIx phases from the H2SO4/HI/I2/H2O quaternary system within a constant temperature range of 323-363 K.The effects of iodine content,water content and reaction temperature on the side reactions were evaluated.The results showed that an increase in the reaction temperature promoted the side reactions.However,they were prevented as the iodine or water content increased.The occurrence of side reactions was faster in kinetics and more intense in the H2SO4 phase than in the HIx phase.The sulfur or hydrogen sulfide formation reaction or the reverse Bunsen reaction was validated under certain conditions.

  12. Technological and chemical assessment of various thermochemical cycles: From the UT3 cycle up to the two steps iron oxide cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Lafon, C.; Romnicianu, M. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center BP17171, 30207 Bagnols-sur-Ceze Cedex (France); Charvin, P. [PROMES-CNRS-UPR 8521 BP5 - Odeillo, 66120 FONT ROMEU Cedex (France)

    2006-11-15

    The studies carried out on the UT-3 cycle lead to propose an operating mode that was tested with the Mascot Mockup. Additional investigations, partially presented in the present paper point out that the physicochemical properties of the solid and gaseous reactants will make the running of an industrial process very difficult. For instance, the sintering of the solid, the possible reactivity of the embedding matrix, ...induce additional operation and then lower very sensibly the efficiency of the cycle. Furthermore, if the toxicity of the reactants is taken into consideration, the attractivity of this cycle decreases. If other considerations than the efficiency of the cycle are taken into consideration, it is possible to investigate other cycles. The present paper shows the first results of the studies carried out on alternative cycles having either low efficiency but involving inoffensive reactants or high efficiency but without using bromine. In the first case illustrated by the iron oxide cycle, it seems that the low efficiency can be partially offset by using abundant and inexpensive energy source. In the second one illustrated by the cerium chloride cycle, the significant industrial experience regarding the chemical engineering of the chloride could make the industrial development easier. (author)

  13. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I. [Faculty of Energy Systems and Nuclear Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Maria.Naidin@mycampus.uoit.ca, Sarah.Mokry@mycampus.uoit.ca, Romson.Monichan@uoit.ca, Karan.Chophla@mycampus.uoit.ca, Igor.Pioro@uoit.ca; Naterer, G.; Gabriel, K. [Faculty of Engineering and Applied Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Greg.Naterer@uoit.ca, Kamiel.Gabriel@uoit.ca

    2009-07-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625{sup o}C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single

  14. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  15. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, O.H. (ed.)

    1982-02-09

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  16. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    Science.gov (United States)

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 °C, pyrolysis at 550 °C, and torrefaction at 300 °C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated.

  17. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  18. Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Fresno, Fernando [Solar Concentrating Systems, CIEMAT-PSA. Avda. Complutense, 22, 28040 Madrid (Spain); Yoshida, Tomoaki; Gokon, Nobuyuki; Kodama, Tatsuya [Department of Chemistry and Chemical Engineering and Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Fernandez-Saavedra, Rocio [Chemistry Division, CIEMAT. Avda. Complutense, 22, 28040 Madrid (Spain)

    2010-08-15

    In this work, we compare the activity of unsupported and monoclinic zirconia - supported nickel ferrites, calcined at two different temperatures, for solar hydrogen production by two-step water-splitting thermochemical cycles at low thermal reduction temperature. Commercial nickel ferrite, both as-received and calcined in the laboratory, as well as laboratory made supported NiFe{sub 2}O{sub 4}, are employed for this purpose. The samples leading to higher hydrogen yields, averaged over three cycles, are those calcined at 700 C in each group (supported and unsupported) of materials. The comparison of the two groups shows that higher chemical yields are obtained with the supported ferrites due to better utilisation of the active material. Therefore, the highest activity is obtained with ZrO{sub 2}-supported NiFe{sub 2}O{sub 4} calcined at 700 C. (author)

  19. Entropy production and efficiency analysis of the Bunsen reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.E.; Conger, W.L.

    1980-01-01

    An entropy production and efficiency analysis of the first reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle has been carried out by simulating the reaction including the mixing of reactants and separation of the resulting phases. The reaction: 2H/sub 2/O(L) + SO/sub 2/(g) + (excess) I/sub 2/(g) = H/sub 2/SO/sub 4/ (sol)(Phase I) + 2 HI core (Phase II) was simulated at 388 K, which is slightly above the melting point of I/sup 2/. Analysis of only this reaction shows that the reaction should be run at 15 to 25% I/sub 2/ reacted and the greatest excess of H/sub 2/O which will produce two product phases. Actual operating conditions are however dependent on the total processing scheme. An entropy production and efficiency analysis along with economic factors for the entire process is necessary to obtain these conditions.

  20. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  1. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  2. Activated Carbon Catalysts for the Production of Hydrogen for the Sulfur-Iodine Thermochemical Water Splitting Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C Burch; Cristina Deiana; Hugo S. Silva; Maria F. Sardella; Dolly Granados

    2009-05-01

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of ligno-cellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a ligno-cellulosic chemically-activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Bohem’s titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest, one more time, that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well.

  3. Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Petkovic, Lucia M.; Ginosar, Daniel M.; Rollins, Harry W.; Burch, Kyle C. [Idaho National Laboratory, Interfacial Chemistry, P.O. Box 1625, Idaho Falls, ID 83415-2208 (United States); Deiana, Cristina; Silva, Hugo S.; Sardella, Maria F.; Granados, Dolly [Instituto de Ingenieria Quimica, Facultad de Ingenieria, Universidad Nacional de San Juan, Libertador 1109 (oeste) 5400 San Juan (Argentina)

    2009-05-15

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydrogen iodide (HI) to produce hydrogen, a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of lignocellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a lignocellulosic chemically activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Boehm's titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well. (author)

  4. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps.

  5. Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.; Allen, C.; Besenbruch, G.; McCorkle, K.; Norman, J.; Sharp, R.

    1980-07-01

    Portions of a bench-scale model of a sulfur-iodine thermochemical water-splitting cycle have been operated at General Atomic Company as part of a comprehensive program to demonstrate the technology for hydrogen production from nonfossil sources. The hydrogen program is funded by the US Department of Energy, the Gas Research Institute, and General Atomic Company. The bench-scale model consists of three subunits which can be operated separately or together and is capable of producing as much as 4 std liters/min (6.7 x 10/sup -5/ m/sup 3//s at standard conditions) of gaseous hydrogen. One subunit (main solution reaction) reacts liquid water, liquid iodine (I/sub 2/) and gaseous sulfur dioxide (SO/sub 2/) to form two separable liquid phases: 50 wt % sulfuric acid (H/sub 2/SO/sub 4/) and a solution of iodine in hydriodic acid (HI/sub x/). Another subunit (H/sub 2/SO/sub 4/ concentration and decomposition) concentrates the H/sub 2/SO/sub 4/ phase to the azeotropic composition, then decomposes it at high temperature over a catalyst to form gaseous SO/sub 2/ and oxygen. The third subunit (HI separation and decomposition) separates the HI from water and I/sub 2/ by extractive distillation with phosphoric acid (H/sub 3/PO/sub 4/) and decomposes the HI in the vapor phase over a catalyst to form I/sub 2/ and product hydrogen. This paper presents the results of on-going parametric studies to determine the operating characteristics, performance, and capacity limitations of major components.

  6. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  7. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions

    Directory of Open Access Journals (Sweden)

    Aldo Steinfeld

    2010-11-01

    Full Text Available This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1 The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2 the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses.

  8. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO{sub 4} systems. Final topical report, January 1, 1982--December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. [Houston Univ., TX (United States)

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  9. Bromine Safety

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, B

    2001-04-09

    The production and handling in 1999 of about 200 million kilograms of bromine plus substantial derivatives thereof by Great Lakes Chemical Corp. and Albemarle Corporation in their southern Arkansas refineries gave OSHA Occupational Injury/Illness Rates (OIIR) in the range of 0.74 to 1.60 reportable OIIRs per 200,000 man hours. OIIRs for similar industries and a wide selection of other U.S. industries range from 1.6 to 23.9 in the most recent OSHA report. Occupational fatalities for the two companies in 1999 were zero compared to a range in the U.S.of zero for all computer manufacturing to 0.0445 percent for all of agriculture, forestry and fishing in the most recent OSHA report. These results show that bromine and its compounds can be considered as safe chemicals as a result of the bromine safety standards and practices at the two companies. The use of hydrobromic acid as an electrical energy storage medium in reversible PEM fuel cells is discussed. A study in 1979 of 20 megawatt halogen working fluid power plants by Oronzio de Nora Group found such energy to cost 2 to 2.5 times the prevailing base rate at that time. New conditions may reduce this relative cost. The energy storage aspect allows energy delivery at maximum demand times where the energy commands premium rates. The study also found marginal cost and performance advantages for hydrobromic acid over hydrochloric acid working fluid. Separate studies in the late 70s by General Electric also showed marginal performance advantages for hydrobromic acid.

  10. Bromination of Phenol

    Science.gov (United States)

    Talbot, Christopher

    2013-01-01

    This "Science note" examines the bromination of phenol, a reaction that is commonly taught at A-level and IB (International Baccalaureate) as an example of electrophilic substitution. Phenol undergoes bromination with bromine or bromine water at room temperature. A white precipitate of 2,4,6-tribromophenol is rapidly formed. This…

  11. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  12. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O' Keefe, D.R.; Allen, C.L.

    1982-05-01

    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  13. 新型双重热化学吸附制冷热力循环研究%Study on an Innovative Combined Double-Way Thermochemical Sorption Refrigeration Cycle

    Institute of Scientific and Technical Information of China (English)

    李廷贤; 王如竹; 陈恒; 王丽伟

    2011-01-01

    本文提出了一种全新的基于吸附-再吸附技术的双重热化学吸附制冷热力循环.实验研究表明该新型双重热化学吸附制冷热力循环用于制冷空调领域是完全可行的,在每次循环过程中仅从外界热源输入一次高温解吸热,就可以实现吸附制冷和再吸附制冷两次制冷过程;相对传统热化学再吸附制冷循环和吸附制冷循环,双重热化学吸附制冷热力循环可显著提高吸附制冷系统的工作性能,在相同制冷剂循环量下,双重热化学吸附制冷循环可将制冷系数COPi分别提高60%和167%.%In this paper, an innovative combined double-way thermochemical sorption refrigeration cycle based on adsorption and resorption processes is proposed. Experimental results showed that the presented combined double-way sorption cycle is feasible for refrigeration application, and two cold productions (adsorption refrigeration and resorption refrigeration) can be obtained during one cycle at the expense of only one heat input from an external heat source. In comparison with conventional thermochemical resorption cycle or adsorption cycle, the double-way sorption cycle has a distinct advantage of higher Coefficient of Performance (COP). At the same cycled mass of refrigerant, the ideal COP can be improved by 60% and 167% when compared with conventional resorption cycle and adsorption cycle, respectively.

  14. A thermochemical energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Toyeguti, K.; Indzima, T.

    1982-08-09

    Mercury is used as the active mass of the anode in the converter and 0/sub 2/ is used as the active cathode material. The reaction of Mercury + 1/2 0/sub 2/-Hg0 occurs with a discharge. With heating to 500/sup 0/C the regeneration of the Mercury, Hg0 yields Mercury + 1/2 0/sub 2/, occurs. The device for performing the thermochenical conversion of energy contains an element body, an oxygen chamber, an oxygen electrode, a chamber with an alkaline liquid electrolyte, a separator, an auxiliary separator, an electrode and a chamber with the Mercury. The thermochemical reaction occurs in the reactor to which the Hg0 is transported along a pipe which has a refrigerator and a valve. The Mercury is fed into the element from a reservoir. The Mercury reduced in the reactor and in a reaction tower is fed into it through a closed cycle. The bellows is connected with the reactor by a pipe with a refrigerator. Through it the 0/sub 2/ goes in a closed cycle to the chamber. The current forming reactions are Hg + 20H-anion yields Hg0 + H/sub 2/0 + 2e and 1/2 0/sub 2/ + H/sub 2/0 + 2e yields 20H-anion. The voltage on the outleads of the element is approximately 0.3 volts.

  15. Efficiency calculations and optimization analysis of a solar reactor for the high temperature step of the zinc/zinc-oxide thermochemical redox cycle

    Energy Technology Data Exchange (ETDEWEB)

    Haussener, S.

    2007-03-15

    A solar reactor for the first step of the zinc/zinc-oxide thermochemical redox cycle is analysed and dimensioned in terms of maximization of efficiency and reaction conversion. Zinc-oxide particles carried in an inert carrier gas, in our case argon, enter the reactor in absorber tubes and are heated by concentrated solar radiation mainly due to radiative heat transfer. The particles dissociate and, in case of complete conversion, a gas mixture of argon, zinc and oxygen leaves the reactor. The aim of this study is to find an optimal design of the reactor regarding efficiency, materials and economics. The number of absorber tubes and their dimensions, the cavity dimension and its material as well as the operating conditions should be determined. Therefore 2D and 3D simulations of an 8 kW reactor are implemented. The gases are modeled as ideal gases with temperature-dependent properties. Absorption and scattering of the particle gas mixture are calculated by Mie-theory. Radiative heat transfer is included in the simulation and implemented with the aid of the discrete ordinates (DO) method. The mixture is modeled as ideal mixture and the reaction with an Arrhenius-type ansatz. Temperature distribution, reaction efficiency (heat used for zinc-oxide reaction divided by input) and tube efficiency (heat going into absorber tubes divided by input) as well as reaction conversion are analyzed to find the most promising reactor design. The results show that the most significant factors for efficiencies, conversion and absorber fluid temperature are concentration of the solar incoming radiation, zinc-oxide mass flow, the number of tubes and their dimension. Higher concentration leads to solely positive effects. Zinc-oxide mass flow variations indicate the existence of an optimal flow rate for each reactor design which maximizes efficiencies and conversion. Higher zinc-oxide mass flow leads, on one hand, to higher tube efficiency but on the other hand to lower temperatures in

  16. Solar Thermochemical Hydrogen Production Plant Design

    OpenAIRE

    Littlefield, Jesse

    2012-01-01

    A plant was designed that uses a solar sulfur-ammonia thermochemical water-splitting cycle for the production of hydrogen. Hydrogen is useful as a fuel for stationary and mobile fuel cells. The chemical process simulator Aspen Plus® was used to model the plant and conduct simulations. The process utilizes the electrolytic oxidation of aqueous ammonium sulfite in the hydrogen production half cycle and the thermal decomposition of molten potassium pyrosulfate and gaseous sulfur trioxide in t...

  17. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  18. Process design and simulation of open-loop sulfur-iodine thermo-chemical cycle for hydrogen production%热化学硫碘开路循环制氢系统的设计与模拟

    Institute of Scientific and Technical Information of China (English)

    杨剑; 王智化; 张彦威; 陈云; 周俊虎; 岑可法

    2011-01-01

    In order to optimize the process and thermal efficiency of the open-loop sulfur-iodine (SI) thermo-chemical cycle for production of hydrogen, a flowsheet of open-loop SI thermo-chemical cycle was designed and simulated by Aspen Plus. The heat and mass balance as well as thermal efficiency were first calculated. The maximum thermal efficiency of the process was 66.2% considering waste heat recoveryand pumping power. Secondly, through sensitivity analysis, the effects of 5 operating parameters like: reflux ratio at HI distillation column, pressure in HI distillation column, flow rate of HI phase, conversion ratio of HI and mass fraction of H2 SO4 were evaluated to the thermal efficiency. Results show that the flow rate of HI phase and reflux ratio of the HI distillation column are the primary paramenters influence the total efficiency, while the other parameters are not so obviously. Through optimization of the Bunsen reactor operation condition, the flow rate of the HI phase can be reduced therefore improve the whole thermal efficiency. The simulation results agree well with published datas and can be used as reference for design and optimization of the large scale SI thermo-chemical cycle H2 production system.%为了对热化学硫碘开路循环制氢系统进行优化设计及热效率评估,利用大型化工流程模拟软件AspenPlus对硫碘开路循环联产氢气和硫酸系统进行设计和模拟,计算质量、能量平衡及热效率.在考虑泵功和废热回收的情况下,开路系统的最高计算热效率达到66.2%.其次,利用灵敏度分析,分别考察HI精馏塔同流比、精馏塔压力、HI相循环量、HI分解率和产品硫酸质量分数5个设计参数对系统效率的影响.结果显示,HI相循环量和精馏塔同流比是影响系统效率的主要因素,其他参数对效率影响较小.通过优化本生反应操作条件可显著减少HI相的循环量,提高系统效率.计算结果与文献参考值接近,为今后大

  19. Thermochemical reactor systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  20. Research Progress and Technical Analysis of High Temperature Solar Thermochemical CO2-splitting Cycle%太阳热化学循环反应分解CO2的研究进展与技术分析

    Institute of Scientific and Technical Information of China (English)

    陈伟; 张军

    2012-01-01

    在全球气候变化已成为国际性热点问题的大背景下,通过将CO2转化成高附加值的燃料,实现CO2的资源化利用是解决这一问题的可行途径之一,而将这一过程与太阳能利用相结合有助于解决因CO2化学惰性较强,其转化在热力学上不利带来能耗较高的挑战.在多种利用太阳能将CO2转化为能源载体的方法中,利用高温太阳热能进行两步热化学循环反应分解CO2以制取合成燃料是一个新兴研究方向.本文详细介绍了国外科研机构在这方面的发展现状及研究重点,并对该技术的原理和未来需要开展的基础研究工作进行了分析.未来的研究重点将集中在:(1)开展多相化学反应流辐射热传递的理论和试验基础研究;(2)设计直接受辐射的太阳能化学反应器,可直接吸收聚焦的太阳热能,辐射热传递效率较高;(3)开展高温太阳能化学反应器的材料研究.国内具有一定太阳能高温热(化学)利用工作基础的研究机构有必要开展这一领域的研究工作,为中国实现碳减排做出贡献.%In the context of the global climate change, as an international hot issue, the CO; utiliiation through its conversion into high value-added fuels is one of the possible ways to solve this problem. C02 is chemically inerl and it is difficult to convert it into other molecules thermodynamically, and these problems can be solved through the use of the solar energy. Among various approaches on converting CO2 into an energy carrier by the solar energy, a promising new method is developed for the production of the synthetic fuel from solar-driven two-step CO2-splitting thermo-chemieal cycles. In this paper, first review the research progress and research priorities in this field- We also analyzethe technical principle and the basic studies thai are required in the future. The furure research should focus on: (1) (he fundamental analysis of the radiation heat exchange coupled with the

  1. Extension of a reactive distillation process design methodology: application to the hydrogen production through the Iodine-Sulfur thermochemical cycle; Generalisation d'une approche de conception de procedes de distillation reactive: application a la production d'hydrogene par le cycle thermochimique I-S

    Energy Technology Data Exchange (ETDEWEB)

    Belaissaoui, B

    2006-02-15

    Reactive distillation is a promising way to improve classical processes. This interest has been comforted by numerous successful applications involving reactive systems in liquid phase but never in vapour phase. In this context, general design tools have been developed for the analysis of reactive distillation processes whatever the reactive phase. A general model for open condensation and evaporation of vapour or liquid reactive systems in chemical equilibrium has been written and applied to extend the feasibility analysis, synthesis and design methods of the sequential design methodology of R. Thery (2002). The extended design methodology is applied to the industrial production of hydrogen through the iodine-sulphur thermochemical cycle by vapour phase reactive distillation. A column configuration is proposed with better performance formerly published configuration. (author)

  2. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  3. High-efficient thermochemical sorption refrigeration driven by low-grade thermal energy

    Institute of Scientific and Technical Information of China (English)

    LI TingXian; WANG RuZhu; WANG LiWei

    2009-01-01

    Thermochemical sorption refrigeration powered by low-grade thermal energy is one of the en ergy-saving and environment friendly green refrigeration technologies. The operation principle of sorption refrigeration system is based on the thermal effects of reversible physicochemical reaction processes between sorbents and refrigerants. This paper presents the developing study on the differ ent thermochemical sorption refrigeration cycles, and some representative high-efficient thermo chemical sorption refrigeration cycles were evaluated and analyzed based on the conventional single-effect sorption cycle. These advanced sorption refrigeration cycles mainly include the heat and mass recovery sorption cycle, double-effect sorption cycle, multi-effect sorption cycle, combined douhie-way sorption cycle, and double-effect and double-way sorption cycle with internal heat recovery.Moreover, the developing tendency of the thermochemical sorption refrigeration is also predicted in this paper.

  4. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  5. Zinc-bromine battery development

    Science.gov (United States)

    Richards, Lew; Vanschalwijk, Walter; Albert, George; Tarjanyi, Mike; Leo, Anthony; Lott, Stephen

    1990-05-01

    This report describes development activities on the zinc-bromine battery system conducted by Energy Research Corporation (ERC). The project was a cost-shared program supported by the U.S. Department of Energy and managed through Sandia. The project began in September 1985 and ran through January 1990. The zinc-bromine battery has been identified as a promising alternative to conventional energy storage options for many applications. The low cost of the battery reactants and the potential for long life make the system an attractive candidate for bulk energy storage applications, such as utility load leveling. The battery stores energy by the electrolysis of an aqueous zinc bromide salt to zinc metal and dissolved bromine. Zinc is plated as a layer on the electrode surface while bromine is dissolved in the electrolyte and carried out of the stack. The bromine is then extracted from the electrolyte with an organic complexing agent in the positive electrolyte storage tank. On discharge the zinc and bromine are consumed, regenerating the zinc bromide salt.

  6. 碘硫循环制氢中HI浓缩分离工艺的研究进展%Progress of HI concentration/separation in the iodine-sulfur thermochemical cycle for hydrogen production

    Institute of Scientific and Technical Information of China (English)

    王兆龙; 陈崧哲; 王少敏; 张平; 王来军; 徐景明

    2013-01-01

    综述了碘硫循环制氢中用于HI浓缩分离的3种主要技术路线,即磷酸萃取精馏、反应精馏以及电解电渗析预浓缩-精馏的研究进展,对各路线的过程原理、操作流程、能量利用效率等方面进行了讨论,在此基础上对比了其各自的优点和不足之处,并对其应用前景进行了展望。其中,磷酸萃取精馏开发最早,相对成熟,但操作流程复杂,运行效率需进一步提升;反应精馏流程有望以高集成度取得高效率,但所需条件非常苛刻,其设备开发、工艺实验等工作亟待展开;近年来发展较快的电解电渗析预浓缩-精馏工艺由于具有操作简单,条件温和,浓缩效率高等优点而具有较好的应用前景,其进一步工艺放大、模块化以及与精馏的高效协同等都是未来研究的重点和难点。%This paper reviewed the methods of phosphoric acid extractive distillation , reactive distillation and electro-electrodialysis pre-concentration for HI concentration and separation in iodine-sulfur thermochemical cycle. The mechanisms,energy efficiency,advantages,and prospects of these methods were discussed. Phosphoric acid extractive distillation was developed earlier than the other methods,however,its complicated operational conditions prevented the improvement of energy efficiency of this method. The high integrity level of reactive distillation could improve thermal efficiency dramatically,but experimental research concerning the practical application is very limited due to its rigorous operational conditions. Electro-electrodialysis for HI pre-concentration is a promising method because of its easy operation,mild conditions and high efficiency. Future research on this method should be focused on scale-up,modularization and the efficient cooperation with HI distillation.

  7. Corrosion Environments and Corrosion-resistant Materials for Iodine-sulfur Thermochemical Cycle%热化学碘硫循环的腐蚀环境与耐蚀材料

    Institute of Scientific and Technical Information of China (English)

    赵增华; 张平; 陈崧哲; 王来军; 徐景明

    2013-01-01

    利用核能经热化学碘硫循环制氢被认为是最有希望大规模应用的核能制氢技术.碘硫循环工艺简单、效率高,但由于反应体系为强腐蚀过程,设备材料的腐蚀问题是碘硫循环发展的一个难题.总结了碘硫循环中涉及的Bunsen反应、硫酸分解和氢碘酸分解部分的腐蚀环境;综述了金属材料、无机陶瓷材料和高分子材料在碘硫循环腐蚀环境中的耐腐蚀性能及可能的应用;并讨论了防腐蚀衬里技术应用的可能性;比较了陶瓷材料在硫酸分解设备中的应用.这些工作可为碘硫循环工程材料的选择与研发提供依据和理论参考.%The iodine-sulfur (IS) thermochemical cycle is one of the most promising,efficient,massive and CO2-free approaches for nuclear hydrogen production.One of the crucial issues for IS process is the corrosion-resistant performance of the construction materials since the strong corrosive environments are involved.The corrosion environments of Bunsen reaction,sulfuric acid decomposition and hydriodic acid decomposition reaction are discussed.The corrosion-resistant performance of the construction materials such as metals,ceramics and organic polymers used in IS process is reviewed.The potential of the anti-corrosion lining techniques in the process is discussed.The application of ceramic and polymer materials to sulfuric acid decomposition equipment manufacturers is compared.The results may offer basis and theoretical reference for the selection and development of corrosion-resistant materials for IS process.

  8. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  9. High Performance Electrolyzers for Hybrid Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John W. Weidner

    2009-05-10

    Extensive electrolyzer testing was performed at the University of South Carolina (USC). Emphasis was given to understanding water transport under various operating (i.e., temperature, membrane pressure differential and current density) and design (i.e., membrane thickness) conditions when it became apparent that water transport plays a deciding role in cell voltage. A mathematical model was developed to further understand the mechanisms of water and SO2 transport, and to predict the effect of operating and design parameters on electrolyzer performance.

  10. Evaluation of carbon cryogels used as cathodes for non-flowing zinc-bromine storage cells

    Energy Technology Data Exchange (ETDEWEB)

    Ayme-Perrot, David; Walter, Serge; Gabelica, Zelimir [Groupe Securite et Ecologie Chimiques (GSEC), ENSCMu, 3 rue Alfred Werner, F-68093 Mulhouse Cedex (France); Valange, Sabine [Laboratoire de Catalyse en Chimie Organique (LACCO), ESIP, 40 Avenue du Recteur Pineau, F-86022 Poitiers Cedex (France)

    2008-01-03

    Monolithic megaloporous carbon cryogels were examined for their potential applications as cathodic electrodes in secondary zinc-bromine cells. This work investigates the possibility of using their particular macroporous texture as microscopic bromine tanks in a zinc/bromine battery. The electrochemical behaviour of a cell based upon such a Br{sub 2} electrode was studied and discussed in terms of energy yields, energy storage capability and cycle life. Good storages (over 20 Wh kg{sup -1}) could be obtained during the first 2 h of cell charging for currents between 10 and 20 mA g{sup -1}. The energy yield remains almost constant during a fairly large number of cycles, basically for weak charges (e.g. 25 C g{sup -1}). Our findings show that the good cyclability of the cathodic electrode is a consequence of the liquid state of the active bromine phase. (author)

  11. Gaia Paradigm: A Biotic Origin Of The Polar Sunrise Arctic Bromine Explosion

    OpenAIRE

    Iudin, M.

    2008-01-01

    The main attention is given to discussion of the natural causes and regularities of the Arctic bromine pollution. We make notice of marine microbial organisms and their metabolism as a prime driving force for the elemental biogeochemical cycles. One of the important conclusions of this study is on similarity between ocean bromine concentrating as by-product of the marine microbial activities and nitrogen fixation by soil bacteria. In both cases, microbial organisms and their food webs maintai...

  12. The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study

    Directory of Open Access Journals (Sweden)

    B.-M. Sinnhuber

    2009-04-01

    Full Text Available Bromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at Northern Hemisphere mid-latitudes of only ≈55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ≈45% of the model estimated column ozone loss at Northern Hemisphere mid-latitudes. However, since a large fraction of the bromine induced ozone loss is due to the combined BrO/ClO catalytic cycle, the effect of bromine would have been smaller in the absence of anthropogenic chlorine emissions. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called α-factor, is 64 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in α. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean α-factor.

  13. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.

    Science.gov (United States)

    Ermanoski, I; Miller, J E; Allendorf, M D

    2014-05-14

    Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespective of reactor design or reactive oxide properties, but an optimal temperature difference between cycle steps, for which efficiency is the highest, can be determined for a wide range of other operating parameters. A combination of well-targeted pressure and temperature swing, rather than either individually, emerges as the most efficient mode of operation of a two-step thermochemical cycle for solar fuel production.

  14. Inorganic bromine in the marine boundary layer: a critical review

    Directory of Open Access Journals (Sweden)

    R. Sander

    2003-06-01

    Full Text Available The cycling of inorganic bromine in the marine boundary layer (mbl has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is depleted in bromine by about 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that these depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. However, currently available techniques cannot reliably quantify many chem{Br}-containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans, excluding the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of  Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion can be of local importance. Transport of degradation products of long-lived Br-containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy

  15. Production of bromine-75, a new radionuclide for marking radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Paans, A.M.J.; Wiegman, T.; Hoeve, W.; Vaalburg, W. (Rijksuniversiteit Groningen (Netherlands). Academisch Ziekenhuis)

    1982-01-01

    Bromine-75 is the most useful of all bromine isotopes for nuclear medicine. Its properties like half-life, nuclear reactions, production and chemical preparation, as well as the preparation of radiopharmaceuticals containing bromine-75 are presented.

  16. OECD/NEA thermochemical database

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Song, Dae Yong; Shin, Hyun Kyoo; Park, Seong Won; Ro, Seung Gy

    1998-03-01

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs.

  17. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy a

  18. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  19. Combustion of thermochemically torrefied sugar cane bagasse.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2017-01-01

    This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m(3), increased HHVmass and HHVvolume, greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel.

  20. Recent review of thermochemical hydrogen production

    Science.gov (United States)

    Beghi, G. E.

    A survey is presented on the development to date of thermochemical water decomposition methods for the production of hydrogen. It is shown that: (1) both the technological feasibility of thermochemical processes and their competitiveness with water electrolysis have been demonstrated; (2) the scaling up of thermochemical methods to industrial production levels may proceed with existing technology; (3) the slowing down of programs concerned with the development of high temperature nuclear reactors could delay the scaling up of thermochemical hydrogen production to industrial levels; (4) this delay could, however, increase interest in such water decomposition processes as those employing photoreactions; and (5) the efficiency of thermochemical hydrogen production is highest in the case of systems with dedicated heat sources rated above 1000 MWth.

  1. Thermochemical behavior of pretreated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amit Kumar

    2011-07-01

    Mankind has to provide a sustainable alternative to its energy related problems. Bioenergy is considered as one of the potential renewable energy resources and as a result bioenergy market is also expected to grow dramatically in future. However, logistic issues are of serious concern while considering biomass as an alternative to fossil fuel. It can be improved by introducing pretreated wood pellet. The main objective of this thesis is to address thermochemical behaviour of steam exploded pretreated biomass. Additionally, process aspects of torrefaction were also considered in this thesis. Steam explosion (SE) was performed in a laboratory scale reactor using Salix wood chips. Afterwards, fuel and thermochemical aspects of SE residue were investigated. It was found that Steam explosion pretreatment improved both fuel and pellet quality. Pyrolysis of SE residue reveals that alerted biomass composition significantly affects its pyrolysis behaviour. Contribution from depolymerized components (hemicellulose, cellulose and lignin) of biomass was observed explicitly during pyrolysis. When devolatilization experiment was performed on pellet produced from SE residue, effect of those altered components was observed. In summary, pretreated biomass fuel characteristics is significantly different in comparison with untreated biomass. On the other hand, Process efficiency of torrefaction was found to be governed by the choice of appropriate operating conditions and the type of biomass.

  2. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication.

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2014-06-06

    This paper presents and tests a previously unrecognized mechanism for driving a replicating molecular system on the prebiotic earth. It is proposed that cell-free RNA replication in the primordial soup may have been driven by self-sustained oscillatory thermochemical reactions. To test this hypothesis, a well-characterized hydrogen peroxide oscillator was chosen as the driver and complementary RNA strands with known association and melting kinetics were used as the substrate. An open flow system model for the self-consistent, coupled evolution of the temperature and concentrations in a simple autocatalytic scheme is solved numerically, and it is shown that thermochemical cycling drives replication of the RNA strands. For the (justifiably realistic) values of parameters chosen for the simulated example system, the mean amount of replicant produced at steady state is 6.56 times the input amount, given a constant supply of substrate species. The spontaneous onset of sustained thermochemical oscillations via slowly drifting parameters is demonstrated, and a scheme is given for prebiotic production of complementary RNA strands on rock surfaces.

  3. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  4. Thermochemical cycles for the heat and cold long-range transport. Final report of the PRI 9.2 Cold transport. Annual report of the PR 2-8; Cycles thermochimiques pour le transport de chaleur et de froid a longue distance. Rapport final du PRI 9.2. Transport de froid. Rapport annuel du PR 2-8

    Energy Technology Data Exchange (ETDEWEB)

    Luo, L.; Tondeur, D. [Laboratoire des Sciences du Genie Chimique (LSGC), 54 - Nancy (France); Mazet, N.; Neveu, P.; Stitou, D.; Spinner, B. [Institut de Science et de Genie des Materiaux et Procedes (IMP), 66 - Perpignan (France)

    2004-07-01

    This PRI deals with the use of thermochemical processes, based on solid-gas reversible transformation, to transfer heat of cold at long-range distance (> 10 km), in order to enhance the energy efficiency. Four main aspects have been studied to confirm the process feasibility: the process identification and the operating conditions, the selection of compatible reagents, the design of an auto-thermal reactor and the gas transport impact on the global performances. (A.L.B.)

  5. SUNgas: Thermochemical Approaches to Solar Fuels

    Science.gov (United States)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2

  6. An exemplary case of a bromine explosion event linked to cyclone development in the Arctic

    Science.gov (United States)

    Blechschmidt, A.-M.; Richter, A.; Burrows, J. P.; Kaleschke, L.; Strong, K.; Theys, N.; Weber, M.; Zhao, X.; Zien, A.

    2016-02-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by GOME-2 on board the MetOp-A satellite over Arctic sea ice in polar spring. These plumes are often transported by high-latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. However, only few studies have focused on the role of polar weather systems in the development, duration and transport of tropospheric BrO plumes during bromine explosion events. The latter are caused by an autocatalytic chemical chain reaction associated with tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. In this manuscript, a case study investigating a comma-shaped BrO plume which developed over the Beaufort Sea and was observed by GOME-2 for several days is presented. By making combined use of satellite data and numerical models, it is shown that the occurrence of the plume was closely linked to frontal lifting in a polar cyclone and that it most likely resided in the lowest 3 km of the troposphere. In contrast to previous case studies, we demonstrate that the dry conveyor belt, a potentially bromine-rich stratospheric air stream which can complicate interpretation of satellite retrieved tropospheric BrO, is spatially separated from the observed BrO plume. It is concluded that weather conditions associated with the polar cyclone favoured the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.

  7. Systematic vibration thermodynamic properties of bromine

    Science.gov (United States)

    Liu, G. Y.; Sun, W. G.; Liao, B. T.

    2015-11-01

    Based on the analysis of the maturity and finiteness of vibrational levels of bromine molecule in ground state and evaluating the effect on statistical computation, according to the elementary principles of quantum statistical theorem, using the full set of bromine molecular vibrational levels determined with algebra method, the statistical contribution for bromine systematical macroscopic thermodynamic properties is discussed. Thermodynamic state functions Helmholtz free energy, entropy and observable vibration heat capacity are calculated. The results show that the determination of full set of vibrational levels and maximum vibrational quantum number is the key in the correct statistical analysis of bromine systematical thermodynamic property. Algebra method results are clearly different from data of simple harmonic oscillator and the related algebra method results are no longer analytical but numerical and are superior to simple harmonic oscillator results. Compared with simple harmonic oscillator's heat capacities, the algebra method's heat capacities are more consistent with the experimental data in the given temperature range of 600-2100 K.

  8. Two new brominated diterpenes from Laurencia decumbens

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two new brominated diterpenes, namely, laurendecumtriol and 11-deacetylpinnaterpene C, were isolated and identified from the marine red alga Laurencia decumbens. Their structures were established on the basis of various NMR spectroscopic techniques and HR-ESI-MS analyses.

  9. Stability and metastability of bromine clathrate polymorphs.

    Science.gov (United States)

    Nguyen, Andrew H; Molinero, Valeria

    2013-05-23

    Clathrate hydrates are crystals in which water forms a network of fully hydrogen-bonded polyhedral cages that contain small guests. Clathrate hydrates occur mostly in two cubic crystal polymorphs, sI and sII. Bromine is one of two guests that yield a hydrate with the tetragonal structure (TS), the topological dual of the Frank-Kasper σ phase. There has been a long-standing disagreement on whether bromine hydrate also forms metastable sI and sII crystals. To date there are no data on the thermodynamic range of stability (e.g., the melting temperatures) of the metastable polymorphs. Here we use molecular dynamics simulations with the coarse-grained model of water mW to (i) investigate the thermodynamic stability of the empty and guest-filled the sI, sII, TS, and HS-I hydrate polymorphs, (ii) develop a coarse-grained model of bromine compatible with mW water, and (iii) evaluate the stability of the bromine hydrate polymorphs. The mW model predicts the same relative energy of the empty clathrate polymorphs and the same phase diagram as a function of water-guest interaction than the fully atomistic TIP4P water model. There is a narrow region in water-guest parameter space for which TS is marginally more stable than sI or sII. We parametrize a coarse-grained model of bromine compatible with mW water and use it to determine the order of stability of the bromine hydrate polymorphs. The melting temperatures of the bromine hydrate polymorphs predicted by the coarse-grained model are 281 ± 1 K for TS, 279 ± 1 K for sII, and 276 ± 1 K for sI. The closeness of the melting temperatures supports the plausibility of formation of metastable sII and sI bromine hydrates.

  10. Pulsed Bromine-81 Nuclear Quadrupole Resonance Spectroscopy of Brominated Flame Retardants and Associated Polymer Blends.

    Science.gov (United States)

    Mrse, Anthony A.; Lee, Youngil; Bryant, Pamela L.; Fronczek, Frank R.; Butler, Leslie G.; Simeral, Larry S.

    1998-03-01

    The dispersion of brominated flame retardants in polymers is monitored with bromine-81 NQR using a pulse NQR spectrometer. The NQR spectrometer consists of a homemade 10-300 MHz single-channel NMR console coupled to a broadly tunable probe. The probe is a loop-gap resonator usable from 220 to 300 MHz, and automatically tuned over any 5 MHz region with a stepping motor and an RF bidirectional coupler. Bromine-81 NQR spectra of several brominated aromatic flame retardants, as pure materials and in polymers, were recorded in the range of 227 to 256 MHz in zero applied magnetic field. Two factors affect the bromine-79/81 NQR transition frequencies in brominated aromatics: electron withdrawing substituents on the ring and intermolecular contacts with other bromine atoms in the crystal structure. An existing model for substituents is updated and a point charge model for the intermolecular contacts is developed. In this study, we exploit the bromine-81 NQR transition frequency dependence on intermolecular contacts to learn how a flame retardant is dispersed in a polymer matrix.

  11. A, a Brominated Flame Retardant

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshita

    2013-01-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a brominated flame retardant, has been found to exacerbate pneumonia in respiratory syncytial virus- (RSV- infected mice. We examined the effect of Brazilian propolis (AF-08 on the exacerbation of RSV infection by TBBPA exposure in mice. Mice were fed a powdered diet mixed with 1% TBBPA alone, 0.02% AF-08 alone, or 1% TBBPA and 0.02% AF-08 for four weeks and then intranasally infected with RSV. TBBPA exposure increased the pulmonary virus titer and level of IFN-γ, a representative marker of pneumonia due to RSV infection, in the lungs of infected mice without toxicity. AF-08 was significantly effective in reducing the virus titers and IFN-γ level increased by TBBPA exposure. Also, AF-08 significantly reduced proinflammatory cytokine (TNF-α and IL-6 levels in the lungs of RSV-infected mice with TBBPA exposure, but Th2 cytokine (IL-4 and IL-10 levels were not evidently increased. Neither TBBPA exposure nor AF-08 treatment affected the anti-RSV antibody production in RSV-infected mice. In flow cytometry analysis, AF-08 seemed to be effective in reducing the ratio of pulmonary CD8a+ cells in RSV-infected mice with TBBPA exposure. TBBPA and AF-08 did not exhibit anti-RSV activity in vitro. Thus, AF-08 probably ameliorated pneumonia exacerbated by TBBPA exposure in RSV-infected mice by limiting excess cellular immune responses.

  12. Abiotic Bromination of Soil Organic Matter.

    Science.gov (United States)

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  13. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as T

  14. Some Aspects of Thermochemical Decomposition of Peat

    Directory of Open Access Journals (Sweden)

    Y. A. Losiuk

    2008-01-01

    Full Text Available The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  15. Some Aspects of Thermochemical Decomposition of Peat

    OpenAIRE

    Y. A. Losiuk; S. V. Gibric; S. V. Korchinenko

    2008-01-01

    The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  16. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  17. 40 CFR 721.2925 - Brominated aromatic ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic ester. 721.2925... Substances § 721.2925 Brominated aromatic ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a brominated aromatic ester (PMN...

  18. 40 CFR 721.3085 - Brominated phthalate ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated phthalate ester. 721.3085... Substances § 721.3085 Brominated phthalate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated phthalate ester (PMN P-90-581)...

