WorldWideScience

Sample records for broadly-applicable sar tt-osl

  1. Developing a SAR TT-OSL protocol for volcanically-heated aeolian quartz from Datong (China)

    DEFF Research Database (Denmark)

    Liu, Jinfeng; Murray, Andrew S.; Jain, Mayank;

    2012-01-01

    The thermally-transferred optically stimulated luminescence (TT-OSL) responses of chemically-purified fine-grained quartz from a lava-baked aeolian sediment from Datong (China) are presented. Our main focus is to examine the suitability of the test dose TT-OSL and OSL response to monitor sensitiv......The thermally-transferred optically stimulated luminescence (TT-OSL) responses of chemically-purified fine-grained quartz from a lava-baked aeolian sediment from Datong (China) are presented. Our main focus is to examine the suitability of the test dose TT-OSL and OSL response to monitor...... sensitivity changes during SAR measurements. It is found that, in contrast to the test dose OSL, the TT-OSL response to a test dose can successfully monitor sensitivity changes, and a high-temperature blue-light bleach (600s at 260°C) in the middle of each SAR cycle is necessary to minimize interference...

  2. Characteristics of thermally transferred optically stimulated luminescence (TT-OSL) in quartz and its potential for dating sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Sumiko [Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB (United Kingdom); Duller, Geoff A.T. [Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB (United Kingdom)], E-mail: ggd@aber.ac.uk; Wintle, Ann G. [Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB (United Kingdom)

    2008-08-15

    The temperature dependence, dose response and bleaching characteristics of the thermally transferred optically stimulated luminescence (TT-OSL) of sedimentary quartz were studied, in order to assess the potential of the TT-OSL signal for dating. The TT-OSL was separated into two components; recuperated OSL (ReOSL) and basic transfer (BT-OSL) by annealing samples at 300 deg. C for 10 s as suggested in an earlier study. Four quartz extracts were studied, two from loess from China and two from coastal sands from South Africa. The equivalent doses of the two recent samples (one sand and one loess) were {approx}15Gy and this suggests that the signal can be bleached by sunlight but may not be totally zeroed. The sensitivity-corrected ReOSL from the older samples did not reach zero and gave doses of 14 and 52 Gy, respectively, after 7 days bleaching with a solar simulator. A single aliquot regenerative dose (SAR) protocol using ReOSL was proposed and tested. In this protocol, a blue light stimulation at 280 deg. C for 100 s at the end of each cycle resulted in the recovery of identical sensitivity-corrected ReOSL values, in spite of {approx}20 -30% loss in sensitivity for the four samples that were tested. Two dose response curves were constructed using the sensitivity-corrected ReOSL, one for the initial 2 s signal and the other for the fast component obtained by curve fitting. Using the additional high temperature bleach and the separated fast component of the ReOSL, it was possible to recover given doses within 10%, up to {approx}1000Gy for the loess and {approx}2000Gy for the coarse grained quartz. However, the natural dose obtained for the older sand was twice that obtained using the conventional SAR OSL method.

  3. Testing the potential of OSL, TT-OSL, IRSL and post-IR IRSL luminescence dating on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia

    Directory of Open Access Journals (Sweden)

    A. Zander

    2012-09-01

    Full Text Available Lake El'gygytgyn is a 12 km wide crater lake located in remote Chukotka in the far East Russian Arctic about 100 km to the north of the Arctic Circle. It was formed by a meteorite impact about 3.58 Ma ago. This study tests the paleomagnetic and proxy data-based Mid- to Late-Pleistocene sediment deposition history using novel luminescence dating techniques of sediment cores taken from the centre of the 175 m deep lake. For dating polymineral and quartz fine grains (4–11 μm grain size range were extracted from nine different levels from the upper 28 m of sediment cores 5011-1A and 5011-1B. Polymineral sub-samples were analysed by infra-red stimulated luminescence (IRSL and post-IR infra-red stimulated luminescence (post-IR IRSL using single aliquot regenerative dose (SAR sequences. SAR protocols were further applied to measure the blue light optically stimulated luminescence (OSL and thermally-transferred OSL (TT-OSL of fine-grained quartz supplemented by a multiple aliquot TT-OSL approach. According to an independent age model, the lowest sample from 27.8–27.9 m below lake bottom level correlates to the Brunhes-Matuyama (B/M reversal. Finally, the SAR post-IR-IRSL protocol applied to polymineral fine grains was the only luminescence technique able to provide dating results of acceptable accuracy up to ca. 700 ka. Major factors limiting precision and accuracy of the luminescence chronology are, for some samples, natural signals already approaching saturation level, and overall the uncertainty related to the sediment water content and its variations over geological times.

  4. A comparison of TT-OSL and post-IR IRSL dating of coastal deposits on Cap Bon peninsula, north-eastern Tunisia

    DEFF Research Database (Denmark)

    Thiel, Christine; Buylaert, Jan-Pieter; Murray, Andrew S.;

    2012-01-01

    In this study thermally transferred (TT) OSL and post-IR elevated temperature IRSL (290 °C) (pIRIR290) dating are applied to deposits covering coastal terraces on the Cap Bon peninsula, Tunisia. Both methods perform well under standard performance tests; dose recovery tests using a modern analogue...... show that doses relevant to our study can be recovered accurately. Residual signals in the modern analogue for both signals are very small (∼2 Gy). For the younger (methods, and in addition with standard quartz OSL dating...... this lifetime has been derived from geological data and it is within the range of previously published laboratory estimates. This result suggests that TT-OSL is not likely to provide a significant extension of the age range beyond that available from other methods. Our preferred pIRIR290 ages suggest...

  5. Stability of fine-grained TT-OSL and post-IR IRSL signals from a i>c.> 1 Ma sequence of aeolian and lacustrine deposits from the Nihewan Basin (northern China)

    DEFF Research Database (Denmark)

    Liu, Jinfeng; Murray, Andrew Sean; Buylaert, Jan-Pieter;

    2016-01-01

    We tested the suitability of the fine-grained quartz (4–11 μm) Optical Stimulated Luminescence (OSL) and thermally-transferred OSL (TT-OSL), and the fine-grained polymineral (4–11 μm) post-infrared IRSL (post-IR IRSL or pIRIR) signals for dating samples from aeolian-lacustrine deposits from the X...

  6. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M. [ed.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  7. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M. (ed.); Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  8. Terrain Measurement with SAR/InSAR

    Science.gov (United States)

    Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang

    2016-08-01

    Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.

  9. Error-corrected AFM: a simple and broadly applicable approach for substantially improving AFM image accuracy.

    Science.gov (United States)

    Bosse, James L; Huey, Bryan D

    2014-04-18

    Atomic force microscopy (AFM) has become an indispensable tool for imaging the topography and properties of surfaces at the nanoscale. A ubiquitous problem, however, is that optimal accuracy demands smooth surfaces, slow scanning, and expert users, contrary to many AFM applications and practical use patterns. Accordingly, a simple correction to AFM topographic images is implemented, incorporating error signals such as deflection and/or amplitude data that have long been available but quantitatively underexploited. This is demonstrated to substantially improve both height and lateral accuracy for expert users, with a corresponding 3-5 fold decrease in image error. Common image artifacts due to inexperienced AFM use, generally poorly scanned surfaces, or high speed images acquired in as fast as 7 s, are also shown to be effectively rectified, returning results equivalent to standard 'expert-user' images. This concept is proven for contact mode AFM, AC-mode, and high speed imaging, as well as property mapping such as phase contrast, with obvious extensions to many specialized AFM variations as well. Conveniently, as this correction procedure is based on either real time or post-processing, it is easily employed for future as well as legacy AFM systems and data. Such error-corrected AFM therefore offers a simple, broadly applicable approach for more accurate, more efficient, and more user-friendly implementation of AFM for nanoscale topography and property mapping.

  10. The Broad Applicability of Memory Bias and Its Coexistence with the Planning Fallacy: Reply to Griffin and Buehler (2005)

    Science.gov (United States)

    Roy, Michael M.; Christenfeld, Nicholas J. S.; McKenzie, Craig R. M.

    2005-01-01

    People chronically underestimate how long tasks will take. In their original article, the present authors (M. M. Roy, N. J. S. Christenfeld, & C. R. M. McKenzie) suggested a simple, broadly applicable explanation: Biased predictions result from biased memories. In their comment article, D. Griffin and R. Buehler suggested that in many domains in…

  11. SAR: Stroke Authorship Recognition

    KAUST Repository

    Shaheen, Sara

    2015-10-15

    Are simple strokes unique to the artist or designer who renders them? If so, can this idea be used to identify authorship or to classify artistic drawings? Also, could training methods be devised to develop particular styles? To answer these questions, we propose the Stroke Authorship Recognition (SAR) approach, a novel method that distinguishes the authorship of 2D digitized drawings. SAR converts a drawing into a histogram of stroke attributes that is discriminative of authorship. We provide extensive classification experiments on a large variety of data sets, which validate SAR\\'s ability to distinguish unique authorship of artists and designers. We also demonstrate the usefulness of SAR in several applications including the detection of fraudulent sketches, the training and monitoring of artists in learning a particular new style and the first quantitative way to measure the quality of automatic sketch synthesis tools. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  12. ONERA airborne SAR facilities

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, J.M. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Chatillon (France)

    1996-11-01

    ONERA has developed and operates the RAMSES experimental SAR on board a TRANSALL C160 aircraft. This system has been designed in order to analyze the effect of various parameters, such as frequency, polarization, incidence, resolution,... in the field of air-to-ground radar applications. These applications include SAR imaging for ground radar applications. These applications include SAR imaging for various purposes such as map-matching for navigation update, battlefield surveillance, reconnaissance, treaty applications... It consists of several radar sections operating over a wide range of frequency bands (L, S, C, X, Ku, Ka, W). 7 figs., 3 tabs.

  13. Practical and Broadly Applicable Catalytic Enantioselective Additions of Allyl-B(pin) Compounds to Ketones and α-Ketoesters.

    Science.gov (United States)

    Robbins, Daniel W; Lee, KyungA; Silverio, Daniel L; Volkov, Alexey; Torker, Sebastian; Hoveyda, Amir H

    2016-08-01

    A set of broadly applicable methods for efficient catalytic additions of easy-to-handle allyl-B(pin) (pin=pinacolato) compounds to ketones and acyclic α-ketoesters was developed. Accordingly, a large array of tertiary alcohols can be obtained in 60 to >98 % yield and up to 99:1 enantiomeric ratio. At the heart of this development is rational alteration of the structures of the small-molecule aminophenol-based catalysts. Notably, with ketones, increasing the size of a catalyst moiety (tBu to SiPh3 ) results in much higher enantioselectivity. With α-ketoesters, on the other hand, not only does the opposite hold true, since Me substitution leads to substantially higher enantioselectivity, but the sense of the selectivity is reversed as well.

  14. Crop Classification by Polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Svendsen, Morten Thougaard; Nielsen, Flemming;

    1999-01-01

    Polarimetric SAR-data of agricultural fields have been acquired by the Danish polarimetric L- and C-band SAR (EMISAR) during a number of missions at the Danish agricultural test site Foulum during 1995. The data are used to study the classification potential of polarimetric SAR data using...

  15. Bats and SARS

    Centers for Disease Control (CDC) Podcasts

    2006-11-08

    Bats are a natural reservoir for emerging viruses, among them henipaviruses and rabies virus variants. Dr. Nina Marano, Chief, Geographic Medicine and Health Promotion Branch, Division of Global Migration and Quarantine, CDC, explains connection between horseshoe bats and SARS coronavirus transmission.  Created: 11/8/2006 by Emerging Infectious Diseases.   Date Released: 11/17/2006.

  16. Bistatic SAR: Proof of Concept.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  17. Understanding SARS with Wolfram Approach

    Institute of Scientific and Technical Information of China (English)

    Da-WeiLI; Yu-XiPAN; YunDUAN; Zhen-DeHUNG; Ming-QingXU; LinHE

    2004-01-01

    Stepping acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) as another type of disease has been threatening mankind since late last year. Many scientists worldwide are making great efforts to study the etiology of this disease with different approaches. 13 species of SARS virus have been sequenced. However, most people still largely rely on the traditional methods with some disadvantages. In this work, we used Wolfram approach to study the relationship among SARS viruses and between SARS viruses and other types of viruses, the effect of variations on the whole genome and the advantages in the analysis of SARS based on this novel approach. As a result, the similarities between SARS viruses and other coronaviruses are not really higher than those between SARS viruses and non-coronaviruses.

  18. Bistatic sAR data processing algorithms

    CERN Document Server

    Qiu, Xiaolan; Hu, Donghui

    2013-01-01

    Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so sign

  19. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Directory of Open Access Journals (Sweden)

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  20. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  1. Recovering Seasat SAR Data

    Science.gov (United States)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the

  2. Analytical SAR-GMTI principles

    Science.gov (United States)

    Soumekh, Mehrdad; Majumder, Uttam K.; Barnes, Christopher; Sobota, David; Minardi, Michael

    2016-05-01

    This paper provides analytical principles to relate the signature of a moving target to parameters in a SAR system. Our objective is to establish analytical tools that could predict the shift and smearing of a moving target in a subaperture SAR image. Hence, a user could identify the system parameters such as the coherent processing interval for a subaperture that is suitable to localize the signature of a moving target for detection, tracking and geolocating the moving target. The paper begins by outlining two well-known SAR data collection methods to detect moving targets. One uses a scanning beam in the azimuth domain with a relatively high PRF to separate the moving targets and the stationary background (clutter); this is also known as Doppler Beam Sharpening. The other scheme uses two receivers along the track to null the clutter and, thus, provide GMTI. We also present results on implementing our SAR-GMTI analytical principles for the anticipated shift and smearing of a moving target in a simulated code. The code would provide a tool for the user to change the SAR system and moving target parameters, and predict the properties of a moving target signature in a subaperture SAR image for a scene that is composed of both stationary and moving targets. Hence, the SAR simulation and imaging code could be used to demonstrate the validity and accuracy of the above analytical principles to predict the properties of a moving target signature in a subaperture SAR image.

  3. SAR Altimetry Applications over Water

    CERN Document Server

    Martin-Puig, C; Ruffini, G; Raney, R K; Benveniste, J

    2008-01-01

    The application of Synthetic Aperture Radar (SAR) techniques to classical radar altimetry offers the potential for greatly improved Earth surface mapping. This paper provides an overview of the progress of SAMOSA, Development of SAR Altimetry Studies and Applications over Ocean, Coastal zones and Inland waters, an on-going ESA-funded project. The main objective of SAMOSA is to better quantify the improvement of SAR altimetry over conventional altimetry on water surfaces. More specifically, one of the tasks focuses on the reduction of SAR mode data to pulse-limited altimeter data, and a theoretical modelling to characterize the expected gain between high Pulse Repetition Frequency (PRF) reduced SAR mode data and low PRF classical Low-Resolution Mode (LRM) data. To this end, theoretical modelling using the Cramer-Rao bound (CRB) will be used and the results will be compared to previous theoretical estimates [7], using an analysis akin to that in [8].

  4. Reovirus, isolated from SARS patients

    Institute of Scientific and Technical Information of China (English)

    DUAN Qing; SONG Lihua; GAN Yonghua; TAN Hua; JIN Baofeng; LI Huiyan; ZUO Tingting; CHEN Dehui; ZHANG Xuemin; ZHU Hong; YANG Yi; LI Weihua; ZHOU Yusen; HE Jun; HE Kun; ZHANG Haojie; ZHOU Tao

    2003-01-01

    Beijing has been severely affected by SARS, and SARS-associated coronavirus has been confirmed as its cause. However, clinical and experimental evidence implicates the possibility of co-infection. In this report, reovirus was isolated from throat swabs of SARS patients, including the first case in Beijing andher mother. Identification with the electron microscopy revealed the characteristic features of reovirus. 24 of 38 samples from other SARS cases were found to have serologic responses to the reovirus. Primers designed for reovirus have amplified several fragments of DNA, one of which was sequenced (S2 gene fragment), which indicates it as a unique reovirus (orthoreovirus). Preliminary animal experiment showed that inoculation of the reovirus in mice caused death with atypical pneumonia. Nevertheless, the association of reovirus with SARS outbreak requires to be further investigated.

  5. Bistatic SAR: Imagery & Image Products.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  6. State-of-art of Geosynchronous SAR

    Institute of Scientific and Technical Information of China (English)

    MAO Er-ke; LONG Teng; ZENG Tao; HU Cheng; TIAN Ye

    2012-01-01

    Geosynchronous Earth Orbit Synthetic Aperture Radar (GEO SAR) runs in the height of 360000Km geosynchronous earth orbit,compared with traditional Low Earth Orbit (LEO) SAR (orbit height under 1000Km),GEO SAR has advantages of shorter repeat period,wider swath and so on.Firstly,the basic principle and state-of-art of GEO SAR in domestic and overseas are introduced.Secondly,coverage characteristic of GEO SAR is analyzed.Thirdly,the key problems of yaw steering and imaging on curved trajectory in GEO SAR are discussed in detail,and the corresponding primary solutions are presented in order to promote future research on GEO SAR.

  7. DEM FROM SAR:PRINCIPLE AND APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Li Deren; Yang Jie

    2003-01-01

    The paper gives an overview of the principle and application of generating DEM from SAR, including the principle and processing flow of generating DEM from single SAR and SAR interferometry. Afterwards, the application fields of InSAR for terrain surveying, volcanic terrain surveying and D-InSAR for monitoring ground subsiding are listed and described as well.The problem and prospect of application are also pointed out in the last part of this paper.

  8. Water-Soluble Pd-Imidate Complexes: Broadly Applicable Catalysts for the Synthesis of Chemically Modified Nucleosides via Pd-Catalyzed Cross-Coupling.

    Science.gov (United States)

    Gayakhe, Vijay; Ardhapure, Ajaykumar; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; García, Luis; Pérez, Jose; García, Joaquím; Sánchez, Gregorio; Fischer, Christian; Schulzke, Carola

    2016-04-01

    A broadly applicable catalyst system consisting of water-soluble Pd--imidate complexes has been enployed for the Suzuki-Miyaura cross-coupling of four different nucleosides in water under mild conditions. The efficient nature of the catalyst system also allowed its application in developing a microwave-assisted protocol with the purpose of expediting the catalytic reaction. Preliminary mechanistic studies, assisted by catalyst poison tests and stoichiometric tests performed using an electrospray ionization spectrometer, revealed the possible presence of a homotopic catalyst system.

  9. sar Ades

    Directory of Open Access Journals (Sweden)

    Aparecida Angélica Zoqui Paulovic Sabadini

    Full Text Available Este artigo é uma homenagem ao ilustre professor César Ades (1943-2012. Etólogo, Especialista em comportamento animal, Ades foi professor titular do Instituto de Psicologia da Universidade de São Paulo (IPUSP, atuando como docente do Departamento de Psicologia Experimental. O artigo descreve parte de sua rica vida acadêmica e profissional e apresenta, de forma resumida, sua trajetória na Universidade de São Paulo, como aluno, professor, pesquisador e orientador e sua atuação como administrador no Instituto de Psicologia e no Instituto de Estudos Avançados, além de sua atuação na Academia Paulista de Psicologia e em sociedades científicas. São destacados a importância de suas contribuições para a área de Psicologia e seu respeito pela vida, pelas pessoas e pelos animais.

  10. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    ... include: Arterial blood tests Blood clotting tests Blood chemistry tests Chest x-ray or chest CT scan ... The death rate from SARS was 9 to 12% of those diagnosed. In people over age 65, the death ...

  11. TerraSAR-X mission

    Science.gov (United States)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  12. Focusing of bistatic SAR data

    Science.gov (United States)

    Bia, Pietro; Ricci, Nicola; Zonno, Mariantonietta; Nico, Giovanni; Catalao, Joao; Tesauro, Manlio

    2014-10-01

    The problems of simulation of bistatic SAR raw data and focusing are studied. A discrete target simulator is described. The simulator introduces the scene topography and compute the integration time of general bistatic configurations providing a means to derived maps of the range and azimuth spatial resolutions. The problem of focusing of bistatic SAR data acquired in a translational-invariant bistatic configuration is studied by deriving the bistatic Point Target Reference spectrum and presenting an analytical solution for its stationary points.

  13. Accelerated Scientific InSAR Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Neva Ridge Technologies proposes to develop a suite of software tools for the analysis of SAR and InSAR data, focused on having a robust and adopted capability well...

  14. SAR Image Enhancement using Particle Filters

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we propose a novel approach to reduce the noise in Synthetic Aperture Radar (SAR) images using particle filters. Interpretation of SAR images is a...

  15. Novel Polarimetric SAR Interferometry Algorithms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  16. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo.

    Science.gov (United States)

    Chen, Wenqiang; Luo, Hongchen; Liu, Xingjiang; Foley, James W; Song, Xiangzhi

    2016-04-01

    Glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are small biomolecular thiols that are present in all cells and extracellular fluids of healthy mammals. It is well-known that each plays a separate, critically important role in human physiology and that abnormal levels of each are predictive of a variety of different disease states. Although a number of fluorescence-based methods have been developed that can detect biomolecules that contain sulfhydryl moieties, few are able to differentiate between GSH and Cys/Hcy. In this report, we demonstrate a broadly applicable approach for the design of fluorescent probes that can achieve this goal. The strategy we employ is to conjugate a fluorescence-quenching 7-nitro-2,1,3-benzoxadiazole (NBD) moiety to a selected fluorophore (Dye) through a sulfhydryl-labile ether linkage to afford nonfluorescent NBD-O-Dye. In the presence of GSH or Cys/Hcy, the ether bond is cleaved with the concomitant generation of both a nonfluorescent NBD-S-R derivative and a fluorescent dye having a characteristic intense emission band (B1). In the special case of Cys/Hcy, the NBD-S-Cys/Hcy cleavage product can undergo a further, rapid, intramolecular Smiles rearrangement to form a new, highly fluorescent NBD-N-Cys/Hcy compound (band B2); because of geometrical constraints, the GSH derived NBD-S-GSH derivative cannot undergo a Smiles rearrangement. Thus, the presence of a single B1 or double B1 + B2 signature can be used to detect and differentiate GSH from Cys/Hcy, respectively. We demonstrate the broad applicability of our approach by including in our studies members of the Flavone, Bodipy, and Coumarin dye families. Particularly, single excitation wavelength could be applied for the probe NBD-OF in the detection of GSH over Cys/Hcy in both aqueous solution and living cells.

  17. SARS Vaccine: Progress and Challenge

    Institute of Scientific and Technical Information of China (English)

    Yan Zhi; James M. Wilson; Hao Shen

    2005-01-01

    Severe acute respiratory syndrome (SARS) emerged in 2002 as a severe and highly contagious infectious disease that rapidly spread to a number of different countries. The collaborative efforts of the global scientific community have provided, within a short period of time, substantial insights into the molecular biology and immunology of SARS-CoV. Although the outbreak has been contained, there is continuous concern that the virus may resurface into the human population through seasonal changes, animal reservoirs or laboratory accidents. The severe morbidity and mortality associated with SARS make it imperative that an effective vaccine be developed to prevent reemergence and epidemics in the future. Cellular & Molecular Immunology. 2005;2(2):101-105.

  18. SAR Systems and Related Signal Processing

    NARCIS (Netherlands)

    Hoogeboom, P.; Dekker, R.J.; Otten, M.P.G.

    1996-01-01

    Synthetic Aperture Radar (SAR) is today a valuable source of remote sensing information. SAR is a side-looking imaging radar and operates from airborne and spacebome platforms. Coverage, resolution and image quality are strongly influenced by the platform. SAR processing can be performed on standard

  19. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  20. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  1. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  2. Polarization Filtering of SAR Data

    Science.gov (United States)

    Dubois, Pascale C.; Van Zyl, Jakob J.

    1991-01-01

    Theoretical analysis of polarization filtering of synthetic-aperture-radar (SAR) returns provide hybrid method applied to either (1) maximize signal-to-noise ratio of return from given target or (2) enhance contrast between targets of two different types (that have different polarization properties). Method valid for both point and extended targets and for both monostatic and bistatic radars as well as SAR. Polarization information in return signals provides more complete description of radar-scattering properties of targets and used to obtain additional information about targets for use in classifying them, discriminating between them, or enhancing features of radar images.

  3. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  4. Canopy reconstruction from interferometric SAR

    NARCIS (Netherlands)

    Varekamp, C.

    2001-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is investigated as a method for 3D tree mapping. When operational, the method may be important for monitoring forests with a persistent cloud cover such as tropical rain forests. The problem of crown displacement due to lay-over in a vegetation with a

  5. Stalking SARS: CDC at Work

    Centers for Disease Control (CDC) Podcasts

    2014-05-22

    In this podcast for kids, the Kidtastics talk about the SARS outbreak and how CDC worked to solve the mystery.  Created: 5/22/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 5/22/2014.

  6. Bird flu: lessons from SARS.

    Science.gov (United States)

    Wong, Gary W K; Leung, Ting F

    2007-06-01

    Severe acute respiratory syndrome (SARS) and avian influenza are two important newly emerged infections with pandemic potential. Both infections have crossed the species barrier to infect humans. SARS originated from southern China and spread to many countries in early 2003. The close collaboration of scientists around the world resulted in a rapid identification of the causative agent, and the early isolation of infected cases and meticulous infection control measures were the key to successfully controlling the outbreak of SARS. The first outbreak of human cases of avian influenza was reported in 1997 in Hong Kong. Since 2003, there have been many small outbreaks of human cases around the world, and the reported mortality is greater than 50%. Current evidence suggests that the human-to-human transmission of avian influenza is rather inefficient, but mutation might occur in the future resulting in improved transmission and possibly a pandemic in humans. As with the outbreak of SARS, the development of sensitive and accurate early diagnostic tests is extremely important for successful control of the outbreak at source. The availability of isolation facilities, the stockpiling of antiviral agents and effective and safe vaccination will be extremely important in minimising the damage of a new influenza pandemic.

  7. Computerized ionospheric tomography based on geosynchronous SAR

    Science.gov (United States)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  8. [Medical history from SARS to pneumonia].

    Science.gov (United States)

    Zhen, Cheng

    2003-05-31

    SARS is a new kind of pneumonia. From the end of 2002 to the beginning of 2003, SARS broke in Guangdong province, Hong Kong and Beijing, and then gradually spread to the world. SARS is extremely contagious. The symptoms of SARS progress very quickly. SARS smashes the people's tranquil life and many people live in horror, worry and anxiety. But if we review the medical history of pneumonia, we would have a better understanding of SARS. This article focuses the history of people's understanding of pneumonia on the historical documents, diagnosis, etiology and treatment. Through the epidemic of SARS, the author hopes to express that contagion will live with us for a long time, but it is not a deadly disease. It is preventable and good care is essential for contagious patients. As Chinese people, we should have the best use of TCM in our combat with contagion.

  9. Controlling Data Collection to Support SAR Image Rotation

    Science.gov (United States)

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  10. Reflectors for SAR performance testing.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  11. SAR Image Complex Pixel Representations

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  12. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    Directory of Open Access Journals (Sweden)

    Zhiwei Qiu

    Full Text Available This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR research and application.

  13. Signal Processing for Digital Beamforming FMCW SAR

    Directory of Open Access Journals (Sweden)

    Qin Xin

    2014-01-01

    Full Text Available According to the limitations of single channel Frequency Modulation Continuous Wave (FMCW Synthetic Aperture Radar (SAR, Digital Beamforming (DBF technology is introduced to improve system performance. Combined with multiple receive apertures, DBF FMCW SAR can obtain high resolution in low pulse repetition frequency, which can increase the processing gain and decrease the sampling frequency. The received signal model of DBF FMCW SAR is derived. The continuous antenna motion which is the main characteristic of FMCW SAR received signal is taken into account in the whole signal processing. The detailed imaging diagram of DBF FMCW SAR is given. A reference system is also demonstrated in the paper by comparing with a single channel FMCW SAR. The validity of the presented diagram is demonstrated with a point target simulation results.

  14. Building Detection in SAR Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Ryan Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koch, Mark William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moya, Mary M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Goold, Jeremy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. The desire is to present a technique that is effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed technique assumes that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint. Where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. Constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results are provided showing the outcome of the technique.

  15. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    Science.gov (United States)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  16. Satellite SAR geocoding with refined RPC model

    Science.gov (United States)

    Zhang, Lu; Balz, Timo; Liao, Mingsheng

    2012-04-01

    Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.

  17. Bistatic SAR: Signal Processing and Image Formation.

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  18. TanDEM-X Bistatic SAR Processing

    OpenAIRE

    Balss, Ulrich; Niedermeier, Andreas; Breit, Helko

    2010-01-01

    In June, 2010 the German SAR satellite TanDEM-X (TerraSAR-X-Add-on for Digital Elevation Measurements) will be launched. Together with TerraSAR-X, launched June 15, 2007, it will form the first spaceborne bistatic SAR platform. Usually one of the satellite is transmitting (active satellite), while both are receiving. As both satellites fly in a helix orbit constellation, during a recording a satellite has to be passive, if the other one is close to the line of sight to the observation targ...

  19. DETEKCIJA SPREMEMB V RADARSKIH SLIKAH SAR

    OpenAIRE

    Izak, Rok

    2016-01-01

    V magistrskem delu je opisan princip detekcije sprememb površja Zemlje s pomočjo radarskih slik SAR, ki so bile zajete s satelitom TanDEM-X. Opisani so tudi principi delovanja radarja z umetno odprtino, načini zajema podatkov ter osnove interferometrije V prvem sklopu magistrskega dela, je bil cilj predlagati metodo za zaznavo gozdne površine v slikah SAR. V drugem delu so bile s pomočjo SAR interferometrije zaznane spremembe na kroni gozdov v okolici Postojne. Slike SAR, so bile zajete v raz...

  20. A Research on Airborne Squint Hybrid SAR

    Institute of Scientific and Technical Information of China (English)

    BIANYong; ZHOUYinqing; LIChunsheng

    2004-01-01

    In this paper, we establish the squint mode hybrid SAR (Synthetic aperture radar) geometry. Based on the squint mode SAR geometry, the hybrid SAR signal model in squint case is derived. Based on this signal model, the hybrid SAR imaging process parameter is discussed. Aimed at the squint case, we analyze not only the relationship between the resolution and SAR system parameters, but also the relation between the time extension of the maximum azimuth signal and SAR system parameters. This research establishes the theoretical foundation for the design of squint hybrid SAR and serves as a good guide for the future work of improving the resolution of squint hybrid SAR. Based on the two-step algorithm, by considering the squint angle and cubic phase term, we are going to use the deramp SC-Chirp Scaling algorithm for squint hybrid SAR imaging. This algorithm uses the deramp method for the first step processing, and the SC-Chirp Scaling algorithm for the second step processing. The process procedure of this algorithm includes the squint angle, has the explicit physical meaning, therefore is convenient for analysis. The computer simulation result proves the validity of the analysis.

  1. Three-dimensional surface reconstruction from multistatic SAR images.

    Science.gov (United States)

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.

  2. InfoTerra/TerraSAR initiative

    Science.gov (United States)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  3. Geometric calibration of ERS satellite SAR images

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  4. PHARUS: Airborne SAR Development in the Netherlands

    NARCIS (Netherlands)

    Hoogeboom, P.; Koomen, P.J.; Snoeij, P.; Pouwels, H.

    1992-01-01

    The PHARUS project (PHARUS stands for Phased Array Universal SAR) aims for a polarimetric C-band aircraft SAR that will be finalized in 1994. The system will make use of a phased array antenna with solid state amplifiers. The project consists of two phases, a definition phase and a realization phase

  5. Advanced antennas for SAR spacecraft

    Science.gov (United States)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  6. SAR processing using SHARC signal processing systems

    Science.gov (United States)

    Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.

    1998-09-01

    Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.

  7. SARS: systematic review of treatment effects.

    Directory of Open Access Journals (Sweden)

    Lauren J Stockman

    2006-09-01

    Full Text Available BACKGROUND: The SARS outbreak of 2002-2003 presented clinicians with a new, life-threatening disease for which they had no experience in treating and no research on the effectiveness of treatment options. The World Health Organization (WHO expert panel on SARS treatment requested a systematic review and comprehensive summary of treatments used for SARS-infected patients in order to guide future treatment and identify priorities for research. METHODS AND FINDINGS: In response to the WHO request we conducted a systematic review of the published literature on ribavirin, corticosteroids, lopinavir and ritonavir (LPV/r, type I interferon (IFN, intravenous immunoglobulin (IVIG, and SARS convalescent plasma from both in vitro studies and in SARS patients. We also searched for clinical trial evidence of treatment for acute respiratory distress syndrome. Sources of data were the literature databases MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL up to February 2005. Data from publications were extracted and evidence within studies was classified using predefined criteria. In total, 54 SARS treatment studies, 15 in vitro studies, and three acute respiratory distress syndrome studies met our inclusion criteria. Within in vitro studies, ribavirin, lopinavir, and type I IFN showed inhibition of SARS-CoV in tissue culture. In SARS-infected patient reports on ribavirin, 26 studies were classified as inconclusive, and four showed possible harm. Seven studies of convalescent plasma or IVIG, three of IFN type I, and two of LPV/r were inconclusive. In 29 studies of steroid use, 25 were inconclusive and four were classified as causing possible harm. CONCLUSIONS: Despite an extensive literature reporting on SARS treatments, it was not possible to determine whether treatments benefited patients during the SARS outbreak. Some may have been harmful. Clinical trials should be designed to validate a standard protocol for dosage

  8. Validation of burst overlapping for ALOS-2 PALSAR-2 ScanSAR-ScanSAR interferometry

    Science.gov (United States)

    Natsuaki, Ryo; Motohka, Takeshi; Ohki, Masato; Watanabe, Manabu; Suzuki, Shinichi

    2016-10-01

    The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite- 2 (ALOS-2, "DAICHI-2") is the latest L-band spaceborne synthetic aperture radar (SAR). PALSAR-2 observes the world mainly with 10 m resolution / 70 km swath Stripmap mode and 25 m resolution / 350 km swath ScanSAR mode. The 3-m resolution Stripmap mode is mainly used upon Japan. 350 km ScanSAR observation could detect large scale deformation e.g., the Mw 7.8 Gorkha, Nepal earthquake and its aftershocks in 2015. ALOS-2 ScanSAR is the first one that supports ScanSAR-ScanSAR interferometry in L-band spaceborne SAR. However, because of the parameter setting error for the orbit estimation, ALOS-2 PALSAR-2 ScanSAR could achieve little number of interferometric pair until the software modification on February 8, 2015. That is, the burst overlap timing required for the interferometric analysis was insufficient and it depends on the observation date. In this paper, we report the investigation results of this case and discuss the current status of the ALOS-2 ScanSAR InSAR. Some archives achieved before February 8, 2015 can be used for interferometric analysis with after Feb. 8. However, most of them have no interferometric pair. We also report that the archives acquired after February 8, have enough burst overlapping.

  9. Updated progress in theories and applications of spaceborne SAR interferometry

    Science.gov (United States)

    Chen, Yan-Ling; Huang, Cheng; Ding, Xiao-Li; Li, Zhi-Wei

    2006-12-01

    InSAR (Interferometric Synthetic Aperture Radar) and D-InSAR (Differential InSAR) are rapidly developed new technologies of space geodesy during the late 20th century, and now obviously become hot research topics in the field of microwave remote sensing. Compared with the other sensors, InSAR possesses many incomparable advantages such as the capability to work at all-time and under all weather, very high spatial resolution and strong penetrability through the ground surface. This paper introduces general status of SAR, InSAR, D-InSAR technology, and the principles of InSAR and D-InSAR. New theories and the potential problems of (D-)InSAR technology are largely discussed, including multi-baseline interferometry, Pol-InSAR technique, the correction of atmospheric effects, permanent Scatterers method, the synthesization technique between InSAR and GPS, LIDAR etc., and the InSAR parallel algorithm. Then the new applications of InSAR and D-InSAR are described in detail including 3D topographic mapping, deformation monitoring (including surface subsidence, landside monitoring and ITRF's foundation and maintenance, etc.), thematic mapping (including agriculture and forestry, oceanic surveying and flood monitoring, etc.) and meteorology etc.. Finally, the prospect and future trends in InSAR development are summarized.

  10. Antenna motion errors in bistatic SAR imagery

    Science.gov (United States)

    Wang, Ling; Yazıcı, Birsen; Cagri Yanik, H.

    2015-06-01

    Antenna trajectory or motion errors are pervasive in synthetic aperture radar (SAR) imaging. Motion errors typically result in smearing and positioning errors in SAR images. Understanding the relationship between the trajectory errors and position errors in reconstructed images is essential in forming focused SAR images. Existing studies on the effect of antenna motion errors are limited to certain geometries, trajectory error models or monostatic SAR configuration. In this paper, we present an analysis of position errors in bistatic SAR imagery due to antenna motion errors. Bistatic SAR imagery is becoming increasingly important in the context of passive imaging and multi-sensor imaging. Our analysis provides an explicit quantitative relationship between the trajectory errors and the positioning errors in bistatic SAR images. The analysis is applicable to arbitrary trajectory errors and arbitrary imaging geometries including wide apertures and large scenes. We present extensive numerical simulations to validate the analysis and to illustrate the results in commonly used bistatic configurations and certain trajectory error models.

  11. SARS - infectious disease of 21st century

    Directory of Open Access Journals (Sweden)

    Tjandra Y. Aditama

    2005-03-01

    Full Text Available Severe acute respiratory syndrome (SARS is an emerging viral infectious disease. According to the World Health Organization, a suspected case of SARS is defined as documented fever (temperature >38°C, lower respiratory tract symptoms, and contact with a person believed to have had SARS or history of travel to an area of documented transmission. A probable case is a suspected case with chest radiographic findings of pneumonia, acute respiratory distress syndrome (ARDS, or an unexplained respiratory illness resulting in death, with autopsy findings of ARDS without identifiable cause. In this article some SARS epidemiological data in Indonesia will also presented. There are 7 SARS suspected cases and 2 probable cases were registered in Indonesia on the period of 1 March to 9 July 2003, and no more cases were reported after that time. How will be SARS progression in the future will be a subject of discussion among scientist, and we will have to wait and be prepared for any development might occur. (Med J Indones 2005; 14: 59-63Keywords: SARS, Case Definition, Etiology, Indonesia

  12. The inhibitory effect of Chinese herb on SARS virus infection

    Institute of Scientific and Technical Information of China (English)

    Rika; Furuta; Jyunichi; Fujisawa; Toshio; Hattori

    2005-01-01

    [Subject]Severe acute respiratory syndrome(SARS)is a contagious atypical pneumonia with a high mortality rate.SARS coronavirus(SARS-CoV)is the pathogenof SARS.We established SARS-CoVS/HIVpseudotyped(SHP)virussystemandthe cell fusion assay systemto screeninhibitors for entry of SARS-CoV.[Materials and methods]SHPor VSV-Gpseudotype(VHP)virus was made bytransfecting pCMVΔR8·2,pHR’CMV-Luc and pCMV/R-SARS-S or pMDGplasmids into293Tcells.5ng p24of SHPor VHPvirus was addedfor eachinfec-tion.Twelve Chinese herbs,wh...

  13. Land Subsidence Monitoring Using PS-InSAR Technique for L-Band SAR Data

    Science.gov (United States)

    Thapa, S.; Chatterjee, R. S.; Singh, K. B.; Kumar, D.

    2016-10-01

    Differential SAR-Interferometry (D-InSAR) is one of the potential source to measure land surface motion induced due to underground coal mining. However, this technique has many limitation such as atmospheric in homogeneities, spatial de-correlation, and temporal decorrelation. Persistent Scatterer Interferometry synthetic aperture radar (PS-InSAR) belongs to a family of time series InSAR technique, which utilizes the properties of some of the stable natural and anthropogenic targets which remain coherent over long time period. In this study PS-InSAR technique has been used to monitor land subsidence over selected location of Jharia Coal field which has been correlated with the ground levelling measurement. This time series deformation observed using PS InSAR helped us to understand the nature of the ground surface deformation due to underground mining activity.

  14. Analysis of Resolution of Bistatic SAR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the spatial resolutions at different directions of bistatic synthetic aperture radar (BiSAR) have been derived from the ambiguity function. Compared with monostatic signal to noise ratio, BiSAR's resolutions of a fixed point target are varying with slow time since BiSAR system is space-variant. Constraints for the assumption of space-invariant bistatic topology are proposed in the paper. Moreover, under the assumption of invariance, the change of resolutions at different point in the image scene is taken into account, and we have specified two key parameters that affect resolutions directly and analyzed the way how they influence on the resolutions.

  15. Geologic mapping in Greenland with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Brooks, C. K.

    1995-01-01

    The application of synthetic aperture radar (SAR) for geologic mapping in Greenland is investigated by the Danish Center for Remote Sensing (DCRS) in co-operation with the Danish Lithosphere Centre (DLC). In 1994 a pilot project was conducted in East Greenland. The Danish airborne SAR, EMISAR......, acquired fully polarimetric C-band data which, upon processing and calibration, was interpreted jointly by DCRS and DLC. Several geologic phenomena are readily identified in the SAR imagery, while different lithologies seem to be indistinguishable because they have similar geomorphologies. The geologic...

  16. SAR observations of coastal zone conditions

    Science.gov (United States)

    Meadows, G. A.; Kasischke, E. S.; Shuchman, R. A.

    1980-01-01

    Applications of Synthetic Aperture Radar (SAR) technology to the observation of coastal zones phenomena are detailed. The conditions observed include gravity wave detection, surf zone location, surface currents, and long-period 'surf beats'. Algorithms have been developed and successfully tested that determine significant wave and current parameters from the sea surface backscatter of microwave energy. Doppler information from the SAR optical correlator allows a rough estimation of near shore surface flow velocities that has been found in agreement with both theory and in situ observations as well. Seasat SAR data of the Scotland and North Carolina coasts are considered, as well as the results of bathymetric updating of coastal area charts.

  17. SAR ATR Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Tian Zhuangzhuang

    2016-06-01

    Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.

  18. Offshore wind mapping Mediterranean area using SAR

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete;

    2013-01-01

    Satellite observations of the ocean surface, for example from Synthetic Aperture Radars (SAR), provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean Sea, where spatial wind information is only provided by sparse buoys, often...... with long periods of missing data. Here, we focus on evaluating the use of SAR for offshore wind mapping. Preliminary results from the analysis of SAR-based ocean winds in Mediterranean areas show interesting large scale wind flow features consistent with results from previous studies using numerical models...

  19. Bistatic Experiment Using TerraSAR-X and DLR’s new F-SAR System

    OpenAIRE

    Baumgartner, Stefan; Rodriguez-Cassolà, Marc; Nottensteiner, Anton; Horn, Ralf; Scheiber, Rolf; Steinbrecher, Ulrich; Metzig, Robert; Limbach, Markus; Mittermayer, Josef; Krieger, Gerhard; Moreira, Alberto; Schwerdt, Marco

    2008-01-01

    A bistatic X-band experiment was successfully performed early November 2007. TerraSAR-X was used as transmitter and DLR’s new airborne radar system F-SAR, which was programmed to acquire data in a quasi-continuous mode to avoid echo window synchronization issues, was used as bistatic receiver. Precise phase and time referencing between both systems, which is essential for obtaining high resolution SAR images, was derived during the bistatic processing. Hardware setup and performance analyses ...

