WorldWideScience

Sample records for broadband ytterbium-doped tunable

  1. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  2. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  3. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  4. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  5. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    DEFF Research Database (Denmark)

    Jain, Deepak; Sidharthan, R.; Moselund, Peter M.

    2016-01-01

    the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source...... based on silica and germania fiber ever demonstrated to the date. (C) 2016 Optical Society of America......We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped...

  6. A pure silica ytterbium-doped sol–gel-based fiber laser

    International Nuclear Information System (INIS)

    Baz, Assaad; El Hamzaoui, Hicham; Fsaifes, Ihsan; Bouwmans, Géraud; Bouazaoui, Mohamed; Bigot, Laurent

    2013-01-01

    In this letter it is demonstrated that the sol–gel route combined with fiber fabrication by the stack and draw method can be used to realize efficient fiber lasers. More precisely, a pure silica ytterbium-doped photonic crystal fiber with a core obtained by the sol–gel polymeric technique is studied, and a laser efficiency of more than 73% is achieved for a laser emission around 1034 nm. The optical and spectroscopic properties of the monolith and fiber are investigated, together with the sensitivity of the fiber to photodarkening. The dimensions of the ytterbium-doped monolith combined with the uniform doping and refractive index that are reported make this technique particularly interesting for the realization of large-mode area fibers. (letter)

  7. Self-Q-switched ytterbium-doped cladding-pumped fibre laser

    International Nuclear Information System (INIS)

    Grukh, Dmitrii A; Kurkov, Andrei S; Razdobreev, I M; Fotiadi, A A

    2002-01-01

    A self-Q-switched ytterbium-doped double-clad fibre laser is described. A samarium-doped fibre is used as a filter for protecting a pump source. A fibre coupler is employed to obtain a nonlinear feedback. The mechanism of pulse formation in the laser is considered, and the dependence of its output pulse on the coupler parameters is studied. (solitons and optical fibers)

  8. Color tunability of Sm{sup 3+} doped antimony–phosphate glass phosphors showing broadband fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, P. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Zhang, J.J., E-mail: zhangjj@dlpu.edu.cn [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Shen, L.F. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Z.Q. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Pun, E.Y.B. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-10-15

    Sm{sup 3+} doped multicomponent antimony phosphate (MSP) luminescent glasses were prepared and tunable white fluorescence has been investigated. Broad visible emission depending on excitation wavelength is validated to be dominated by discrepant Sb{sup 3+} emitting centers. Group of narrow emissions from Sm{sup 3+} is beneficial to adding yellow and red components in Sm{sup 3+} doped MSP glasses, which is strengthened by effective energy transfer from Sb{sup 3+} to Sm{sup 3+}. Excitation wavelength selection and Sm{sup 3+} concentration adjustment are two feasible routes to optimize luminescence color in Sm{sup 3+} doped MSP glasses and the color tunability of fluorescence indicates that amorphous Sm{sup 3+} doped MSP glass phosphors possess potential for ideal white light devices.

  9. Towards diode-pumped mid-infrared praseodymium-ytterbium-doped fluoride fiber lasers

    Science.gov (United States)

    Woodward, R. I.; Hudson, D. D.; Jackson, S. D.

    2018-02-01

    We explore the potential of a new mid-infrared laser transition in praseodymium-doped fluoride fiber for emission around 3.4 μm, which can be conveniently pumped by 0.975 μm diodes via ytterbium sensitizer co-doping. Optimal cavity designs are determined through spectroscopic measurements and numerical modeling, suggesting that practical diode-pumped watt-level mid-infrared fiber sources beyond 3 μm could be achieved.

  10. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  11. Experimental study of a Q-switched ytterbium-doped double-clad fiber laser

    International Nuclear Information System (INIS)

    Anzueto S, G.; Estudillo A, M.; Martinez R, A.; Torres G, I.; Selvas A, R.

    2008-01-01

    We report an experimental characterization of a Q-switched operation of an all-fiber laser using , 30 m of a double-clad ytterbium-doped fiber spliced to a piece of single-mode un-doped holey fiber. Loss modulation in the splicing point between the active and un-doped fiber due to a substantial coupling of light into lossy cladding modes stimulates pulsed operation of the fiber laser. Pulse energy of ∼2.5 μJ was estimated and the repetition rate was measured in the range of 4-16 KHz. (Author)

  12. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...... is to provide a theoretical understanding of the thermo-optical effects in high-power ytterbium doped fiber amplifiers, with a particular emphasis on understanding the aforementioned mode instability issue. Two main approaches to the problem have been used. The first is the development of a numerical model...

  13. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    Science.gov (United States)

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  14. The three-electron bond =Siytterbium-doped silica

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2013-01-01

    The formation and bleaching of color centers during annealing of pre-darkened ytterbium-doped silica fibers is modeled by three-electron bond (TEB) = Si... bonds is described in terms of a Markov statistical model with state change set by Bose-Einstein phonon statistics. The center hold one terminal and four active states with activation energies for transitions among these found to match bond energies of molecular oxygen in ionic character bonds of 1...... and 1½ bond order. Experimentally observed in- and decrease in absorption during ramp and isothermal annealing of pre-darkened ytterbium co-doped silica fibers are hereby matched by a set of = Si

  15. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-07

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.