  19. Brominated flame retardants in end-of-life management not problematic regarding formation of brominated dioxins/furans (PBDD/F)

    Energy Technology Data Exchange (ETDEWEB)

    Drohmann, D. [Great Lakes Chemical, Bergisch Gladbach (Germany); Tange, L. [Eurobrom B.V., Rijswijk (Netherlands); Rothenbacher, K. [Bromine Science and Environmental Forum, Brussels (Belgium)

    2004-09-15

    Bromine is used as the building block for some of the most effective flame retarding agents available to the plastics industry today. They are used to protect against the risk of accidental fires in a wide range of products. Brominated flame retardants (BFRs), as all flame retardants, act to decrease the risk of fire by increasing the fire resistance of the materials in which they are applied. There is a perception that BFRs affect adversely the end-of-life management of plastics through formation of brominated dioxins and furans (PBDD/F). In fact, there exists a wide range of data and practical experience demonstrating that the end-of-life management of plastics containing BFRs are fully compliant with legislation setting the strictest limit values for PBDD/F and is fully compatible with an integrated waste management concept. Furthermore, all existing EU Risk Assessments on BFRs according to the European Existing Substance Regulations include an assessment of the potential formation of dioxins and furans. All assessments conclude that the risks along the life-cycle of the chemicals for human health and the environment associated with the potential formation of PBDD/F are negligible. Moreover, two recent Swedish studies found, that consumer products with BFRs emit less pollutants than the same products without any FRs. This paper summarises available studies and presents the latest results regarding potential formation of brominated dioxins and furans in end-of-life management of plastics containing brominated flame retardants. Additionally, before BFR products enter the market they are tested for PBDD/F according to the ''German Dioxin Ordinance''. Depending on the substitution pattern the limit values for PBDD/F are set at <1{mu}g/kg (ppb) respectively <5{mu}g/kg (ppb).

  20. Moving bed reactor for solar thermochemical fuel production

    Science.gov (United States)

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  1. Brominated flame retardants and endocrine disruption

    NARCIS (Netherlands)

    Vos, J.G.; Becher, G.; Berg, van den M.; Boer, de J.; Leonards, P.E.G.

    2003-01-01

    From an environmental point of view, an increasing important group of organohalogen compounds are the brominated flame retardants (BFRs), which are widely used in polymers and textiles and applied in construction materials, furniture, and electronic equipment. BFRs with the highest production volume

  2. Bromination of selected pharmaceuticals in water matrices.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Casas, Francisco

    2011-11-01

    The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, phenacetin, and hydrochlorothiazide) was studied with these compounds individually dissolved in ultra-pure water. The apparent rate constants for the bromination reaction were determined as a function of the pH, obtaining the sequence amoxicillin>naproxen>hydrochlorothiazide≈phenacetin≈metoprolol. A kinetic mechanism specifying the dissociation reactions and the species formed for each compound according to its pK(a) value and the pH allowed the intrinsic rate constants to be determined for each elementary reaction. There was fairly good agreement between the experimental and calculated values of the apparent rate constants, confirming the goodness of the proposed reaction mechanism. In a second stage, the bromination of the selected pharmaceuticals simultaneously dissolved in three water matrices (a groundwater, a surface water from a public reservoir, and a secondary effluent from a WWTP) was investigated. The pharmaceutical elimination trend agreed with the previously determined rate constants. The influence of the main operating conditions (pH, initial bromine dose, and characteristics of the water matrix) on the degradation of the pharmaceuticals was established. An elimination concentration profile for each pharmaceutical in the water matrices was proposed based on the use of the previously evaluated apparent rate constants, and the theoretical results agreed satisfactorily with experiment. Finally, chlorination experiments performed in the presence of bromide showed that low bromide concentrations slightly accelerate the oxidation of the selected pharmaceuticals during chlorine disinfection.

  3. Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes

    CERN Document Server

    Bai, Peng

    2016-01-01

    Lithium-air batteries have been considered as ultimate solutions for the power source of long-range electrified transportation, but state-of-the-art prototypes still suffer from short cycle life, low efficiency and poor power output. Here, a lithium-bromine rechargeable fuel cell using highly concentrated bromine catholytes is demonstrated with comparable specific energy, improved power density, and higher efficiency. The cell is similar in structure to a hybrid-electrolyte Li-air battery, where a lithium metal anode in nonaqueous electrolyte is separated from aqueous bromine catholytes by a lithium-ion conducting ceramic plate. The cell with a flat graphite electrode can discharge at a peak power density around 9mW cm-2 and in principle could provide a specific energy of 791.8 Wh kg-1, superior to most existing cathode materials and catholytes. It can also run in regenerative mode to recover the lithium metal anode and free bromine with 80-90% voltage efficiency, without any catalysts. Degradation of the sol...

  4. A web service infrastructure for thermochemical data.

    Science.gov (United States)

    Paolini, Christopher P; Bhattacharjee, Subrata

    2008-07-01

    W3C standardized Web Services are becoming an increasingly popular middleware technology used to facilitate the open exchange of chemical data. While several projects in existence use Web Services to wrap existing commercial and open-source tools that mine chemical structure data, no Web Service infrastructure has yet been developed to compute thermochemical properties of substances. This work presents an infrastructure of Web Services for thermochemical data retrieval. Several examples are presented to demonstrate how our Web Services can be called from Java, through JavaScript using an AJAX methodology, and within commonly used commercial applications such as Microsoft Excel and MATLAB for use in computational work. We illustrate how a JANAF table, widely used by chemists and engineers, can be quickly reproduced through our Web Service infrastructure.

  5. Iodine and bromine speciation in snow and the effect of orographically induced precipitation

    Directory of Open Access Journals (Sweden)

    H. Biester

    2007-05-01

    Full Text Available Iodine is an essential trace element for all mammals and may also influence climate through new aerosol formation. Atmospheric bromine cycling is also important due to its well-known ozone depletion capabilities. Despite precipitation being the ultimate source of iodine in the terrestrial environment, the processes effecting its distribution, speciation and transport are relatively unknown. The aim of this study was to determine the effect of orographically induced precipitation on iodine concentrations in snow and also to quantify the inorganic and organic iodine and bromine species. Snow samples were collected over an altitude profile (~840 m from the northern Black Forest and were analysed by ion-chromatography - inductively coupled plasma mass spectrometry (IC-ICP-MS for iodine and bromine species and trace metals (ICP-MS. All elements and species concentrations in snow showed significant (r2>0.65 exponential decrease relationships with altitude despite the short (5 km horizontal distance of the transect. In fact, total iodine more than halved (38 to 13 nmol/l over the 840 m height change. The results suggest that orographic lifting and subsequent precipitation has a major influence on iodine concentrations in snow. This orographically induced removal effect may be more important than lateral distance from the ocean in determining iodine concentrations in terrestrial precipitation. The microphysical removal process was common to all elements indicating that the iodine and bromine are internally mixed within the snow crystals. We also show that organically bound iodine is the dominant iodine species in snow (61–75%, followed by iodide. Iodate was only found in two samples despite a detection limit of 0.3 nmol/l. Two unknown but most likely anionic organo-I species were also identified in IC-ICP-MS chromatograms and comprised 2–10% of the total iodine. The majority of the bromine was inorganic bromide with a max. of 32% organo-Br.

  6. Thermochemical energy storage with ammonia: Aiming for the sunshot cost target

    Science.gov (United States)

    Lavine, Adrienne S.; Lovegrove, Keith M.; Jordan, Joshua; Anleu, Gabriela Bran; Chen, Chen; Aryafar, Hamarz; Sepulveda, Abdon

    2016-05-01

    Thermochemical energy storage has the potential to reduce the cost of concentrating solar thermal power. This paper presents recent advances in ammonia-based thermochemical energy storage (TCES), supported by an award from the U.S. Dept. of Energy SunShot program. Advances have been made in three areas: identification of promising approaches for underground containment of the gaseous products of the dissociation reaction, demonstration that ammonia synthesis can be used to generate steam for a supercritical-steam Rankine cycle, and a preliminary design for integration of the endothermic reactors within a tower receiver. Based on these advances, ammonia-based TCES shows promise to meet the 15/kWht SunShot cost target.

  7. Membrane-less hydrogen bromine flow battery.

    Science.gov (United States)

    Braff, William A; Bazant, Martin Z; Buie, Cullen R

    2013-01-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less hydrogen bromine laminar flow battery as a potential high-power density solution. The membrane-less design enables power densities of 0.795 W cm(-2) at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92% at 25% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high-power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.

  8. Membrane-less hydrogen bromine flow battery

    CERN Document Server

    Braff, W A; Buie, C R

    2014-01-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less, hydrogen bromine laminar flow battery as a potential high power density solution. The membrane-less design enables power densities of 0.795 W cm$^{-2}$ at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92\\% at 25\\% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.

  9. Design and construction of a cascading pressure reactor prototype for solar-thermochemical hydrogen production

    Science.gov (United States)

    Ermanoski, Ivan; Grobbel, Johannes; Singh, Abhishek; Lapp, Justin; Brendelberger, Stefan; Roeb, Martin; Sattler, Christian; Whaley, Josh; McDaniel, Anthony; Siegel, Nathan P.

    2016-05-01

    Recent work regarding the efficiency maximization for solar thermochemical fuel production in two step cycles has led to the design of a new type of reactor—the cascading pressure reactor—in which the thermal reduction step of the cycle is completed in multiple stages, at successively lower pressures. This approach enables lower thermal reduction pressures than in single-staged reactors, and decreases required pump work, leading to increased solar to fuel efficiencies. Here we report on the design and construction of a prototype cascading pressure reactor and testing of some of the key components. We especially focus on the technical challenges particular to the design, and their solutions.

  10. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  11. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  12. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  13. NMR investigation of non-brominated and brominated epoxy ester prepolymers

    Science.gov (United States)

    Žigon, M.; Osredkar, U.; Šebenik, A.

    1992-03-01

    1H, 13C and two-dimensional NMR spectroscopy has been used to investigate the structure of epoxy ester prepolymers, based on non-brominated DGEBA-type or brominated DGETBBA-type epoxy resins, and on an oligomeric carboxylic acid. In the presence of a quaternary phosphonium salt, besides diglycidylether of bisphenol A (DGEBA) or diglycidylether of tetrabromobisphenol A (DGETBBA) and their higher oligomers, monoesters with characteristic R-CH 2-CH(OH)-CH 2-OCOR' groups were detected in prevailing quantities. In dependence of the epoxy-carboxy ratio, isomeric monoesters with hydroxymethyl groups, diesters and diols might also be present.

  14. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  15. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Science.gov (United States)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  16. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  17. Polyvinylpolypyrrolidone-bromine complex: Mild and efficient polymeric reagent for bromination of activated aromatic compounds

    Institute of Scientific and Technical Information of China (English)

    Masoud Mokhtary; Moslem M. Lakouraj

    2011-01-01

    Mild and efficient method for bromination of electron-rich aromatic compounds is described using polyvinylpolypyrrolidonebromine complex (PVPP-Br2). The reaction proceeded smoothly with phenols and N,N-alkylated amines to afford the corresponding monobrominated product in good yields at ambient temperature.

  18. The Addition of Bromine to 1,2-Diphenylethene

    Science.gov (United States)

    Amburgey-Peters, Judith C.; Haynes, Leroy W.

    2005-01-01

    The bromination of 1,2-diphenylethene, using a variety of solvents and brominating agents, can be used in both introductory and advanced organic chemistry courses. The reactions can be used to illustrate the effects of changing solvents and reagents, as well as to reveal interesting aspects of organic reaction mechanisms.

  19. Fundamental study of novel mid-and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.

  20. Fundamental study of novel mid- and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; SUI Jun; LIU QiBin

    2009-01-01

    A new approach to application of mid- and low-temperature solar thermochemical technology was in-troduced and investigated. Concentrated solar thermal energy in the range of 150--300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons. The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level. The new mechanism was used to integrate two novel solar thermal power systems: A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion, for developing highly efficient solar energy use to generate electricity. An innovative prototype of a 5-kW solar receiver/reactor, as the key process for realizing the proposed system, was designed and manu-factured. Furthermore, experimental validation of energy conversion of the mid- and low-temperature solar thermochemical processes were conducted. In addition, a second practical and viable approach to the production of hydrogen, in combination with the novel mid- and low-temperature solar thermo-chemical process, was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming. The results obtained here indicate that the development of mid- and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy, and may enable step-wise approaches to cost-effective, globally scalable solar energy systems.

  1. Fire-retardant coatings based on organic bromine/phenoxy or brominated epoxy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M.; Chiu, Ing L.

    1989-06-01

    Thin phenoxy and brominated epoxy/curing agent films were prepared by solvent casting on Mylar and Kapton. Thicknesses were approximated assuming volume additivity. Important parameters were uniformity of thickness, distribution of the bromine-containing fire retardant, adhesion to carrier substrate (either Mylar or Kapton), and uniformity of the coating, i.e., absence of pinholes, blush, blistering, etc. Wetting behavior was modified using fluoro, silicone or polyurea surfactants. Several solvent systems were examined and a ternary solvent system was ultimately used. Distribution of fire-retardant bromine was analyzed using electron microprobe, x-ray fluorescence and wet chemical methods. Significant discrepancies in the /mu/m-scale analyses of the microprobe measurements have not been resolved. Some of the brominated fire retardants were insoluble in the resin systems and the phase separation was immediately obvious. Similarly, some of the crystallizable epoxies could not be cast easily into homogeneous, amorphous films. Castings were made on a standard 8'' /times/ 10'' aluminum vacuum plate polished with jeweler's rouge prior to every casting. Solvent was removed in a forced air or vacuum oven. Removal and/or curing was accelerated with temperature. The fire-retardant bromine was required to be stable in alcohol/salt solutions. Final formulation used after a significant amount of testing was phenoxy resin PKHC in a ternary solvent system composed of methylethyl ketone, cellosolve acetate and toluene. Tetrabromobisphenol A was used as the flame retardant with FC-430 as surfactant. The dying schedule was 30 minutes at 150/degree/C. 4 refs., 6 figs., 3 tabs.

  2. Formation of THMs and HANs during bromination of Microcystis aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Yunzhu Pu; Lingzhao Kong; Xin Huang; Guoji Ding; Naiyun Gao

    2013-01-01

    Bromine-contained disinfectants and biocides are widely used in swimming pools,recreational waters and cooling towers.The objective of this study was to evaluate the formation of thrihalomethanes (THMs) and haloacetonitriles (HANs) and their cytotoxicity in algae solutions during free bromine disinfection.Disinfection by-products formation potential experiments were conducted using modelsolutions containing 7mg/L (as total organic carbon) Microcystis aeruginosa cells.Effects of free bromine dosage,pH and ammonia were investigated.The results showed that brominated disinfection by-products were the major products when free bromine was applied.The total THMs formed during bromination was much as that formed during chlorination,whereas HANs were elevated by using bromination instead of chlorination.Dibromoacetonitrice (C2H2NBr2) and bromoform (CHBr3) were the only detected species during free bromine disinfection.The production of C2H2NBr2 and CHBr3 increased with disinfectant dosage but decreased with dosing ammonia.CHBr3 increased with the pH changing from 5 to 9.However,C2H2NBr2 achieved the highest production at neutral pH,which was due to a joint effect of variation in hydrolysis rate and free bromine reactivity.The hydrolysis of C2H2NBr2 was basecatalytic and nearly unaffected by disinfectant.Finally,estimation of cytotoxicity of the disinfected algae solutions showed that HANs formation was responsible for the majority of toxicity.Considering its highest toxicity among the measured disinfection by-products,the elevated C2H2NBr2 should be considered when using bromine-related algaecide.

  3. Heterogeneous processing of bromine compounds by atmospheric aerosols: Relation to the ozone budget

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.M.; Henson, B.F.; Dubey, M.K.; Casson, J.L.; Johal, M.S. [Los Alamos National Lab., NM (US); Wilson, K.R. [Univ. of California, Berkeley, CA (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The depletion of ozone, particularly above Antarctica, has been investigated extensively to formulate public policy on the use of halocarbons. While it has been shown that heterogeneous reactions of chlorine compounds on stratospheric particulates cause the ozone hole, little is known of the analogous bromine mechanisms, even though it has been recognized for two decades that catalytic destruction of ozone by bromine could be more efficient than chlorine. Furthermore, field measurements and modeling calculations suggest that these heterogeneous (gas/surface) reactions are not restricted to the Antarctic regions but occur globally. The authors have performed laboratory measurements of the uptake of bromine compounds and other halogens on simulated stratospheric aerosols to help elucidate their role in catalytic ozone destruction cycles. Their studies contribute to the data base required to make assessments of the effects of human activities on global change, including the Montreal Protocol.

  4. Thermochemical Study of Lanthanum Complex Crystal with β-Alanine

    Institute of Scientific and Technical Information of China (English)

    陈平初; 屈松生; 詹正坤; 吴新明

    2002-01-01

    Lanthanum complex crystal with β-alanine (1∶3) was synthesized. Through the DTA,TG,chemistry analysis and comparison with literature, it shows that its form is {[La2(β-ala)6* (H2O)4](ClO4)6*H2O}n, and its purity is 98.86%. The dissolution enthalpy of the reactants and products in 2 mol*L-1 HCl solution (298.15K) was measured by using the isoperibol reaction calorimetry. ΔrHm was calculated by a designed thermochemical cycle of the coordination reaction. From the results and other auxiliary quantities, the standard molar enthalpy of formation of [La2(β-ala)6*(H2O)4](ClO4)6*H2O is obtained to be ΔfHm°{[La2(β-ala)6*(H2O)4](ClO4)6*H2O} = - 7062.911 kJ*mol-1.

  5. Thermochemical factors affecting the dehalogenation of aromatics.

    Science.gov (United States)

    Sadowsky, Daniel; McNeill, Kristopher; Cramer, Christopher J

    2013-12-17

    Halogenated aromatics are one of the largest chemical classes of environmental contaminants, and dehalogenation remains one of the most important processes by which these compounds are degraded and detoxified. The thermodynamic constraints of aromatic dehalogenation reactions are thus important for understanding the feasibility of such reactions and the redox conditions necessary for promoting them. Accordingly, the thermochemical properties of the (poly)fluoro-, (poly)chloro-, and (poly)bromobenzenes, including standard enthalpies of formation, bond dissociation enthalpies, free energies of reaction, and the redox potentials of Ar-X/Ar-H couples, were investigated using a validated density functional protocol combined with continuum solvation calculations when appropriate. The results highlight the fact that fluorinated aromatics stand distinct from their chloro- and bromo- counterparts in terms of both their relative thermodynamic stability toward dehalogenation and how different substitution patterns give rise to relevant properties, such as bond strengths and reduction potentials.

  6. New infrared spectroscopic database for bromine nitrate

    Science.gov (United States)

    Wagner, Georg; Birk, Manfred

    2016-08-01

    Fourier transform infrared measurements of bromine nitrate have been performed in the spectral region 675-1400 cm-1 at 0.014 cm-1 spectral resolution. Absorption cross sections were derived from 38 spectra covering the temperature range from 203 to 296 K and air pressure range from 0 to 190 mbar. For line-by-line analysis, further spectra were recorded at 0.00094 cm-1 spectral resolution at 223 and 293 K. The sample was synthesized from ClONO2 and Br2. Band strengths of the bands ν3 around 803 cm-1 and ν2 around 1286 cm-1 were determined from three pure BrONO2 measurements at different temperatures and pressures. Number densities in the absorption cell were derived from pressure measurements of the purified sample taking into account small amounts of impurities determined spectroscopically. Resulting band strengths are Sν3 = 2.872(52) × 10-17 cm2 molec-1 cm-1 and Sν2 = 3.63(15) × 10-17 cm2 molec-1 cm-1. Absorption cross sections of all measurements were scaled to these band strengths. Further data reduction was achieved with an interpolation scheme based on two-dimensional polynomials in ln(pressure) and temperature. The database is well-suited for remote-sensing application and should reduce the atmospheric bromine nitrate error budget substantially.

  7. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis.

    Science.gov (United States)

    Saikia, Indranirekha; Borah, Arun Jyoti; Phukan, Prodeep

    2016-06-22

    Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis.

  8. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  9. TG-MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene.

    Science.gov (United States)

    Grause, Guido; Karakita, Daiki; Ishibashi, Jun; Kameda, Tomohito; Bhaskar, Thallada; Yoshioka, Toshiaki

    2011-10-01

    The thermal degradation of flame retardant containing high-impact polystyrene (HIPS-Br), one of the most commonly employed plastics in electric and electronic appliances, was examined by thermogravimetry coupled with mass spectroscopy (TG-MS) in order to understand the threat that is posed by the release of hazardous brominated compounds. The HIPS samples contained decabromodiphenylether (DPE) and decabromodibenzyl (DDB) as the flame retardants as well as Sb2O3 as the synergist. The largest number of brominated compounds was obtained in the presence of DPE and Sb2O3 and DDB without Sb2O3. From the degradation of DPE, brominated benzenes, phenols, diphenylethers, and dibenzofurans were identified, and from the degradation of DDB, brominated benzenes, dibenzyls, and phenanthrenes were formed. The interaction between the flame retardant and the polymer matrix resulted in α-bromoethylbenzene. The formation of brominated dibenzodioxins was not observed, probably, due to the low phenol concentration in the polymer melt. No other report has, to our knowledge, ever reported on the formation of brominated phenanthrenes from flame retardants. Because they share similar steric features, it may well be that brominated phenanthrenes are similar in their carcinogen and mutagen potential to dibenzofurans and dibenzodioxins. A plausible mechanism for the formation of the observed compounds is presented, and the role of the synergist is considered.

  10. Experimental and computational thermochemical study of oxindole

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Margarida S., E-mail: msmirand@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Centro de Geologia da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Matos, M. Agostinha R., E-mail: marmatos@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Morais, Victor M.F., E-mail: vmmorais@icbas.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Instituto de Ciencias Biomedicas Abel Salazar, ICBAS, Universidade do Porto, P-4099-003 Porto (Portugal); Liebman, Joel F., E-mail: jliebman@umbc.ed [Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States)

    2010-09-15

    An experimental and computational thermochemical study was performed for oxindole. The standard (p{sup 0}=0.1MPa) molar enthalpy of formation of solid oxindole was derived from the standard molar energy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The respective standard molar enthalpy of sublimation, at T = 298.15 K, was measured by Calvet microcalorimetry. The standard molar enthalpy of formation in the gas phase was derived as -(66.8 {+-} 3.2) kJ . mol{sup -1}. Density functional theory calculations with the B3LYP hybrid functional and the 6-31G* and 6-311G** sets have also been performed in order to obtain the most stable conformation of oxindole. A comparison has been made between the structure of oxindole and that of the related two-ring molecules: indoline and 2-indanone and the one-ring molecules: pyrrolidine and 2,3-dihydropyrrole. The G3(MP2)//B3LYP method and appropriate reactions were used to obtain estimates of the standard molar enthalpy of formation of oxindole in the gas phase, at T = 298.15 K. Computationally obtained estimates of the enthalpy of formation of oxindole are in very good agreement with the experimental gas phase value. The aromaticity of oxindole was evaluated through the analysis of the nucleus independent chemical shifts (NICS) obtained from the B3LYP/6-311G** wave functions.

  11. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  12. Active Thermochemical Tables: thermochemistry for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Ruscic, Branko [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Pinzon, Reinhardt E [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laszewski, Gregor von [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Kodeboyina, Deepti [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Burcat, Alexander [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Leahy, David [Sandia National Laboratories, Livermore, CA 94551 (United States); Montoy, David [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wagner, Albert F [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2005-01-01

    Active Thermochemical Tables (ATcT) are a good example of a significant breakthrough in chemical science that is directly enabled by the US DOE SciDAC initiative. ATcT is a new paradigm of how to obtain accurate, reliable, and internally consistent thermochemistry and overcome the limitations that are intrinsic to the traditional sequential approach to thermochemistry. The availability of high-quality consistent thermochemical values is critical in many areas of chemistry, including the development of realistic predictive models of complex chemical environments such as combustion or the atmosphere, or development and improvement of sophisticated high-fidelity electronic structure computational treatments. As opposed to the traditional sequential evolution of thermochemical values for the chemical species of interest, ATcT utilizes the Thermochemical Network (TN) approach. This approach explicitly exposes the maze of inherent interdependencies normally ignored by the conventional treatment, and allows, inter alia, a statistical analysis of the individual measurements that define the TN. The end result is the extraction of the best possible thermochemistry, based on optimal use of all the currently available knowledge, hence making conventional tabulations of thermochemical values obsolete. Moreover, ATcT offer a number of additional features that are neither present nor possible in the traditional approach. With ATcT, new knowledge can be painlessly propagated through all affected thermochemical values. ATcT also allows hypothesis testing and evaluation, as well as discovery of weak links in the TN. The latter provides pointers to new experimental or theoretical determinations that can most efficiently improve the underlying thermochemical body of knowledge.

  13. Thermochemical energy storage : critical review and recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Haji Abedin, A.; Rosen, M.A. [University of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The global increase in energy demand and environmental concerns are promoting the use of more efficient and cleaner energy technologies. Examples include advanced systems for waste energy recovery and energy integration. Thermochemical thermal energy storage (TES) is an emerging method with the potential for high energy density storage. It is not yet commercial and research and development is needed to better understand and design the technology and to resolve other practical aspects before commercial implementation can occur. TES is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. This paper presented the principles of thermochemical TES and recent advances. Thermochemical TES was also critically assessed and compared with other TES types. The advantages and disadvantages of thermochemical TES were also considered as they relate to other TES types. It was concluded that thermochemical TES has the highest potential to achieve the required compact thermal energy storage where space is limited. 13 refs., 2 tabs., 1 fig.

  14. Thermochemical valorization and characterization of household biowaste.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Vekkos, K; Baratieri, M

    2016-04-15

    Valorization of municipal solid waste (MSW), by means of energy and material recovery, is considered to be a crucial step for sustainable waste management. A significant fraction of MSW is comprised from food waste, the treatment of which is still a challenge. Therefore, the conventional disposal of food waste in landfills is being gradually replaced by recycling aerobic treatment, anaerobic digestion and waste-to-energy. In principle, thermal processes like combustion and gasification are preferred for the recovery of energy due to the higher electrical efficiency and the significantly less time required for the process to be completed when compared to biological process, i.e. composting, anaerobic digestion and transesterification. Nonetheless, the high water content and the molecular structure of biowaste are constraining factors in regard to the application of thermal conversion pathways. Investigating alternative solutions for the pre-treatment and more energy efficient handling of this waste fraction may provide pathways for the optimization of the whole process. In this study, by means of utilizing drying/milling as an intermediate step, thermal treatment of household biowaste has become possible. Household biowaste has been thermally processed in a bench scale reactor by means of torrefaction, carbonization and high temperature pyrolysis. According to the operational conditions, fluctuating fractions of biochar, bio-oil (tar) and syngas were recovered. The thermochemical properties of the feedstock and products were analyzed by means of Simultaneous Thermal Analysis (STA), Ultimate and Proximate analysis and Attenuated Total Reflectance (ATR). The analysis of the products shows that torrefaction of dried household biowaste produces an energy dense fuel and high temperature pyrolysis produces a graphite-like material with relatively high yield.

  15. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  16. New Developments in Thermo-Chemical Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Bernd Edenhofer

    2004-01-01

    Thermo-chemical diffusion processes like carburising, nitriding and boronizing play an important part in modern manufacturing technologies. They exist in many varieties depending on the type of diffusing element used and the respective process procedure. The most important industrial heat treatment process is case-hardening, which consists of thermochemical diffusion process carburising or its variation carbonitriding, followed by a subsequent quench. The latest developments of using different gaseous carburising agents and increasing the carburising temperature are one main area of this paper. The other area is the evolvement of nitriding and especially the ferritic nitrocarburising process by improved process control and newly developed process variations using carbon, nitrogen and oxygen as diffusing elements in various process steps. Also boronizing and special thermo-chemical processes for stainless steels are discussed.

  17. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  18. Thermochemical production of hydrogen via multistage water splitting processes

    Science.gov (United States)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  19. A techno-economic review of thermochemical cellulosic biofuel pathways.

    Science.gov (United States)

    Brown, Tristan R

    2015-02-01

    Recent advances in the thermochemical processing of biomass have resulted in efforts to commercialize several cellulosic biofuel pathways. Until commercial-scale production is achieved, however, techno-economic analysis is a useful methodology for quantifying the economic competitiveness of these pathways with petroleum, providing one indication of their long-term feasibility under the U.S. revised Renewable Fuel Standard. This review paper covers techno-economic analyses of thermochemical cellulosic biofuel pathways in the open literature, discusses and compares their results, and recommends the adoption of additional analytical methodologies that will increase the value of future pathway analyses.

  20. Critical Evaluation of Thermochemical Properties of C1-C4 Species: Updated Group-Contributions to Estimate Thermochemical Properties

    Science.gov (United States)

    Burke, S. M.; Simmie, J. M.; Curran, H. J.

    2015-03-01

    A review of literature on enthalpies of formation and molar entropies for alkanes, alkenes, alcohols, hydroperoxides, and their associated radicals has been compiled and critically evaluated. By comparing literature values, the overall uncertainty in thermochemical properties of small hydrocarbons and oxygenated hydrocarbons can be highlighted. In general, there is good agreement between heat of formation values in the literature for stable species; however, there is greater uncertainty in the values for radical species and for molar entropy values. Updated values for a group-additivity method for the estimation of thermochemical properties based on the evaluated literature data are proposed. The new values can be used to estimate thermochemical data for larger, combustion-relevant species for which no calculations or measurements currently exist, with increased confidence.

  1. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Rajendra Dongre; Minakshi Thakur; Dinesh Ghugal; Jostna Meshram

    2012-10-01

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine pretreatment alters porosity and specific surface area of chitosan by means of physicochemical interaction with cationic sites of chitosan skeleton, besides imparting anionic alteration at amino linkages of chitosan, to remove lead (II) by chemical interactions on superfluous active sites as characterized by FTIR, SEM, DTA and elemental analysis. Lead adsorptions were studied in batch mode by varying parameters viz. pH, bromine loading, sorbent dosage, initial lead concentration, contact time and temperature. The adsorption equilibrium data was well fitted to Freundlich isotherm and maximum sorption capacity of 30% bromine pretreated chitosan sorbent was 1.755 g/kg with 85–90% lead removal efficiency. Though cost and applicability of sorbent is unproven, yet contrast to raw chitosan derivatives, activated carbons and some resins, 30% bromine pretreated chitosan endow benign and efficient lead abatement technique.

  2. Fate of higher brominated PBDEs in lactating cows.

    Science.gov (United States)

    Kierkegaard, Amelie; Asplund, Lillemor; de Wit, Cynthia A; McLachlan, Michael S; Thomas, Gareth O; Sweetman, Andrew J; Jones, Kevin C

    2007-01-15

    Dietary intake studies of lower brominated diphenyl ethers (BDEs) have shown that fish and animal products are important vectors of human exposure, but almost no data exist for higher brominated BDEs. Therefore, the fate of hepta- to decaBDEs was studied in lactating cows exposed to a naturally contaminated diet by analyzing feed, feces, and milk samples from a previous mass balance study of PCB. Tissue distribution was studied in one cow slaughtered after the experiment. BDE-209 was the dominant congener in feed, organs, adipose tissues, and feces, but not in milk. In contrast to PCBs and lower brominated BDEs, concentrations of hepta- to decaBDEs in adipose tissue were 9-80 times higher than in milk fat and the difference increased with degree of bromination/log K(OW). The congener profiles in adipose tissue and feed differed; BDE-207, BDE-196, BDE-197, and BDE-182 accumulated to a surprisingly greater extent in the fat compared to their isomers, suggesting metabolic debromination of BDE-209 to these BDEs. The results indicate that meat rather than dairy product consumption may be an important human exposure route to higher brominated BDEs.

  3. Assessment of thermochemical data on steel deoxidation

    Directory of Open Access Journals (Sweden)

    Gómez, P.

    2009-08-01

    Full Text Available It is proposed to develop a method to judge the certainty on the information regarding to deoxidation equilibria of iron melts. To accomplish this objective, thermochemical data was collated and then evaluated. The basic knowledge on deoxidation conditions are framed by the non-ideal Henrian behaviour of diluted solutions of both deoxidizer and oxygen in liquid iron in equilibrium with a pure oxide. Conventional deoxidation reactions were considered at 1,873 K such that in their equilibrium constants, only first order interaction coefficients were considered. The criteria in selecting the most appropriated free energy equation was based on evaluating them under two critical composition points: 1 where they satisfy an oxygen to deoxidizer ratio dictated by its stoichiometry and 2 where oxygen contents at a given amount of deoxidizer reaches a minimum value. These data were plotted on logarithmic scales to appreciate the effects of deoxidizer’s valences. Once such information was classified, under restrictions 1 and 2, previous compositions were related to deoxidizer´s electronegativities.

    El presente artículo propone desarrollar un método para juzgar la certidumbre de la información pertinente al equilibrio de desoxidación de fundidos de hierro. Para lograr este objetivo, se recolectaron y evaluaron datos termoquímicos existentes. Las teorías sobre desoxidación se describen mediante el comportamiento Henriano de soluciones diluidas del agente desoxidante y el hierro fundido en equilibrio con un óxido. En este estudio, solo se consideran reacciones convencionales a 1.873 K, de forma tal que se consideraron las constantes de equilibrio y coeficientes de interacción de primer orden. El criterio empleado para utilizar la expresión más adecuada de la energía libre se basó en evaluar dos puntos críticos: uno, donde se satisface una relación oxígeno/desoxidante dictada por la estequiometría y dos,cuando el contenido de ox

  4. An exergetic/energetic/economic analysis of three hydrogen production processes - Electrolysis, hybrid, and thermochemical

    Science.gov (United States)

    Funk, J. E.; Eisermann, W.

    This paper presents the results of a combined first and second law analysis, along with capital and operating costs, for hydrogen production from water by means of electrolytic, hybrid, and thermochemical processes. The processes are SPE and Lurgi electrolysis with light water reactor power generation and sulfur cycle hybrid, thermochemical and SPE electrolysis with a very high temperature reactor primary energy source. Energy and Exergy (2nd law) flow diagrams for the process are shown along with the location and magnitude of the process irreversibilities. The overall process thermal (1st law) efficiencies vary from 25 to 51% and the exergetic (2nd law) efficiencies, referred to the fuel for the primary energy source, vary from 22 to 45%. Capital and operating costs, escalated to 1979 dollars, are shown for each process for both the primary energy source and the hydrogen production plant. All costs were taken from information available in the open literature and are for a plant capacity of 100 x 10 to the 6th SCF/day. Production costs vary from 10 to 18 $/GJ, based on the higher heating value of hydrogen, and are based on a 90% plant operating factor with a 21% annual charge on total capital costs.

  5. Environmental monitoring of brominated flame retardants

    Science.gov (United States)

    Vagula, Mary C.; Kubeldis, Nathan; Nelatury, Charles F.

    2011-06-01

    Brominated flame retardants (BFRs) are synthetic organobromide compounds which inhibit ignition and combustion processes. Because of their immense ability to retard fire and save life and property, they have been extensively used in many products such as TVs, computers, foam, plastics etc. The five major classes of BFRs are tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), pentabromodiphenyl ether, octabromodiphenyl ether, and decabromodiphenyl ether. The last three are also commonly called PBDEs. BDE-85 and BDE-209 are the two prominent congeners of PBDEs and this study reports the adverse effects of these congeners in rodents. Exposure of rat sciatic nerves to 5 μg/mL and 20 μg/mL of BDE-85 and BDE-209 respectively lead to significant, concentration dependent reduction in nerve conduction function. Glucose absorption in the rat intestinal segments exposed to 5 μg/mL of BDE-85 and BDE-209 was significantly reduced for both the compounds tested. Lastly, mice when exposed to 0.25 mg/kg body weight for four days showed a disruption in oxidant and antioxidant equilibrium. The tissues namely liver and brain have shown increase in the levels of lipid hydroperoxides indicating oxidative stress. Moreover, all the protective enzymes namely superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and glutathione S transferase (GST) have shown tissue specific alterations indicating the induction of damaging oxidative stress and setting in of lipid peroxidation in exposed animals. The results indicate monitoring of PBDEs in the environment is essential because levels as low as 5 μg/mL and 0.25 mg/kg body weight were able to cause damage to the functions of rodents.

  6. The geochemistry of stable chlorine and bromine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eggenkamp, Hans [Onderzock and Beleving, Bussum (Netherlands)

    2014-11-01

    First book solely dedicated to the geochemistry of chlorine and bromine isotopes. Detailed description of analytical techniques, including their advantages and disadvantages. Indication of research fields where measurement of these isotopes is especially useful. This book provides detailed information on the history, analysis and applications of chlorine and bromine isotope geochemistry. Chlorine and bromine are geochemically unique as they prefer to exist as single charged negative ions. For this reason isotope fractionation reflects mostly processes that are not related to changes in the redox state and this fractionation is generally modest. The book will describe the processes that are most easily detected using these isotopes. Also isotope variations, and processes that cause them, measured in oxidised species such as perchlorates and in organic molecules will be described in this book.

  7. 40 CFR 180.519 - Bromide ion and residual bromine; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bromide ion and residual bromine... Tolerances § 180.519 Bromide ion and residual bromine; tolerances for residues. (a) General. The food additives, bromide ion and residual bromine, may be present in water, potable in accordance with...

  8. An Efficient and Facile Methodology for Bromination of Pyrimidine and Purine Nucleosides with Sodium Monobromoisocyanurate (SMBI

    Directory of Open Access Journals (Sweden)

    Roger Stromberg

    2013-10-01

    Full Text Available An efficient and facile strategy has been developed for bromination of nucleosides using sodium monobromoisocyanurate (SMBI. Our methodology demonstrates bromination at the C-5 position of pyrimidine nucleosides and the C-8 position of purine nucleosides. Unprotected and also several protected nucleosides were brominated in moderate to high yields following this procedure.

  9. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  10. Thermochemical conversion of waste tyres-a review.

    Science.gov (United States)

    Labaki, Madona; Jeguirim, Mejdi

    2016-10-27

    A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.

  11. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  12. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation c

  13. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in

  14. Sensing and inactivation of Bacillus anthracis Sterne by polymer-bromine complexes.

    Science.gov (United States)

    D'Angelo, Paola A; Bromberg, Lev; Hatton, T Alan; Wilusz, Eugene

    2016-08-01

    We report on the performance of brominated poly(N-vinylpyrrolidone) (PVP-Br), brominated poly(ethylene glycol) (PEG-Br), and brominated poly(allylamine-co-4-aminopyridine) (PAAm-APy-Br) for their ability to decontaminate Bacillus anthracis Sterne spores in solution while also allowing for the sensing of the spores. The polymers were brominated by bromine using carbon tetrachloride or potassium tribromide as solvents, with bromine loadings ranging from 1.6 to 4.2 mEq/g of polymer. B. anthracis Sterne spores were exposed to increasing concentrations of brominated polymers for 5 min, while the kinetics of the sporicidal activity was assessed. All brominated polymers demonstrated spore log-kills of 8 within 5 min of exposure at 12 mg/mL aqueous polymer concentration. Sensing of spores was accomplished by measuring the release of dipicolinic acid (DPA) from the spore using time-resolved fluorescence. Parent, non-brominated polymers did not cause any release of DPA and the spores remained viable. In contrast, spores exposed to the brominated polymers were inactivated and the release of DPA was observed within minutes of exposure. Also, this release of DPA continued for a long time after spore inactivation as in a controlled release process. The DPA release was more pronounced for spores exposed to brominated PVP and brominated PEG-8000 compared to brominated PAAm-APy and brominated PEG-400. Using time-resolved fluorescence, we detected as low as 2500 B. anthracis spores, with PEG-8000 being more sensitive to low spore numbers. Our results suggest that the brominated polymers may be used effectively as decontamination agents against bacterial spores while also providing the sensing capability.

  15. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  16. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Pihl, Josh A [ORNL; Conklin, Jim [ORNL

    2010-01-01

    We present a detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine Second Law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane the estimated Second Law efficiency increases for constant volume reforming are 9% and 11%, respectively. The Second Law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  17. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C Stuart [ORNL; Pihl, Josh A [ORNL; Chakravarthy, Veerathu K [ORNL; Conklin, Jim [ORNL

    2010-01-01

    A detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction is presented. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine second law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane, the estimated second law efficiency increases for constant volume reforming are 9 and 11%, respectively. The second law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with the gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  18. Numerical investigation of a straw combustion boiler – Part I: Modelling of the thermo-chemical conversion of straw

    Directory of Open Access Journals (Sweden)

    Dernbecher Andrea

    2016-01-01

    Full Text Available In the framework of a European project, a straw combustion boiler in conjunction with an organic Rankine cycle is developed. One objective of the project is the enhancement of the combustion chamber by numerical methods. A comprehensive simulation of the combustion chamber is prepared, which contains the necessary submodels for the thermo-chemical conversion of straw and for the homogeneous gas phase reactions. Part I introduces the modelling approach for the thermal decomposition of the biomass inside the fuel bed, whereas part II deals with the simulation of the gas phase reactions in the freeboard.