  20. GRECO-SAR: An Orbital Polarimetric SAR Simulator of Deterministic Complex Targets for Vessel Classification Studies

    OpenAIRE

    Margarit Martín, Gerard; Mallorquí Franquet, Jordi Joan; Rius Casals, Juan Manuel; Sanz Marcos, Jesús

    2006-01-01

    This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the t...

  1. SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES

    OpenAIRE

    Dellinger, Flora; Delon, Julie; Gousseau, Yann; Michel, Julien; Tupin, Florence

    2015-01-01

    International audience; The Scale Invariant Feature Transform (SIFT) algorithm is widely used in computer vision to match features between images or to localize and recognize objets. However, mostly because of speckle noise, it does not perform well on synthetic aperture radar (SAR) images. We present here an improvement of this algorithm for SAR images, named SAR-SIFT. A new gradient computation, yielding an orientation and a magnitude robust to speckle noise, is first introduced. It is then...

  2. SARS-A Worldwide Threat

    Institute of Scientific and Technical Information of China (English)

    姜保华

    2003-01-01

    所谓SARS,即严重急性呼吸道综合症,是一种传染力很强的呼吸道疾病。这种新的疾病最先由世界卫生组织医生Carlo Urbani博士确诊,患者是一位48岁的商人,后来因该病而死亡。Urbani医生本人也因感染该病而于2003年3月29日去世,死时年仅46岁。在此期间,SARS开始蔓延。自SARS发现后的一个半月里,全球已有数千人被感染。

  3. Atmosphere Observations by Geosynchronous SARs

    Science.gov (United States)

    Monti guarnieri, Andrea; Rocca, Fabio; Wadge, Geoff; Schulz, Detlef

    2014-05-01

    We analyze different geosynchronous Synthetic Aperture RADAR concepts aimed to get both tropospheric and ionospheric delay maps with a revisit time of minutes and sub-continental coverage. Such products could be used either to compensate the delay in LEO-SAR missions and GNSS, or to generate integrated water-vapor maps to be used for Numerical Weather Forecast. The system exploits the principle of RADAR location, by transmitting a pulse with a suitable bandwidth, and the residual non-zero eccentricity of COMmunication SATellites. Different concepts are proposed as payload in COMSAT, or constellations of small satellites, that is monostatic or bistatic/multistatic RADARS. The selection of the best frequency, from L to Ku, and the analysis of performances is presented.

  4. Polarimetric SAR Interferometry Evaluation in Mangroves

    Science.gov (United States)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  5. Optimal Approach to SAR Image Despeckling

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Speckle filtering of synthetic aperture radar (SAR) images while preserving the spatial signal variability (texture and fine structures) still remains a challenge. Many algorithms have been proposed for the SAR imagery despeckling. However,simulated annealing (SA) method is one of excellent choices currently. A critical problem in the study on SA is to provide appropriate cooling schedules that ensure fast convergence to near-optimal solutions. This paper gives a new necessary and sufficient condition for the cooling schedule so that the algorithm state converges in all probability to the set of globally minimum cost states.Moreover, it constructs an appropriate objective function for SAR image despeckling. An experimental result of the actual SAR image processing is obtained.

  6. Ionosphere correction algorithm for spaceborne SAR imaging

    Institute of Scientific and Technical Information of China (English)

    Lin Yang; Mengdao Xing; Guangcai Sun

    2016-01-01

    For spaceborne synthetic aperture radar (SAR) ima-ging, the dispersive ionosphere has significant effects on the pro-pagation of the low frequency (especial y P-band) radar signal. The ionospheric effects can be a significant source of the phase error in the radar signal, which causes a degeneration of the image quality in spaceborne SAR imaging system. The background ionospheric effects on spaceborne SAR through modeling and simulation are analyzed, and the qualitative and quantitative analysis based on the spatio-temporal variability of the ionosphere is given. A novel ionosphere correction algorithm (ICA) is proposed to deal with the ionospheric effects on the low frequency spaceborne SAR radar signal. With the proposed algorithm, the degradation of the image quality caused by the ionosphere is corrected. The simulation re-sults show the effectiveness of the proposed algorithm.

  7. Introduction to Synthetic Aperture Radar (SAR)

    Science.gov (United States)

    2006-09-01

    18 m L RADARSAT 1995 10 m × 9 m C ENVISAT 2002 25 m × 25 m C TerraSAR-X 2006 < 1 m × 1 m X Radarsat II 2005 3 m × 3 m C SAR-Lupe 2005 < 1 m...1 m X IGS-2b 2008 30 cm × 30 cm X Airborne SAR DOSAR 1989 < 1 m × 1 m S,C,X,Ka CARABAS- II 1997 3 m × 3 m VHF PAMIR 2003 10 cm × 10 cm X...Lynx 1999 10 cm × 10 cm Ku MISAR 2003 0.5 m × 0.5 m Ka RAMSES 1994 10 cm × 10 cm P,L,S,C,X,Ku,Ka,W MEMPHIS 1997 20 cm × 20 cm Ka,W E-SAR 1994 1.5

  8. Advanced Antenna for Digital Beamforming SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a wideband (500 MHz) L-band phased-array antenna for airborne Synthetic Aperture Radar (SAR) applications based on a novel approach that will make possible...

  9. On Bistatic Forward-looking SAR Imaging

    OpenAIRE

    Vu, Viet Thuy; Pettersson, Mats

    2014-01-01

    Left/right ambiguity and low angular (azimuth) resolution are severe problems for monostatic forward-looking SAR imaging. It is strongly believed that these technical issues can definitely be solved with bistatic forward-looking SAR. The analysis presented in this paper points out that the left/right ambiguity problem still exits. However, an appropriate selection of the position of bistatic base line and antenna beamwidth allows us to conceal it. The paper also gives some recommendations whi...

  10. SARS: Key factors in crisis management.

    Science.gov (United States)

    Tseng, Hsin-Chao; Chen, Thai-Form; Chou, Shieu-Ming

    2005-03-01

    This study was conducted at a single hospital selected in Taipei during the SARS (Severe Acute Respiratory Syndrome) outbreak from March to July, 2003 in Taiwan. During this period of time, 104 SARS patients were admitted to the hospital. There were no negative reports related to the selected hospital despite its being located right in the center of an area struck by the epidemic. The purpose of this study was to identify the key factors enabling the hospital to survive SARS unscathed. Data were collected from in-depth interviews with the nursing directors and nursing managers of the SARS units, along with a review of relevant hospital documents. The five key elements identified as survival factors during this SARS crisis are as follows: 1. good control of timing for crisis management, 2. careful decision-making, 3. thorough implementation, 4. effective communication, and 5. trust between management and employees. The results of this study reconfirmed the selected hospital as a model for good crisis management during the SARS epidemic.

  11. Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus

    Institute of Scientific and Technical Information of China (English)

    王鸣; 徐慧芳; 莫自耀; 郑伯健; 高阳; 顾菁; 秦鹏哲; 张周斌; 邹晓忠; 梁彩云; 赵宇腾; 高凯

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is an infectious disease first recognized in November 2002 in Guangdong province, China. It was spread to many countries all over the world within a few months.1,2 By April 2003, SARS-associated coronavirus (SARS-CoV) was found to be the etiological agent.

  12. Online Health Education on SARS to University Students during the SARS Outbreak

    Science.gov (United States)

    Wong, Mee Lian; Koh, David; Iyer, Prasad; Seow, Adeline; Goh, Lee Gan; Chia, Sin Eng; Lim, Meng Kin; Ng, Daniel; Ong, Choon Nam; Phua, Kai Hong; Tambyah, Paul; Chow, Vincent T K; Chew, Suok Kai; Chandran, Ravi; Lee, Hin Peng

    2005-01-01

    Little is known about how online learning may be used to disseminate health information rapidly and widely to large university populations if there is an infectious disease outbreak. During the SARS outbreak in Singapore in 2003, a six-lesson elearning module on SARS was developed for a large university population of 32,000 students. The module…

  13. Synthetic SAR Image Generation using Sensor, Terrain and Target Models

    DEFF Research Database (Denmark)

    Kusk, Anders; Abulaitijiang, Adili; Dall, Jørgen

    2016-01-01

    A tool to generate synthetic SAR images of objects set on a clutter background is described. The purpose is to generate images for training Automatic Target Recognition and Identification algorithms. The tool employs a commercial electromagnetic simulation program to calculate radar cross sections...... of the object using a CAD-model. The raw measurements are input to a SAR system and terrain model, which models thermal noise, terrain clutter, and SAR focusing to produce synthetic SAR images. Examples of SAR images at 0.3m and 0.1m resolution, and a comparison with real SAR imagery from the MSTAR dataset...

  14. Multiresolution analysis of SAR data

    Science.gov (United States)

    Hummel, Robert

    1993-01-01

    The 'Multiresolution Analysis of SAR Data' program supported research work in five areas. Geometric hashing theory can now be viewed as a Bayesian approach to object recognition. False alarm rates can be greatly reduced by using certain enhancements and modifications developed under this project. Geometric hashing algorithms now exist for the Connection Machine. Recognition of synthetically-produced dot arrays was demonstrated using a model base of 1024 objects. The work represents a substantial advance over existing model-based vision capabilities. Algorithms were developed for determining the translation and rotation of a sensor given only the image flow field data. These are new algorithms, and are much more stable than existing computer vision algorithms for this task. The algorithms might provide independent verification of gyroscopic data, or might be used to compute relative motion with respect to a moving scene object, or may be useful for motion-based segmentation. Our theories explaining the Dempster/Shafer calculus and developing new uncertainty reasoning calculi were extended, and presented at a conference and were incorporated into the Bayesian interpretation of geometric hashing. 'Wavelet Slice Theorem' was developed in several different versions, any of which yields an alternate approach to image formation. The result may well provide a more stable approach to image formation than the standard Fourier-based projection slide theorem, since interpolation of unknown spectra values is better-founded.

  15. Performance evaluation of SAR/GMTI algorithms

    Science.gov (United States)

    Garber, Wendy; Pierson, William; Mcginnis, Ryan; Majumder, Uttam; Minardi, Michael; Sobota, David

    2016-05-01

    There is a history and understanding of exploiting moving targets within ground moving target indicator (GMTI) data, including methods for modeling performance. However, many assumptions valid for GMTI processing are invalid for synthetic aperture radar (SAR) data. For example, traditional GMTI processing assumes targets are exo-clutter and a system that uses a GMTI waveform, i.e. low bandwidth (BW) and low pulse repetition frequency (PRF). Conversely, SAR imagery is typically formed to focus data at zero Doppler and requires high BW and high PRF. Therefore, many of the techniques used in performance estimation of GMTI systems are not valid for SAR data. However, as demonstrated by papers in the recent literature,1-11 there is interest in exploiting moving targets within SAR data. The techniques employed vary widely, including filter banks to form images at multiple Dopplers, performing smear detection, and attempting to address the issue through waveform design. The above work validates the need for moving target exploitation in SAR data, but it does not represent a theory allowing for the prediction or bounding of performance. This work develops an approach to estimate and/or bound performance for moving target exploitation specific to SAR data. Synthetic SAR data is generated across a range of sensor, environment, and target parameters to test the exploitation algorithms under specific conditions. This provides a design tool allowing radar systems to be tuned for specific moving target exploitation applications. In summary, we derive a set of rules that bound the performance of specific moving target exploitation algorithms under variable operating conditions.

  16. Hydrodynamics of the groundwater-fed Sian Ka'an Wetlands, Mexico, From InSAR and SAR Data

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Hong, S.; Wdowinski, S.

    2008-01-01

    to understand, quantify and predict the wetland dynamics. Remotely sensed Interferometric Synthetic Aperture Radar (InSAR) and Synthetic Aperture Radar (SAR) data offer new opportunities to get hydrodynamic information, which is useful for wetland management. InSAR data produces temporal phase......-changes of the backscattered radar signal, which can be related to the water level changes in vegetated wetlands. SAR data reveals information of surface properties such as the degree of flooding through the amplitude of the backscattered signal. We used RADARSAT-1 InSAR and SAR data to form 36 interferograms and 13 flooding...

  17. The impact of SARS on hospital performance

    Directory of Open Access Journals (Sweden)

    Chen Ran-Chou

    2008-11-01

    Full Text Available Abstract Background During the SARS epidemic, healthcare utilization and medical services decreased significantly. However, the long-term impact of SARS on hospital performance needs to be further discussed. Methods A municipal hospital in Taipei City was shut down for a month due to SARS and then became the designated SARS and infectious disease hospital for the city. This study collected the outpatient, inpatient and emergency service volumes for every year from April to March over four years. Average monthly service amount ± standard deviation were used to compare patient volume for the whole hospital, as well as the outpatient numbers accessing different departments. The ARIMA model of outpatient volume in the pre-SARS year was developed. Results The average monthly service volume of outpatient visits for the base year 2002 was 52317 ± 4204 visits per month, and number for 2003 and the following two years were 55%, 82% and 84% of the base year respectively. The average emergency service volume was 4382 ± 356 visits per month at the base year and this became 45%, 77% and 87% of the base year for the following three years respectively. Average inpatient service volume was 8520 ± 909 inpatient days per month at the base year becoming 43%, 81% and 87% of the base year for the following three years respectively. Only the emergency service volume had recovered to the level of a non-significant difference at the second year after SARS. In addition, the departments of family medicine, metabolism and nephrology reached the 2002 patient number in 2003. The ARIMA (2,1,0 model was the most suitable for outpatient volume in pre-SARS year. The MAPE of the ARIMA (2,1,0 model for the pre-SARS year was 6.9%, and 43.2%, 10.6%, 6.2% for following 3 years. Conclusion This study demonstrates that if a hospital is completely shut down due to SARS or a similar disease, the impact is longer than previous reported and different departments may experience

  18. A modified algorithm for SAR parallel imaging

    Institute of Scientific and Technical Information of China (English)

    HU Ju-rong; WANG Fei; CAO Ning; LU Hao

    2009-01-01

    Synthetic aperture radar can provide two dimension images by converting the acquired echoed SAR signal to targets coordinate and reflectivity. With the advancement of sophisticated SAR signal processing, more and more SAR imaging methods have been proposed for synthetic aperture radar which works at near field and the Fresnel approximation is not appropriate. Time domain correlation is a kind of digital reconstruction method based on processing the synthetic aperture radar data in the two-dimensional frequency domain via Fourier transform. It reconstructs SAR image via simply correlation without any need for approximation or interpolation. But its high computational cost for correlation makes it unsuitable for real time imaging. In order to reduce the computational burden a modified algorithm about time domain correlation was given in this paper. It also can take full advantage of parallel computations of the imaging processor. Its practical implementation was proposed and the preliminary simulation results were presented. Simulation results show that the proposed algorithm is a computationally efficient way of implementing the reconstruction in real time SAR image processing.

  19. Low complexity efficient raw SAR data compression

    Science.gov (United States)

    Rane, Shantanu; Boufounos, Petros; Vetro, Anthony; Okada, Yu

    2011-06-01

    We present a low-complexity method for compression of raw Synthetic Aperture Radar (SAR) data. Raw SAR data is typically acquired using a satellite or airborne platform without sufficient computational capabilities to process the data and generate a SAR image on-board. Hence, the raw data needs to be compressed and transmitted to the ground station, where SAR image formation can be carried out. To perform low-complexity compression, our method uses 1-dimensional transforms, followed by quantization and entropy coding. In contrast to previous approaches, which send uncompressed or Huffman-coded bits, we achieve more efficient entropy coding using an arithmetic coder that responds to a continuously updated probability distribution. We present experimental results on compression of raw Ku-SAR data. In those we evaluate the effect of the length of the transform on compression performance and demonstrate the advantages of the proposed framework over a state-of-the-art low complexity scheme called Block Adaptive Quantization (BAQ).

  20. Representations of SARS in the British newspapers.

    Science.gov (United States)

    Washer, Peter

    2004-12-01

    In the Spring of 2003, there was a huge interest in the global news media following the emergence of a new infectious disease: severe acute respiratory syndrome (SARS). This study examines how this novel disease threat was depicted in the UK newspapers, using social representations theory and in particular existing work on social representations of HIV/AIDS and Ebola to analyse the meanings of the epidemic. It investigates the way that SARS was presented as a dangerous threat to the UK public, whilst almost immediately the threat was said to be 'contained' using the mechanism of 'othering': SARS was said to be unlikely to personally affect the UK reader because the Chinese were so different to 'us'; so 'other'. In this sense, the SARS scare, despite the remarkable speed with which it was played out in the modern global news media, resonates with the meanings attributed to other epidemics of infectious diseases throughout history. Yet this study also highlights a number of differences in the social representations of SARS compared with earlier epidemics. In particular, this study examines the phenomena of 'emerging and re-emerging infectious diseases' over the past 30 or so years and suggests that these have impacted on the faith once widely held that Western biomedicine could 'conquer' infectious disease.

  1. Automated rectification and geocoding of SAR imagery

    Science.gov (United States)

    Kwok, R.; Curlander, J. C.

    1987-01-01

    An automated post-processing system has been developed for rectification and geocoding of SAR (Synthetic Aperture Radar) imagery. The system uses as input a raw uncorrected image from the operational SAR correlator, and produces as a standard output a rectified and geocoded product. The accurate geolocation of SAR image pixels is provided by a spatial transformation model which maps the slant range-azimuth SAR image pixels into their location on a prespecified map grid. This model predicts the geodetic location of each pixel by utilizing: the sensor platform position; a geoid model; the parameters of the data collection system and the processing parameters used in the SAR correlator. Based on their geodetic locations, the pixels are mapped by using the desired cartographic projection equations. This rectification and geocoding technique has been tested with Seasat and SIR-B images. The test results demonstrate absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 percent relative to local variations from the assumed geoid.

  2. ICAO's anti-SARS airport activities.

    Science.gov (United States)

    Finkelstein, Silvio; Curdt-Christiansen, Claus M

    2003-11-01

    To prevent SARS from spreading through air travel and in order to rebuild the confidence of the traveling public in the safety of air travel, ICAO has set up an "Anti-SARS Airport Evaluation Project." The first phase of this project was to develop a set of protective measures for international airports in affected areas to adopt and implement and then to send out, on the request of Contracting States, a team of inspectors to evaluate and assess airports and issue a "statement of evaluation" that the airport inspected complies with the ICAO anti-SARS protective measures. In cooperation with the World Health Organization (WHO), the first part of phase 1 was completed in early June this year, and the second part of phase 1 followed soon after. By mid-July, five international airports in Southeast Asia had been inspected and found to be in full compliance with the ICAO anti-SARS protective measures. The success of this ICAO project is believed to have contributed significantly to the recovery of international air travel and related industries now taking place. Phase 2 of the project is now being developed. It is aimed at preventing a resurgence of SARS, but it also contains elements to make the methodology developed applicable to future outbreaks of any other communicable disease in which the mode of transmission could involve aviation and/or the need to prevent the spread of the disease by air travel.

  3. Exploration of Advanced Bistatic SAR Experiments (in English

    Directory of Open Access Journals (Sweden)

    Deng Yun-kai

    2014-02-01

    Full Text Available This study concentrates on the results of several advanced hybrid bistatic SAR experiments. The hybrid bistatic configuration applies to the case in which the transmitter and receiver are mounted on different types of platforms, e.g., spaceborne/airborne, airborne/stationary, spaceborne/stationary, and so on. Several hybrid bistatic SAR experiments have been performed successfully, i.e., TerraSAR-X/PAMIR, PAMIR/stationary, and TerraSAR-X/stationary. Furthermore, Multiple Baseline Interferometry SAR (MB-InSAR and Digital Beam-Forming (DBF technologies are validated in the TerraSAR-X/stationary configuration. Note that the DBF experiment results based on the spaceborne illuminator are discussed for the first time in SAR community. In addition, this paper emphasizes imaging geometry, image analysis, and focusing results.

  4. Application of SAR Imagery in Submarine Topography Surveys

    Institute of Scientific and Technical Information of China (English)

    张宁川; 梁开龙; 桂力民

    2004-01-01

    An important research area in oceanographic surveying and mapping is to obtain submarine topography by remote sensing technique, especially by SAR imagery. In this article, problems related to SAR imagery are analyzed to provide references for the further research.

  5. Exploration of Advanced Bistatic SAR Experiments (in English)

    OpenAIRE

    Deng Yun-kai; Robert Wang

    2014-01-01

    This study concentrates on the results of several advanced hybrid bistatic SAR experiments. The hybrid bistatic configuration applies to the case in which the transmitter and receiver are mounted on different types of platforms, e.g., spaceborne/airborne, airborne/stationary, spaceborne/stationary, and so on. Several hybrid bistatic SAR experiments have been performed successfully, i.e., TerraSAR-X/PAMIR, PAMIR/stationary, and TerraSAR-X/stationary. Furthermore, Multiple Baseline Interferomet...

  6. Verification of L-band SAR calibration

    Science.gov (United States)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  7. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  8. Efficacy of various disinfectants against SARS coronavirus.

    Science.gov (United States)

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  9. Severe Acute Respiratory Syndrome (SARS) Prevention in Taiwan

    Science.gov (United States)

    Liu, Hsueh-Erh

    2004-01-01

    Severe Acute Respiratory Syndrome (SARS) is a newly identified respiratory disease that threatened Taiwan between April 14 and July 5, 2003. Chang Gung University experienced various SARS-related episodes, such as the postponement of classes for 7 days, the reporting of probable SARS cases, and the isolation of students under Level A and B…

  10. Progress Toward Demonstrating SAR Monitoring of Chinese Seas

    Science.gov (United States)

    Huang, Weigen; Johannessen, Johnny; Alpers, Werner; Yang, Jingsong

    2010-12-01

    "Demonstrating SAR monitoring of Chinese seas" is a project of the ESA-MOST Dragon 2 program. This paper presents the progress of the project. Retrieval algorithms for SAR monitoring of sea surface currents, oceanic internal waves, sea surface winds, oil spills and ships have been advanced. SAR monitoring of Chinese seas in near-real-time is now in demonstration phase.

  11. Geocoding of AIRSAR/TOPSAR SAR Data

    Science.gov (United States)

    Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob

    1996-01-01

    It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to

  12. Stochastic dynamic model of SARS spreading

    Institute of Scientific and Technical Information of China (English)

    SHI Yaolin

    2003-01-01

    Based upon the simulation of the stochastic process of infection, onset and spreading of each SARS patient, a system dynamic model of SRAS spreading is constructed. Data from Vietnam is taken as an example for Monte Carlo test. The preliminary results indicate that the time-dependent infection rate is the most important control factor for SARS spreading. The model can be applied to prediction of the course with fluctuations of the epidemics, if the previous history of the epidemics and the future infection rate under control measures are known.

  13. Fighting SARS in grand collaboration: Our strategies

    Institute of Scientific and Technical Information of China (English)

    钟南山

    2003-01-01

    @@ The war without gunsmoke against severe acute respiratory syndrome(SARS), a type of communicable atypical pneumonia (AP), is now outspreading throughout China and many other countries in the world. So far, the disease has swept through nearly 30 countries and regions. Globally, more than 7,000 people have been infected, with a total of over 550 deaths. More than 5,000 people in mainland of China have been affected and approximately 200 have died. In some areas, the current situation remains at large. It is estimated that SARS has caused a financial loss of over 30 billion dollars (US) worldwide.

  14. Science data collection with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Woelders, Kim; Madsen, Søren Nørvang

    1996-01-01

    Discusses examples on the use of polarimetric SAR in a number of Earth science studies. The studies are presently being conducted by the Danish Center for Remote Sensing. A few studies of the European Space Agency's EMAC programme are also discussed. The Earth science objectives are presented, an......, and the potential of polarimetric SAR is discussed and illustrated with data collected by the Danish airborne EMISAR system during a number of experiments in 1994 and 1995. The presentation will include samples of data acquired for the different studies...

  15. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

    NARCIS (Netherlands)

    Hamming, [No Value; Timens, W; Bulthuis, MLC; Lely, AT; Navis, GJ; van Goor, H

    2004-01-01

    Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS-CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin-converting enzyme 2 (ACE2) has been identifie

  16. Quantum-SAR extension of the spectral-SAR algorithm: application to polyphenolic anticancer bioactivity.

    Science.gov (United States)

    Putz, Mihai V; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian

    2009-03-01

    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) "wave" and "conversion factor" in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein.

  17. Quantum-SAR Extension of the Spectral-SAR Algorithm. Application to Polyphenolic Anticancer Bioactivity

    Science.gov (United States)

    Putz, Mihai V.; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian

    2009-01-01

    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) “wave” and “conversion factor” in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein. PMID:19399244

  18. TomoSAR Platform: The New Irstea Service as Demand for SAR, Interferometry, Polarimetry and Tomography

    Science.gov (United States)

    Ho Tong Minh, Dinh; Ngo, Yen-Nhi; Baghdadi, Nicolas; Maurel, Pierre

    2016-08-01

    Developing and improving methods to monitor both natural and non-natural environments such as forest and urban in space and time is a timely challenge. To overcome this challenge, we created a software platform - TomoSAR. The kernel of this platform supports the entire processing from SAR, Interferometry, Polarimetry, to Tomography (so called TomoSAR). The objective of this paper is to introduce this platform about its design architecture and its capacity. We showed four examples to highlight the TomoSAR platform capacities. First, the useful of the interferometric coherence of TOPS Sentinel-1 for land cover classification was highlighted. Second, a TOPS Sentinel-1 differential interferogram in a complex scenario volcano was successfully produced. Third, a TOPS Persistent Scatterers Interferometry analysis for estimating subsidence in Ho Chi Minh City area was demonstrated. Finally, the capability of processing and modelling of 3D P-band tomography in volume forest scattering were reported.

  19. Joint Sparsity in SAR Tomography for Urban Mapping

    OpenAIRE

    Zhu, Xiao Xiang; Ge, Nan; Shahzad, Muhammad

    2015-01-01

    With meter-resolution images delivered by modern SAR satellites like TerraSAR-X and TanDEM-X, it is now possible to map urban areas from space in very high level of detail using advanced interferometric techniques such as PSI and SAR Tomography (TomoSAR), whereas these multi-pass techniques are based on a great number of images. We aim at precise TomoSAR reconstruction while significantly reducing the required number of images by incorporating building a priori knowledge to the estimation. In...

  20. An Optical Flow Method Applied to Co-Registration of Remote Sensing Images: Example for SAR/SAR, SAR/LIDAR, SAR/Optical Images of BIOSAR 2010 Campaign

    Science.gov (United States)

    Colin-Koeniguer, Elise

    2016-08-01

    This article proposes an optical flow type method for coregistration of forest remote sensing images. The principle of the algorithm called GeFolki is first explained. Results are shown on the images of the BioSAR 3 campaign, for the production of SAR interferograms, the coregistration a SAR and LIDAR image, and the coregistration an optical image and SAR image.The advantages of such an algorithm over conventional algorithms are explained. Finally, we propose various applications within the operating data for future BIOMASS mission: massive interferometry, ground truth production, upscaling by fusion of LIDAR and SAR data, and image mining.

  1. A Review About SAR Technique for Shallow Water Bathymetry Surveys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Synthetic Aperture Radar (SAR) has become one of the important tools for shallow water bathymetry surveys. This has significant economic efficiency compared with the traditional bathymetry surveys. Numerical models have been developed to simulate shallow water bathymetry SAR images. Inversion of these models makes it possible to assess the water depths from SAR images. In this paper, these numerical models of SAR technique are reviewed, and examples are illustrated including in the coastal areas of China. Some issues about SAR technique available and the research orientation in future are also discussed.

  2. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg;

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector...

  3. Multichannel imaging with the AMBER FMCW SAR

    NARCIS (Netherlands)

    Otten, M.P.G.; Rossum, W.L. van; Graaf, M.W. van der; Vlothuizen, W.J.; Tan, R.G.

    2014-01-01

    An X-band Digital Array Synthetic Aperture Radar for a Short Range Tactical UAV is presented. The Frequency Modulated Continuous Wave radar principle in combination with digital beam forming over 24 receive channels is used to achieve low power and advanced imaging SAR capabilities on small platform

  4. Satellite sar detection of hurricane helene (2006)

    DEFF Research Database (Denmark)

    Ju, Lian; Cheng, Yongcun; Xu, Qing;

    2013-01-01

    In this paper, the wind structure of hurricane Helene (2006) over the Atlantic Ocean is investigated from a C-band RADARSAT-1 synthetic aperture radar (SAR) image acquired on 20 September 2006. First, the characteristics, e.g., the center, scale and area of the hurricane eye (HE) are determined...

  5. Ambiguity noise analysis of a SAR system

    Science.gov (United States)

    Tian, Haishan; Chang, Wenge; Li, Xiangyang

    2015-12-01

    The presence of range and azimuth (or Doppler) ambiguities in synthetic aperture radars (SARs) is well known. The ambiguity noise is related to the antenna pattern and the value of pulse repetition frequency (PRF). Because a new frequency modulated continuous wave (FMCW) SAR has the characters of low cost and small size, and the capacity of real-time signal processing, the antenna will likely vibrate or deform due to a lack of the stabilized platform. And the value of PRF cannot be much high because of the high computation burden for the real-time processing. The aim of this study is to access and improve the performance of a new FMCW SAR system based on the ambiguity noise. First, the quantitative analysis of the system's ambiguity noise level is performed; an antenna with low sidelobes is designed. The conclusion is that the range ambiguity noise is small; the azimuth ambiguity noise is somewhat increased, however, it is sufficiently small to have marginal influence on the image quality. Finally, the ambiguity noise level is measured using the imaging data from a Ku-band FMCW SAR. The results of this study show that the measured noise level coincides with the theoretical noise level.

  6. SAR Image Texture Analysis of Oil Spill

    Science.gov (United States)

    Ma, Long; Li, Ying; Liu, Yu

    Oil spills are seriously affecting the marine ecosystem and cause political and scientific concern since they have serious affect on fragile marine and coastal ecosystem. In order to implement an emergency in case of oil spills, it is necessary to monitor oil spill using remote sensing. Spaceborne SAR is considered a promising method to monitor oil spill, which causes attention from many researchers. However, research in SAR image texture analysis of oil spill is rarely reported. On 7 December 2007, a crane-carrying barge hit the Hong Kong-registered tanker "Hebei Spirit", which released an estimated 10,500 metric tons of crude oil into the sea. The texture features on this oil spill were acquired based on extracted GLCM (Grey Level Co-occurrence Matrix) by using SAR as data source. The affected area was extracted successfully after evaluating capabilities of different texture features to monitor the oil spill. The results revealed that the texture is an important feature for oil spill monitoring. Key words: oil spill, texture analysis, SAR

  7. What is Gammarus campylops of Sars, 1894

    NARCIS (Netherlands)

    Stock, J.H.; Kant, P.

    1966-01-01

    A revision of the specimens described by Sars, 1894, as Gammarus campylops Leach, 1814, proved that they did not belong to that species, nor to Gammarus ochlos Reid, 1945 (= G. sarsi Reid, 1943), as Reid believed. Reid’s species, of which also original specimens have been reexamined, is identical wi

  8. Living in the Shadow of SARS

    Institute of Scientific and Technical Information of China (English)

    LUZHU

    2003-01-01

    I Was born in April, when spring is in the air, the sun shines, the sky is blue, and the fragrance of lilacs is everywhere. This year's birthday was unforgettable.As the SARS epidemic had broken out in Beijing, it was spent under the threat of this killer disease.

  9. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  10. The outbreak pattern of the SARS cases in Asia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhibin; SHENG Chengfa; MA Zufei; LI Dianmo

    2004-01-01

    The severe acute respiratory syndrome (SARS) caused tremendous damage to many Asia countries, especially China. The transmission process and outbreak pattern of SARS is still not well understood. This study aims to find a simple model to describe the outbreak pattern of SARS cases by using SARS case data commonly released by governments. The outbreak pattern of cumulative SARS cases is expected to be a logistic type because the infection will be slowed down due to the increasing control effort by people and/or due to depletion of susceptible individuals. The increase rate of SARS cases is expected to decrease with the cumulative SARS cases, as described by the traditional logistical model, which is widely used in population dynamic studies. The instantaneous rate of increases were significantly and negatively correlated with the cumulative SARS cases in mainland of China (including Beijing, Hebei, Tianjin, Shanxi, the Autonomous Region of Inner Mongolia) and Singapore. The basic reproduction number R0 in Asia ranged from 2.0 to 5.6 (except for Taiwan, China). The R0 of Hebei and Tianjinwere much higher than that of Singapore, Hongkong, Beijing, Shanxi, Inner Mongolia, indicating SARS virus might have originated differently or new mutations occurred during transmission. We demonstrated that the outbreaks of SARS in many regions of Asia were well described by the logistic model, and the control measures implemented by governments are effective. The maximum instantaneous rate of increase, basic reproductive number, and maximum cumulative SARS cases were also calculated by using the logistic model.

  11. SAR Raw Data Generation for Complex Airport Scenes

    Directory of Open Access Journals (Sweden)

    Jia Li

    2014-10-01

    Full Text Available The method of generating the SAR raw data of complex airport scenes is studied in this paper. A formulation of the SAR raw signal model of airport scenes is given. Via generating the echoes from the background, aircrafts and buildings, respectively, the SAR raw data of the unified SAR imaging geometry is obtained from their vector additions. The multipath scattering and the shadowing between the background and different ground covers of standing airplanes and buildings are analyzed. Based on the scattering characteristics, coupling scattering models and SAR raw data models of different targets are given, respectively. A procedure is given to generate the SAR raw data of airport scenes. The SAR images from the simulated raw data demonstrate the validity of the proposed method.

  12. Citizens’ Health Information Behaviors During SARS Spread Periods in Taiwan

    Directory of Open Access Journals (Sweden)

    Nei-Ching Yeh

    2003-09-01

    Full Text Available The purpose of this study is to investigate the information behaviors of citizens during the periods of SARS spreading in Taiwan. This study is exploratory in nature, and the naturalistic inquiry approach was applied. Sixteen persons, aged from 20 to 62 years old, were interviewed in order to understand their primary information channels of obtaining SARS information, the characteristics of information communication, the methods of infection, the attitudes toward SARS news, and the influences of SARS to life. The findings show that most participants obtained SARS information from televisions. SARS became the major topic of chatting between people, but telephone communication replaced face to face communication. Part of interviewers applied folk medicine to guard against SARS. Participant dissatisfied that governments did not announce much more authoritative information. The results also found participants’ information sharing and information avoidance behaviors.[Article content in Chinese

  13. The first Sentinel-1 SAR image of a typhoon

    Institute of Scientific and Technical Information of China (English)

    LI Xiaofeng

    2015-01-01

    In this note, we present the first Sentinel-1 synthetic aperture radar (SAR) typhoon image acquired in the northwest Pacific on October 4, 2014. The eye shape and sea surface wind patterns associated with Typhoon Phanfone are clearly shown in the high-quality SAR image. SAR winds retrieval procedure was given but the actual wind estimates will only be available after the European Space Agency (ESA) releases the official calibration coefficients in order to accurately derive the SAR-measured normalized radar cross section. This study demonstrates the advantage of Sentinel-1 SAR with regards to imaging fine scale typhoon patterns on the sea surface beneath storm clouds. This paper also advocates the use of Sentinel-1 SAR data that is made freely and openly available worldwide for the first time in civilian SAR history.

  14. BioSAR Airborne Biomass Sensing System

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  15. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  16. Severe acute respiratory syndrome (SARS): knowledge, attitudes, practices and sources of information among physicians answering a SARS fever hotline service.

    Science.gov (United States)

    Deng, J-F; Olowokure, B; Kaydos-Daniels, S C; Chang, H-J; Barwick, R S; Lee, M-L; Deng, C-Y; Factor, S H; Chiang, C-E; Maloney, S A

    2006-01-01

    In June 2003, Taiwan introduced a severe acute respiratory syndrome (SARS) telephone hotline service to provide concerned callers with rapid access to information, advice and appropriate referral where necessary. This paper reports an evaluation of the knowledge, attitude, practices and sources of information relating to SARS among physicians who staffed the SARS fever hotline service. A retrospective survey was conducted using a self-administered postal questionnaire. Participants were physicians who staffed a SARS hotline during the SARS epidemic in Taipei, Taiwan from June 1 to 10, 2003. A response rate of 83% was obtained. All respondents knew the causative agent of SARS, and knowledge regarding SARS features and preventive practices was good. However, only 54% of respondents knew the incubation period of SARS. Hospital guidelines and news media were the major information sources. In responding to two case scenarios most physicians were likely to triage callers at high risk of SARS appropriately, but not callers at low risk. Less than half of all respondents answered both scenarios correctly. The results obtained suggest that knowledge of SARS was generally good although obtained from both medical and non-medical sources. Specific knowledge was however lacking in certain areas and this affected the ability to appropriately triage callers. Standardized education and assessment of prior knowledge of SARS could improve the ability of physicians to triage callers in future outbreaks.

  17. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Cloude Shane R

    2005-01-01

    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  18. Antiviral drug discovery against SARS-CoV.

    Science.gov (United States)

    Wu, Yu-Shan; Lin, Wen-Hsing; Hsu, John T-A; Hsieh, Hsing-Pang

    2006-01-01

    Severe Acute Respiratory Syndrome (SARS) is a life-threatening infectious disease caused by SARS-CoV. In the 2003 outbreak, it infected more than 8,000 people worldwide and claimed the lives of more than 900 victims. The high mortality rate resulted, at least in part, from the absence of definitive treatment protocols or therapeutic agents. Although the virus spreading has been contained, due preparedness and planning, including the successful development of antiviral drugs against SARS-CoV, is necessary for possible reappearance of SARS. In this review, we have discussed currently available strategies for antiviral drug discovery and how these technologies have been utilized to identify potential antiviral agents for the inhibition of SARS-CoV replication. Moreover, progress in the drug development based on different molecular targets is also summarized, including 1) Compounds that block the S protein-ACE2-mediated viral entry; 2) Compounds targeting SARS-CoV M(pro); 3) Compounds targeting papain-like protease 2 (PLP2); 4) Compounds targeting SARS-CoV RdRp; 5) Compounds targeting SARS-CoV helicase; 6) Active compounds with unspecified targets; and 7) Research on siRNA. This review aims to provide a comprehensive account of drug discovery on SARS. The experiences with the SARS outbreak and drug discovery would certainly be an important lesson for the drug development for any new viral outbreaks that may emerge in the future.

  19. Simulation of SAR backscatter for forest vegetation

    Science.gov (United States)

    Prajapati, Richa; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Synthetic Aperture Radar (SAR) is one of the most recent imaging technology to study the forest parameters. The invincible characteristics of microwave acquisition in cloudy regions and night imaging makes it a powerful tool to study dense forest regions. A coherent combination of radar polarimetry and interferometry (PolInSAR) enhances the accuracy of retrieved biophysical parameters. This paper attempts to address the issue of estimation of forest structural information caused due to instability of radar platforms through simulation of SAR image. The Terai Central Forest region situated at Haldwani area in Uttarakhand state of India was chosen as the study area. The system characteristics of PolInSAR dataset of Radarsat-2 SAR sensor was used for simulation process. Geometric and system specifications like platform altitude, center frequency, mean incidence angle, azimuth and range resolution were taken from metadata. From the field data it was observed that average tree height and forest stand density were 25 m and 300 stems/ha respectively. The obtained simulated results were compared with the sensor acquired master and slave intensity images. It was analyzed that for co-polarized horizontal component (HH), the mean values of simulated and real master image had a difference of 0.3645 with standard deviation of 0.63. Cross-polarized (HV) channel showed better results with mean difference of 0.06 and standard deviation of 0.1 while co-polarized vertical component (VV) did not show similar values. In case of HV polarization, mean variation between simulated and real slave images was found to be the least. Since cross-polarized channel is more sensitive to vegetation feature therefore better simulated results were obtained for this channel. Further the simulated images were processed using PolInSAR inversion modelling approach using three different techniques DEM differencing, Coherence Amplitude Inversion and Random Volume over Ground Inversion. DEM differencing

  20. Federated query services provided by the Seamless SAR Archive project

    Science.gov (United States)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  1. How SARS Taught Me to Cook

    Institute of Scientific and Technical Information of China (English)

    GUAVALEE

    2003-01-01

    DURING the week-long May Day holiday I usually hold a party, or enjoy the good weather on outings with friends, but thanks to the SARS epidemic in Beijing this year, I stayed at home the entire May Day holiday. It was no problem finding something to do with my ample spare time, as I can surf the Internet for hours on end. My biggest headache was eating.Having dined in cafeterias and restaurants for the previous ten years or so, I had never learned to cook, but as SARS had begun to spread in Beijing in late April, the cafeteria in my work unit and most restaurants were closed for the holiday.

  2. SARS: Safeguards Accounting and Reporting Software

    Science.gov (United States)

    Mohammedi, B.; Saadi, S.; Ait-Mohamed, S.

    In order to satisfy the requirements of the SSAC (State System for Accounting and Control of nuclear materials), for recording and reporting objectives; this computer program comes to bridge the gape between nuclear facilities operators and national inspection verifying records and delivering reports. The SARS maintains and generates at-facility safeguards accounting records and generates International Atomic Energy Agency (IAEA) safeguards reports based on accounting data input by the user at any nuclear facility. A database structure is built and BORLAND DELPHI programming language has been used. The software is designed to be user-friendly, to make extensive and flexible management of menus and graphs. SARS functions include basic physical inventory tacking, transaction histories and reporting. Access controls are made by different passwords.

  3. Estimating the Doppler centroid of SAR data

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1989-01-01

    After reviewing frequency-domain techniques for estimating the Doppler centroid of synthetic-aperture radar (SAR) data, the author describes a time-domain method and highlights its advantages. In particular, a nonlinear time-domain algorithm called the sign-Doppler estimator (SDE) is shown to have...... attractive properties. An evaluation based on an existing SEASAT processor is reported. The time-domain algorithms are shown to be extremely efficient with respect to requirements on calculations and memory, and hence they are well suited to real-time systems where the Doppler estimation is based on raw SAR...... data. For offline processors where the Doppler estimation is performed on processed data, which removes the problem of partial coverage of bright targets, the ΔE estimator and the CDE (correlation Doppler estimator) algorithm give similar performance. However, for nonhomogeneous scenes it is found...

  4. Automated preprocessing of spaceborne SAR data

    Science.gov (United States)

    Curlander, J. C.; Wu, C.; Pang, A.

    1982-01-01

    An efficient algorithm has been developed for estimation of the echo phase delay in spaceborne synthetic aperture radar (SAR) data. This algorithm utilizes the spacecraft ephemeris data and the radar echo data to produce estimates of two parameters: (1) the centroid of the Doppler frequency spectrum f(d) and (2) the Doppler frequency rate. Results are presented from tests conducted with Seasat SAR data. The test data indicates that estimation accuracies of 3 Hz for f(d) and 0.3 Hz/sec for the Doppler frequency rate are attainable. The clutterlock and autofocus techniques used for estimation of f(d) and the Doppler frequency rate, respectively are discussed and the algorithm developed for optimal implementation of these techniques is presented.

  5. Non-parametric partitioning of SAR images

    Science.gov (United States)

    Delyon, G.; Galland, F.; Réfrégier, Ph.

    2006-09-01

    We describe and analyse a generalization of a parametric segmentation technique adapted to Gamma distributed SAR images to a simple non parametric noise model. The partition is obtained by minimizing the stochastic complexity of a quantized version on Q levels of the SAR image and lead to a criterion without parameters to be tuned by the user. We analyse the reliability of the proposed approach on synthetic images. The quality of the obtained partition will be studied for different possible strategies. In particular, one will discuss the reliability of the proposed optimization procedure. Finally, we will precisely study the performance of the proposed approach in comparison with the statistical parametric technique adapted to Gamma noise. These studies will be led by analyzing the number of misclassified pixels, the standard Hausdorff distance and the number of estimated regions.