  16. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  17. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    Science.gov (United States)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  18. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  19. Freely tunable broadband polarization rotator for terahertz waves.

    Science.gov (United States)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    2015-02-18

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  1. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    Science.gov (United States)

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.

  2. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers

    Science.gov (United States)

    Jolly, A.; Vinçont, C.; Pierre, Ch.; Boullet, J.

    2017-08-01

    We propose an innovative, fully space-time model to take into account the seed-dependent nature of ageing penalties in high-power ytterbium-doped fibre amplifiers. Ageing is shown to be based on the on-going competition between photo-darkening and photo-bleaching phenomena. Our approach is based on the natural interplay between the excited states of co-existing ytterbium pairs and colour centres in highly doped fibres, in the presence of thermal coupling between the closely spaced excited states. As initiated from IR photons, the excitation of colour centres up to the UV band is supposed to be governed by multi-photon absorption. The interactions of interest in the kinetics of photo-bleaching then take the form of highly efficient charge transfers, which imply the reduction of some fraction of the basically trivalent ions to their divalent state. Due to the activation of ytterbium pairs by means of energy transfer up-conversion, these interactions get more and more effective at elevated operating powers. Computational results using these principles actually help to fit our experimental data regarding seeding effects, as well as fully generic trends already evidenced in the literature. This gives a fine demonstration for the need to discriminate co-active pump and signal contributions. Our self-consistent, still simplified model then consists of a valuable tool to help for a deeper understanding of the ageing issues. Furthermore, considering higher-order ytterbium aggregates, this should open new routes towards more comprehensive models.

  3. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...... diameter of ∼59Lim at 1064nm and exhibits a pump absorption of 27dB/m at 976nm. © 2011 Optical Society of America....

  4. Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors.

    Science.gov (United States)

    Zheng, Ruilin; Zhang, Qi; Yu, Kehan; Liu, Chunxiao; Ding, Jianyong; Lv, Peng; Wei, Wei

    2017-10-15

    A kind of Sn 2+ /Mn 2+ co-doped fluorphosphate (FP) glasses that served as single-component continuous tunable broadband emitting multi-chromatic phosphors are developed for the first time. Importantly, these FP glasses have high thermal conductivity (3.25-3.70  W/m·K) and good chemical stability in water (80°C). By combining with commercially available UV-LEDs directly, the emission colors can be tuned from blue/cold-white to warm-white/red through the energy transfer from Sn 2+ to Mn 2+ , and the broadband spectra covering the whole visible region from 380 nm to 760 nm. Notably, the FP glass can also serve as a white light phosphor by controlling the content of SnO/MnO, which has excellent optical properties. The CIE chromaticity coordinate, color rendering index, and quantum efficiency are (0.33, 0.29), 84, and 0.952, respectively. These new phosphors, possessing good optical and chemical properties, are promising for applications in solid-state lighting devices.

  5. A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter

    Science.gov (United States)

    Zhu, Jianfeng; Yang, Yang; Li, Shufang

    2018-04-01

    A new and simple design of photo-excited broadband to dual-band tunable terahertz (THz) metamaterial cross polarization converter is proposed in this paper. The tunable converter is a sandwich structure with the center-cut cross-shaped metallic patterned structure as a resonator, the middle dielectric layer as a spacer and the bottom metallic film as the ground. The conductivity of the photoconductive semiconductor (Silicon) filled in the gap of the cross-shaped metallic resonator can be tuned by the incident pump power, leading to an easy modulation of the electromagnetic response of the proposed converter. The results show that the proposed cross-polarization converter can be tuned from a broadband with polarization conversion ratio (PCR) beyond 95% (1.86-2.94 THz) to dual frequency bands (fl = 1 . 46 THz &fh = 2 . 9 THz). The conversion peaks can reach 99.9% for the broadband and, 99.5% (fl) and 99.7% (fh) for the dual-band, respectively. Most importantly, numerical simulations demonstrate that the broadband/dual-band polarization conversion mechanism of the converter originates from the localized surface plasmon modes, which make the design simple and different from previous designs. With these good features, the proposed broadband to dual-band tunable polarization converter is expected to be used in widespread applications.

  6. Ytterbium-doped large-mode-area photonic crystal fiber amplifier with gain shaping for use at long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with efficient suppression of amplified spontaneous emission is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes...

  7. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system

    DEFF Research Database (Denmark)

    Jain, Saurabh; Castro, Carlos; Jung, Yongmin

    2017-01-01

    We present a high-core-count 32-core multicore erbium/ytterbium-doped fiber amplifier (32c-MC-EYDFA) in a cladding pumped configuration. A side pumping technique is employed for ease of pump coupling in this monolithic all-fiber amplifier. A minimum gain of >17 dB and an average noise figure (NF)...