  19. Brominated Dioxins: Little-Known New Health Hazards - A Review

    Directory of Open Access Journals (Sweden)

    Piskorska-Pliszczyńska Jadwiga

    2014-10-01

    Full Text Available This article reviews the present state of the science concerning the polybrominated dibenzo-p-dioxins (PBDDs and dibenzofurans (PBDFs. Everywhere in the world people are exposed to anthropogenic origin chemicals. Some of them are long-lived organic compounds, which persist over the years in the environment. Persistent organic pollutants, such as organohalogen compounds, accumulate in environmental and biological compartments and have adverse effects on the health of humans and animals. Little is known about the brominated and mixed chloro/bromo dioxin and furans. Existing literature suggests that brominated dioxins and furans have similar toxicity profiles to their chlorinated analogues. The exposure data are extremely limited, showing a major data gap in estimating the potential environmental and health risk of these chemicals. The rapid increase in the use of brominated flame retardants (the main source of these pollutants has raised the level of concern over environmental and health damage from brominated dioxins and furans. It is likely that human as well as wildlife exposure to these contaminants will increase with their greater use. The findings reported here present strong evidence of the PBDDs and PBDFs as an emerging new class of contaminants.

  20. A Sternheimer-like response property of the bromine molecule

    Science.gov (United States)

    Fowler, P. W.; Peebles, S. A.; Legon, A. C.

    The generalised polarisability describing the response to an applied field of the electric field gradient at a nucleus in Br2 is calculated ab initio. A value of 110.55 a-10 is found at the self-consistent -field level. This is about half the value derived by modelling the measured nuclear quadrupole coupling constants of theammonia-bromine complex.

  1. Thermochemical processes for hydrogen production by water decomposition. Progress report, April 1--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, D.D.; Myers, A.L.

    1975-12-01

    The interest in hydrogen as a chemical feedstock and as a possible non-polluting fuel has continued to be high, affected by recent estimates of 1980 prices for imported natural gas in the range of $3.00/MM Btu. Our exhaustive survey of multi-step thermochemical and hybrid cycles concluded that the most promising prospects to date are (1) a modification of Abraham's ANL-4 cycle, and (2) the Rohm and Haas multi-reaction, single reactor cycle. Both sequences utilize iodine-based oxidation-reduction chemistry and each ultimately produces hydrogen via an iodide vapor decomposition, in the first case from NH/sub 4/I, in the second from HI. Process feasibility depends on demonstration of separation steps of relatively low energy requirements. Further research is proposed along four lines: (1) modeling and computation focusing on selectivity in gas-solid reactions, (2) experimental studies of solids flow and mixing, as well as mass transfer and chemical reaction in rotating and/or oscillating kiln reactors, (3) kinetics of the crucial reactions in the ANL-4 and Rohm and Haas cycles, and gas separations associated with these processes, and (4) flow sheet evaluations and preliminary economics.

  2. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  3. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...... in determining crustal seismic discontinuities. In the second chapter, I deal about the possibility to disentangle the dynamic and isostatic contribution in shaping the Earth's surface topography. Dynamic topography is directly linked to mantle convection driven by mantle thermo-chemical anomalies, and can...... argue therefore that our understandings of the lithosphere density structure, needed to determine the isostatic topography, and of the mantle density and viscosity, required to compute the dynamic topography, are still too limited to allow a robust determination of mantle convection effects on the Earth...

  4. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed.

  5. Thermochemical water decomposition. [hydrogen separation for energy applications

    Science.gov (United States)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  6. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  7. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    CERN Document Server

    Blecic, Jasmina; Bowman, M Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...

  8. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The

  9. Thermochemical data for CVD modeling from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  10. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  11. Reduction of hazards from copper(I) chloride in a Cu-Cl thermochemical hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Ghandehariun, Samane, E-mail: samane.ghandehariun@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Wang, Zhaolin, E-mail: zhaolin.wang@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rosen, Marc A., E-mail: marc.rosen@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Naterer, Greg F., E-mail: greg.naterer@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Hazards are quantified for each process of the cycle where the CuCl may be present. Black-Right-Pointing-Pointer Using Cu{sub 2}OCl{sub 2} to absorb CuCl vapour is the most preferable option. Black-Right-Pointing-Pointer Utilization of a cooler at the outlet of the oxygen reactor is unadvisable. Black-Right-Pointing-Pointer If an atomization method is used for heat recovery, the fluid should be circulated. - Abstract: The copper-chlorine cycle of thermochemical water splitting, using various heat sources, is a promising technology for hydrogen production. The chemical hazards accompanying the new technology affect significantly the industrialization of the cycle, but have scarcely been examined. This paper addresses this need by examining the copper(I) chloride (CuCl) hazards that may be generated in the cycle. Regardless of the variations of Cu-Cl cycle, copper(I) chloride is always present, serving as an intermediate compound that may cause health concerns. In this paper, the CuCl hazards are quantified for each process from the generation source of the hazards along with the paths where the CuCl may be present. The processes of greatest relevance include oxygen production, heat recovery, solidification, and dissolution. The options for reducing the CuCl hazards in a Cu-Cl thermochemical hydrogen production plant are evaluated from the perspectives of variations of the Cu-Cl cycle, process integration, heat recovery, and equipment design. It is concluded that using the intake reactant Cu{sub 2}OCl{sub 2} for the oxygen production step to absorb CuCl vapor is the most preferable option compared with other alternatives such as absorbing CuCl vapor with water or CuCl{sub 2}, building additional structures inside the oxygen production reactor, and cooling the exiting gas at the outlet of the oxygen reactor.

  12. Vertically Discontinuous Seismic Signatures From Continuous Thermochemical Plumes

    Science.gov (United States)

    Harris, A. C.; Kincaid, C.; Savage, B.

    2008-12-01

    To interpret seismic signatures associated with mantle upwellings, we must understand the distribution of thermochemical heterogeneities within mantle plumes. Thermochemical heterogeneities are expected to arise within plumes by the incorporation of subducted lithosphere (Eclogite and Harzburgite) that has reached the plume source region (thermal boundary layers in the mantle). We analyze laboratory experiments in conjunction with seismic velocity models to predict the seismic signature of thermochemical plumes. Laboratory experiments are fully three-dimensional and use glucose syrup (Rayleigh number: 106) to model the mantle and a two-layer subducted lithosphere, where composition (viscosity and density) is controlled by water content. Experiments show heterogeneous upwellings with variations in both temperature and composition that are more complex than predicted in previous plume models. Spatial distributions for temperature and composition in representative, repeatable types of thermochemical upwellings are tracked through time, scaled to mantle values and used to calculate predicted seismic velocities. Apparent seismic velocity signals are estimated for patterns in thermochemical heterogeneity with length scales ranging from 1 to 300 km and excess temperatures from 50 to 300°C. Results show that if plumes are purely thermal they can be identified in the usual way, by slow velocities. However, if plumes are a mixture of compositions, as predicted by laboratory models, their velocity structure is more complex. An Ecolgite lens within a plume at ~300km depth with an excess temperature of 250°C can have the same velocity as regular mantle with no excess temperature. A Harzburgite lobe of a plume head (up to half of the plume volume) at 300km depth with an excess temperature of 225°C can have the same Vs as regular mantle with no excess temperature, but can only mask up to 55°C in Vp. Spatial variations in temperature control velocity structure above 300km

  13. Substrate Directed Regioselective Monobromination of Aralkyl Ketones Using N-Bromosuccinimide Catalysed by Active Aluminium Oxide: α -Bromination versus Ring Bromination.

    Science.gov (United States)

    Mohan, Reddy Bodireddy; Reddy, G Trivikram; Gangi Reddy, N C

    2014-01-01

    Bromination of aralkyl ketones using N-bromosuccinimide in presence of active Al2O3 provided either α -monobrominated products in methanol at reflux or mononuclear brominated products in acetonitrile at reflux temperature with excellent isolated yields depending on the nature of substrate employed. The α -bromination was an exclusive process when aralkyl ketones containing moderate activating/deactivating groups were subjected to bromination under acidic Al2O3 conditions in methanol at reflux while nuclear functionalization was predominant when aralkyl ketones containing high activating groups were utilized for bromination in presence of neutral Al2O3 conditions in acetonitrile at reflux temperature. In addition, easy isolation of products, use of inexpensive catalyst, short reaction time (10-20 min), and safe operational practice are the major benefits in the present protocol.

  14. Discovery of Novel Perovskites for Solar Thermochemical Water Splitting from High-Throughput First-Principles Calculations

    Science.gov (United States)

    Emery, Antoine; Wolverton, Chris

    Among the several possible routes of hydrogen synthesis, thermochemical water splitting (TWS) cycles is a promising method for large scale production of hydrogen. The choice of metal oxide used in a TWS cycle is critical since it governs the rate and efficiency of the gas splitting process. In this work, we present a high-throughput density functional theory (HT-DFT) study of ABO3 perovskite compounds to screen for thermodynamically favorable two-step thermochemical water splitting materials. We demonstrate the use of two screens, based on thermodynamic stability and oxygen vacancy formation energy, on 5,329 different compositions to predict 139 stable potential candidate materials for water splitting applications. Several of these compounds have not been experimentally explored yet and present promising avenues for further research. Additionally, the large dataset of compounds and stability in our possession allowed us to revisit the structural maps for perovskites. This study shows the benefit of using first-principles calculations to efficiently screen an exhaustively large number of compounds at once. It provides a baseline for further studies involving more detailed exploration of a restricted number of those compounds.

  15. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  16. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-08-01

    Full Text Available Global models of atmospheric mercury generally assume that OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model

  17. The crystal structure and superconducting properties of monatomic bromine.

    Science.gov (United States)

    Duan, Defang; Meng, Xing; Tian, Fubo; Chen, Changbo; Wang, Liancheng; Ma, Yanming; Cui, Tian; Liu, Bingbing; He, Zhi; Zou, Guangtian

    2010-01-13

    The crystal structure and superconducting properties of monatomic bromine under high pressure have been studied by first-principles calculations. We have found the following phase transition sequence with increasing pressure: from body-centered orthorhombic (bco, phase II) to body-centered tetragonal structure (bct, phase III) at 126 GPa, then to face-centered cubic structure (fcc, phase IV) at 157 GPa, which is stable at least up to 300 GPa. The calculated superconducting critical temperature T(c) = 1.46 K at 100 GPa is consistent with the experimental value of 1.5 K. In addition, our results of T(c) decrease with increasing pressure in all the monatomic phases of bromine, similar to monatomic iodine. Further calculations show that the decrease of λ with pressure in phase IV is mainly attributed to the weakening of the 'soft' vibrational mode caused by pressure.

  18. New Methods for Labeling RGD Peptides with Bromine-76

    Directory of Open Access Journals (Sweden)

    Lixin Lang, Weihua Li, Hong-Mei Jia, De-Cai Fang, Shushu Zhang, Xilin Sun, Lei Zhu, Ying Ma, Baozhong Shen, Dale O. Kiesewetter, Gang Niu, Xiaoyuan Chen

    2011-01-01

    Full Text Available Direct bromination of the tyrosine residues of peptides and antibodies with bromine-76, to create probes for PET imaging, has been reported. For peptides that do not contain tyrosine residues, however, a prosthetic group is required to achieve labeling via conjugation to other functional groups such as terminal α-amines or lysine ε-amines. The goal of this study was to develop new strategies for labeling small peptides with Br-76 using either a direct labeling method or a prosthetic group, depending on the available functional group on the peptides. A new labeling agent, N-succinimidyl-3-[76Br]bromo-2,6-dimethoxybenzoate ([76Br]SBDMB was prepared for cyclic RGD peptide labeling. N-succinimidyl-2, 6-dimethoxybenzoate was also used to pre-attach a 2, 6-dimethoxybenzoyl (DMB moiety to the peptide, which could then be labeled with Br-76. A competitive cell binding assay was performed to determine the binding affinity of the brominated peptides. PET imaging of U87MG human glioblastoma xenografted mice was performed using [76Br]-BrE[c(RGDyK]2 and [76Br]-BrDMB-E[c(RGDyK]2. An ex vivo biodistribution assay was performed to confirm PET quantification. The mechanisms of bromination reaction between DMB-c(RGDyK and the brominating agent CH3COOBr were investigated with the SCRF-B3LYP/6-31G* method with the Gaussian 09 program package. The yield for direct labeling of c(RGDyK and E[c(RGDyK]2 using chloramine-T and peracetic acid at ambient temperature was greater than 50%. The yield for [76Br]SBDMB was over 60% using peracetic acid. The conjugation yields for labeling c(RGDfK and c(RGDyK were over 70% using the prosthetic group at room temperature. Labeling yield for pre-conjugated peptides was over 60%. SDMB conjugation and bromination did not affect the binding affinity of the peptides with integrin receptors. Both [76Br]Br-E[c(RGDyK]2 and [76Br]BrDMB-E[c(RGDyK]2 showed high tumor uptake in U87MG tumor bearing mice. The specificity of the imaging tracers

  19. Seasonal variation of bromine monoxide over the Rann of Kutch salt marsh seen from space

    Science.gov (United States)

    Hörmann, Christoph; Beirle, Steffen; Penning de Vries, Marloes; Sihler, Holger; Platt, Ulrich; Wagner, Thomas

    2015-04-01

    Bromine monoxide (BrO) is an important catalyst in the depletion of tropospheric and stratospheric ozone (O3). In the troposphere, reactive bromine can be released from sea ice, volcanoes, sea-salt aerosol or salt lakes. For all of these natural sources enhanced BrO vertical column densities (VCDs) have been successfully observed from ground using Differential Optical Absorption Spectroscopy (DOAS). Until now, satellite observations were only reported for polar regions during springtime and volcanic emissions (mostly for major eruptions). We present the first satellite observations of enhanced monthly mean BrO VCDs over a salt marsh, the Rann of Kutch (India/Pakistan), during 2004-2014 as seen by the Ozone Monitoring Instrument (OMI). The Rann of Kutch is a so-called 'seasonal' salt marsh. During India's summer monsoon (June/July - September/October), the flat desert of salty clay and mudflats, which average 15 meters above sea level, fills with standing rain and sea water. With more than 7500 km2 it is the largest salt desert in the world and additionally one of the hottest areas of India with summer temperatures around 50 ° C and winter temperatures decreasing below 0 ° C. Probably due to these rather extreme conditions, the Rann of Kutch has not been yet investigated for atmospheric composition measurements by ground-based instruments. Satellite observations, however, provide the unique possibility to investigate the entire area remotely over a long-time period. The OMI data reveals recurring maximum BrO VCDs during April/May, but no enhanced column densities during the monsoon season while the area is flooded. In the following months the signal only recovers slowly while the salty surface dries up. We discuss the possible effects of temperature, precipitation and relative humidity on the release of enhanced reactive bromine concentrations. In order to investigate a possible diurnal cycle of the BrO concentration, the OMI results (at a local overflight time

  20. Stage efficiency in the analysis of thermochemical water decomposition processes. [Procedure using the figure of merit is expanded to include individual stage efficiencies and loss coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Conger, W.L.; Funk, J.E.; Carty, R.H.; Soliman, M.A.; Cox, K.E.

    1976-01-01

    The procedure for analyzing thermochemical water-splitting processes using the figure of merit is expanded to include individual stage efficiencies, and loss coefficients. The use of these quantities to establish the thermodynamic inefficiencies of each stage is shown. A number of processes are used to illustrate these concepts and procedures and to demonstrate the facility with which process steps contributing most to the cycle efficiency are found. The procedure allows attention to be directed to those steps of the process where the greatest increase in total cycle efficiency can be obtained.

  1. Bromination of hydrocarbons with CBr4, initiated by light-emitting diode irradiation

    Directory of Open Access Journals (Sweden)

    Yuta Nishina

    2013-08-01

    Full Text Available The bromination of hydrocarbons with CBr4 as a bromine source, induced by light-emitting diode (LED irradiation, has been developed. Monobromides were synthesized with high efficiency without the need for any additives, catalysts, heating, or inert conditions. Action and absorption spectra suggest that CBr4 absorbs light to give active species for the bromination. The generation of CHBr3 was confirmed by NMR spectroscopy and GC–MS spectrometry analysis, indicating that the present bromination involves the homolytic cleavage of a C–Br bond in CBr4 followed by radical abstraction of a hydrogen atom from a hydrocarbon.

  2. Specific heat of pristine and brominated graphite fibers, composites and HOPG. [Highly Oriented Pyrolytic Graphite

    Science.gov (United States)

    Hung, Ching-Chen; Maciag, Carolyn

    1987-01-01

    Differential scanning calorimetry was used to obtain specific heat values of pristine and brominated P-100 graphite fibers and brominated P-100/epoxy composite as well as pristine and brominated highly oriented pyrolytic graphite (HOPG) for comparison. Based on the experimental results obtained, specific heat values are calculated for several different temperatures, with a standard deviation estimated at 1.4 percent of the average values. The data presented here are useful in designing heat transfer devices (such as airplane de-icing heaters) from bromine fibers.

  3. Elemental Bromine Production by TiO2 Photocatalysis and/or Ozonation.

    Science.gov (United States)

    Parrino, Francesco; Camera Roda, Giovanni; Loddo, Vittorio; Palmisano, Leonardo

    2016-08-22

    Significant production of elemental bromine (Br2 ) was observed for the first time when treating bromide containing solutions at acidic pH, with TiO2 photocatalyst, ozone, or a combination thereof. Br2 selectivities up to approximately 85 % were obtained and the corresponding bromine mass balance values satisfied. The process is general and may be applied at a laboratory scale for green bromination reactions, or industrially as a cheap, safe, and environmentally sustainable alternative to the currently applied bromine production methods.

  4. High selectively oxidative bromination of toluene derivatives by the H2O2-HBr system

    Institute of Scientific and Technical Information of China (English)

    Jie Ju; Yu Jin Li; Jian Rong Gao; Jian Hong Jia; Liang Han; Wei Jian Sheng; Yi Xia Jia

    2011-01-01

    An aqueous solution of hydrogen peroxide and hydrogen bromide illuminated by a 60 W incandescent light bulb serves as a source of bromine radicals. Various substituted toluenes (NO2,Cl, Br, H, CH3) were high selectively brominated at the benzyl position for monobromination in CH2C12 at ice water with catalyst free. This simple but effective bromination of toluene derivatives with an aqueous H2O2-HBr system is characterized with the use of inexpensive reagents and a lower impact on the environment, which make it a good alternative to the existing bromination methods.

  5. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    OpenAIRE

    Tas, E.; M. Peleg; D. U. Pedersen; Matveev, V; A. Pour Biazar; Luria, M.

    2006-01-01

    International audience; The Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS) chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the basic chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. Th...

  6. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    OpenAIRE

    A. Pour Biazar; Matveev, V; D. U. Pedersen; M. Peleg; Tas, E.; Luria, M.

    2006-01-01

    The Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS) chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the ...

  7. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  8. ABO3 (A = La, Ba, Sr, K; B = Co, Mn, Fe) perovskites for thermochemical energy storage

    Science.gov (United States)

    Babiniec, Sean M.; Coker, Eric N.; Ambrosini, Andrea; Miller, James E.

    2016-05-01

    The use of perovskite oxides as a medium for thermochemical energy storage (TCES) in concentrating solar power systems is reported. The known reduction/oxidation (redox) active perovskites LaxSr1-xCoyMn1-yO3 (LSCM) and LaxSr1-xCoyFe1-yO3 (LSCF) were chosen as a starting point for such research. Materials of the LSCM and LSCF family were previously synthesized, their structure characterized, and thermodynamics reported for TCES operation. Building on this foundation, the reduction onset temperatures are examined for LSCM and LSCF compositions. The reduction extents and onset temperatures are tied to the crystallographic phase and reaction enthalpies. The effect of doping with Ba and K is discussed, and the potential shortcomings of this subset of materials families for TCES are described. The potential for long-term stability of the most promising material is examined through thermogravimetric cycling, scanning electron microscopy, and dilatometry. The stability over 100 cycles (450-1050 °C) of an LSCM composition is demonstrated.

  9. Non-equilibrium thermochemical heat storage in porous media

    DEFF Research Database (Denmark)

    Nagel, T.; Shao, H.; Singh, Ashok

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also...... compressible gas flow through a porous solid is presented along with its finite element implementation where solid-gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius...

  10. Estimating Equivalency of Explosives Through A Thermochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, and show comparisons with equivalency data from other sources.

  11. Low temperature thermochemical treatment of stainless steel; bridging from science to technology

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the fundamental scientific aspects of low temperature thermochemical treatment of stainless steel, in particular the characterisation of socalled expanded austenite is addressed. Selected technological examples of thermochemical treatment...... of stainless steel are presented....

  12. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-

  13. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    DEFF Research Database (Denmark)

    Rafique, Rashad; Poulsen, Tjalfe; Nizami, Abdul-Sattar

    2010-01-01

    -treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 degrees C-150 degrees C). Results showed that thermo-chemical pretreatment has high effect...

  14. 太阳能热化学储能研究进展%Research progress of solar thermochemical energy storage

    Institute of Scientific and Technical Information of China (English)

    吴娟; 龙新峰

    2014-01-01

    should be focused on design of energy storage reactor,cycle performance investigation in the energy storage and release process,selection of appropriate energy storage system and scale-up study of thermochemical energy storage system.

  15. Determination of iodine and bromine in coal and atmospheric particles by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Sun, Mingxing; Gao, Yunchuan; Wei, Biwen; Wu, Xiaowei

    2010-04-15

    Bromine and iodine in atmospheric particles or coal can cause environmental problems such as destruction of ozone in the atmosphere; therefore, the presence of these compounds has recently received increased attention. Here, a rapid and reliable method for the simultaneous determination of total bromine and iodine using ICP-MS analysis is described. Samples were dissolved in mixtures of 5 mL of HNO(3) and 2 mL of H(2)O(2) in a high pressure microwave digester. The solution was then oxidized by per-sulfate (Na(2)S(2)O(8)) in addition to a small amount of silver nitrate, after which the total bromine and iodine were measured simultaneously by ICP-MS. The signal memory effects of bromine and iodine during analysis were effectively decreased by washing with a new mixture agent (2% alcohol acidic solution, pH 1-2 adjusted with HCl). The detection limits for bromine and iodine using this method were about 3.2 microg L(-1) and 1.1 microg L(-1), respectively. Additionally, the spike recoveries were between 78.7% and 121% for bromine and iodine analysis, while the relative standard deviations ranged from 4.3% to 9.7%, and from 1.5% to 3.4% for bromine and iodine, respectively. The results of this study indicate that the method described here is suitable for the analysis of micro-amounts of bromine and iodine in atmospheric particles and coal samples.

  16. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic name). 721.775 Section 721.775 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a)...

  17. Distribution of bromine in mixed iodide-bromide organolead perovskites and its impact on photovoltaic performance

    NARCIS (Netherlands)

    Zhou, Yang; Wang, Feng; Fang, Hong-Hua; Loi, Maria Antonietta; Xie, Fang-Yan; Zhao, Ni; Wong, Ching-Ping

    2016-01-01

    Mixed iodide-bromide (I-Br) organolead perovskites are of great interest for both single junction and tandem solar cells since the optical bandgap of the materials can be tuned by varying the bromine to iodine ratio. Yet, it remains unclear how bromine incorporation modifies the properties of the pe

  18. The Cyclotron Production and Nuclear Imaging of BROMINE-77.

    Science.gov (United States)

    Galiano, Eduardo

    In this investigation, bromine-77 was produced with a medical cyclotron and imaged with gamma cameras. Br -77 emits a 240 kev photon with a half life of 56 hours. The C-Br bond is stronger than the C-I bond and bromine is not collected in the thyroid. Bromine can be used to label many organic molecules by methods analogous to radioiodination. The only North American source of Br-77 in the 70's and 80's was Los Alamos National Laboratory, but it discontinued production in 1989. In this method, a p,3n reaction on Br-77 produces Kr-77 which decays with a 1.2 hour half life to Br-77. A cyclotron generated 40 MeV proton beam is incident on a nearly saturated NaBr or LiBr solution contained in a copper or titanium target. A cooling chamber through which helium gas is flowed separates the solution from the cyclotron beam line. Helium gas is also flowed through the solution to extract Kr-77 gas. The mixture flows through a nitrogen trap where Kr-77 freezes and is allowed to decay to Br-77. Eight production runs were performed, three with a copper target and five with a titanium target with yields of 40, 104, 180, 679, 1080, 685, 762 and 118 uCi respectively. Gamma ray spectroscopy has shown the product to be very pure, however corrosion has been a major obstacle, causing the premature retirement of the copper target. Phantom and in-vivo rat nuclear images, and an autoradiograph in a rat are presented. The quality of the nuclear scans is reasonable and the autoradiograph reveals high isotope uptake in the renal parenchyma, a more moderate but uniform uptake in pulmonary and hepatic tissue, and low soft tissue uptake. There is no isotope uptake in the brain or the gastric mucosa.

  19. Modelling chemistry over the Dead Sea: bromine and ozone chemistry

    OpenAIRE

    Smoydzin, L.; Glasow, R

    2009-01-01

    Measurements of O3 and BrO concentrations over the Dead Sea indicate that Ozone Depletion Events (ODEs), widely known to happen in polar regions, are also likely to occur over the Dead Sea due to the very high bromine content of the Dead Sea water. However, we show that BrO and O3 levels as they are detected cannot solely be explained by high Br levels in the Dead Sea water and the release of gas phase halogen...

  20. Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane.

    Science.gov (United States)

    Kierkegaard, Amelie; Sellström, Ulla; McLachlan, Michael S

    2009-01-16

    Methods for environmental analysis of higher brominated diphenyl ethers (PBDEs), in particular decabromodiphenyl ether (BDE209), and the recently discovered environmental contaminant decabromodiphenyl ethane (deBDethane) are reviewed. The extensive literature on analysis of BDE209 has identified several critical issues, including contamination of the sample, degradation of the analyte during sample preparation and GC analysis, and the selection of appropriate detection methods and surrogate standards. The limited experience with the analysis of deBDethane suggests that there are many commonalities with BDE209. The experience garnered from the analysis of BDE209 over the last 15 years will greatly facilitate progress in the analysis of deBDethane.

  1. Deriving an atmospheric budget of total organic bromine using airborne in-situ measurements of brominated hydrocarbons in the Western Pacific during SHIVA

    Science.gov (United States)

    Sala, Stephan; Bönisch, Harald; Keber, Timo; Oram, Dave; Mills, Graham; Engel, Andreas

    2014-05-01

    Halogenated hydrocarbons play a major role as precursors for stratospheric ozone depletion. Released from the surface in the troposphere, the halocarbons reach the stratosphere via transport through the tropical tropopause layer. The contribution of the so called very short lived species (VSLS), having atmospheric lifetimes of less than half a year as sources gases for stratospheric bromine is significant. Source gas observations of long-lived bromine compounds and VSLS have so far not been able to explain the amount of bromine derived in the stratosphere from observations of BrO and modeling of the ratio of BrO to total bromine. Due to the short lifetimes and the high atmospheric variability, the representativeness of the available observations of VSLS source gases remains unclear, as these may vary with region and display seasonal variability. During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive dataset with over 700 samples of ambient air of all halogen species relevant for the atmospheric budget of total organic bromine (long lived halocarbons: H-1301, H-1211, H-1202, H-2402 and CH3Br, very short lived substances: CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CHBrCl) have been collected from onboard the FALCON aircraft in the West Pacific region. Measurements were performed with the newly developed fully-automated in-situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt and with the onboard whole-air sampler WASP with subsequent ground based state-of-the-art GC/MS analysis by the University of East Anglia. We will present the datasets, compare these to other observation, derive a bromine budget for the West Pacific and derive an estimate of the amount of bromine from VSLS reaching the stratosphere. Using the mean mixing ratios in the upper troposphere of the halocarbons mentioned above, the calculated budget of the total organic

  2. Effects of bromine on mitosis in root-tips of Allium cepa

    Energy Technology Data Exchange (ETDEWEB)

    Chury, J.; Slouka, V.

    1949-01-01

    The root-tips of Allium cepa, 1.5-2 cm. long, were exposed to pure bromine vapor for five minutes. The root-tips were then washed for ten minutes in water, and kept in fresh-water at a temperature of 20-24/sup 0/C. Squash preparations were made and stained according to the method of Darlington and La Cour. Bromine acting for five minutes on the root-tips of Allium has a specific effect on the cell nucleus in the resting stage. The effects induced are shown thirty-six hours after treatment by spindle abnormalities in metaphase and anaphase, and result in polyploidy in a large number of cells. Bromine produces chromosome and chromatid fragmentation; the latter may be followed by reunion. The effect of the bromine is cumulative and depends on the time which elapses between treatment and fixation. The cytological effects induced by bromine strongly suggest that it is another specific mutafacient chemical.

  3. Effect of bromine substituents in the formation of PXDD from poly halogenated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T.; Ohono, T.; Weber, R.

    2002-07-01

    The condensation of chlorophenols has been studied extensively in the last two decades and was discussed as one mechanism in particular for the formation of PCDD in thermal processes. Brominated flame retardants and brominated and brominated-chlorinated dibenzodioxins and dibenzofurans have received increased attention recently due to the growing use of brominated flame retardants during the last decade. This is resulting than increase of brominated compounds in waste (e.g. Electric and electronic shredder waste), containing a considerable amount of bromine, in the form of brominated flame retardants. Many studies reported on the formation of PBDD/PBDF from brominated diphenylethers, or bromophenosl. However with the exception of Sodhu et al, a comparison of the condensation behaviour of bromophenols and chlorophenols was not done. The condensation of brominated phenols is interesting from several aspects. Bromophenols are used as flame retardants and might be a source of PBDD/F during thermal stress. Bromophenols can also be generated during the combustion/pyrolysis of bromodiphenylether or tetrabromobisphenol A containing material, serving as potential precursors for the formation of PBDD/PBDF. Further, in municipal waste incinerators with sufficient secondary combustion, the largest amount of chlorinated aromatic compounds (PCDD, PCDF, PCBs, PCNs, and chlorophenols) are formed in the cooling section (boiler, duct, dust filtration). Therefore in combustion processes involving high concentrations of brominated flame retardants, mixed PXDD/PXDF might be formed by condensation reactions of precursors or de novo synthesis in the cooling zone. Therefore we investigated the condensation of abrominated phenol in more detail and compare it to the condensation reaction of the analogous chlorophenol. (Author)

  4. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  5. Impact of reactive bromine chemistry in the troposphere

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2004-01-01

    Full Text Available Recently several field campaigns and satellite observations have found strong indications for the presence of bromine oxide (BrO in the free troposphere. Using a global atmospheric chemistry transport model we show that BrO mixing ratios of a few tenths to 2 pmol mol-1 lead to a reduction in the zonal mean O3 mixing ratio of up to 18% in widespread areas and regionally up to 40% compared to a model run without bromine chemistry. A lower limit approach for the marine boundary layer, that does not explicitly include the release of halogens from sea salt aerosol, shows that for dimethyl sulfide (DMS the effect is even larger, with up to 60% reduction of its tropospheric column. This is accompanied by dramatic changes in DMS oxidation pathways, reducing its cooling effect on climate. In addition there are changes in the HO2:OH ratio that also affect NOx and PAN. These results imply that potentially significant strong sinks for O3 and DMS have so far been ignored in many studies of the chemistry of the troposphere.

  6. Maternal exposure to brominated flame retardants and infant Apgar scores.

    Science.gov (United States)

    Terrell, Metrecia L; Hartnett, Kathleen P; Lim, Hyeyeun; Wirth, Julie; Marcus, Michele

    2015-01-01

    Brominated flame retardants (BFRs) and other persistent organic pollutants have been associated with adverse health outcomes in humans and may be particularly toxic to the developing fetus. We investigated the association between in utero polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB) exposures and infant Apgar scores in a cohort of Michigan residents exposed to PBB through contaminated food after an industrial accident. PBB and PCB concentrations were measured in serum at the time the women were enrolled in the cohort. PBB concentrations were also estimated at the time of conception for each pregnancy using a validated elimination model. Apgar scores, a universal measure of infant health at birth, measured at 1 and 5min, were taken from birth certificates for 613 offspring born to 330 women. Maternal PCB concentrations at enrollment were not associated with below-median Apgar scores in this cohort. However, maternal PBB exposure was associated with a dose-related increase in the odds of a below-median Apgar score at 1min and 5min. Among infants whose mothers had an estimated PBB at conception above the limit of detection of 1 part per billion (ppb) to Apgar score increased with higher maternal PBB at conception. It remains critical that future studies examine possible relationships between in utero exposures to brominated compounds and adverse health outcomes.

  7. Recent Development on Environmental Geochemistry of Bromine in Atmosphere%大气中溴的环境地球化学研究进展

    Institute of Scientific and Technical Information of China (English)

    彭炳先; 吴代赦; 李萍

    2011-01-01

    溴是大气平流层和对流层中的重要物种,能参与大气中的多种化学过程,对臭氧的损耗影响很大,同时也干扰大气的硫循环和汞循环,在大气化学中起着十分重要的作用.综述了近年来大气对流层和平流层溴的种类和含量、自然来源和人为来源,以及化学性质,并重点总结了活性溴物种BrO在大气中的存在情况及其在臭氧损耗中的作用.最后,提出了目前大气研究的不足之处和尚待深入开展研究的一些重要科学问题.%Bromine species are important components in troposphere and stratosphere, which can participate in many atmospheric chemical processes, play important role in the ozone depletion, and affect sulfur and mercury cycle of atmosphere. This paper provides an up-to-date overview of global bromine emissions from natural and anthropogenic sources, summarizes the level, species and chemistry of bromine in troposphere and stratosphere, and especially reviews the presence and important role of BrO of reactive bromine species in the ozone depletion. Finally,the shortcomings in current atmospheric research and prospect of main scientific problems are put forward.

  8. Thermochemical Study of Coordination of Holmium Chloride Hydrate with Diethylammonium Diethyldithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-qi; CHEN San-ping; JIAO Bao-juan; REN Yi-xia; GAO Sheng-li; SHI Qi-zhen

    2004-01-01

    The complex of holmium chloride hydrate with diethylammonium diethyldithiocarbamate(D-DDC) was synthesized via mixing their solutions in absolute alcohol under a dry N2 atmosphere. The elemental and chemical analyses show that the complex has the general formula Et2NH2[Ho(S2CNEt2)4]. It was also characterized by IR spectroscopy. The enthalpies of the dissolution of holmium chloride hydrate and D-DDC in absolute alcohol at 298.15 K, and the enthalpy changes of liquid-phase reactions of the formation of Et2NH2[Ho(S2CNEt2)4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters(the apparent activation energy, the pre-exponential constant and the reaction order) of the liquid-phase reaction of the complex formation were obtained. The enthalpy change of the solid-phase complex formation reaction at 298.15 K was calculated by means of a thermochemical cycle.

  9. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    Science.gov (United States)

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-07-01

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint.

  10. Development of a New Thermochemical and Electrolytic Hybrid Hydrogen Production System for Sodium Cooled FBR

    Science.gov (United States)

    Nakagiri, Toshio; Kase, Takeshi; Kato, Shoichi; Aoto, Kazumi

    A new thermo-chemical and electrolytic hybrid hydrogen production system in lower temperature range is newly proposed by the Japan Nuclear Cycle Development Institute (JAEA) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeder Reactor (FBR). The system is based on sulfuric acid (H2SO4) synthesis and decomposition process developed earlier (Westinghouse process), and sulfur trioxide (SO3) decomposition process is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce the operation temperature 200-300°C lower than Westinghouse process. SO3 decomposition with the voltage lower than 0.5V was confirmed in the temperature range of 500 to 600°C and theoretical thermal efficiency of the system evaluated based on chemical reactions was within the range of 35% to 55% under the influence of H2SO4 concentration and heat recovery. Furthermore, hydrogen production experiments to substantiate the whole process were performed. Stable hydrogen and oxygen production were observed in the experiments, and maximum duration of the experiments was about 5 hours.

  11. Thermochemical Nonequilibrium Analysis of Oxygen in Shock Tube Flows

    Science.gov (United States)

    Neitzel, Kevin; Kim, Jae Gang; Boyd, Iain D.

    The successful development of hypersonic vehicles requires a detailed knowledge of the flow physics around the vehicle. The physics knowledge and modeling confidence drives the development of the major vehicle flight systems including the thermal protection system and flight control system. Specifically, an understanding of the thermochemical nonequilibrium behavior is crucial for this flight regime. The hypersonic flight regime involves an extremely high level of energy so a small error in the modeling of the energy processes can result in drastic changes in the vehicle design, including prohibitive design requirements. This emphasizes the need for a deep understanding of the underlying flow phenomena and molecular energy transfer processes in order to adequately design a hypersonic vehicle computationally.

  12. An approach to thermochemical modeling of nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Beahm, E.C. [Oak Ridge National Lab., TN (United States); Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)

    1998-11-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses.

  13. Thermochemical treatment of biogas digestate solids to produce organic fertilisers

    DEFF Research Database (Denmark)

    Pantelopoulos, Athanasios

    Anaerobic digestion of animal manures has been proposed as a process with twofold advantage. The production of biogas, a renewable source of energy, and the treatment of animal manures to increase their agronomic value and reduce their environmental impact. However, the residual of anaerobic...... velocity during thermal treatment influence the evaporation rate of water from the manure solids. At the same time, they also influence the ammonia emission rates, Lowering manure pH (controlling the NH4+ - NH3 equilibrium) can potentially reduce the loss rate. Furthermore, the changes occurring...... digestate nitrogen content (Paper I), ii) determine their C and N dynamics after soil incorporation (Paper II) and iii) assess the plant N and P uptake of ryegrass amended with different thermochemical treatments of the solids (Paper III). For a more mechanistic understanding of the processes involved...

  14. Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    The incorporation of nitrogen or carbon in steel is widely applied to provide major improvements in materials performance with respect to fatigue, wear, tribology and atmospheric corrosion. These improvements rely on a modification of the surface adjacent region of the material, by the (internal......) precipitation of alloying element nitrides/carbides or by the development of a continuous layer of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatments is not only determined by solid state diffusion, but in many cases also by the kinetics of the surface reactions...... and the interplay with mechanical stress. In the present article a few examples, covering research on the interaction of carbon and/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactions....

  15. Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres

    CERN Document Server

    Blecic, Jasmina

    2016-01-01

    This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...

  16. Interaction of stress and phase transformations during thermochemical surface engineering

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard

    Low temperature nitriding of austenitic stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume...... dissolution. The present project is devoted to understanding the mutual interaction of stresses and phase transformations during thermochemical surface engineering by combining numerical modelling with experimental materials science. The modelling was done by combining solid mechanics with thermodynamics...... and diffusion kinetics to simulate the evolution of composition-depth and stress-depth profiles resulting from nitriding of austenitic stainless steel. The model takes into account a composition-dependent diffusion coefficient of nitrogen in expanded austenite, short range ordering (trapping) of nitrogen atoms...

  17. Thermo-Chemical Convection in Europa's Icy Shell with Salinity

    Science.gov (United States)

    Han, L.; Showman, A. P.

    2005-01-01

    Europa's icy surface displays numerous pits, uplifts, and chaos terrains that have been suggested to result from solid-state thermal convection in the ice shell, perhaps aided by partial melting. However, numerical simulations of thermal convection show that plumes have insufficient buoyancy to produce surface deformation. Here we present numerical simulations of thermochemical convection to test the hypothesis that convection with salinity can produce Europa's pits and domes. Our simulations show that domes (200-300 m) and pits (300-400 m) comparable to the observations can be produced in an ice shell of 15 km thick with 5-10% compositional density variation if the maximum viscosity is less than 10(exp 18) Pa sec. Additional information is included in the original extended abstract.

  18. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  19. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  20. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    Science.gov (United States)

    Casillas, Danielle Courtney

    Solar energy has the potential to supply more than enough energy to meet humanity's energy demands. Here, a method for thermochemical solar energy storage through fuel production is presented. A porous non-stoichiometric oxide, ceria, undergoes partial thermal reduction and oxidation with concentrated solar energy as a heat source, and water as an oxidant. The resulting yields for hydrogen fuel and oxygen are produced in two discrete steps, while the starting material maintains its original phase. Ordered porosity has been shown superior to random porosity for thermochemical fuel production applications, but stability limits for these structures are currently undefined. Ceria-based inverse opals are currently being investigated to assess the architectural influence on thermochemical hydrogen production. Low tortuosity and continuous interconnected pore network allow for facile gas transport and improved reaction kinetics. Ceria-based ordered materials have recently been shown to increase maximum hydrogen production over non-ordered porous ceria. Thermal stability of ordered porosity was quantified using quantitative image analysis. Fourier analysis was applied to SEM images of the material. The algorithm results in an order parameter gamma that describes the degree of long range order maintained by these structures, where gamma>4 signifies ordered porosity. According to this metric, a minimum zirconium content of 20 atomic percent (at%) is necessary for these architectures to survive aggressive annealing up to 1000°C. Zirconium substituted ceria (ZSC) with Zr loadings in excess of 20at% developed undesired tetragonal phases. Through gamma, we were able to find a balance between the benefit of zirconium additions on structural stability and its negative impact on phase. This work demonstrates the stability of seemingly delicate architectures, and the operational limit for ceria based inverse opals to be 1000°C for 1microm pore size. Inverse opals having sub

  1. Bromine Chemistry in the Tropical UTLS during the 2011, 2013 and 2014 ATTREX Experiments

    Science.gov (United States)

    Werner, Bodo; Stutz, Jochen; Spolaor, Max; Festa, James; Tsai, Catalina; Colosimo, Fedele; Cheung, Ross; Deutschmann, Tim; Raecke, Rasmus; Scalone, Lisa; Tricoli, Ugo; Pfeilsticker, Klaus; Navarro, Maria; Atlas, Elliot; Chipperfield, Martyn; Hossaini, Ryan

    2015-04-01

    Bromine plays an important role for the chemistry of ozone in the stratosphere and upper troposphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the bromine budget in the upper troposphere and lower stratosphere (UTLS), which also serves as a gate to the stratosphere. Vertical transport of very short-lived organic bromine precursors and inorganic product gases has been identified as the main source of bromine in the UTLS. However, the contribution of inorganic vs. organic compounds is not well quantified, particularly in the tropical UTLS. A limb scanning Differential Optical Absorption Spectroscopy instrument was deployed onboard NASA's UAV Global Hawk during the NASA Airborne Tropical TRopopause EXperiment (ATTREX) during a series of flights into the eastern and western Pacific tropopause layer (flight altitudes up to 18 km), which is a gateway to the stratosphere. The measurement methodology to retrieve vertical trace gas concentration profiles will be briefly presented. Observations of BrO, NO2 and O3 and of other trace species, in particular of brominated hydrocarbons are compared with simulations of the SLIMCAT CTM and interpreted with respect to photochemistry and the budget of bromine within the tropical tropopause layer (TTL).