  6. Density Functionals with Broad Applicability in Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan; Truhlar, Donald G.

    2008-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Although density functional theory is widely used in the computational chemistry community, the most popular density functional, B3LYP, has some serious shortcomings: (i) it is better for main-group chemistry than for transition metals; (ii) it systematically underestimates reaction barrier heights; (iii) it is inaccurate for interactions dominated by mediumrange correlation energy, such as van der Waals attraction, aromatic-aromatic stacking, and alkane isomerization energies. We have developed a variety of databases for testing and designing new density functionals. We used these data to design new density functionals, called M06-class (and, earlier, M05-class) functionals, for which we enforced some fundamental exact constraints such as the uniform-electron-gas limit and the absence of self-correlation energy. Our M06-class functionals depend on spin-up and spin-down electron densities (i.e., spin densities), spin density gradients, spin kinetic energy densities, and, for nonlocal (also called hybrid) functionals, Hartree-Fock exchange. We have developed four new functionals that overcome the above-mentioned difficulties: (a) M06, a hybrid meta functional, is a functional with good accuracy “across-theboard” for transition metals, main group thermochemistry, medium-range correlation energy, and barrier heights; (b) M06- 2X, another hybrid meta functional, is not good for transition metals but has excellent performance for main group chemistry, predicts accurate valence and Rydberg electronic excitation energies, and is an excellent functional for aromatic-aromatic stacking interactions; (c) M06-L is not as accurate as M06 for barrier heights but is the most accurate functional for transition metals and is the only local functional (no Hartree-Fock exchange) with better across-the-board average performance than B3LYP; this is very important because only local functionals are affordable for many demanding applications on very large systems; (d) M06-HF has good performance for valence, Rydberg, and charge transfer excited states with minimal sacrifice of ground-state accuracy. In this Account, we compared the performance of the M06-class functionals and one M05-class functional (M05-2X) to that of some popular functionals for diverse databases and their performance on several difficult cases. The tests include barrier heights, conformational energy, and the trend in bond dissociation energies of Grubbs’ ruthenium catalysts for olefin metathesis. Based on these tests, we recommend (1) the M06-2X, BMK, and M05-2X functionals for main-group thermochemistry and kinetics, (2) M06-2X and M06 for systems where main-group thermochemistry, kinetics, and noncovalent interactions are all important, (3) M06-L and M06 for transition metal thermochemistry, (4) M06 for problems involving multireference rearrangements or reactions where both organic and transition-metal bonds are formed or broken, (5) M06-2X, M05-2X, M06-HF, M06, and M06-L for the study of noncovalent interactions, (6) M06-HF when the use of full Hartree-Fock exchange is important, for example, to avoid the error of self-interaction at longrange, (7) M06-L when a local functional is required, because a local functional has much lower cost for large systems.

  7. Bistatic SAR tomography: processing and experimental results

    OpenAIRE

    Duque Biarge, Sergio; López Dekker, Francisco J.; Merlano Duncan, Juan Carlos; Mallorquí Franquet, Jordi Joan

    2010-01-01

    This paper presents across-track tomography applied to a bistatic geometry with fixed receivers. This kind of geometry can overcome some of the classical monostatic tomography limitations such as temporal decorrelation and irregular baseline distribution. The Remote Sensing Laboratory (RSLab)of the Universitat Politècnica de Catalunya (UPC) has implemented a SAR Bistatic Receiver for INterferometric Applications,SABRINA, with 4-channels. SABRINA has been used to carry out a bistatic tomogr...

  8. Digital demodulator for wide bandwidth SAR

    DEFF Research Database (Denmark)

    Jørgensen, Jørn Hjelm

    2000-01-01

    A novel approach to the design of efficient digital quadrature demodulators for wide bandwidth SAR systems is described. Efficiency is obtained by setting the intermediate frequency to 1/4 the ADC sampling frequency. One channel is made filter-free by synchronizing the local oscillator...... with the output decimator. The filter required by the other channel is optimized through global search using the system level performance metrics integrated sidelobe level ratio (ISLR) and peak sidelobe level ratio (PSLR)....

  9. SAR Product Improvements and Enhancements - SARprises

    Science.gov (United States)

    2013-09-30

    paper on current fields at Orkney, Scotland, was accepted for publication in IEEE - TGARS and is currently in press (available on IEEE Xplore as Early...Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration, IEEE TGARS, 43, 2494- 2502, 2005. [2] Chapron, B., F...Bight by airborne along-track interferometric SAR, Proc. IGARSS 2002, 1822-1824, IEEE , 2002. [4] Bjerklie, D.M., S.L. Dingman, C.J. Vorosmarty, C.H

  10. Multiplier-free filters for wideband SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2001-01-01

    This paper derives a set of parameters to be optimized when designing filters for digital demodulation and range prefiltering in SAR systems. Aiming at an implementation in field programmable gate arrays (FPGAs), an approach for the design of multiplier-free filters is outlined. Design results ar...... are presented in terms of filter complexity and performance. One filter has been coded in VHDL and preliminary results indicate that the filter can meet a 2 GHz input sample rate....

  11. Fast SAR Imaging Algorithm for FLGPR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A fast SAR imaging algorithm for near- field subsurface forward-looking ground penetrating radar (FLGPR) is presented. By using nonstationary convolution filter, the refocused image spectrum can be reconstructed directly from the backscattered signal spectrum of target area. The experimental results show the proposed method can fast achieve image refocusing. Also it has higher computational efficiency than the phase-shift migration approach and the delay-and-sum (DAS) approach.

  12. Adaptive Filter in SAR Interferometry Derived DEM

    Institute of Scientific and Technical Information of China (English)

    XU Caijun; WANG Hua; WANG Jianglin; GE Linlin

    2005-01-01

    In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.

  13. Efficient Bistatic SAR Raw Signal Simulator of Extended Scenes

    Directory of Open Access Journals (Sweden)

    Liang Yang

    2014-01-01

    Full Text Available Bistatic SAR system is a new mode that allocates the radar transmitter and receiver on different platforms and has more advantages compared to the monostatic case. However, the existing bistatic SAR raw data simulator in the frequency domain can only handle the case of translation invariant system. In this paper, an efficient 2D frequency-domain raw data simulator of extended scenes for bistatic SAR of translation variant system is proposed by a geometric transformation method for the first time, where inverse STOLT interpolation is used to formulate the range migration terms. The presented simulator can accommodate the translation variant bistatic SAR system compared with existing bistatic SAR simulator. And it is more efficient than the time domain one by making use of Fast Fourier Transform (FFT. Simulation results for point targets and a real SAR image demonstrate its validity and effectiveness.

  14. Low-SAR metamaterial-inspired printed monopole antenna

    Science.gov (United States)

    Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.

    2017-01-01

    In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.

  15. Molecular phylogeny of coronaviruses including human SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Phylogenetic tree of coronaviruses (CoVs) including the human SARS-associated virus is reconstructed from complete genomes by using our newly developed K- string composition approach. The relation of the human SARS-CoV to other coronaviruses, i.e. the rooting of the tree is suggested by choosing an appropriate outgroup. SARS-CoV makes a separate group closer but still distant from G2 (CoVs in mammalian host). The relation between different isolates of the human SARS virus is inferred by first constructing an ultrametric distance matrix from counting sequence variations in the genomes. The resulting tree is consistent with clinic relations between the SARS-CoV isolates. In addition to a larger variety of coronavirus genomes these results provide phylogenetic knowledge based on independent novel methodology as compared to recent phylogenetic studies on SARS-CoV.

  16. SARS epidemical forecast research in mathematical model

    Institute of Scientific and Technical Information of China (English)

    DING Guanghong; LIU Chang; GONG Jianqiu; WANG Ling; CHENG Ke; ZHANG Di

    2004-01-01

    The SIJR model, simplified from the SEIJR model, is adopted to analyze the important parameters of the model of SARS epidemic such as the transmission rate, basic reproductive number. And some important parameters are obtained such as the transmission rate by applying this model to analyzing the situation in Hong Kong, Singapore and Canada at the outbreak of SARS. Then forecast of the transmission of SARS is drawn out here by the adjustment of parameters (such as quarantined rate) in the model. It is obvious that inflexion lies on the crunode of the graph, which indicates the big difference in transmission characteristics between the epidemic under control and not under control. This model can also be used in the comparison of the control effectiveness among different regions. The results from this model match well with the actual data in Hong Kong, Singapore and Canada and as a by-product, the index of the effectiveness of control in the later period can be acquired. It offers some quantitative indexes, which may help the further research in epidemic diseases.

  17. Efficient Bistatic SAR Raw Signal Simulator of Extended Scenes

    OpenAIRE

    Liang Yang; Weidong Yu; Shichao Zheng; Lei Zhang

    2014-01-01

    Bistatic SAR system is a new mode that allocates the radar transmitter and receiver on different platforms and has more advantages compared to the monostatic case. However, the existing bistatic SAR raw data simulator in the frequency domain can only handle the case of translation invariant system. In this paper, an efficient 2D frequency-domain raw data simulator of extended scenes for bistatic SAR of translation variant system is proposed by a geometric transformation method for the first t...

  18. SAR Imaging through the Earth’s Ionosphere

    Science.gov (United States)

    2013-11-06

    SAR it may be useful for bistatic rather than monostatic imaging, i.e., for the case where the transmitting and receiving antennas are two different... SAR IMAGING THROUGH THE EARTHS IONOSPHERE SEMYON TSYNKOV NORTH CAROLINA STATE UNIVERSITY 11/13/2013 Final Report DISTRIBUTION A: Distribution...30-09-2013 SAR Imaging through the Earth’s Ionosphere FA9550-10-1-0092 FA9550-10-1-0092 Semyon V. Tsynkov North Carolina State University Campus Box

  19. Death of a SARS case from secondary aspergillus infection

    Institute of Scientific and Technical Information of China (English)

    王慧君; 丁彦青; 徐军; 李欣; 李学锋; 杨磊; 张文丽; 耿健; 申洪; 蔡俊杰; 康伟; 吴正容; 赵菲; 钟南山

    2004-01-01

    @@ Severe acute respiratory syndrome (SARS) is an acute infectious disease which has been found to spread mainly via respiration. The first case was idnetified in Guangdong, southem China in November 2002. This disease has resulted in a severe epidemic outbreak in 27 countries and regions. In order to investigate the etiology and clinicopathologic characteristics of SARS, we reported here a patient with SARS who died of aspergillosis after prolonged treatment with corticosteroids.

  20. InSAR Scientific Computing Environment

    Science.gov (United States)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with

  1. Coastline detection in SAR images using discriminant cuts segmentation

    Science.gov (United States)

    Ding, Xianwen; Zou, Xiaolin; Yu, Tan

    2016-11-01

    The discriminant cut algorithm is used to detect coastlines in synthetic aperture radar (SAR) images. The proposed approach is a region-based one, which is able to capture and utilize spatial information in the image. The real SAR images, e.g. ALOS-1 PALSAR and COSMO-SkyMed SAR images, together with in-situ GPS data were collected and used to validate the performance of the proposed approach for coastline detection in SAR images. The accuracy is better than 4 times the image resolution. The efficiency is also tested.

  2. Bistatic SAR: State of the Art and Development Trend

    Directory of Open Access Journals (Sweden)

    Zeng Tao

    2012-12-01

    Full Text Available Bistatic SAR (BiSAR systems have attracted the interests from global researchers and become a hotspot in the international radar community due to the progress of radar technology and rapidly increased applications nowadays. Based on the BiSAR experiments and breakthrough of the key technology, the paper summarized the general progresses of BiSAR systems, especially in European radar community, from different aspects such as system design, processing idea and topology etc. Different bistatic image formation algorithms have been analyzed and reviewed. Finally, the development trend is discussed in the paper.

  3. Motion measurement errors and autofocus in bistatic SAR.

    Science.gov (United States)

    Rigling, Brian D; Moses, Randolph L

    2006-04-01

    This paper discusses the effect of motion measurement errors (MMEs) on measured bistatic synthetic aperture radar (SAR) phase history data that has been motion compensated to the scene origin. We characterize the effect of low-frequency MMEs on bistatic SAR images, and, based on this characterization, we derive limits on the allowable MMEs to be used as system specifications. Finally, we demonstrate that proper orientation of a bistatic SAR image during the image formation process allows application of monostatic SAR autofocus algorithms in postprocessing to mitigate image defocus.

  4. Crop identification of SAR data using digital textural analysis

    Science.gov (United States)

    Nuesch, D. R.

    1983-01-01

    After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.

  5. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    DEFF Research Database (Denmark)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel;

    2016-01-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas....... Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen...

  6. Risk Factors for SARS-Related Deaths in 2003, Beijing

    Institute of Scientific and Technical Information of China (English)

    MIN LIU; WAN-NIAN LIANG; QI CHEN; XUE-QIN XIE; JIANG WU; XIONG HE; ZE-JUN LIU

    2006-01-01

    Objective To study the potential risk factors for severe acute respiratory syndromes (SARS)-related deaths in Beijing. Methods Epidemiological data were collected among the confirmed SARS patients officially reported by Beijing Centers for Disease Control and Prevention (BCDC), and information was also supplemented by a follow-up case survey. Chi-square test and multivariate stepwise logistic regression analysis were performed. Results Old age (over 60 years) was found to be significantly associated with SARS-related deaths in the univariate analysis. Also, history of contacting SARS patients within 2 weeks prior to the onset of illness, health occupation, and inferior hospital ranking as well as longer interval of clinic consulting (longer than 1 day) were the risk factors for SARS-related deaths. Multivariate stepwise logistic regression analysis found four risk factors for SARS-related deaths. Conclusion Old age (over 60 years) is the major risk factor for SARS-related deaths.Moreover, hospital health workers, the designated hospitals for SARS clinical services and the interval of consulting doctors (less than 1 day) are protective factors for surviving from SARS.

  7. Geometric registration and rectification of spaceborne SAR imagery

    Science.gov (United States)

    Curlander, J. C.; Pang, S. N.

    1982-01-01

    This paper describes the development of automated location and geometric rectification techniques for digitally processed synthetic aperture radar (SAR) imagery. A software package has been developed that is capable of determining the absolute location of an image pixel to within 60 m using only the spacecraft ephemeris data and the characteristics of the SAR data collection and processing system. Based on this location capability algorithms have been developed that geometrically rectify the imagery, register it to a common coordinate system and mosaic multiple frames to form extended digital SAR maps. These algorithms have been optimized using parallel processing techniques to minimize the operating time. Test results are given using Seasat SAR data.

  8. Deformation Monitoring of Highway Goaf Based on D - InSAR Technology%基于D—InSAR技术的公路采空区变形监测

    Institute of Scientific and Technical Information of China (English)

    刘晓菲; 邓喀中; 薛继群; 陈炳乾; 王江涛

    2012-01-01

    This paper uses the ALOS satellite 6 scene PALSAR as experimental data. Using the mathematical model processed by two - track differential interferometric, after completing image registration, resample, removing terrain phase, filtering and phase unwrap- ping, the D - InSAR strip deformation time series of highway goaf are achieved. Comparing the test data with measured data and cor- recting InSAR data, the results show that it is feasible to use the D- InSAR to monitoring highway deformation above goaf, which has broad application prospects.%利用某高速采空区的ALOS卫星6景PALSAR数据,采用二轨差分干涉处理的数学模型,在完成图像的配准、重采样、去除地形相位、滤波和相位解缠之后,获取了高速公路采空区D—InSAR条带变形时间序列,并与实测数据进行了比较,将InSAR数据进行改正,结果显示D—InSAR用于公路采空区变形监测是可行的,具有广泛的应用前景。

  9. SARS Patients-derived Human Recombinant Antibodies to S and M Proteins Efficiently Neutralize SARS-Coronavirus Infectivity

    Institute of Scientific and Technical Information of China (English)

    MI-FANG LIANG; KONG-XING WU; ZHAO-HUI XIONG; QI JIN; DE-XIN LI; RUN-LEI DU; JING-ZHI LIU; CHUAN LI; QUAN-FU ZHANG; LU-LU HAN; JIAN-SHI YU; SHU-MIN DUAN; XIAO-FANG WANG

    2005-01-01

    Objective To develop a specific SARS virus-targeted antibody preparation for emergent prophylaxis and treatment of SARS virus infection. Methods By using phage display technology, we constructed a naive antibody library from convalescent SARS patient lymphocytes. To obtain the neutralizing antibody to SARS virus surface proteins, the library panning procedure was performed on purified SARS virions and the specific Fab antibody clones were enriched by four rounds of repeated panning procedure and screened by highthroughput selection. The selected Fab antibodies expressed in the periplasma of E. Coli were soluble and further purified and tested for their binding properties and antiviral function to SARS virus. The functional Fab antibodies were converted to full human IgG antibodies with recombinant baculovirus/insect cell systems and their neutralizing activities were further determined. Results After four rounds of the panning, a number of SARS-CoV virus-targeted human recombinant Fab antibodies were isolated from the SARS patient antibody library. Most of these were identified to recognize both natural and recombinant SARS spike (S) proteins, two Fab antibodies were specific for the virus membrane (M) protein, only one bound to SARS-CoV nucleocapsid protein. The SARS-CoV S and M protein-targeted Fab or IgG antibodies showed significant neutralizing activities in cytopathic effect (CPE) inhibition neutralization test, these antibodies were able to completely neutralize the SARS virus and protect the Vero cells from CPE after virus infection. However, the N protein-targeted Fab or IgG antibodies failed to neutralize the virus. In addition, the SARS N protein-targeted human Fab antibody reacted with the denatured N proteins, whereas none of the S and M protein specific neutralizing antibodies did. These results suggested that the S and M protein-specific neutralizing antibodies could recognize conformational epitopes which might be involved in the binding of virions

  10. Multi-Temporal SAR Interferometry for Landslide Monitoring

    Science.gov (United States)

    Dwivedi, R.; Narayan, A. B.; Tiwari, A.; Dikshit, O.; Singh, A. K.

    2016-06-01

    In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS) and Small Baseline (SB) methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS) based PS-InSAR and the Small Baselines Subset (SBAS) techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS) mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS) velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  11. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Diego O Andrey

    Full Text Available Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1, encoded by tst(H, and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1, RNAIII, rot, and the alternative stress sigma factor sigB (σB. By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.

  12. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.

    Science.gov (United States)

    Andrey, Diego O; Jousselin, Ambre; Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.

  13. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  14. SARS treatment: experience from a team in Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ The epidemic of SARS in Guangdong province of China is beginning to be restrained. In May 2003, Dr. Zhong Nanshan, head of the Guangzhou Institute of Respiratory Disease, presented at a training course in Beijing for medical personnel. Some important issues have been addressed based on the experience concluded during their combating with SARS in Guangdong.

  15. The Danish polarimetric SAR for remote sensing applications

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Madsen, Søren Nørvang; Dall, Jørgen

    1994-01-01

    Presents the Danish polarimetric SAR system, EMISAR, and the approach taken in the system design to achieve a reliable high performance system. The design and implementation of the antenna system as well as the analog and digital hardware are discussed. The SAR utilises a dual polarised microstri...

  16. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    The aim of the paper is to present offshore wind farm wake observed from satellite Synthetic Aperture Radar (SAR) wind fields from RADARSAT-1/-2 and Envisat and to compare these wakes qualitatively to wind farm wake model results. From some satellite SAR wind maps very long wakes are observed. Th...

  17. Crop Classification Using Short-Revisit Multitemporal SAR Data

    DEFF Research Database (Denmark)

    Skriver, Henning; Mattia, Francesco; Satalino, Giuseppe;

    2011-01-01

    Classification of crops and other land cover types is an important application of both optical/infrared and SAR satellite data. It is already an import application of present satellite systems, as it will be for planned missions, such as the Sentinels. An airborne SAR data set with a short revisi...

  18. Investigation of Polarimetric SAR Data Acquired at Multiple Incidence Angles

    DEFF Research Database (Denmark)

    Svendsen, Morten Thougaard; Skriver, Henning; Thomsen, A.

    1998-01-01

    The dependence of different polarimetric parameters on the incidence angles in the range of 30° to 60° is investigated for a number of different crops using airborne SAR data. The purpose of the investigation is to determine the effect of the variation of incidence angle within a SAR image when...

  19. (Q)SAR: A Tool for the Toxicologist.

    Science.gov (United States)

    Steinbach, Thomas; Gad-McDonald, Samantha; Kruhlak, Naomi; Powley, Mark; Greene, Nigel

    2015-01-01

    A continuing education (CE) course at the 2014 American College of Toxicology annual meeting covered the topic of (Quantitative) Structure-Activity Relationships [(Q)SAR]. The (Q)SAR methodologies use predictive computer modeling based on predefined rules to describe the relationship between chemical structure and a chemical's associated biological activity or statistical tools to find correlations between biologic activity and the molecular structure or properties of a compound. The (Q)SAR has applications in risk assessment, drug discovery, and regulatory decision making. Pressure within industry to reduce the cost of drug development and societal pressure for government regulatory agencies to produce more accurate and timely risk assessment of drugs and chemicals have necessitated the use of (Q)SAR. Producing a high-quality (Q)SAR model depends on many factors including the choice of statistical methods and descriptors, but first and foremost the quality of the data input into the model. Understanding how a (Q)SAR model is developed and applied is critical to the successful use of such a tool. The CE session covered the basic principles of (Q)SAR, practical applications of these computational models in toxicology, how regulatory agencies use and interpret (Q)SAR models, and potential pitfalls of using them.

  20. Genome organization of the SARS-CoV

    DEFF Research Database (Denmark)

    Xu, Jing; Hu, Jianfei; Wang, Jing;

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or devel...

  1. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning

    2004-01-01

    This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...

  2. Impact of SARS on China's economy limited

    Institute of Scientific and Technical Information of China (English)

    TaoRunyuan

    2003-01-01

    China's economic upsurge cannot be reversed by the severe acute respiratory syndrome (SARS) now ravaging some parts of the country. China's economy will maintain its steady growth momentum despite the SARS' impact to some extent on investment, consumption andexport, according to a number of noted Chinese experts.

  3. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Xu; Xiao-Ming Gao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abspresent in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified.It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease.

  4. Immunological Responses against SARS-Coronavirus Infection in Humans

    Institute of Scientific and Technical Information of China (English)

    XiaojunXu; Xiao-MingGao

    2004-01-01

    Since the outbreak of a SARS epidemic last year, significant advances have been made on our understanding of the mechanisms of interaction between the SARS coronavirus (CoV) and the immune system. Strong humoral responses have been found in most patients following SARS-CoV infection, with high titers of neutralizing Abs present in their convalescent sera. The nucleocapsid (N) and spike (S) proteins of SARS-CoV appear to be the dominant antigens recognized by serum Abs. CD4+ T cell responses against the N protein have been observed in SARS patients and an HLA-A2-restricted cytotoxic T lymphocyte epitope in the S protein has been identified. It is likely that the immune responses induced by SARS-CoV infection could also cause pathological damage to the host, especially in the case of proinflammatory cytokines. There is also evidence suggesting that SARS-CoV might be able to directly invade cells of the immune system. Our understanding on the interaction between SARS-CoV, the immune system and local tissues is essential to future diagnosis, control and treatment of this very contagious disease. Cellular & Molecular Immunology. 2004;1(2):119-122.

  5. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  6. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F. [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  7. Unparallel trajectory bistatic spotlight SAR imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; JING Wei; XING MengDao; BAO Zheng

    2009-01-01

    A new approach for unparallel trajectory bistatic spotlight SAR imaging is proposed. The approach utilizes the concept of instantaneous Doppler wavenumber and introduces two variants, the sum-range and subtraction-range, to develop the 2D frequency analytical formula. Based on the assumption of plane wavefront, the transmitting and receiving Doppler are separated and formulated via series reversion. And frequency scaling is applied to focus image. The algorithm is with high computational efficiency, and provides well focus for limited scene imaging. Simulation result confirms the validity of the approach.

  8. Cross-calibration of interferometric SAR data

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2003-01-01

    Generation of digital elevation models from interferometric synthetic aperture radar (SAR) data is a well established technique. Achieving a high geometric fidelity calls for a calibration accounting for inaccurate navigation data and system parameters as well as system imperfections. Fully......, but not necessarily from map to map. It is based on natural distributed targets for which no a priori knowledge is needed. In particular, no DEM is required as in calibration techniques based on dedicated calibration scenes. To achieve absolute calibration, i.e. elimination of a constant elevation offset, a single...

  9. Two dimensional estimates from ocean SAR images

    Directory of Open Access Journals (Sweden)

    J. M. Le Caillec

    1996-01-01

    Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete

  10. The Accuratre Signal Model and Imaging Processing in Geosynchronous SAR

    Science.gov (United States)

    Hu, Cheng

    With the development of synthetic aperture radar (SAR) application, the disadvantage of low earth orbit (LEO) SAR becomes more and more apparent. The increase of orbit altitude can shorten the revisit time and enlarge the coverage area in single look, and then satisfy the application requirement. The concept of geosynchronous earth orbit (GEO) SAR system is firstly presented and deeply discussed by K.Tomiyasi and other researchers. A GEO SAR, with its fine temporal resolution, would overcome the limitations of current imaging systems, allowing dense interpretation of transient phenomena as GPS time-series analysis with a spatial density several orders of magnitude finer. Until now, the related literatures about GEO SAR are mainly focused in the system parameter design and application requirement. As for the signal characteristic, resolution calculation and imaging algorithms, it is nearly blank in the related literatures of GEO SAR. In the LEO SAR, the signal model analysis adopts the `Stop-and-Go' assumption in general, and this assumption can satisfy the imaging requirement in present advanced SAR system, such as TerraSAR, Radarsat2 and so on. However because of long propagation distance and non-negligible earth rotation, the `Stop-and-Go' assumption does not exist and will cause large propagation distance error, and then affect the image formation. Furthermore the long propagation distance will result in the long synthetic aperture time such as hundreds of seconds, therefore the linear trajectory model in LEO SAR imaging will fail in GEO imaging, and the new imaging model needs to be proposed for the GEO SAR imaging processing. In this paper, considering the relative motion between satellite and earth during signal propagation time, the accurate analysis method for propagation slant range is firstly presented. Furthermore, the difference between accurate analysis method and `Stop-and-Go' assumption is analytically obtained. Meanwhile based on the derived

  11. Ice flow mapping with P-band SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Nielsen, Ulrik; Kusk, Anders;

    2013-01-01

    -band SAR data have been acquired in Greenland, and both offset tracking and DInSAR have been applied to the full resolution data as well as to data degraded to the resolution of Biomass. Generally, ice velocity maps are successfully generated, but in the ablation zone, DInSAR fails in the melt season......Glacier and ice sheet dynamics are currently mapped with X-, C-, and L-band SAR. With the prospect of a P-band SAR, Biomass, to be launched within the next decade it is interesting to look into the potential of P-band for ice velocity mapping. In this paper first results are presented. Airborne P...

  12. SAR Image Desp eckling by Sparse Reconstruction Based on Shearlets

    Institute of Scientific and Technical Information of China (English)

    JI Jian; LI Xiao; XU Shuang-Xing; LIU Huan; HUANG Jing-Jing

    2015-01-01

    Synthetic aperture radar (SAR) image is usually polluted by multiplicative speckle noise, which can affect further processing of SAR image. This paper presents a new approach for multiplicative noise removal in SAR images based on sparse coding by shearlets filtering. First, a SAR despeckling model is built by the theory of compressed sensing (CS). Secondly, obtain shearlets coefficient through shearlet transform, each scale coefficient is represented as a unit. For each unit, sparse coefficient is iteratively estimated by using Bayesian estimation based on shearlets domain. The represented units are finally collaboratively aggregated to construct the despeckling image. Our results in SAR image despeckling show the good performance of this algorithm, and prove that the algorithm proposed is robustness to noise, which is not only good for reducing speckle, but also has an advantage in holding information of the edge.

  13. Flood Mapping Using InSAR Coherence Map

    Science.gov (United States)

    Selmi, S.; Ben Abdallah, W.; Abdelfatteh, R.

    2014-09-01

    Classic approaches for the detection of flooded areas are based on a static analysis of optical images and/or SAR data during and after the event. In this paper, we aim to extract the flooded zones by using the SAR image coupled with the InSAR coherence. A new formulation of the ratio approach for flood detection is given considering InSAR coherence. Our contribution is to take advantage from the coherence map provided using the InSAR pairs (one before and one after the event) to enhance the detection of flooded areas. We explore the fact that the coherence values during and after the flood are mainly differents on the flooded zones and we give a more suitable flood decision rule using this assumption. The proposed approach is tested and validated in the case of the flood taken place in 2005 in the region of Kef in Tunisia.

  14. Identification of an epitope of SARS-coronavirus nucleocapsid protein

    Institute of Scientific and Technical Information of China (English)

    YING LIN; JIN WANG; HONG XIA WANG; HUA LIANG JIANG; JIAN HUA SHEN; YOU HUA XIE; YUAN WANG; GANG PEI; BEI FEN SHEN; JIA RUI WU; BING SUN; XU SHEN; RUI FU YANG; YI XUE LI; YONG YONG JI; YOU YU HE; MUDE SHI; WEI LU; TIE LIU SHI

    2003-01-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV werepredicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodieswere isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-inducedpolyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratorysyndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.

  15. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR.

    Science.gov (United States)

    Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong

    2016-06-25

    Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model.

  16. Real-time optical processor prototype for remote SAR applications

    Science.gov (United States)

    Marchese, Linda; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Bourqui, Pascal; Legros, Mathieu; Desnoyers, Nichola; Guillot, Ludovic; Mercier, Luc; Savard, Maxime; Martel, Anne; Châteauneuf, François; Bergeron, Alain

    2009-09-01

    A Compact Real-Time Optical SAR Processor has been successfully developed and tested. SAR, or Synthetic Aperture Radar, is a powerful tool providing enhanced day and night imaging capabilities. SAR systems typically generate large amounts of information generally in the form of complex data that are difficult to compress. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Indeed, the first SAR images have been optically processed. The optical processor architecture provides inherent parallel computing capabilities that can be used advantageously for the SAR data processing. Onboard SAR image generation would provide local access to processed information paving the way for real-time decision-making. This could eventually benefit navigation strategy and instrument orientation decisions. Moreover, for interplanetary missions, onboard analysis of images could provide important feature identification clues and could help select the appropriate images to be transmitted to Earth, consequently helping bandwidth management. This could ultimately reduce the data throughput requirements and related transmission bandwidth. This paper reviews the design of a compact optical SAR processor prototype that would reduce power, weight, and size requirements and reviews the analysis of SAR image generation using the table-top optical processor. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed. Results of image generation from simulated point targets as well as real satellite-acquired raw data are presented.

  17. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR

    Directory of Open Access Journals (Sweden)

    Weihao Jiang

    2016-06-01

    Full Text Available Following the development of synthetic aperture radar (SAR, SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD model, a rational polynomial coefficients (RPC model, a revised polynomial (PM model and an elevation derivation (EDM model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model.

  18. Rapid inactivation of SARS-like coronaviruses.

    Energy Technology Data Exchange (ETDEWEB)

    Kapil, Sanjay (Kansas State University, Manhattan, KS); Oberst, R. D. (Kansas State University, Manhattan, KS); Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  19. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  20. Spacial Variation in SAR Images of Different Resolution for Agricultural Fields

    DEFF Research Database (Denmark)

    Sandholt, Inge; Skriver, Henning

    1999-01-01

    The spatial variation in two types of Synthetic Aperture Radar (SAR) images covering agricultural fields is analysed. C-band polarimetric SAR data from the Danish airborne SAR, EMISAR, have been compared to space based ERS-1 C-band SAR with respect to scale and effect of polarization. The general...

  1. Tight formation flying for an along-track SAR interferometer

    Science.gov (United States)

    Gill, Eberhard; Runge, Hartmut

    2004-08-01

    While space-borne synthetic aperture radar (SAR) has evolved into a mature technology over the past two decades, there is a growing interest in interferometric SAR applications. Especially along-track interferometry with its capability to resolve the velocity of on-ground objects and ocean currents is of high interest for scientific applications. The accuracy of the resolved velocity on ground scales directly with the along-track separation between adjacent SAR antennas. Since space vehicles are quite limited in size, a formation flying approach with two SAR instruments distributed onto two spacecraft thus appears to be an innovative approach to along-track SAR interferometry. In the framework of an ESA study, this paper discusses the potential benefits, drawbacks and problems associated with a close formation flight for an along-track interferometry SAR mission. To this end, the absolute and relative orbit reconstruction requirements for the SAR processing chain are derived from basic interferometric principles as well as appropriate baselines of the satellite formation in L-Band and X-Band. A discussion of potential space-borne navigation sensors is presented along with the accuracy of state-of-the-art relative orbit reconstruction. Finally, appropriate thrusters for formation acquisition and control are discussed together with approaches to formation flying guidance and control as well as fuel consumption.

  2. Regional landslide forecasting model using interferometric SAR images

    Institute of Scientific and Technical Information of China (English)

    董育烦; 张发明; 高正夏; 蒯志要

    2008-01-01

    Method of obtaining landslide evaluating information by using Interferometric Synthetic Aperture Radar (InSAR) technique was discussed. More precision landslide surface deformation data extracted from InSAR image need take suitable SAR interferometric data selecting, path tracking, phase unwrapping processes. Then, the DEM model of scope and surface shape of the landslide was built. Combining with geological property of landslide and sliding displacements obtained from InSAR/D-InSAR images, a new landslide forecasting model called equal central angle slice method for those not obviously deformed landslides was put forward. This model breaks the limits of traditional research methods of geology. In this model, the landslide safety factor was calculated by equal central angle slice method, then considering the persistence ratio of the sliding surface based on plastic theory, the minimum safety factor was the phase when plastic area were complete persistence. This new model makes the application of InSAR/D-InSAR technology become more practical in geology hazard research.

  3. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    Science.gov (United States)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A

  4. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    Science.gov (United States)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  5. Impact of firing on the OSL luminescence properties of natural quartz: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Koul, D.K., E-mail: dkkoul@barc.gov.in [Radiological and Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Polymeris, G.S. [Institute of Nuclear Sciences, Tandogan Campus, 06100 Beşevler, Ankara (Turkey); Soni, A.; Kulkarni, M.S. [Radiological and Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-03-01

    A comprehensive study was carried out to observe the impact of firing on the behavior of different features of the optically stimulated luminescence (OSL) signal of geological quartz. The different features which could influence its use in different applications were studied. A comparison of nature of (i) thermoluminescence (TL) glow curves, (ii) OSL decay curves, (iii) pulse annealing curves, (iv) fast and slow components and (v) thermally transferred OSL (TT-OSL) emission of unfired and fired samples suggested a profound influence of thermal firing on the OSL signal. The composition of the OSL signal was seen to get altered by firing treatment; the magnitude of slow component losing its dominance to the fast component. This was true of pulse annealing also, the fired curve looked different from the unfired one. TT-OSL was observed to be larger in unfired sample as compared to the fired sample. Finally, firing was seen to enable reliable dose recovery using single aliquot regenerative (SAR) method, which has not been the case with the unfired sample studied here.

  6. Compact polarimetric SAR product and calibration considerations for target analysis

    Science.gov (United States)

    Sabry, Ramin

    2016-10-01

    Compact polarimetric (CP) data exploitation is currently of growing interest considering the new generation of such Synthetic Aperture Radar (SAR) systems. These systems offer target detection and classification capabilities comparable to those of polarimetric SARs (PolSAR) with less stringent requirements. A good example is the RADARSAT Constellation Mission (RCM). In this paper, some characteristic CP products are described and effects of CP mode deviation from ideal circular polarization transmit on classifications are modeled. The latter is important for operation of typical CP modes (e.g., RCM). The developed model can be used to estimate the ellipticity variation from CP measured data, and hence, calibrate the classification products.

  7. SAR antenna design for ambiguity and multipath suppression

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Dich, Mikael

    1993-01-01

    A high resolution airborne synthetic aperture radar (SAR) has been developed at the Electromagnetics Institute (EMI) for remote sensing applications. The paper considers the radiation of antennas for a SAR system from a systems perspective. The basic specifications of an idealised antenna...... are obtained from the required swath and the azimuth footprint needed for the SAR processing. The radiation from a real antenna causes unwanted signal returns that lead to intensity variations (multipath) and ghost echoes (ambiguity). Additional specifications are deduced by considering these signals...

  8. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng;

    2011-01-01

    Prediction System (NOGAPS) model, C-band geophysical model functions (GMFs) which describe the normalized radar cross section (NRCS) dependence on the wind speed and the geometry of radar observations (i.e., incidence angle and azimuth angle with respect to wind direction) such as CMOD5 and newly developed...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  9. Quad-Polarimetric SAR for Detection and Characterization of Icebergs

    Science.gov (United States)

    Akbari, V.; Brekke, C.; Doulgeris, A. P.; Storvold, R.; Silvertsen, A.

    2016-08-01

    This paper evaluates the performance of fully polarimetric SAR data in iceberg detection and characterization. The study aims to explore the potential of RADARSAT- 2 SAR data to detect icebergs and growlers in Svalbard that have broken off from the glaciers nearby. To be able to detect iceberg/growlers in a SAR image, a significant contrast between iceberg and background clutter is required. The sublook cross-correlation magnitude (SCM) is extracted from the complex cross-correlation between subapeture images and contrast between iceberg and sea clutter is measured. The results of target-to-clutter ratio from the SCM indicate that the sublook analysis has an impact on detection performance.

  10. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  11. Speckle Suppression Method for SAR Image

    Directory of Open Access Journals (Sweden)

    Jiming Guo

    2013-04-01

    Full Text Available In this study, a new speckle reduction method was proposed in terms of by Bidimensional Empirical Mode Decomposition (BEMD. In this method, the SAR image containing speckle noise was decomposed into a number of elementary components by using BEMD and then the extremal points are done the boundary equivalent extension after screening and the residual continue to be done the boundary equivalent extension until screening is completed, finally, the image was reconstructed, which reduced the speckle noise. Experimental results show that this method has good effect on suppressing speckle noise, compared to the average filter, median filter and gaussian filter and has advantages of sufficiently retaining edge and detail information while suppressing speckle noise.

  12. Radionuclide release calculations for SAR-08

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Gavin; Miller, Alex; Smith, Graham; Jackson, Duncan (Enviros Consulting Ltd, Wolverhampton (United Kingdom))

    2008-04-15

    Following a review by the Swedish regulatory authorities of the post-closure safety assessment of the SFR 1 disposal facility for low and intermediate waste (L/ILW), SAFE, the SKB has prepared an updated assessment called SAR-08. This report describes the radionuclide release calculations that have been undertaken as part of SAR-08. The information, assumptions and data used in the calculations are reported and the results are presented. The calculations address issues raised in the regulatory review, but also take account of new information including revised inventory data. The scenarios considered include the main case of expected behaviour of the system, with variants; low probability releases, and so-called residual scenarios. Apart from these scenario uncertainties, data uncertainties have been examined using a probabilistic approach. Calculations have been made using the AMBER software. This allows all the component features of the assessment model to be included in one place. AMBER has been previously used to reproduce results the corresponding calculations in the SAFE assessment. It is also used in demonstration of the IAEA's near surface disposal assessment methodology ISAM and has been subject to very substantial verification tests and has been used in verifying other assessment codes. Results are presented as a function of time for the release of radionuclides from the near field, and then from the far field into the biosphere. Radiological impacts of the releases are reported elsewhere. Consideration is given to each radionuclide and to each component part of the repository. The releases from the entire repository are also presented. The peak releases rates are, for most scenarios, due to organic C-14. Other radionuclides which contribute to peak release rates include inorganic C-14, Ni-59 and Ni-63. (author)

  13. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    Science.gov (United States)

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  14. Road network extraction in classified SAR images using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    肖志强; 鲍光淑; 蒋晓确

    2004-01-01

    Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images.

  15. Stellwagen Bank National Marine Sanctuary - Synthetic Aperture Radar (SAR) Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains Synthetic Aperture Radar images (SAR), which consist of a fine resolution (12.5-50m), two-dimensional radar backscatter map of the...

  16. SAR Imaging of Moving Targets via Compressive Sensing

    CERN Document Server

    Wang, Jun; Zhang, Hao; Wang, Xiqin

    2011-01-01

    An algorithm based on compressive sensing (CS) is proposed for synthetic aperture radar (SAR) imaging of moving targets. The received SAR echo is decomposed into the sum of basis sub-signals, which are generated by discretizing the target spatial domain and velocity domain and synthesizing the SAR received data for every discretized spatial position and velocity candidate. In this way, the SAR imaging problem is converted into sub-signal selection problem. In the case that moving targets are sparsely distributed in the observed scene, their reflectivities, positions and velocities can be obtained by using the CS technique. It is shown that, compared with traditional algorithms, the target image obtained by the proposed algorithm has higher resolution and lower side-lobe while the required number of measurements can be an order of magnitude less than that by sampling at Nyquist sampling rate. Moreover, multiple targets with different speeds can be imaged simultaneously, so the proposed algorithm has higher eff...

  17. Massachusetts Bay - Internal wave packets digitized from SAR imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  18. A beamforming algorithm for bistatic SAR image formation.

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, David Alan; Wahl, Daniel Eugene; Jakowatz, Charles V., Jr.

    2010-03-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis--vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  19. A beamforming algorithm for bistatic SAR image formation

    Science.gov (United States)

    Jakowatz, Charles V., Jr.; Wahl, Daniel E.; Yocky, David A.

    2010-04-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis-à-vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  20. Brief Analysis on the Development and Application of Spaceborne SAR

    Directory of Open Access Journals (Sweden)

    Deng Yun-kai

    2012-03-01

    Full Text Available Spaceborne SAR, which is a kind of initiatively microwave imaging sensor, plays an important role in gathering information with its capability of all-day and all-weather imaging, and has become an indispensable sensor for observing the earth. With the development of SAR techniques, Spaceborne SAR has been provided with the ability of High-Resolution Wide-Swath, miniaturization with low cost, bistatic and multi-mode imaging, and Ground Moving Target Indicating (GMTI, so more accurate information about the culture could be obtained with lower cost. In the meantime, more technique problems with muliti-mode, new work system and complex environment are arising and needed to be solved. The main work of this paper is discussing the current situation and the future development of Spaceborne SAR.

  1. An Improved GLRT Method for Target Detection in SAR Imagery

    Directory of Open Access Journals (Sweden)

    Ju Yingyun

    2015-01-01

    Full Text Available Automatic ground vehicle detection based on SAR imagery is one of the important military applications of SAR. A region-based generalized likelihood ratio test (GLRT method is proposed in this paper, and this method combines the GLRT detection theory and image segmentation technology. First, the SAR imagery is roughly segmented as land clutter region and potential target region through the split and merge procedure often used for processing the original images. Then, based on the segmentation results, the reasonable statistical models for the data in the two regions are built respectively. Finally, with the knowledge of statistical characteristics of clutter and target, GLRT detection method is applied to the each pixel in the potential target region to obtain more accurate detection results. Experimental results based on real SAR data show that the proposed method can effectively detect the ground vehicle targets from the land clutter with excellent accuracy and speed.