  2. Conversion of bromine during thermal decomposition of printed circuit boards at high temperature.

    Science.gov (United States)

    Jin, Yu-qi; Tao, Lin; Chi, Yong; Yan, Jian-hua

    2011-02-15

    The conversion of bromine during the thermal decomposition of printed circuit boards (PCBs) was investigated at isothermal temperatures ranging from 800°C to 1100°C by using a quartz tube furnace. The influence of temperature, oxygen concentrations (0%, 10% and 21% in the nitrogen-oxygen atmosphere) and content of steam on conversion of bromine was studied. With the increment of temperature, the conversion from organic bromine in the PCBs to inorganic bromine in the gaseous fraction increased from 69.0% to 96.4%. The bromine was mainly evolved as HBr and Br(2) in oxidizing condition and the Br(2)/HBr mass ratio increased at stronger oxidizing atmosphere. The experimental results also indicated that the existence of steam can reduce the formation of Br(2). Furthermore, co-combustion of PCBs with S and CaO, both as addition agents, was investigated, respectively. In the presence of SO(2), Br(2)/HBr mass ratio obviously decreased. Moreover, the utilization of calcium oxide can efficiently promote the conversion of organic bromine to inorganic bromine. According to the experimental results, incinerating PCBs at high temperature can efficiently destroy the organobrominated compounds that are considered to be possible precursors of polybrominated dibenzeo-p-dioxins and dibenzofurans (PBDD/Fs), but the Br(2) and HBr in flue gas should be efficiently controlled.

  3. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    Energy Technology Data Exchange (ETDEWEB)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  4. Brominated lipids identify lipid binding sites on the surface of the reaction center from Rhodobacter sphaeroides.

    Science.gov (United States)

    Roszak, Aleksander W; Gardiner, Alastair T; Isaacs, Neil W; Cogdell, Richard J

    2007-03-20

    This study describes the use of brominated phospholipids to distinguish between lipid and detergent binding sites on the surface of a typical alpha-helical membrane protein. Reaction centers isolated from Rhodobacter sphaeroides were cocrystallized with added brominated phospholipids. X-ray structural analysis of these crystals has revealed the presence of two lipid binding sites from the characteristic strong X-ray scattering from the bromine atoms. These results demonstrate the usefulness of this approach to mapping lipid binding sites at the surface of membrane proteins.

  5. Influence of Main Components in Exhaust Gas on Mercury Adsorption Capacity of Brominated Activated Carbon

    Directory of Open Access Journals (Sweden)

    Tran Hong Con

    2016-01-01

    Full Text Available Brominated activated carbon (AC-Br, which was produced from coconut shell activated carbon (AC and brominated by wet way with elemental bromine, was determined as a material with super high adsorption capacity of mercury vapor. But in real exhaust gases, there are many components such as SO2, NOx, CO, CO2, HCl, H2O can influence on adsorption ability of the AC-Br. In this paper, these influences were studied and compared them between initial AC and AC-Br. Each component has different effect on AC and AC-Br and followed by its particular mechanism.

  6. Thermochemical Ablation Therapy of VX2 Tumor Using a Permeable Oil-Packed Liquid Alkali Metal

    OpenAIRE

    2015-01-01

    Objective Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors. Methods Permeable oil-packed sodium–potassium (NaK) was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluat...

  7. Enhanced Adhesion of Continuous Nanoporous Au Layers by Thermochemical Oxidation of Glassy Carbon

    Directory of Open Access Journals (Sweden)

    Lori Ana Bromberg

    2014-07-01

    Full Text Available The fabrication of a nanoporous gold (NPG-based catalyst on a glassy carbon (GC support results normally in large isolated and poorly adhering clusters that suffer considerable material loss upon durability testing. This work exploits thermochemical oxidation of GC, which, coupled with the utilization of some recent progress in fabricating continuous NPG layers using a Pd seed layer, aims to enhance the adhesion to the GC surface. Thermochemical oxidation causes interconnected pores within the GC structure to open and substantially improves the wettability of the GC surface, which are both beneficial toward the improvement of the overall quality of the NPG deposit. It is demonstrated that thermochemical oxidation neither affects the efficiency of the Au0.3Ag0.7 alloy (NPG precursor deposition nor hinders the achievement of continuity in the course of the NPG fabrication process. Furthermore, adhesion tests performed by a rotating disk electrode setup on deposits supported on thermochemically-oxidized and untreated GCs ascertain the enhanced adhesion on the thermochemically-oxidized samples. The best adhesion results are obtained on a continuous NPG layer fabricated on thermochemically-oxidized GC electrodes seeded with a dense network of Pd clusters.

  8. Selective nitration and bromination of surprisingly ruffled phosphorus corroles.

    Science.gov (United States)

    Pomarico, Giuseppe; Tortora, Luca; Fronczek, Frank R; Smith, Kevin M; Paolesse, Roberto

    2016-05-01

    Phosphorus complexes of corrole have recently attracted increasing interest since these compounds can be easily prepared in good yields, are stable, and show unusual optical properties. For these reasons, phosphorus corroles represent a class of interesting compounds to be exploited in the field of material science or for biomedical investigations and the definition of synthetic pathways for their functionalization is an important step to optimize their properties for various applications. We report here the reactivity of the phosphorus complex of 5,10,15-tritolylcorrole in the nitration or bromination reaction. Both these attempts were successful, allowing the preparation of substituted phosphorus corroles, which can be used as intermediates of more complex architectures endowed with useful properties. Furthermore, the crystallographic characterization of both complexes shows that they have an unusual ruffled geometry of the corrole core, a conformation that has not been considered possible for such a macrocycle.

  9. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    Science.gov (United States)

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4). These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.

  10. The third international interlaboratory study on brominated flame retardants

    Energy Technology Data Exchange (ETDEWEB)

    Boer, J. de [Netherlands Institute for Fisheries Research, IJmuiden (Netherlands); Wells, D. [FRS Marine Laboratory, Aberdeen (United Kingdom)

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs) have been produced as brominated flame retardants (BFRs) since the early 1970s and have been found in the aquatic environment since the late 1970s. However, as a result of their detection in sperm whales from deeper Atlantic waters and in human milk, many laboratories are now measuring PBDEs in environmental samples. A first international interlaboratory study (ILS) on the analysis of PBDEs, organised by the Bromine Science and Environmental Forum (BSEF), Brussels, Belgium, in collaboration with the Netherlands Institute for Fisheries Research (RIVO) was conducted in 1999-2000. The results showed that the 18 participating laboratories produced comparable results for BDE 47 in various matrices but had analytical difficulties for other BDEs, in particular for the BDEs 99 and 209. A second study was organised in 2001-2002 by BSEF, QUASIMEME and RIVO. That study showed improvement in comparability of the participating laboratories for BDE99 and some other BDEs. However, there was no improvement for BDE209. Hexabromocyclododecane (HBCD), tetrabromobisphenol-A (TBBP-A) and the dimethyl derivative of TBBP-A (dimethyl TBBP-A) were included in the second study. However, it appeared that only two or three laboratories were able to analyse these determinands. Others laboratories were still in the development phase with their methods for these BFRs. This third study was organised as a development exercise by QUASIMEME, in collaboration with RIVO between September and December 2003. The BFRs selected were the same as in the second study. Two biota test materials, a harbor sediment, a sewage sludge, and two standard solutions were dispatched to the participants.

  11. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro

    NARCIS (Netherlands)

    Meerts, I.A.T.M.; Zanden, van J.J.; Luijks, E.A.C.; Leeuwen-Bol, van I.; Marsh, G.; Jakobsson, E.; Bergman, A.; Brouwer, A.

    2000-01-01

    Brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), pentabromophenol (PBP), and tetrabromobisphenol A (TBBPA) are produced in large quantities for use in electronic equipment, plastics, and building materials. Because these compounds have some structural resemblance to the th

  12. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    Science.gov (United States)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  13. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs.

    Science.gov (United States)

    Zughaier, Susu; Karna, Prasanthi; Stephens, David; Aneja, Ritu

    2010-02-11

    Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.

  14. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs.

    Directory of Open Access Journals (Sweden)

    Susu Zughaier

    Full Text Available Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.

  15. In vitro screening of the endocrine disrupting potency of brominated flame retardants and their metabolites

    NARCIS (Netherlands)

    Hamers, T.H.M.; Kamstra, J.H.; Sonneveld, E.; Murk, A.J.; Zegers, B.N.; Boon, J.P.; Brouwer, A.

    2004-01-01

    DEVELOPMENTAL AND REPRODUCTIVE TOXICITY vitro screening the endocrine disrupting potency brominated flame retardants and their metabolites Timo Hamers Jorke Kamstra Edwin Sonneveld Albertinka Murk Bart Zegers Jan Boon Abraham Brouwer Institute for Environmental Studies IVM Amsterdam BioDetection Sys

  16. A Novel Protocol for the Regioselective Bromination of Primary Alcohols in Unprotected Carbohydrates or Glycosides

    Institute of Scientific and Technical Information of China (English)

    薛伟华; 张立芬

    2012-01-01

    The regioselective and efficient bromination of primary hydroxyl groups in unprotected carbohydrates or glycosides is successfully achieved by using (chloro-phenylthio-methylene)dimethylammoniumchloride (CPMA) in the presence of tetrabutylammonium bromide (TBAB) in dry DMF.

  17. Dynamic dielectric properties and the γ transition of bromine doped polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Based on monitoring the γ process (the lowest temperature-relaxation in polyacrylonitrile (PAN by dynamic dielectric spectroscopy, new evidence for the formation of a charge transfer complex between bromine dopants and nitrile groups is presented. The experimental work is carried out on PAN and nitrile polymerized PAN with and without bromine doping and the effects of these factors on the γ process are measured. Nitrile polymerization results in diminishing of the γ process and in a 15% increase in its activation energy, whereas bromine doping produces splitting of the original γ process in PAN – coupled with a significant activation energy increase – and its complete disappearance in nitrile polymerized PAN. Both the splitting of the γ process and the higher activation energy reflect bromine-nitrile adduct formation..

  18. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tamtam, Fatima; Chiron, Serge, E-mail: serge.chiron@msem.univ-montp2.fr

    2012-10-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20{alpha}-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br{center_dot}, Br{sub 2}{center_dot}{sup -}) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: Black-Right-Pointing-Pointer Brominated derivatives of salicylic acid were detected in a brackish lagoon. Black-Right-Pointing-Pointer A photochemical pathway was hypothesized to account for bromination of salicylic acid. Black

  19. Bromine-lithium exchange: An efficient tool in the modular construction of biaryl ligands.

    Science.gov (United States)

    Bonnafoux, Laurence; Leroux, Frédéric R; Colobert, Françoise

    2011-01-01

    Regioselective bromine-lithium exchange reactions on polybrominated biaryls enable the modular synthesis of various polysubstituted biphenyls such as bis(dialkylphosphino)-, bis(diarylphosphino)- and dialkyl(diaryl)phosphinobiphenyls. All permutations of substituents at the ortho positions of the biphenyls are possible. In a similar manner, one can gain access to monophosphine analogues. So far, such a process, based on the effective discrimination between bromine atoms as a function of their chemical environment, has been observed only sporadically.

  20. Fast field cycling NMR relaxometry characterization of biochars obtained from an industrial thermochemical process

    Energy Technology Data Exchange (ETDEWEB)

    De Pasquale, Claudio; Marsala, Valentina; Alonzo, Giuseppe; Conte, Pellegrino [Universita degli Studi di Palermo (Italy). Dipt. dei Sistemi Agro-Ambientali; Berns, Anne E. [Forschungszentrum Juelich GmbH (Germany). Inst. of Bio- and Geosciences (IBG-3); Valagussa, Massimo [M.A.C. Minoprio Analisi e Certificazioni S.r.l., Vertemate con Minoprio, CO (Italy); Pozzi, Alessandro [A.G.T. Advanced Gasification Technology S.r.l., Arosio, CO (Italy)

    2012-09-15

    Purpose: Biochar has unique properties which make it a powerful tool to increase soil fertility and to contribute to the decrease of the amount of atmospheric carbon dioxide through the mechanisms of C sequestration in soils. Chemical and physical biochar characteristics depend upon the technique used for its production and the biomass nature. For this reason, biochar characterization is very important in order to address its use either for agricultural or environmental purposes. Materials and methods: Three different biochars obtained from an industrial gasification process were selected in order to establish their chemical and physical peculiarities for a possible use in agronomical practices. They were obtained by charring residues from the wine-making industry (marc) and from poplar and conifer forests. Routine analyses such as pH measurements, elemental composition, and ash and metal contents were performed together with the evaluation of the cross-polarization magic angle spinning (CPMAS) {sup 13}C NMR spectra of all the biochar samples. Finally, relaxometry properties of water-saturated biochars were retrieved in order to obtain information on pore size distribution. Results and discussion: All the biochars revealed basic pH values due to their large content of alkaline metals. The quality of CPMAS {sup 13}C NMR spectra, which showed the typical signal pattern for charred systems, was not affected by the presence of paramagnetic centers. Although paramagnetism was negligible for the acquisition of solid state spectra, it was effective in some of the relaxometry experiments. For this reason, no useful information could be retrieved about water dynamics in marc char. Conversely, both relaxograms and nuclear magnetic resonance dispersion profiles of poplar and conifer chars indicated that poplar char is richer in small-sized pores, while larger pores appear to be characteristic for the conifer char. Conclusions: This study showed the potential of relaxometry in revealing chemical-physical information on industrially produced biochar. This knowledge is of paramount importance to properly direct biochar agronomical uses. (orig.)

  1. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene, and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared with parent compounds but does not necessarily increase the enthalpy of sublimation. Furthermore, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared with single halogen-substituted polycyclic aromatic hydrocarbons. In addition, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis.

  2. Thermochemical Properties and Decomposition Kinetics of Ammonium Magnesium Phosphate Monohydrate

    Institute of Scientific and Technical Information of China (English)

    WU,Jian; YUAN,Ai-Qun; HUANG,Zai-Yin; TONG,Zhang-Fa; CHEN,Jie; LIANG,Rong-Lan

    2007-01-01

    Ammonium magnesium phosphate monohydrate NH4MgPO4·H2O was prepared via solid state reaction at room temperature and characterized by XRD, FT-IR and SEM. Thermochemical study was performed by an isoperibol solution calorimeter, non-isothermal measurement was used in a multivariate non-linear regression analysis to determine the kinetic reaction parameters. The results show that the molar enthalpy of reaction above is (28.795±0.182) kJ/mol (298.15 K), and the standard molar enthalpy of formation of the title complex is (-2185.43±13.80)kJ/mol (298.15 K). Kinetics analysis shows that the second decomposition of NH4MgPO4·H2O acts as a double-step reaction: an nth-order reaction (Fn) with n=4.28, E1=147.35 kJ/mol, A1=3.63×1013 s-1 is followed by a second-order reaction (F2) with E2=212.71 kJ/mol, A2= 1.82×1018 s-1.

  3. A thermochemically derived global reaction mechanism for detonation application

    Science.gov (United States)

    Zhu, Y.; Yang, J.; Sun, M.

    2012-07-01

    A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene-oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

  4. Thermochemical hydrogen generation of indium oxide thin films

    Science.gov (United States)

    Lim, Taekyung; Ju, Sanghyun

    2017-03-01

    Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD) and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  5. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  6. Environmental impacts of thermochemical biomass conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  7. Thermochemical scanning probe lithography of protein gradients at the nanoscale

    Science.gov (United States)

    Albisetti, E.; Carroll, K. M.; Lu, X.; Curtis, J. E.; Petti, D.; Bertacco, R.; Riedo, E.

    2016-08-01

    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro.

  8. Design Principles of Perovskites for Thermochemical Oxygen Separation.

    Science.gov (United States)

    Ezbiri, Miriam; Allen, Kyle M; Gàlvez, Maria E; Michalsky, Ronald; Steinfeld, Aldo

    2015-06-08

    Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 μmol O 2 min(-1)  g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer.

  9. A Thermo-Chemical Reactor for analytical atomic spectrometry

    Science.gov (United States)

    Gilmutdinov, A. Kh.; Nagulin, K. Yu.

    2009-01-01

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification.

  10. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  11. Base-load solar thermal power using thermochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, A.; Lovegrove, K. [Australian National Univ., Canberra, ACT (Australia); Filippi, E. [Ammonia Casale, Lugano (Switzerland); Fricker, H. [FC Consulting, Rickenbach (Switzerland); Schmitz-Goeb, M. [L and C Steinmuller GmbH, Process Engineering Div., Gummersbach (Germany); Chandapillai, M. [Siemens Power Generation Asia Pacific Sdn, Bhd., Industrial Power Plants, Kuala Lumpur (Malaysia)

    1999-03-01

    Using a closed-loop thermochemical system based on the reversible ammonia reaction is one of the possible ways for building solar thermal power systems capable of providing electricity on a 24-hour basis without the need for any fossil fuel back-up. In a collaborative effort between industrial and academic partners from Australia, Switzerland, Germany and Malaysia, a study was undertaken to examine the techno-economic viability of this solar concept by formulating a preliminary design for a hypothetical 10 MW{sub e} demonstration system in Central Australia. It was found that a carefully designed demonstration solar power plant, which dominantly uses proven and standard materials, components and technologies, is likely to cost of the order of AUD 157 million and operate with a net solar-to-electric conversion efficiency of 18% and a capacity factor of 80%. This will result in leveled electricity costs (LEC) of about AUD 0.24 per kWh{sub e}. (authors)

  12. Surface Response of Brominated Carbon Media on Laser and Thermal Excitation: Optical and Thermal Analysis Study

    Science.gov (United States)

    Multian, Volodymyr V.; Kinzerskyi, Fillip E.; Vakaliuk, Anna V.; Grishchenko, Liudmyla M.; Diyuk, Vitaliy E.; Boldyrieva, Olga Yu.; Kozhanov, Vadim O.; Mischanchuk, Oleksandr V.; Lisnyak, Vladyslav V.; Gayvoronsky, Volodymyr Ya.

    2017-02-01

    The present study is objected to develop an analytical remote optical diagnostics of the functionalized carbons surface. Carbon composites with up to 1 mmol g-1 of irreversibly adsorbed bromine were produced by the room temperature plasma treatment of an activated carbon fabric (ACF) derived from polyacrylonitrile textile. The brominated ACF (BrACF) was studied by elastic optical scattering indicatrix analysis at wavelength 532 nm. The obtained data were interpreted within results of the thermogravimetric analysis, X-ray photoelectron spectroscopy and temperature programmed desorption mass spectrometry. The bromination dramatically reduces the microporosity producing practically non-porous material, while the incorporated into the micropores bromine induces the dielectric and structural impact on surface polarizability and conductivity due to the charging effect. We have found that the elastic optical scattering in proper solid angles in the forward and the backward hemispheres is sensitive to the kind of the bromine bonding, e.g., physical adsorption or chemisorption, and the bromination level, respectively, that can be utilized for the express remote fabrication control of the nanoscale carbons with given interfaces.

  13. Photothermally induced bromination of carbon/polymer bipolar plate materials for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Martin; Franzka, Steffen [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Cappuccio, Franco; Peinecke, Volker; Heinzel, Angelika [Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Zentrum für BrennstoffzellenTechnik (ZBT), Carl-Benz-Straße 201, 47057 Duisburg (Germany); Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Photothermal laser bromination of carbon/polymer materials is demonstrated. • Using a microfocused laser functionalized domains with diameters of 5 μm and 100 μm and more can be fabricated. • Bromine groups can be transformed in a variety of other chemical functionalities, i.e. amine groups. • Depending on the chemical functionality, the local chemical affinity and wettability is changed. • The routine can be applied to standard bipolar plate materials used for fuel cell applications. - Abstract: A facile photothermal procedure for direct functionalization of carbon/polymer bipolar plate materials is demonstrated. Through irradiation with a microfocused beam of an Ar{sup +}-laser at λ = 514 nm in gaseous bromine and distinct laser powers and pulse lengths local bromination of the carbon/polymer material takes place. At a 1/e spot diameter of 2.1 μm, functionalized surface areas with diameters down to 5 μm are fabricated. In complementary experiments large-area bromination is investigated using an ordinary tungsten lamp. For characterization contact angle goniometry, X-ray photoelectron spectroscopy and electron microscopy in conjunction with labeling techniques are employed. After irradiation bromine groups can easily be substituted by other chemical functionalities, e.g. azide and amine groups. This provides a facile approach in order to fabricate surface patterns and gradient structures with varying wetting characteristics. Mechanistic aspects and prospects of photothermal routines in micropatterning of carbon/polymer materials are discussed.

  14. XPS STUDIES ON SURFACE MODIFIED POLY[1-(TRIMETHYLSILYL)-1-PROPYNE] MEMBRANES Ⅱ SURFACE MODIFICATION BY BROMINE VAPOR

    Institute of Scientific and Technical Information of China (English)

    XU Guanfan; SUN Xiaoguang; QIU Xuepeng; ZHANG Jinlan; ZHENG Guodong

    1994-01-01

    Surface modification of poly [ 1-(trimethylsilyl )-1-propyne ] ( PTMSP ) membranes by bromine vapor has been studied. It is shown that Br/C atomic ratio at the surfacesincreased with the time of bromination until about 60 min, then it reached a plateau. The results of XPS and IR studies indicated that the addition of bromine to double bonds and the replacement of H on CH3 by bromine had taken place so that a new peak at 286.0 eV (C-Br)in C1sspectra and some new bands, e. g. at 1220 and 580cm-1,in IR spectra were formed. The fact, Po2, permeability of oxygen, decreased and αO2/N2, separation factor of oxygen relative to nitrogen, increased with bromination time, shows that surface modification of PTMSP by bromine may be an efficient approachto prepare PTMSP membranes used for practical gas separations.

  15. Development of a laboratory cycle for a thermochemical water-splitting process (Me/MeH cycle)

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Biallas, B.; Kuegler, B.; Oertel, M.; Pietsch, M.; Winkelmann, U.

    1986-01-01

    Metal-metal hydride (Me/MeH) processes for water splitting using HTR heat are being developed at the Institute for Nuclear Reactor Technology. The research work is concentrated on setting up a laboratory facility and developing metal membranes. It is planned to perform the first experiments as from the beginning of 1986. These will be investigations in the transport of Me/MeH suspensions and long-term tests with the metal membranes. TiNi-base alloys and coated materials will be used as membranes. TiNi-alloys did not exhibit any loss of weight due to corrosion in electrolytic experiments lasting more than 500 h. The permeation rates were constant and amounted to approximately 500 A m/sup -2/ (s = 50 ..mu..m, rhosub(H2) = 1 bar). Pd/Cu-coatings on Ta or Nb, in contrast to pure Pd-coatings are resistant for long duration. Annealing tests at 500/sup 0/C lasting 4000 h verify this behaviour.

  16. Bromine partitioning between olivine and melt at OIB source conditions: Indication for volatile recycling

    Science.gov (United States)

    Joachim, Bastian; Ruzié, Lorraine; Burgess, Ray; Pawley, Alison; Clay, Patricia L.; Ballentine, Christopher J.

    2016-04-01

    Halogens play a key role in our understanding of volatile transport processes in the Earth's mantle. Their moderate (fluorine) to highly (iodine) incompatible and volatile behavior implies that their distribution is influenced by partial melting, fractionation and degassing processes as well as fluid mobilities. The heavy halogens, particularly bromine and iodine, are far more depleted in the Earth's mantle than expected from their condensation temperature (Palme and O'Neill 2014), so that their very low abundances in basalts and peridotites (ppb-range) make it analytically challenging to investigate their concentrations in Earth's mantle reservoirs and their behavior during transport processes (Pyle and Mather, 2009). We used a new experimental technique, which combines the irradiation technique (Johnson et al. 2000), laser ablation and conventional mass spectrometry. This enables us to present the first experimentally derived bromine partition coefficient between olivine and melt. Partitioning experiments were performed at 1500° C and 2.3 GPa, a P-T condition that is representative for partial melting processes in the OIB source region (Davis et al. 2011). The bromine partition coefficient between olivine and silicate melt at this condition has been determined to DBrol/melt = 4.37•10-4± 1.96•10-4. Results show that bromine is significantly more incompatible than chlorine (˜1.5 orders of magnitude) and fluorine (˜2 orders of magnitude) due to its larger ionic radius. We have used our bromine partitioning data to estimate minimum bromine abundances in EM1 and EM2 source regions. We used minimum bromine bulk rock concentrations determined in an EM1 (Pitcairn: 1066 ppb) and EM2 (Society: 2063 ppb) basalt (Kendrick et al. 2012), together with an estimated minimum melt fraction of 0.01 in OIB source regions (Dasgupta et al. 2007). The almost perfect bromine incompatibility results in minimum bromine abundances in EM1 and EM2 OIB source regions of 11 ppb and 20

  17. The computation of thermo-chemical nonequilibrium hypersonic flows

    Science.gov (United States)

    Candler, Graham

    1989-01-01

    Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds have been developed recently. For the proposed flight conditions the air in the shock layer that envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational excitation, and ionization. However, these processes occur at finite rates which, when coupled with large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design. A numerical method to solve the equations that describe these types of flows in 2-D was developed. The state of the gas is represented with seven chemical species, a separate vibrational temperature for each diatomic species, an electron translational temperature, and a mass-average translational-rotational temperature for the heavy particles. The equations for this gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and flux-dependent differencing is employed to maintain stability. The numerical method was tested against several experiments. The calculated bow shock wave detachment on a sphere and two cones was compared to those measured in ground testing facilities. The computed peak electron number density on a sphere-cone was compared to that measured in a flight test. In each case the results from the numerical method were in excellent agreement with experiment. The technique was used to predict the aerothermal loads on an Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the current physical model of high temperature air is appropriate and that the numerical algorithm is capable of treating this class of flows.

  18. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  19. Thermochemical Evolution of Earth's Core with Magnesium Precipitation

    Science.gov (United States)

    O'Rourke, J. G.; Stevenson, D. J.

    2014-12-01

    Vigorous convection within Earth's outer core drives a dynamo that has sustained a global magnetic field for at least 3.5 Gyr. Traditionally, people invoke three energy sources for the dynamo: thermal convection from cooling and freezing, compositional convection from light elements expelled by the growing inner core, and, perhaps, radiogenic heating from potassium-40. New theoretical and experimental work, however, indicates that the thermal and electrical conductivities of the outer core may be as much as three times higher than previously assumed. The implied increase in the adiabatic heat flux casts doubt on the ability of the usual mechanisms to explain the dynamo's longevity. Here, we present a quantitative model of the crystallization of magnesium-bearing minerals from the cooling core—a plausible candidate for the missing power source. Recent diamond-anvil cell experiments suggest that magnesium can partition into core material if thermodynamic equilibrium is achieved at high temperatures (>5000 K). We develop a model for core/mantle differentiation in which most of the core forms from material equilibrated at the base of a magma ocean as Earth slowly grows, but a small portion (~10%) equilibrated at extreme conditions in the aftermath of a giant impact. We calculate the posterior probability distribution for the original concentrations of magnesium and other light elements (chiefly oxygen and silicon) in the core, constrained by partitioning experiments and the observed depletion of siderophile elements in Earth's mantle. We then simulate the thermochemical evolution of cores with plausible compositions and thermal structures from the end of accretion to the present, focusing on the crystallization of a few percent of the initial core as ferropericlase and bridgmanite. Finally, we compute the associated energy release and verify that our final core compositions are consistent with the available seismological data.

  20. Antimicrobial N-brominated hydantoin and uracil grafted polystyrene beads.

    Science.gov (United States)

    Farah, Shady; Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Domb, Abraham J

    2015-10-28

    Hydantoin-N-halamine derivatives conjugated on polystyrene beads are promising disinfectants with broad antimicrobial activity affected by the gradual release of oxidizing halogen in water. The objective of this work was to identify and test of hydantoin-like molecules possessing urea moiety, which may provide N-haloamines releasing oxidizing halogens when exposed to water at different rates and release profiles for tailored antimicrobial agents. In this work, several hydantoin (five member ring) and for the first time reported, uracil (six member ring) derivatives have been conjugated to polystyrene beads and tested for their lasting antimicrobial activity. Four molecules of each series were conjugated onto polystyrene beads from the reaction of the N-potassium hydantoin or uracil derivatives onto chloromethylated polystyrene beads. A distinct difference in bromine loading capacity and release profiles was found for the different conjugated derivatives. All tested materials exhibit strong antimicrobial activity against Escherichia coli and bacteriophages MS2 of 7 and ~4 log reduction, respectively. These results highlight the antimicrobial potential of halogenated cyclic molecules containing urea groups as water disinfection agents.

  1. Modelling chemistry over the Dead Sea: bromine and ozone chemistry

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2009-07-01

    Full Text Available Measurements of O3 and BrO concentrations over the Dead Sea indicate that Ozone Depletion Events (ODEs, widely known to happen in polar regions, are also occuring over the Dead Sea due to the very high bromine content of the Dead Sea water. However, we show that BrO and O3 levels as they are detected cannot solely be explained by high Br levels in the Dead Sea water and the release of gas phase halogen species out of sea borne aerosol particles and their conversion to reactive halogen species. It is likely that other sources for reactive halogen compounds are needed to explain the observed concentrations for BrO and O3. To explain the chemical mechanism taking place over the Dead Sea leading to BrO levels of several pmol/mol we used the one-dimensional model MISTRA which calculates microphysics, meteorology, gas and aerosol phase chemistry. We performed pseudo Lagrangian studies by letting the model column first move over the desert which surrounds the Dead Sea region and then let it move over the Dead Sea itself. To include an additional source for gas phase halogen compounds, gas exchange between the Dead Sea water and the atmosphere is treated explicitly. Model calculations indicate that this process has to be included to explain the measurements.

  2. Brominated flame retardants in Belgian little owl (Athene noctua) eggs

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, V.; Covaci, A.; Maervoet, J.; Dauwe, T.; Schepens, P.; Eens, M. [Antwerp Univ. (Belgium)

    2004-09-15

    Since the 1960s, polybrominated diphenylethers (PBDEs), a class of brominated flame retardants (BFRs), are widely used in textiles, plastics, electronic equipment and other materials. Their massive use has led to the ubiquitous presence of PBDEs in the environment and in biota in which the PBDE levels seem to increase rapidly. High concentrations of some congeners may cause adverse effects in both wildlife and in human populations1 and this has led to the growing concern of scientists over the last decade and to the need for more data on environmental levels of PBDEs. The little owl (Athene noctua) is a small sedentary predator, which makes it a very suitable biomonitoring species. This owl species feeds on a variety of preys, including small mammals and birds, reptiles, amphibians, earthworms and beetles, depending on the season and the local circumstances. Because very limited information is available about contamination levels in the little owl, a study was conducted to determine the concentrations of PBDEs, polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in deserted or addled eggs of little owls in Belgium. Eggs have been used successfully as a monitoring tool for persistent organic pollutants (POPs) in several studies. Although the analysis of POPs in deserted or addled eggs has clear limitations, these can be partially avoided by analysing only highly persistent components, for which the original composition will not change due to 'posthatching' microbiological degradation.

  3. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    Directory of Open Access Journals (Sweden)

    E. Tas

    2006-01-01

    Full Text Available The Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the basic chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the high BrO levels measured frequently at the Dead Sea could only partially be attributed to the highly concentrated Br− present in the Dead Sea water. Furthermore, the RBS activity at the Dead Sea cannot solely be explained by a pure gas phase mechanism. This paper presents a chemical mechanism which can account for the observed chemical activity at the Dead Sea, with the addition of only two heterogeneous processes: the "Bromine Explosion" mechanism and the heterogeneous decomposition of BrONO2. Ozone frequently dropped below a threshold value of ~1 to 2 ppbv at the Dead Sea evaporation ponds, and in such cases, O3 became a limiting factor for the production of BrOx (BrO+Br. The entrainment of O3 fluxes into the evaporation ponds was found to be essential for the continuation of RBS activity, and to be the main reason for the jagged diurnal pattern of BrO observed in the Dead Sea area, and for the positive correlation observed between BrO and O3 at low O3 concentrations. The present study has shown that the heterogeneous decomposition of BrONO2 has a great potential to affect the RBS activity in areas influenced by anthropogenic emissions, mainly due to the positive correlation between the rate of this process and the levels of NO2. Further investigation of the influence of the decomposition of BrONO2 may be especially important in understanding the RBS activity at mid-latitudes.

  4. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    Directory of Open Access Journals (Sweden)

    A. Pour Biazar

    2006-06-01

    Full Text Available The Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the high BrO levels measured frequently at the Dead Sea could only partially be attributed to the highly concentrated Br− present in the Dead Sea water. Further, the RBS activity at the Dead Sea cannot solely be explained by a pure gas phase mechanism. This paper presents a chemical mechanism which can account for the observed chemical activity at the Dead Sea, with the addition of only two heterogeneous processes: the "Bromine Explosion" mechanism and the heterogeneous decomposition of BrONO2. Ozone frequently dropped below a threshold value of ~1 to 2 ppbv at the Dead Sea evaporation ponds, and in such cases, O3 became a limiting factor for the production of BrOx (BrO+Br. The entrainment of O3 fluxes into the evaporation ponds was found to be essential for the continuation of RBS activity, and to be the main reason for the positive correlation observed between BrO and O3 at low O3 concentrations, and for the jagged diurnal pattern of BrO observed in the Dead Sea area. The present study has shown that the heterogeneous decomposition of BrONO2 has the potential to greatly affect the RBS activity in areas under anthropogenic influence, mainly due to the positive correlation between the rate of this process and the levels of NO2. Further investigation of the influence of the decomposition of BrONO2 may be especially important in understanding the RBS activity at mid-latitudes.

  5. High-pressure behavior of bromine confined in the one-dimensional channels of zeolite AlPO4-5 single crystals

    Science.gov (United States)

    Liu, Zhaodong; Yao, Zhen; Yao, Mingguang; Lv, Jiayin; Chen, Shuanglong; Li, Quanjun; Lv, Hang; Wang, Tianyi; Lu, Shuangchen; Liu, Ran; Liu, Bo; Liu, Jing; Chen, Zhiqiang; Zou, Bo; Cui, Tian; Liu, Bingbing

    2016-09-01

    We present a joint experimental and theoretical study on the high-pressure behavior of bromine confined in the one-dimensional (1D) nanochannels of zeolite AlPO4-5 (AFI) single crystals. Raman scattering experiments indicate that loading bromine into AFI single crystals can lead to the formation of bromine molecular chains inside the nanochannels of the crystals. High-pressure Raman and X-ray diffraction studies demonstrate that high pressure can increase the length of the confined bromine molecular chains and modify the inter- and intramolecular interactions of the molecules. The confined bromine shows a considerably different high-pressure behavior to that of bulk bromine. The pressure-elongated bromine molecular chains can be preserved when the pressure is reduced to ambient pressure. Theoretical simulations explain the experimental results obtained from the Raman spectroscopy and X-ray diffraction studies. Furthermore, we find that the intermolecular distance between confined bromine molecules gradually becomes comparable to the intramolecular bond length in bromine molecules upon compression. This may result in the dissociation of the bromine molecules and the formation of 1D bromine atomic chains at pressures above 24 GPa. Our study suggests that the unique nanoconfinement has a considerable effect on the high-pressure behavior of bromine, and the confined bromine species concomitantly enhance the structural stability of the host AFI single crystals.

  6. Response of wheat and pea seedlings on increase of bromine concentration in the growth medium.

    Science.gov (United States)

    Shtangeeva, Irina; Niemelä, Matti; Perämäki, Paavo; Timofeev, Sergey

    2015-12-01

    Biogeochemical cycles of bromine (Br) and its quantitative requirements for different plant species are still studied poorly. There is a need to examine Br pathways in plants and evaluate the factors important for Br accumulation in a plant. In the present work, the effects of different Br compounds on an uptake of Br by two plant species (wheat and pea) that tolerate Br differently (pea is more sensitive to Br compared with wheat) have been studied. The growth medium was spiked with either KBr or NaBr at concentrations 0, 10, 50 and 100 mg/L. Elemental analysis of the plants was performed using inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-MS analytical techniques after leaching of the samples with tetramethyl ammonium hydroxide at mild temperature (60 °C). The experimental results have shown that wheat and pea seedlings can accumulate rather large amounts of Br. An increase of Br concentration in a plant was not always directly proportional to the variations in the Br concentration in the growth medium. In wheat, the greater part of Br was accumulated during first 7 days. In pea, the uptake of Br lasted until the end of the experiment. Certain differences in the ability of plants to accumulate Br were observed when the plants were grown in a medium spiked with different Br compounds. In most cases, Br accumulation was higher in the leaves of the plants grown in the medium spiked with KBr. The same tendency was observed for another halogen, chlorine (Cl).

  7. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  8. Utilization of oxidation reactions for the spectrophotometric determination of captopril using brominating agents

    Science.gov (United States)

    El-Didamony, Akram M.; Erfan, Eman A. H.

    2010-03-01

    Three simple, accurate and sensitive methods (A-C) for the spectrophotometric assay of captopril (CPL) in bulk drug, in dosage forms and in the presence of its oxidative degradates have been described. The methods are based on the bromination of captopril with a solution of excess brominating mixture in hydrochloric acid medium. After bromination, the excess brominating mixture is followed by the estimation of surplus bromine by three different reaction schemes. In the first method (A), the determination of the residual bromine is based on its ability to bleach the indigo carmine dye and measuring the absorbance at 610 nm. Method B, involves treating the unreacted bromine with a measured excess of iron(II) and the remaining iron(II) is complexed with 1,10-phenanthroline and the increase in absorbance is measured at 510 nm. In method (C), the surplus bromine is treated with excess of iron(II) and the resulting iron(III) is complexed with thiocyanate and the absorbance is measured at 478 nm. In all the methods, the amount of bromine reacted corresponds to the drug content. The different experimental parameters affecting the development and stability of the color are carefully studied and optimized. Beer's law is valid within a concentration range of 0.4-6.0, 0.4-2.8 and 1.2-4.8 μg mL -1 for methods A, B and C, respectively. The calculated apparent molar absorptivity was found to be 5.16 × 10 4, 9.95 × 10 4 and 1.74 × 10 5 L mol -1 cm -1, for methods A, B and C, respectively. Sandell's sensitivity, correlation coefficients, detection and quantification limits are also reported. No interference was observed from common additives found in pharmaceutical preparations. The proposed methods are successfully applied to the determination of CPL in the tablet formulations with mean recoveries of 99.94-100.11% and the results were statistically compared with those of a reference method by applying Student's t- and F-test.

  9. Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, H.J.; Schramm, K.W.; Feicht, E.A.; Fried, K.W.; Henkelmann, B.; Lenoir, D. [GSF-National Research Center, Institute of Ecological Chemistry, Neuherberg (Germany); Darnerud, P.O.; Aune, M. [Swedish National Food Administration, Uppsala (Sweden); Schmid, P. [Swiss Federal Laboratories for Materials Testing and Research, Laboratory of Organic Chemistry, EMPA Duebendorf (Switzerland); McDonald, T.A. [Office of Environmental Health Assessment, California EPA, Oakland, CA (United States)

    2004-09-15

    Brominated flame retardants (BFRs) are widely used in polymers and textiles and applied in electronic equipment, construction materials, and furniture for the purpose of fire prevention. BFRs with the highest production volume are tetrabromobisphenol A (TBBPA), 1,2,5,6,9,10- hexabromocyclododecanes (HBCDs: {alpha}-HBCD + {beta}-HBCD + {gamma}-HBCD), and polybrominated diphenyl ethers (PBDEs). Several BFRs are highly lipophilic persistent organic pollutants (POPs) which have been identified in the aquatic and terrestrial environment including wildlife and humans. In exposed organisms including humans toxic effects, bioaccumulation, metabolism, and pharmacokinetics (especially half-life t{sub 1/2}) are important criterions in the hazard assessment. The aim of the present study was to estimate the terminal elimination half-lives (t{sub 1/2H}) of the main BFRs from the whole body (also named body-burden half-life) and/or from the adipose tissue (fat) of adult humans. The t{sub 1/2H} data for the following BFRs were evaluated: TBBPA, HBCD, 2,2',4,4'- tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentaBDE (BDE-99), 2,2',4,4',6-pentaBDE (BDE- 100), 2,2',4,4',5,5'-hexaBDE (BDE-153), and 2,2',4,4',5,6-hexaBDE (BDE-154).