  2. Evolution and Variation of the SARS-CoV Genome

    Institute of Scientific and Technical Information of China (English)

    Jianfei Hu; Zizhang Zhang; Wei Wei; Songgang Li; Jun Wang; Jian Wang; Jun Yu; Huanming Yang; Jing Wang; Jing Xu; Wei Li; Yujun Han; Yan Li; Jia Ji; Jia Ye; Zhao Xu

    2003-01-01

    Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus), we collected complete genome sequences of all viruses available in GenBank, and made comparative analyses with the SARSCoV. Genomic signature analysis demonstrates that the coronaviruses all take the TGTT as their richest tetranucleotide except the SARS-CoV. A detailed analysis of the forty-two complete SARS-CoV genome sequences revealed the existence of two distinct genotypes, and showed that these isolates could be classified into four groups. Our manual analysis of the BLASTN results demonstrates that the HE (hemagglutinin-esterase) gene exists in the SARS-CoV, and many mutations made it unfamiliar to us.

  3. A Review of Spaceborne SAR Algorithm for Image Formation

    Directory of Open Access Journals (Sweden)

    Li Chun-sheng

    2013-03-01

    Full Text Available This paper firstly reviews the history and trends in development of spaceborne Synthetic Aperture Radar (SAR satellite technology in American and European countries. Besides, the basic information of the launched satellites and the future satellite plans are introduced. Then this paper summaries and assorts the imaging algorithm of spaceborn SAR satellite and analyzes the advantages and disadvantages of each algorithm. Moreover, the scope and the application status of each algorithm are presented. And then the paper elaborates trends of SAR imaging algorithm, which mainly introduces the algorithms based on compressive sensing theory and new image modes, and the results of simulation are also illustrated. At last, the paper summaries the development direction of spaceborne SAR imaging algorithm.

  4. Methodology of dose calculation for the SRS SAR

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.B.

    1991-07-01

    The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided.

  5. Copernicus Sentinel-1 Satellite And C-SAR Instrument

    Science.gov (United States)

    Panetti, Aniceto; Rostan, Friedhelm; L'Abbate, Michelangelo; Bruno, Claudio; Bauleo, Antonio; Catalano, Toni; Cotogni, Marco; Galvagni, Luigi; Pietropaolo, Andrea; Taini, Giacomo; Venditti, Paolo; Huchler, Markus; Torres, Ramon; Lokaas, Svein; Bibby, David

    2013-12-01

    The Copernicus Sentinel-1 Earth Radar Observatory, a mission funded by the European Union and developed by ESA, is a constellation of two C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational applications such as mapping of global landmasses, coastal zones and monitoring of shipping routes. The Sentinel-1 satellites are built by an industrial consortium led by Thales Alenia Space Italia as Prime Contractor and with Astrium GmbH as SAR Instrument Contractor. The paper describes the general satellite architecture, the spacecraft subsystems, AIT flow and the satellite key performances. It provides also an overview on the C-SAR Instrument, its development status and pre- launch SAR performance prediction.

  6. Airborne X-band SAR tomography for forest volumes

    Science.gov (United States)

    Muirhead, Fiona; Woodhouse, Iain H.; Mulgrew, Bernard

    2016-10-01

    We evaluate the usefulness of X-band, airborne (helicopter) data for tomography over forestry regions and discuss the use of compressive sensing algorithms to aid X-band airborne tomography. This work examines if there is any information that can be gained from forest volumes when analysing forestry sites using X-band data. To do so, different forest scenarios were simulated and a fast SAR simulator was used to model airborne multipass SAR data, at X-band, with parameters based on Leonardo's PicoSAR instrument. Model simulations considered varying factors that affect the height determination when using tomography. The main parameters that are considered here are: motion errors of the platform, the spacing of the flight paths, the resolution of the SAR images and plant life being present under the canopy (an understory). It was found that residual motion errors from the airborne platform cause the largest error in the tomographic profile.

  7. The Staphylococcus aureus protein-coding gene gdpS modulates sarS expression via mRNA-mRNA interaction.

    Science.gov (United States)

    Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting

    2015-08-01

    Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway.

  8. DETERMINATION OF GLACIER SURFACE AREA USING SPACEBORNE SAR IMAGERY

    OpenAIRE

    Fang, L.; Maksymiuk, O.; Schmitt, M.; Stilla, U.

    2013-01-01

    Glaciers are very important climate indicators. Although visible remote sensing techniques can be used to extract glacier variations effectively and accurately, the necessary data are depending on good weather conditions. In this paper, a method for determination of glacier surface area using multi-temporal and multi-angle high resolution TerraSAR-X data sets is presented. We reduce the "data holes" in the SAR scenes affected by radar shadowing and specular backscattering of smooth i...

  9. First Bistatic Spaceborne SAR Experiments with TanDEM-X

    OpenAIRE

    Rodriguez-Cassola, Marc; Prats, Pau; Schulze, Daniel; Tous-Ramon, Nuria; Steinbrecher, Ulrich; Marotti, Luca; Nanninni, Matteo; Younis, Marwan; Lopez-Dekker, Paco; Zink, Manfred; Reigber, Andreas; Krieger, Gerhard; Moreira, Alberto

    2011-01-01

    TanDEM-X is a high-resolution interferometric mission with the main goal of providing a global and unprecedentedly accurate digital elevation model (DEM) of the Earth surface by means of single-pass X-band SAR interferometry. Despite its usual quasi-monostatic configuration, TanDEM-X is the first genuinely bistatic SAR system in space. During its monostatic commissioning phase, the system has been mainly operated in pursuit monostatic mode. However, some pioneering bistat...

  10. Concept of an Effective Sentinel-1 Satellite SAR Interferometry System

    OpenAIRE

    2016-01-01

    This brief study introduces a partially working concept being developed at IT4Innovations supercomputer (HPC) facility. This concept consists of several modules that form a whole body of an efficient system for observation of terrain or objects displacements using satellite SAR interferometry (InSAR). A metadata database helps to locate data stored in various storages and to perform basic analyzes. A special database has been designed to describe Sentinel-1 data, on its burst level. Custom Se...

  11. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  12. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  13. Recent Advances In Radar Polarimetry And Polarimetric SAR Interferometry

    Science.gov (United States)

    2007-02-01

    spectral windows of the “Natural Electromagnetic Spectrum (NES)” pertinent to Remote Sensing; ( ii ) mitigating against common “Radio Frequency...122], the DLR E-SAR [223], the ONERA RAMSES SAR [70], and we refer to pertinent papers presented at recent expert meetings for additional details [66...amplitude and 1º in polarimetric phase; must possess a very high dynamic range; ( ii ) they must become extra-wide-band, covering the HF to EHF frequency

  14. SAR image formation with azimuth interpolation after azimuth transform

    Science.gov (United States)

    Doerry; Armin W. , Martin; Grant D. , Holzrichter; Michael W.

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  15. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    Science.gov (United States)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M.; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.

    2016-08-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.

  16. Hybrid space-airborne bistatic SAR geometric resolutions

    Science.gov (United States)

    Moccia, Antonio; Renga, Alfredo

    2009-09-01

    Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.

  17. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  18. SAR-based vibrometry using the fractional Fourier transform

    Science.gov (United States)

    Campbell, Justin B.; Wang, Qi; Ade-Bello, Jelili; Caudana, Humberto; Trujillo, Nicole B.; Bhatta, Ishwor; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2015-05-01

    A fundamental assumption when applying Synthetic Aperture Radar (SAR) to a ground scene is that all targets are motionless. If a target is not stationary, but instead vibrating in the scene, it will introduce a non-stationary phase modulation, termed the micro-Doppler effect, into the returned SAR signals. Previously, the authors proposed a pseudosubspace method, a modification to the Discrete Fractional Fourier Transform (DFRFT), which demonstrated success for estimating the instantaneous accelerations of vibrating objects. However, this method may not yield reliable results when clutter in the SAR image is strong. Simulations and experimental results have shown that the DFRFT method can yield reliable results when the signal-to-clutter ratio (SCR) > 8 dB. Here, we provide the capability to determine a target's frequency and amplitude in a low SCR environment by presenting two methods that can perform vibration estimations when SCR < 3 dB. The first method is a variation and continuation of the subspace approach proposed previously in conjunction with the DFRFT. In the second method, we employ the dual-beam SAR collection architecture combined with the extended Kalman filter (EKF) to extract information from the returned SAR signals about the vibrating target. We also show the potential for extending this SAR-based capability to remotely detect and classify objects housed inside buildings or other cover based on knowing the location of vibrations as well as the vibration histories of the vibrating structures that house the vibrating objects.

  19. Sparse SAR imaging based on L1/2 regularization

    Institute of Scientific and Technical Information of China (English)

    ZENG JinShan; FANG Jian; XU ZongBen

    2012-01-01

    In this paper,a novel method for synthetic aperture radar (SAR) imaging is proposed.The approach is based on L1/2 regularization to reconstruct the scattering field,which optimizes a quadratic error term of the SAR observation process subject to the interested scene sparsity. Compared to the conventional SAR imaging technique,the new method implements SAR imaging effectively at much lower sampling rate than the Nyquist rate,and produces high-quality images with reduced sidelobes and increased resolution. Also,over the prevalent greedy pursuit and L1 regularization based SAR imaging methods,there are remarkable performance improvements of the new method.On one hand,the new method significantly reduces the number of measurements needed for reconstruction,as supported by a phase transition diagram study.On the other hand,the new method is more robust to the observation noise.These fundamental properties of the new method are supported and demonstrated both by simulations and real SAR data experiments.

  20. SAR11 Bacteria: The Most Abundant Plankton in the Oceans

    Science.gov (United States)

    Giovannoni, Stephen J.

    2017-01-01

    SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×1028 cells—approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.

  1. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    Science.gov (United States)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  2. Canonical framework for multi-channel SAR-GMTI

    Institute of Scientific and Technical Information of China (English)

    Liu Congfeng; Liao Guisheng

    2008-01-01

    Synthetic aperture radar (SAR) systems have become an important tool for fine-resolution mapping and other remote sensing operations.The multi-channel SAR ground moving-target indication (GMTI) must process its data to produce not only the image of surveillance area but also the information of the ground moving-targets.The topic of moving-target detection in clutter has been extensively studied,and there are many methods that are used to detect moving targets,such as displaced phase center antenna (DPCA) method,along-track interfero-metric (ATI) phase,space-time adaptive processing (STAP),or some other metrics.A canonical framework is proposed that encompasses all the multi-channel SAR-GMT methods,namely,DPCA and ATI.The statistical test metric for multi-channel SAR-GMTI is established in a simple form,via the definition of the complex central Wishart distribution,to deduce the statistics of the test metric,and the probability distribution of the test metric for multichannel SAR-GMTI has the complex central Wishart distribution of 1×1 case,namely the x2 distribution.The theory foundation offers the possibility to construct the united multi-channel SAR-GMTI detector,and derives the constant false alarm rate (CFAR) detector tests for separating moving targets from clutter.

  3. SAR11 Bacteria: The Most Abundant Plankton in the Oceans.

    Science.gov (United States)

    Giovannoni, Stephen J

    2017-01-03

    SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×10(28) cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.

  4. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  5. DInSAR fringes simulation of sandbox models

    Science.gov (United States)

    Derron, Marc-Henri; Carrea, Dario; Michoud, Clément; Jaboyedoff, Michel

    2015-04-01

    Interpreting satellite DInSAR patterns of slope movements can be difficult because of unwrapping problems, loss of coherence or radar imaging geometry limitations (layover, shadowing …). We investigate the potential of simulating interferometric fringes as a tool to help understanding real DInSAR images. Various types of gravitational slope deformations (sliding, toppling …) have been produced in a sandbox in the lab. These experiments were monitored with a micro-lidar Minolta-Konika Vivid 9i to get successive Digital Elevation Models of the surface. A pair of DEM is then used to simulate DInSAR fringes patterns, with the possibility to vary the wavelength, the angle between the line of sight and the ground displacement, the look angle, the baseline, etc. DInSAR fringes simulated here are idealized. They are not affected by any noise, decoherence, layover or shadow effects; radar image deformations are computed in ancillary files. However it appears that even these ideal wrapped fringes patterns get rapidly very complex when deformation is strong. Then this kind of tool is of interest to better constrain ground surface deformations from resulting InSAR fringes (from lab models or real landslides data). It makes also possible to test how the acquisition geometry impacts the InSAR result depending on the type of slope movement considered.

  6. Delta-K Wideband SAR Interferometry for DEM Generation and Persistent Scatterers Using TeraSAR-X

    Science.gov (United States)

    Brcic, Ramon; Eineder, Michael; Bamler, Richard; Steinbrecher, Ulrich; Schulze, Daniel; Metzig, Robert; Papathanassiou, Konstantinos; Nagler, Thomas; Mueller, Florian; Suess, Martin

    2010-03-01

    Wideband SAR systems such as TerraSAR-X allow estimation of the absolute interferometric phase without resorting to error prone phase unwrapping. This is achieved through the delta-k technique that exploits frequency diversity within the range bandwidth to simulate a SAR system with a much longer carrier wavelength. This benefits all interferometric applications including DEM generation and land surface motion determination. Here we present the results of an ESA study (21318/07/NL/HE) into using delta-k absolute phase estimation for DEM generation and PSI (Persistent Scatterer Interferometry). Using TerraSAR- X data, examples from a delta-k DEM generation system are shown which avoid the errors induced by conventional phase unwrapping. For PSI, the possibilities of absolute phase estimation for a single PS are explored in theory and examples where wideband estimation is compared to conventional PSI processing for a stack of acquisitions over Paris.

  7. InSAR Scientific Computing Environment

    Science.gov (United States)

    Rosen, Paul A.; Sacco, Gian Franco; Gurrola, Eric M.; Zabker, Howard A.

    2011-01-01

    This computing environment is the next generation of geodetic image processing technology for repeat-pass Interferometric Synthetic Aperture (InSAR) sensors, identified by the community as a needed capability to provide flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. This software allows users of interferometric radar data the flexibility to process from Level 0 to Level 4 products using a variety of algorithms and for a range of available sensors. There are many radar satellites in orbit today delivering to the science community data of unprecedented quantity and quality, making possible large-scale studies in climate research, natural hazards, and the Earth's ecosystem. The proposed DESDynI mission, now under consideration by NASA for launch later in this decade, would provide time series and multiimage measurements that permit 4D models of Earth surface processes so that, for example, climate-induced changes over time would become apparent and quantifiable. This advanced data processing technology, applied to a global data set such as from the proposed DESDynI mission, enables a new class of analyses at time and spatial scales unavailable using current approaches. This software implements an accurate, extensible, and modular processing system designed to realize the full potential of InSAR data from future missions such as the proposed DESDynI, existing radar satellite data, as well as data from the NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), and other airborne platforms. The processing approach has been re-thought in order to enable multi-scene analysis by adding new algorithms and data interfaces, to permit user-reconfigurable operation and extensibility, and to capitalize on codes already developed by NASA and the science community. The framework incorporates modern programming methods based on recent research, including object-oriented scripts controlling legacy and

  8. Similarity-potency trees: a method to search for SAR information in compound data sets and derive SAR rules.

    Science.gov (United States)

    Wawer, Mathias; Bajorath, Jürgen

    2010-08-23

    An intuitive and generally applicable analysis method, termed similarity-potency tree (SPT), is introduced to mine structure-activity relationship (SAR) information in compound data sets of any source. Only compound potency values and nearest-neighbor similarity relationships are considered. Rather than analyzing a data set as a whole, in part overlapping compound neighborhoods are systematically generated and represented as SPTs. This local analysis scheme simplifies the evaluation of SAR information and SPTs of high SAR information content are easily identified. By inspecting only a limited number of compound neighborhoods, it is also straightforward to determine whether data sets contain only little or no interpretable SAR information. Interactive analysis of SPTs is facilitated by reading the trees in two directions, which makes it possible to extract SAR rules, if available, in a consistent manner. The simplicity and interpretability of the data structure and the ease of calculation are characteristic features of this approach. We apply the methodology to high-throughput screening and lead optimization data sets, compare the approach to standard clustering techniques, illustrate how SAR rules are derived, and provide some practical guidance how to best utilize the methodology. The SPT program is made freely available to the scientific community.

  9. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    Science.gov (United States)

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  10. ON THE STUDY OF THE RELATIONSHIPS BETWEEN GUANGZHOU ATMOSPHERIC ENVIRONMENT FACTORS AND THE SARS EPIDEMIC

    Institute of Scientific and Technical Information of China (English)

    FENG Ye-rong; ZHU Ke-lun; JI Zhong-ping; DU Lin; WANG An-yu; JIN Shun-ying

    2005-01-01

    Based on SARS epidemic data and the corresponding atmospheric data, we used the timescale-partitioning technique, spectrum analysis and correlation analysis to investigate the impacts of the atmospheric environmental factors on the SARS epidemic. Results showed that there were close relations between environmental factors and SARS: The daily probable cases of SARS varied in 3-5 day cycles, much the same as the atmospheric elements did. The variations of the epidemics correlated remarkably with atmospheric elements. So conclusions can be drawn that weather changes have influences on the variations of daily SARS cases. In addition, statistical results showed that cold air activities aggravated the SARS epidemic.

  11. Message concerning Severe Acute Respiratory Syndrome ("SARS")

    CERN Document Server

    2003-01-01

    IMPORTANT REMINDER If you have just come back from one of the regions identified by the WHO as being infected with SARS, it is essential to monitor your state of health for ten days after your return. The syndrome manifests itself in the rapid onset of a high fever combined with respiratory problems (coughing, breathlessness, breathing difficulty). Should these signs appear, you must contact the CERN Medical Service as quickly as possible on number 73802 or 73186 during normal working hours, and the fire brigade at all other times on number 74444, indicating that you have just returned from one of the WHO-identified areas with recent local transmission.China: Beijing, Hong Kong (Special Administrative Region), Guangdong Province, Inner Mongolia, Shanxi Province, Tianjin ProvinceTaiwan:TaipeiMoreover, until further notice the CERN Management requests that all trips to these various regions of the world be reduced to a strict minimum and then only with the consent of the Division Leader concerned. Anyone comin...

  12. Spatio-temporal evolution of Beijing 2003 SARS epidemic

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Studying spatio-temporal evolution of epidemics can uncover important aspects of interaction among people, infectious diseases, and the environment, providing useful insights and modeling support to facilitate public health response and possibly prevention measures. This paper presents an empirical spatio-temporal analysis of epidemiological data concerning 2321 SARS-infected patients in Beijing in 2003. We mapped the SARS morbidity data with the spatial data resolution at the level of street and township. Two smoothing methods, Bayesian adjustment and spatial smoothing, were applied to identify the spatial risks and spatial transmission trends. Furthermore, we explored various spatial patterns and spatio-temporal evolution of Beijing 2003 SARS epidemic using spatial statistics such as Moran’s I and LISA. Part of this study is targeted at evaluating the effectiveness of public health control measures implemented during the SARS epidemic. The main findings are as follows. (1) The diffusion speed of SARS in the northwest-southeast direction is weaker than that in northeast-southwest direction. (2) SARS’s spread risk is positively spatially associated and the strength of this spatial association has experienced changes from weak to strong and then back to weak during the lifetime of the Beijing SARS epidemic. (3) Two spatial clusters of disease cases are identified: one in the city center and the other in the eastern suburban area. These two clusters followed different evolutionary paths but interacted with each other as well. (4) Although the government missed the opportunity to contain the early outbreak of SARS in March 2003, the response strategies implemented after the mid of April were effective. These response measures not only controlled the growth of the disease cases, but also mitigated the spatial diffusion.

  13. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    Science.gov (United States)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  14. Cross-Reaction of SARS-CoV Antigen with Autoantibodies in Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    Yunshan Wang; Nongjian Guo; Tanghong Jia; Shanhui Sun; Hong Shen; Lihua Jiang; Maoxiu Zhang; Dongjie Xiao; Yang Liu; Xiaoli Ma; Yong Zhang

    2004-01-01

    To investigate the significance of the SARS-associated coronavirus (SARS-CoV) antibody, detected by ELISA and indirect immunofluorescence assays (IFA) for the SARS-CoV Vero E6 cell lysates, in non-SARS subjects,114 serum samples from healthy controls and 104 serum specimens from autoimmune disease patients were collected. The results of ELISA showed that among 114 sera from healthy controls, 4 (3.5 %) were positive of SARS-CoV-IgG antibody and 114 (100%) were all negative of SARS-CoV-IgM antibody; the specificity of SARS-CoV-IgG antibody for SARS patients was 96.5%, but the specificity of both SARS-CoV-IgG and -IgM antibodies for SARS patients was 100%. In 58 cases with SLE, positive rates of SARS-CoV-IgG and -IgM antibodies were 32.8% (19/58) and 8.6% (5/58), respectively, in which 11 cases (19%) were positive of both SARS-CoV-IgG and -IgM antibodies; in 10 cases with SS, positive rate of both SARS-CoV-IgG and -IgM antibodies was 10% (1/10); in 16 cases with MCTD, positive rate of SARS-CoV-IgG was 37.5% (6/16), positive rate of both SARS-CoV-IgG and -IgM antibodies was 6.3% (1/16); in 20 cases with RA, one case was positive (5%) of SARS-CoV-IgG. However, of all samples with positive SARS-CoV-IgG and -IgM antibodies for autoimmune diseases and healthy controls, SARS-CoV RNA and antibodies were all negative by RT-PCR and IFA. All sera for negative or positive ELISA results were also negative or positive results using ELISA with Vero E6 cells lysates. These studies showed that SARS-CoV Vero E6 cell lysates for the ELISA to detect SARS-CoV antibodies could lead to the false-positive reactions or cross-reactions of SARS-CoV antibodies in non-SARS diseases and healthy controls, and the false-positive reactions or cross-reactions were related to Vero E6 cell lysates and autoantibodies in non-SARS population.

  15. Cross-Reaction of SARS-CoV Antigen with Autoantibodies in Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    YunshanWang; ShanhuiSun; HongShen; LihuaJiang; MaoxiuZhang; DongjieXiao; YangLiu; XiaoliMa; YongZhang; NongjianGuo; TanghongJia

    2004-01-01

    To investigate the significance of the SARS-associated coronavirus (SARS-CoV) antibody, detected by ELISA and indirect immunofluorescence assays (IFA) for the SARS-CoV Vero E6 cell lysates, in non-SARS subjects, 114 serum samples from healthy controls and 104 serum specimens from autoimmune disease patients were collected. The results of ELISA showed that among 114 sera from healthy controls, 4 (3.5%) were positive of SARS-CoV-IgG antibody and 114 (100%) were all negative of SARS-CoV-IgM antibody; the specificity of SARS-CoV-IgG antibody for SARS patients was 96.5%, but the specificity of both SARS-CoV-IgG and -IgM antibodies for SARS patients was 100%. In 58 cases with SLE, positive rates of SARS-CoV-IgG and -IgM antibodies were 32.8% (19/58) and 8.6% (5/58), respectively, in which 11 cases (19%) were positive of both SARS-CoV-IgG and -IgM antibodies; in 10 cases with SS, positive rate of both SARS-CoV-IgG and -IgM antibodies was 10% (1/10); in 16 cases with MCTD, positive rate of SARS-CoV-IgG was 37.5% (6/16), positive rate of both SARS-CoV-IgG and -IgM antibodies was 6.3% (1/16); in 20 cases with RA, one case was positive (5%) of SARS-CoV-IgC However, of all samples with positive SARS-CoV-IgG and -IgM antibodies for autoimmune diseases and healthy controls, SARS-CoV RNA and antibodies were all negative by RT-PCR and IFA. All sera for negative or positive ELISA results were also negative or positive results using ELISA with Vero E6 cells lysates. These studies showed that SARS-CoV Vero E6 cell lysates for the ELISA to detect SARS-CoV antibodies could lead to the false-positive reactions or cross-reactions of SARS-CoV antibodies in non-SARS diseases and healthy controls, and the false-positive reactions or cross-reactions were related to Vero E6 cell lysates and autoantibodies in non-SARS population. Cellular & Molecular Immunology.

  16. Seasonal Inundation Monitoring of Northern Pantanal Wetland, Brazil Using ALOS SAR/InSAR and Envisat Altimetry

    Science.gov (United States)

    Kim, J.; Calmant, S.; Lee, H.; Lu, Z.; Shum, C.

    2011-12-01

    The Pantanal is one of the most biologically diverse ecosystems and largest wetland in the world. It has been threatened by massive economic development, and anthropogenic climate change. At the current rate, the Brazilian Pantanal will disappear within 45 years, according to 2006 report by Conservation International. Here, we illustrate that the evolutions of the Pantanal can be characterized by using ALOS PALSAR Fine-Beam and ScanSAR mode images, and Envisat radar altimetry. Multi-mode of high resolution and large-scale SAR images were used to unveil temporal and spatial inundation patterns. The backscattering coefficient of multi-mode SAR images shows regular change pattern in response to periodic inundation. InSAR analysis allows us to recognize that the temporal variation is not spatially constant, which is distinct among other wetlands, e.g., Louisiana wetlands. In addition to SAR/InSAR data, radar Altimetry (Envisat) is critical for providing vertical datum and fine temporal resolution, towards characterization of the Pantanal wetland condition during inundation. The observed close correlation between inundation area from SAR images and hydraulic change from a river gauge implies that the Pantanal is vulnerable to external effects presumably by human activities, and abnormal hydraulic change can threaten the ecosystems and biological diversity. We conclude that radar remote sensing data can provide timely and high-resolution monitoring of hydraulic characteristics of the Pantanal, one of the least-known and most fragile wetlands, and they can potentially be used as an efficient tool for remote wetland monitoring and ecological studies.

  17. A Localization Method for Multistatic SAR Based on Convex Optimization.

    Directory of Open Access Journals (Sweden)

    Xuqi Zhong

    Full Text Available In traditional localization methods for Synthetic Aperture Radar (SAR, the bistatic range sum (BRS estimation and Doppler centroid estimation (DCE are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment.

  18. A Localization Method for Multistatic SAR Based on Convex Optimization.

    Science.gov (United States)

    Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment.

  19. Cauchy pdf modelling and its application to SAR image despeckling

    Institute of Scientific and Technical Information of China (English)

    Chen Guozhong; Liu Xingzhao

    2008-01-01

    Synthetic aperture radar(SAR)imagery is a kind of coherent system that produces a random pattern,named speckle,which degrades the merit of SAR images and affects their further application seriously.Therefore,how to restore SAR image from the speckle has become a necessary step in post-processing of image.A new despeckling method is putforth on the basis of wavelet.First.a new approach on the basis of"second kind statistics"is used to estimate the dispersion parameter of the Cauchy distribution.Then,this Cauchy prior is applied to model the distribution of the wavelet coefficients for the log-transformed reflectance of SAR image.Based on the above ideas,a new homomorphic wavelet-based maximum a posterior(MAP)despeckling method is proposed.Finally,the simulated speckled image and the real SAR image are used to verify our proposed method and the results show that it outperforms the other methods in terms of the speckle reduction and the feature retention.

  20. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  1. Integration of InSAR and GPS for hydraulic engineering

    Institute of Scientific and Technical Information of China (English)

    HE; XiuFeng; LUO; HaiBin; HUANG; QiHuan; HE; Min

    2007-01-01

    Interferometric synthetic aperture radar (InSAR) is a potential earth observation approach,and it has been demonstrated to have a variety of applications in measuring ground movement,urban subsidence and landslides.Currently InSAR provides the ability to map accurate DEM and measure ground deformation to sub-centimeter accuracy.However,many factors affect InSAR to measure ground movement since dam constructions are built in a large scale area with a complicated climate and unstable geology.This paper discusses potential applications of integrated InSAR and GPS to monitor a large-scale ground movement due to hydropower developments.The integration of InSAR and GPS can provide a cost-effective means for monitoring deformation of hydropower developments.Moreover,two novel methods,both the improved spatial interpolating method and estimation of 3D surface motion velocities method,are proposed and the experimental results and analysis are given in this paper.

  2. Targeted Radiosensitization by the Chk1 Inhibitor SAR-020106

    Energy Technology Data Exchange (ETDEWEB)

    Borst, Gerben R., E-mail: g.borst@nki.nl [The Institute of Cancer Research, London (United Kingdom); Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); McLaughlin, Martin; Kyula, Joan N.; Neijenhuis, Sari; Khan, Aadil; Good, James; Zaidi, Shane [The Institute of Cancer Research, London (United Kingdom); Powell, Ned G. [HPV Research Group, School of Medicine, Cardiff University, Cardiff (United Kingdom); Meier, Pascal; Collins, Ian; Garrett, Michelle D. [The Institute of Cancer Research, London (United Kingdom); Verheij, Marcel [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Harrington, Kevin J. [The Institute of Cancer Research, London (United Kingdom)

    2013-03-15

    Purpose: To explore the activity of a potent Chk1 inhibitor (SAR-020106) in combination with radiation. Methods and Materials: Colony and mechanistic in vitro assays and a xenograft in vivo model. Results: SAR-020106 suppressed-radiation-induced G{sub 2}/M arrest and reduced clonogenic survival only in p53-deficient tumor cells. SAR-020106 promoted mitotic entry following irradiation in all cell lines, but p53-deficient cells were likely to undergo apoptosis or become aneuploid, while p53 wild-type cells underwent a postmitotic G{sub 1} arrest followed by subsequent normal cell cycle re-entry. Following combined treatment with SAR-020106 and radiation, homologous-recombination-mediated DNA damage repair was inhibited in all cell lines. A significant increase in the number of pan-γH2AX-staining apoptotic cells was observed only in p53-deficient cell lines. Efficacy was confirmed in vivo in a clinically relevant human head-and-neck cell carcinoma xenograft model. Conclusion: The Chk1 inhibitor SAR-020106 is a potent radiosensitizer in tumor cell lines defective in p53 signaling.

  3. Chest X-ray imaging of patients with SARS

    Institute of Scientific and Technical Information of China (English)

    陆普选; 周伯平; 陈心春; 袁明远; 龚小龙; 杨根东; 刘锦清; 袁本通; 郑广平; 杨桂林; 王火生

    2003-01-01

    Objective To investigate the chest X-ray manifestations of SARS cases.Methods A retrospective study was conducted among 52 clinically confirmed SARS patients from February 9 to May 10, 2003. Chest X-ray scanning was performed at a interval of 1-3 days according to the requirements. The manifestations and special features of SARS in X-ray were analyzed. Results Small or large patchy shadows with intensive density in both lungs were observed in 31 cases, ground-glass like opacification in 16, small patchy shadows in one lung lobe or one lung segment in 18, nodular shadows in one lung segment in 1, and increased lung marking in lung interstitial tissues in 2. Rapidly changing consolidations revealed in chest X-ray images were found to be associated with SARS infections, and they were not affected by treatment with antibiotics.Conclusion Chest X-ray provides a sensitive and specific method for the diagnosis and treatment of SARS, and those present with symptoms and signs should undergo chest X-ray scanning every 1-3 days.

  4. Gb-Sar Interferometry for Structure Monitoring during Infrastructure Projects

    Science.gov (United States)

    Serrano Juan, A.; Vázquez-Suñé, E.; Monserrat, O.; Crosetto, M.; Hoffman, C.; Ledesma, A.; Criollo, R.; Pujades, E.; Velasco, V.; García, A.

    2015-12-01

    Monitoring is a necessary task for infrastructure projects. Ground-based synthetic aperture radar (GB-SAR) has been used in a large variety of displacement measurements. However, it has not yet been applied as a monitoring tool during construction projects. This paper aims to demonstrate that GB-SAR can be very helpful for understanding the mechanisms that control structure deformations and for identifying unexpected events and sensitive areas during construction projects. This could be done in a cost-effective way, which complements the traditional displacement measurements. An experiment was performed in the future railway station of La Sagrera, Barcelona (Spain) to demonstrate the utility of GB-SAR on structure monitoring during construction projects. In this experiment, GB-SAR precisely quantified wall displacements induced by dewatering. Manual data and numerical models have been used to confirm the measurements with a correlation analysis and by comparing measurements and deformation patterns, which have produced similar results. These results validate the use of the GB-SAR technique as a monitoring tool during construction projects.

  5. Classification of Polarimetric SAR Image Based on the Subspace Method

    Science.gov (United States)

    Xu, J.; Li, Z.; Tian, B.; Chen, Q.; Zhang, P.

    2013-07-01

    Land cover classification is one of the most significant applications in remote sensing. Compared to optical sensing technologies, synthetic aperture radar (SAR) can penetrate through clouds and have all-weather capabilities. Therefore, land cover classification for SAR image is important in remote sensing. The subspace method is a novel method for the SAR data, which reduces data dimensionality by incorporating feature extraction into the classification process. This paper uses the averaged learning subspace method (ALSM) method that can be applied to the fully polarimetric SAR image for classification. The ALSM algorithm integrates three-component decomposition, eigenvalue/eigenvector decomposition and textural features derived from the gray-level cooccurrence matrix (GLCM). The study site, locates in the Dingxing county, in Hebei Province, China. We compare the subspace method with the traditional supervised Wishart classification. By conducting experiments on the fully polarimetric Radarsat-2 image, we conclude the proposed method yield higher classification accuracy. Therefore, the ALSM classification method is a feasible and alternative method for SAR image.

  6. Noise Removal in SAR Images using Orthonormal Ridgelet Transform

    Directory of Open Access Journals (Sweden)

    A. Ravi,

    2015-05-01

    Full Text Available Development in the field of image processing for reducing speckle noise from digital images/satellite images is a challenging task for image processing applications. Previously many algorithms were proposed to de-speckle the noise in digital images. Here in this article we are presenting experimental results on de-speckling of Synthetic Aperture RADAR (SAR images. SAR images have wide applications in remote sensing and mapping the surfaces of all planets. SAR can also be implemented as "inverse SAR" by observing a moving target over a substantial time with a stationary antenna. Hence denoising of SAR images is an essential task for viewing the information. Here we introduce a transformation technique called ―Ridgelet‖, which is an extension level of wavelet. Ridgelet analysis can be done in the similar way how wavelet analysis was done in the Radon domain as it translates singularities along lines into point singularities under different frequencies. Simulation results were show cased for proving that proposed work is more reliable than compared to other despeckling processes, and the quality of de-speckled image is measured in terms of Peak Signal to Noise Ratio and Mean Square Error.

  7. An automatic coastline detector for use with SAR images

    Energy Technology Data Exchange (ETDEWEB)

    Erteza, Ireena A.

    1998-09-01

    SAR imagery for coastline detection has many potential advantages over conventional optical stereoscopic techniques. For example, SAR does not have restrictions on being collected during daylight or when there is no cloud cover. In addition, the techniques for coastline detection witth SAR images can be automated. In this paper, we present the algorithmic development of an automatic coastline detector for use with SAR imagery. Three main algorithms comprise the automatic coastline detection algorithm, The first algorithm considers the image pre-processing steps that must occur on the original image in order to accentuate the land/water boundary. The second algorithm automatically follows along the accentuated land/water boundary and produces a single-pixel-wide coastline. The third algorithm identifies islands and marks them. This report describes in detail the development of these three algorithms. Examples of imagery are used throughout the paper to illustrate the various steps in algorithms. Actual code is included in appendices. The algorithms presented are preliminary versions that can be applied to automatic coastline detection in SAR imagery. There are many variations and additions to the algorithms that can be made to improve robustness and automation, as required by a particular application.

  8. A Global Optimal Coherence Method for Multi-baseline InSAR Elevation Inversion

    Directory of Open Access Journals (Sweden)

    HUA Fenfen

    2015-11-01

    Full Text Available A global optimal coherence method for elevation inversion from multi-baseline polarimetric InSAR data is proposed. The multi-baseline polarimetric InSAR data used in experiments were obtained by Chinese X-SAR system and Germany's E-SAR system. Through combining several full polarimetric InSAR images, the proposed method constructs the multi-baseline polarimetric InSAR coherency matrix, and solves the optimal interferograms under global optimal coherence criterion. The optimal interferograms generated by global optimal coherence method were used to calculate the elevation of target with multi-baseline InSAR elevation inversion method. The proposed method reduces the influence of different scattering centers effectively using multi-baseline InSAR, which improves the accuracy and reliability of the interferometric phase and eventually improves the accuracy of DEM. The results verify the validity of the proposed method.

  9. A Compressive Sensing SAR Imaging Approach Based on Wavelet Package Algorithm

    Directory of Open Access Journals (Sweden)

    Shi Yan

    2013-06-01

    Full Text Available Compressive sensing SAR imaging can significantly reduce the sampling rate and the amount of data,but it is essential only in the case where the reflection coefficients of SAR scene are sparse. This paper proposed a compressive sensing SAR imaging method based on wavelet packet sparse representation. The wavelet packet algorithm is used to choose the most sparse representation of the SAR scene by training the same type of SAR images. By solving for the minimum 1 l norm optimization, the SAR scene reflection coefficients can be reconstructed. Unambiguous SAR image can be produced with the proposed method even with fewer samples. SAR data simulation experiments demonstrate the efficiency of the proposed method.

  10. Flexible T/R Modules for Large-Aperture, Space-Based SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for electronically-steerable, space-deployable SAR antenna arrays which impose minimal weight burden on the vehicles that place them into orbit. SAR...

  11. Study on the Application Technology of Ground-based InSAR%地基雷达干涉技术应用研究进展

    Institute of Scientific and Technical Information of China (English)

    邱志伟; 汪学琴; 岳顺; 郭献涛; 桑杰

    2015-01-01

    近年来,地基合成孔径雷达干涉技术的应用领域不断地扩展.本文详细地介绍了变形监测系统IBIS,并对其监测原理进行了简单概括.不仅对地基InSAR技术近期的应用及发展进行归纳总结,而且对该技术存在的问题从大气改正、断点校正及数据融合等方面进行深入的分析和讨论.通过对地基雷达干涉技术的应用研究分析,说明其在变形监测中将具有更为广泛的应用前景.%In recent years, the application field of ground-based synthetic aperture radar interferometry technique has been expanded. This paper introduces the deformation monitoring system IBIS and summarized the principle of monitoring briefly. Not only the application and development of InSAR technology are summarized in this paper, and the existing problems such as the atmospheric correction, breakpoint adjustment and the data fusion are analyzed and discussed in depth. Through the application research of ground radar interferometry analysis, this technology has broad application prospects in deformation monitoring.

  12. Geodetic imaging of tectonic deformation with InSAR

    Science.gov (United States)

    Fattahi, Heresh

    Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and

  13. Comparison of SAR Analysis on Self Developed Human Head Model with Three Different Antennas

    Directory of Open Access Journals (Sweden)

    Asadullah

    2013-03-01

    Full Text Available Human brain is the most sensitive part of Human body and SAR analysis is required for every type of antenna close to human body especially near head. Modeling human brain for SAR analysis is dealt in this research work. Various antennas for different frequencies are designed and then SAR is analyzed for each antenna. SAR analysis is compared for FCC standard and ICNIRP Standard for each of the antenna.

  14. Segment-based change detection for polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2006-01-01

    land areas for environmental or security applications. In many cases high resolution optical data are used for this purpose. However, SAR has also shown a potential due to the reliable data acquisition (i.e. independent of clouds), and the polarimetric SAR may provide the additional information...... to provide the most up-to-date map information to users. The update of topographic maps is an important and time consuming part of modern map production, and hence it is important to develop more robust and reliable methods to provide change detection information. Another example may be monitoring of larger...... criterion is based on the Wishart test statistic for fully polarimetric SAR data. 2. METHODOLOGY In change detection applications, at least two images must be available and used in the change detection process. If these images are segmented independently, the segments in the different images will most...

  15. Using support vector classification for SAR of fentanyl derivatives

    Institute of Scientific and Technical Information of China (English)

    Ning DONG; Wen-cong LU; Nian-yi CHEN; You-cheng ZHU; Kai-xian CHEN

    2005-01-01

    Aim: To discriminate between fentanyl derivatives with high and low activities.Methods: The support vector classification (SVC) method, a novel approach,was employed to investigate structure-activity relationship (SAR) of fentanyl derivatives based on the molecular descriptors, which were quantum parameters including △E [energy difference between highest occupied molecular orbital energy (HOMO) and lowest empty molecular orbital energy (LUMO)], MR(molecular refractivity) and Mr (molecular weight). Results: By using leave-oneout cross-validation test, the accuracies of prediction for activities of fentanyl derivatives in SVC, principal component analysis (PCA), artificial neural network (ANN) and K-nearest neighbor (KNN) models were 93%, 86%, 57%, and 71%, respectively. The results indicated that the performance of the SVC model was better than those of PCA, ANN, and KNN models for this data. Conclusion:SVC can be used to investigate SAR of fentanyl derivatives and could be a promising tool in the field of SAR research.

  16. 3-D Target Location from Stereoscopic SAR Images

    Energy Technology Data Exchange (ETDEWEB)

    DOERRY,ARMIN W.

    1999-10-01

    SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.

  17. Modelling Iteration Convergence Condition for Single SAR Image Geocoding

    Science.gov (United States)

    Dong, Yuting; Liao, Minghsheng; Zhang, Lu; Shi, Xuguo

    2014-11-01

    Single SAR image geocoding is to determine the ground coordinate for each pixel in the SAR image assisted with an external DEM. Due to the uncertainty of the elevation of each pixel in SAR image, an iterative procedure is needed, which suffers from the problem of divergence in some difficult areas such as shaded and serious layover areas. This paper aims at theoretically analysing the convergence conditions that has not been intensively studied till now. To make the discussion easier, the Range-Doppler (RD) model is simplified and then the general surface is simplified into a planar surface. Mathematical deduction is carried out to derive the convergence conditions and the impact factors for the convergence speed are analysed. The theoretical findings are validated by experiments for both simulated and real surfaces.

  18. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  19. A new FOA estimation method in SAR/GALILEO system

    Science.gov (United States)

    Liu, Gang; He, Bing; Li, Jilin

    2007-11-01

    The European Galileo Plan will include the Search and Rescue (SAR) transponder which will become part of the future MEOSAR (Medium earth orbit Search and Rescue) system, the new SAR system can improve localization accuracy through measuring the frequency of arrival (FOA) and time of arrival (TOA) of beacons, the FOA estimation is one of the most important part. In this paper, we aim to find a good FOA algorithm with minimal estimation error, which must be less than 0.1Hz. We propose a new method called Kay algorithm for the SAR/GALILEO system by comparing some frequency estimation methods and current methods using in the COAPAS-SARSAT system and analyzing distress beacon in terms of signal structure, spectrum characteristic. The simulation proves that the Kay method for FOA estimation is better.

  20. Expression and Purification of SARS Coronavirus Membrane Protein

    Institute of Scientific and Technical Information of China (English)

    戴五星; 雷明军; 吴少庭; 陈智浩; 梁靓; 潘晖榕; 秦莉; 高士同; 袁仕善; 张仁利

    2004-01-01

    To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis revealed that the cloned DNA sequence was the same as that reported. The re combinants were transformed into Escherichia coli (E. Coli) BL21 (DE3) and induced by Isopropylβ-D-thiogalactopyranoside (IPTG). The expression of 27 kD (1 kD=0. 992 1 ku) protein was detected by SDS-PAGE and pured by metal chelated chromatography. Results of Western-blot showed that this expressed protein could react with antibodies in sera of SARS patients during convalescence. This provided the basis for the further study on SARS virus vaccine and diagnostic agents.

  1. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

    2010-05-22

    This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

  2. Investigation of vegetation with multifrequency and multipolarization SAR systems

    Science.gov (United States)

    Winter, Rudolf; Roth, Achim; Bayer, Thomas

    1990-05-01

    Investigations of vegetation is conducted by synergism of different types of digital image data and models. As a standard application, satellite images are digitally coregistered with existant topographical data and stored in the Geographic Information Systems (GIS). The usefulness of multiparametric SAR (Synthetic Aperture Radar) data for vegetation mapping is discussed. The multifrequency aspects requires precise geocoding. Different application fields with recent results are discussed: forest investigations with SIR (Spaceborne Imaging Radar)-B data in the southern Rhine valley ; extraction of landuse categories in landscape units using two geocoded Seasat-SAR scenes in the area of Bonn; relief effects on image gray values in geocoded Seasat-SAR images; the concept of a remote sensing data base for ecological applications.

  3. High Efficient Universal Buck Boost Solar Array Regulator SAR Module

    Science.gov (United States)

    Kimmelmann, Stefan; Knorr, Wolfgang

    2014-08-01

    The high efficient universal Buck Boost Solar Array Regulator (SAR) module concept is applicable for a wide range of input and output voltages. The single point failure tolerant SAR module contains 3 power converters for the transfer of the SAR power to the battery dominated power bus. The converters are operating parallel in a 2 out of 3 redundancy and are driven by two different controllers. The output power of one module can be adjusted up to 1KW depending on the requirements. The maximum power point tracker (MPPT) is placed on a separate small printed circuit board and can be used if no external tracker signal is delivered. Depending on the mode and load conditions an efficiency of more than 97% is achievable. The stable control performance is achieved by implementing the magnetic current sense detection. The sensed power coil current is used in Buck and Boost control mode.

  4. Ensemble polarimetric SAR image classification based on contextual sparse representation

    Science.gov (United States)

    Zhang, Lamei; Wang, Xiao; Zou, Bin; Qiao, Zhijun

    2016-05-01

    Polarimetric SAR image interpretation has become one of the most interesting topics, in which the construction of the reasonable and effective technique of image classification is of key importance. Sparse representation represents the data using the most succinct sparse atoms of the over-complete dictionary and the advantages of sparse representation also have been confirmed in the field of PolSAR classification. However, it is not perfect, like the ordinary classifier, at different aspects. So ensemble learning is introduced to improve the issue, which makes a plurality of different learners training and obtained the integrated results by combining the individual learner to get more accurate and ideal learning results. Therefore, this paper presents a polarimetric SAR image classification method based on the ensemble learning of sparse representation to achieve the optimal classification.

  5. Estimating soil moisture distribution using polarimetric airborne SAR

    Science.gov (United States)

    Tadono, Takeo; Qong, Muhtar; Wakabayashi, Hiroyuki; Shimada, Masanobu; Shi, Jiancheng

    2000-12-01

    The goal of this study is to develop an algorithm for estimating the surface soil moisture and surface roughness using polarimetric Synthetic Aperture Radar (SAR) data. In this study, an algorithm was applied to polarimetric airborne SAR data to estimate distributions of surface soil moisture and roughness. To validate the estimated soil moisture, we simultaneously conducted an experiment in October 1999 in Tsukuba Science City, Ibaragi Prefecture of Japan. Surface soil moisture was obtained by the Time- Domain Reflectometry (TDR) method, and the horizontal profiles of the land surface height were measured by a comb- style instrument for calculating the surface roughness parameters in test sites. Because the problem is site- specific and depends upon the measurement accuracy of both the ground truth data, the SAR system including speckle noise, and the effects of vegetation and artificial constructions, such as buildings, houses, roads, and roadside trees, the comparison results did not agree well with measured and inferred soil moisture.

  6. Capability of geometric features to classify ships in SAR imagery

    Science.gov (United States)

    Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li

    2016-10-01

    Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.

  7. Scattering Mechanism Extraction by a Modified Cloude-Pottier Decomposition for Dual Polarization SAR

    Directory of Open Access Journals (Sweden)

    Kefeng Ji

    2015-06-01

    Full Text Available Dual polarization is a typical operational mode of polarimetric synthetic aperture radar (SAR. However, few studies have considered the scattering mechanism extraction of dual-polarization SARs. A modified Cloude-Pottier decomposition is proposed to investigate the performance of the scattering mechanism extraction of dual-polarization SARs. It is theoretically demonstrated that only HH-VV SAR can discriminate the three canonical scattering mechanisms from an isotropic surface, horizontal dipole, and isotropic dihedral. Various experiments are conducted using 21 scenes from real datasets acquired by AIRSAR, Convair-580 SAR, EMISAR, E-SAR, Pi-SAR, and RADARSAT-2. Division of the dual-polarization H-α plane is experimentally obtained. The lack of cross-polarization induces the diffusion of scattering mechanisms and their overlap in the HH-VV H-α plane. However, the performance of HH-VV SAR for extracting scattering mechanisms is acceptable. Thus, HH-VV SAR is a suitable alternative to full-polarization SAR in certain cases. Meanwhile, the extraction performance of the other two dual-polarization SARs is badly degraded due to the lack of co-polarization. Therefore, HH-HV and HV-VV SARs cannot effectively extract the scattering mechanisms in the H-α plane.

  8. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater extract

  9. THE SIMULATION OF THE SAR IMAGE OF INTERNAL SOLITARY WAVES IN ALBORAN SEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    SAR imaging mechanism of internal wave is studied. The numerical modelling of internal waves is obtained by the two-level scheme. The simulaed SAR images that have better expressed the features of internal waves are given by the internal waves SAR imaging theory and numerical modelling result.

  10. Pyrimidine and nucleoside gamma-esters of L-Glu-Sar

    DEFF Research Database (Denmark)

    Eriksson, André H; Elm, Peter L; Begtrup, Mikael

    2005-01-01

    -tetrahydrofuran-3-yl ester)-Sar (I), l-Glu(thymine-1-yl-methyl ester)-Sar (II) and l-Glu(acyclothymidine)-Sar (III) were synthesised and in vitro stability was studied in various aqueous and biological media. Affinity to and translocation via hPEPT1 was investigated in mature Caco-2 cell monolayers, grown...

  11. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.

    1997-01-01

    (EMI). In order to achieve a high geodetic fidelity when using such systems operationally, calibration procedures must be applied. Inaccurate navigation data and system parameters as well as system imperfections must be accounted for. This paper presents theoretical models describing the impact of key......The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  12. SAR observations of the Nansen Ice Shelf fracture

    Science.gov (United States)

    Moctezuma-Flores, M.; Parmiggiani, F.

    2016-11-01

    This paper presents a study, by means of of Synthetic Aperture Radar (SAR) images, of the fracture of the Nansen Ice Shelf, from its first appearance in SAR images to the final collapse on 7 April 2016. Both Sentinel-1 and Cosmo-SkyMed images have been used. First, the images were remapped onto an equidistant cylindrical projection; from these a subset, or imagette, only covering the fracture was extracted. A segmentation scheme was then applied to the sequence of imagettes in order to produce a sequence of binary imagettes with only the fracture area enhanced; from these, the computation of fracture area became a trivial task.

  13. Imaging Algorithm for Bistatic SAR Based on GNSS Signal

    Directory of Open Access Journals (Sweden)

    Tian Wei-ming

    2013-03-01

    Full Text Available In this paper imaging processing method for Bistatic Synthetic Aperture Radar (BiSAR utilizing navigation satellite is investigated. Considering the special problems of using Global Navigation Satellite System (GNSS signal to form SAR image, direct signal is used to estimate range migration parameters and range migration is corrected in azimuth time domain. Doppler sensitivity of phase-coded signal was solved by Doppler compensation. Through fitting the Doppler phase history with high-order polynomial, Doppler phase history is accurately approximated and azimuth compression is implemented by de-chirp processing. Through simulation and experimental data processing, the proposed method is verified.

  14. SAR observations of the Gulf Stream during SWADE

    Science.gov (United States)

    Vachon, Paris W.; Liu, Antony K.; Mollo-Christensen, Erik

    1992-01-01

    The Surface Wave Dynamics Experiment (SWADE) has gathered SAR observations of the Gulf Stream that show a change in ocean surface brightness; this may be due to the effects of a change in air-sea temperature difference across the observed edge, where the boundary is defined by warm, quickly flowing Gulf Stream water and cooler, relatively stationary shelf water. The two images discussed indicate the possibility of deepening understanding of Gulf Stream front dynamics by using the abundant spatial data of SAR imagery, in conjunction with more conventional (point-like) data on hydrography and currents.

  15. The animal origin of SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The first case of severe acute respiratory syndrome(SARS)in Guangdong province was reported on2Jan2003,whileretrospective survey has datedthe first index case on16Nov2002.In months that followed,pandemic of SARS widelyspread over the world until July2003,infecting8454people and claiming908deathsin39countries andregions global-ly.On16Dec2003,a32years old photographerlivinginsuburban Guangzhou presented withsymptoms of SARSinfec-tion.There were3other ensuing cases betweenthe end of2003and Jan2004.On23March200...

  16. Retrieval of Aboveground Biomass Using Multi-Frequency SAR

    Science.gov (United States)

    Stelmaszczuk-Gorska, Martyna; Thiel, Christian; Schmullius, Christiane

    2016-08-01

    The objective of this study was to investigate above-ground biomass (AGB) estimation in forests by combining multi-frequency Synthetic Aperture Radar (SAR) L-band and C-band data. An area of Siberian boreal forest was selected for this study. The results demonstrated that relatively high estimation accuracy can be obtained at the spatial resolution of 0.5 ha using the L- and C-band SAR backscatter. Overall, the AGB estimation error was calculated to be approximately 24 t ha-1 using the Random Forests machine learning algorithm.

  17. AIdentification of encoding proteins related to SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    MEI Hu; SUN Lili; ZHOU Yuan; XIONG Qing; LI Zhiliang

    2004-01-01

    By sampling 100 encoding proteins from SARS-coronavirus (SARS-CoV, NC 004718) and other six coronaviruses and selecting 23 variables through stepwise multiple regression (SMR) from 172 variables, the multiple linear regression (MLR) model was established with good results of the quantitative modelling correlation coefficient R2 = 0.645 and the cross-validation correlation coefficient 0.375. After removing 4 outliers, the quantitative modelling and cross-validation correlation coefficients were R2 = 0.743 and R2CV=0.543, respectively.

  18. Crisis prevention and management during SARS outbreak, Singapore.

    Science.gov (United States)

    Quah, Stella R; Hin-Peng, Lee

    2004-02-01

    We discuss crisis prevention and management during the first 3 months of the severe acute respiratory syndrome (SARS) outbreak in Singapore. Four public health issues were considered: prevention measures, self-health evaluation, SARS knowledge, and appraisal of crisis management. We conducted telephone interviews with a representative sample of 1,201 adults, > or = 21 years of age. We found that sex, age, and attitude (anxiety and perception of open communication with authorities) were associated with practicing preventive measures. Analysis of Singapore's outbreak improves our understanding of the social dimensions of infectious disease outbreaks.

  19. Adaptive noise radar for simultaneous bistatic SAR and GMTI

    Science.gov (United States)

    Rigling, Brian D.

    2005-05-01

    The adaptive noise radar algorithm allows computation of compressed pseudo-pulses from a received noise radar signal at the receiver ADC rate. This is accomplished through use of LMS channel identification algorithms commonly exploited in wireless communications. This paper shows how having access to compressed pseudo-pulses at the ADC rate may be exploited to simultaneously implement SAR and GMTI modes in two parallel Doppler-processing chains. Simultaneous SAR and GMTI will aid in tracking of alternately moving and stationary targets.

  20. 利用高分辨率聚束模式TerraSAR-X影像的PSInSAR监测地表变形%Monitoring Land Deformation Using PSInSAR with TerraSAR-X High Resolution Spotlight SAR Images

    Institute of Scientific and Technical Information of China (English)

    李永生; 张景发; 罗毅; 姜文亮

    2012-01-01

    利用20景于2010-03~2010-11期间采集的高分辨率聚束(1m分辨率)模式的TerraSAR-X SAR数据,采用永久散射体干涉测量技术(PSInSAR)获取了西藏羊八井地区由地热电站开采地下水引起的地面沉降。结果显示,羊八井地热电站周边及地热开采井地区在2010年期间的地面沉降速率最大达到25mm·a-1,而盆地其他地区的地面平均沉降速率为1mm·a-1。将其与ASAR获取的平均沉降速率结果对比,两者的相关性达到了0.76,这说明TerraSAR-X高分辨率SAR数据不仅可以提供高密度PS点,而且更好地体现了散射体的细节变化和微量位移情况。%Persistent scatterer InSAR was used to detect surface subsidence in the the Yangbajing geothermal power plant due to extraction of ground water with area aroun twent resolution TerraSAR-X spotlight SAR images collected between March and November y hig 2010 d h The results suggest that land subsidence in the areas of geothermal wells is up to 25 mm · a^-1 whilst the subsidence in the basin is less than 1 mm · a^- 1. And the correlation between TerraSAR-X and ASAR derived mean velocities is 0.76. TerraSAR-X high resolution spot- light SAR images can provide higher density of PS points than ASAR data, and also can re- veal the detail change and micro-displacement in a single ground object.

  1. Effect of beam-pointing errors on bistatic SAR imaging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors.Based on the moving geometry configuration of aero bistatic SAR,a model of beam pointing errors is built.Based on this,the azimuth Doppler frequency center estimation caused by these errors and the limitation to the beam pointing synchronization error are studied,and then the imaging result of different errors are analyzed.The computer's simulations are provided to prove the validity of the above analysis.

  2. SAR-based Wind Resource Statistics in the Baltic Sea

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Pena Diaz, Alfredo;

    2011-01-01

    Ocean winds in the Baltic Sea are expected to power many wind farms in the coming years. This study examines satellite Synthetic Aperture Radar (SAR) images from Envisat ASAR for mapping wind resources with high spatial resolution. Around 900 collocated pairs of wind speed from SAR wind maps...... deviation of 20.11° and R2 of 0.950. The scale and shape parameters, A and k, respectively, from the Weibull probability density function are compared at only one available mast and the results deviate ~2% for A but ~16% for k. Maps of A and k, and wind power density based on more than 1000 satellite images...

  3. Internal Calibration of HJ-1-C Satellite SAR System

    Directory of Open Access Journals (Sweden)

    Yang Zhen

    2014-06-01

    Full Text Available The HJ-1-C satellite is a Synthetic Aperture Radar (SAR satellite of a small constellation for environmental and disaster monitoring. At present, it is in orbit and working well. The SAR system uses a mesh reflector antenna and centralized power amplifier, and has an internal calibration function in orbit. This study introduces the internal calibration modes and signal paths. The design and realization of the internal calibrator are discussed in detail. Finally, the internal calibration data acquired in orbit are also analyzed.

  4. Training Convolutional Neural Networks for Translational Invariance on SAR ATR

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten

    2016-01-01

    In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...... and testing the classification performance. Our results show that where other classification methods are very sensitive to even small translations, CNN is quite robust to translational variance, making it much more useful in relation to Automatic Target Recognition (ATR) in a real life context....

  5. Scale transform algorithm used in FMCW SAR data processing

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhihong; Kan Huangfu; Wan Jianwei

    2007-01-01

    The frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) is a light-weight,cost-effective, high-resolution imaging radar, which is suitable for a small flight platform. The signal model is derived for FMCW SAR used in unmanned aerial vehicles (UAV) reconnaissance and remote sensing. An appropriate algorithm is proposed. The algorithm performs the range cell migration correction (RCMC) for continuous nonchirped raw data using the energy invariance of the scaling of a signal in the scale domain. The azimuth processing is based on step transform without geometric resampling operation. The complete derivation of the algorithm is presented. The algorithm performance is shown by simulation results.

  6. InSAR Scientific Computing Environment - The Home Stretch

    Science.gov (United States)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.

    2011-12-01

    The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python

  7. Nadir Margins in TerraSAR-X Timing Commanding

    OpenAIRE

    Wollstadt, Steffen; Mittermayer, Josef

    2008-01-01

    This paper presents an analysis and discussion of the Nadir return in the context of radar timing. Results obtained during the Commissioning Phase of TerraSAR-X in verification and measurement of Nadir return and timing margins are shown. Pre-launch assumptions about the Nadir margins were verified and optimized, which led to an improvement in the timing commanding, i.e. a relaxing of the timing. By means of three early acquired TerraSAR-X images which contain Nadir re...

  8. Microstrip antenna for polarimetric C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim; Dich, Mikael

    1994-01-01

    The paper outlines the design and the measured performance of a 224-element dual-linearly polarized microstrip array antenna with low cross-polarization. The array is currently being flown on the Danish high-resolution polarimetric C-band synthetic aperture radar (SAR)......The paper outlines the design and the measured performance of a 224-element dual-linearly polarized microstrip array antenna with low cross-polarization. The array is currently being flown on the Danish high-resolution polarimetric C-band synthetic aperture radar (SAR)...

  9. The Intelligent Decision Support System Model of SARS

    Institute of Scientific and Technical Information of China (English)

    ZhouXingyu; ZhangJiang; LiuYang; XieYanqing; ZhangRan; ZhaoYang; HeZhongxiong

    2004-01-01

    Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) model can be built to analyze the noise information and forecast the trend of the catastrophe then to give the method or policy to defend the disease. The model system is composed of four subsystems: the noise analysis subsystem, forecast and simulation subsystem, diagnosis subsystem and second recovery subsystem. They are discussed briefly in this paper. This model can be used not only for SARS but also for other paroxysmal accidences.

  10. SAR-GMTI investigation in hybrid along-and cross-track baseline InSAR

    Institute of Scientific and Technical Information of China (English)

    SUO ZhiYong; LI ZhenFang; BAO Zheng; WU JianXin

    2009-01-01

    A joint-pixel clutter suppression method based on slope compensation is proposed in this paper. In order to eliminate the effect of the terrain interferometric phase caused by the cross-track baseline in hybrid baseline InSAR, the local independent identical distribution of the clutter is satisfied by using the slope compensation technique, and thus the clutter can be suppressed successfully by using the orthogonality of the clutter subspace and the noise subspace. This approach utilizes the information contained in the current pixel as well as in its neighbors, showing robustness to the image coregistration errors. Both the simulated data and the real airborne data are used in proving the validity of the presented approach.

  11. The Bistatic SAR Imaging Algorithm Based on the Slanting Flight Mode%基于斜飞模式的双基地SAR成像算法

    Institute of Scientific and Technical Information of China (English)

    彭岁阳; 张军; 沈振康

    2011-01-01

    The slanting flight mode bistatic SAR system has a flexible configuration and broad application prospects. However, because of the transceiver platform's movement in the range direction,the equation of instantaneous slant range gets very complex, and motion compensation also becomes rather difficult. Through an analysis of squint flight mode geometries, the thesis expounds the keystone of motion compensation in the range domain on slant flight mode, and presents two methods of motion compensation - the taylor approximation method and model approximation method. Then through analyzing the echo which has compensated the deviation in the range domain,the bistatic SAR Algorithm with range walk correction in time domain is conducted completely. Simulation results show that the motion compensation model approximation method is superior to the first-order taylor approximation method, and is equal to the second-order taylor approximation method, as well as verify the effectiveness of the method of slanting flight mode bistatic SAR imaging.%斜飞模式双基地SAR系统配置灵活,具有广阔的应用前景.但由于收发平台存在距离向的运动,瞬时斜距方程非常复杂,运动补偿也更困难.本文通过分析斜飞模式下的几何构形,阐述了斜飞模式下距离向运动补偿的基本原理,并设计了两种运动补偿方法——泰勒近似法和模型近似法.然后通过对距离向偏移补偿后的回波分析,完整的推导了基于时域距离走动的双基地SAR成像算法.仿真实验表明模型近似法运动补偿的效果要优于泰勒一阶近似法,与泰勒二阶近似法相当,并验证了本文方法对斜飞模式双基地SAR成像的有效性.

  12. Differential geodetic stereo SAR with TerraSAR-X by exploiting small multi-directional radar reflectors

    Science.gov (United States)

    Gisinger, Christoph; Willberg, Martin; Balss, Ulrich; Klügel, Thomas; Mähler, Swetlana; Pail, Roland; Eineder, Michael

    2017-01-01

    In this paper, we report on the direct positioning of small multi-directional radar reflectors, so-called octahedrons, with the synthetic aperture radar (SAR) satellite TerraSAR-X. Its highest resolution imaging mode termed staring spotlight enables the use of such octahedron reflectors with a dimension of only half a meter, but still providing backscatter equivalent to 1-2 cm observation error. Four octahedrons were deployed at Wettzell geodetic observatory, and observed by TerraSAR-X with 12 acquisitions in three different geometries. By applying our least squares stereo SAR algorithm already tested with common trihedral corner reflectors (CRs), and introducing a novel differential extension using one octahedron as reference point, the coordinates of the remaining octahedrons were directly retrieved in the International Terrestrial Reference Frame (ITRF). Contrary to our standard processing, the differential approach does not require external corrections for the atmospheric path delays and the geodynamic displacements, rendering it particularly useful for joint geodetic networks employing SAR and GNSS. In this paper, we present and discuss both methods based on results when applying them to the aforementioned Wettzell data set of the octahedrons. The comparison with the independently determined reference coordinates confirms the positioning accuracy with 2-5 cm for the standard approach, and 2-3 cm for the differential processing. Moreover, we present statistical uncertainty estimates of the observations and the positioning solutions, which are additionally provided by our parameter estimation algorithms. The results also include our 1.5 m CR available at Wettzell, and the outcomes clearly demonstrate the advantage of the multi-directional octahedrons over conventional CRs for global positioning applications with SAR.

  13. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  14. A new C-band SAR for ERS-1 underflights

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Christensen, Erik Lintz

    1990-01-01

    A high-resolution airborne C-band synthetic aperture radar (SAR) has been designed, built, and tested. The radar design based on digital technology to the largest possible extent, to make the system as adaptable as possible. This has resulted in a very flexible radar with variable resolution, swath...

  15. Wind mapping offshore in coastal Mediterranean area using SAR images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete;

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...

  16. The Danish real-time SAR processor: first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Jørgensen, Jørn Hjelm; Netterstrøm, Anders;

    1993-01-01

    A real-time processor (RTP) for the Danish airborne Synthetic Aperture Radar (SAR) has been designed and constructed at the Electromagnetics Institute. The implementation was completed in mid 1992, and since then the RTP has been operated successfully on several test and demonstration flights...

  17. Offshore Wind Resource Estimation in Mediterranean Area Using SAR Images

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete;

    Satellite observations of the ocean surface from Synthetic Aperture Radars (SAR) provide information about the spatial wind variability over large areas. This is of special interest in the Mediterranean, where spatial wind information is only provided by sparse buoys, often with long periods...

  18. Missile-Borne SAR Raw Signal Simulation for Maneuvering Target

    Directory of Open Access Journals (Sweden)

    Weijie Xia

    2016-01-01

    Full Text Available SAR raw signal simulation under the case of maneuver and high-speed has been a challenging and urgent work recently. In this paper, a new method based on one-dimensional fast Fourier transform (1DFFT algorithm is presented for raw signal simulation of maneuvering target for missile-borne SAR. Firstly, SAR time-domain raw signal model is given and an effective Range Frequency Azimuth Time (RFAT algorithm based on 1DFFT is derived. In this algorithm, the “Stop and Go” (SaG model is adopted and the wide radar scattering characteristic of target is taken into account. Furthermore, the “Inner Pulse Motion” (IPM model is employed to deal with high-speed case. This new RFAT method can handle the maneuvering cases, high-speed cases, and bistatic radar cases, which are all possible in the missile-borne SAR. Besides, this raw signal simulation adopts the electromagnetic scattering calculation so that we do not need a scattering rate distribution map as the simulation input. Thus, the multiple electromagnetic reflections can be considered. Simulation examples prove the effectiveness of our method.

  19. Bistatic SAR coherence over non-planar topographies

    Science.gov (United States)

    Andre, Daniel B.; Morrison, Keith

    2012-05-01

    Monostatic Synthetic Aperture Radar (SAR) Coherent Change Detection (CCD) has been found to be of great utility in detecting changes that occur on the ground. Detectable changes of interest include vehicle tracks and water flow. The CCD procedure involves performing repeat pass radar collections, to form a coherence product, where ground disturbances can induce detectable incoherence. However there is usually a difference in the radar collection geometry which can lead to incoherent energy noise entering the CCD, which reduces the detectability of tracks. When sensing flat terrain, the incoherence due to collection geometry difference can be removed through a conventional Fourier image support trimming process. However, it has been found that when the terrain contains non-flat topography, the optimal trimming process is substantially more involved, so much so that a new per-pixel SAR back-projection imaging algorithm has been developed. This algorithm trims off incoherent energy on a per-pixel basis according to the local topography. In order to validate the bistatic SAR generalization to the monostatic per-pixel formalism and algorithm, bistatic change detection measurements were conducted with the GB-SAR system, and these are reported here.

  20. UWB front-end for SAR-based imaging system

    NARCIS (Netherlands)

    Monni, S.; Grooters, R.; Neto, A.; Nennie, F.A.

    2010-01-01

    A planarly fed UWB leaky lens antenna is presented integrated with wide band transmit and receive front-end electronics, to be used in a SAR-based imaging system. The unique non-dispersive characteristics of this antenna over a very wide bandwidth, together with the dual band front-end electronics b

  1. Interferon-Beta 1a and SARS Coronavirus Replication

    Science.gov (United States)

    2004-02-01

    ribavirin remains uncertain because it has no activity against SARS-CoV in vitro. Molecular modeling studies suggest that rhinovirus 3Cpro inhibitors...coronavirus. Science 2003;300:1399–404. 3. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure

  2. A BRIEF DISCUSSION REGARDING PRION DISEASES AND SARS

    Science.gov (United States)

    Recent diagnoses of Mad Cow disease in Canadian and American cattle has increased concern for this disease and other TSEs in North America. This presentation provides a quick review of the important features of Mad Cow disease as well as SARS as they might relate to land applicat...

  3. Ocean Environment Sensing using Polarimetric and Interferometric SAR

    Science.gov (United States)

    2003-09-01

    A wave system with an estimated dominant wavelength of 156m is propagating through the site with a wind/wave direction of 320o (NDBC Buoy, Bodega ...mean square slope < 2 > of these perturbed waves was calculated as 1.72 o. II . RECENT SAR/AT-INSAR INVESTIGATIONS A. AIRSAR Study of Coastal Eddies

  4. A fully automated TerraSAR-X based flood service

    Science.gov (United States)

    Martinis, Sandro; Kersten, Jens; Twele, André

    2015-06-01

    In this paper, a fully automated processing chain for near real-time flood detection using high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data is presented. The processing chain including SAR data pre-processing, computation and adaption of global auxiliary data, unsupervised initialization of the classification as well as post-classification refinement by using a fuzzy logic-based approach is automatically triggered after satellite data delivery. The dissemination of flood maps resulting from this service is performed through an online service which can be activated on-demand for emergency response purposes (i.e., when a flood situation evolves). The classification methodology is based on previous work of the authors but was substantially refined and extended for robustness and transferability to guarantee high classification accuracy under different environmental conditions and sensor configurations. With respect to accuracy and computational effort, experiments performed on a data set of 175 different TerraSAR-X scenes acquired during flooding all over the world with different sensor configurations confirm the robustness and effectiveness of the proposed flood mapping service. These promising results have been further confirmed by means of an in-depth validation performed for three study sites in Germany, Thailand, and Albania/Montenegro.

  5. Mobile phone types and SAR characteristics of the human brain.

    Science.gov (United States)

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-03-07

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  6. Detecting and monitoring aquacultural patterns through multitemporal SAR imagery analysis

    Science.gov (United States)

    Profeti, Giuliana; Travaglia, Carlo; Carla, Roberto

    2003-03-01

    The inventory and monitoring of aquaculture areas are essential tools for decision-making at a governmental level in developing countries. With the use of satellite imagery, these tasks can be performed in an accurate, rapid and objective way. This approach is also economically viable, as the worth of aquaculture far outweighs its cost. This paper describes a methodology for identifying and monitoring shrimp farms by means of multi-temporal satellite SAR data. SAR offer all-weather capabilities, an important characteristic since shrimp farms exist in tropical and sub-tropical areas. Moreover, the backscatter effect created by the dykes surrounding the ponds produces a typical pattern which allows the interpreter to distinguish them from other types of water-covered surfaces. However, the presence of speckle noise limits the interpretability of SAR imagery. To increase it, a multi-temporal set of four scenes covering the study area was processed by using a method that enhances time-invariant spatial features and reduces speckle without compromising the geometrical resolution of the images. The enhanced SAR imagery has proved to be valuable in identifying shrimp farm patterns with a field-tested accuracy of more than 90 percent. The methodology reported in this study has been tested with the ground truth obtained under operative conditions in Sri Lanka, thanks to the support of the FAO TCP/SRL/6712 project.

  7. Quartz red TL SAR equivalent dose overestimation for Chinese loess

    DEFF Research Database (Denmark)

    Lai, Z.P.; Murray, A.S.; Bailey, R.M.;

    2006-01-01

    For the red TL of quartz extracted from Chinese loess, the single-aliquot regenerative-dose (SAR) procedure overestimates the known laboratory doses in dose recovery test. The overestimation is the result of the first heating during the measurement of natural TL signal causing a sensitivity...

  8. LTE modem power consumption, SAR and RF signal strength emulation

    DEFF Research Database (Denmark)

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new methodology for emulating the LTE modem power consumption, emitted SAR and RF signal strength when transmitting an LTE signal. The inputs of the methodology are: modem logical/protocol commands, time advance, near-field specifier, and antenna characteristics. The power...

  9. Insight to Global Change: EOS/SAR Mission

    Science.gov (United States)

    1990-01-01

    This video presentation describes the methods and instrumentation used to help in determining future climate changes on Earth and explains the benefits of experimentation with synthetic aperture radar (SAR). It also gives a better understanding of the burning of fossil fuels, deterioration of the biosphere and deforestation of the rain forest which causes the greenhouse effect.

  10. Coronaviridae and SARS-associated Coronavirus Strain HSR1

    Science.gov (United States)

    Canducci, Filippo; Pinna, Debora; Mancini, Nicasio; Carletti, Silvia; Lazzarin, Adriano; Bordignon, Claudio; Poli, Guido; Clementi, Massimo

    2004-01-01

    During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription–polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 μg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features. PMID:15109406

  11. Sentinel-1 Sar Imagery for Finnish Agricultural Subsidy Control

    Science.gov (United States)

    Torma, Markus; Munck, Anders; Mattila, Olli-Pekka; Harma, Pekka; Arslan, Nadir

    2016-08-01

    Agricultural parcels were classified to six general plant groups (winter cereals, spring cereals, peas, potato, rapeseed and grasses) using Sentinel-1 Interferometric Wide swath SAR imagery. The results were encouraging; the best overall accuracy was about 95%. The division of parcels to ploughed or non-ploughed parcels was possible if images were available after snow melt and before greening.

  12. Range non-linearities correction in FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2006-01-01

    The limiting factor to the use of Frequency Modulated Continuous Wave (FMCW) technology with Synthetic Aperture Radar (SAR) techniques to produce lightweight, cost effective, low power consuming imaging sensors with high resolution, is the well known presence of non-linearities in the transmitted si

  13. Unsupervised Classification of SAR Images using Hierarchical Agglomeration and EM

    NARCIS (Netherlands)

    Kayabol, K.; Krylov, V.; Zerubia, J.; Salerno, E.; Cetin, A.E.; Salvetti, O.

    2012-01-01

    We implement an unsupervised classification algorithm for high resolution Synthetic Aperture Radar (SAR) images. The foundation of algorithm is based on Classification Expectation-Maximization (CEM). To get rid of two drawbacks of EM type algorithms, namely the initialization and the model order sel

  14. Mobile phone types and SAR characteristics of the human brain

    Science.gov (United States)

    Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth

    2017-04-01

    Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.

  15. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2015-02-01

    Full Text Available To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

  16. The Performance Analysis Based on SAR Sample Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Esra Erten

    2012-03-01

    Full Text Available Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  17. DIRECTION AMBIGUITY RESOLUTION FROM SAR IMAGERY: A NEW APPROACH

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ambiguity problem is inherent in synthetic aperture radar (SAR)images of ocean waves. A new method is developed based on the propagation theory of gravity waves to remove this kind of ambiguity from a single frame of real image. The results from a case study presented in this paper show good agreement to in-phase wave data.

  18. The Danish (Q)SAR Database Update Project

    DEFF Research Database (Denmark)

    Nikolov, Nikolai Georgiev; Dybdahl, Marianne; Abildgaard Rosenberg, Sine

    2013-01-01

    , carcinogenicity and others), each of them available for 185,000 organic substances. The database has been available online since 2005 (http://qsar.food.dtu.dk). A major update project for the Danish (Q)SAR database is under way, with a new online release planned in the beginning of 2015. The updated version...

  19. Treating SARS with Integrative Chinese and Western Medicine

    Institute of Scientific and Technical Information of China (English)

    王融冰

    2003-01-01

    An abrupt attack of severe acute respiratory syndrome (SARS) broke out in Beijing in the spring in 2003, with thousands of patients suffering from the malady and hundreds of victims on the death toll,which seriously threatened the people′s life and health with a heavy psychological blow.

  20. SAR image target segmentation based on entropy maximization and morphology

    Institute of Scientific and Technical Information of China (English)

    柏正尧; 刘洲峰; 何佩琨

    2004-01-01

    Entropy maximization thresholding is a simple, effective image segmentation method. The relation between the histogram entropy and the gray level of an image is analyzed. An approach, which speeds the computation of optimal threshold based on entropy maximization, is proposed. The suggested method has been applied to the synthetic aperture radar (SAR) image targets segmentation. Mathematical morphology works well in reducing the residual noise.

  1. CAS Scientists Find New Anti-SARS Compounds

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Scientists from the CAS Shanghai Institute of Materia Medica (SIMM) and the National Center for Drug Screening (NCDS) have identified several novel compounds that could be potential weapons to combat the SARS epidemic. This was announced at a news briefing held by the CAS Shanghai Institutes for Biological Sciences on June 19 in Shanghai.

  2. Recent Advances in Radar Polarimetry and Polarimetric SAR Interferometry

    Science.gov (United States)

    Boerner, Wolfgang-Martin

    2005-01-01

    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly, and these novel radar technologies are revamping Synthetic Aperture Radar Imaging decisively. In this exposition the successive advancements are sketched; beginning with the fundamental formulations and high-lighting the salient points of these diverse remote sensing techniques. Whereas with radar polarimetry the textural fine-structure, target-orientation and shape, symmetries and material constituents can be recovered with considerable improvements above that of standard amplitude-only Polarization Radar ; with radar interferometry the spatial (in depth) structure can be explored. In Polarimetric-Interferometric Synthetic Aperture Radar (POL-IN-SAR) Imaging it is possible to recover such co-registered textural plus spatial properties simultaneously. This includes the extraction of Digital Elevation Maps (DEM) from either fully Polarimetric (scattering matrix) or Interferometric (dual antenna) SAR image data takes with the additional benefit of obtaining co-registered three-dimensional POL-IN-DEM information. Extra-Wide-Band POL-IN-SAR Imaging - when applied to Repeat-Pass Image Overlay Interferometry - provides differential background validation and measurement, stress assessment, and environmental stress-change monitoring capabilities with hitherto unattained accuracy, which are essential tools for improved global biomass estimation. More recently, by applying multiple parallel repeat-pass EWB-POL-D(RP)-IN-SAR imaging along stacked (altitudinal) or displaced (horizontal) flight-lines will result in Tomographic (Multi- Interferometric) Polarimetric SAR Stereo-Imaging , including foliage and ground penetrating capabilities. It is shown that the accelerated advancement of these modern EWB-POL-D(RP)-IN-SAR imaging techniques is of direct relevance and of paramount priority to wide-area dynamic homeland security surveillance and local-to-global environmental ground-truth measurement

  3. 20 years of SAR measurements along the NAFS: interseismic deformation

    Science.gov (United States)

    Stramondo, S.; Walter, T. R.; Ergintav, S.; Diao, F.; Wang, R.; Polcari, M.; Serpelloni, E.; Devoti, R.

    2014-12-01

    A comprehensive analysis of the earthquake cycle is a key issue for the definition of the hazard in seismic areas. Advanced SAR Interferometry (A-InSAR) techniques have today a key role in Earth Sciences thanks to the capability to detect and measure slow surface movements along wide areas, and to follow the evolution of signal along a certain time periods. A-InSAR techniques have been applied to large datasets of SAR images spanning long time intervals and, together with in-situ surveys and ground measurements, can provide suitable information about the causes of post seismic (deformation rebound or residual strain release) and interseismic (seismic, creep) movements. In the framework of FP7 MARSITE (Marmara Supersite) project we have investigated the Western sector of North Anatolian Fault System (NAFS) from Istanbul toward Duzce area. From West toward the Marmara Sea region (Mudurnu/Akyaz) the NAFS begins to lose its single fault line character and splays into a complex fault system. The main Marmara Fault is argued to be a very young structure and exhibits typical characteristics of a major strike slip fault. In 1999 the August 17th Izmit earthquake was followed few months later by the Duzce mainshock. We compare the A-InSAR results to permanent GPS stations installed in the region after the Izmit/Duzce earthquakes. These observations allow studying the post-seismic deformation of the 1999 Izmit/Düzce earthquake. We investigate the response of the eastern Marmara Fault to the quasi-static loading caused by Izmit/Düzce earthquakes. Overlapped post-seismic processes of fault creep (or afterslip) and viscoelastic relaxation of the lower crust and the upper mantle were investigated. We firstly estimated the viscoelastic relaxation effect using well covered long-term GPS data. This relaxation effect was subtracted from the InSAR data and the remaining InSAR data was inverted to identify localized slip variation along the MMF. Our inversion results imply that part

  4. Underwater topography detection of Shuangzi Reefs with SAR images acquired in different time

    Institute of Scientific and Technical Information of China (English)

    YANG Jungang; ZHANG Jie; MENG Junmin

    2007-01-01

    Imaging mechanism of underwater topography by SAR and a underwater topography SAR detection model built on the theory of underwater topography detection with SAR image presented by Yuan Yeli are used to detect the underwater topography of Shuangzi Reefs in the Nansha Islands with three scenes of SAR images acquired in different time. Detection results of three SAR images are compared with the chart topography and the detection errors are analyzed. Underwater topography detection experiments of Shuangzi Reefs show that the detection model is practicable. The detection results indicate that SAR images acquired in different time also can be used to detect the underwater topography, and the detection results are affected by the ocean conditions in the SAR acquiring time.

  5. Infection of SARS-CoV on juvenile and adult Brandt's vole Microtus brandtii

    Institute of Scientific and Technical Information of China (English)

    GAO Hong; PENG Jingpian; DENG Wei; SHI Dazhao; BAO Linlin; WANG Dehua; ZHANG Binglin; QIN Chuan; ZHANG Zhibin

    2005-01-01

    We studied the infectious effect of SARS-CoV virus on juvenile and adult Brandt's Vole (Microtus brandtii) by nasal cavity spraying method (CCID50 is 105.7). SARS virus caused serious deaths in adults. The death adults demonstrated hemorrhage from mouth, nasal cavity and intestine, hemorrhageious interstitial pneumonia and gore in liver, spleen and kidney. The survival adults demonstrated local hemorrhagic spot in lung and emphysema, but the other organs showed no pathological abnormality. SARS virus caused no deaths in juveniles, but locomotion of infected juveniles became slower. In the early stage, there was local pneumonia in lung and SARS viruses were isolated from the pathological tissue. Only one control juvenile lived and the infected juvenile showed local pneumonia in lung. The results demonstrated that SARS-CoV infected Brandt's vole seriously and adults were more susceptive to SARS-CoV than juveniles. The Brandt's vole may be a potential animal model for SARS research.

  6. Resolution analysis of GEO spaceborne-airborne bistatic SAR based on sliding spotlight mode

    Institute of Scientific and Technical Information of China (English)

    Meng Lian; Yicheng Jiang; Bin Hu

    2016-01-01

    For a synthetic aperture radar (SAR) system mounted on a geostationary Earth orbit (GEO) satelite, the track can be curvilinear. Thus, a bistatic SAR system based up on geostationary transmitter and “receive-only” SAR sys-tem onboard airplanes, namely GEO spaceborne-airborne bistatic (GEO SA-Bi SAR), is significantly different from the traditional bistatic SAR. This paper mainly studies the resolu-tion characteristic of the sliding spotlight GEO SA-Bi SAR system. Firstly, the common azimuth coverage and coherent accumulated time are theoreticaly analyzed in detail. Then, based on the gradient method, the accurate two dimensional resolution of a GEO SA-Bi SAR system is analyticaly calcu-lated. Finaly, the simulation data show the correctness and effectiveness of the proposed resolution analysis method.

  7. A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions

    Science.gov (United States)

    Huang, Shiqi; Huang, Wenzhun; Zhang, Ting

    2016-12-01

    The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application.

  8. Utilizing SAR and Multispectral Integrated Data for Emergency Response

    Science.gov (United States)

    Havivi, S.; Schvartzman, I.; Maman, S.; Marinoni, A.; Gamba, P.; Rotman, S. R.; Blumberg, D. G.

    2016-06-01

    Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar) these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD) for SAR data and Covariance Equalization (CE) for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX) and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a complete scene for

  9. InSAR-Detected Tidal Flow in Louisiana's Coastal Wetlands

    Science.gov (United States)

    Oliver-Cabrera, T.; Wdowinski, S.

    2014-12-01

    The Louisiana coast is among the most productive coastal area in the US and home to the largest coastal wetland area in the nation. However, Louisiana coastal wetlands have been threatened by natural (sea-level rise) and human (infrastructure development) stresses; they constitute the major part of the wetland loss of the country. Monitoring Louisiana's coastal wetlands represent a large challenge for local and federal authorities due to the large amount of area and hostile environment. Insofar, optical remote sensing observations have been used to classify the wetlands, monitor land cover changes, and assess the wetland loss over time. However, optical data is insensitive to surface flow and, hence, unable to detect the width of the tidal zone and changes in this area over time. SAR interferometry can provide useful information and ease the monitoring task. Wetland InSAR is the only application of the InSAR technology that provides information of aquatic surface. It provides useful information on surface water level changes in both inland and coastal wetlands. In this study, we use InSAR and tide gauge observations to detect and compare surface water level changes in response to ocean tide propagation through the Louisiana coastal wetlands. Our data consist of ALOS PALSAR, Radarsat-1 and tide gauge information over the coast of Louisiana. In order to detect water level changes, we used mainly high coherence interferferograms with short temporal baselines (46-92 days for ALOS data and 24-48 days for Radarsat-1). Interferometric processing of the data provides details maps of water level changes in the coastal zone. Preliminary results indicate tidal changes of up 30 cm and that tidal flow is limited to 8-10 km from the open water. Our results also show that the tidal flow is disrupted by various man-made structures as, canals and roads. The high spatial resolution wetland InSAR observations can provide useful constraints for detailed coastal wetland flow models.

  10. UTILIZING SAR AND MULTISPECTRAL INTEGRATED DATA FOR EMERGENCY RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Havivi

    2016-06-01

    Full Text Available Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD for SAR data and Covariance Equalization (CE for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a

  11. Dynamic and data-driven classification for polarimetric SAR images

    Science.gov (United States)

    Uhlmann, S.; Kiranyaz, S.; Ince, T.; Gabbouj, M.