  10. A serial dual-electrode detector based on electrogenerated bromine for capillary electrophoresis.

    Science.gov (United States)

    Du, Fuying; Cao, Shunan; Fung, Ying-Sing

    2014-12-01

    A new serial dual-electrode detector for CE has been designed and fabricated for postcolumn reaction detection based on electrogenerated bromine. A coaxial postcolumn reactor was employed to introduce bromide reagent and facilitate the fabrication of upstream generation electrode by simply sputtering Pt film onto the outer surface of the separation capillary. Bromide introduced could be efficiently converted to bromine at this Pt film electrode and subsequently detected by the downstream Pt microdisk detection electrode. Analytes that react with bromine could be determined by the decrease of bromine reduction current at the downstream electrode resulting from the reaction between analytes and bromine. The effects of serial dual-electrode detector working conditions including electrode potentials, bromide flow rate, and bromide concentration on analytical performance were investigated using glutathione (GSH) and glutathione disulfide (GSSG) as test analytes. Under the optimal conditions, detection limits down to 0.16 μM for GSH and 0.14 μM for GSSG (S/N = 3) as well as linear working ranges of two orders of magnitude for GSH and GSSG were achieved. Furthermore, the separation efficiency obtained by our dual-electrode detector design was greatly improved compared with previous reported design. The developed method has been successfully applied to determine the GSH and GSSG impurity in commercial GSH supplement.

  11. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cong-Cong [Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn [Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer A process for brominated flame retardants (BFRs) removal in plastic was established. Black-Right-Pointing-Pointer The plastic became bromine-free with the structure maintained after this treatment. Black-Right-Pointing-Pointer BFRs transferred into alcohol solvent were easily debrominated by metallic copper. - Abstract: Brominated flame retardants (BFRs) in electrical and electronic (E and E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90 Degree-Sign C, 2 h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal.

  12. Effect of the Bromine-Based Flame Retardant Plastic Pyrolysis of Hydrotalcite

    Directory of Open Access Journals (Sweden)

    Morita N.

    2016-01-01

    Full Text Available In this study, a method is presented to decrease halogen compounds in the product oil from thermolysis of polystyrene and polypropylene mixed plastic spiked with tetrabromobisphenol A. A mixture of hydrotalcite and plastic was pyrolyzed in a glass reactor at 400 °C under a nitrogen atmosphere. Bromine compounds in the residual substances were measured. The yield of product oil increased using hydrotalcite as an additive. The bromine compounds that were the major ingredients in the oil after thermolysis at 400 °C from the mixed plastic, which also included toluene, ethyl benzene, styrene, and 1-methylethyl benzene, were 2-bromohexane, 3-bromo-1-propenyl benzene, 4,5-dibromodecane, 1-bromomethylbenzene, 3-bromophenol, and 4-bromo-2,6-dimethylbenzaniline. However, bromine compounds were not detected in the product oil, residue, or gas when hydrotalcite was added. After the thermolysis of the plastic, bromine compounds in the product oil may decrease because bromine was captured by the added hydrotalcite.

  13. GAS SORPTION AND TRANSPORT IN POLY (PHENYLENE OXIDE )(PPO)AND ARYL-BROMINATED PPO MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    JIA Lianda; F.R.SHEU, R.T. CHERN; H.B. HOPFENBERG

    1989-01-01

    The apparent solubility (S), concentration- average diffusivity (D), and permeability (P), for CO2,CH4 and N2 through PPO and aryl- brominated PPO at 35 ℃ for pressure ranging from 1 to 26 atm are reported. It is found that P,D, and Sof the membranes to all the three gases vary with the extent of bromination. S increases with the increase of the perecnt of bromine in each case, but D to CO2 increases remarkably only at higher degree of bromination, and therefore, P to CO2 is increased by more than 100% over a wide range of pressure in the case .The solubility data are well described by the dual mode sorption model. It is found that the gas molecules sorbed by the Langmuir mode are relatively more immobilized and the contribution of the nonequilibrium character of the polymer to gas permeation increases obviously for CO2 and is hardly changed for CH4 with increasing bromine content. These observations are interpreted in terms of changes in specific free volume (SFV)and the cohesive energy density (CED) of the polymers.

  14. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry.

    Science.gov (United States)

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Zheng, Hongdie; Yang, Min

    2014-03-18

    Brominated disinfection byproducts (Br-DBPs), formed from the reaction of disinfectant(s) with natural organic matter in the presence of bromide in raw water, are generally more cytotoxic and genotoxic than their chlorinated analogues. To date, only a few Br-DBPs in drinking water have been identified, while a significant portion of Br-DBPs in drinking water is still unknown. In this study, negative ion electrospray ionization ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize unknown Br-DBPs in artificial drinking water. In total, 441 formulas for one-bromine-containing products and 37 formulas for two-bromine-containing products, most of which had not been previously reported, were detected in the chlorinated sample. Most Br-DBPs have corresponding chlorine-containing analogues with identical CHO composition. In addition, on-resonance collision-induced dissociation (CID) of single ultrahigh resolved bromine containing mass peaks was performed in the ICR cell to isolate single bromine-containing components in a very complex natural organic matter spectrum and provide structure information. Relatively abundant neutral loss of CO2 was observed in MS-MS spectra, indicating that the unknown Br-DBPs are rich in carboxyl groups. The results demonstrate that the ESI FT-ICR MS method could provide valuable molecular composition and structure information on unknown Br-DBPs.

  15. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  16. THERMOCHEMICAL ENERGY STORAGE FOR SEASONAL BALANCE OF SURPLUS ELECTRICITY AND HEAT DEMAND IN DOMESTIC BUILDINGS

    OpenAIRE

    Schmidt, Matthias; Linder, Marc Philipp

    2016-01-01

    Thermochemical storage systems are predestined to store thermal energy for a long time since the storage principle itself is free of losses and allows for very high energy densities. Therefore we developed a new approach where electricity, p. e. from private PV-panels in the summer, is used to charge a thermochemical reaction system. The reaction product then can be stored in an inexpensive tank at room temperature. If there is heat demand during the winter part of the material can be supplie...

  17. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  18. Thermochemical properties for isooctane and carbon radicals: computational study.

    Science.gov (United States)

    Snitsiriwat, Suarwee; Bozzelli, Joseph W

    2013-01-17

    Thermochemical properties for isooctane, its internal rotation conformers, and radicals with corresponding bond energies are determined by use of computational chemistry. Enthalpies of formation are determined using isodesmic reactions with B3LYP density function theory and composite CBS-QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the isooctane parent and for the primary, secondary, and tertiary radicals in order to identify isomer energies. Intramolecular interactions are shown to have a significant effect on the enthalpy of formation of the isooctane parent and its radicals. The computed standard enthalpy of formation for the lowest energy conformers of isooctane from this study is -54.40 ± 1.60 kcal mol(-1), which is 0.8 kcal mol(-1) lower than the evaluated experimental value -53.54 ± 0.36 kcal mol(-1). The standard enthalpy of formation for the primary radical for a methyl on the quaternary carbon is -5.00 ± 1.69 kcal mol(-1), for the primary radical on the tertiary carbon is -5.18 ± 1.69 kcal mol(-1), for the secondary isooctane radical is -9.03 ± 1.84 kcal mol(-1), and for the tertiary isooctane radical is -12.30 ± 2.02 kcal mol(-1). Bond energy values for the isooctane radicals are 100.64 ± 1.73, 100.46 ± 1.73, 96.41 ± 1.88 and 93.14 ± 2.05 kcal mol(-1) for C3•CCCC2, C3CCCC2•, C3CC•CC2, and C3CCC•C2, respectively. Entropy and heat capacity values are reported for the lowest energy homologues.

  19. The NBS Reaction: A Simple Explanation for the Predominance of Allylic Substitution over Olefin Addition by Bromine at Low Concentrations.

    Science.gov (United States)

    Wamser, Carl C.; Scott, Lawrence T.

    1985-01-01

    Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)

  20. Influence of temperature and heating time on bromination of zinc oxide during thermal treatment with tetrabromobisphenol A.

    Science.gov (United States)

    Grabda, Mariusz; Oleszek-Kudlak, Sylwia; Shibata, Etsuro; Nakamura, Takashi

    2009-12-01

    Our prior research indicates that hydrogen bromide (HBr) evolved during thermal decomposition of tetrabromobisphenol A (TBBPA) can be utilized as a reagent for selective bromination and evaporation of zinc oxide. The present work investigated dependency of the bromination reaction on time at selected temperatures using a laboratory-scale furnace. The formed solid, condensed, and gaseous products were analyzed by X-ray diffraction analysis, electron probe microanalysis, inductively coupled plasma analysis, ion chromatography, and gas chromatography coupled with mass spectrometry. Results indicate that the bromination rate is strongly dependent on heating time. This dependency is a direct consequence of progress in the decomposition of TBBPA, which provides inorganic bromine suitable for the reaction. The bromination rate increases with time until the bromine source is depleted. The process is shorter at higher applied temperatures and appears instantaneous at 310 degrees C and above. However, the maximum bromination yield is independent of the applied conditions and ranges from 64 to 70%. Additionally, the influence of oxidizing conditions on the bromination reaction and the effect of ZnO on decomposition of TBBPA were investigated in this study.

  1. Synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles in both room temperature and microwave condition catalyzed by hexamethylenetetramine-bromine complex

    Institute of Scientific and Technical Information of China (English)

    Kaveh Khosravi; Samira Kazemi

    2012-01-01

    One-pot condensation of 2-aminothiophenol or 1,2-phenylenediamine with different aldehydes has been catalyzed by hexamethylenetetramine-bromine (HMTA-Bromine) as new,available and effective catalyst.2-Arylbenzo thiazoles and 2-aryl benzimidazoles have been achieved in excellent yield and good purity.

  2. Nitrated and Brominated Narcotine and its Cleaved Adduct as Butyrylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    M. A. Abbasi

    2013-09-01

    Full Text Available Narcotine is a very antitussive agent and its modification may lead to some more biological activities. In this presented paper, narcotine (1 was first subjected to nitration and bromination to yield nitrated narcotine (2 and brominated narcotine (3. It was further made to react with phenylchloroformate (6 to give a cleaved addition product 4. This adduct 4 was further nitrated and brominated to yield substituted derivatives 5 and 6, respectively. The structure elucidation of the synthesized compounds was processed via IR, EI-MS and 1H-NMR spectra. These were also screened against butyrylcholinesterase enzyme and were found to the moderate inhibitors of butyrylcholinesterase except nitrated product, 2, of narcotine (1.

  3. The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent.

    Science.gov (United States)

    Zhu, P; Chen, Y; Wang, L Y; Zhou, M; Zhou, J

    2013-02-01

    Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm(2) at 145°C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively.

  4. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping

    Science.gov (United States)

    Kiermasch, David; Rieder, Philipp; Tvingstedt, Kristofer; Baumann, Andreas; Dyakonov, Vladimir

    2016-12-01

    The charge carrier lifetime is an important parameter in solar cells as it defines, together with the mobility, the diffusion length of the charge carriers, thus directly determining the optimal active layer thickness of a device. Herein, we report on charge carrier lifetime values in bromine doped planar methylammonium lead iodide (MAPbI3) solar cells determined by transient photovoltage. The corresponding charge carrier density has been derived from charge carrier extraction. We found increased lifetime values in solar cells incorporating bromine compared to pure MAPbI3 by a factor of ~2.75 at an illumination intensity corresponding to 1 sun. In the bromine containing solar cells we additionally observe an anomalously high value of extracted charge, which we deduce to originate from mobile ions.

  5. Bromination of Marine Dissolved Organic Matter following Full Scale Electrochemical Ballast Water Disinfection.

    Science.gov (United States)

    Gonsior, Michael; Mitchelmore, Carys; Heyes, Andrew; Harir, Mourad; Richardson, Susan D; Petty, William Tyler; Wright, David A; Schmitt-Kopplin, Philippe

    2015-08-01

    An extensively diverse array of brominated disinfection byproducts (DBPs) were generated following electrochemical disinfection of natural coastal/estuarine water, which is one of the main treatment methods currently under consideration for ballast water treatment. Ultra-high-resolution mass spectrometry revealed 462 distinct brominated DBPs at a relative abundance in the mass spectra of more than 1%. A brominated DBP with a relative abundance of almost 22% was identified as 2,2,4-tribromo-5-hydroxy-4-cyclopentene-1,3-dione, which is an analogue to several previously described 2,2,4-trihalo-5-hydroxy-4-cyclopentene-1,3-diones in drinking water. Several other brominated molecular formulas matched those of other known brominated DBPs, such as dibromomethane, which could be generated by decarboxylation of dibromoacetic acid during ionization, dibromophenol, dibromopropanoic acid, dibromobutanoic acid, bromohydroxybenzoic acid, bromophenylacetic acid, bromooxopentenoic acid, and dibromopentenedioic acid. Via comparison to previously described chlorine-containing analogues, bromophenylacetic acid, dibromooxopentenoic acid, and dibromopentenedioic acid were also identified. A novel compound at a 4% relative abundance was identified as tribromoethenesulfonate. This compound has not been previously described as a DBP, and its core structure of tribromoethene has been demonstrated to show toxicological implications. Here we show that electrochemical disinfection, suggested as a candidate for successful ballast water treatment, caused considerable production of some previously characterized DBPs in addition to novel brominated DBPs, although several hundred compounds remain structurally uncharacterized. Our results clearly demonstrate that electrochemical and potentially direct chlorination of ballast water in estuarine and marine systems should be approached with caution and the concentrations, fate, and toxicity of DBP need to be further characterized.

  6. Investigation of Mercury Vapor Treatment by Activated Carbon Made from Coconut Shell and Denatured by Elemental Bromine

    Directory of Open Access Journals (Sweden)

    Tran Hong Con

    2015-07-01

    Full Text Available Coconut shell activated carbon of TraVinhcompany, Vietnam was oxidized by bromine solution at pH 4-6 in normal temperature and pressure. The efficiency of bromine carried on AC surface reached 70.95 to 98.50%. The IR spectrum showed that in surface of the brominated AC appeared C-Br, carbonyl and carboxyl groups. The adsorption capacity of brominated AC reached more than 130 mg/g at 40oC and mercury concentration around 32 mg/m3. The mercury vapor adsorption of the material was almost uninfluenced by experimental temperature. Used brominated AC can be regenerated and recovered mercury metal. The regenerated material has adsorption capacity of 86.92% in comparison with initial material and weight loss was 6.23% at laboratory scale examination.

  7. A Quaternized Polysulfone Membrane for Zinc-Bromine Redox Flow Battery

    OpenAIRE

    Mingqiang Li; Hang Su; Qinggang Qiu; Guang Zhao; Yu Sun; Wenjun Song

    2014-01-01

    A quaternized polysulfone (QNPSU) composite membrane is fabricated for zinc-bromine redox flow battery. The structure of the membrane is examined by FT-IR spectra and SEM. The conductivity of the membrane is tested by electrochemical analyzer. After a zinc-bromine battery with this composite membrane is operated at different voltage while charging and at different current while discharging to examine the performance of the membrane, it is found that the discharge voltage was 0.9672 V and the ...

  8. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    Science.gov (United States)

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  9. A review on the properties of salt hydrates for thermochemical storage

    NARCIS (Netherlands)

    Trausel, F.; Jong, A.J. de; Cuypers, R.

    2014-01-01

    Solar energy is capable of supplying enough energy to answer the total demand of energy in dwellings. However, because of the discrepancy between energy supply and energy demand, an efficient way of storing thermal energy is crucial. Thermochemical storage of heat in salt hydrates provides an effici

  10. A new high-flux solar furnace for high-temperature thermochemical research

    Energy Technology Data Exchange (ETDEWEB)

    Haueter, P.; Seitz, T.; Steinfeld, A. [Paul Scherrer Inst., Villigen (Switzerland). Solar Process Technology Group

    1999-02-01

    A new high-flux solar furnace, capable of delivering up to 40 kW at peak concentration ratios exceeding 5000, is operational at PSI. Its optical design characteristics, main engineering features, and operating performance are described. This solar concentrating facility will be used principally for investigating the thermochemical processing of solar fuels at temperatures as high as 2500 K.

  11. Potential of summer legumes for thermochemical conversion to synthetic fuel in the southeast USA

    Science.gov (United States)

    Fallow periods during the summer in some crop rotations of the Southeast USA could potentially be used to grow feedstocks for energy production. The objective of this study was to evaluate Crotolaria juncea and cowpeas (Vigna unguiculata) as species to be used as feedstocks for thermochemical conver...

  12. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (relea

  13. Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions

    NARCIS (Netherlands)

    Kruidhof, H.; Vries, de K.J.; Burggraaf, A.J.

    1990-01-01

    The thermochemical stability of fast oxygen ion conducting yttria stabilized bismuthoxide (YSB) solid solutions containing 22.0–32.5 mol% of yttria was investigated. It was shown that in the temperature range between 650–740 C the stabilized cubic δ-phase containing less than 31.8 mol% of yttria is

  14. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    NARCIS (Netherlands)

    Woitke, P.; Kamp, I.; Thi, W. -F.

    2009-01-01

    Context. Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into understandin

  15. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case...

  16. Improving Students' Chemical Literacy Levels on Thermochemical and Thermodynamics Concepts through a Context-Based Approach

    Science.gov (United States)

    Cigdemoglu, Ceyhan; Geban, Omer

    2015-01-01

    The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…

  17. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    OpenAIRE

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel pr...

  18. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    Science.gov (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    ) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.

  19. The role of labile sulfur compounds in thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, Alon; Zhang, Tongwei; Ma, Qisheng; Ellis, Geoffrey S.; Tang, Yongchun

    2008-06-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  20. The role of labile sulfur compounds in thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, A.; Zhang, T.; Ma, Q.; Ellis, G.S.; Tang, Y.

    2008-01-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S??, organic S) at temperatures of 330 and 356 ??C under a constant confining pressure. The in-situ pH was buffered to 3.5 (???6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (???0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  1. Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints

    Directory of Open Access Journals (Sweden)

    J. Aschmann

    2013-02-01

    Full Text Available Very short-lived substances (VSLS still represent a major factor of uncertainty in the quantification of stratospheric bromine loading. One of the major obstacles for short-lived source gases in contributing to the stratosphere is generally thought to be loss of inorganic bromine (Bry in the tropical tropopause layer (TTL due to dehydration. We use sensitivity calculations with a three-dimensional chemistry transport model comprising a consistent parametrization of convective transport and a comprehensive chemistry scheme to investigate the associated processes. The model considers the two most important bromine VSLS, bromoform (CHBr3 and dibromomethane (CH2Br2. The organic bromine source gases as well as the resulting profile of inorganic bromine in the model are consistent with available observations. In contrast to its organic precursors, Bry is assumed to have a significant sorption capacity regarding sedimenting liquid or frozen particles thus the fraction of intact source gases during their ascent through the TTL is a critical factor. We find that source gas injection is the dominant pathway into the stratosphere, about 50% of CHBr3 and 94% of CH2Br2 is able to overcome the cold point tropopause at approximately 17 km altitude, modulated by the interannual variability of the vertical transport efficiency. In fact, our sensitivity calculations indicate that the extent of source gas injection of CHBr3 is highly sensitive to the strength of convection and large-scale ascent; in contrast, modifying the photolysis or the destruction via OH yields a significantly smaller response. In principle, the same applies as well to CH2Br2, though it is considerably less responsive due to its longer lifetime. The next important aspect we identified is that the partitioning of available Bry from short-lived sources is clearly

  2. Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints

    Directory of Open Access Journals (Sweden)

    J. Aschmann

    2012-11-01

    Full Text Available Very short-lived substances (VSLS still represent a major factor of uncertainty in the quantification of stratospheric bromine loading. One of the major obstacles for short-lived source gases in contributing to the stratosphere is generally thought to be loss of inorganic bromine (Bry in the tropical tropopause layer (TTL due to dehydration. We use sensitivity calculations with a~three-dimensional chemistry transport model comprising a consistent parametrization of convective transport and a comprehensive chemistry scheme to investigate the associated processes. The model considers the two most important bromine VSLS, bromoform (CHBr3 and dibromomethane (CH2Br2. The organic bromine source gases as well as the resulting profile of inorganic bromine in the model are consistent with available observations. In contrast to its organic precursors, Bry is assumed to have a~significant sorption capacity regarding sedimenting liquid or frozen particles thus the fraction of intact source gases during their ascent through the TTL is a critical factor. We find that source gas injection is the dominant pathway into the stratosphere, about 50% of CHBr3 and 93% of CH2Br2 is able to overcome the cold point tropopause at approximately 17 km altitude, modulated by the interannual variability of the vertical transport efficiency. In fact, our sensitivity calculations indicate that the extent of source gas injection of CHBr3 is highly sensitive to the strength of convection and large-scale ascent; in contrast, modifying the photolysis or the destruction via OH yields a significantly smaller response. In principal, the same applies as well to CH2Br2, though it is considerably less responsive due to its longer lifetime. The next important aspect we identified is that the partitioning of available Bry from short-lived sources is clearly

  3. Fate of PBDEs during food processing: Assessment of formation of mixed chlorinated/brominated diphenyl ethers and brominated dioxins/furans.

    Science.gov (United States)

    Roszko, Marek; Szymczyk, Krystyna; Jędrzejczak, Renata

    2015-01-01

    The aim of this study was to evaluate effects of food processing on PBDE levels, in particular influence of heat treatment on degradation of PBDEs, including possible formation of chlorinated diphenyl ethers or brominated dioxins/furans as degradation products. It was shown that PBDEs heated in the presence of chlorine (from either organic or inorganic sources) formed mixed chlorinated/brominated diphenyl ethers. However, no PCDEs were formed in the presence of lipids. Lipid medium increased stability of PBDEs exposed to UV irradiation. Profile of congeners formed in result of the debromination reaction was significantly different than profiles observed by some other authors in aliphatic organic solvents. Grilling processes increased concentrations (calculated on the fresh product basis) of the studied compounds by 4-8/22-34% for electric/coal grill, respectively. Depending on the congener and on the applied heat treatment, PBDE mass in pork meat after grilling dropped by 26-53%. No detectable quantities of either brominated dioxins or furans were formed during thermal processing of food containing typical levels of PBDEs.

  4. Thermochemical processes for water splitting - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Behr, F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Reaktortechnik); Knoche, K.F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Technische Thermodynamik und Inst. fuer Thermodynamik); Barnert, H. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung)

    1984-04-01

    In this paper we discuss the proposals for processes which have already been realised in form of bench scale units or which have been planned, as well as those which have a high degree of development potential. A part of these cycles have in common the splitting of sulfuric acids which causes corrosion problems unsolved up to now. The essential part of the metal/metal hydride-processes is a hydrogen permeable membrane which separates the hydrogen acceptor from the water containing electrolyte melt. Actually we are intending to build up a lab cycle using a TiNi-basis membrane. The metal membranes offer a number of further interesting applications, such as (1) hydrogen production from gas mixtures at high temperatures, and (2) tritium separation from the helium of the HTR primary cooling circuit. A further promising process is the hydrocarbon hybrid cycle, in which the reduction of methanol to methane and oxygen is the key reaction. Till now we can detect a methane yield of up to 50%. An interesting combined procedure for the production of hydrogen and electricity is proposed, where sulphuric acid is decomposed by means of coal. The detailed mass and energy balance shows an efficiency of up to 57%. Thermodynamic analysis for the watersplitting cycles indicates efficiencies up to 50%. Further research and development work is necessary in order to solve material problems and to demonstrate the suitability and availability of the techniques using larger scale laboratory and prototype units.

  5. Thermochemical water decomposition cyle for hydrogen production%热化学循环分解水制氢

    Institute of Scientific and Technical Information of China (English)

    杨运嘉

    2001-01-01

    the thermochemical water decomposition cycle which consists of four gas-solid reaction of ca and Fe compounds for hydrogen production is discussed. The reactivity was improved by the introduction as a preparation method of the alkoxide and addition of graphite and lauric acid. Fine reactant Fe2O3 particles were homogeneously dispersed in the porous matrix of inert FeaTiOs with the sufficient strength of pellet.%文章所讨论的热化学循环分解水制氢是由Ca和Fe化合物的四步气-固反应所组成。在制备方法上,通过引入醇盐法并添加石墨和月桂酸将反应物Fe2O3颗粒均匀地分散在作为粘合剂的多孔惰性Fe2TeO5基质中,做成具有足够强度的丸,而使反应性得到改进。

  6. Regioselective chlorination and bromination of unprotected anilines under mild conditions using copper halides in ionic liquids

    Directory of Open Access Journals (Sweden)

    Han Wang

    2012-05-01

    Full Text Available By using ionic liquids as solvents, the chlorination or bromination of unprotected anilines at the para-position can be achieved in high yields with copper halides under mild conditions, without the need for potentially hazardous operations such as supplementing oxygen or gaseous HCl.

  7. 二溴海因溴化邻苯二酚%Bromination of Catechol Using Dibromohydantoin

    Institute of Scientific and Technical Information of China (English)

    王宁宁; 鲍猛; 牟宗刚; 王慧; 刘传仁

    2011-01-01

    4, 5 -Dibromocateehol were synthesised by using dibromohydantoin as brominating agent to react with the eatechol, in glacial acetic acid environment, in ice - water bath. The method overcame the shortcomings of the traditional method using liquid bromine as the brominating agent and effectively improved the yield. By studing the molar ratio of brominated agent and raw materials, the reaction time and the reaction temperature, the experiment determined that the optimal molar ratio was 2:1, each appropriate feeding time interval was 20 minutes, and the optimum reaction temperature was -5 -0 ℃.%在冰醋酸环境下,在冰水浴中,用二溴海因作为溴化剂,与邻苯二酚反应合成4,5-二溴邻苯二酚。该方法克服传统方法中用液溴作为溴化剂的缺点并有效地提高了产率。该实验通过对溴化剂与原料的物质的量比、反应时间以及反应温度的研究,确定最佳物质的量比是2:1,每次加料时间间隔为20min为宜、反应最佳温度为-5-O℃。

  8. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants

    NARCIS (Netherlands)

    Hamers, T.H.M.; Kamstra, J.H.; Sonneveld, E.; Murk, A.J.; Kester, M.H.A.; Andersson, P.L.; Legler, J.; Brouwer, A.

    2006-01-01

    Over the last years, increasing evidence has become available that some brominated flame retardants (BFRs) may have endocrine disrupting (ED) potencies. The goal of the current study was to perform a systematic in vitro screening of the ED potencies of BFRs (1) to elucidate possible modes of action

  9. Molecular characterization of brominated persistent pollutants using extended X-ray absorption fine structure (EXAFS) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bergknut, Magnus; Skyllberg, Ulf [Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeaa (Sweden); Persson, Per [Umeaa University, Department of Chemistry, Umeaa (Sweden)

    2008-02-15

    X-ray absorption fine structure (EXAFS) spectroscopy spectra were collected for three brominated persistent pollutants: 6-bromo-2,4,5-trichlorophenol (BrTriClP), pentabromophenol (PentaBrP) and 3,3',5,5'-tetrabromobisphenol A (TBBA). The substances were selected to be symmetrical (BrTriClP and TBBA) or asymmetrical (PentaBrP) with respect to the atomic Br positions and to differ in the number of bromine and other halide atoms, as well as their relative positions. The asymmetrical PentaBrP was modelled with special detail as not all bromine atoms have identical coordination environments. The studied substances displayed unique EXAFS spectra, which could be used to determine the molecular structure in fair detail. We conclude that EXAFS spectroscopy is a suitable technique for molecular characterization of the comparatively complex molecules within the class of compounds of brominated organic persistent pollutants. A detailed understanding of the EXAFS spectra of the pure compounds opens up possibilities to study the interactions with soil and sediment matrices by means of EXAFS spectroscopy. (orig.)

  10. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    Science.gov (United States)

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.

  11. Deposition history of brominated flame retardant compounds in an ice core from Holtedahlfonna, Svalbard, Norway

    NARCIS (Netherlands)

    Hermanson, M.H.; Isaksson, E.; Forsström, S.; Teixeira, C.; Muir, D.C.G.; Pohjola, V.A.; van de Wal, R.S.W.

    2010-01-01

    Brominated flame retardants (BFRs) have been found in Arctic wildlife, lake sediment, and air. To identify the atmospheric BFR deposition history on Svalbard, Norway, we analyzed 19 BFRs, including hexabromocyclododecane (HBCD), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane

  12. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    Science.gov (United States)

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A.; Dahl-Jensen, Dorthe

    2016-09-01

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  13. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    Science.gov (United States)

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  14. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes.

    Science.gov (United States)

    Li, Sumei; Liu, Guorui; Zheng, Minghui; Liu, Wenbin; Li, Jinhui; Wang, Mei; Li, Changliang; Chen, Yuan

    2017-06-05

    Iron ore sintering (SNT) processes are major sources of unintentionally produced chlorinated persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs). However, few studies of emissions of brominated POPs, such as polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), during SNT have been performed. Stack gas and fly ash samples from six typical SNT plants in China were collected and analyzed to determine the concentrations and profiles of PCDD/Fs, PCBs, PCNs, PBDD/Fs, and PBDEs, as well as any correlations among these compounds. The PCDD/F, PCB, PCN, PBDD/F, and PBDE emission factors were 2.47, 0.61, 552, 0.32, and 107μgt(-1), respectively (109, 4.07, 10.4, 4.41 and 0.02ng toxic equivalents t(-1), respectively). PCBs were the most abundant compounds by mass, while PCNs were the next most abundant, contributing 51% and 42% to the total POP concentration, respectively. However, PCDD/Fs were the dominant contributors to the chlorinated and brominated POP toxic equivalent concentrations, contributing 89% to the total toxic equivalent concentration. The PCDD/F and other chlorinated and brominated POP concentrations were positively correlated, indicating that chlorinated and brominated POP emissions could be synergistically decreased using the best available technologies/best environmental practices already developed for PCDD/Fs.

  15. Using the parallelogram approach to estimate human percutaneous bioavailability for novel & legacy brominated flame retardants

    Science.gov (United States)

    (This is an extended abstract. The following text was taken from the Discussion and Conclusion section.) Humans are frequently exposed to brominated flame retardants (BFRs), especially via dermal contact with contaminated dust. Human and rat skin data were integrated using a pa...

  16. On the bromination of the dihydroazulene/vinylheptafulvene photo-/thermoswitch

    DEFF Research Database (Denmark)

    Mazzanti, Virginia; Cacciarini, M.; Broman, Søren Lindbæk;

    2012-01-01

    as of the known 7-bromo-DHA. Results: Radical bromination on two different VHFs by using N-bromosuccinimide/benzoyl peroxide and light, followed by a ring-closure reaction generated the corresponding 3-bromo-DHAs, as confirmed in one case by X-ray crystallography. According to a H-1 NMR spectroscopic study...

  17. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    Science.gov (United States)

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A.; Dahl-Jensen, Dorthe

    2016-01-01

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement. PMID:27650478

  18. Exposure assessment of Dutch nursing infants to brominated flame retardants via breast milk

    NARCIS (Netherlands)

    Winter-Sorkina R de; Bakker MI; Baumann RA; Hoogerbrugge R; Zeilmaker MJ; SIR

    2004-01-01

    As part of a national survey on the occurrence of persistent organic contaminants in breast milk, a group of brominated flame retardants (polybrominated diphenyl ethers or PBDEs) was measured in breast milk which had been collected in 1998 from Dutch primiparous women on day 6 to 10 after labour. To

  19. Toxicity of brominated flame retardants in fish, with emphasis on endocrine effects and reproduction

    NARCIS (Netherlands)

    Kuiper, R.V.

    2007-01-01

    Abstract The abundant use of brominated flame retardants (BFRs) in modern polymers has over the passed decades resulted in contamination of the environment, and BFRs are increasingly found in fish. Laboratory studies have shown that a number of BFRs and BFR-metabolites can interfere with thyroid and

  20. Brominated Flame Retardants and their metabolites: Novel insights into endocrine disruptive properties.

    NARCIS (Netherlands)

    Fernández Cantón, R.

    2008-01-01

    Brominated flame retardants (BFRs) are chemicals that are added to materials to inhibit or suppress ignition and are incorporated during the manufacture of e.g. electronic equipment, furniture, construction materials and textiles. BFRs have become an increasingly important group of organohalogen com

  1. Brominated flame retardants and the formation of dioxins and furans in fires and combustion.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2016-03-05

    The widespread use and increasing inventory of brominated flame retardants (BFRs) have caused considerable concern, as a result of BFRs emissions to the environment and of the formation of both polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) and mixed polybromochloro-dibenzo-p-dioxins and dibenzofurans (PBCDD/Fs or PXDD/Fs). Structural similarities between PBDD/Fs and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) suggest the existence of comparable formation pathways of both PBDD/Fs and PCDD/Fs, yet BFRs also act as specific precursors to form additional PBDD/Fs. Moreover, elementary bromine (Br2) seems to facilitate chlorination by bromination of organics, followed by Br/Cl-exchange based on displacement through the more reactive halogen. Overall, PBDD/Fs form through three possible pathways: precursor formation, de novo formation, and dispersion of parts containing BFRs as impurities and surviving a fire or other events. The present review summarises the formation mechanisms of both brominated (PBDD/Fs) and mixed dioxins (PXDD/Fs with X=Br or Cl) from BFRs, recaps available emissions data of PBDD/Fs and mixed PXDD/Fs from controlled waste incineration, uncontrolled combustion sources and accidental fires, and identifies and analyses the effects of several local factors of influence, affecting the formation of PBDD/Fs and mixed PXDD/Fs during BFRs combustion.

  2. Thermoelectric properties of bromine filled CoSb3 skutterudite

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Brenden R.; Crawford, Caitlin M.; McKinney, Robert W.; Parilla, Philip A.; Toberer, Eric S.

    2016-01-01

    Historically, the improved thermoelectric performance of skutterudite compounds has largely been driven by the incorporation of electropositive donors on interstitial sites. These 'rattlers' serve to optimize both electronic and thermal properties by tuning the carrier concentration and scattering phonons. In this work, we show that interstitial bromine can be incorporated into CoSb3 and assess the impact on electronic and thermal transport. In contrast to prior high pressure syntheses with iodine, interstitial bromine incorporation is achieved at ambient pressure. Transport properties are stable up to at least 375 degrees C. Bromine serves as an electronegative acceptor and can induce degenerate (>5 x 1019 cm-3) hole densities. In contrast to other p-type skutterudite compositions, bromine preserves the intrinsically high hole mobility of CoSb3 while significantly reducing the lattice thermal conductivity. The development of a stable p-type dopant for the interstitial filler site enables the development of skutterudites with both donor and acceptor interstitials to maximize phonon scattering while maintaining the high mobility of CoSb3.

  3. 氯化镧与甘氨酸配位反应的热化学研究%Thermochemical Study of the Reaction of Lanthanum Chloride Coordinated with Glycine

    Institute of Scientific and Technical Information of China (English)

    周传佩; 陈文生; 刘义; 李林尉; 屈松生

    2000-01-01

    The reaction enthalpy of coordination reaction of lanthanum chloride with Glycine is determined by solution calorimetry in an isoperibel reaction calorimeter. The calormetric solvent is the solution of hydrochloric acid (2 mol·L- 1), a new thermochemical cycle is designed. According to the results, the following date:()(298.2 K)=- 4.310 kJ·mol- 1()(La(Gly)3Cl3· 5H2O, s, 298.2 K)=- 4222.93 kJ·mol- 1 were obtained.

  4. The Effects of Bromination Methods on the Microstructure of Brominated Natural Rubbers from Latex%溴化方式对胶乳法溴化天然橡胶结构的影响

    Institute of Scientific and Technical Information of China (English)

    赵法敏; 薛行华; 张子琦; 张利伟; 李光

    2013-01-01

    为改善溴化天然橡胶(BNR)的溶解性能,在胶乳法的基础上改变溴化方式,以常规溴化方式和分步溴化方式分别制备了BNR.通过实验发现,体系溴浓度相同时分步溴化方式的溴含量比常规溴化方式高,而凝胶含量较低,所以分步溴化方式在甲苯中的溶解性能较好.通过傅里叶红外光谱对样品进行表征,并使用核磁共振对其微观结构进行了定性定量分析.红外光谱分析表明,2种溴化方式制备的BNR产物均发生了一定程度的溴加成反应和溴取代反应;核磁共振的分析证实了在体系溴浓度较低的情况下,与胶乳法常规溴化相反,胶乳法分步溴化的溴化过程主要以溴加成反应为主,少量发生溴取代反应.%In order to improve the solubility property of the brominated natural rubbers (BNR)from latex, BNR were prepared by changing the bromination ways from conventional bromination to step bromination. Through the experiment, it was discovered that the bromine content of the latter was higher than the former, but the gel content was less under the same bromine concentration. The latter showed much better solubility in the solvent of toluene. The structure of the procured sample was characterized by Fourier transform infrared spectroscopy (FTIR), and the microstructures of brominated nature rubber were qualitatively and quantitatively analyzed by nuclear magnetic resonance (NMR). FTIR showed that there were both a degree of brominated addition reaction and brominated substitution reaction in the obtained BNR by two different methods; Contrary to the conventional bromination from latex, the analysis of NMR proved that the bromination process of step bromination from latex was mainly in the form of addition reaction, and only a small amount of the substitution reaction did occur.

  5. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants

    Energy Technology Data Exchange (ETDEWEB)

    Oleszek, Sylwia, E-mail: sylwia_oleszek@yahoo.com [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze (Poland); Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Sklodowska-Curie St., 41-819 Zabrze (Poland); Shibata, Etsuro, E-mail: etsuro@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan); Nakamura, Takashi, E-mail: ntakashi@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Sendai 980-8577 (Japan)

    2013-09-15

    Highlights: • Copper, silver and gold during thermal treatment with brominated flame retardants. • Distribution of copper, silver and gold during thermal processing. • Thermodynamic considerations of the bromination reactions. - Abstract: The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is

  6. Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska

    Directory of Open Access Journals (Sweden)

    C. R. Thompson

    2014-11-01

    Full Text Available The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indications of active iodine chemistry through observed enhancements in filterable iodide, probable detection of tropospheric IO, and recently, detection of atmospheric I2. Despite decades of research, significant uncertainty remains regarding the chemical mechanisms associated with the bromine-catalyzed depletion of ozone, as well as the complex interactions that occur in the polar boundary layer due to halogen chemistry. To investigate this, we developed a zero-dimensional photochemical model, constrained with measurements from the 2009 OASIS field campaign in Barrow, Alaska. We simulated a 7 day period during late March that included a full ozone depletion event lasting 3 days and subsequent ozone recovery to study the interactions of halogen radicals under these different conditions. In addition, the effects of iodine added to our base model were investigated. While bromine atoms were primarily responsible for ODEs, chlorine and iodine were found to enhance the depletion rates and iodine was found to be more efficient per atom at depleting ozone than Br. The interaction between chlorine and bromine is complex, as the presence of chlorine can increase the recycling and production of Br atoms, while also increasing reactive bromine sinks under certain conditions. Chlorine chemistry was also found to have significant impacts on both HO2 and RO2. The results of this work highlight the need for future studies on the production mechanisms of Br2 and Cl2, as well as on the potential

  7. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    Energy Technology Data Exchange (ETDEWEB)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at [Saubermacher Dienstleistungs AG, Hans-Roth-Straße 1, 8073 Feldkirchen bei Graz (Austria); Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.

  8. Determination of iodine and bromine compounds in foodstuffs by CE-inductively coupled plasma MS.

    Science.gov (United States)

    Chen, Jing-Huan; Wang, Kai-en; Jiang, Shiuh-Jen

    2007-11-01

    A CE-inductively coupled plasma mass spectrometric (CE-ICP-MS) method for iodine and bromine speciation analysis is described. Samples containing ionic iodine (I(-) and IO(3)(-)) and bromine (Br(-) and BrO(3)(-)) species are subjected to electrophoretic separation before injection into the microconcentric nebulizer (CEI-100). The separation has been achieved in a 50 cm length x 75 microm id fused-silica capillary. The electrophoretic buffer used is 10 mmol/L Tris (pH 8.0), while the applied voltage is set at -8 kV. Detection limits are 1 and 20-50 ng/mL for various I and Br compounds, respectively, based on peak height. The RSD of the peak areas for seven injections of 0.1 microg/mL I(-), IO(3)(-) and 1 microg/mL Br(-), BrO(3)(-) mixture is in the range of 3-5%. This method has been applied to determine various iodine and bromine species in NIST SRM 1573a Tomato Leaves reference material and a salt and seaweed samples obtained locally. A microwave-assisted extraction method is used for the extraction of these compounds. Over 87% of the total iodine and 83% of the total bromine are extracted using a 10% m/v tetramethylammonium hydroxide (TMAH) solution in a focused microwave field within a period of 10 min. The spike recoveries are in the range of 94-105% for all the determinations. The major species of iodine and bromine in tomato leaves, salt, and seaweed are Br(-), IO(3)(-), I(-), and Br(-), respectively.

  9. The effect of bromination of carbon fibers on the coefficient of thermal expansion of graphite fiber-epoxy composites

    Science.gov (United States)

    Jaworske, D. A.; Maciag, C.

    1987-01-01

    To examine the effect of bromination of carbon fibers on the coefficient of thermal expansion (CTE) of carbon fiber epoxy composites, several pristine and brominated carbon fiber-epoxy composite samples were subjected to thermomechanical analysis. The CTE's of these samples were measured in the uniaxial and transverse directions. The CTE was dominated by the fibers in the uniaxial direction, while it was dominated by the matrix in the transverse directions. Bromination had no effect on the CTE of any of the composites. In addition, the CTE of fiber tow was measured in the absence of a polymer matrix, using an extension probe. The results from this technique were inconclusive.

  10. Reactive bromine chemistry in Mt. Etna's volcanic plume: the influence of total Br, high temperature processing, aerosol loading and plume-air mixing

    Directory of Open Access Journals (Sweden)

    T. J. Roberts

    2014-03-01

    Full Text Available Volcanic emissions present a source of reactive halogens to the troposphere, through rapid plume chemistry that converts the emitted HBr to more reactive forms such as BrO. The nature of this process is poorly quantified, yet is of interest to understand volcanic impacts on the troposphere, and infer volcanic activity from volcanic gas measurements (i.e. BrO / SO2 ratios. Recent observations from Etna report an initial increase and subsequent plateau or decline in BrO / SO2 ratios with distance downwind. We present daytime PlumeChem model simulations that reproduce and explain the reported trend in BrO / SO2 at Etna including the initial rise and subsequent plateau. Through suites of model simulations we also investigate the influences of volcanic aerosol loading, bromine emission, and plume-air mixing rate on the downwind plume chemistry. Emitted volcanic HBr is converted into reactive bromine by autocatalytic bromine chemistry cycles whose onset is accelerated by the model high-temperature initialisation. These rapid chemistry cycles also impact the reactive bromine speciation through inter-conversion of Br, Br2, BrO, BrONO2, BrCl, HOBr. Formation of BrNO2 is also discussed. We predict a new evolution of Br-speciation in the plume, with BrO, Br2, Br and HBr as the main plume species in the near downwind plume whilst BrO, and HOBr are present in significant quantities further downwind (where BrONO2 and BrCl also make up a minor fraction. The initial rise in BrO / SO2 occurs as ozone is entrained into the plume whose reaction with Br promotes net formation of BrO. Aerosol has a modest impact on BrO / SO2 near-downwind (2 occurs as entrainment of oxidants HO2 and NO2 promotes net formation of HOBr and BrONO2, whilst the plume dispersion dilutes volcanic aerosol so slows the heterogeneous loss rates of these species. A higher volcanic aerosol loading enhances BrO / SO2 in the (> 6 km downwind plume. Simulations assuming low/medium and high Etna

  11. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed

    OpenAIRE

    Michel, Benoit; Mazet, Nathalie; Mauran, Sylvain; Stitou, Driss; Jing XU

    2012-01-01

    International audience; This paper focuses on the characterization and modeling of a solid/gas thermochemical reaction between a porous reactive bed and moist air flowing through it. The aim is the optimization of both energy density and permeability of the reactive bed, in order to realize a high density thermochemical system for seasonal thermal storage for house heating application. Several samples with different implementation parameters (density, binder, diffuser, porous bed texture) hav...

  12. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2012-10-01

    Full Text Available Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  13. Thermochemical sulphate reduction and Huayuan lead-zinc ore deposit in Hunan, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In recent years, some arguments with regard to the organicmineralization of MVT lead-zinc ore deposit are focused on the thermochemical sulphate reduction in the presence of organic matter. Based on the research into the organic geochemistry and C, O, S isotopes of mineralized host rocks, mineral gas fluid inclusion and solid bitumen from Huayuan (W. Hunan, China) lead-zinc ore deposit formed in the algal limestones of Qingxudong formation, Lower Cambrian, the authors consider that a lot of organic matter occurred and participated in mineralization. The organic matter from different sources participated in the mineralization with two main forms: thermochemical sul-phate reduction and thermal degradation which supplied abundant H2S for the precipitation.

  14. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    Directory of Open Access Journals (Sweden)

    Li Wei-Jie

    2014-01-01

    Full Text Available Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented results indicate, the thermochemical ablation rate of a solid rocket nozzle calculated by using actual thermal conductivity, which is a function of temperature, is higher than that by a constant thermal conductivity, so the effect of thermal conductivity on the ablation rate of a solid rocket nozzle made of carbon/carbon composites cannot be neglected.

  15. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass.

    Science.gov (United States)

    Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan

    2013-02-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%).

  16. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  17. Properties of 15HN Steel after Various Thermo-Chemical Treatments

    Directory of Open Access Journals (Sweden)

    L. Klimek

    2007-07-01

    Full Text Available The aim of conducted research was to find universal steel that may serve to regenerate machine elements by MULTIPLEX method – or cladding of alloy steel and then subjecting to thermo-chemical treatment. This paper presents the results of metallographic examination, hardness distribution and selected tribological properties of vacuum carburized, sulphonitrided and vacuum nitrided layers obtained on 15HN steel. The results demonstrate that on 15HN steel (carburizing steel, nitrided and sulphonitrided layers show good durability and tribological properties. Therefore, it is possible to use it to regenerate machine elements by cladding method and then treat them by different thermo-chemical ways in order to obtain desired properties.

  18. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  19. Thermo-chemical, mechanical and resin flow integrated analysis in pultrusion

    Science.gov (United States)

    Carlone, Pierpaolo; Rubino, Felice; Palazzo, Gaetano S.

    2016-10-01

    The present work discusses some numerical outcomes provided by an integrated analysis of impregnation, thermo-chemical and stress/strain aspects in a conventional pultrusion process. The impregnation models describes resin flow and pressure distribution in the initial portion of the die, solving a non-homogeneous non-isothermal/reactive multiphase problem, using a finite volume scheme. The thermochemical model describes the heat transfer and degree of cure evolution of the processing resin. Finally, the stress/strain model computes the part distortion and in process stresses due to thermal, chemical, mechanical strains. An applicative case study is presented, simulating the impregnation step of the pultrusion process of a fiberglass-epoxy resin composite rod.

  20. A thermochemical calculation of the pyroxene saturation surface in the system diopside-albite-anorthite

    Science.gov (United States)

    Hon, R.; Henry, D. J.; Navrotsky, A.; Weill, D. F.

    1981-01-01

    The pyroxene saturation surface in the system diopside-albite-anorthite may be calculated to + or - 10 C from thermochemical data over most of its composition range. The thermochemical data used are the experimentally determined enthalpies of mixing of the ternary liquids and the enthalpy of fusion of diopside. These are combined with a mixing model for the configurational entropy in the melt and the activity of CaMgSi2O6 in the clinopyroxene, which is less than unity due to departures from CaMgSi2O6 stoichiometry. The two-lattice melt model appears to work satisfactorily throughout the pyroxene primary phase field but probably needs modification at more anorthite-rich compositions.

  1. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid.

  2. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  3. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    OpenAIRE

    2014-01-01

    Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented re...

  4. New developments of the CARTE thermochemical code: I-parameter optimization

    Science.gov (United States)

    Desbiens, N.; Dubois, V.

    We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon). We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  5. New developments of the CARTE thermochemical code: I-parameter optimization

    Directory of Open Access Journals (Sweden)

    Dubois V.

    2011-01-01

    Full Text Available We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  6. Techniques for the estimation of Heats of Explosion (HEX) using thermochemical codes

    Science.gov (United States)

    Fifer, Robert A.; Morris, Jeffrey B.

    1993-09-01

    Procedures are outlined for calculating the heats of explosion (HEX) of neat energetic materials or propellant/explosive formulations using thermochemical codes. The 'exact' method and three approximate techniques are described; the approximate techniques either eliminate the need to sum the internal energies of the predicted products, or eliminate the need to specify a freeze-out temperature. The various techniques are illustrated for HMX and a nitrocellulose/nitroglycerine (NC/NG) mixture.

  7. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    OpenAIRE

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; de Jong, A. J.; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (released by adsorption) of 20 – 51 K which is by all means suitable for space heating.

  8. Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies

    OpenAIRE

    Leng, Wei; Zhong, Shijie

    2011-01-01

    Numerical modeling of mantle convection is challenging. Owing to the multiscale nature of mantle dynamics, high resolution is often required in localized regions, with coarser resolution being sufficient elsewhere. When investigating thermochemical mantle convection, high resolution is required to resolve sharp and often discontinuous boundaries between distinct chemical components. In this paper, we present a 2-D finite element code with adaptive mesh refinement techniques for si...

  9. Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations.

    Science.gov (United States)

    Morales, Giovanni; Martínez, Ramiro

    2009-07-30

    This research's main goals were to analyze ketene dimers' relative stability and expand group additivity value (GAV) methodology for estimating the thermochemical properties of high-weight ketene polymers (up to tetramers). The CBS-Q multilevel procedure and statistical thermodynamics were used for calculating the thermochemical properties of 20 cyclic structures, such as diketenes, cyclobutane-1,3-diones, cyclobut-2-enones and pyran-4-ones, as well as 57 acyclic base compounds organized into five groups. According to theoretical heat of formation predictions, diketene was found to be thermodynamically favored over cyclobutane-1,3-dione and its enol-tautomeric form (3-hydroxycyclobut-2-enone). This result did not agree with old combustion experiments. 3-Hydroxycyclobut-2-enone was found to be the least stable dimer and its reported experimental detection in solution may have been due to solvent effects. Substituted diketenes had lower stability than substituted cyclobutane-1,3-diones with an increased number of methyl substituents, suggesting that cyclobutane-1,3-dione type dimers are the major products because of thermodynamic control of alkylketene dimerization. Missing GAVs for the ketene dimers and related structures were calculated through linear regression on the 57 acyclic base compounds. Corrections for non next neighbor interactions (such as gauche, eclipses, and internal hydrogen bond) were needed for obtaining a highly accurate and precise regression model. To the best of our knowledge, the hydrogen bond correction for GAV methodology is the first reported in the literature; this correction was correlated to MP2/6-31Gdagger and HF/6-31Gdagger derived geometries to facilitate its application. GAVs assessed by the linear regression model were able to reproduce acyclic compounds' theoretical thermochemical properties and experimental heat of formation for acetylacetone. Ring formation and substituent position corrections were calculated by consecutively

  10. Effect of thermochemical treatment on the surface morphology and hydrophobicity of heterogeneous ion-exchange membranes

    Science.gov (United States)

    Vasil'eva, V. I.; Pismenskaya, N. D.; Akberova, E. M.; Nebavskaya, K. A.

    2014-08-01

    A comparative analysis is performed on the effect thermochemical treatment in aqueous, alkali, and acid media has on the surface morphology and hydrophobicity of swelling heterogeneous ion-exchanged membranes. A correlation between changes in surface morphology and hydrophobicity is established. It is shown that under prolonged (50 h) membrane thermal treatment above room temperature, hydrophobicity is reduced due to substantial enlargement of cavities and cracks resulting from the partial destruction of inert binder (polyethylene) and reinforcing poly-ɛ-caproamide fabric (capron).

  11. Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus

    NARCIS (Netherlands)

    Dingemans, Milou M. L.; Ramakers, Geert M. J.; Gardoni, Fabrizio; van Kleef, Regina G. D. M.; Bergman, Ake; Di Luca, Monica; van den Berg, Martin; Westerink, Remco H. S.; Wijverberg, Henk P. M.

    2007-01-01

    BACKGROUND: Increasing environmental levels of brominated flame retardants raise concern about possible adverse effects, particularly through early developmental exposure. OBJECTIVE: The objective of this research was to investigate neturodevelopmental mechanisms underlying previously observed behav

  12. Application of program LAURA to thermochemical nonequilibrium flow through a nozzle

    Science.gov (United States)

    Gnoffo, Peter A.

    1991-01-01

    Program LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3D viscous hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite-volume formulation in which the inviscid components of flux across cell walls are described with a modified Roe's averaging and with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. The code has been applied to Problem 8.2 of this workshop for the case of thermochemical nonequilibrium flow through a nozzle. Chemical reaction rates are defined with the model of Park (1987). Thermal nonequilibrium is modeled using a two-temperature approximation in which the vibrational energies of all molecules are assumed to be in equilibrium at a single temperature which is generally different from the translational-rotational temperature. Two grids were used to define the flow for the original problem, with a stagnation temperature of 6500 K. A third case with a stagnation temperature of 10,000 K is also presented. The solution domain includes the converging nozzle, subsonic flow domain in which the gas is substantially in thermochemical equilibrium and the diverging nozzle, hypersonic flow domain in which the gas is substantially in thermochemical nonequilibrium.

  13. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  14. Thermo-chemical process with sewage sludge by using CO2.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Kwon, Hyun-Han

    2013-10-15

    This work proposed a novel methodology for energy recovery from sewage sludge via the thermo-chemical process. The impact of CO2 co-feed on the thermo-chemical process (pyrolysis and gasification) of sewage sludge was mainly investigated to enhance thermal efficiency and to modify the end products from the pyrolysis and gasification process. The CO2 injected into the pyrolysis and gasification process enhance the generation of CO. As compared to the thermo-chemical process in an inert atmosphere (i.e., N2), the generation of CO in the presence of CO2 was enhanced approximately 200% at the temperature regime from 600 to 900 °C. The introduction of CO2 into the pyrolysis and gasification process enabled the condensable hydrocarbons (tar) to be reduced considerably by expediting thermal cracking (i.e., approximately 30-40%); thus, exploiting CO2 as chemical feedstock and/or reaction medium for the pyrolysis and gasification process leads to higher thermal efficiency, which leads to environmental benefits. This work also showed that sewage sludge could be a very strong candidate for energy recovery and a raw material for chemical feedstock.

  15. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    Science.gov (United States)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  16. Deep Structures and Initiation of Plate Tectonics in Thermochemical Mantle Convection Models

    Science.gov (United States)

    Hansen, U.; Stein, C.

    2015-12-01

    Recently deep thermochemical structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume.In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. We present a systematic 2D parameter study exploring the time of plate initiation and discuss the resulting deep thermal and thermochemical structures in a self-consistent thermochemical mantle convection system.

  17. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiao-Min, E-mail: rxm200318@gmail.com; Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn; Gao, Yu, E-mail: francesscototti@gmail.com; Zhang, Bin-Tian, E-mail: nktianster@gmail.com; Wan, Bin, E-mail: binwan@rcees.ac.cn

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were antagonists.

  18. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have

  19. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    Science.gov (United States)

    Rao, C. N. R.; Dey, Sunita

    2016-10-01

    Generation of H2 and CO by splitting H2O and CO2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H2O or CO2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H2O or CO2. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln1-xAxMn1-yMyO3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y0.5Sr0.5MnO3 which releases 483 μmol/g of O2 at 1673 K and produces 757 μmol/g of CO from CO2 at 1173 K. The production of H2 from H2O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H2 based on the Mn3O4/NaMnO2 cycle briefly.

  20. Kinetics and mechanism of the oxidative bromination of o-xylene in solution

    Energy Technology Data Exchange (ETDEWEB)

    Dorfman, Ya.A.; Emel' yanova, V.S.; Efremenko, I.G.; Doroshkevich, D.M.; Korolev, A.V.

    1988-07-01

    The kinetics of oxidative bromination of aromatic compounds have been studied in HNO/sub 3/-HBr-H/sub 2/SO/sub 4/-H/sub 2/O-O/sub 2/ solution. A kinetic equation which describes the results was derived for P/sub O/sub 2// > 5 /times/ 10/sup 4/ Pa. The equation parameters were determined at a temperature of 323 K. Quantum mechanical CNDO calculations were carried out in order to study the nature of the reactive intermediates involved: NO/sub 2/ NO(OH)/sup +/, N(OH)/sub 2//sup 2 +/, NO(OH)Br, and N(OH)/sub 2/Br/sup +/. A mechanism has been proposed to account for the oxidative bromination of aromatic compounds in HNO/sub 3/-H/sub 2/SO/sub 4/-HBr-O/sub 2/-H/sub 2/ solution.

  1. A Quaternized Polysulfone Membrane for Zinc-Bromine Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Mingqiang Li

    2014-01-01

    Full Text Available A quaternized polysulfone (QNPSU composite membrane is fabricated for zinc-bromine redox flow battery. The structure of the membrane is examined by FT-IR spectra and SEM. The conductivity of the membrane is tested by electrochemical analyzer. After a zinc-bromine battery with this composite membrane is operated at different voltage while charging and at different current while discharging to examine the performance of the membrane, it is found that the discharge voltage was 0.9672 V and the power density was 6 mW/cm2 at a current of 0.1 A, which indicated that the novel composite membrane is a promising material for the flow battery.

  2. Co-doping of Potassium and Bromine in Carbon Nanotubes: A Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    XIAO Yong; YAN xiao-Hong; DING Jian-Wen

    2007-01-01

    We investigate the co-doping of potassium and bromine in singlewalled carbon nanotubes (SWCNTs)and doublewalled carbon nanotubes(DWCNTs)based on density functional theory.In the co-doped(6,O)SWCNTs,the 4s electron of potassium is transferred to nanotube and Br,leading to the n-type feature of SWCNTs.When potassium is intercalated into inner tube and bromine is put on outer tube,the positive and negative charges reside on the outer and inner tubes of the(7.0)@(16,0)DWCNT,respectively.It is expected that DWCNTs would be an ideal candidate for p-n junction and diode applications.

  3. Analysis and occurrence of emerging brominated flame retardants in the Llobregat River basin

    Science.gov (United States)

    Guerra, Paula; Eljarrat, Ethel; Barceló, Damià

    2010-03-01

    SummaryIn response to increasing international regulations on brominated flame retardants (BFR) formulations, alternative additive flame retardants for achieving commercial product fire safety standards are being developed and used. Some of these non-BDE (brominated diphenyl ethers) BFRs are pentabromoethylbenzene (PBEB), hexabromobenzene (hexaBBz), and decabromodiphenylethane (deBDethane). The present study investigated the occurrence of these emerging BFRs, together with 38 BDE congeners (from di- to deca-BDE) in sediments sampled from different points along Llobregat basin (Spain) in three different sampling campaigns between 2005 and 2006. Emerging BFRs were detected in all sediment samples analyzed, at concentrations ranging from 3.1 to 9.6 ng/g for PBEB, from 0.4 to 2.4 ng/g for hexaBBz and from 4.8 to 23 ng/g for deBDethane. These levels are lower than concentrations obtained for PBDEs (from nd to 82 ng/g).

  4. A review of mathematical modeling of the zinc/bromine flow cell and battery

    Science.gov (United States)

    Evans, T. I.; White, R. E.

    1987-11-01

    Mathematical models which have been developed to study various aspects of the zinc/bromine cell and stack of cells are reviewed. Development of these macroscopic models begins with a material balance, a transport equation which includes a migration term for charged species in an electric field, and an electrode kinetic expression. Various types of models are discussed: partial differential equation models that can be used to predict current and potential distributions, an algebraic model that includes shunt currents and associated energy losses and can be used to determine the optimum resistivity of an electrolyte, and ordinary differential equation models that can be used to predict the energy efficiency of the cell as a function of the state of charge. These models have allowed researchers to better understand the physical phenomena occurring within parallel plate electrochemical flow reactors and have been instrumental in the improvement of the zinc/bromine cell design. Suggestions are made for future modeling work.

  5. The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone

    Science.gov (United States)

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2016-09-01

    We use the Goddard Earth Observing System Chemistry-Climate Model, a contributor to both the 2010 and 2014 World Meteorological Organization Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Bry) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Bry are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument on NASA's Aura satellite. In addition, the near-zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Bry source from VSLS.

  6. Formation pathways of brominated products from benzophenone-4 chlorination in the presence of bromide ions

    Institute of Scientific and Technical Information of China (English)

    Ming Xiao; Dongbin Wei; Liping Li; Qi Liu; Huimin Zhao; Yuguo Du

    2014-01-01

    The brominated products,formed in chlorination treatment of benzophenone-4 in the presence of bromide ions,were identified,and the formation pathways were proposed.Under disinfection conditions,benzophenone-4 would undertake electrophilic substitution generating mono-or di-halogenated products,which would be oxidized to esters and further hydrolyzed to phenol derivatives.The generated catechol intermediate would be transformed into furan-like heterocyclic product.The product species were pH-dependent,while benzophenone-4 ehmination was chlorine dose-dependent.When the chlorination treatment was performed on ambient water spiked with benzophenone-4 and bromide ions,most of brominated byproducts could be detected,and the acute toxicity significantly increased as well.

  7. Improved charge carrier lifetime in planar perovskite solar cells by bromine doping

    OpenAIRE

    Kiermasch, David; Rieder, Philipp; Tvingstedt, Kristofer; Baumann, Andreas; Dyakonov, Vladimir

    2016-01-01

    The charge carrier lifetime is an important parameter in solar cells as it defines, together with the mobility, the diffusion length of the charge carriers, thus directly determining the optimal active layer thickness of a device. Herein, we report on charge carrier lifetime values in bromine doped planar methylammonium lead iodide (MAPbI3) solar cells determined by transient photovoltage. The corresponding charge carrier density has been derived from charge carrier extraction. We found incre...

  8. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    OpenAIRE

    Taylor, G. R.; Butler, M.

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the ...

  9. Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury

    Directory of Open Access Journals (Sweden)

    J. P. Parrella

    2012-04-01

    Full Text Available We present a new model for the global tropospheric chemistry of inorganic bromine (Bry coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM. Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone concentrations by <1−8 nmol mol−1 (6.5% globally, with the largest effects in the northern extratropics in spring. The global mean tropospheric OH concentration decreases by 4%. Inclusion of bromine chemistry improves the ability of global models (GEOS-Chem and p-TOMCAT to simulate observed 19th-century ozone and its seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.

  10. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, Natsuko, E-mail: kajiwara.natsuko@nies.go.jp [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Noma, Yukio; Takigami, Hidetaka [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2011-09-15

    Highlights: {yields} We examined the flame retardants in electronics, curtains, wallpaper and insulator. {yields} Use of alternative brominated and organophosphate flame retardants was suggested. {yields} All the products investigated also contained PBDEs, TBBPA and polybromophenols. {yields} Incorporation of recycled materials containing hazardous substance was suggested. - Abstract: The concentrations of traditional brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) in new consumer products, including electronic equipment, curtains, wallpaper, and building materials, on the Japanese market in 2008 were investigated. Although some components of the electronic equipment contained bromine at concentrations on the order of percent by weight, as indicated by X-ray fluorescence analysis, the bromine content could not be fully accounted for by the BFRs analyzed in this study, which included polybrominated diphenylethers, decabromodiphenyl ethane, tetrabromobisphenol A, polybromophenols, and hexabromocyclododecanes. These results suggest the use of alternative BFRs such as newly developed formulations derived from tribromophenol, tetrabromobisphenol A, or both. Among the 11 OPFRs analyzed, triphenylphosphate was present at the highest concentrations in all the products investigated, which suggests the use of condensed-type OPFRs as alternative flame retardants, because they contain triphenylphosphate as an impurity. Tripropylphosphate was not detected in any samples; and trimethylphosphate, tributyl tris(2-butoxyethyl)phosphate, and tris(1,3-dichloro-2-propyl)phosphate were detected in only some components and at low concentrations. Note that all the consumer products evaluated in this study also contained traditional BFRs in amounts that were inadequate to impart flame retardancy, which implies the incorporation of recycled plastic materials containing BFRs that are of global concern.

  11. Bromine-catalyzed conversion of CO2 and epoxides to cyclic carbonates under continuous flow conditions.

    Science.gov (United States)

    Kozak, Jennifer A; Wu, Jie; Su, Xiao; Simeon, Fritz; Hatton, T Alan; Jamison, Timothy F

    2013-12-11

    A continuous method for the formation of cyclic carbonates from epoxides and carbon dioxide (CO2) is described. The catalysts used are inexpensive and effective in converting the reagents to the products in a residence time (t(R)) of 30 min. The cyclic carbonate products are obtained in good to excellent yield (51-92%). On the basis of a series of kinetics experiments, we propose a reaction mechanism involving epoxide activation by electrophilic bromine and CO2 activation by an amide.

  12. Tropospheric bromine chemistry: implications for present and pre-industrial ozone and mercury

    Directory of Open Access Journals (Sweden)

    J. P. Parrella

    2012-08-01

    Full Text Available We present a new model for the global tropospheric chemistry of inorganic bromine (Bry coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM. Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone mixing ratios by <1–8 nmol mol−1 (6.5% globally, with the largest effects in the northern extratropics in spring. The global mean tropospheric OH concentration decreases by 4%. Inclusion of bromine chemistry improves the ability of global models (GEOS-Chem and p-TOMCAT to simulate observed 19th-century ozone and its seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.

  13. On the age of stratospheric air and inorganic chlorine and bromine release

    Science.gov (United States)

    Daniel, J. S.; Schauffler, S. M.; Pollock, W. H.; Solomon, S.; Weaver, A.; Heidt, L. E.; Garcia, R. R.; Atlas, E. L.; Vedder, J. F.

    1996-07-01

    We estimate the average transport time from the tropical tropopause to various regions of the northern hemisphere lower stratosphere (stratospheric age) using simultaneous mixing ratio measurements of CFC-115 and CO2 measured by the Whole Air Sampler (WAS) during Airborne Arctic Stratospheric Expedition II (AASE II). Our inferred ages are consistent with those presented in previous studies. We discuss sources of uncertainties that affect age estimates in general, as well as specific uncertainties arising from inferring ages using CO2 and CFC-115 abundances. We infer inorganic chlorine (Cly) and bromine (Bry) at various lower stratospheric locations using the WAS organic chlorine and bromine measurements in combination with modeled tropospheric halocarbon trends and with our estimated ages. Inferred Cly and Bry abundances generally increase with increasing latitude and altitude. For our analyzed locations inside the polar vortex, we estimate a maximum Cly abundance of about 2.7 parts per billion by volume (ppbv) and a maximum Bry abundance of about 13.7 parts per trillion by volume (pptv). The locations of these maxima correspond to an average N2O mixing ratio of about 100 ppbv, and to a fractional dissociation of organic chlorine and bromine of 0.85 and 0.90, respectively. Finally, we discuss the expected future limitations of using CFC-115 to estimate stratospheric age due to the production limitations prescribed by the amendments and adjustments to the Montreal Protocol.

  14. Examination of the kinetics of degradation of the antineoplastic drug 5-fluorouracil by chlorine and bromine.

    Science.gov (United States)

    Li, Wei; Tanumihardja, Jessica; Masuyama, Takaaki; Korshin, Gregory

    2015-01-23

    This study examined the degradation of the widely used antineoplastic drug 5-fluorouracil (5FU) by chlorine and bromine. 5FU was determined to interact readily with free chlorine and bromine but was stable in the presence of chloramine. The removal of 5FU followed a second-order kinetic pattern. Apparent rates (kapp) of 5FU removal by chlorine and bromine were strongly pH dependent and had maximum 14.8M(-1)s(-1) and 1.9×10(3)M(-1)s(-1)kapp values, respectively at pH 7. Modeling of the dependence of the kapp values vs. pH indicated the presence of a relatively acidic (pK 6.4 vs. 8.5 of 5FU per se) 5FU intermediate generated in the presence of halogen species. Spectrophotometric measurements confirmed the increased acidity of 5FU chlorination products and allowed proposing a degradation pathway of 5FU by chlorine. This pathway suggests that 5FU chlorination proceeds via chlorine incorporation at the 6th carbon in the heterocyclic ring of 5FU.

  15. Effects of Assistant Solvents and Mixing Intensity on the Bromination Process of Butyl Rubber

    Institute of Scientific and Technical Information of China (English)

    王伟; 邹海魁; 初广文; 向阳; 彭晗; 陈建峰

    2014-01-01

    A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.

  16. Computer simulation of the cluster destruction of stratospheric ozone by bromine

    Institute of Scientific and Technical Information of China (English)

    A.E.Galashev; O.R.Rakhmanova

    2012-01-01

    The interaction of (Br-)i(H2O)50-i,0≤i≤6 clusters with oxygen and ozone molecules is investigated by the method of molecular dynamics simulation.The ozone molecules as well as the bromine ions do not leave the cluster during the calculation of 25 ps.The ability of the cluster containing molecular oxygen to absorb the infrared (IR)radiation is reduced in the frequency range of 0 ≤ ω ≤ 3500 cm-1 when the number of the bromine ions in the cluster grows.The intensity of the Raman spectrum is not changed significantly when the Br-ions are added to the ozonecontaining system.The power of the emitted IR radiation is increased when the number of bromine ions grows in the oxygen-containing system.The data obtained in this study on the IR and the Raman spectra of the water clusters that contain ozone,oxygen,and Br-can be used to develop an investigation of the mechanisms of ozone depletion.

  17. Discrimination of hexabromocyclododecane from new polymeric brominated flame retardant in polystyrene foam by nuclear magnetic resonance.

    Science.gov (United States)

    Jeannerat, Damien; Pupier, Marion; Schweizer, Sébastien; Mitrev, Yavor Nikolaev; Favreau, Philippe; Kohler, Marcel

    2016-02-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant (BFR) and major additive to polystyrene foam thermal insulation that has recently been listed as a persistent organic pollutant by the Stockholm Convention. During a 2013/2014 field analytical survey, we measured HBCDD content ranging from 0.2 to 2.4% by weight in 98 polystyrene samples. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses indicated that expandable (EPS) and extruded (XPS) polystyrene foams significantly differed in the α/γ HBCDD isomer ratio, with a majority of α and γ isomers in XPS and EPS, respectively. Interestingly, this technique indicated that some recent materials did not contain HBCDD, but demonstrated bromine content when analysed with X-ray fluorescence (XRF). Further investigation by Nuclear Magnetic Resonance (NMR) was able to discriminate between the BFRs present. In addition to confirming the absence or presence of HBCDD in polystyrene samples, high-field NMR spectroscopy provided evidence of the use of brominated butadiene styrene (BBS) as copolymer in the production of polystyrene. Use of this alternative flame retardant is expected to cause fewer health and environmental concerns. Our results highlight a trend towards the use of copolymerized BFRs as an alternative to HBCDD in polystyrene foam boards. In addition to providing a rapid NMR method to identify polymeric BFR, our analytical approach is a simple method to discriminate between flame-retardants in polystyrene foam insulating materials.

  18. Mechanochemical conversion of brominated POPs into useful oxybromides: a greener approach

    Science.gov (United States)

    Cagnetta, Giovanni; Liu, Han; Zhang, Kunlun; Huang, Jun; Wang, Bin; Deng, Shubo; Wang, Yujue; Yu, Gang

    2016-06-01

    Brominated organic pollutants are considered of great concern for their adverse effect on human health and the environment, so an increasing number of such compounds are being classified as persistent organic pollutants (POPs). Mechanochemical destruction is a promising technology for POPs safe disposal because it can achieve their complete carbonization by solvent-free high energy ball milling at room temperature. However, a large amount of co-milling reagent usually is necessary, so a considerable volume of residue is produced. In the present study a different approach to POPs mechanochemical destruction is proposed. Employing stoichiometric quantities of Bi2O3 or La2O3 as co-milling reagent, brominated POPs are selectively and completely converted into their corresponding oxybromides (i.e. BiOBr and LaOBr), which possess very peculiar properties and can be used for some actual and many more potential applications. In this way, bromine is beneficially reused in the final product, while POPs carbon skeleton is safely destroyed to amorphous carbon. Moreover, mechanochemical destruction is employed in a greener and more sustainable manner.

  19. Determination of bromine in regulated foods with a field-portable X-ray fluorescence analyzer.

    Science.gov (United States)

    Anderson, David L

    2009-01-01

    A field-portable X-ray fluorescence analyzer, factory-calibrated for soil analysis, was used to measure bromine (Br) mass fractions in reference materials, flour, bakery products, malted barley, selected U.S. Food and Drug Administration Total Diet Study foods, and other food products. By using a calibration based on instrumental neutron activation analysis results for Br in reference materials, accurate quantitative results, confirmed by z-scores, could be obtained for mass fractions of about 2-55 mg/kg. These results confirmed accuracy of results (with larger uncertainties) obtained by applying a simple correction factor to the analyzer's output value. Results showed that very short analysis times (content at regulatory levels for brominated and enriched brominated flour (24 mg/kg Br) and whole wheat flour and bakery products (36 mg/kg Br). Feasibility for determination of Br in malted barley at the regulatory level (75 mg/kg Br) was demonstrated, but quantitative results at that level could not be assured because no reference material with a suitable mass fraction was available. Br mass fractions for all foods tested were well below regulatory levels.

  20. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008.

    Science.gov (United States)

    Kajiwara, Natsuko; Noma, Yukio; Takigami, Hidetaka

    2011-09-15

    The concentrations of traditional brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) in new consumer products, including electronic equipment, curtains, wallpaper, and building materials, on the Japanese market in 2008 were investigated. Although some components of the electronic equipment contained bromine at concentrations on the order of percent by weight, as indicated by X-ray fluorescence analysis, the bromine content could not be fully accounted for by the BFRs analyzed in this study, which included polybrominated diphenylethers, decabromodiphenyl ethane, tetrabromobisphenol A, polybromophenols, and hexabromocyclododecanes. These results suggest the use of alternative BFRs such as newly developed formulations derived from tribromophenol, tetrabromobisphenol A, or both. Among the 11 OPFRs analyzed, triphenylphosphate was present at the highest concentrations in all the products investigated, which suggests the use of condensed-type OPFRs as alternative flame retardants, because they contain triphenylphosphate as an impurity. Tripropylphosphate was not detected in any samples; and trimethylphosphate, tributyl tris(2-butoxyethyl)phosphate, and tris(1,3-dichloro-2-propyl)phosphate were detected in only some components and at low concentrations. Note that all the consumer products evaluated in this study also contained traditional BFRs in amounts that were inadequate to impart flame retardancy, which implies the incorporation of recycled plastic materials containing BFRs that are of global concern.

  1. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique.

    Science.gov (United States)

    Zhang, Cong-Cong; Zhang, Fu-Shen

    2012-06-30

    Brominated flame retardants (BFRs) in electrical and electronic (E&E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90°C, 2h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal.

  2. A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

    Science.gov (United States)

    Blechschmidt, Anne-Marlene; Richter, Andreas; Burrows, John P.; Kaleschke, Lars; Strong, Kimberly; Theys, Nicolas; Weber, Mark; Zhao, Xiaoyi; Zien, Achim; Hodges, Kevin I.

    2016-04-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by the UV-vis satellite instruments GOME-2/MetOp-A and SCIAMACHY/Envisat over Arctic and Antarctic sea ice in polar spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. This influences atmospheric chemistry as it affects the oxidising capacity of the troposphere through OH production and may also influence the local weather/temperature of the polar atmosphere, as ozone is a major greenhouse gas. Here, we make combined use of satellite retrievals and numerical model simulations to study individual BrO plume cases in the polar atmosphere. In agreement with previous studies, our analysis shows that the plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. Moreover, general characteristics of bromine explosion events linked to transport by polar weather systems, such as frequency, spatial distribution and favourable weather conditions are derived based on a new detection method. Our results show that BrO cyclone transport events are by far more common in the Antarctic than in the Arctic.

  3. Enhanced crystal grain size by bromine doping in electrodeposited Cu{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Han Kunhee; Kang Feng [Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019 (United States); Han Xiaofei [Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76019 (United States); Tao Meng, E-mail: meng.tao@asu.edu [Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-06-01

    Extremely large crystal grains are obtained by bromine doping in electrodeposited Cu{sub 2}O on indium tin oxide (ITO) substrate through an acetate bath. The grains are as large as 10,000 {mu}m{sup 2} in area, or {approx} 100 {mu}m in linear dimension, while the film is only 1-5 {mu}m thick. The enhanced grain size is explained by the effect of over-potential for the Cu{sup 2+}/Cu{sup +} redox couple on nucleation density of Cu{sub 2}O on ITO substrate. The over-potential is a function of several deposition conditions including solution pH, deposition potential, deposition temperature, bromine precursor concentration, and copper precursor concentration. In addition, undoped Cu{sub 2}O displays a high resistivity of 100 M{Omega}cm. Bromine doping in Cu{sub 2}O significantly reduces the resistivity to as low as 42 {Omega}cm after vacuum annealing. Br-doped Cu{sub 2}O shows n-type behavior. - Highlights: Black-Right-Pointing-Pointer Extremely large crystal grains ({approx} 100 {mu}m) achieved in electrodeposited Br-doped Cu{sub 2}O. Black-Right-Pointing-Pointer Large grains reduce carrier recombination and carrier scattering at grain boundaries. Black-Right-Pointing-Pointer N-type behavior demonstrated in naturally p-type Cu{sub 2}O by Br doping.

  4. MISCIBILITY AND MORPHOLOGY OF THIN FILMS OF BLENDS OF POLYSTYRENE WITH BROMINATED POLYSTYRENES: EFFECTS OF VARYING THE MOLECULAR WEIGHT,BROMINATION DEGREE AND ANNEALING

    Institute of Scientific and Technical Information of China (English)

    Rui Song; De-bin Yang; Ling-hao He; Guang-tao Yao

    2006-01-01

    Thin films of incompatible polymer blends can form a variety of structures during preparation and subsequent annealing process. For the polymer blend system consisting of polystyrene and poly(styrene-co-p-bromo-styrene), I.e.,PS/PBrxS, its compatibility could be adjusted by varying the degree of bromination and the molecular weight of both components comprised. In this paper, surface chemical compositions of the cast and the annealing films were investigated by X-ray photoelectron spectroscopy (XPS) and contact angle measurement; meanwhile, surface topographical changes are followed by atomic force microscopy (AFM). In addition, substantial attention was paid to the effect of annealing on the morphologic variations induced by phase separation and/or dewetting of the thin film. Moreover, the influences of the molecular weight, Mw, as well as the brominated degree, x%, on the sample surface are explored systematically, and the corresponding observations are explained in virtue of the Flory-Huggins theory, along with the dewetting of the polymer thin film.

  5. Study Of The Fundamental Physical Principles in Atmospheric Modeling Based On Identification Of Atmosphere - Climate Control Factors: Bromine Explosion At The Polar Arctic Sunrise

    OpenAIRE

    Iudin, M.

    2007-01-01

    We attempt is to provide accumulated evidence and qualitative understanding of the associated atmospheric phenomena of the Arctic bromine explosion and their role in the functioning of the biotic Earth. We rationalize the empirical expression of the bromine influx into atmospheric boundary layer and calculate total amounts of the tropospheric BrO and Bry of the Arctic origin. Based on the quantities and partitioning of the reactive bromine species, we estimate the biogeochemical parametric co...

  6. Thermochemical methane reforming using WO{sub 3} as an oxidant below 1173 K by a solar furnace simulator

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Shimizu, K. [Niigata Univ., Graduate School of Science and Technology, Niigata (Japan); Kitayama, Y.; Kodama, T. [Niigata Univ., Dept. of Chemistry and Chemical Engineering, Niigata (Japan)

    2001-07-01

    Thermochemical methane reforming by a reactive redox system of WO{sub 3} was demonstrated under direct irradiation of the metal oxide by a concentrated, solar-simulated Xe-lamp beam below 1173 K, for the purpose of converting solar high-temperature heat to chemical fuels. In the proposed cycling redox process, the metal oxide is expected to react with methane as an oxidant to produce syngas with a H{sub 2}/CO ratio of two, which is suitable for the production of methanol, and the reduced metal oxide which is oxidised back with steam in a separate step to generate hydrogen uncontaminated with carbon oxide. The ZrO{sub 2}-supported WO{sub 3} gave about 45% of CO yield and 55% of H{sub 2} yield with a H{sub 2}/CO ratio of about 2.4 in a temperature range of 1080-1160 K at a W/F ratio of 0.167 g min Ncm {sup -3} (W is the weight of WO{sub 3} phase and F is the flow rate of CH{sub 4}). The activity data under the solar simulation were compared to those for the WO{sub 3}/ZrO{sub 2} heated by irradiation of an infrared light. This comparison indicated that the CO selectivity was much improved to 76-85% in the solar-simulated methane reforming, probably by photochemical effect due to WO{sub 3} phase. The main solid product of WO{sub 2} in the reduced WO{sub 3}/ZrO{sub 2} was reoxidised to WO{sub 3} with steam to generate hydrogen below 1173 K. (Author)

  7. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  8. Bromine soil/sediment enrichment in tidal salt marshes as a potential indicator of climate changes driven by solar activity: New insights from W coast Portuguese estuaries.

    Science.gov (United States)

    Moreno, J; Fatela, F; Leorri, E; Moreno, F; Freitas, M C; Valente, T; Araújo, M F; Gómez-Navarro, J J; Guise, L; Blake, W H

    2017-02-15

    This paper aims at providing insight about bromine (Br) cycle in four Portuguese estuaries: Minho, Lima (in the NW coast) and Sado, Mira (in the SW coast). The focus is on their tidal marsh environments, quite distinct with regard to key biophysicochemical attributes. Regardless of the primary bromide (Br(-)) common natural source, i.e., seawater, the NW marshes present relatively higher surface soil/sediment Br concentrations than the ones from SW coast. This happens in close connection with organic matter (OM) content, and is controlled by their main climatic contexts. Yet, the anthropogenic impact on Br concentrations cannot be discarded. Regarding [Br] spatial patterns across the marshes, the results show a general increase from tidal flat toward high marsh. Maxima [Br] occur in the upper driftline zone, at transition from highest low marsh to high marsh, recognized as a privileged setting for OM accumulation. Based on the discovery of OM ubiquitous bromination in marine and transitional environments, it is assumed that this Br occurs mainly as organobromine. Analysis of two dated sediment cores indicates that, despite having the same age (AD ~1300), the Caminha salt marsh (Minho estuary) evidences higher Br enrichment than the Casa Branca salt marsh (Mira estuary). This is related to a greater Br storage ability, which is linked to OM build-up and rate dynamics under different climate scenarios. Both cores evidence a fairly similar temporal Br enrichment pattern, and may be interpreted in light of the sun-climate coupling. Thereby, most of the well-known Grand Solar Minima during the Little Ice Age appear to have left an imprint on these marshes, supported by higher [Br] in soils/sediments. Besides climate changes driven by solar activity and impacting marsh Br biogeodynamics, those Br enrichment peaks might also reflect inputs of enhanced volcanic activity covarying with Grand Solar Minima.