    2011-11-01

    In this paper, we introduce dynamic and scalable Synthetic Aperture Radar (SAR) terrain classification based on the Collective Network of Binary Classifiers (CNBC). The CNBC framework is primarily adapted to maximize the SAR classification accuracy on dynamically varying databases where variations do occur in any time in terms of (new) images, classes, features and users' relevance feedback. Whenever a "change" occurs, the CNBC dynamically and "optimally" adapts itself to the change by means of its topology and the underlying evolutionary method MD PSO. Thanks to its "Divide and Conquer" type approach, the CNBC can also support varying and large set of (PolSAR) features among which it optimally selects, weighs and fuses the most discriminative ones for a particular class. Each SAR terrain class is discriminated by a dedicated Network of Binary Classifiers (NBC), which encapsulates a set of evolutionary Binary Classifiers (BCs) discriminating the class with a distinctive feature set. Moreover, with each incremental evolution session, new classes/features can be introduced which signals the CNBC to create new corresponding NBCs and BCs within to adapt and scale dynamically to the change. This can in turn be a significant advantage when the current CNBC is used to classify multiple SAR images with similar terrain classes since no or only minimal (incremental) evolution sessions are needed to adapt it to a new classification problem while using the previously acquired knowledge. We demonstrate our proposed classification approach over several medium and highresolution NASA/JPL AIRSAR images applying various polarimetric decompositions. We evaluate and compare the computational complexity and classification accuracy against static Neural Network classifiers. As CNBC classification accuracy can compete and even surpass them, the computational complexity of CNBC is significantly lower as the CNBC body supports high parallelization making it applicable to grid

  12. Forest parameter estimation using polarimetric SAR interferometry techniques at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kuk

    2013-05-01

    Polarimetric Synthetic Aperture Radar Interferometry (Pol-InSAR) is an active radar remote sensing technique based on the coherent combination of both polarimetric and interferometric observables. The Pol-InSAR technique provided a step forward in quantitative forest parameter estimation. In the last decade, airborne SAR experiments evaluated the potential of Pol-InSAR techniques to estimate forest parameters (e.g., the forest height and biomass) with high accuracy over various local forest test sites. This dissertation addresses the actual status, potentials and limitations of Pol-InSAR inversion techniques for 3-D forest parameter estimations on a global scale using lower frequencies such as L- and P-band. The multi-baseline Pol-InSAR inversion technique is applied to optimize the performance with respect to the actual level of the vertical wave number and to mitigate the impact of temporal decorrelation on the Pol-InSAR forest parameter inversion. Temporal decorrelation is a critical issue for successful Pol-InSAR inversion in the case of repeat-pass Pol-InSAR data, as provided by conventional satellites or airborne SAR systems. Despite the limiting impact of temporal decorrelation in Pol-InSAR inversion, it remains a poorly understood factor in forest height inversion. Therefore, the main goal of this dissertation is to provide a quantitative estimation of the temporal decorrelation effects by using multi-baseline Pol-InSAR data. A new approach to quantify the different temporal decorrelation components is proposed and discussed. Temporal decorrelation coefficients are estimated for temporal baselines ranging from 10 minutes to 54 days and are converted to height inversion errors. In addition, the potential of Pol-InSAR forest parameter estimation techniques is addressed and projected onto future spaceborne system configurations and mission scenarios (Tandem-L and BIOMASS satellite missions at L- and P-band). The impact of the system parameters (e.g., bandwidth

  13. A detection model of underwater topography with a series of SAR images acquired at different time

    Institute of Scientific and Technical Information of China (English)

    YANG Jungang; ZHANG Jie; MENG Junmin

    2010-01-01

    underwater topography is one of oceanic features detected by Synthetic Aperture Radar. Under-water topography SAR imaging mechanism shows that tidal current is the important factor for underwater topography SAR imaging. Thus under the same wind field condition, SAR images for the same area acquired at different time include different information of the underwater topogra-phy. To utilize synchronously SAR images acquired at different time for the underwater topography SAR detection and improve the precision of detection, based on the detection model of underwater topography with single SAR image and the periodicity of tidal current, a detection model of under- water topography with a series of SAR images acquired at different time is developed by combing with tide and tidal current numerical simulation. To testify the feasibility of the presented model, Taiwan Shoal located at the south outlet of Taiwan Strait is selected as study area and three SAR images are used in the underwater topography detection. The detection results are compared with the field observation data of water depth carried out by R/V Dongfanghong 2, and the errors of the detection are compared with those of the single SAR image. All comparisons show that the detec- tion model presented in the paper improves the precision of underwater topography SAR detection, and the presented model is feasible.

  14. SARS疫苗研究进展%The progress in research of SARS vaccine

    Institute of Scientific and Technical Information of China (English)

    张增峰

    2011-01-01

    Severe acute respiratory syndrome (SARS) is a serious infectious disease caused by SARSassociated coronavirus (SARS-CoV). There are no approved antiviral drugs that effectively target SARS-CoV,and vaccination is the most effective mode for preventing SARS in people. At present, SARS vaccines,including inactivated vaccines, attenuated vaccines, subunit vaccines and DNA vaccines, etc., are being developed. Progress has been made in animal models, and some of the vaccines have entered clinical trials. In this article, the current state of SARS vaccine development is reviewed.%严重急性呼吸综合征(severe acute respiratory syndrome,SARS)是由SARS相关冠状病毒(SARS-associated coronavirus,SARS-CoV)引起的一类严重的急性呼吸系统传染病.目前尚未研制出治疗SARS的有效药物,防范SARS-CoV感染最有效的方法是使用疫苗.正在研制的SARS疫苗有灭活疫苗、减毒活疫苗、亚单位疫苗和DNA疫苗等,这些疫苗在动物模型中取得一些进展,有的已进入人体试验.此文就近几年有关SARS疫苗的研发现状做一综述.

  15. Severe acute respiratory syndrome (SARS): chest radiographic features in children

    Energy Technology Data Exchange (ETDEWEB)

    Babyn, Paul S.; Gahunia, Harpal K.; Manson, David [Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario (Canada); Chu, Winnie C.W.; Metreweli, Constantine [Prince of Wales Hospital, Shatin (China); Department of Diagnostic Radiology and Organ Imaging, Chinese University of Hong Kong (China); Tsou, Ian Y.Y.; Wansaicheong, Gervais K.L.; Chee, Thomas S.G.; Kaw, Gregory J.L. [Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng (Singapore); Allen, Upton; Bitnun, Ari; Read, Stanley [Division of Infectious Diseases, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario (Canada); Cheng, Frankie W.T.; Fok, Tai-Fai; Hon, Ellis K.L.; Li, Albert M.; Ng, Pak-Cheung [Department of Paediatrics, Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, Hong Kong, SAR (China); Chiu, Man-Chun; Leung, Chi-Wai [Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Lai King Hill Road, Lai Chi Kok, Hong Kong, SAR (China); Khong, Pek L. [Department of Diagnostic Radiology, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, SAR (China); Stringer, David A.

    2004-01-01

    We abstracted data (n=62) on the radiologic appearance and course of SARS in pediatric patients with suspect (n=25) or probable (n=37) SARS, diagnosed in five hospital sites located in three cities: Toronto, Singapore, and Hong Kong. Available chest radiographs and thoracic CTs were reviewed for the presence of the following radiographic findings: airspace disease, air bronchograms, airways inflammation and peribronchial thickening, interstitial disease, pleural effusion, and hilar adenopathy. A total of 62 patients (suspect=25, probable=37) were evaluated for SARS. Patient ages ranged from 5.5 months to 17 years and 11.5 months (average, 6 years and 10 months) with a female-to-male ratio of 32:30. Forty-one patients (66.1%) were in close contact with other probable, suspect, or quarantined cases; 10 patients (16.1%) had recently traveled to WHO-designated affected areas within 10 days; and 7 patients (11.2%) were transferred from other hospitals that had SARS patients. Three patients, who did not have close/hospital contact or travel history to affected areas, were classified as SARS cases based on their clinical signs and symptoms and on the fact that they were living in an endemic area. The most prominent clinical presentations were fever, with a temperature over 38 C (100%), cough (62.9%), rhinorrhea (22.6%), myalgia (17.7%), chills (14.5%), and headache (11.3%). Other findings included sore throat (9.7%), gastrointestinal symptoms (9.7%), rigor (8.1%), and lethargy (6.5%). In general, fever and cough were the most common clinical presentations amongst younger pediatric SARS cases (age<10 years), whereas, in addition to these symptoms, headache, myalgia, sore throat, chills, and/or rigor were common in older patients (age{>=}10 years). The chest radiographs of 35.5% of patients were normal. The most prominent radiological findings that were observed in the remaining patients were areas of consolidation (45.2%), often peripheral with multifocal lesions in 22

  16. Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study

    Directory of Open Access Journals (Sweden)

    Yu Shun-Zhang

    2003-11-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS has claimed 349 lives with 5,327 probable cases reported in mainland China since November 2002. SARS case fatality has varied across geographical areas, which might be partially explained by air pollution level. Methods Publicly accessible data on SARS morbidity and mortality were utilized in the data analysis. Air pollution was evaluated by air pollution index (API derived from the concentrations of particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide and ground-level ozone. Ecologic analysis was conducted to explore the association and correlation between air pollution and SARS case fatality via model fitting. Partially ecologic studies were performed to assess the effects of long-term and short-term exposures on the risk of dying from SARS. Results Ecologic analysis conducted among 5 regions with 100 or more SARS cases showed that case fatality rate increased with the increment of API (case fatality = - 0.063 + 0.001 * API. Partially ecologic study based on short-term exposure demonstrated that SARS patients from regions with moderate APIs had an 84% increased risk of dying from SARS compared to those from regions with low APIs (RR = 1.84, 95% CI: 1.41–2.40. Similarly, SARS patients from regions with high APIs were twice as likely to die from SARS compared to those from regions with low APIs. (RR = 2.18, 95% CI: 1.31–3.65. Partially ecologic analysis based on long-term exposure to ambient air pollution showed the similar association. Conclusion Our studies demonstrated a positive association between air pollution and SARS case fatality in Chinese population by utilizing publicly accessible data on SARS statistics and air pollution indices. Although ecologic fallacy and uncontrolled confounding effect might have biased the results, the possibility of a detrimental effect of air pollution on the prognosis of SARS patients deserves further investigation.

  17. Depression of biofilm formation and antibiotic resistance by sarA disruption in Staphylococcus epidermidis

    Institute of Scientific and Technical Information of China (English)

    Ju-Hong Tao; Chang-Sheng Fan; Shan-E Gao; Hai-Jiao Wang; Guo-Xin Liang; Qing Zhang

    2006-01-01

    AIM: To study the effects of disruption of sarA gene on biofilm formation and antibiotic resistance of Staphylococcus epidermidis (S. epidermidis ).METHODS: In order to disrupt sarA gene, the doublecrossover homologous recombination was applied in S. epidermidis RP62A, and tetracycline resistance gene (tet) was used as the selective marker which was amplified by PCR from the pBR322 and inserted into the locus between sarA upstream and downstream,resulting in pBT2△sarA. By electroporation, the plasmid pBT2△sarA was transformed into S. epidermidis.Gene transcription was detected by real-time reverse transcription-PCR (RT-PCR). Determination of biofilm was performed in 96-well flat-bottomed culture plates, and antibiotic resistance was analyzed with test tube culture by spectrophotometry at 570 nm respectively.RESULTS: A sarA disrupted strain named S. epidermidis RP62A△sarA was constructed, which was completely defective in biofilm formation, while the sarA complement strain RP62A△sarA (pHPS9sarA) restored the biofilm formation phenotype. Additionally, the knockout of sarA resulted in decreased erythromycin and kanamycin resistance of S. epidermidis RP62A. Compared to the original strain, S. epidermidis RP62A△sarA had an increase of the sensitivity to erythromycin at 200-400 μg/mL and kanamycin at 200-800 μg/mL respectively.CONCLUSION: The knockout of sarA can result in the defect in biofilm formation and the decreased erythromycin and kanamycin resistance in S. epidermidis RP62A.

  18. Monitoring of Three Case Studies of Creeping Landslides in Ecuador using L-band SAR Interferometry (InSAR)

    Science.gov (United States)

    Mayorga Torres, T. M.; Mohseni Aref, M.

    2015-12-01

    Tannia Mayorga Torres1,21 Universidad Central del Ecuador. Faculty of Geology, Mining, Oil, and Environment 2 Hubert H. Humphrey Fellowship 2015-16 IntroductionLandslides lead to human and economic losses across the country, mainly in the winter season. On the other hand, satellite radar data has cost-effective benefits due to open-source software and free availability of data. With the purpose of establishing an early warning system of landslide-related surface deformation, three case studies were designed in the Coast, Sierra (Andean), and Oriente (jungle) regions. The objective of this work was to assess the capability of L-band InSAR to get phase information. For the calculation of the interferograms in Repeat Orbit Interferometry PACkage, the displacement was detected as the error and was corrected. The coherence images (Figure 1) determined that L-band is suitable for InSAR processing. Under this frame, as a first approach, the stacking DInSAR technique [1] was applied in the case studies [2]; however, due to lush vegetation and steep topography, it is necessary to apply advanced InSAR techniques [3]. The purpose of the research is to determine a pattern of data acquisition and successful results to understand the spatial and temporal ground movements associated with landslides. The further work consists of establishing landslide inventories to combine phases of SAR images to generate maps of surface deformation in Tumba-San Francisco and Guarumales to compare the results with ground-based measurements to determine the maps' accuracy. References[1] Sandwell D., Price E. (1998). Phase gradient approach to stacking interferograms. Journal of Geophysical Research, Vol. 103, N. B12, pp. 30,183-30,204. [2] Mayorga T., Platzeck G. (2014). Using DInSAR as a tool to detect unstable terrain areas in an Andes region in Ecuador. NH3.5-Blue Poster B298, Vol. 16, EGU2014-16203. Austria. [3] Wasowski J., Bovenga F. (2014). Investigating landslides and unstable slopes with

  19. Entropy-based Statistical Analysis of PolSAR Data

    CERN Document Server

    Frery, Alejandro C; Nascimento, Abraão D C

    2012-01-01

    Images obtained from coherent illumination processes are contaminated with speckle noise, with polarimetric synthetic aperture radar (PolSAR) imagery as a prominent example. With an adequacy widely attested in the literature, the scaled complex Wishart distribution is an acceptable model for PolSAR data. In this perspective, we derive analytic expressions for the Shannon, R\\'enyi, and restricted Tsallis entropies under this model. Relationships between the derived measures and the parameters of the scaled Wishart law (i.e., the equivalent number of looks and the covariance matrix) are discussed. In addition, we obtain the asymptotic variances of the Shannon and R\\'enyi entropies when replacing distribution parameters by maximum likelihood estimators. As a consequence, confidence intervals based on these two entropies are also derived and proposed as new ways of capturing contrast. New hypothesis tests are additionally proposed using these results, and their performance is assessed using simulated and real dat...

  20. Temporal decorrelation model for the bistatic SAR interferometry

    Institute of Scientific and Technical Information of China (English)

    Qilei Zhang; Wenge Chang

    2015-01-01

    This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar (BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar (SAR) interferometry. The study of temporal decorrelation is chal enging, especial y for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry con-figuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model. The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.

  1. Sparse representation-based spectral clustering for SAR image segmentation

    Science.gov (United States)

    Zhang, Xiangrong; Wei, Zhengli; Feng, Jie; Jiao, Licheng

    2011-12-01

    A new method, sparse representation based spectral clustering (SC) with Nyström method, is proposed for synthetic aperture radar (SAR) image segmentation. Different from the conventional SC, this proposed technique is developed by using the sparse coefficients which obtained by solving l1 minimization problem to construct the affinity matrix and the Nyström method is applied to alleviate the segmentation process. The advantage of our proposed method is that we do not need to select the scaling parameter in the Gaussian kernel function artificially. We apply the proposed method, k-means and the classic spectral clustering algorithm with Nyström method to SAR image segmentation. The results show that compared with the other two methods, the proposed method can obtain much better segmentation results.

  2. Design and Analysis of HJ-1-C Satellite SAR Antenna

    Directory of Open Access Journals (Sweden)

    Zheng Shi-kun

    2014-06-01

    Full Text Available With truss deployable mesh parabolic reflector, the HJ-1-C SAR antenna has complex structure and multiple steps during the deployed processing. The design of the antenna is difficult in terms of deployed reliability and electrical performance. This paper makes intensive research on system, structure and electrical design, and the analysis of mechanical and thermal performance in the actual space conditions is also presented. The successful deploying in orbit and high image quality of the HJ-1-C satellite indicate that the mechanical, electronic, thermal and reliability design of the antenna satisfy the project requirement, and these research provides valuable experience for the design of the centralized mesh parabolic SAR antenna.

  3. Multiscale Segmentation of Polarimetric SAR Image Based on Srm Superpixels

    Science.gov (United States)

    Lang, F.; Yang, J.; Wu, L.; Li, D.

    2016-06-01

    Multi-scale segmentation of remote sensing image is more systematic and more convenient for the object-oriented image analysis compared to single-scale segmentation. However, the existing pixel-based polarimetric SAR (PolSAR) image multi-scale segmentation algorithms are usually inefficient and impractical. In this paper, we proposed a superpixel-based binary partition tree (BPT) segmentation algorithm by combining the generalized statistical region merging (GSRM) algorithm and the BPT algorithm. First, superpixels are obtained by setting a maximum region number threshold to GSRM. Then, the region merging process of the BPT algorithm is implemented based on superpixels but not pixels. The proposed algorithm inherits the advantages of both GSRM and BPT. The operation efficiency is obviously improved compared to the pixel-based BPT segmentation. Experiments using the Lband ESAR image over the Oberpfaffenhofen test site proved the effectiveness of the proposed method.

  4. EMISAR: A Dual-frequency, Polarimetric Airborne SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Christensen, Erik Lintz

    2002-01-01

    EMISAR is a fully polarimetric, dual frequency (L- and C-band) SAR system designed for remote sensing applications. The data are usually processed to 2×2 m resolution. The system has the capability of C-band cross-track single-pass interferometry and fully polarimetric repeat-pass interferometry....... The SAR is operated at high altitudes on a Gulfstream G-3 jet aircraft. The system is very well calibrated and has low sidelobes and low cross-polar contamination. Digital technology has been utilized to realize a flexible and highly stable radar with variable resolution, swath width, and imaging geometry....... Thermal control and several calibration loops have been built into the system to ensure system stability and absolute calibration. Accurately measured antenna gains and radiation patterns are included in the calibration. The processing system is developed to support data calibration, which is the key...

  5. Multiscale MRF-based Texture Segmentation of SAR Image

    Institute of Scientific and Technical Information of China (English)

    XUXin; LIDeren; SUNHong

    2004-01-01

    We propose a multiscale Bayesian segmentation algorithm for SAR image in this paper. A hierarchical two-level Markov random field (MRF) is applied to represent both texture and region label over the wavelet lattice. The high level uses an isotropic Multi-level logistic (MLL) random field to characterize the blob-like region formation process at each scale and the interscale dependencies over the corresponding multiresolution region. At lower level a novel Causal Gaussian autoregressive (CGAR) process is proposed to describe the fill-in of multiresolution region. Once the multiscale double MRFs model is established, in term of Sequential maximum a posteriori (SMAP), model parameter estimate and region segmentation are performed alternately from coarse to fine scale. Our segmentation method is tested on both synthetic and ERS-1 SAR images.

  6. Restoration of polarimetric SAR images using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning

    2001-01-01

    approach favoring one of the objectives. An algorithm for estimating the radar cross-section (RCS) for intensity SAR images has previously been proposed in the literature based on Markov random fields and the stochastic optimization method simulated annealing. A new version of the algorithm is presented...... are obtained while at the same time preserving most of the structures in the image. The algorithm is evaluated using multilook polarimetric L-band data from the Danish airborne EMISAR system, and the impact of the algorithm on the unsupervised H-α classification is demonstrated......Filtering synthetic aperture radar (SAR) images ideally results in better estimates of the parameters characterizing the distributed targets in the images while preserving the structures of the nondistributed targets. However, these objectives are normally conflicting, often leading to a filtering...

  7. Low SAR planar antenna for multi standard cellular phones

    Science.gov (United States)

    Ben Ahmed, M.; Bouhorma, M.; Elouaai, F.; Mamouni, A.

    2011-03-01

    In this paper the design of a multiband compact antenna for the integration into the new multi function mobile phones is presented. The antenna is matched to operate at GSM 920 MHz, WI-Fi 2.4 GHz and HiperLan 5.1 GHz standards with low SAR levels. Return loss coefficient and radiation pattern of this antenna are computed in free space as well as in the presence of head. The specific absorption rate (SAR) of the planar antenna is calculated and compared with that of the monopole antenna. To examine the performance of this antenna, a prototype was designed, fabricated and measured; the simulation analysis was performed using the HFSS software, good agreement with the simulation providing validation of the design procedure.

  8. Sea ice classification using dual polarization SAR data

    Science.gov (United States)

    Huiying, Liu; Huadong, Guo; Lu, Zhang

    2014-03-01

    Sea ice is an indicator of climate change and also a threat to the navigation security of ships. Polarimetric SAR images are useful in the sea ice detection and classification. In this paper, backscattering coefficients and texture features derived from dual polarization SAR images are used for sea ice classification. Firstly, the HH image is recalculated based on the angular dependences of sea ice types. Then the effective gray level co-occurrence matrix (GLCM) texture features are selected for the support vector machine (SVM) classification. In the end, because sea ice concentration can provide a better separation of pancake ice from old ice, it is used to improve the SVM result. This method provides a good classification result, compared with the sea ice chart from CIS.

  9. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  10. Image Combination Analysis in SPECAN Algorithm of Spaceborne SAR

    Institute of Scientific and Technical Information of China (English)

    臧铁飞; 李方慧; 龙腾

    2003-01-01

    An analysis of image combination in SPECAN algorithm is delivered in time-frequency domain in detail and a new image combination method is proposed. For four multi-looks processing one sub-aperture data in every three sub-apertures is processed in this combination method. The continual sub-aperture processing in SPECAN algorithm is realized and the processing efficiency can be dramatically increased. A new parameter is also put forward to measure the processing efficient of SAR image processing. Finally, the raw data of RADARSAT are used to test the method and the result proves that this method is feasible to be used in SPECAN algorithm of spaceborne SAR and can improve processing efficiently. SPECAN algorithm with this method can be used in quick-look imaging.

  11. Modified Frequency Scaling Algorithm for FMCW SAR Data Processing

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhihong; Huang Fukan; Wan Jianwei; Cheng Zhu

    2007-01-01

    This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar(FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during reception and between transmission and reception will introduce serious dilation in the received signal. The dilation can cause serious distortions in the reconstructed images using conventional signal processing methods. The received signal is derived and the received signal in range-Doppler domain is given.The relation between the phase resulting from antenna motion and the azimuth frequency is analyzed. The modified frequency scaling algorithm is proposed to process the received signal with serious dilation. The algorithm can effectively eliminate the impact of the dilation. The algorithm performances are shown by the simulation results.

  12. SAR investigations of glaciers in northwestern North America

    Science.gov (United States)

    Lingle, Craig S.; Harrison, William D.

    1995-01-01

    The objective of this project was to investigate the utility of satellite synthetic aperture radar (SAR) imagery for measurement of geophysical parameters on Alaskan glaciers relevant to their mass balance and dynamics, including: (1) the positions of firn lines (late-summer snow lines); (2) surface velocities on fast-flowing (surging) glaciers, and also on slower steady-flow glaciers; and (3) the positions and changes in the positions of glacier termini. Preliminary studies of topography and glacier surface velocity with SAR interferometry have also been carried out. This project was motivated by the relationships of multi-year to decadal changes in glacier geometry to changing climate, and the probable significant contribution of Alaskan glaciers to rising sea level.

  13. Initial assessment of an airborne Ku-band polarimetric SAR.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.

  14. GNSS-based bistatic SAR: a signal processing view

    Science.gov (United States)

    Antoniou, Michail; Cherniakov, Mikhail

    2013-12-01

    This article presents signal processing algorithms used as a new remote sensing tool, that is passive bistatic SAR with navigation satellites (e.g. GPS, GLONASS or Galileo) as transmitters of opportunity. Signal synchronisation and image formation algorithms are described for two system variants: one where the receiver is moving and one where it is fixed on the ground. The applicability and functionality of the algorithms described is demonstrated through experimental imagery that ultimately confirms the feasibility of the overall technology.

  15. A low-power SAR ADC for IRFPA ROIC

    Science.gov (United States)

    Gao, Lei; Ding, Ruijun; Zhou, Jie; Wang, Pan; Chen, Guoqiang

    2012-12-01

    This paper presents a low power ADC for the 512*512 infrared focal plane arrays (IRFPA) readout integrated circuit(ROIC). The major structure, the working mode and the simulation result of the readout integrated circuit are shown in this paper. The power supply voltage of 0.35μm standard CMOS process is 3.3V in this design, and then the output range of the Direct Injection (DI) input circuit is reached 2V. Successive-approximation-register (SAR) ADC architecture is used in this readout integrated circuit. And each ADC is shared by one column of the IRFPA. This SAR ADC is made up of a 13-bit digital-analog converter (DAC), a high resolution comparator, and a digital control circuit. The most important part is the voltage-scaling and charge-scaling charge redistribution DAC. In this DAC, charge scaling with a capacitor ladder to determine the least significant bits is combined with voltage scaling with a resister ladder to determine the most significant bits. The comparator uses three-stage operational amplifier structure to get a 77dB differential gain. The Common-Mode input rang of the comparator is 1V to 3V, and minimum resolvable voltage difference is 0.3mV. This SAR ADC has some advantages, especially in low power and high speed. The simulation result shows that the resolution of the ADC is 12 bit and the conversion time of the ADC is 6.5μs, while the power of each ADC is as low as 300μW. Finally, this SAR ADC can satisfy the request of 512*512 IRFPAs ROIC with a 100Hz frame rate.

  16. A Level Set Filter for Speckle Reduction in SAR Images

    OpenAIRE

    Huang Bo; Li Hongga; Huang Xiaoxia

    2010-01-01

    Despite much effort and significant progress in recent years, speckle removal for Synthetic Aperture Radar (SAR) image still is a challenging problem in image processing. Unlike the traditional noise filters, which are mainly based on local neighborhood statistical average or frequencies transform, in this paper, we propose a speckle reduction method based on the theory of level set, one form of curvature flow propagation. Firstly, based on partial differential equation, the Lee filter can b...

  17. InSAR observations of the 2009 Racha earthquake, Georgia

    Science.gov (United States)

    Nikolaeva, Elena; Walter, Thomas R.

    2016-09-01

    Central Georgia is an area strongly affected by earthquake and landslide hazards. On 29 April 1991 a major earthquake (Mw  =  7.0) struck the Racha region in Georgia, followed by aftershocks and significant afterslip. The same region was hit by another major event (Mw  =  6.0) on 7 September 2009. The aim of the study reported here was to utilize interferometric synthetic aperture radar (InSAR) data to improve knowledge about the spatial pattern of deformation due to the 2009 earthquake. There were no actual earthquake observations by InSAR in Georgia. We considered all available SAR data images from different space agencies. However, due to the long wavelength and the frequent acquisitions, only the multi-temporal ALOS L-band SAR data allowed us to produce interferograms spanning the 2009 earthquake. We detected a local uplift around 10 cm (along the line-of-sight propagation) in the interferogram near the earthquake's epicenter, whereas evidence of surface ruptures could not be found in the field along the active thrust fault. We simulated a deformation signal which could be created by the 2009 Racha earthquake on the basis of local seismic records and by using an elastic dislocation model. We compared our modeled fault surface of the September 2009 with the April 1991 Racha earthquake fault surfaces and identify the same fault or a sub-parallel fault of the same system as the origin. The patch that was active in 2009 is just adjacent to the 1991 patch, indicating a possible mainly westward propagation direction, with important implications for future earthquake hazards.

  18. Reflectors for SAR performance testing-second edition

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  19. Bats Found to Carry SARS-like Virus

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ An international consortium headed by CAS researchers has identified that the Chinese horseshoe bat is healthy carriers of a virus that is very closely related to those causing SARS(severe acute respiratory syndrome). Their work was reported online on Sept. 29 by the Science magazine. The finding supports an independent study with similar results by Hong Kong scientists,which is reported by the Sept. 27issue of Proceedings of the National Academy of Sciences.

  20. A Strategy Toward Convergent Combination Immunotherapy for SARS

    Institute of Scientific and Technical Information of China (English)

    Wayne; A.; Marasco

    2005-01-01

    Passive Immunotherapyfor viral infections withimmune humanimmunoglobulin has been usedfor many yearsinthe pro-phylaxis andtreatment of infectious disease such as RSV,CMV,rabies,hepatitis Aand B and others.Recently,ad-vances in antibody engineering have allowedthe rapid isolation and pre-clinical development of human monoclonal anti-bodies(Mab)for the treatment of humaninfectious diseases and other conditions.We have explored the use of humanmonoclonal antibodies against the newly emerged SARS coronavirus(Co...

  1. (Q)SAR modeling and safety assessment in regulatory review.

    Science.gov (United States)

    Kruhlak, N L; Benz, R D; Zhou, H; Colatsky, T J

    2012-03-01

    The ability to predict clinical safety based on chemical structures is becoming an increasingly important part of regulatory decision making. (Quantitative) structure-activity relationship ((Q)SAR) models are currently used to evaluate late-arising safety concerns and possible nonclinical effects of a drug and its related compounds when adequate safety data are absent or equivocal. Regulatory use will likely increase with the standardization of analytical approaches, more complete and reliable data collection methods, and a better understanding of toxicity mechanisms.

  2. A Follow-Up Study of 69 Discharged SARS Patients

    Institute of Scientific and Technical Information of China (English)

    韩云; 庚慧; 冯维斌; 汤湘江; 欧爱华; 老膺荣; 许银姬; 林浩; 刘惠; 李咏文

    2003-01-01

    @@ Sixty-nine patients with severe acute respiratory syndrome (SARS) discharged from Guangdong Provincial TCM Hospital were followed up from January to April 2003 during which the patients were asked to fill the questionnaire form and at the same time received blood routine examination, hepatic, renal,pulmonary and immune function tests, and spiral computerized tomography (CT) of the chest, color Bultrasonography of the heart with the collected data treated by descriptive analysis and deductive analysis.

  3. Phase History Decomposition for efficient Scatterer Classification in SAR Imagery

    Science.gov (United States)

    2011-09-15

    Force Research Laboratory, Wright-Patterson AFB , OH, 2009. [125] Rau, R., JH McClellan , L. Technol, and G. Nuremberg. “Analytic models and...Institute of Technology, Wright-Patterson AFB , OH, 2009. [5] Bajcsy, P. and A.R. Chaudhuri. “Benefits of high resolution SAR for ATR of targets in...AFRL strategic tech- nology development. Technical report, Air Force Research Laboratory, Wright- Patterson AFB , OH, 2008. [20] Cameron, W.L. and L.K

  4. Azimuth Phase Coding for Range Ambiguity Suppression in SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders

    2004-01-01

    A novel ambiguity suppression technique is proposed. Range ambiguities in synthetic aperture radar (SAR) images are eliminated with an azimuth filter after having applied an azimuth phase modulation to the transmitted pulses and a corresponding demodulation to the received pulses. The technique...... by the antenna elevation dimension. The fundamental antenna area constraint still applies, but the PRF can be chosen with more freedom. In addition to ambiguity suppression, potential applications include nadir return elimination and signal-to-noise ratio improvement....

  5. Modeling and public health emergency responses: lessons from SARS.

    Science.gov (United States)

    Glasser, John W; Hupert, Nathaniel; McCauley, Mary M; Hatchett, Richard

    2011-03-01

    Modelers published thoughtful articles after the 2003 SARS crisis, but had limited if any real-time impact on the global response and may even have inadvertently contributed to a lingering misunderstanding of the means by which the epidemic was controlled. The impact of any intervention depends on its efficiency as well as efficacy, and efficient isolation of infected individuals before they become symptomatic is difficult to imagine. Nonetheless, in exploring the possible impact of quarantine, the product of efficiency and efficacy was varied over the entire unit interval. Another mistake was repeatedly fitting otherwise appropriate gamma distributions to times to event regardless of whether they were stationary or not, particularly onset-isolation intervals whose progressive reduction evidently contributed to SARS control. By virtue of their unknown biology, newly-emerging diseases are more challenging than familiar human scourges. Influenza, for example, recurs annually and has been modeled more thoroughly than any other infectious disease. Moreover, models were integrated into preparedness exercises, during which working relationships were established that bore fruit during the 2009 A/H1N1 pandemic. To provide the most accurate and timely advice possible, especially about the possible impact of measures designed to control diseases caused by novel human pathogens, we must appreciate the value and difficulty of policy-oriented modeling. Effective communication of insights gleaned from modeling SARS will help to ensure that policymakers involve modelers in future outbreaks of newly-emerging infectious diseases. Accordingly, we illustrate the increasingly timely care-seeking by which, together with increasingly accurate diagnoses and effective isolation, SARS was controlled via heuristic arguments and descriptive analyses of familiar observations.

  6. Ers and Envisat Differential Sar Interferometry for subsidence monitoring

    OpenAIRE

    2000-01-01

    This paper reports on the potential of differential SAR interferometry to map land subsidence. After a presentation of the methodology, the focus will be on feasibility demonstration and accuracy assessment. The theoretical considerations are verified with the selected cases Ruhrgebiet, Mexico City, Bologna, and Euganean Geothermal Basin, representing fast (m/year) to slow (mm/year) deformation velocities. The accuracy of the generated deformation maps and the maturity of the required process...

  7. Interferometric SAR imaging by transmitting stepped frequency chaotic noise signals

    Science.gov (United States)

    Zhang, Yunhua; Gu, Xiang; Zhai, Wenshuai; Dong, Xiao; Shi, Xiaojin; Kang, Xueyan

    2015-10-01

    Noise radar has been applied in many fields since it was proposed more than 50 years ago. However, it has not been applied to interferometric SAR imaging yet as far as we know. This paper introduces our recent work on interferometric noise radar. An interferometric SAR system was developed which can transmit both chirp signal and chaotic noise signal (CNS) at multiple carrier frequencies. An airborne experiment with this system by transmitting both signals was carried out, and the data were processed to show the capability of interferometric SAR imaging with CNS. The results shows that although the interferometric phase quality of CNS is degraded due to the signal to noise ratio (SNR) is lower compared with that of chirp signal, we still can get satisfied DEM after multi-looking processing. Another work of this paper is to apply compressed sensing (CS) theory to the interferometric SAR imaging with CNS. The CS theory states that if a signal is sparse, then it can be accurately reconstructed with much less sampled data than that regularly required according to Nyquist Sampling Theory. To form a structured random matrix, if the transmitted signal is of fixed waveform, then random subsampling is needed. However, if the transmitted signal is of random waveform, then only uniform subsampling is needed. This is another advantage of noise signal. Both the interferometric phase images and the DEMs by regular method and by CS method are processed with results compared. It is shown that the degradation of interferometric phases due to subsampling is larger than that of amplitude image.

  8. On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements

    Science.gov (United States)

    Catani, Filippo; Farina, Paolo; Moretti, Sandro; Nico, Giovanni; Strozzi, Tazio

    2005-03-01

    This paper presents two examples of application of Synthetic Aperture Radar (SAR) interferometry (InSAR) to typical geomorphological problems. The principles of InSAR are introduced, taking care to clarify the limits and the potential of this technique for geomorphological studies. The application of InSAR to the quantification of landform attributes such as the slope and to the estimation of landform variations is investigated. Two case studies are presented. A first case study focuses on the problem of measuring landform attributes by interferometric SAR data. The interferometric result is compared with the corresponding one obtained by a Digital Elevation Model (DEM). In the second case study, the use of InSAR for the estimation of landform variations caused by a landslide is detailed.

  9. Establishment of management information system for SARS surveillance and control in Shaanxi province of China

    Institute of Scientific and Technical Information of China (English)

    JIANG Jian-hui; QU Jing-hui; XU De-zhong; YAN Yong-ping; ZHANG Zhi-ying; ZHANG Heng; WEN Liang

    2005-01-01

    Objective: To develop the management information system for SARS surveillance and control in Shaanxi province of China responding to the urgent needs for preventing and curing SARS disease.Methods: Based on geographic information system technology, the management information system for SARS disease in Shaanxi province of China was established using "SuperMap Objects 3.0" GIS development platform and Delphi 7.0. Results: The following functions were implemented in the system: the realtime collection and monitoring, management and analysis, dissemination of SARS disease information, and assistant decision-making support for prevention against SARS disease. Conclusion: The system that integrates epidemiology theories and GIS techniques together can provide a scientific, efficient means for monitoring, prevention of SARS disease in the future.

  10. Advances in space-borne SAR interferometry and its application to ground deformation monitoring

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-guo; BIAN Zheng-fu

    2011-01-01

    The development of Differential Synthetic Aperture Radar Interferometry (D-InSAR), in terms of its evolution from classic to advanced forms, such as Least-Squares approach, Permanent Scatterer Interferometry, Small Baseline Subset, and Coherent Pixel Technique, is reviewed, describing concisely the main principles of each method and highlighting the difference and relationship between them. Applications of InSAR technology in China were then introduced, together with the obstacles to overcome and feasible strategies, such as integrating MERIS/MODIS data to compensate for the atmospheric effect and GPS, and multi-platform SAR data to make InSAR technique practical and operational under various conditions. The latest developments were then analyzed along with high-quality SAR data, available thanks to the newly launched high-tech satellites, TerraSAR-X, and Cosmo Sky-med, and conclusions were drawn about the main limitations of the technique.

  11. A novel SAR fusion image segmentation method based on triplet Markov field

    Science.gov (United States)

    Wang, Jiajing; Jiao, Shuhong; Sun, Zhenyu

    2015-03-01

    Markov random field (MRF) has been widely used in SAR image segmentation because of the advantage of directly modeling the posterior distribution and suppresses the speckle on the influence of the segmentation result. However, when the real SAR images are nonstationary images, the unsupervised segmentation results by MRF can be poor. The recent proposed triplet Markov field (TMF) model is well appropriate for nonstationary SAR image processing due to the introduction of an auxiliary field which reflects the nonstationarity. In addition, on account of the texture features of SAR image, a fusion image segmentation method is proposed by fusing the gray level image and texture feature image. The effectiveness of the proposed method in this paper is demonstrated by a synthesis SAR image and the real SAR images segmentation experiments, and it is better than the state-of-art methods.

  12. Azimuth resolution improvement for spaceborne SAR images with quasi-non-overlapped Doppler bandwidth

    Institute of Scientific and Technical Information of China (English)

    Zheng Bao

    2014-01-01

    The azimuth resolution improvement problem is solved via a coherent combination of synthetic aperture radar (SAR) ima-ges with the quasi-non-overlapped Doppler bandwidth. Prior to the spectra combination, SAR images should be co-registered, while phase biases induced by topography, atmospheric propagation de-lays and baseline measurement errors should be calibrated. How-ever, the coregistration accuracy suffers from large Doppler decorrelation caused by the quasi-non-overlapped Doppler band-width. Furthermore, the method used to estimate phase biases from interferogram of azimuth pre-filtered SAR image pairs wil fail when there is no overlapped spectrum. The fringe simulation and maximum sharpness optimization are adopted to deal with the problems. Accordingly, a novel algorithm to coherently synthesize SAR images is presented. The experiment with the Terra SAR X-band (TerraSAR-X) satel ite data validates the performance of the presented method.

  13. Automatic Registration of SAR Images with the Integrated Complementary Invariant Feature

    Directory of Open Access Journals (Sweden)

    Xiao-hua Wang

    2014-01-01

    Full Text Available The accurate Synthetic Aperture Radar (SAR image registration is important for exact analyses of mine deformation and ecological environment change. Currently, many image registration algorithms have been proposed, but these registration algorithms cannot be directly applied to SAR image, so an integrated registration approach is presented in this paper. Firstly, it is the coarse matching with Canny edge dividing regions; secondly, it is the fine matching by SIFT algorithm with improved Canny edge features; finally, obtain accurate registration SAR image. This approach has fewer computations than that simply using SIFT feature matching. Experimental analyses with SAR images of Yanzhou Mine demonstrate the efficiency and the accuracy of this approach for mine SAR image registration, which provides a simple and effective tool in SAR monitoring of mining deformation and ecological changes

  14. Human factors engineering checklists for application in the SAR process

    Energy Technology Data Exchange (ETDEWEB)

    Overlin, T.K.; Romero, H.A.; Ryan, T.G.

    1995-03-01

    This technical report was produced to assist the preparers and reviewers of the human factors portions of the SAR in completing their assigned tasks regarding analysis and/or review of completed analyses. The checklists, which are the main body of the report, and the subsequent tables, were developed to assist analysts in generating the needed analysis data to complete the human engineering analysis for the SAR. The technical report provides a series of 19 human factors engineering (HFE) checklists which support the safety analyses of the US Department of Energy`s (DOE) reactor and nonreactor facilities and activities. The results generated using these checklists and in the preparation of the concluding analyses provide the technical basis for preparing the human factors chapter, and subsequent inputs to other chapters, required by DOE as a part of the safety analysis reports (SARs). This document is divided into four main sections. The first part explains the origin of the checklists, the sources utilized, and other information pertaining to the purpose and scope of the report. The second part, subdivided into 19 sections, is the checklists themselves. The third section is the glossary which defines terms that could either be unfamiliar or have specific meanings within the context of these checklists. The final section is the subject index in which the glossary terms are referenced back to the specific checklist and page the term is encountered.

  15. Multifrequency OFDM SAR in Presence of Deception Jamming

    Directory of Open Access Journals (Sweden)

    Schuerger Jonathan

    2010-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR applications. In this paper, we aim to show the advantages of OFDM-coded radar signals with random subband composition when used in deception jamming scenarios. Two approaches to create a radar signal by the jammer are considered: instantaneous frequency (IF estimator and digital-RF-memory- (DRFM- based reproducer. In both cases, the jammer aims to create a copy of a valid target image via resending the radar signal at prescribed time intervals. Jammer signals are derived and used in SAR simulations with three types of signal models: OFDM, linear frequency modulated (LFM, and frequency-hopped (FH. Presented results include simulated peak side lobe (PSL and peak cross-correlation values for random OFDM signals, as well as simulated SAR imagery with IF and DRFM jammers'-induced false targets.

  16. Efficient sliding spotlight SAR raw signal simulation of extended scenes

    Directory of Open Access Journals (Sweden)

    Huang Pingping

    2011-01-01

    Full Text Available Abstract Sliding spotlight mode is a novel synthetic aperture radar (SAR imaging scheme with an achieved azimuth resolution better than stripmap mode and ground coverage larger than spotlight configuration. However, its raw signal simulation of extended scenes may not be efficiently implemented in the two-dimensional (2D Fourier transformed domain. This article presents a novel sliding spotlight raw signal simulation approach from the wide-beam SAR imaging modes. This approach can generate sliding spotlight raw signal not only from raw data evaluated by the simulators, but also from real data in the stripmap/spotlight mode. In order to obtain the desired raw data from conventional stripmap/spotlight mode, the azimuth time-varying filtering, which is implemented by de-rotation and low-pass filtering, is adopted. As raw signal of extended scenes in the stripmap/spotlight mode can efficiently be evaluated in the 2D Fourier domain, the proposed approach provides an efficient sliding spotlight SAR simulator of extended scenes. Simulation results validate this efficient simulator.