  9. Bromine monoxide / sulphur dioxide ratios in relation to volcanological observations at Mt. Etna 2006–2009

    Directory of Open Access Journals (Sweden)

    G. Giuffrida

    2012-12-01

    Full Text Available Over a 3-yr period, from 2006 to 2009, frequent scattered sunlight DOAS measurements were conducted at Mt. Etna at a distance of around 6 km downwind from the summit craters. During the same period and in addition to these measurements, volcanic observations were made by regularly visiting various parts of Mt. Etna. Here, results from these measurements and observations are presented and their relation is discussed. The focus of the investigation is the bromine monoxide/sulphur dioxide (BrO / SO2 ratio, and its variability in relation to volcanic processes. That the halogen/sulphur ratio can serve as a precursor or indicator for the onset of eruptive activity was already proposed by earlier works (e.g. Noguchi and Kamiya 1963; Menyailov, 1975; Pennisi and Cloarec, 1998; Aiuppa et al., 2002. However, there is still a limited understanding today because of the complexity with which halogens are released, depending on magma composition and degassing conditions. Our understanding of these processes is far from complete, for example of the rate and mechanism of bubble nucleation, growth and ascent in silicate melts (Carroll and Holloway, 1994, the halogen vapour-melt partitioning and the volatile diffusivity in the melt (Aiuppa et al., 2009. With this study we aim to add one more piece to the puzzle of what halogen/sulphur ratios might tell about volcanic activities. Our data set shows an increase of the BrO / SO2 ratio several weeks prior to an eruption, followed by a decline before and during the initial phase of eruptive activities. Towards the end of activity or shortly thereafter, the ratio increases to baseline values again and remains more or less constant during quiet phases. To explain the observed evolution of the BrO / SO2 ratio, a first empirical model is proposed. This model suggests that bromine, unlike chlorine and fluorine, is less soluble in the magmatic melt than sulphur. By using the DOAS method to determine SO2, we actually

  10. Brominated flame retardants and organochlorine pollutants in eggs of little owls (Athene noctua) from Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, Veerle [Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk (Belgium); Covaci, Adrian [Toxicological Centre, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk (Belgium)]. E-mail: adrian.covaci@ua.ac.be; Maervoet, Johan [Toxicological Centre, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dauwe, Tom [Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk (Belgium); Voorspoels, Stefan [Toxicological Centre, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk (Belgium); Schepens, Paul [Toxicological Centre, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk (Belgium); Eens, Marcel [Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2005-07-15

    Residues of brominated diphenylethers (PBDEs), organochlorinated pesticides (OCPs) and polychlorinated biphenyls (PCBs) were measured in 40 eggs of little owls (Athene noctua), a terrestrial top predator from Belgium. The major organohalogens detected were PCBs (median 2,600 ng/g lipid, range 790-23000 ng/g lipid). PCB 153,138/163, 170, 180 and 187 were the predominant congeners and constituted 71% of total sum PCBs. PBDEs were measurable in all samples, but their concentrations were much lower than for PCBs, with a range from 29-572 ng/g lipid (median 108 ng/g lipid). The most prevalent PBDE congeners in little owl egg samples were BDE 47, 99 and 153. This profile differs from the profile in marine bird species, for which BDE 47 was the dominant congener, indicating that terrestrial birds may be more exposed to higher brominated BDE congeners than marine birds. The fully brominated BDE 209 could be detected in one egg sample (17 ng/g lipid), suggesting that higher brominated BDEs may accumulate in terrestrial food chains. Brominated biphenyl (BB) 153 was determined in all egg samples, with levels ranging from 0.6 to 5.6 ng/g lipid (median 1.3 ng/g lipid). Additionally, hexabromocyclododecane (HBCD) could be identified and quantified in only two eggs at levels of 20 and 50 ng/g lipid. OCPs were present at low concentrations, suggesting a rather low contamination of the sampled environment with OCPs (median concentrations of sum DDTs: 826 ng/g lipid, sum chlordanes: 1,016 ng/g lipid, sum HCHs: 273 ng/g lipid). Hexachlorobenzene (HCB) and octachlorostyrene (OCS) were also found at low median levels of 134 and 3.4 ng/g lipid, respectively. Concentrations of most analytes were significantly higher in eggs collected from deserted nests in comparison to addled (unhatched) eggs, while eggshell thickness did not differ between deserted and addled eggs. No significant correlations were found between eggshell thickness and the analysed organohalogens. - PBDEs are measurable

  11. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  12. Use of detailed thermochemical databases to model chemical interactions in the Severe Accident codes

    Energy Technology Data Exchange (ETDEWEB)

    Barrachin, M. [IPSN/DRS, CEA Cadarache (France)

    2001-07-01

    For the prevention, mitigation and management of severe accidents, many problems related to core melt have to be solved: fuel degradation, melting and relocation, convection in the core melt(s), coolability of the core melt(s), fission product release, hydrogen production, behavior of the materials of the protective layers, ex-vessel spreading of the core melt(s).. To solve these problems such properties like thermal conductivity, heat capacity, density, viscosity, evaporation or sublimation of melts, the solidification behavior (solid/liquid fraction), the tendency to trap or to release the fission products, the stratification of melts notably metallic and oxide, must be known. However most of these properties are delicate to measure directly at high temperature and/or in the radio-active environment produced by the fission products. Therefore some of them must be derived by calculations from the physical-chemical description of the melt: number of phases, phase compositions, proportions of solids and liquids and their respective oxidation state, miscibility of the liquids, solubility of one phase in another, etc. This information is given by the phase diagrams of the materials in presence. Since more than ten years, IPSN has developed in collaboration with THERMODATA (Grenoble, France) a very detailed thermochemical database for the complex system U-O-Zr-Fe-Ni-La-Ba-Ru-Sr-Si-Mg-Ca-Al-(H-Ar). The direct coupling between the severe accident (SA) Codes and a thermochemical code with its database is not actually possible because of the computer time consuming and the size of the database. For this reason, most of the Severe Accident codes usually have a very simplified description for the phase diagrams which are not in agreement with the status of the art. In this presentation, alternative methodologies are detailed with their respective difficulties, the goal being to build an interface between a thermochemical database and a SA Code and to get a fast, accurate and

  13. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2013-10-01

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  14. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  15. Thermochemical characterization of pigeon pea stalk for its efficient utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, S.K.; Iyer, P.V.R.

    2000-05-01

    Pigeon pea stalk is a widely available biomass species in India. In this article the potential use of pigeon pea stalk as a fuel source through thermochemical conversion methods such as combustion, gasification, and pyrolysis has been investigated through experimentation using a thermogravimetric analyzer and pilot-plant-scale equipment. It has been proposed that pigeon pea stalks can be effectively utilized in two ways. The first is to pyrolyze the material to produce value-added products such as char, tar, and fuel gas. The second alternative is to partially pyrolyze the material to remove tar-forming volatiles, followed by gasification of reactive char to generate producer gas.

  16. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2009-07-01

    Full Text Available A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

  17. New developments of the CARTE thermochemical code: Calculation of detonation properties of high explosives

    Science.gov (United States)

    Dubois, Vincent; Desbiens, Nicolas; Auroux, Eric

    2010-07-01

    We present the improvements of the CARTE thermochemical code which provides thermodynamic properties and chemical compositions of CHON systems over a large range of temperature and pressure with a very small computational cost. The detonation products are split in one or two fluid phase (s), treated with the MCRSR equation of state (EOS), and one condensed phase of carbon, modeled with a multiphase EOS which evolves with the chemical composition of the explosives. We have developed a new optimization procedure to obtain an accurate multicomponents EOS. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and measured detonation properties for several explosives.

  18. Interest of thermochemical data bases linked to complex equilibria calculation codes for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cenerino, G. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations; Chevalier, P.Y.; Fischer, E. [Thermodata, 38 -Saint-Martin-d`Heres (France); Marbeuf, A. [Centre National de la Recherche Scientifique (CNRS), 92 - Meudon-Bellevue (France). Lab. de Magnetisme et de Physique du Solide; Frenk, A. [Ecole Polytechnique Federale, Lausanne (Switzerland); Vahlas, C. [Laboratoire Marcel Mathieu, Centre Helioparc, 64 - Pau (France)

    1992-12-31

    Since 1974, Thermodata has been working on developing an Integrated Information System in Inorganic Chemistry. A major effort was carried on the thermochemical data assessment of both pure substances and multicomponent solution phases. The available data bases are connected to powerful calculation codes (GEMINI = Gibbs Energy Minimizer), which allow to determine the thermodynamical equilibrium state in multicomponent systems. The high interest of such an approach is illustrated by recent applications in as various fields as semi-conductors, chemical vapor deposition, hard alloys and nuclear safety. (author). 26 refs., 6 figs.

  19. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery.

    Science.gov (United States)

    Olorunsola, Emmanuel O; Bhatia, Partap G; Tytler, Babajide A; Adikwu, Michael U

    2016-01-01

    Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG) extracted from exudates of Anacardium occidentale L. and khaya gum (KYG) extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG). The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs.

  20. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  1. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  2. Influence of steel composition and plastic deformation on the surface properties induced by low temperature thermochemical processing

    DEFF Research Database (Denmark)

    Bottoli, Federico

    temperature thermochemical processes of austenitic, precipitation hardening and martensitic stainless steels. Parts of the work presented in this Ph.D. project were implemented in the European project “”PressPerfect”, wherein several industrial and university partners were involved. The main goal of the......“PressPerfect” Project was to create a methodology to predict the performance of high quality stainless steels after forming and finishing treatments. The Ph.D. Project focused on the optimization of low-temperature thermochemical processes on severalstainless steel classes used for the surface treatment of industrial......Low-temperature thermochemical surface hardening by nitriding, carburizing and nitrocarburizing is used to improve the performance of stainless steels with respect to wear, fatigue and corrosion resistance.The dissolution of nitrogen and/or carbon atoms in the materials surface leads...

  3. FES cycling.

    Science.gov (United States)

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  4. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    Science.gov (United States)

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value.

  5. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Kenji [NASA Glenn Research Center, OAI, 22800 Cedar Point Rd, Cleveland, OH 44142 (United States); Panesi, Marco, E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Lab, 104 S. Wright St., Urbana, IL 61801 (United States); Prudhomme, Serge [Département de mathématiques et de génie industriel, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7 (Canada)

    2015-10-01

    The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  6. A thermochemical pathway for controlled synthesis of AlN nanoparticles in non-isothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nersisyan, Hayk H. [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); RASOM, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Yoo, Bung Uk [Graduate School of Energy Science and Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Kab Ho [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Graduate School of Energy Science and Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); RASOM, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2015-03-20

    Highlights: • A non-isothermal combustion process was developed for synthesizing AlN nanoparticles. • Temperature-time profiles and combustion parameters were recorded and discussed. • AlN nanoparticles (50–200 nm) with a specific surface of 7.9–20.8 m{sup 2}/g were prepared. • The thermochemical mechanism of AlN formation in the combustion wave was clarified. - Abstract: The synthesis of AlN nanoparticles in non-isothermal high-temperature conditions was developed. The process involved Al{sub 2}O{sub 3}–Mg–NH{sub 4}Cl mixtures preparation and combustion in nitrogen atmosphere. Temperature profiles in the combustion waves were recorded by thermocouples, and the values of combustion temperature and wave velocity were determined from the recorded profiles. The existence of two independed combustion regimes with maximum temperatures of about 850 °C and 1400–1600 °C were revealed based on concentrations of NH{sub 4}Cl. AlN nanocrystals were obtained and investigated by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller surface area. AlN nanocrystals prepared under non-isothermal combustion process were comprised well distributed multi-faceted particles with an average size of 50–200 nm. The chemical reactions in the combustion wave were discussed and a possible thermochemical pathway for the synthesis of AlN nanoparticles was proposed.

  7. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  8. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  9. Thermochemical nanolithography fabrication and atomic force microscopy characterization of functional nanostructures

    Science.gov (United States)

    Wang, Debin

    This thesis presents the development of a novel atomic force microscope (AFM) based nanofabrication technique termed as thermochemical nanolithography (TCNL). TCNL uses a resistively heated AFM cantilever to thermally activate chemical reactions on a surface with nanometer resolution. This technique can be used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. This thesis research is focused on three main objectives. The first objective is to study the fundamentals of TCNL writing aspects. We have conducted a systematic study of the heat transfer mechanism using finite element analysis modeling, Raman spectroscopy, and local glass transition measurement. In addition, based on thermal kinetics analysis, we have identified several key factors to achieve high resolution fabrication of nanostructures during the TCNL writing process. The second objective is to demonstrate the use of TCNL on a variety of systems and thermochemical reactions. We show that TCNL can be employed to (1) modify the wettability of a polymer surface at the nanoscale, (2) fabricate nanoscale templates on polymer films for assembling nano-objects, such as proteins and DNA, (3) fabricate conjugated polymer semiconducting nanowires, and (4) reduce graphene oxide with nanometer resolution. The last objective is to characterize the TCNL nanostructures using AFM based methods, such as friction force microscopy, phase imaging, electric force microscopy, and conductive AFM. We show that they are useful for in situ characterization of nanostructures, which is particularly challenging for conventional macroscopic analytical tools, such as Raman spectroscopy, IR spectroscopy, and fluorescence microscopy.

  10. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian

    2011-09-01

    Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO(3) as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl(2) and water.

  11. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.

    Science.gov (United States)

    Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J

    2012-10-01

    In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation.

  12. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  13. Production of activated carbon by waste tire thermochemical degradation with CO2.

    Science.gov (United States)

    Betancur, Mariluz; Martínez, Juan Daniel; Murillo, Ramón

    2009-09-15

    The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.

  14. The Deep Water Abundance on Jupiter: New Constraints from Thermochemical Kinetics and Diffusion Modeling

    CERN Document Server

    Visscher, Channon; Saslow, Sarah A

    2010-01-01

    We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter's atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the Jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) x 10^-3 in Jupiter's deep troposphere, corresponding to an enrichment of 0.3 to 7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 x 10^-4). Our results suggest that Jupiter's oxygen enrichment is roughly similar to that for carb...

  15. Contrasting effects of sulfur dioxide on cupric oxide and chloride during thermochemical formation of chlorinated aromatics.

    Science.gov (United States)

    Fujimori, Takashi; Nishimoto, Yoshihiro; Shiota, Kenji; Takaoka, Masaki

    2014-12-01

    Sulfur dioxide (SO2) gas has been reported to be an inhibitor of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation in fly ash. However, other research has suggested little or no inhibitory effect of SO2 gas. Although these studies focused on reactions between SO2 gas and gas-phase chlorine (Cl) species, no attention was paid to thermochemical gas-solid reactions. In this study, we found contrasting effects of SO2 gas depending on the chemical form of copper (CuO vs CuCl2) with a solid-phase inorganic Cl source (KCl). Chlorinated aromatics (PCDD/Fs, polychlorinated biphenyls, and chlorobenzenes) increased and decreased in model fly ash containing CuO + KCl and CuCl2 + KCl, respectively, with increased SO2 injection. According to in situ Cu K-edge and S K-edge X-ray absorption spectroscopy, Cl gas and CuCl2 were generated and then promoted the formation of highly chlorinated aromatics after thermochemical reactions of SO2 gas with the solid-phase CuO + KCl system. In contrast, the decrease in aromatic-Cls in a CuCl2 + KCl system with SO2 gas was caused mainly by the partial sulfation of the Cu. The chemical form of Cu (especially the oxide/chloride ratio) may be a critical factor in controlling the formation of chlorinated aromatics using SO2 gas.

  16. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg‑1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  17. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  18. Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Production Using UniSim Design

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Hun; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2009-05-15

    The sulfur-based thermochemical cycles are considered as the most promising methods to produce hydrogen. The Hybrid Sulfur (HyS) Cycle is a mixed thermochemical cycle with the sulfur-aided electrolysis as depicted in the Fig. 1. Hydrogen is produced from water by oxidizing sulfur dioxide in the low temperature electrolysis step and the sulfuric acid which is also produced in the electrolyzer proceeds to the high temperature thermochemical step. The sulfuric acid is concentrated in the concentrator first and then decomposed into steam and sulfur trioxide, which is further decomposed into sulfur dioxide and oxygen at high temperature (;1100 K) in the decomposer. After separated with oxygen in the separator, the sulfur dioxide is fed again to the electrolyzer to reduce the required electrode potential far below than that of the typical water electrolysis. Hydrogen is worth as a future energy carrier when it is produced cost effectively. In that sense, the energy efficiency of the hybrid sulfur cycle is needed to be improved as high as achievable. The flow sheet developed by Westinghouse, the first proposer of the cycle, is not optimized for the cycle efficiency. In the previous work, a detailed flow sheet model was developed and also the cycle efficiency of that was roughly estimated using the software CHEMKIN and CANARY based on the experimental data for the electrode potential and appropriate work of separation. The maximum efficiency was found to be 50.5% under the operating conditions of 10 bar and 1200K for decomposer and acid concentration of 60 mol% for decomposer, 60 wt. % for electrolyzer, respectively. In this study, more detailed flow sheet was developed and optimized by using software UniSim Design which is one of the most powerful process design and simulation tools.

  19. Tropospheric Bromine Chemistry: Implications for Present and Pre-industrial Ozone and Mercury

    Science.gov (United States)

    Parella, J. P.; Jacob, D. J.; Liang, Q.; Zhang, Y.; Mickley, L. J.; Miller, B.; Evans, M. J.; Yang, X.; Pyle, J. A.; Theys, N.; VanRoozendael, M.

    2012-01-01

    We present a new model for the global tropospheric chemistry of inorganic bromine (Bry) coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM). Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone mixing ratios by chemistry improves the ability of global models (GEOS-Chem and p-TOMCAT) to simulate observed 19th-century ozone and its seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.

  20. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.

    Science.gov (United States)

    Oleszek, Sylwia; Grabda, Mariusz; Shibata, Etsuro; Nakamura, Takashi

    2013-09-01

    The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition. In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000°C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.

  1. Production of HBR from bromine and steam for off-peak electrolytic hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Schlief, R.E.; Hanrahan, R.J.; Stoy, M.A. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1995-09-01

    Progress is reported on the development of a renewable energy source based solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy and supplemental electrical power. The concept is being developed by Solar Reactor Technologies, Inc., (SRT), with the U.S. Department of Energy (DOE). An overview of the nature and objectives of this program is provided here, and technical progress made during the first (three-month) performance period of the Phase I work effort is reported. The SRT concept entails (1) absorption of concentrated solar radiation by bromine vapor Br{sub 2(g)} in a high-temperature reactor producing Br{sub (g)} atoms, (2) reaction of Br{sub (g)} with water yielding hydrogen bromide (HBr), and (3) electrolysis of stored hydrogen bromide for production of H{sub 2(g)} and recovery of Br{sub 2(I)}. Incorporation of solar radiation in the primary photochemical step (1) reduces by 50 - 70% the electrical power required to split water. The SRT concept is very attractive from an economic viewpoint as well. The reversible fuel cell, employed in the SRT electrolysis concept is capitalized via its use in load leveling by the utility. A 1 kW solar reactor was designed and constructed during the first three-month performance period by SRT personnel at the University of Florida, Gainesville. It was employed in taking survey data of the reaction between bromine and steam at temperatures between 900 and 1300 K. This reaction was run under purely thermal conditions, i.e. in the absence of solar photons. The experimental data are reported and interpreted employing concomitant thermodynamic calculations. The anticipated improvement is discussed briefly as well as the effect of a photochemical boost to the reaction. The amount of this enhancement will be studied in the next three month performance period.

  2. Effect of brominated furanones on the formation of biofilm by Escherichia coli on polyvinyl chloride materials.

    Science.gov (United States)

    Lianhua, Ye; Yunchao, Huang; Geng, Xu; Youquang, Zhou; Guangqiang, Zhao; Yujie, Lei

    2013-01-01

    To study the influence of brominated furanones on the biofilm (BF) formation by Escherichia coli (E. coli) on polyvinyl chloride (PVC) material, and to provide new ways of surface modification of materials to clinically prevent biomaterial centered infection. Three brominated furanones, dissolved in ethanol, furanone-1(3,4-dibromo-5-hydroxyl-furanone), furanone-2(4-bromo-5-(4-methoxypheny)-3-(methylamino)-furanone), and furanone-3(3,4-dibromo-5,5-dimethoxypheny-2(5H)-furanone) with representative chemical structure, were coated on the surfaces of separate PVC materials (1 × 1 cm), respectively. The surface-modified PVC materials were incubated with E. coli and for controls, 75 % ethanol-treated PVC materials were used. This treatment played as control group. The cultivation incubations were for 6, 12, 18, and 24 h. The thickness of bacterial BF and bacterial community quantity unit area on the PVC materials was determined by confocal laser scanning microscopy (CLSM), and the surface structure of bacterial BF formation was examined by scanning electron microscopy (SEM). The results of CLSM indicated the thickness of bacterial BF and bacterial community quantity unit area on PVC materials treated with furanone-3 were significantly lower than that of control at all time points (P 0.05). The results of SEM indicated that after 6 h incubation, the quantity of bacterial attachment to the surface of PVC material treated with furanone-3 was lower than the control group. By 18 h incubation there was completely formed BF structure on the surface of control PVC material. However, there was no significant BF formation on the surface of PVC material treated with furanone-3. The impact of different brominated furanones on SA biofilm formation on the surface of PVC materials are different, furanone-3 can inhibit E. coli biofilm formation on the surface of PVC material.

  3. Ways of reducing the bromine numbers of benzene for nitration with the use of the piperylene additive

    Energy Technology Data Exchange (ETDEWEB)

    Kolyandr, L.Ya.; Litvinenko, A.M.; Mastyukov, V.A.; Potapchenko, A.A.; Savikkova, M.T.; Shoherbakova, T.G.; Shuzhenko, E.A.; Titarenko, V.G.; Tkachenko, L.A.

    1981-01-01

    To study the diminution of the bromine numbers of benzene for nitration, an investigation has been made of the impurities according to the fractions of the tests of benzene production of three coke and chemical works: the works in Makeev-a, ka, Bagleisk and Yenakievo. It has been found that when the piperylene additive is used, the value of the bromine numbers of benzene for nitration is determined, in the main, not by the piperylenes removed during purification. When the intermediate BT fractions are not sufficiently clearly selected, the value of the bromine numbers of benzene is influenced also by the impurities which are concentrated in its terminal fractions. To radically remove piperylenes, it is necessary to improve the contact between the acid and the fraction being purified; this is attained by intensifying mixing and lengthening the purification process.

  4. Package of double helical bromine chains inside single-walled carbon nanotubes

    Science.gov (United States)

    Yao, Zhen; Liu, Chun Jian; Lv, Hang; Yang, Xi Bao

    2016-10-01

    The helicity of stable double helical bromine chains inside single-walled carbon nanotubes (SWCNTs) was studied through the calculation of systematic interaction energy, using the van der Waals interaction potential. The results presented clear images of stable double helical structures inside SWCNTs. The optimal helical radius and helical angle of chain structure increase and decrease, respectively, with the increase of tube radius. The detailed analysis indicated that some metastable structures in SWCNTs may also co-exist with the optimal structures, but not within the same tubes. In addition, a detailed simulation of X-ray diffraction patterns was performed for the obtained optimal helical structures.

  5. SYNTHESIS AND GREEN BROMINATION OF SOME CHALCONES AND THEIR ANTIMICROBIAL SCREENING

    Directory of Open Access Journals (Sweden)

    Mayur R. Adokar

    2013-04-01

    Full Text Available Chalcones are the versatile molecules having the structural flexibility which permits structural transformations into flavonoids, flavanones, pyrazoles, oxazoles, pyrimidines etc. Changes in their structure have offered the development of new medicinal agents having improved pharmacological potency. Their derivatives have attracts increasing attention due to numerous pharmacological potential. In the present communication we report the synthesis of chalcones from various acetophenone derivatives with different aromatic aldehydes and green chemistry approach to their bromination with the help of Tetrabutylammonium Tribromide (TBATB. All the synthesized chalcone dibromides were screened for their antimicrobial activity against Aspergillus flavus, Rhizopus sp., Fusarium solani and Aspergillus niger.

  6. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant.

    Science.gov (United States)

    Morf, Leo S; Tremp, Josef; Gloor, Rolf; Huber, Yvonne; Stengele, Markus; Zennegg, Markus

    2005-11-15

    Brominated flame retardants (BFRs) are synthetic additives mainly used in electrical and electronic appliances and in construction materials. The properties of some BFRs are typical for persistent organic pollutants, and certain BFRs, in particular some polybrominated diphenyl ether (PBDE) congeners and hexabromocyclododecane (HBCD), are suspected to cause adverse health effects. Global consumption of the most demanded BFRs, i.e., penta-, octa-, and decaBDE, tetrabromobisphenol A (TBBPA), and HBCD, has doubled in the 1990s. Only limited and rather uncertain data are available regarding the occurrence of BFRs in consumer goods and waste fractions as well as regarding emissions during use and disposal. The knowledge of anthropogenic substance flows and stocks is essential for early recognition of environmental impacts and effective chemicals management. In this paper, actual levels of penta-, octa-, and decaBDE, TBBPA, and HBCD in waste electrical and electronic equipment (WEEE) as a major carrier of BFRs are presented. These BFRs have been determined in products of a modern Swiss recycling plant applying gas chromatography/electron capture detection and gas chromatography/mass spectrometry analysis. A substance flow analysis (SFA) technique has been used to characterize the flows of target substances in the recycling process from the bulk WEEE input into the output products. Average concentrations in small size WEEE, representing the relevant electric and electronic appliances in WEEE, sampled in 2003 amounted to 34 mg/kg for pentaBDE, 530 mg/kg for octaBDE, 510 mg/kg for decaBDE, 1420 mg/kg for TBBPA (as an additive), 17 mg/kg for HBCD, 5500 mg/kg for bromine, and 1700 mg/kg for antimony. In comparison to data that have been calculated by SFA for Switzerland from literature for the 1990s, these measured concentrations in small size WEEE were 7 times higher for pentaBDE, unexpectedly about 50% lower for decaBDE, and agreed fairly well for TBBPA (as an additive) and

  7. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    Science.gov (United States)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  8. Antibacterial Activities of a New Brominated Diterpene from Borneon Laurencia spp

    Science.gov (United States)

    Vairappan, Charles Santhanaraju; Ishii, Takahiro; Lee, Tan Kai; Suzuki, Minoru; Zhaoqi, Zhan

    2010-01-01

    In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae. PMID:20631866

  9. Antibacterial Activities of a New Brominated Diterpene from Borneon Laurencia spp.

    Directory of Open Access Journals (Sweden)

    Charles Santhanaraju Vairappan

    2010-05-01

    Full Text Available In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1, and four other known metabolites, aplysidiol (2, cupalaurenol (3, 1-methyl-2,3,5-tribromoindole (4, and chamigrane epoxide (5, were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.

  10. Characterization of Some Real Mixed Plastics from WEEE: A Focus on Chlorine and Bromine Determination by Different Analytical Methods

    Directory of Open Access Journals (Sweden)

    Beatrice Beccagutti

    2016-10-01

    Full Text Available Bromine and chlorine are almost ubiquitous in waste of electrical and electronic equipment (WEEE and the knowledge of their content in the plastic fraction is an essential step for proper end of life management. The aim of this study is to compare the following analytical methods: energy dispersive X-ray fluorescence spectroscopy (ED-XRF, ion chromatography (IC, ion-selective electrodes (ISEs, and elemental analysis for the quantitative determination of chlorine and bromine in four real samples taken from different WEEE treatment plants, identifying the best analytical technique for waste management workers. Home-made plastic standard materials with known concentrations of chlorine or bromine have been used for calibration of ED-XRF and to test the techniques before the sample analysis. Results showed that IC and ISEs, based upon dissolution of the products of the sample combustion, have not always achieved a quantitative absorption of the analytes in the basic solutions and that bromine could be underestimated since several oxidation states occur after combustion. Elemental analysis designed for chlorine determination is subjected to strong interference from bromine and required frequent regeneration and recalibration of the measurement cell. The most reliable method seemed to be the non-destructive ED-XRF. Calibration with home-made standards, having a similar plastic matrix of the samples, enabled us to carry out quantitative determinations, which have been revealed to be satisfactorily accurate and precise. In all the analyzed samples a total concentration of chlorine and/or bromine between 0.6 and 4 w/w% was detected, compromising the feasibility of a mechanical recycling and suggesting the exploration of an alternative route for managing these plastic wastes.

  11. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  12. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid.

    Science.gov (United States)

    Nam, Seong-Nam; Jeong, Seongkyeong; Lim, Hojoo

    2014-01-30

    In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5N sulfuric acid-digestive destruction was incorporated with 10-24-h heating at 100°C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30-100°C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer - a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  13. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  14. Using a Laboratory Inquiry with High School Students to Determine the Reaction Stoichiometry of Neutralization by a Thermochemical Approach

    Science.gov (United States)

    Journal of Chemical Education, 2015

    2015-01-01

    This paper presents the design and practical application of a laboratory inquiry at high school chemistry level for systematic chemistry learning, as exemplified by a thermochemical approach to the reaction stoichiometry of neutralization using Job's method of continuous variation. In the laboratory inquiry, students are requested to propose the…

  15. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jun Woo Park

    2016-02-01

    Full Text Available The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU, for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.

  16. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    CLARK,NANCY H.; EIDLER,PHILLIP

    1999-10-01

    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  17. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil

    Energy Technology Data Exchange (ETDEWEB)

    Nyholm, Jenny Rattfelt, E-mail: jenny.rattfelt@chem.umu.s [Department of Chemistry, Umea University, SE-901 87 Umea (Sweden); Lundberg, Charlott; Andersson, Patrik L. [Department of Chemistry, Umea University, SE-901 87 Umea (Sweden)

    2010-06-15

    The purpose of the present study was to investigate the biodegradation kinetics in aerobic and anaerobic soil of the following brominated flame retardants: 2,4,4'-tribromodiphenyl ether (BDE 28), decabromodiphenyl ether (BDE 209), tetrabromobisphenol A (TBBPA), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), 2,4,6-tribromophenol (246BrPh), and hexabromobenzene (HxBrBz). For comparison, the biodegradation of the chlorinated compounds 2,4,4'-trichlorodiphenyl ether (CDE 28), 2,4,6-trichlorophenol (246ClPh), hexachlorobenzene (HxClBz), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) was also assessed. In aerobic soil, BDE 209 showed no significant degradation during the test period, but concentrations of the other BFRs declined, with half-lives decreasing in the following order: BDE 28 > TBBPA > TBECH > HxBrBz > 246BrPh. Declines in almost the same order were observed in anaerobic soil: BDE 28, BDE 209 > TBBPA > HxBrBz > TBECH >246BrPh. - Intra- and extrapolated half-lives in soil of tested brominated flame retardants ranged from 7 days for 2,4,6-tribromorophenol to >400 days for decabromodiphenyl ether.

  18. Hair as an indicator of endogenous tissue levels of brominated flame retardants in mammals.

    Science.gov (United States)

    D'Havé, Helga; Covaci, Adrian; Scheirs, Jan; Schepens, Paul; Verhagen, Ron; De Coen, Wim

    2005-08-15

    Few data are available on brominated flame retardants (BFRs) in terrestrial mammalian wildlife. Moreover, the use of hair in nondestructive monitoring of BFRs in mammals or humans has not been investigated. In the present study, concentrations of polybrominated diphenyl ethers (PBDEs) and brominated biphenyl 153 (BB 153) were analyzed in tissues of the European hedgehog Erinaceus europaeus. Road kills and carcasses from wildlife rescue centers were used to investigate relationships between concentrations of BFRs in hair and internal tissues, BFR tissue distribution (hair, liver, kidney, muscle, and adipose tissue), and PBDE congener tissue pattern dissimilarities. Liver concentrations of PBDEs and BB 153 were in the ranges 1-1178 and 0-2.5 ng/g of liver wet weight, respectively. PBDEs were predominant in adipose tissue and liver, while accumulation of BB 153 was tissue independent. The less persistent compound BDE 99 was more dominant in hair than in internal tissues. We observed positive relationships between BFR levels in hair and internal tissues for sum PBDEs and BDE 47 (0.37 terrestrial mammals which can be used in nondestructive monitoring schemes.

  19. Synthesis of α-Bromine- Terminated Polystyrene Macroinitiator and Its Initiation of MMA Polymerization by ATRP

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. Α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93.8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate(MMA) in the presence of copper(Ⅰ) halogen and 2,2-bipyridine(bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1.2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by 1H NMR spectra.

  20. Novel Spectrophotometric Method for Determination of Macro-paracetamol via Reaction with Bromine

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The reaction between Br2 and paracetamol(p-AAP) leads to the formation of a coloured product, which can be used for spectrophotometric determination of the p-AAP content in its pure form and in different pharmaceutical preparations with p-AAP. The stoichiometric composition of the reaction was found to be n(p-AAP)∶n(bromine)=1∶3. The effects of pH and time on the spectra of p-AAP-bromine redox reaction product were studied. The interference of different additives on the measured spectra of the obtained product was also studied. The results obtained by the present method were compared with those obtained by the standard method. The F- and t- test values were calculated for both of the applied procedures and they met a confidence level of 99%. The proposed procedure actually needs no separation of these drugs from their sources before analysis and was unaffected by interference of other phenolic compounds. The proposed method is simpler and faster than the repoeted ones.

  1. Brominated diphenyl ethers in the sediments, porewater, and biota of the Chesapeake Bay, USA

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Klosterhaus, S.; Liebert, D.; Stapleton, H. [Maryland Univ., Solomons, MD (United States)

    2004-09-15

    Levels of brominated diphenyl ethers (BDEs) are rapidly increasing in the environment, and in a short time these chemicals have evolved from 'emerging contaminants' to globally-distributed organic pollutants. Recent research demonstrates BDEs are sufficiently stable to be transported long distances in the environment and to accumulate in higher trophic levels. Photolysis and metabolism appear to be dominant loss processes for the parent compounds, generating a variety of lower brominated diphenyl ethers, hydroxylated metabolites, and other products. BDEs are hydrophobic, and therefore their transport in aquatic systems is likely controlled by sorption to sediments and perhaps exchange across the air-water interface. To date, few studies have examined the geochemistry of BDEs in natural waters. In this paper, we review our recent measurements of BDEs in the Chesapeake Bay, a shallow, productive estuary in eastern North America. We focus on the distribution of BDE congeners sediment, porewater, and in faunal benthos along a contamination gradient downstream from a wastewater treatment plant and on the spatial distribution of BDEs in bottom-feeding and pelagic fish species.

  2. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards.

    Science.gov (United States)

    Zhu, Ping; Chen, Yan; Wang, Liangyou; Qian, Guangren; Zhang, Wei Jie; Zhou, Ming; Zhou, Jin

    2013-03-19

    Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs.

  3. Natural solar photolysis of total organic chlorine, bromine and iodine in water.

    Science.gov (United States)

    Abusallout, Ibrahim; Hua, Guanghui

    2016-04-01

    Municipal wastewater has been increasingly used to augment drinking water supplies due to the growing water scarcity. Wastewater-derived disinfection byproducts (DBPs) may negatively affect the aquatic ecosystems and human health of downstream communities during water reuse. The objective of this research was to determine the degradation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) in water by natural sunlight irradiation. Outdoor solar photolysis experiments were performed to investigate photolytic degradation of the total organic halogen (TOX) formed by fulvic acid and real water and wastewater samples. The results showed that TOX degradation by sunlight irradiation followed the first-order kinetics with half-lives in the range of 2.6-10.7 h for different TOX compounds produced by fulvic acid. The TOX degradation rates were generally in the order of TOI > TOBr ≅ TOCl(NH2Cl) > TOCl(Cl2). High molecular weight TOX was more susceptible to solar photolysis than corresponding low molecular weight halogenated compounds. The nitrate and sulfite induced indirect TOX photolysis rates were less than 50% of the direct photolysis rates under the conditions of this study. Fulvic acid and turbidity in water reduced TOX photodegradation. These results contribute to a better understanding of the fate of chlorinated, brominated and iodinated DBPs in surface waters.

  4. Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis.

    Science.gov (United States)

    Bond, Tom; Templeton, Michael R; Mokhtar Kamal, Nurul Hana; Graham, Nigel; Kanda, Rakesh

    2015-11-15

    Despite the recent focus on nitrogenous disinfection byproducts in drinking water, there is limited occurrence data available for many species. This paper analyses the occurrence of seven haloacetonitriles, three haloacetamides, eight halonitromethanes and cyanogen chloride in 20 English drinking water supply systems. It is the first survey of its type to compare bromine substitution factors (BSFs) between the haloacetamides and haloacetonitriles. Concentrations of the dihalogenated haloacetonitriles and haloacetamides were well correlated. Although median concentrations of these two groups were lower in chloraminated than chlorinated surface waters, median BSFs for both in chloraminated samples were approximately double those in chlorinated samples, which is significant because of the higher reported toxicity of the brominated species. Furthermore, median BSFs were moderately higher for the dihalogenated haloacetamides than for the haloacetonitriles. This indicates that, while the dihalogenated haloacetamides were primarily generated from hydrolysis of the corresponding haloacetonitriles, secondary formation pathways also contributed. Median halonitromethane concentrations were remarkably unchanging for the different types of disinfectants and source waters: 0.1 μg · mgTOC(-1) in all cases. Cyanogen chloride only occurred in a limited number of samples, yet when present its concentrations were higher than the other N-DBPs. Concentrations of cyanogen chloride and the sum of the halonitromethanes were not correlated with any other DBPs.

  5. Geodynamically Consistent Interpretation of Seismic Tomography for Thermal and Thermochemical Mantle Plumes

    Science.gov (United States)

    Samuel, H.; Bercovici, D.

    2006-05-01

    Recent theoretical developments as well as increased data quality and coverage have allowed seismic tomographic imaging to better resolve narrower structures at both shallow and deep mantle depths. However, despite these improvements, the interpretation of tomographic images remains problematic mainly because of: (1) the trade off between temperature and composition and their different influence on mantle flow; (2) the difficulty in determining the extent and continuity of structures revealed by seismic tomography. We present two geodynamic studies on mantle plumes which illustrate the need to consider both geodynamic and mineral physics for a consistent interpretation of tomographic images in terms of temperature composition and flow. The first study aims to investigate the coupled effect of pressure and composition on thermochemical plumes. Using both high resolution 2D numerical modeling and simple analytical theory we show that the coupled effect of composition and pressure have a first order impact on the dynamics of mantle thermochemical plumes in the lower mantle: (1) For low Si enrichment of the plume relative to a reference pyrolitic mantle, an oscillatory behavior of the plume head is observed; (2) For Si-enriched plume compositions, the chemical density excess of the plume increases with height, leading to stagnation of large plume heads at various depths in the lower mantle. As a consequence, these thermochemical plumes may display broad (~ 1200 km wide and more) negative seismic velocity anomalies at various lower mantle depths, which may not necessarily be associated with upwelling currents. The second study focuses on the identification of thermal mantle plumes by seismic tomography beneath the Hawaiian hot spot: we performed a set of 3D numerical experiments in a spherical shell to model a rising plume beneath a moving plate. The thermal structure obtained is converted into P and S wave seismic velocities using mineral physics considerations. We

  6. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seong-Nam, E-mail: namsn76@gmail.com [Engineering Research Institute, Seoul National University, Daehak-dong, Gwanak-gu 151-744 (Korea, Republic of); Jeong, Seongkyeong [Environmental Resource Recirculation Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of); Lim, Hojoo [Indoor Environment and Noise Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of)

    2014-01-30

    Highlights: • Asbestos-containing roofing slates (ACS) were thermochemically treated. • 5 N H{sub 2}SO{sub 4} with 100 °C heating for 10–24 h showed complete disappearance. • Asbestiform of ACS was changed to non-asbestiform after treatment. • Favorable destruction was occurred at the Mg(OH){sub 2} layer rather than SiO{sub 2} sheet. • Equivalent treatability of waste acid brightened the feasibility of this approach. -- Abstract: In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5 N sulfuric acid-digestive destruction was incorporated with 10–24-h heating at 100 °C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30–100 °C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer – a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  7. Fes cycling

    Directory of Open Access Journals (Sweden)

    Berkelmans Rik

    2008-01-01

    Full Text Available Many research with functional electrical stimulation (FES has been done to regain mobility and for health benefits. Better results have been reported for FES-cycling than for FES-walking. The majority of the subjects during such research are people with a spinal cord injury (SCI, cause they often lost skin sensation. Besides using surface stimulation also implanted stimulators can be used. This solves the skin sensation problem, but needs a surgery. Many physiological effects of FES-cycling has been reported, e.g., increase of muscles, better blood flow, reduction of pressure ulcers, improved self-image and some reduction of bone mineral density (BMD loss. Also people with an incomplete SCI benefit by FES-cycling, e.g. cycling time without FES, muscle strength and also the walking abilities increased. Hybrid exercise gives an even better cardiovascular training. Presently 4 companies are involved in FES-cycling. They all have a stationary mobility trainer. Two of them also use an outdoor tricycle. One combined with voluntary arm cranking. By optimizing the stimulation parameters the power output and fatigue resistance will increase, but will still be less compared to voluntary cycling.