  17. Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao

    2016-08-01

    Full Text Available In this paper, a semi-empirical algorithm for significant wave height (Hs and mean wave period (Tmw retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar look direction. Additionally, Tmw can be also calculated through Hs and cutoff wavelength by using another empirical function. We collected 106 C-band stripmap mode Sentinel-1 SAR images in VV-polarization and wave measurements from in situ buoys. There are a total of 150 matchup points. We used 93 matchups to tune the coefficients of the semi-empirical algorithm and the rest 57 matchups for validation. The comparison shows a 0.69 m root mean square error (RMSE of Hs with a 18.6% of scatter index (SI and 1.98 s RMSE of Tmw with a 24.8% of SI. Results indicate that the algorithm is suitable for wave parameters retrieval from Sentinel-1 SAR data.

  18. Genome Organization of the SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Jing Xu; Zizhang Zhang; Wei Wei; Songgang Li; Jun Wang; Jian Wang; Jun Yu; Huanming Yang; Jianfei Hu; Jing Wang; Yujun Han; Yongwu Hu; Jie Wen; Yan Li; Jia Ji; Jia Ye

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves.Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions.The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.

  19. SAR For REDD+ in the Mai Ndombe District (DRC)

    Science.gov (United States)

    Haarpaintner, Jorg

    2016-08-01

    The overall goal of the project "SAR for REDD" is to provide cloud-penetrating satellite synthetic aperture radar (SAR) pre-processing and analysing capabilities and tools to support operational tropical forest monitoring in REDD countries and primarily in Africa. The project's end-user is the Observatoir Satellitale des Forêts d'Afrique Centrale (OSFAC).This paper presents an overall summary of the project and shows first results of the satellite products, that will be delivered to the user in addition to software tools to enhance the user's own technical capacity.The products shown here are SAR mosaics and derived forest-land cover maps based on C-band Sentinel-1A data for 2015, ALOS-PALSAR data for the period 2007-2010 and ALOS-2 PALSAR-2 for 2015. In addition, a forest cover change map from 2007 to 2010 based on ALOS PALSAR has been produced and is compared to results from the Global Forest Cover project [1].

  20. Aoutomatic Oil Spill Detection Using TerraSAR-X Data

    Science.gov (United States)

    Zulipiye, Kaiyoumu; Balik Sanli, Fusun

    2016-07-01

    Oil release into the ocean may affect marine ecosystems and cause environmental pollution. Thus, oil spill detection and identification becomes critical important. Characterized by synoptic view over large regions, remote sensing has been proved to be a reliable tool for oil spill detection. Synthetic Aperture Radar (SAR) imagery shows returned signal that clearly distinguish oil from oil-free surface under optimal wind conditions, which makes it the most frequent used remote sensing technique in oil spill detection. Algorithms of automatic oil spill detection has already been developed for different SAR sensors, including RADARSAT and ENVISAT. In this study, we want to apply automatic oil spill detection algorithms on TerraSAR-X data which is previously developed for ASAR data. The applied methodology includes two steps as segmentation and classification. First segmentation algorithms compiled by C# have been applied under a Bayesian framework adopting a multi-level logistic. After segmentation different classification methods such as feature selection, filter, and embedded selection have been applied. As a result the used classifiers for oil spill detection will be compared, and the complete processing chain will be evaluated.

  1. Land Cover Mapping Using SENTINEL-1 SAR Data

    Science.gov (United States)

    Abdikan, S.; Sanli, F. B.; Ustuner, M.; Calò, F.

    2016-06-01

    In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.

  2. Snowpack permittivity profile retrieval from tomographic SAR data

    Science.gov (United States)

    Rekioua, Badreddine; Davy, Matthieu; Ferro-Famil, Laurent; Tebaldini, Stefano

    2017-01-01

    This work deals with 3D structure characterization and permittivity profile retrieval of snowpacks by tomographic SAR data processing. The acquisition system is a very high resolution ground based SAR system, developed and operated by the SAPHIR team, of IETR, University of Rennes-1 (France). It consists mainly of a vector network analyser and a multi-static antenna system, moving along two orthogonal directions, so as to obtain a two-dimensional synthetic array. Data were acquired during the AlpSAR campaign carried by the European Space Agency and led by ENVEO. In this study, tomographic imaging is performed using Time Domain Back Projection and consists in coherently combining the different recorded backscatter contributions. The assumption of free-space propagation during the focusing process is discussed and illustrated by focusing experimental data. An iterative method for estimating true refractive indices of the snow layers is presented. The antenna pattern is also compensated for. The obtained tomograms after refractive index correction are compared to the stratigraphy of the observed snowpack.

  3. Land subsidence monitoring by D-InSAR technique

    Institute of Scientific and Technical Information of China (English)

    Fan Hongdong; Deng Kazhong; Ju Chengyu; Zhu Chuanguang; Xue Jiqun

    2011-01-01

    Nowadays,the researches of using Differential Interferometric Synthetic Aperture Radar (D-InSAR) technique to monitor the land subsidence are mainly on how to qualitatively analyze the subsidence areas and values,but the analysis of subsidence process and mechanism are insufficient.In order to resolve these problems,6 scenes of ERS1/2 images captured during 1995 and 2000 in a certain place of Jiangsu province were selected to obtain the subsidence and velocities in three time segments by “two-pass” DInSAR method.Then the relationships among distributions of pumping wells,exploitation quantity of groundwater,and confined water levels were studied and the subsidence mechanism was systematically analyzed.The results show that using D-InSAR technique to monitor the deformation of large area can obtain high accuracies,the disadvantages of classical observation methods can be remedied and there is a linear relationship among the velocities of land subsidence,the water level and the exploitation quantity.

  4. Computer Aided Detection of SARS Based on Radiographs Data Mining.

    Science.gov (United States)

    Xuanyang, Xie; Yuchang, Gong; Shouhong, Wan; Xi, Li

    2005-01-01

    This paper introduces our work on how to use image mining techniques to detect SARS, the severe acute respiratory syndrome, automatically as the prototype of computer aided detection/diagnosis (CAD) system. Data used in this paper are digitalized PA(posterior anterior) X-ray images stored in the real-life picture archiving and communication system (PACS) of the 2nd Affiliation Hospital of Guangzhou Medical College. Association rule mining was applied first but results showed there was no significant difference between the locations of the lesions or infiltrate. Classification based on image textures was performed. A sample set contains both the pneumonia and SARS X-ray images was built in the first place. After modeling each sample by a feature vector, the sample set was partitioned to match the detection purpose: classification. Three methods were used: C4.5, neural network (NN) and CART. Final result shows that 70.94% SARS cases can be detected by CART. Data preparation, segmentation, feature extraction and data mining steps, with corresponding techniques are included in this paper. ROC charts and confusion matrix by all three methods are given and analyzed.

  5. Dissection of SARS Coronavirus Spike Protein into Discrete Folded Fragments

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; CAI Zhen; CHEN Yong; LIN Zhanglin

    2006-01-01

    The spike protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) mediates cell fusion by binding to target cell surface receptors. This paper reports a simple method for dissecting the viral protein and for searching for foldable fragments in a random but systematic manner. The method involves digestion by DNase I to generate a pool of short DNA segments, followed by an additional step of reassembly of these segments to produce a library of DNA fragments with random ends but controllable lengths. To rapidly screen for discrete folded polypeptide fragments, the reassembled gene fragments were further cloned into a vector as N-terminal fusions to a folding reporter gene which was a variant of green fluorescent protein. Two foldable fragments were identified for the SARS-CoV spike protein, which coincide with various anti-SARS peptides derived from the hepated repeat (HR) region 2 of the spike protein. The method should be applicable to other viral proteins to isolate antigen or vaccine candidates, thus providing an alternative to the full-length proteins (subunits) or linear short peptides.

  6. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  7. A high-resolution, four-band SAR testbed with real-time image formation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B.; Sander, G.; Thompson, M.; Burns, B.; Fellerhoff, R.; Dubbert, D.

    1996-03-01

    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms.

  8. System Design and In-orbit Verification of the HJ-1-C SAR Satellite

    OpenAIRE

    Zhang Run-ning; Jiang Xiu-peng

    2014-01-01

    HJ-1-C is a SAR satellite owned by the Chinese Environment and Natural Disaster Monitoring constellation, and works together with the optical satellites HJ-1-A/B for monitoring environment and natural disasters. In this paper, the system design and characteristics of the first Chinese civil SAR satellite are described. In addition, the interface relation between SAR payload and platform is studied. Meanwhile, the data transmission capability, attitude, power, and temperature control that supp...

  9. Potent and specific inhibition of SARS-CoV antigen expression by RNA interference

    Institute of Scientific and Technical Information of China (English)

    TAO Peng; ZHANG Jun; TANG Ni; ZHANG Bing-qiang; HE Tong-chuan; HUANG Ai-long

    2005-01-01

    Background Severe acute respiratory syndrome (SARS) is an infectious disease caused by SARS-CoV. There are no effective antiviral drugs for SARS although the epidemic of SARS was controlled. The aim of this study was to develop an RNAi (RNA interference) approach that specifically targeted the N gene sequence of severe acute respiratory syndrome associated coronavirus (SARS-CoV) by synthesizing short hairpin RNA (shRNA) in vivo, and to assess the inhibitory effect of this shRNA on SARS-CoV N antigen expression. Methods The eukaryotic expression plasmid pEGFP-C1-N, containing SARS-CoV N gene, was co-transfected into 293 cells with either the RNAi plasmid pshRNA-N or unrelated control plasmid pshRNA-HBV-C4. At 24, 48 and 72 hours post transfection, the green fluorescence was observed through a fluorescence microscope. The RNA levels of SARS-CoV N were determined by reverse transcription polymerase chain reaction (RT-PCR). The expression of Green Fluorescent Protein (GFP) and protein N were detected using Western blot.Results The vector, pshRNA-N expressing shRNA which targeted the N gene of SARS-CoV, was successfully constructed. The introduction of RNAi plasmid efficiently and specifically inhibited the synthesis of protein N. RT-PCR showed that RNAs of N gene were clearly reduced when the pEGFP-C1-N was cotransfected with pshRNA-N, whereas the control vector did not exhibit inhibitory effect on N gene transcription.Conclusions Our results demonstrate that RNAi mediated silencing of SARS-CoV gene could effectively inhibit expression of SARS-CoV antigen, hence RNAi based strategy should be further explored as a more efficacious antiviral therapy of SARS-CoV infection.

  10. Comparison of SAR calculation algorithms for the finite-difference time-domain method.

    Science.gov (United States)

    Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami

    2010-08-07

    Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies.

  11. Retrieval of ocean surface wind stress and drag coefficient from spaceborne SAR

    Institute of Scientific and Technical Information of China (English)

    杨劲松; 黄韦艮; 周长宝

    2001-01-01

    A model for retrieval of wind stress and drag coefficient on the sea surface with the data measured by spacebome synthetic aperture radar (SAR) has been developed based on the SAR imaging mechanisms of ocean surface capillary waves and short gravity waves. This model consists of radiometric calibration, wind speed retrieval and wind stress and drag coefficient calculation. A Radarsat SAR image has been used to calculate wind stress and drag coeffi cient. Good results have been achieved.

  12. CS Algorithm for Forward-Looking Bistatic SAR%前视双基地SAR CS成像算法

    Institute of Scientific and Technical Information of China (English)

    蔡复青; 何友; 林雪原; 宋杰

    2010-01-01

    提出了前视双基地SAR CS成像方法.首先研究了前视双基地SAR的成像机理,并建立了信号模型;然后通过时域线性距离徙动补偿将前视双基地SAR进行单站固定等效,并分析了回波信号等效后的方位空变性特点;在此基础上,确定了前视双基地SAR CS成像算法的相位匹配函数;最后通过算法仿真验证了算法的正确性.

  13. Simulations of thermally transferred OSL signals in quartz: Accuracy and precision of the protocols for equivalent dose evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [Physics Department, McDaniel College, Westminster, MD 21157 (United States); Adamiec, Grzegorz [Silesian University of Technology, Institute of Physics, GADAM Centre of Excellence, ul. Krzywoustego 2, 44-100 Gliwice (Poland); Athanassas, C. [Laboratory of Archaeometry, Institute of Materials Science, N.C.S.R. ' Demokritos' , Aghia Paraskevi, Athens153 10 (Greece); Chen Reuven [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Baker, Atlee; Larsen, Meredith; Thompson, Zachary [Physics Department, McDaniel College, Westminster, MD 21157 (United States)

    2011-06-15

    Highlights: > This paper presents extensive numerical simulations of the ReSAR protocol for luminescence dating. > We simulate several experimental versions of the ReSAR protocol and compare their relative accuracy and precision. > Simulations are carried out using a recently published kinetic model for quartz, consisting of 11 energy levels. > Natural doses above 400 Gy are underestimated in the protocols. > Possible sources of this underestimation are investigated. - Abstract: Thermally-transferred optically stimulated luminescence (TT-OSL) signals in sedimentary quartz have been the subject of several recent studies, due to the potential shown by these signals to increase the range of luminescence dating by an order of magnitude. Based on these signals, a single aliquot protocol termed the ReSAR protocol has been developed and tested experimentally. This paper presents extensive numerical simulations of this ReSAR protocol. The purpose of the simulations is to investigate several aspects of the ReSAR protocol which are believed to cause difficulties during application of the protocol. Furthermore, several modified versions of the ReSAR protocol are simulated, and their relative accuracy and precision are compared. The simulations are carried out using a recently published kinetic model for quartz, consisting of 11 energy levels. One hundred random variants of the natural samples were generated by keeping the transition probabilities between energy levels fixed, while allowing simultaneous random variations of the concentrations of the 11 energy levels. The relative intrinsic accuracy and precision of the protocols are simulated by calculating the equivalent dose (ED) within the model, for a given natural burial dose of the sample. The complete sequence of steps undertaken in several versions of the dating protocols is simulated. The relative intrinsic precision of these techniques is estimated by fitting Gaussian probability functions to the resulting simulated

  14. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus.

    Science.gov (United States)

    Trotonda, María Pilar; Manna, Adhar C; Cheung, Ambrose L; Lasa, Iñigo; Penadés, José R

    2005-08-01

    The biofilm-associated protein Bap is a staphylococcal surface protein involved in biofilm formation. We investigated the influence of the global regulatory locus sarA on bap expression and Bap-dependent biofilm formation in three unrelated Staphylococcus aureus strains. The results showed that Bap-dependent biofilm formation was diminished in the sarA mutants by an agr-independent mechanism. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation. As expected, the diminished capacity to form biofilms in the sarA mutants correlated with the decreased presence of Bap in the bacterial surface. Using transcriptional fusion and Northern analysis data, we demonstrated that the sarA gene product acts as an activator of bap expression. Finally, the bap promoter was characterized and the transcriptional start point was mapped by the rapid amplification of cDNA ends technique. As expected, we showed that purified SarA protein binds specifically to the bap promoter, as determined by gel shift and DNase I footprinting assays. Based on the previous studies of others as well as our work demonstrating the role for SarA in icaADBC and bap expression, we propose that SarA is an essential regulator controlling biofilm formation in S. aureus.

  15. The capability of time- and frequency-domain algorithms for bistatic SAR processing

    Science.gov (United States)

    Vu, Viet T.; Sjögren, Thomas K.; Pettersson, Mats I.

    2013-05-01

    The paper presents a study of the capability of time- and frequency-domain algorithms for bistatic SAR processing. Two typical algorithms, Bistatic Fast Backprojection (BiFBP) and Bistatic Range Doppler (BiRDA), which are both available for general bistatic geometry, are selected as the examples of time- and frequency-domain algorithms in this study. Their capability is evaluated based on some criteria such as processing time required by the algorithms to reconstruct SAR images from bistatic SAR data and the quality assessments of those SAR images.

  16. The utility of preemptive mass influenza vaccination in controlling a sars outbreak during flu season.

    Science.gov (United States)

    Zeng, Qingling; Khan, Kamran; Wu, Jianhong; Zhu, Huaiping

    2007-10-01

    During flu season, respiratory infections can cause non-specific influenza-like-illnesses (ILIs) in up to one-half of the general population. If a future SARS outbreak were to coincide with flu season, it would become exceptionally difficult to distinguish SARS rapidly and accurately from other ILIs, given the non-specific clinical presentation of SARS and the current lack of a widely available, rapid, diagnostic test. We construct a deterministic compartmental model to examine the potential impact of preemptive mass influenza vaccination on SARS containment during a hypothetical SARS outbreak coinciding with a peak flu season. Our model was developed based upon the events of the 2003 SARS outbreak in Toronto, Canada. The relationship of different vaccination rates for influenza and the corresponding required quarantine rates for individuals who are exposed to SARS was analyzed and simulated under different assumptions. The study revealed that a campaign of mass influenza vaccination prior to the onset of flu season could aid the containment of a future SARS outbreak by decreasing the total number of persons with ILIs presenting to the health-care system, and consequently decreasing nosocomial transmission of SARS in persons under investigation for the disease.

  17. DNA Vaccine of SARS-Cov S Gene Induces Antibody Response in Mice

    Institute of Scientific and Technical Information of China (English)

    PingZHAO; Jin-ShanKE; Zhao-LinQIN; HaoREN; Lan-JuanZHAO; Jian-GuoYU

    2004-01-01

    The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of the most important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E.coli, and analyzed with pooled sera of convalescence phase of SARS patients.The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E.coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E.coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.

  18. Putative hAPN receptor binding sites in SARS_CoV spike protein

    Institute of Scientific and Technical Information of China (English)

    YUXiao-Jing; LUOCheng; LinJian-Cheng; HAOPei; HEYou-Yu; GUOZong-Ming; QINLei; SUJiong; LIUBo-Shu; HUANGYin; NANPeng; LIChuan-Song; XIONGBin; LUOXiao-Min; ZHAOGuo-Ping; PEIGang; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; HEWei-Zhong; SHITie-Liu; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To obtain the information of ligand-receptor binding between thd S protein of SARS_CoV and CD13, identify the possible interacting domains or motifs related to binding sites, and provide clues for studying the functions of SARS proteins and designing anti-SARS drugs and vaccines. METHODS: On the basis of comparative genomics, the homology search, phylogenetic analyses, and multi-sequence alignment were used to predict CD13 related interacting domains and binding sites sites in the S protein of SARS_CoV. Molecular modeling and docking simulation methods were employed to address the interaction feature between CD13 and S protein of SARS_CoV in validating the bioinformatics predictions. RESULTS:Possible binding sites in the SARS_CoV S protein to CD13 have been mapped out by using bioinformatics analysis tools. The binding for one protein-protein interaction pair (D757-R761 motif of the SARS_CoV S protein to P585-A653 domain of CD13) has been simulated by molecular modeling and docking simulation methods. CONCLUSION:CD13 may be a possible receptor of the SARS_CoV S protein which may be associated with the SARS infection. This study also provides a possible strategy for mapping the possible binding receptors of the proteins in a genome.

  19. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  20. Ice classification algorithm development and verification for the Alaska SAR Facility using aircraft imagery

    Science.gov (United States)

    Holt, Benjamin; Kwok, Ronald; Rignot, Eric

    1989-01-01

    The Alaska SAR Facility (ASF) at the University of Alaska, Fairbanks is a NASA program designed to receive, process, and archive SAR data from ERS-1 and to support investigations that will use this regional data. As part of ASF, specialized subsystems and algorithms to produce certain geophysical products from the SAR data are under development. Of particular interest are ice motion, ice classification, and ice concentration. This work focuses on the algorithm under development for ice classification, and the verification of the algorithm using C-band aircraft SAR imagery recently acquired over the Alaskan arctic.

  1. Method of airborne SAR image match integrating multi-information for block adjustment

    Science.gov (United States)

    Yang, S. C.; Huang, G. M.; Zhao, Z.; Lu, L. J.

    2015-06-01

    For the automation of SAR image Block Adjustment, this paper proposed a method of SAR image matching integrating multiinformation. It takes full advantage of SAR image geometric information, feature information, gray-related information and external auxiliary terrain information for SAR image matching. And then Image Tie Points (ITPs) of Block Adjustment can be achieved automatically. The main parts of extracting ITPs automatically include: First, SAR images were rectified geometrically based on the geometric information and external auxiliary terrain information (existed DEM) before match. Second, ground grid points with a certain interval can be get in the block area and approximate ITPs were acquired based on external auxiliary terrain information. Then match reference point was extracted for homologous image blocks with Harris feature detection operator and ITPs were obtained with pyramid matching based on gray-related information. At last, ITPs were transferred from rectified images to original SAR images and used in block adjustment. In the experiment, X band airborne SAR images acquired by Chinese airborne SAR system - CASMSAR system were used to make up the block. The result had showed that the method is effective for block adjustment of SAR data.

  2. DNA Vaccine of SARS-Cov S Gene Induces Antibody Response in Mice

    Institute of Scientific and Technical Information of China (English)

    Ping ZHAO; Jin-Shan KE; Zhao-Lin QIN; Hao REN; Lan-Juan ZHAO; Jian-Guo YU; Jun GAO; Shi-Ying ZHU; Zhong-Tian QI

    2004-01-01

    The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of the most important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E. Coli, and analyzed with pooled sera of convalescence phase of SARS patients.The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E. Coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E. Coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.

  3. Analysis of Benefits and Pitfalls of Satellite SAR for Coastal Area Monitoring

    Science.gov (United States)

    Nunziata, F.; Buono, A.; Mgliaccio, M.; Li, X.; Wei, Y.

    2016-08-01

    This study aims at describing the outcomes of the Dragon-3 project no. 10689. The undertaken activities deal with coastal area monitoring and they include sea pollution and coastline extraction. The key remote sensing tool is the Synthetic Aperture Radar (SAR) that provides fine resolution images of the microwave reflectivity of the observed scene. However, the interpretation of SAR images is not at all straightforward and all the above-mentioned coastal area applications cannot be easily addressed using single-polarization SAR. Hence, the main outcome of this project is investigating the capability of multi-polarization SAR measurements to generate added-vale product in the frame of coastal area management.

  4. System Design and In-orbit Verification of the HJ-1-C SAR Satellite

    Directory of Open Access Journals (Sweden)

    Zhang Run-ning

    2014-06-01

    Full Text Available HJ-1-C is a SAR satellite owned by the Chinese Environment and Natural Disaster Monitoring constellation, and works together with the optical satellites HJ-1-A/B for monitoring environment and natural disasters. In this paper, the system design and characteristics of the first Chinese civil SAR satellite are described. In addition, the interface relation between SAR payload and platform is studied. Meanwhile, the data transmission capability, attitude, power, and temperature control that support SAR imaging are reviewed. Finally, the corresponding in-orbit verification results are presented.

  5. Phylogeny of SARS-CoV as inferred from complete genome comparison

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    SARS-CoV, as the pathogeny of severe acute respiratory syndrome (SARS), is a mystery that the origin of the virus is still unknown even a few isolates of the virus were completely sequenced. To explore the genesis of SARS-CoV, the FDOD method previously developed by us was applied to comparing complete genomes from 12 SARS-CoV isolates to those from 12 previously identified coronaviruses and an unrooted phylogenetic tree was constructed. Our results show that all SARS-CoV isolates were clustered into a clique and previously identified coronaviruses formed the other clique. Meanwhile, the three groups of coronaviruses depart from each other clearly in our tree that is consistent with the results of prevenient papers. Differently, from the topology of the phylogenetic tree we found that SARS-CoV is more close to group 1 within genus coronavirus. The topology map also shows that the 12 SARS-CoV isolates may be divided into two groups determined by the association with the SARS-CoV from the Hotel M in Hong Kong that may give some information about the infectious relationship of the SARS.

  6. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  7. Structural Modeling and Analysis on Dynamic Characteristics of Antenna Pedestal in Airborne SAR

    Directory of Open Access Journals (Sweden)

    He Li-ping

    2012-06-01

    Full Text Available Finite element modeling and structural dynamic characteristics of antenna pedestal in airborne SAR were studied in this paper. The Finite element model of antenna pedestal in airborne SAR was set up on the basis of structural dynamic theory, then, the key technologies of dynamic simulation were pointed out, and the modal analysis and transient analysis were carried out. Simulation results show that the dynamic characteristics of antenna pedestal in airborne SAR can meet the requirements of servo bandwidth and structural strength. The fast finite element modeling and simulation method proposed in this paper are of great significance to the weight reducing design of antenna pedestal in airborne SAR.

  8. Improved Oceanographic Measurements with CryoSat SAR Altimetry

    Science.gov (United States)

    Cotton, David; Benveniste, Jérôme; Cipollini, Paolo; Andersen, Ole; Cancet, Mathilde; Ambrózio, Américo; Restano, Marco; Nilo Garcia, Pablo; Martin, Francisco

    2016-07-01

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar "SAR" (or delay-Doppler) and interferometric SAR (SARin) modes. Studies on CryoSat data have analysed and confirmed the improved ocean measuring capability offered by SAR mode altimetry, through increased resolution and precision in sea surface height and wave height measurements, and have also added significantly to our understanding of the issues around the processing and interpretation of SAR altimeter echoes. We present work in four themes, building on work initiated in the CryoSat Plus for Oceans project (CP4O), each investigating different aspects of the opportunities offered by this new technology. The first two studies address the coastal zone, a critical region for providing a link between open-ocean and shelf sea measurements with those from coastal in-situ measurements, in particular tide gauges. Although much has been achieved in recent years through the Coastal Altimetry community, (http://www.coastalt.eu/community) there is a limit to the capabilities of pulse-limited altimetry, which often leaves an un-measured "white strip" right at the coastline. Firstly, a thorough analysis was made of the performance of "SAR" altimeter data (delay-Doppler processed) in the coastal zone. This quantified the performance, confirming the significant improvement over "conventional" pulse-limited altimetry. In the second study a processing scheme was developed with CryoSat SARin mode data to enable the retrieval of valid oceanographic measurements in coastal areas with complex topography. Thanks to further development of the algorithms, a new approach was achieved that can also be applied to SAR and conventional altimetry data (e.g., Sentinel-3, Jason series, Envisat). The third part of the project developed and evaluated improvements to the SAMOSA altimeter re-tracker that is implemented in the Sentinel-3 processing chain. The modifications to the

  9. Localized landslide risk assessment with multi pass L band DInSAR analysis

    Science.gov (United States)

    Yun, HyeWon; Rack Kim, Jung; Lin, Shih-Yuan; Choi, YunSoo

    2014-05-01

    In terms of data availability and error correction, landslide forecasting by Differential Interferometric SAR (DInSAR) analysis is not easy task. Especially, the landslides by the anthropogenic construction activities frequently occurred in the localized cutting side of mountainous area. In such circumstances, it is difficult to attain sufficient enough accuracy because of the external factors inducing the error component in electromagnetic wave propagation. For instance, the local climate characteristics such as orographic effect and the proximity to water source can produce the significant anomalies in the water vapor distribution and consequently result in the error components of InSAR phase angle measurements. Moreover the high altitude parts of target area cause the stratified tropospheric delay error in DInSAR measurement. The other obstacle in DInSAR observation over the potential landside site is the vegetation canopy which causes the decorrelation of InSAR phase. Thus rather than C band sensor such as ENVISAT, ERS and RADARSAT, DInSAR analysis with L band ALOS PLASAR is more recommendable. Together with the introduction of L band DInSAR analysis, the improved DInSAR technique to cope all above obstacles is necessary. Thus we employed two approaches i.e. StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR, Hopper et al., 2007) which was newly developed for extracting the reliable deformation values through time series analysis and two pass DInSAR with the error term compensation based on the external weather information in this study. Since the water vapor observation from spaceborne radiometer is not feasible by the temporal gap in this case, the quantities from weather Research Forecasting (WRF) with 1 km spatial resolution was used to address the atmospheric phase error in two pass DInSAR analysis. Also it was observed that base DEM offset with time dependent perpendicular baselines of InSAR time series produce a significant error

  10. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants.

    Directory of Open Access Journals (Sweden)

    Laura H Tsang

    Full Text Available Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases. Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results

  11. The integration of Human Factors (HF) in the SAR process training course text

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.G.

    1995-03-01

    This text provides the technical basis for a two-day course on human factors (HF), as applied to the Safety Analysis Report (SAR) process. The overall objective of this text and course is to: provide the participant with a working knowledge of human factors-related requirements, suggestions for doing a human safety analysis applying a graded approach, and an ability to demonstrate using the results of the human safety analysis, that human factors elements as defined by DOE (human factors engineering, procedures, training, oversight, staffing, qualifications), can support wherever necessary, nuclear safety commitments in the SAR. More specifically, the objectives of the text and course are: (1) To provide the SAR preparer with general guidelines for doing HE within the context of a graded approach for the SAR; (2) To sensitize DOE facility managers and staff, safety analysts and SAR preparers, independent reviewers, and DOE reviewers and regulators, to DOE Order 5480.23 requirements for HE in the SAR; (3) To provide managers, analysts, reviewers and regulators with a working knowledge of HE concepts and techniques within the context of a graded approach for the SAR, and (4) To provide SAR managers and DOE reviewers and regulators with general guidelines for monitoring and coordinating the work of preparers of HE inputs throughout the SAR process, and for making decisions regarding the safety relevance of HE inputs to the SAR. As a ready reference for implementing the human factors requirements of DOE Order 5480.22 and DOE Standard 3009-94, this course text and accompanying two-day course are intended for all persons who are involved in the SAR.

  12. The effect of severe acute respiratory syndrome (SARS) on emergency airway management.

    Science.gov (United States)

    Wong, Evelyn; Ho, Khoy Kheng

    2006-07-01

    From early March 2003 to late May 2003, severe acute respiratory syndrome (SARS) was detected in Singapore. The increase in workload and new infection control procedures were thought to affect resuscitation and airway management. Our aim was to study the effects of wearing of personal protective equipment (PPE) and powered air-purifying respirator (PAPR) and the restriction in the number of resuscitation personnel on airway management during the SARS crisis. Data was collected prospectively through an ongoing emergency airway registry. The data was divided into three periods: (1) before PPE was instituted from 1 November 2002 to 31 March 2003; (2) during SARS (when PPE use was mandatory) from 1 April to 31 July 2003; (3) post-SARs (when PPE use was non-mandatory but encouraged) from 1 August to 31 March 2004. There was no change in patient demographics during the three periods. There were significant increases in the proportion of resuscitation cases and airway interventions during the SARS period compared to the pre-SARS period. The resident medical officer intubation rate decreased from 45.1% pre-SARS to 35.2% during SARS and 17.7% post-SARS. The complication rates were 10.5%, 9.9% and 9.4% in periods 1-3, respectively. Restriction in the number of healthcare staff attending to each patient may have influenced the department's decision to allow only the most confident or experienced personnel to manage the airway. The exposure of junior medical officers in emergency airway management during SARS and the immediate post-SARS period was decreased. This trend should be monitored further and intervention may be necessary should it continue to decline.

  13. NOAA high resolution sea surface winds data from Synthetic Aperture Radar (SAR) on the RADARSAT-2 satellite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Synthetic Aperture Radar (SAR)-derived high resolution wind products are calculated from high resolution SAR images of normalized radar cross section (NRCS) of the...

  14. GIAnT - Generic InSAR Analysis Toolbox

    Science.gov (United States)

    Agram, P.; Jolivet, R.; Riel, B. V.; Simons, M.; Doin, M.; Lasserre, C.; Hetland, E. A.

    2012-12-01

    We present a computing framework for studying the spatio-temporal evolution of ground deformation from interferometric synthetic aperture radar (InSAR) data. Several open-source tools including Repeat Orbit Interferometry PACkage (ROI-PAC) and InSAR Scientific Computing Environment (ISCE) from NASA-JPL, and Delft Object-oriented Repeat Interferometric Software (DORIS), have enabled scientists to generate individual interferograms from raw radar data with relative ease. Numerous computational techniques and algorithms that reduce phase information from multiple interferograms to a deformation time-series have been developed and verified over the past decade. However, the sharing and direct comparison of products from multiple processing approaches has been hindered by - 1) absence of simple standards for sharing of estimated time-series products, 2) use of proprietary software tools with license restrictions and 3) the closed source nature of the exact implementation of many of these algorithms. We have developed this computing framework to address all of the above issues. We attempt to take the first steps towards creating a community software repository for InSAR time-series analysis. To date, we have implemented the short baseline subset algorithm (SBAS), NSBAS and multi-scale interferometric time-series (MInTS) in this framework and the associated source code is included in the GIAnT distribution. A number of the associated routines have been optimized for performance and scalability with large data sets. Some of the new features in our processing framework are - 1) the use of daily solutions from continuous GPS stations to correct for orbit errors, 2) the use of meteorological data sets to estimate the tropospheric delay screen and 3) a data-driven bootstrapping approach to estimate the uncertainties associated with estimated time-series products. We are currently working on incorporating tidal load corrections for individual interferograms and propagation of

  15. Advanced SAR simulator with multi-beam interferometric capabilities

    Science.gov (United States)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  16. Hospice utilization during the SARS outbreak in Taiwan

    Directory of Open Access Journals (Sweden)

    Lin Ming-Hwai

    2006-08-01

    Full Text Available Abstract Background The severe acute respiratory syndrome (SARS epidemic threw the world into turmoil during the first half of 2003. Many subsequent papers have addressed its impact on health service utilization, but few have considered palliative (hospice care. The aim of the present study was to describe changes in hospice inpatient utilization during and after the SARS epidemic in 2003 in Taiwan. Methods The data sources were the complete datasets of inpatient admissions during 2002 and 2003 from the National Health Insurance Research Database. Before-and-after comparisons of daily and monthly utilizations were made. Hospice analyses were limited to those wards that offered inpatient services throughout these two years. The comparisons were extended to total hospital bed utilization and to patients who were still admitted to hospice wards during the peak period of the SARS epidemic. Results Only 15 hospice wards operated throughout the whole of 2002 and 2003. In 2003, hospice utilization began to decrease in the middle of April, reached a minimum on 25 May, and gradually recovered to the level of the previous November. Hospices showed a more marked reduction in utilization than all hospital beds (e.g. -52.5% vs. -19.9% in May 2003 and a slower recovery with a three-month lag. In total, 566 patients were admitted to hospice wards in May/June 2003, in contrast to 818 in May/June 2002. Gender, age and diagnosis distributions did not differ. Conclusion Hospice inpatient utilization in Taiwan was indeed more sensitive to the emerging epidemic than general inpatient utilization. A well-balanced network with seamless continuity of care should be ensured.

  17. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  18. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2016-01-01

    In this paper, first results concerning the characterization of the subsurface of ice sheets and glaciers through single and multipolarization synthetic aperture radar (SAR) tomography (TomoSAR) are illustrated. To this aim, the processing of data acquired in the framework of the European Space...

  19. SAR Study of Mobile Phones as a function of Antenna Q

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Jagielski, Ole

    2015-01-01

    High-Q tunable antennas are good alternatives to low-Q passive antennas because the antenna size can be smaller while covering the required long-term evolution (LTE) frequency bands. However, among other things, specific absorption rate (SAR) can become a challenge due to the relative high curren...... SAR values depend on total losses of the mock-up (MU)....

  20. An imaging algorithm based on keystone transform for one-stationary bistatic SAR of spotlight mode

    Science.gov (United States)

    Qiu, Xiaolan; Behner, Florian; Reuter, Simon; Nies, Holger; Loffeld, Otmar; Huang, Lijia; Hu, Donghui; Ding, Chibiao

    2012-12-01

    This article proposes an imaging algorithm based on Keystone Transform for bistatic SAR with a stationary receiver. It can efficiently be applied to high-resolution spotlight mode, and can directly be process the bistatic SAR data which have been ranged compressed by the synchronization reference pulses. Both simulation and experimental results validate the good performance of this algorithm.

  1. PS-InSAR Monitoring of Landslide Activity in the Black Sea Coast of the Caucasus

    NARCIS (Netherlands)

    Kiseleva, E.; Mikhailov, V.; Smolyaninova, E.; Dmitriev, P.; Golubev, V.; Timoshkina, E.; Hooper, A.; Samiei-Esfahany, S.; Hanssen, R.F.

    2014-01-01

    The landslide activity in the area of Bolshoy Sochi (Big Sochi) situated at the Black Sea coast of the Great Caucasus has been studied using the StaMPS PS-InSAR method. We incorporated three sets of radar images from the satellites with different wavelengths ALOS, Envisat and Terra-SAR-X from both a

  2. Unraveling the complexities of the interferon response during SARS-CoV infection

    NARCIS (Netherlands)

    A. de Lang (Anna); T. Baas (Tracey); S.L. Smits (Saskia); M.G. Katze (Michael); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart)

    2009-01-01

    textabstractViruses employ different strategies to circumvent the antiviral actions of the innate immune response. SARS coronavirus (SARS-CoV), a virus that causes severe lung damage encodes an array of proteins able to inhibit induction and signaling of type-I interferons. However, recent studies h

  3. Genome sequence variation analysis of two SARS coronavirus isolates after passage in Vero cell culture

    Institute of Scientific and Technical Information of China (English)

    JIN Weiwu; LI Ning; HU Liangxiang; DU Zhenglin; GAO Qiang; GAO Hong; NING Ye; FENG Jidong; ZHANG Jiansan; YIN Weidong

    2004-01-01

    SARS coronavirus is an RNA virus whose replication is error-prone, which provides possibility for escape of host defenses, and even leads to evolution of new viral strains during the passage or the transmission. Lots of variations have been detected among different SARS-CoV strains. And a study on these variations is helpful for development of efficient vaccine. Moreover, the test of nucleic acid characterization and genetic stability of SARS-CoV is important in the research of inactivated vaccine. The whole genome sequences of two SARS coronavirus strains after passage in Vero cell culture were determined and were compared with those of early passages, respectively. Results showed that both SARS coronavirus strains have high genetic stability, although nearly 10 generations were passed. Four nucleotide variations were observed between the second passage and the 11th passage of Sino1 strain for identification of SARS inactivated vaccine. Moreover, only one nucleotide was different between the third passage and the 10th passage of Sino3 strain for SARS inactivated vaccine. Therefore, this study suggested it was possible to develop inactivated vaccine against SARS-CoV in the future.

  4. Flight path-driven mitigation of wavefront curvature effects in SAR images

    Science.gov (United States)

    Doerry, Armin W.

    2009-06-23

    A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.

  5. The potential of more accurate InSAR covariance matrix estimation for land cover mapping

    Science.gov (United States)

    Jiang, Mi; Yong, Bin; Tian, Xin; Malhotra, Rakesh; Hu, Rui; Li, Zhiwei; Yu, Zhongbo; Zhang, Xinxin

    2017-04-01

    Synthetic aperture radar (SAR) and Interferometric SAR (InSAR) provide both structural and electromagnetic information for the ground surface and therefore have been widely used for land cover classification. However, relatively few studies have developed analyses that investigate SAR datasets over richly textured areas where heterogeneous land covers exist and intermingle over short distances. One of main difficulties is that the shapes of the structures in a SAR image cannot be represented in detail as mixed pixels are likely to occur when conventional InSAR parameter estimation methods are used. To solve this problem and further extend previous research into remote monitoring of urban environments, we address the use of accurate InSAR covariance matrix estimation to improve the accuracy of land cover mapping. The standard and updated methods were tested using the HH-polarization TerraSAR-X dataset and compared with each other using the random forest classifier. A detailed accuracy assessment complied for six types of surfaces shows that the updated method outperforms the standard approach by around 9%, with an overall accuracy of 82.46% over areas with rich texture in Zhuhai, China. This paper demonstrates that the accuracy of land cover mapping can benefit from the 3 enhancement of the quality of the observations in addition to classifiers selection and multi-source data ingratiation reported in previous studies.

  6. Airborne FM-CW SAR and Integrated Navigation System Data Fusion

    NARCIS (Netherlands)

    Lorga, J.F.M.; Meta, A.; Wit, J.J.M. de; Mulder, J.A.

    2005-01-01

    The combination of compact FM-CW radar technology and high resolution SAR pro- cessing techniques should pave the way for the development of a small and cost e®ective imaging radar with high resolution. However, airborne SAR is a very novel application for FM-CW radars. In order to investigate the p

  7. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide

    Directory of Open Access Journals (Sweden)

    Roh C

    2012-05-01

    Full Text Available Changhyun RohDivision of Biotechnology, Advanced Radiation Technology Institute (ARTI, Korea Atomic Energy Research Institute (KAERI, Jeongeup, Republic of KoreaAbstract: Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS, and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV nucleocapsid (N protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (--catechin gallate and (--gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (--catechin gallate and (--gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 µg mL–1, (--catechin gallate and (--gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.Keywords: SARS, RNA oligonucleotide, quantum dots, inhibitor, screening

  8. Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU

    Directory of Open Access Journals (Sweden)

    Meng Da-di

    2013-12-01

    Full Text Available Synthetic Aperture Radar (SAR image processing requires huge computation amount. Traditionally, this task runs on the workstation or server based on Central Processing Unit (CPU and is rather time-consuming, hence real-time processing of SAR data is impossible. Based on Compute Unified Device Architecture (CUDA technology, a new plan of SAR imaging algorithm operated on NVIDIA Graphic Processing Unit (GPU is proposed. The new proposal makes it possible that the data processing procedure and CPU/GPU data exchanging execute concurrently, especially when SAR data size exceeds total GPU global memory size. Multi-GPU is suitably supported by the new proposal and all of computational resources are fully exploited. It is shown by experiment on NVIDIA K20C and INTEL E5645 that the proposed solution accelerates SAR data processing by tens of times. Consequently, the GPU based SAR processing system with the proposed solution embedded is much more power saving and portable, which makes it qualified to be a real-time SAR data processing system. Experiment shows that SAR data of 36 Mega points can be processed in real-time per second by K20C with the new solution equipped.

  9. Land-cover mapping using multitemporal, dual-frequency polarimetric SAR data

    DEFF Research Database (Denmark)

    Skriver, Henning; Schou, Jesper; Dierking, Wolfgang

    2000-01-01

    The Danish Center for Remote Sensing (DCRS) is, in collaboration with the Danish mapping agency, conducting a study on topographic mapping using SAR data, and land cover mapping results are presented. The Danish EMISAR system (an L- and C-band, fully polarimetric, airborne SAR) have in 1994 to 19...

  10. How change of public transportation usage reveals fear of the SARS virus in a city.

    Directory of Open Access Journals (Sweden)

    Kuo-Ying Wang

    Full Text Available The outbreaks of the severe acute respiratory syndrome (SARS epidemic in 2003 resulted in unprecedented impacts on people's daily life. One of the most significant impacts to people is the fear of contacting the SARS virus while engaging daily routine activity. Here we use data from daily underground ridership in Taipei City and daily reported new SARS cases in Taiwan to model the dynamics of the public fear of the SARS virus during the wax and wane of the SARS period. We found that for each reported new SARS case there is an immediate loss of about 1200 underground ridership (the fresh fear. These daily loss rates dissipate to the following days with an e-folding time of about 28 days, reflecting the public perception on the risk of contacting SARS virus when traveling with the underground system (the residual fear. About 50% of daily ridership was lost during the peak of the 2003 SARS period, compared with the loss of 80% daily ridership during the closure of the underground system after Typhoon Nari, the loss of 50-70% ridership due to the closure of the governmental offices and schools during typhoon periods, and the loss of 60% daily ridership during Chinese New Year holidays.

  11. Some Results from SAR and Optical Sensor Monitoring of China Seas

    Science.gov (United States)

    Yang, Jingsong; Lou, Xiulin; Chen, Peng; Wang, Juan; Ren, Lin; Chang, Junfang; Pan, Yufang

    2013-01-01

    As part of the final results of Dragon 2 Project Id. 5316 “Demonstrating SAR and optical sensor monitoring of Chinese Seas”, some results from SAR and optical sensor monitoring of China Seas including sea surface winds, ocean surface waves, typhoon and typhoon waves, ocean internal waves, red tides, and ships are given in this paper.

  12. SAR Imaging Technology Makes Major Advances in China over the Past 25 Years

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ On September 17, 1979, scientists from the CAS Institute of Electronics succeeded in obtaining their first microwave remote sensing images from a prototype airborne synthetic aperture radar (SAR) system. Over the past 25 years, Chinese scientists have won many R&D results and made remarkable progress in developing SAR and its ground receiving systems.

  13. Evaluation of high resolution space borne SAR for man-made target characterisation

    NARCIS (Netherlands)

    Broek, A.C. van den; Dekker, R.J.

    2008-01-01

    Due to its all-weather feature SAR is a very suitable sensor for monitoring at regular time intervals and therefore for monitoring changes on the Earth’s surface. Radar satellites with resolutions down to 1 meter, such as TerraSAR- X are becoming operational implying that detailed changes can now be

  14. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  15. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system

    Institute of Scientific and Technical Information of China (English)

    Xin-Wei Wang; Xiao-Ming Wu; Wen-Jun Xiao; Xiu-Mei Zhu; Chang-Qing Gu; Jing Yin; Wei Wei; Wei Yao; Chao Liu; Jian-Feng Li; Guo-Rong Ou; Jin-Song Li; Min-Nian Wang; Tong-Yu Fang; Gui-Jie Wang; Yao-Hui Qiu; Huai-Huan Wu; Fu-Huan Chao; Jun-Wen Li; Ting-Kai Guo; Bei Zhen; Qing-Xin Kong; Bin Yi; Zhong Li; Nong Song; Min Jin

    2005-01-01

    AIM: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system.METHODS: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SAPS patients in Beijing in China.RESULTS: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise,cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals.The RNA could not be detected in urine and stool samples from patients recovered from SARS.CONCLUSION: Nucleic acid of SARS-CoV can be excreted through the stool of patients into sewage system, and the possibility of SARS-CoV transmitting through digestive system cannot be excluded.

  16. The Danish SAR system: design and initial tests

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Christensen, Erik Lintz; Skou, Niels;

    1991-01-01

    In January 1986, the design of a high-resolution airborne C -band synthetic aperture radar (SAR) started at the Electromagnetics Institute of the Technical University of Denmark. The initial system test flights took place in November and December 1989. The authors describe the design of the system......, its implementation, and its performance. They show how digital technology has been utilized to realize a very flexible radar with variable resolution, swath-width, and imaging geometry. The motion-compensation algorithms implemented to obtain the high resolution and the special features built...

  17. SAR measurements of coastal features in the NW Mediterranean

    Science.gov (United States)

    Redondo, Jose M.; Martinez Benjamin, Juan Jose; Diez, Margarita; Lopez Gonzalez-Nieto, Pilar

    2013-04-01

    The Synthetic Aperture Radar (SAR) is a useful tool to study both marine water dynamics and its pollution, this is relevant near the coastline, where river pollution may be also important. Oil spills and natural slicks are detected with SAR [1-3] to reveal river and vessel pollution as well as the complex eddy and current interaction in the ocean surface near the coastline. In the framework of the ESA and European Union contracts, more than 1000 SAR images of the North-west Mediterranean Sea area taken between December 1996 and December 2008 are presented using self-similar traces that may be used to parametrize mixing at both limits of the Rossby Deformation Radius scale. Results show the ability to identify different SAR signatures and at the same time provide calibrations for the different local configurations of vortices, spirals, oil spills and tensioactive slicks that eventually allow predicting the behaviour of different tracers and pollutants in the NW Mediterranean Sea. Thanks to different polarization and intensity levels in satellite imagery can be used to distinguish between natural and man-made sea surface features due to their distinct self-similar as a function of spill parameters, environmental conditions and history of both oil release and weather conditions. (Environmental factors determine [4] spreading, drift and weathering of oil on the sea surface - see: Behaviour oil at sea). Detecting the low contrast patches depends also on the speckle noise which always presents in the image. Application of different filters (available for example in several image processing software (Matlab, Envi, IDL) to the radar data decreases noise level and improves the feature detecting in the image [1] Bezerra, M.O., Diez, M., Medeiros, C., Rodriguez, A., Bahia, E., Sanchez-Arcilla, A. and Redondo, J.M. 1998. Study on the influence of waves on coastal diffusion using image analysis. Applied Scientific Research 59, pp.191-204. [2] Carrillo, A., A., Sanchez,, M

  18. EQUIVALENT BASELINE AND INTERFEROMETRIC PHASE OF CLUSTER SATELLITE SAR

    Institute of Scientific and Technical Information of China (English)

    Gong Min; Zhang Chuanwu; Huang Shunji

    2005-01-01

    The change of the equivalent baseline and interferometric phase of cluster SAR satellites is analyzed when the constellation circles around the Earth and the satellites rotate around the center at the same time. The letter provides assessment of baseline error and phase error which influence the precision of height measurement in the across-track interferometric mode. The mathematical model of cluster satellite movement is built, simulation analyses and the curve of height error are presented. The simulation results show that height measurement error can be compensated by the formulae derived in this letter, therefore, the Digital Elevation Models (DEM's) are recovered accurately.

  19. On InSAR Ambiguity Resolution For Deformation Monitoring

    Science.gov (United States)

    Teunissen, P.

    2006-01-01

    Integer carrier phase ambiguity resolution is the key to fast and highprecision satellite positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. It also applies to stacked radar interferometry for deformation monitoring, see e.g. [Hanssen, et al, 2001]. In this contribution we apply the integer least-squares' principle to the rank defect model of stacked InSAR carrier phase data. We discuss two ways of dealing with the rank defect for ambiguity resolution. One is based on the use of a priori data, the other is based on the use of an interval constraint on the deformation rate.

  20. Spectral SAR Ecotoxicology of Ionic Liquids: The Daphnia magna Case

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2007-01-01

    Full Text Available Aiming to provide a unified theory of ionic liquids ecotoxicity, the recent spectral structure activity relationship (S-SAR algorithm is employed for testing the two additive models of anionic-cationic interaction containing ionic liquid activity: the causal and the endpoint, |0+〉 and |1+〉 models, respectively. As a working system, the Daphnia magna ecotoxicity was characterized through the formulated and applied spectral chemical-ecobiological interaction principles. Specific anionic-cationic-ionic-liquid rules of interaction along the developed mechanistic hypersurface map of the main ecotoxicity paths together with the so-called resonance limitation of the standard statistical correlation analysis were revealed.

  1. Custom large scale integrated circuits for spaceborne SAR processors

    Science.gov (United States)

    Tyree, V. C.

    1978-01-01

    The application of modern LSI technology to the development of a time-domain azimuth correlator for SAR processing is discussed. General design requirements for azimuth correlators for such missions as Seasat-A, Venus Orbital Imaging Radar, and Shuttle Imaging Radar are summarized. Several azimuth correlator architectures suitable for implementation using custom LSI devices are described. Technical factors pertaining to selection of appropriate LSI technologies are discussed, and the maturity of alternative technologies for spacecraft application is examined in the context of the expected launch dates. In particular, it is demonstrated that a custom LSI device is practical for a system as complex as the DMSP.

  2. The impact of curved satellite tracks on SAR focusing

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2000-01-01

    This paper addresses the geometric effect of processing single look complex synthetic aperture radar (SAR) data to a reference squint angle different from that given by the center of the real antenna beam. For data acquired on a straight flight line, the required transformation of radar coordinates...... from one Doppler reference to another is independent of the target elevation but for data acquired from a satellite orbit over a rotating Earth that is not true. Also the effect of ignoring Earth rotation is addressed....

  3. Satellite SAR data assessment for Silk Road archaeological prospection

    Science.gov (United States)

    Chen, Fulong; Lasaponara, Rosa; Masini, Nicola; Yang, Ruixia

    2015-04-01

    The development of Synthetic Aperture Radar (SAR) in terms of multi-band, multi-polarization and high-resolution data, favored the application of this technology also in archaeology [1]. Different approaches based on both single and multitemporal data analysis, exploiting the backscattering and the penetration of radar data, have been used for a number of archaeological sites and landscapes [2-5]. Nevertheless, the capability of this technology in archaeological applications has so far not been fully assessed. It lacks a contribution aimed at evaluating the potential of SAR technology for the same study area by using different bands, spatial resolutions and data processing solutions. In the framework of the Chinese-Italian bilateral project "Smart management of cultural heritage sites in Italy and China: Earth Observation and pilot projects", we addressed some pioneering investigations to assess multi-mode (multi-band, temporal, resolution) satellite SAR data (including X-band TerraSAR, C-band Envisat and L-band ALOS PALSAR) in archaeological prospection of the Silk road [6]. The Silk Road, a series of trade and cultural transmission routes connecting China to Europe, is the witness of civilization and friendship between the East and West dated back to 2000 years ago, that left us various relics (e.g. lost cities) to be uncovered and investigated.. In particular, the assessment has been performed in the Xinjiang and Gansu section pf the Silk Road focusing on : i) the subsurface penetration capability of SAR data in the arid and semi-arid region ii) and sensitivity of SAR imaging geometry for the detection of relics As regards the point i) , apart from the soil moisture, the penetration is seriously restricted by the soil porosity. For instance, negligible penetration signs were detected in Yumen Frontier Pass either using X- or L-band SAR data due to the occurrence of Yardang landscape. As regards the point ii), the flight path of SAR images in parallel with the

  4. Pyrazolopyridines as potent PDE4B inhibitors: 5-Heterocycle SAR

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Charlotte J.; Ballantine, Stuart P.; Coe, Diane M.; Cook, Caroline M.; Delves, Christopher J.; Dowle, Mike D.; Edlin, Chris D.; Hamblin, J. Nicole; Holman, Stuart; Johnson, Martin R.; Jones, Paul S.; Keeling, Sue E.; Kranz, Michael; Lindvall, Mika; Lucas, Fiona S.; Neu, Margarete; Solanke, Yemisi E.; Somers, Don O.; Trivedi, Naimisha A.; Wiseman, Joanne O. (GSK)

    2012-05-03

    Following the discovery of 4-(substituted amino)-1-alkyl-pyrazolo[3,4-b]pyridine-5-carboxamides as potent and selective phosphodiesterase 4B inhibitors, [Hamblin, J. N.; Angell, T.; Ballentine, S., et al. Bioorg. Med. Chem. Lett.2008, 18, 4237] the SAR of the 5-position was investigated further. A range of substituted heterocycles showed good potencies against PDE4. Optimisation using X-ray crystallography and computational modelling led to the discovery of 16, with sub-nM inhibition of LPS-induced TNF-{alpha} production from isolated human peripheral blood mononuclear cells.

  5. Exploration of Advanced Bistatic SAR Experiments%先进双基SAR技术研究

    Institute of Scientific and Technical Information of China (English)

    邓云凯; 王宇

    2014-01-01

    该文展示了世界上几个重要的先进混合双基SAR实验。混合双基模式是指发射端和接收端分别装载于不同类型的平台,例如星载/机载,机载/静止平台,星载/静止平台等。近年来相继有若干混合双基 SAR 实验成功完成,主要包括TerraSAR-X/PAMIR,PAMIR/静止平台,以及TerraSAR-X/静止平台。此外,在TerraSAR-X/静止平台的双基模式下还验证了多基线干涉 SAR (MB-InSAR)和数字波束形成(DBF)技术。值得强调的是,该文所展示的DBF实验结果属于世界上首次成功的基于在轨雷达卫星的DBF实验。%This study concentrates on the results of several advanced hybrid bistatic SAR experiments. The hybrid bistatic configuration applies to the case in which the transmitter and receiver are mounted on different types of platforms, e.g., spaceborne/airborne, airborne/stationary, spaceborne/stationary, and so on. Several hybrid bistatic SAR experiments have been performed successfully, i.e., TerraSAR-X/PAMIR, PAMIR/stationary, and TerraSAR-X/stationary. Furthermore, Multiple Baseline Interferometry SAR (MB-InSAR) and Digital Beam-Forming (DBF) technologies are validated in the TerraSAR-X/stationary configuration. Note that the DBF experiment results based on the spaceborne illuminator are discussed for the first time in SAR community. In addition, this paper emphasizes imaging geometry, image analysis, and focusing results.

  6. Deployment and design of bi-directional corner reflectors for op-timal ground motion monitoring using InSAR

    NARCIS (Netherlands)

    Caro Cuenca, M.; Dheenathayalan, P.; Rossum, W.L. van; Hoogeboom, P.

    2014-01-01

    SAR interferometry (InSAR) requires coherent radar reflections to measure ground displacements. Howev-er, natural coherent reflectors are not always available due to changes in the scattering properties of the ground, e.g., growing vegetation. Furthermore, the opportunistic nature of InSAR measureme

  7. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    Science.gov (United States)

    2015-09-01

    articles/93/ web /2015/02/Dissolving-Disks-Deliver-Drugs-Eye.html 3. National Public Radio (NPR): “Dissolving Contact Lenses Could Make Eye Drops... scraped off with a scalpel and the tissue was collected for PCR analysis. Total RNA from corneal epithelium was1 10 100 1000 10000 D ex am et ha so se

  8. Broad Application of a Reconfigurable Motor Controller Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An ultra-miniature (<50 grams) high-performance brushless-motor controller, code named 'Puck', has been developed by Barrett for Earth-based mobile-manipulation...

  9. Methods of InSAR atmosphere correction for volcano activity monitoring

    Science.gov (United States)

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  10. Forest biophysical parameter estimation using space-borne bistatic PolInSAR measurements

    Science.gov (United States)

    Khati, Unmesh; Singh, Gulab; Mohanty, Shradha

    2016-05-01

    Forest height is an important indicator of the health of the forest ecosystem and can be utilized for accurate estimation of important parameters such as forest above-ground biomass. PolInSAR techniques have been utilized for forest height estimation using airborne and space-borne platforms. However, temporal decorrelation severely limits the ability of space-borne PolInSAR observations for meaningful height inversion. With the launch of the TerraSAR-X/TanDEM-X platforms, acquisition of Polarimetric SAR data in bistatic mode, without the undesired effects of temporal decorrelation, is possible. Full-PolInSAR bistatic data is acquired over Indian tropical forests and the height inversion results are presented in this research article. The inverted height shows a good correlation with field measured height, with r = 0.8. The inversion shows over-estimation over low height forests, while providing an accurate estimation for tall forested areas.

  11. SAR imagery of the Grand Banks (Newfoundland) pack ice pack and its relationship to surface features

    Science.gov (United States)

    Argus, S. D.; Carsey, F. D.

    1988-01-01

    Synthetic Aperture Radar (SAR) data and aerial photographs were obtained over pack ice off the East Coast of Canada in March 1987 as part of the Labrador Ice Margin Experiment (LIMEX) pilot project. Examination of this data shows that although the pack ice off the Canadian East Coast appears essentially homogeneous to visible light imagery, two clearly defined zones of ice are apparent on C-band SAR imagery. To identify factors that create the zones seen on the radar image, aerial photographs were compared to the SAR imagery. Floe size data from the aerial photographs was compared to digital number values taken from SAR imagery of the same ice. The SAR data of the inner zone acquired three days apart over the melt period was also examined. The studies indicate that the radar response is governed by floe size and meltwater distribution.

  12. DEM-Based SAR Pixel Area Estimation For Enhanced Geocoding Refinement And Radiometric Normalization

    Science.gov (United States)

    Frey, Othmar; Santoro, Maurizio; Werner, Charles L.; Wegmuller, Urs

    2012-01-01

    Precise terrain-corrected georeferencing of SAR images and derived products in range-Doppler coordinates is important with respect to several aspects, such as data interpretation, combination with other geodata products, and transformation of, e.g., terrain heights into SAR geometry as used in DInSAR applications. For georeferencing a look-up table is calculated and refined based on a coregistration of the actual SAR image to a simulated SAR image. The impact of using two different implementations of such a simulator of topography-induced radar brightness, an approach based on angular relationships and a pixel-area based method are discussed in this paper. It is found that the pixel-area-based method leads to considerable improvements with regard to the robustness of georeferencing and also with regard to radiometric normalization in layover- affected areas.

  13. SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR

    Institute of Scientific and Technical Information of China (English)

    Wang Aiming; Zhu Minhui

    2004-01-01

    Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters.

  14. Information compression and speckle reduction for multifrequency polarimetric SAR images based on kernel PCA

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Lei Xiaogang; Bai Bendu; Zhang Yanning

    2008-01-01

    Multifrequency polarimetric SAR imagery provides a very convenient approach for signal processing and acquisition of radar image. However, the amount of information is scattered in several images, and redundancies exist between different bands and polarizations. Similar to signal-polarimetric SAR image, multifrequency polarimetric SAR image is corrupted with speckle noise at the same time. A method of information compression and speckle reduction for multifrequency polarimetric SAR imagery is presented based on kernel principal component analysis (KPCA). KPCA is a nonlinear generalization of the linear principal component analysis using the kernel trick. The NASA/JPL polarimetric SAR imagery of P, L, and C bands quadpolarizations is used for illustration. The experimental results show that KPCA has better capability in information compression and speckle reduction as compared with linear PCA.

  15. Estimation of Snow Thickness on Sea Ice and Lake Ice Using Airborne SnowSAR Data

    Science.gov (United States)

    Veijola, Katriina; Makynen, Marko; Lemmetyinen, Juha; Praks, Jaan

    2016-08-01

    Currently, snow thickness on sea ice is operationally estimated using microwave radiometer data. However, the estimates are hampered by the inherent coarse spatial resolution of passive microwave sensors. Successful application of SAR imagery for snow thickness estimation has the potential of providing estimates of snow thickness with much finer spatial resolution.In this study, we concentrate on assessing the capability of X- and Ku-band SAR backscattering to estimate snow thickness on sea and lake ice. Co- and cross -polarized X- and Ku-band SAR backscattering data, acquired with the ESA airborne SnowSAR sensor, are applied. The SAR data acquisition and co-incident in-situ measurements were conducted in Finland in the winter of 2012 over sea ice and lake ice test sites.Our analysis shows which frequency and polarization combinations have best sensitivity to snow thickness on sea and lake ice and in deep discussion provides plausible ways to improve the results.

  16. Color fusion of SAR and FLIR images using a natural color transfer technique

    Institute of Scientific and Technical Information of China (English)

    Shaoyuan Sun; Zhongliang Jing; Zhenhua Li; Gang Liu

    2005-01-01

    Fusion of synthetic aperture radar (SAR) and forward looking infrared (FLIR) images is an important subject for aerospace and sensor surveillance. This paper presents a scheme to achieve a natural color image based on the contours feature of SAR and the target region feature of FLIR so that the overall scene recognition and situational awareness can be improved. The SAR and FLIR images are first decomposed into steerable pyramids, and the contour maps in the SAR image and the region maps in the FLIR image are calculated. The contour and region features are fused at each level of the steerable pyramids. A color image is then formed by transferring daytime color to the monochromic image by using the natural color transfer technique. Experimental results show that the proposed method is effective in providing a color fusion of SAR and FLIR images.

  17. GRAY TONE FILTERING ON ERS-SAR IMAGES APPLIED TO CHANGE DETECTION AND MAPPING

    Directory of Open Access Journals (Sweden)

    Gilles André

    2011-05-01

    Full Text Available In SAR images, the pixel values are tightly related to physical parameters of the soil such as topography, roughness and humidity, regardless to atmospheric conditions. Therefore, SAR images may be used to detect, and quantify changes in land cover, by comparison of time series SAR data. Classical change detection techniques from SAR images are based on additive synthesis of RGB colors and arithmetic operations between images. The noisy aspect of ERS image due to the original speckle is an obstacle for available mapping and quantification of the changes. Here, statistical and morphological filters are used to reduce the speckle noise. Combined techniques of change detection and noise filtering are applied here to assess and map from ERS-SAR images the impact of regular or catastrophic flood and deforestation in the East Coast of Madagascar.

  18. Pol(In)SAR Soil Moisture Study by using Pi-SAR 2L and GB-SAR Data in Preparation of the upcoming ALOS-2/PALSAR-2 Mission

    Science.gov (United States)

    Koyama, C.; Sato, M.

    2013-12-01

    Recently Earth Observation by means of active microwave is advancing rapidly. The evolution started from first-generation classical single-channel systems like JERS (JAXA), ERS (ESA) or Radarsat-1 (CSA). With the launch of ALOS-1 (JAXA), the first fully polarimetric SAR measurements became available followed by Radarsat-2 (CSA) and TerraSAR-X (DLR), making polarimetric L-, C-, and X-band data available. In Japanese fiscal year 2013, the third generation of SAR satellites will begin with the launch of ALOS-2. The JAXA cutting-edge follow-on mission to the highly acclaimed ALOS-1 will carry the state-of-the-art PALSAR-2 sensor aboard. Due to its much better orbital revisit cycle of only 14 days and its very high spatial resolution (3 m) the system will be highly suitable for interferometric analysis of polarimetric data obtained from repeat-pass acquisitions. The combination of polarimetry and interferometry is probably the most promising approach for a better estimation of geophysical parameters from SAR data acquired over natural terrain and thus will greatly improve the capabilities to estimate soil moisture under all kinds of vegetation with high accuracy and with high temporal and spatial resolutions. In advent of the 3rd generation of Japanese SAR EO satellites, our group conducts a variety of fundamental research on low-frequency SAR surface scattering/interactions. Here, we present first results from soil moisture experiments based on fully polarimetric GB-SAR (Tohoku University) and Pi-SAR 2L (JAXA) measurements. These experiments comprise investigations of the effective soil moisture measuring depth of L-band SAR. The experimental set-up consists of an array of receiving di-pole antennas installed in different depths to quantify the penetration (and reflection) capabilities of the incoming EM waves. We use a fully polarimetric GB-SAR system based on a high-end VNA capable of coherent measurement of the [S2] scattering matrix. It uses 2 large horn antennas

  19. Monitoring subsidence rates along road network by persistent scatterer SAR interferometry with high-resolution TerraSAR-X imagery

    Institute of Scientific and Technical Information of China (English)

    Bing Yu; Guoxiang Liu; Rui Zhang; Hongguo Jia; Tao Li; Xiaowen Wang; Keren Dai; Deying Ma

    2013-01-01

    Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high-resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub-sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer-ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and ±3.2 mm/year, respec-tively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo-logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. There-fore, measures should be taken to mitigate groundwater extraction for the study area.

  20. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jessica N Snowden

    Full Text Available Infection is a frequent and serious complication following the treatment of hydrocephalus with CSF shunts, with limited therapeutic options because of biofilm formation along the catheter surface. Here we evaluated the possibility that the sarA regulatory locus engenders S. aureus more resistant to immune recognition in the central nervous system (CNS based on its reported ability to regulate biofilm formation. We utilized our established model of CNS catheter-associated infection, similar to CSF shunt infections seen in humans, to compare the kinetics of bacterial titers, cytokine production and inflammatory cell influx elicited by wild type S. aureus versus an isogenic sarA mutant. The sarA mutant was more rapidly cleared from infected catheters compared to its isogenic wild type strain. Consistent with this finding, several pro-inflammatory cytokines and chemokines, including IL-17, CXCL1, and IL-1β were significantly increased in the brain following infection with the sarA mutant versus wild type S. aureus, in agreement with the fact that the sarA mutant displayed impaired biofilm growth and favored a planktonic state. Neutrophil influx into the infected hemisphere was also increased in the animals infected with the sarA mutant compared to wild type bacteria. These changes were not attributable to extracellular protease activity, which is increased in the context of SarA mutation, since similar responses were observed between sarA and a sarA/protease mutant. Overall, these results demonstrate that sarA plays an important role in attenuating the inflammatory response during staphylococcal biofilm infection in the CNS via a mechanism that remains to be determined.

  1. A dense medium electromagnetic scattering model for the InSAR correlation of snow

    Science.gov (United States)

    Lei, Yang; Siqueira, Paul; Treuhaft, Robert

    2016-05-01

    Snow characteristics, such as snow water equivalent (SWE) and snow grain size, are important characteristics for the monitoring of the global hydrological cycle and as indicators of climate change. This paper derives an interferometric synthetic aperture radar (InSAR) scattering model for dense media, such as snow, which takes into account multiple scattering effects through the Quasi-Crystalline Approximation. The result of this derivation is a simplified version of the InSAR correlation model derived for relating the InSAR correlation measurements to the snowpack characteristics of grain size, volume fraction, and layer depth as well as those aspects of the volume-ground interaction that affects the interferometric observation (i.e., the surface topography and the ratio of ground-to-volume scattering). Based on the model, the sensitivity of the InSAR correlation measurements to the snow characteristics is explored by simulation. Through this process, it is shown that Ka-band InSAR phase has a good sensitivity to snow grain size and volume fraction, while for lower frequency signals (Ku-band to L-band), the InSAR correlation magnitude and phase have a sensitivity to snow depth. Since the formulation depends, in part, on the pair distribution function, three functional forms of the pair distribution function are implemented and their effects on InSAR phase measurements compared. The InSAR scattering model described in this paper is intended to be an observational prototype for future Ka-band and L-band InSAR missions, such as NASA's Surface Water and Ocean Topography and NASA-ISRO Synthetic Aperture Radar missions, planned for launch in the 2020-2021 time frame. This formulation also enables further investigation of the InSAR-based snow retrieval approaches.

  2. La poesía imantada de César Vallejo (Magnetic poetry by César Vallejo

    Directory of Open Access Journals (Sweden)

    Marco Martos Carrera

    2015-09-01

    Full Text Available Se describe analíticamente el recorrido de la obra poética de César Vallejo, su relación con el modernismo y cómo se convirtió en el portaestandarte de la vanguardia en lengua española, hasta alcanzar una significativa originalidad en la tradición hispanoamericana. This article provides an overview of Cesar Vallejo’s poetry and its relation to modernism. Mention is made of how his poetry became the leader of the vanguard in the Spanish language to the point that he reached a meaningful originality within Spanish-American tradition.

  3. Chirp Scaling Algorithm for Airborne Bistatic SAR%机载双基地SAR CS算法

    Institute of Scientific and Technical Information of China (English)

    杨加; 王建国

    2005-01-01

    本文通过对机载双基地SAR几何模型的分析,在双距离变量域建立了回波信号模型,解决了该模型向单距离变量域转换的问题,提出了适合特殊飞行模式的机载双基地SAR CS算法.本文还进行了算法误差分析,仿真试验结果证实了算法的有效性.

  4. ProSAR: a new methodology for combinatorial library design.

    Science.gov (United States)

    Chen, Hongming; Börjesson, Ulf; Engkvist, Ola; Kogej, Thierry; Svensson, Mats A; Blomberg, Niklas; Weigelt, Dirk; Burrows, Jeremy N; Lange, Tim

    2009-03-01

    A method is introduced for performing reagent selection for chemical library design based on topological (2D) pharmacophore fingerprints. Optimal reagent selection is achieved by optimizing the Shannon entropy of the 2D pharmacophore distribution for the reagent set. The method, termed ProSAR, is therefore expected to enumerate compounds that could serve as a good starting point for deriving a structure activity relationship (SAR) in combinatorial library design. This methodology is exemplified by library design examples where the active compounds were already known. The results show that most of the pharmacophores on the substituents for the active compounds are covered by the designed library. This strategy is further expanded to include product property profiles for aqueous solubility, hERG risk assessment, etc. in the optimization process so that the reagent pharmacophore diversity and the product property profile are optimized simultaneously via a genetic algorithm. This strategy is applied to a two-dimensional library design example and compared with libraries designed by a diversity based strategy which minimizes the average ensemble Tanimoto similarity. Our results show that by using the PSAR methodology, libraries can be designed with simultaneously good pharmacophore coverage and product property profile.

  5. Weighted LBF for spaceborne general bistatic SAR processing

    Institute of Scientific and Technical Information of China (English)

    Jinshan Ding; Otmar Loffeld; Robert Wang; Holger Nies; U1-Ann Qurat; Zheng Bao

    2008-01-01

    Loffeld's bistatic formula (LBF) is the first two-dimensional analytic point target reference spectrum derived for general bistatic SAR frequency domain focusing.The phase history is expanded in Taylor series around the individual points of stationary phase of the transmitter-target and target-receiver phase histories,respectively,and thus the common bistatic stationary phase point can be obtained using the method of stationary phase.Unfortunately,it shows limitations for extreme bistatic configurations,namely the highly squinted mode and space-surface application.The weighted LBF (WLBF) is proposed in this paper based on the different contributions of total phase modulation from the transmitter and receiver.The formulae we derived are compared with that of the original literature.The extreme bistatic stripmap SAR data can be focused using WLBF,which accommodates the spaceborne squint geometry using the modified effective velocity solution.A point target simulation example is presented to verify the accuracy of the new WLBF spectrum.

  6. Relating polarization phase difference of SAR signals to scene properties

    Science.gov (United States)

    Ulaby, Fawwaz T.; Dobson, Myron C.; Mcdonald, Kyle C.; Senior, Thomas B. A.; Held, Daniel

    1987-01-01

    This paper examines the statistical behavior of the phase difference Delta-phi between the HH-polarized and VV-polarized backscattered signals recorded by an L-band SAR over an agricultural test site in Illinois. Polarization-phase difference distributions were generated for about 200 agricultural fields for which ground information had been acquired in conjunction with the SAR mission. For the overwhelming majority of cases, the Delta-phi distribution is symmetric and has a single major lobe centered at the mean value of the distribution Delta-phi. Whereas the mean Delta-phi was found to be close to zero degrees for bare soil, cut vegetation, alfalfa, soybeans, and clover, a different pattern was observed for the corn fields; the mean Delta-phi increased with increasing incidence angle Theta = 35 deg. The explanation proposed for this variation is that the corn canopy, most of whose mass is contained in its vertical stalks, acts like a uniaxial crystal characterized by different velocities of propagation for waves with horizontal and vertical polarization. Thus, it is hypothesized that the observed backscatter is contributed by a combination of propagation delay, forward scatter by the soil surface, and specular bistatic reflection by the stalks. Model calculations based on this assumption were found to be in general agreement with the phase observations.

  7. SAR image regularization with fast approximate discrete minimization.

    Science.gov (United States)

    Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc

    2009-07-01

    Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.

  8. Detection of wind wakes offshore from satellite SAR

    Science.gov (United States)

    Christiansen, M. B.; Hasager, C. B.

    A study is presented on the mapping of ocean wind fields for detection of wind wakes downstream of an offshore wind farm. The study is based on ERS-2 Synthetic Aperture Radar (SAR) scenes obtained in 2003 over Horns Reef in the North Sea. A large offshore wind farm (80 wind turbines) is located 14-20 km offshore of Denmark on this submerged reef. Meteorological observations are available from an offshore mast; wind speed is measured at four heights up to 62 m and wind direction is measured at 60 m. Maps of wind speed are generated from geophysical model functions (CMOD-4, CMOD-IFR2) with a resolution of 400 m by 400 m using wind direction obtained from in-situ measurements as model input. The wind maps display zones of reduced mean wind speed downstream of the wind farm compared to upwind conditions. The reduction is approximately 10 % immediately behind the wind farm and the wake effect is vanishing over distances in the order of 10 km downstream. This is consistent with wake model predictions. Satellite SAR provides a good estimate of the propagation of wind wakes. Information on how structures affect the local wind climate is useful for wind energy purposes, particularly for siting of future offshore wind farms.

  9. Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Directory of Open Access Journals (Sweden)

    Xiangwei Xing

    2014-01-01

    Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  10. Developing the ASF Datapool: Download on Demand SAR Data

    Science.gov (United States)

    Wolf, V. G.; Nicoll, J.

    2011-12-01

    At the direction of the US Government Research Consortium (USGRC), the Alaska Satellite Facility (ASF) created the USGRC datapool. The USGRC datapool held the PALSAR data purchased by and processed for the group, making the data available for download-on-demand. The USGRC datapool started the transition of ASF from process-on-demand to download-on-demand. It was a seed bed for the ASF Datapool, that now encompasses the USGRC datapool as well as download-on-demand products for every other dataset contained in the ASF archive. The ASF datapool provides ERS-1, ERS-2, RADARSAT-1, PALSAR, AirSAR and UAVSAR products for users to download as needed. The API and a new user interface have been developed to provide tools for data discovery that are intuitive and powerful for the entire range of users from novice to expert. The creation of the ASF Datapool made it possible to generate browse images for all the datasets that can be used to facilitate data discovery and data mining applications. Future plans call for using the ASF Datapool to generate a variety of derived products that will be distributed through the ASF SAR Data Center.

  11. A Level Set Filter for Speckle Reduction in SAR Images

    Directory of Open Access Journals (Sweden)

    Xiaoxia Huang

    2010-01-01

    Full Text Available Despite much effort and significant progress in recent years, speckle removal for Synthetic Aperture Radar (SAR image still is a challenging problem in image processing. Unlike the traditional noise filters, which are mainly based on local neighborhood statistical average or frequencies transform, in this paper, we propose a speckle reduction method based on the theory of level set, one form of curvature flow propagation. Firstly, based on partial differential equation, the Lee filter can be cast as a formulation of anisotropic diffusion function; furthermore, we continued to deduce it into a level set formulation. Level set flow into the method allows the front interface to propagate naturally with topological changes, where the speed is proportional to the curvature of the intensity contours in an image. Hence, small speckle will disappear quickly, while large scale interfaces will be slow to evolve. Secondly, for preserving finer detailed structures in images when smoothing the speckle, the evolution is switched between minimum or maximum curvature speed depending on the scale of speckle. The proposed method has been illustrated by experiments on simulation image and ERS-2 SAR images under different circumstances. Its advantages over the traditional speckle reduction filter approaches have also been demonstrated.

  12. A Level Set Filter for Speckle Reduction in SAR Images

    Science.gov (United States)

    Li, Hongga; Huang, Bo; Huang, Xiaoxia

    2010-12-01

    Despite much effort and significant progress in recent years, speckle removal for Synthetic Aperture Radar (SAR) image still is a challenging problem in image processing. Unlike the traditional noise filters, which are mainly based on local neighborhood statistical average or frequencies transform, in this paper, we propose a speckle reduction method based on the theory of level set, one form of curvature flow propagation. Firstly, based on partial differential equation, the Lee filter can be cast as a formulation of anisotropic diffusion function; furthermore, we continued to deduce it into a level set formulation. Level set flow into the method allows the front interface to propagate naturally with topological changes, where the speed is proportional to the curvature of the intensity contours in an image. Hence, small speckle will disappear quickly, while large scale interfaces will be slow to evolve. Secondly, for preserving finer detailed structures in images when smoothing the speckle, the evolution is switched between minimum or maximum curvature speed depending on the scale of speckle. The proposed method has been illustrated by experiments on simulation image and ERS-2 SAR images under different circumstances. Its advantages over the traditional speckle reduction filter approaches have also been demonstrated.

  13. A novel method for multi-angle SAR image matching

    Institute of Scientific and Technical Information of China (English)

    Li Dapeng

    2015-01-01

    Multi-angle synthetic aperture radar (SAR) image matching is very challenging, because the same object may cause different backscattering patterns, heavily depending on the radar incident angle. A technique based on the relations between the invariant positions of ground targets among the reference and sensed images is proposed to accommodate the nonmatching patterns. It involves a target extraction using wavelet coefficient fusion, as well as a geometric voting matching routine for searching the matched control points (CPs) in the reference and sensed images, respec-tively. To accelerate the speed of the search, a robust, rapidly corresponding CPs determination strategy is exploited by utilizing the global spatial transformation model, as well as a procedure of outlier removal to ensure the desired accuracy. Meanwhile, the positions of the matched point pairs are relocated using mutual information. The final warping of the images according to the CPs is performed by using a polynomial function. The results show the possibility of matching multi-angle SAR images in general cases.

  14. SAR image segmentation using MSER and improved spectral clustering

    Science.gov (United States)

    Gui, Yang; Zhang, Xiaohu; Shang, Yang

    2012-12-01

    A novel approach is presented for synthetic aperture radar (SAR) image segmentation. By incorporating the advantages of maximally stable extremal regions (MSER) algorithm and spectral clustering (SC) method, the proposed approach provides effective and robust segmentation. First, the input image is transformed from a pixel-based to a region-based model by using the MSER algorithm. The input image after MSER procedure is composed of some disjoint regions. Then the regions are treated as nodes in the image plane, and a graph structure is applied to represent them. Finally, the improved SC is used to perform globally optimal clustering, by which the result of image segmentation can be generated. To avoid some incorrect partitioning when considering each region as one graph node, we assign different numbers of nodes to represent the regions according to area ratios among the regions. In addition, K-harmonic means instead of K-means is applied in the improved SC procedure in order to raise its stability and performance. Experimental results show that the proposed approach is effective on SAR image segmentation and has the advantage of calculating quickly.

  15. Illicit vessel identification in inland waters using SAR image

    Science.gov (United States)

    Zhang, Fengli; Wu, Bingfang; Zhang, Lei; Huang, Huiping; Tian, Yichen

    2006-10-01

    Synthetic Aperture Radar remote sensing has been effectively used in water compliance and enforcement, especially in ship detection, but it is still very difficult to classify or identify vessels in inland water only using existing SAR image. Nevertheless some experience knowledge can help, for example waterway channel is of great significance for water traffic management and illegal activity monitoring. It can be used for judging a vessel complying with traffic rules or not, and also can be used to indicate illicit fishing vessels which are usually far away from navigable waterway channel. For illicit vessel identification speed and efficiency are very important, so it will be significant if we can extract waterway channel directly from SAR images and use it to identify illicit vessels. The paper first introduces the modified two-parameter CFAR algorithm used to detect ship targets in inland waters, and then uses principal curves and neural networks to extract waterway channel. Through comparing the detection results and the extracted waterway channel those vessels not complying with water traffic rules or potential illicit fishing vessels can be easily identified.

  16. Oil spill detection from SAR image using SVM based classification

    Directory of Open Access Journals (Sweden)

    A. A. Matkan

    2013-09-01

    Full Text Available In this paper, the potential of fully polarimetric L-band SAR data for detecting sea oil spills is investigated using polarimetric decompositions and texture analysis based on SVM classifier. First, power and magnitude measurements of HH and VV polarization modes and, Pauli, Freeman and Krogager decompositions are computed and applied in SVM classifier. Texture analysis is used for identification using SVM method. The texture features i.e. Mean, Variance, Contrast and Dissimilarity from them are then extracted. Experiments are conducted on full polarimetric SAR data acquired from PALSAR sensor of ALOS satellite on August 25, 2006. An accuracy assessment indicated overall accuracy of 78.92% and 96.46% for the power measurement of the VV polarization and the Krogager decomposition respectively in first step. But by use of texture analysis the results are improved to 96.44% and 96.65% quality for mean of power and magnitude measurements of HH and VV polarizations and the Krogager decomposition. Results show that the Krogager polarimetric decomposition method has the satisfying result for detection of sea oil spill on the sea surface and the texture analysis presents the good results.

  17. Determination of Glacier Surface Area Using Spaceborne SAR Imagery

    Science.gov (United States)

    Fang, L.; Maksymiuk, O.; Schmitt, M.; Stilla, U.

    2013-04-01

    Glaciers are very important climate indicators. Although visible remote sensing techniques can be used to extract glacier variations effectively and accurately, the necessary data are depending on good weather conditions. In this paper, a method for determination of glacier surface area using multi-temporal and multi-angle high resolution TerraSAR-X data sets is presented. We reduce the "data holes" in the SAR scenes affected by radar shadowing and specular backscattering of smooth ice surfaces by combining the two complementary different imaging geometries (from ascending and descending satellite tracks). Then, a set of suitable features is derived from the intensity image, the texture information generated based on the gray level co-occurrence matrix (GLCM), glacier velocity estimated by speckle tracking, and the interferometric coherence map. Furthermore, the features are selected by 10-foldcross- validation based on the feature relevance importance on classification accuracy using a Random Forests (RF) classifier. With these most relevant features, the glacier surface is discriminated from the background by RF classification in order to calculate the corresponding surface area.

  18. Il mestiere di tradurre 4: César Palma

    Directory of Open Access Journals (Sweden)

    César Palma

    2014-07-01

    Full Text Available Si toda entrevista a un traductor es una invitación directa a la lectura, no cabe duda de que recordar algunas de las traducciones que han salido de las manos de César Palma justifica aún más si cabe esta intención. De hecho, con una trayectoria que abarca casi ya las tres décadas, se deben a César Palma la traducción de títulos tan interesantes de la narrativa italiana del siglo pasado y principios del presente como, por poner unos ejemplos, El tablero ante el espejo de Massimo Bontempelli, La infancia de Nivasio Dolcemare de Alberto Savinio, La cofradía de los celestinos de Stefano Benni o tres de los mejores títulos de Mario Rigoni Stern, una “especie de envés de Jünger” según nos declaraba, El sergente en la nieve, Estaciones e Historia di Tönle. Entrevista de Juan Carlos Postigo Ríos y Juan Pérez Andrés.

  19. Evaluation of RISAT-1 SAR data for tropical forestry applications

    Science.gov (United States)

    Padalia, Hitendra; Yadav, Sadhana

    2017-01-01

    India launched C band (5.35 GHz) RISAT-1 (Radar Imaging Satellite-1) on 26th April, 2012, equipped with the capability to image the Earth at multiple-resolutions and -polarizations. In this study the potential of Fine Resolution Strip (FRS) modes of RISAT-1 was evaluated for characterization and classification forests and estimation of biomass of early growth stages. The study was carried out at the two sites located in the foothills of western Himalaya, India. The pre-processing and classification of FRS-1 SAR data was performed using PolSAR Pro ver. 5.0 software. The scattering mechanisms derived from m-chi decomposition of FRS-1 RH/RV data were found physically meaningful for the characterization of various surface features types. The forest and land use type classification of the study area was developed applying Support Vector Machine (SVM) algorithm on FRS-1 derived appropriate polarimetric features. The biomass of early growth stages of Eucalyptus (up to 60 ton/ha) was estimated developing a multi-linear regression model using C band σ0 HV and σ0 HH backscatter information. The study outcomes has promise for wider application of RISAT-1 data for forest cover monitoring, especially for the tropical regions.

  20. Bounding SAR ATR performance based on model similarity

    Science.gov (United States)

    Boshra, Michael; Bhanu, Bir

    1999-08-01

    Similarity between model targets plays a fundamental role in determining the performance of target recognition. We analyze the effect of model similarity on the performance of a vote- based approach for target recognition from SAR images. In such an approach, each model target is represented by a set of SAR views sampled at a variety of azimuth angles and a specific depression angle. Both model and data views are represented by locations of scattering centers, which are peak features. The model hypothesis (view of a specific target and associated location) corresponding to a given data view is chosen to be the one with the highest number of data-supported model features (votes). We address three issues in this paper. Firstly, we present a quantitative measure of the similarity between a pair of model views. Such a measure depends on the degree of structural overlap between the two views, and the amount of uncertainty. Secondly, we describe a similarity- based framework for predicting an upper bound on recognition performance in the presence of uncertainty, occlusion and clutter. Thirdly, we validate the proposed framework using MSTAR public data, which are obtained under different depression angles, configurations and articulations.