  8. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2).

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2012-11-01

    The enhanced thermo-chemical process (i.e., pyrolysis/gasification) of various macroalgae using carbon dioxide (CO(2)) as a reaction medium was mainly investigated. The enhanced thermo-chemical process was achieved by expediting the thermal cracking of volatile chemical species derived from the thermal degradation of the macroalgae. This process enables the modification of the end products from the thermo-chemical process and significant reduction of the amount of condensable hydrocarbons (i.e., tar, ∼50%), thereby directly increasing the efficiency of the gasification process.

  9. Thermochemical Study on Ternary Solid Complex of La(Gly)2(Ala)3Cl3·2H2O (s)

    Institute of Scientific and Technical Information of China (English)

    Ye Lijuan; Li Qiangguo; Li Xu; Yang Dejun; Liu Yi

    2007-01-01

    The complex of lanthanum chloride with Glycine and Alanine, La(Gly)2(Ala)3Cl3·2H2O, was synthesized and characterized by IR, elementary analysis, thermogravimetric analysis, and chemical analysis. The dissolution enthalpies of LaCl3 ·7H2O(s), 2Gly(s) + 3Ala(s) and La(Gly)2(Ala)3Cl3 ·2H2O(s) were determined in 2 mol·L-1 HCl by a solution-reaction isoperibol calorimeter. By designing a thermochemical cycle in terms of Hess′ Law and through calculation, the reaction enthalpy of lanthanum chloride seven-hydrate with Glycine and Alanine was obtained: ΔrHθm (298.15 K)=(29.652±0.504) kJ·mol-1, and the standard enthalpy of formation of La(Gly)2(Ala)3Cl3·2H2O(s) ΔfHθm [La(Gly)2(Ala)3Cl3·2H2O, s, 298.15 K]=-4467.6±8.3 kJ·mol-1.

  10. Co3O4-based honeycombs as compact redox reactors/heat exchangers for thermochemical storage in the next generation CSP plants

    Science.gov (United States)

    Pagkoura, Chrysoula; Karagiannakis, George; Halevas, Eleftherios; Konstandopoulos, Athanasios G.

    2016-05-01

    Over the last years, several research groups have focused on developing efficient thermochemical heat storage (THS) systems, in-principle capable of being coupled with next generation high temperature Concentrated Solar Power plants. Among systems studied, the Co3O4/CoO redox system is a promising candidate. Currently, research efforts extend beyond basic level identification of promising materials to more application-oriented approaches aiming at validation of THS performance at pilot scale reactors. The present work focuses on the investigation of cobalt oxide based honeycomb structures as candidate reactors/heat exchangers to be employed for such purposes. In the evaluation conducted and presented here, cobalt oxide-based structures with different composition and geometrical characteristics were subjected to redox cycles in the temperature window between 800 and 1000°C under air flow. Basic aspects related to redox performance of each system are briefly discussed but the main focus lies on the evaluation of the segments structural stability after multi-cyclic operation. The latter is based on macroscopic visual observation and also supplemented by pre- (i.e. fresh samples) and post-characterization (i.e. after long term exposure) of extruded honeycombs via combined mercury porosimetry and SEM analysis.

  11. Reduction enthalpy and charge distribution of substituted ferrites and doped ceria for thermochemical water and carbon dioxide splitting with DFT+U.

    Science.gov (United States)

    Dimitrakis, D A; Tsongidis, N I; Konstandopoulos, A G

    2016-08-24

    The thermal reduction step of substituted ferrites (MFe2O4 where M = Fe, Ni, Co, Gd) and doped ceria (MxCe1-xO2, where M = Ce, Zr, Hf and x = 0.25) in two-step thermochemical cycles for H2O and CO2 splitting is investigated within the DFT+U framework. This thermal reduction step is described as the oxygen vacancy formation energy (reduction enthalpy), i.e. the energy required to create an oxygen vacancy in the crystal lattice. Oxides with a lower oxygen vacancy creation energy are easier to reduce. A Bader charge analysis of the reduction mechanism is carried out providing the charge distribution of the bulk and reduced ions, enabling interrelations of the substitute ions and the resulting reduction energies. Based on the approach presented here, interesting solar fuels producing materials are CoFe2O4, NiFe2O4 and Hf0.25Ce0.75O2.

  12. Thermochemical studies on complex of [Sm(o-NBA)_3phen]_2

    Institute of Scientific and Technical Information of China (English)

    肖圣雄; 张建军; 李旭; 李强国; 任宁; 李环

    2010-01-01

    A ternary complex [Sm(o-NBA)3phen]2 (o-NBA: o-Nitrobenzoate; phen: 1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR, molar conductance, and thermogravimetric analysis. The dissolution enthalpies of SmCl3·6H2O(s), o-HNBA(s) and phen·H2O(s) in mixed solvent (VHCl :VDMF :VDMSO=2:2:1) were determined by calorimetry at 298.15 K. The enthalpy change of the reaction was determined to be rHmΔθ=252.49±1.60 kJ/mol. Using the relevant data in the literature and a thermochemical recycle ...

  13. Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR

    Institute of Scientific and Technical Information of China (English)

    WU Xinxin; ONUKI Kaoru

    2005-01-01

    A very promising technology to achieve a carbon free energy system is to produce hydrogen from water, rather than from fossil fuels. Iodine-sulfur (IS) thermochemical water decomposition is one promising process. The IS process can be used to efficiently produce hydrogen using the high temperature gas-cooled reactor (HTGR) as the energy source supplying gas at 1000℃. This paper describes that demonstration experiment for hydrogen production was carried out by an IS process at a laboratory scale. The results confirmed the feasibility of the closed-loop operation for recycling all the reactants besides the water, H2, and O2. Then the membrane technology was developed to enhance the decomposition efficiency. The maximum attainable one-pass conversion rate of HI exceeds 90% by membrane technology, whereas the equilibrium rate is about 20%.

  14. Thermochemical prediction of chemical form distributions of fission products in LWR mixed oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kouki; Furuya, Hirotaka [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-06-01

    Radial distribution of chemical forms of fission products (FPs) in LWR mixed oxide (MOX) fuel pins was theoretically predicted by a thermochemical computer code SOLGASMIX-PV. The amounts of fission products generated in the fuel were calculated by ORIGEN-2 code, and the radial distributions of temperature and oxygen potential were calculated by taking the neutron depression and oxygen redistribution in the fuel into account. A fuel pellet was radially divided into 51 sections and chemical forms of FPs were calculated in each section. The effects of linear heat rating (LHR) and average O/U ratio on radial distribution of chemical form were evaluated. It was found that the radial distribution of chemical forms depends strongly on the LHR and the O/M ratio, and is not proportional to that of burnup. (author)

  15. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  16. 3D Thermochemical Numerical Model of a Convergent Zone With an Overriding Plate

    Science.gov (United States)

    Mason, W. G.; Moresi, L.; Betts, P. G.

    2008-12-01

    We have created a new three dimensional thermochemical numerical model of a convergent zone, in which a viscoplastic oceanic plate subducts beneath a viscous overriding plate, using the finite element Geoscience research code Underworld. Subduction is initiated by mantle flow induced by the gravitational instability of a slab tip, and buoyancy of the overriding plate. A cold thermal boundary layer envelopes both plates, and is partially dragged into the mantle along with the subducting slab. The trench rolls back as the slab subducts, and the overriding plate follows the retreating trench without being entrained into the upper mantle. The model is repeated with the overriding plate excluded, to analyse the influence of the overriding plate. The overriding plate retards the rate of subduction. Maximum strain rates, evident along the trench in the absence of an overriding plate, extend to a greater depth within the subducted portion of the slab in the presence of an overriding plate.

  17. Thermochemical recycling of mixture of scrap tyres and waste lubricating oil into high caloric value products

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Raouf, Manar E.; Maysour, Nermine E.; Abdul-Azim, Abdul-Azim A. [Egyptian Petroleum Research Institute, Nasr City, Cairo (Egypt); Amin, Mahasen S. [Faculty of Science, Benha University, Benha (Egypt)

    2010-06-15

    Scrap tyres and used lubricating oils represent together growing environmental problem because they are not biodegradable and their components cannot readily be recovered. In the present investigation, the thermochemical recycling of mixture of old tyres with waste lubricating oil by pyrolysis and the value of the products obtained have been studied. First, thermobalance experiments were carried out, studying the influence of the following variables: temperature, type of catalyst and catalyst concentration on the pyrolysis reaction of a mixture of 1/1 wt./wt. oil/tyre ratio. These thermobalance results were thoroughly investigated to study the effect of the main process variables on yields of derived products: oils, gases and solid residue. (author)

  18. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  19. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    Science.gov (United States)

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel.

  20. Thermochemical analysis of laterite ore alkali roasting: Comparison of sodium carbonate, sodium sulfate, and sodium hydroxide

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki

    2017-01-01

    The abundance of global nickel reserve is in fact dominated by low grade laterite ores containing only approximately 1.0-1.8 %-Ni. Indonesia is a major limonite and saprolite ores source, particularly in the Sulawesi, northern Maluku, and Papua islands. Production of nickel from laterites typically requires a pre-concentration step which breaks down the mineral crystalline structure, thereby facilitating the subsequent extraction of the valuable metals. This work discusses the thermochemical analysis of the alkali roasting of an Indonesian saprolite ore using Na2CO3, Na2SO4, and NaOH. These alkali compounds are selected due to their relatively low cost. The Factsage thermochemical computation package is used to predict thermodynamically stable gaseous, solution, pure liquid, and pure solid phases present in the roasting process at temperatures from 100 to 1200°C at ambient pressure, in inert atmosphere. The formation of a liquid solution (or slag) phase is interpreted as a major indicator of mineral structure breakdown. The computed slag formation temperatures are 373.2, 1041.4, and 792.0°C when using Na2CO3, Na2SO4, and NaOH, respectively. The masses of volatilized alkali at 1200°C with a total feed mass of 100 gram are 0.49, 3.24, and 3.25 mg for Na2CO3, Na2SO4, and NaOH, respectively. It is therefore hypothesized that Na2CO3 is the most competitive sodium-based alkali for saprolite ore roasting.

  1. A thermochemical model for shock-induced reactions (heat detonations) in solids

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (US))

    1990-02-01

    Recent advances in studies of shock-induced chemistry in reactive solids have led to the recognition of a new class of energetic materials which are unique in their response to shock waves. Experimental work has shown that chemical energy can be released on a time scale shorter than shock-transit times in laboratory samples. However, for many compositions, the reaction products remain in the condensed state upon release from high pressure, and no sudden expansion takes place. Nevertheless, if such a reaction is sufficiently rapid, it can be modeled as a type of detonation, termed heat detonation'' in the present paper. It is shown that unlike an explosive detonation, an unsupported heat detonation will decay to zero unless certain conditions are met. An example of such a reaction is Fe{sub 2}O{sub 3} +2Al+shock{r arrow}Al{sub 2} O{sub 3} +2Fe (the standard thermite reaction). A shock-wave equation of state is determined from a mixture theory for reacted and unreacted porous thermite. The calculated shock temperatures are compared to experimentally measured shock temperatures, demonstrating that a shock-induced reaction takes place. Interpretation of the measured temperature history in the context of the thermochemical model implies that the principal rate-controlling kinetic mechanism is dynamic mixing at the shock front. Despite the similarity in thermochemical modeling of heat detonations to explosive detonations, the two processes are qualitatively very different in reaction mechanism as well as in the form the energy takes upon release, with explosives producing mostly work and heat detonations producing mostly heat.

  2. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity.

    Science.gov (United States)

    Aubert, Julien; Amit, Hagay; Hulot, Gauthier; Olson, Peter

    2008-08-07

    Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.

  3. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  4. Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on hepatic cytochrome P450 levels in rats.

    NARCIS (Netherlands)

    Germer, Silke; Piersma, Aldert H; Ven, Leo T M van der; Kamyschnikow, Andreas; Fery, Yvonne; Schmitz, Hans-Joachim; Schrenk, Dieter

    2006-01-01

    The brominated flame retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are found in the environment, e.g., in sediments and organisms, in food items, human blood samples and mother's milk. In this study, the effects of both compounds on rat hepatic cytochrome P450 (CYP) leve

  5. Rapid Formation of Molecular Bromine from Deliquesced NaBr Aerosol in the Presence of Ozone and UV Light

    Science.gov (United States)

    The formation of gas-phase bromine from aqueous sodium bromide aerosols is investigated through a combination of chamber experiments and chemical kinetics modeling. Experiments show that Br2(g) is produced rapidly from deliquesced NaBr aerosols in the presence of OH radicals prod...

  6. Exposure to brominated trihalomethanes in water during pregnancy and micronuclei frequency in maternal and cord blood lymphocytes

    DEFF Research Database (Denmark)

    Stayner, Leslie Thomas; Pedersen, Marie; Patelarou, Evridiki;

    2014-01-01

    BACKGROUND: Water disinfection by-products have been associated with an increased cancer risk. Micronuclei (MN) frequency in lymphocytes is a marker of genomic damage and can predict adult cancer risk. OBJECTIVE: We evaluated maternal exposure to drinking water brominated trihalomethanes (BTHM) i...

  7. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age

    NARCIS (Netherlands)

    Roze, Elise; Meijer, Lisethe; Bakker, Attie; Van Braeckel, Koenraad N. J. A.; Sauer, Pieter J. J.; Bos, Arend F.

    2009-01-01

    BACKGROUND: Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. OBJECTIVE: We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age. METHOD

  8. Suppressing effect of calcium-based waste on control of bromine flux during the pyrolysis of printed circuit boards.

    Science.gov (United States)

    Jie, Guan; Min, Xu; Wu, Wenjie; Zhang, Chenglong; Wang, Jingwei; Bai, Jianfeng

    2012-11-01

    The effect of calcium-based addition on the brominate flux during printed circuit board (PCB) pyrolysis was investigated. It was found that bromine (Br) can be effectively fixed in solid phase during PCB pyrolysis by adding calcium-based waste materials. Phenol and 4-ethylphenol are the major products of pyrolysis. When the two kinds of red mud were used as additive, their content was 85.25 and 84.81%, respectively, which was higher than others. The 2-bromophenol and 2-bromo-4-methyl-benzene are the main Br-containing pyrolysis volatiles. After adding calcium-based additive, these two volatiles were apparently reduced and only small amounts of 2-bromo-4-methyl-benzene were detected in the products, namely 0.71 and 0.86%, respectively for the two kinds of red mud. Hence, no matter from the perspective of product use or simple Br-fixing, the bromine in the three-phase products can be effectively regulated and controlled by adding calcium-based waste residue during PCB pyrolysis. Finally, the Br-fixing mechanism was analysed. As a result, when calcium-based waste materials were added to the PCB pyrolysis it made bromine fix easily in the resident yielding a byproduct that can be further used.

  9. Temporal development of brominated flame retardants in peregrine falcon (Fako peregrinus) eggs from South Greenland (1986-2003)

    NARCIS (Netherlands)

    Vorkamp, K.; Thomsen, M.; Falk, K.; Leslie, H.A.; Moller, S.; Sorensen, P.B.

    2005-01-01

    A time trend between 1986 and 2003 was found for brominated flame retardants in peregrine falcon eggs from South Greenland, with significantly increasing concentrations of the polybrominated diphenyl ethers (PBDEs) 99, 100, 153, 154, and 209. For BDE-99 and -100, the concentration increased approxim

  10. Bromination of Aromatic Compounds by Residual Bromide in Sodium Chloride Matrix Modifier Salt During Heated Headspace GC/MS Analysis

    Science.gov (United States)

    Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation rea...

  11. The detection of some halogenated phenols and nitrophenols in thin-layer chromatography by means of bromine

    NARCIS (Netherlands)

    Tadema, G.; Batelaan, P.H.

    1968-01-01

    A method is described for the detection of halogeno- and nitro-phenols in sub-microgram quantities. Theses compounds are made visible by exposure of the developed thin layer plates to bromine vapour and subsequent spraying with an aqueous solution of potassium iodide or an ethanolic solution of fluo

  12. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Xu, Lining, E-mail: xulining@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Lu, Minxu [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Meng, Yao [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Zhu, Jinyang; Zhang, Lei [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-09-30

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH{sup −} ligand generates and adsorbs in a certain scale because of abundant OH{sup −} on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs.

  13. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    Science.gov (United States)

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  14. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants.

    Science.gov (United States)

    Stieger, Greta; Scheringer, Martin; Ng, Carla A; Hungerbühler, Konrad

    2014-12-01

    Polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCDD) are major brominated flame retardants (BFRs) that are now banned or under restrictions in many countries because of their persistence, bioaccumulation potential and toxicity (PBT properties). However, there is a wide range of alternative BFRs, such as decabromodiphenyl ethane and tribromophenol, that are increasingly used as replacements, but which may possess similar hazardous properties. This necessitates hazard and risk assessments of these compounds. For a set of 36 alternative BFRs, we searched 25 databases for chemical property data that are needed as input for a PBT assessment. These properties are degradation half-life, bioconcentration factor (BCF), octanol-water partition coefficient (Kow), and toxic effect concentrations in aquatic organisms. For 17 of the 36 substances, no data at all were found for these properties. Too few persistence data were available to even assess the quality of these data in a systematic way. The available data for Kow and toxicity show surprisingly high variability, which makes it difficult to identify the most reliable values. We propose methods for systematic evaluations of PBT-related chemical property data that should be performed before data are included in publicly available databases. Using these methods, we evaluated the data for Kow and toxicity in more detail and identified several inaccurate values. For most of the 36 alternative BFRs, the amount and the quality of the PBT-related property data need to be improved before reliable hazard and risk assessments of these substances can be performed.

  15. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  16. Bromine release during Plinian eruptions along the Central American Volcanic Arc

    Science.gov (United States)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.

    2010-12-01

    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75

  17. Investigating the lifetime of bromine-quenched G.M. Counters with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Abilama, Marc [Centronic Ltd., Croydon (United Kingdom); University of Surrey, Guildford (United Kingdom); Bates, Mike [Centronic Ltd., Croydon (United Kingdom); Lohstroh, Annika [University of Surrey, Guildford (United Kingdom)

    2015-09-21

    The amount of halogen quench gas as a percentage of the total fill gas contained within a gas-filled Geiger–Müller detector is directly linked to its operational characteristics. Preserving this halogen gas will help maintain the operating lifetime of the detectors. Such halogen gases are highly corrosive and the small quantities within a gas-filled detector can deplete rapidly via interactions with surrounding materials. The rate of interactions is thought to be proportional to not only temperature, but also to the current initiated by ionisation events associated with the formation of each signal pulse. As all pulses are of similar magnitudes, GM detector operational lifetimes are quantified in accumulated counts rather than a given operating time. We have studied three different types of corrosion-resistant mechanisms to protect the bromine halogen gas from any interactions with 446 stainless steel detector components of ZP1200 Geiger–Müller tubes at temperatures up to 125 °C. Three types of surface treatments for these detectors used were labelled as “raw” using only an oxygen-plasma-bombardment process, “passivated” using a combination of nitric acid passivation followed by an oxygen plasma-bombardment process, and thirdly plating with a few micron thickness of chromium followed by an oxygen plasma-bombardment process. 32 detector samples were irradiated at room temperature with a Caesium-137 source at dose rates of approximately 1.3 mSv/hr up to 5.7×10{sup 10} accumulated counts; another 32 detector samples were aged to 3.3×10{sup 10} counts at 125 °C. At room temperature, the chromium-plated samples exhibited an initial rise in their starting voltage readings. All other detector performance characteristics, for all detector types, did not change significantly during the ageing process, and the surface morphology of the detector cathodes was unaffected. At 125 °C, the chromium-based plating produced the most stable long-term response. These

  18. Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US

    Directory of Open Access Journals (Sweden)

    S. Coburn

    2015-10-01

    Full Text Available The elevated deposition of atmospheric mercury over the Southeastern United States is currently not well understood. Here we measure partial columns and vertical profiles of bromine monoxide (BrO radicals, a key component of mercury oxidation chemistry, to better understand the processes and altitudes at which mercury is being oxidized in the atmosphere. We use the data from a ground-based MAX-DOAS instrument located at a coastal site ~ 1 km from the Gulf of Mexico in Gulf Breeze, FL, where we had previously detected tropospheric BrO (Coburn et al., 2011. Our profile retrieval assimilates information about stratospheric BrO from the WACCM chemical transport model, and uses only measurements at moderately low solar zenith angles (SZA to estimate the BrO slant column density contained in the reference spectrum (SCDRef. The approach has 2.6 degrees of freedom, and avoids spectroscopic complications that arise at high SZA; knowledge about SCDRef helps to maximize sensitivity in the free troposphere (FT. A cloud-free case study day with low aerosol load (9 April 2010 provided optimal conditions for distinguishing marine boundary layer (MBL: 0–1 km and free tropospheric (FT: 1–15 km BrO from the ground. The average daytime tropospheric BrO vertical column density (VCD of ~ 2.3 × 1013 molec cm−2 (SZA 5 molec cm−2 s−1 for bromine, while contributions from ozone (O3 and chlorine (Cl were 0.9 × 105 and 0.2 × 105 molec cm−2 s−1, respectively. The GOM formation rate is sensitive to recently proposed atmospheric scavenging reactions of the HgBr adduct by nitrogen dioxide (NO2, and to a lesser extent also HO2 radicals. Using a 3-D chemical transport model, we find that surface GOM variations are typical also of other days, and are mainly derived from the free troposphere. Bromine chemistry is active in the FT over Gulf Breeze, where it forms water-soluble GOM that is subsequently available for wet scavenging by thunderstorms or transport to

  19. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...

  20. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone

    Directory of Open Access Journals (Sweden)

    K. Toyota

    2013-08-01

    Full Text Available To provide a theoretical framework towards better understanding of ozone depletion events (ODEs and atmospheric mercury depletion events (AMDEs in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL as a unified system. In this paper, we describe a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. The model employs a chemical mechanism adapted from the one previously used for the simulation of multiphase halogen chemistry involving deliquesced sea-salt aerosols in the marine boundary layer. A common set of aqueous-phase reactions describe chemistry both in the liquid-like (or brine layer on the grain surface of the snowpack and in "haze" aerosols mainly composed of sulfate in the atmosphere. The process of highly soluble/reactive trace gases, whether entering the snowpack from the atmosphere or formed via gas-phase chemistry in the snowpack interstitial air (SIA, is simulated by the uptake on brine-covered snow grains and subsequent reactions in the aqueous phase while being traveled vertically within the SIA. A "bromine explosion", by which, in a conventional definition, HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is a dominant process of reactive bromine formation in the top 1 mm (or less layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the brine on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the Br2 release into the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone

  1. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone

    Science.gov (United States)

    Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P.

    2014-04-01

    To provide a theoretical framework towards a better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. This paper constitutes Part 1 of the study, describing a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. A common set of aqueous-phase reactions describes chemistry both within the liquid-like layer (LLL) on the grain surface of the snowpack and within deliquesced "haze" aerosols mainly composed of sulfate in the atmosphere. Gas-phase reactions are also represented by the same mechanism in the atmosphere and in the snowpack interstitial air (SIA). Consequently, the model attains the capacity of simulating interactions between chemistry and mass transfer that become particularly intricate near the interface between the atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coated snow grains and vertical mass transfer act simultaneously on gaseous HOBr, a fraction of which enters from the atmosphere while another fraction is formed via gas-phase chemistry in the SIA itself. A "bromine explosion", by which HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is found to be a dominant process of reactive bromine formation in the top 1 mm layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the LLL on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the release of Br2 to the atmosphere, but the deeper-layer production is found to be more important for the

  2. Results of studies on application of CCMHD to advanced fossil fuel power plant cycles

    Energy Technology Data Exchange (ETDEWEB)

    Foote, J.P.; Wu, Y.C.L.S.; Lineberry, J.T.

    1998-07-01

    A study was conducted to assess the potential for application of a Closed Cycle MHD disk generator (CCMHD) in advanced fossil fuel power generation systems. Cycle analyses were conducted for a variety of candidate power cycles, including simple cycle CCMHD (MHD); a cycle combining CCMHD and gas turbines (MHD/GT); and a triple combined cycle including CCMHD, gas turbines, and steam turbines (MHD/GT/ST). The above cycles were previously considered in cycle studies reported by Japanese researchers. Also considered was a CCMHD cycle incorporating thermochemical heat recovery through reforming of the fuel stream (MHD/REF), which is the first consideration of this approach. A gas turbine/steam turbine combined cycle (GT/ST) was also analyzed for baseline comparison. The only fuel considered in the study was CH4. Component heat and pressure losses were neglected, and the potential for NOx emission due to high combustion temperatures was not considered. Likewise, engineering limitations for cycle components, particularly the high temperature argon heater, were not considered. This approach was adopted to simplify the analysis for preliminary screening of candidate cycles. Cycle calculations were performed using in-house code. Ideal gas thermodynamic properties were calculated using the NASA SP- 273 data base, and thermodynamic properties for steam were calculated using the computerized ASME Steam Tables. High temperature equilibrium compositions for combustion gas were calculated using tabulated values of the equilibrium constants for the important reactions.

  3. Solid State Thermochemical Decomposition of Neat 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC) and its DNNC-d6 Perdeuterio-Labeled Analogue

    Science.gov (United States)

    2006-01-01

    SUPPLEMENTARY NOTES As published in Thermochimica Acta 440 (2006) 146-155. 14. ABSTRACT The solid state thermochemical decomposition kinetics and...Prescribed by ANSI Std. 239.18 Thermochimica Acta 440 (2006) 146–155 Solid state thermochemical decomposition of neat 1,3,5,5... Thermochimica Acta 440 (2006) 146–155 147 solid state, describe reactions occurring within a thin zone of reactant–product contact that advance into the

  4. Effect of the glassy carbon structure on the aspect ratio of micropoints of matrix field-emission cathodes prepared by thermochemical etching

    Science.gov (United States)

    Pleshkova, L. S.; Shesterkin, V. I.

    2016-11-01

    The application of thermochemical etching technology makes it possible to reveal and investigate the structure of SU-2000 glassy carbon using electron microscopy. The glassy carbon structure at the microscopic and nanoscopic levels is inhomogeneous and consists of pockets with an irregular cross section separated by partitions. This structure sets the limits on the aspect ratio of geometrical sizes and micropoint packing density in the matrix prepared by thermochemical etching.

  5. Responses of marine unicellular algae to brominated organic compounds in six growth media

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, G.E.; Yoder, M.J.; McLaughlin, L.L.; Lores, E.M.

    1987-12-01

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp. were exposed to the industrial brominated compounds tetrabromobisphenol A, decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromoethylbenzene (PBEB), and the herbicide bromoxynil (BROM), in six algal growth media. High concentrations of DBBO (1 mg liter-1), PBMB (1 mg liter-1), and PBEB (0.5 mg liter-1) reduced growth by less than 50%. EC50s of the other compounds varied with growth medium, with high EC50/low EC50 ratios between 1.3 and 9.9. Lowest EC50s, 9.3 to 12.0 micrograms liter-1, were obtained with S. costatum and HBCD. It is concluded that responses to toxicants in different media are the results of interactions among algae, growth medium, toxicant, and solvent carrier.

  6. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: gerard@chimie.uvsq.fr [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)

    2011-08-31

    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  7. Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer

    Directory of Open Access Journals (Sweden)

    S. Brinckmann

    2012-02-01

    Full Text Available We conducted measurements of the five important short-lived organic bromine species in the marine boundary layer (MBL. Measurements were made in the Northern Hemisphere mid-latitudes (Sylt Island, North Sea in June 2009 and in the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series on Sylt Island, mean mixing ratios of CHBr3, CH2Br2, CHBr2Cl and CH2BrCl were 2.0, 1.1, 0.2, 0.1 ppt, respectively. We found maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S we measured mean mixing ratios of 0.9, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two data sets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl. Using a combined data set from the two campaigns and a comparison with the results from two former studies, rough estimates of the molar emission ratios between the correlated substances were: 9/1/0.35/0.35 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL above Teresina (Brazil, 5° S in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13% of total organic bromine (17.82 ppt. CH2Br2 (1.45 ppt and CHBr3 (0.56 ppt accounted for 90% of the budget of short-lived compounds in that region. Near the

  8. Surface-confined 2D polymerization of a brominated copper-tetraphenylporphyrin on Au(111)

    CERN Document Server

    Smykalla, Lars; Korb, Marcus; Lang, Heinrich; Hietschold, Michael

    2015-01-01

    A coupling-limited approach for the Ullmann reaction-like on-surface synthesis of a two-dimensional covalent organic network starting from a halogenated metallo-porphyrin is demonstrated. Copper-octabromo-tetraphenylporphyrin molecules can diffuse and self-assemble when adsorbed on the inert Au(111) surface. Splitting-off of bromine atoms bonded at the macrocyclic core of the porphyrin starts at room temperature after the deposition and is monitored by X-ray photoelectron spectroscopy for different annealing steps. Direct coupling between the reactive carbon sites of the molecules is, however, hindered by the molecular shape. This leads initially to an ordered non-covalently interconnected supramolecular structure. Further heating to 300{\\deg}C and an additional hydrogen dissociation step is required to link the molecular macrocycles via a phenyl group and form large ordered polymeric networks. This approach leads to a close-packed covalently bonded network of overall good quality. The structures are characte...

  9. Kinetics and mechanism of the oxidation of some -hydroxy acids by hexamethylenetetramine-bromine

    Indian Academy of Sciences (India)

    Dimple Garg; Seema Kothari

    2004-11-01

    The oxidation of lactic acid, mandelic acid and ten monosubstituted mandelic acids by hexamethylenetetramine-bromine (HABR) in glacial acetic acid, leads to the formation of the corresponding oxoacid. The reaction is first order with respect to each of the hydroxy acids and HABR. It is proposed that HABR itself is the reactive oxidizing species. The oxidation of -deuteriomandelic acid exhibits the presence of a substantial kinetic isotope effect (/ = 5.91 at 298 K). The rates of oxidation of the substituted mandelic acids show excellent correlation with Brown’s + values. The reaction constants are negative. The oxidation exhibits an extensive cross conjugation between the electron-donating substituent and the reaction centre in the transition state. A mechanism involving transfer of a hydride ion from the acid to the oxidant is postulated.

  10. Hydrothermal Synthesis of Mesoporous Nanocrystalline Tetragonal ZrO2 Using Dehydroabietyltrimethyl Ammonium Bromine

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2015-01-01

    Full Text Available Mesoporous nanocrystalline tetragonal zirconias were successfully synthesized through a hydrothermal method using a novel bioresource-derived quaternary ammonium salt, dehydroabietyltrimethyl ammonium bromine (DTAB, as a templating agent. The templating agent provides a surface area (242.02 m2/g, high pore volume (0.53 cm3/g, and large average pore diameter (7.65 nm, which suggests that DTAB is a good candidate for mesostructure synthesis. The hydrothermal treatments give the materials improved thermal stabilities because of the generation of tetragonal nanocrystallites that are more stable than the bulk amorphous ones in the hydrothermal process. However, because of the absence of stabilizers, the sizes of the crystallites of the as-synthesized sample increase gradually with increasing calcination temperature. As the crystalline size of the sample rises to 25 nm, the nanocrystallites become too large to integrate well together, causing the well-organized mesostructure to collapse.

  11. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...

  12. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  13. Koszul cycles

    CERN Document Server

    Bruns, Winfreid; Römer, Tim

    2010-01-01

    We prove regularity bounds for Koszul cycles holding for every ideal of dimension at most 1 in a polynomial ring. We generalize the lower bound for the Green-Lazarsfeld index of Veronese rings we proved in arXiv:0902.2431 to the multihomogeneous setting.

  14. Co-leaching of brominated compounds and antimony from bottled water.

    Science.gov (United States)

    Andra, Syam S; Makris, Konstantinos C; Shine, James P; Lu, Chensheng

    2012-01-01

    A fast-growing bottled water market is occasionally challenged by reports calling for contaminant leaching from water-contact materials (plastics). Our focus was on leaching of antimony (Sb) and brominated compounds expressed by total soluble bromine (Br) measurements, including those of polybrominated diphenyl ethers (PBDE). Studies are lacking on concomitant leaching of two or more inorganic plastic constituents from the same bottle. A market-representative basket survey of bottled water was initiated in Boston, USA supermarkets. Bottled water classes sampled were: i) non-carbonated (NCR), ii) carbonated (CR), and iii) non-carbonated and enriched (NCRE). Plastic bottle materials sampled were: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polystyrene (PS), and polycarbonate (PC). Storage conditions for the 31 bottled water samples were: 23°C temperature, no-shaking and 12h/12h light/dark for 60days of equilibration. Average Br and Sb concentrations after 60-days of storage followed the order of NCR

  15. Meteorological controls on the vertical distribution of bromine monoxide in the lower troposphere

    Directory of Open Access Journals (Sweden)

    P. K. Peterson

    2014-09-01

    Full Text Available Multiple axis differential absorption spectroscopy (MAX-DOAS measurements of bromine monoxide (BrO probed the vertical structure of halogen activation events during March–May 2012 at Barrow, Alaska. An analysis of the BrO averaging kernels and degrees of freedom obtained by optimal-estimation-based inversions from raw MAX-DOAS measurements reveals the information is best represented by reducing the retrieved BrO profile to two quantities, the integrated column from the surface through 200 m (VCD200 m, and the lower tropospheric vertical column density (LT-VCD which represents the integrated column of BrO from the surface through 2 km. The percentage of lower-tropospheric BrO in the lowest 200 m was found to be highly variable ranging from shallow layer events, where BrO is present primarily in the lowest 200 m to distributed column events where BrO is observed at higher altitudes. The highest observed LT-VCD events occurred when BrO was distributed throughout the lower troposphere, rather than concentrated near the surface. Atmospheric stability in the lowest 200 m influenced the percentage of LT-VCD that is in the lowest 200 m, with inverted temperature structures having a first-to-third quartile range (Q1–Q3 of VCD200 m/LT-VCD from 15–39% while near neutral temperature structures had a Q1–Q3 range of 7–13%. Data from this campaign show no clear influence of wind speed on either lower-tropospheric bromine activation (LT-VCD or the vertical distribution of BrO, while examination of seasonal trends and the temperature dependence of the vertical distribution supported the conclusion that the atmospheric stability affects the vertical distribution of BrO.

  16. Scientific Opinion on Emerging and Novel Brominated Flame Retardants (BFRs in Food

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Contaminants in the Food Chain (CONTAM

    2012-10-01

    Full Text Available EFSA was asked to deliver a scientific opinion on brominated flame retardants (BFRs other than PBDEs, PBBs, HBCDDs, TBBPA and brominated phenols and their derivatives. The BFRs that are the subject of the current opinion, were classified in groups termed ‘emerging’ and ‘novel’ BFRs. Information on 17 emerging and 10 novel BFRs was collected. The information varied widely for these BFRs. There is a lack of experimental data on physico-chemical characteristics, stability/reactivity and current use and production volume of all the emerging and novel BFRs. Due to the very limited information on occurrence, exposure and toxicity, the CONTAM Panel could not perform a risk characterisation for any of the BFRs considered. Instead, an attempt was made to identify those BFRs that could be a potential health concern and should be considered first for future investigations. For this purpose the Panel first evaluated the available experimental data on occurrence in food, behaviour in the environment and toxicity. Secondly, a modelling exercise was performed focussing on the potential of the emerging and novel BFRs for persistence in the environment and for their possible bioaccumulation potential. There is convincing evidence that tris(2,3-dibromopropyl phosphate (TDBPP and dibromoneopentyl glycol (DBNPG are genotoxic and carcinogenic, warranting further surveillance of their occurrence in the environment and in food. Based on the limited experimental data on environmental behaviour, 1,2-bis(2,4,6-tribromophenoxyethane (BTBPE and hexabromobenzene (HBB were identified as compounds that could raise a concern for bioaccumulation. For the modelling exercise, the CONTAM Panel selected two environmental characteristics, overall persistence and potential for bioaccumulation, as being most relevant to provide insight into the possibility that emerging or novel BFRs might accumulate in the food chain, and thus might appear in food intended for human

  17. Associations between brominated flame retardants in house dust and hormone levels in men

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paula I. [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Stapleton, Heather M. [Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708 (United States); Mukherjee, Bhramar [Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Hauser, Russ [Department of Environmental Health, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115 (United States); Meeker, John D., E-mail: meekerj@umich.edu [Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2013-02-15

    Brominated flame retardants (BFRs) are used in the manufacture of a variety of materials and consumer products in order to meet fire safety standards. BFRs may persist in the environment and have been detected in wildlife, humans and indoor dust and air. Some BFRs have demonstrated endocrine and reproductive effects in animals, but human studies are limited. In this exploratory study, we measured serum hormone levels and flame retardant concentrations [31 polybrominated diphenyl ether (PBDE) congeners and 6 alternate flame retardants] in house dust from men recruited through a US infertility clinic. PBDE congeners in dust were grouped by commercial mixtures (i.e. penta-, octa- and deca-BDE). In multivariable linear regression models adjusted by age and body mass index (BMI), significant positive associations were found between house dust concentrations of pentaBDEs and serum levels of free T4, total T3, estradiol, and sex hormone binding globulin (SHBG), along with an inverse association with follicle stimulating hormone (FSH). There were also positive associations of octaBDE concentrations with serum free T4, thyroid stimulating hormone (TSH), luteinizing hormone (LH) and testosterone and an inverse association of decaBDE concentrations with testosterone. Hexabromocyclododecane (HBCD) was associated with decreased SHBG and increased free androgen index. Dust concentrations of bis-tribromophenoxyethane (BTBPE) and tetrabromo-diethylhexylphthalate (TBPH) were positively associated with total T3. These findings are consistent with our previous report of associations between PBDEs (BDE 47, 99 and 100) in house dust and hormone levels in men, and further suggest that exposure to contaminants in indoor dust may be leading to endocrine disruption in men. - Highlights: ► Brominated flame retardants (BFRs) including PBDEs and alternates were measured. ► Exposure to BFRs is characterized from concentrations in participant vacuum bag dust. ► Exposure to PBDEs and

  18. UTILIZATION OF BROMINATION REACTION FOR THE SPECTROPHOTOMETRIC ASSAY OF DOMPERIDONE IN PHARMACEUTICALS

    Directory of Open Access Journals (Sweden)

    O. ZENITA DEVI

    2011-03-01

    Full Text Available Three simple and sensitive spectrophotometric methods are described for the determination of domperidone (DOM in bulk drug and in dosage forms using bromate-bromide mixture as brominating agent in acid medium and three dyes, meta-cresol purple (MCP, amaranth (AMR and erioglaucine (EGC. The methods involve the addition of a known excess of bromate-bromide mixture to an acidified solution of DOM followed by the determination of the residual bromine by reacting with a fixed amount of either MCP dye and measuring the absorbance at 530 nm (method A or AMR dye and measuring the absorbance at 520 nm (method B or EGC dye and measuring the absorbance at 630 nm (method C. Beer’s law is obeyed over the concentration ranges, 0.63–10.0, 0.25-4.0 and 0.13-2.0 µg mL-1 for method A, B and C, respectively. The ap¬parent molar absorptivities are calculated to be 3.751x104, 6.604x104 and 1.987x105 L mol-1cm-1 for method A, B and C, respectively, and the corresponding sandell sensitivity values are 0.011, 0.006 and 0.002 μg cm-2. The limit of detection and the limit of quantification are also reported for all the three methods. No interference was observed from common additives found in pharmaceutical preparations. Statistical comparisons of the results with those of the reference method showed excellent agreement, and indicated no significant difference in accuracy and precision. The accuracy and reliability of the methods were further ascertained by performing recovery tests via standardaddition technique.

  19. Brominated flame retardants in children's toys: concentration, composition, and children's exposure and risk assessment.

    Science.gov (United States)

    Chen, She-Jun; Ma, Yun-Juan; Wang, Jing; Chen, Da; Luo, Xiao-Jun; Mai, Bi-Xian

    2009-06-01

    Brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and polybrominated biphenyls (PBBs) were found in children's toys purchased from South China. The median BFR concentrations in the hard plastic toys were 53,000, 5540 ng/g, 101.1 ng/g, and 27.9 ng/g, fortotal PBDEs, DBDPE, BTBPE, and PBBs, respectively,which were notably higher than values in other toys. The PBDE concentrations were below the threshold limit (1000 ppm) required bythe European Commission's Restriction of Hazardous Substances (RoHS) and Waste Electrical and Electronic Equipment (WEEE) directives in all of the toys, except for one hard plastic toy with a total PBDE concentration of 5,344,000 ng/g. The BFR profiles in the toys were consistent with the patterns of their current production and consumption in China, where PBDEs, specifically decaBDE product, were the dominant BFR, followed by the emerging DBDPE. The relatively high concentrations of octa- and nonaBDEs in the foam toys and the results of principal component analysis (PCA) may suggest the decomposition of highly brominated BDEs during the manufacturing processes of the toys. Daily total PBDE exposures associated with toys via inhalation, mouthing, dermal contact, and oral ingestion ranged from 82.6 to 8992 pg/kg bw-day for children of 3 months to 14 years of age. Higher exposures, predominantly contributed through the mouthing pathway, were observed for infants and toddlers than for the other subgroups. In most cases, children's BFR exposure via the toys likely accounts for a small proportion of their daily BFR exposure, and the hazard quotients for noncancer risk evaluation were far below 1. To the author's knowledge, this is the first study to examine the concentrations of BFRs in toys, and the potential exposures to children.

  20. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.