  8. Elaboration by epitaxy in liquid phase and monocrystalline layers of doped Yag. Realisation of wave guides lasers neodymium and ytterbium at low thresholds

    International Nuclear Information System (INIS)

    Pelenc, D.

    1993-10-01

    This thesis reports on the prototype development of a new laser waveguide fabrication technique, Liquid Phase Epitaxy, as part of the research on diode-pumped compact laser devices. This technique has been applied to the growth of single crystal thin layers of neodymium and ytterbium doped YAG on pure YAG substrates. In order to obtain good quality waveguides, we have defined the growth conditions, and demonstrated the advantage of the growth of an undoped YAG cladding layer. Two extra dopings have been studied: gallium, in order to control the refractive index of the layer, and lutetium, in order to control their lattice mismatch. The determination of the segregation coefficient of these four dopants has required the development of a model that takes into account the evolution of the melt with time. We have measured the refractive index increase for each dopant and proposed a mechanism that explains this increase. The spectroscopic characterisation of the layers has shown that the neodymium and ytterbium ions have the same properties as in the bulk material of the same composition. The laser characterisation has shown very low propagation losses (around 0.1 dB/cm), comparable to those of bulk. For the neodymium laser transition at 1064 nm, we have demonstrated the laser effect for an absorbed power threshold of 700μW and measured a slope efficiency of 40% for a threshold of 14 mW in diode pumping. For quasi 3 level transitions, a significant reduction in threshold with respect to unguided lasers has been obtained: at 946 nm in a neodymium doped waveguide, at 1029 nm in an ytterbium doped waveguide, with a 1W diode bar pump. A slope efficiency of 80% has also been measured in an ytterbium doped waveguided emitting at 1048nm

  9. Study of ytterbium doping effects on structural, mechanical and opto-thermal properties of sprayed ZnO thin films using the Boubaker Polynomials Expansion Scheme (BPES)

    Energy Technology Data Exchange (ETDEWEB)

    Amlouk, A. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Boubaker, K., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Bouhafs, M. [Unite de Recherche MA2I, Ecole Nationale d' Ingenieurs de Tunis, B.P. 37 Le Belvedere, 1002 Tunis (Tunisia)

    2009-10-19

    In this work, ZnO thin films have been grown on glass substrates by using a solution of propanol (C{sub 3}H{sub 8}O), water (H{sub 2}O) and zinc acetate (Z{sub n}(CH{sub 3}CO{sub 2}){sub 2}) in acidified medium (pH 5). The obtained films were n doped with ytterbium (Yb) at the rates of 100, 200 and 300 ppm. The structural features of the doped films were investigated using XRD, atomic force microscopy and scanning electronic microscopy techniques. XRD analysis shows a strong (0 0 2) X-ray diffraction line for increasing Yb-doping amounts. This c-axis preferential orientation of ZnO crystallites is naturally required to use this oxide as transparent conductor in optoelectronic applications. Atomic force microscopy (AFM) analysis shows an enhancement in the surface roughness of the doped ZnO:Yb thin films. Optical measurements were performed in 300-1800 nm domain via transmittance T(lambda) and reflectance R(lambda) spectra. Conjoint optical and thermal properties were deduced from the optical measurements in reference to the Amlouk-Boubaker opto-thermal expansivity psi{sub AB}. Optically relevant ytterbium doping effects have been discussed. Finally, mechanical measurements have been carried out using Vickers standard disposal. The results confirmed the structural and functional changes that several recent studies attributed to ytterbium doping.

  10. Studies on Ytterbium-doped Fibre Laser Operating in Different Regimes

    International Nuclear Information System (INIS)

    Gan, Y; Xiang, W H; Zhang, G Z

    2006-01-01

    An ytterbium-doped fibre laser with a unidirectional ring cavity containing a polarizer placed between two in-line polarization controllers is presented. Depending on an equivalent saturable absorber, this laser operates in continuous, Q-switched mode-locked or CW mode-locked regimes. The passive method described here allowed us to choose the operating regime of the fibre laser by rotating the two polarization controllers and adjusting the pump power. Results of numerical simulations of pulse propagation in such a mode-locked fibre ring laser are presented, which reveals that the Q-switched mode-locked or CW modelocked regimes can be achieved by aligning the polarizer near the slow or the fast axes of the fibre

  11. Broadband ˜2μm emission in Tm3+/Ho3+ co-doped TeO2-WO3-La2O3 glass

    Science.gov (United States)

    Li, Kefeng; Wang, Guonian; Zhang, Junjie; Hu, Lili

    2010-10-01

    In this work, we report the infrared emission properties of Tm 3+/Ho 3+ co-doped TeO 2-WO 3-La 2O 3 (TWL) glass under 808 nm laser excitation. A broad and flat emission from 1600 to 2200 nm corresponding to the Tm 3+ ( 3F 4→ 3H 6) and Ho 3+ ( 5I 7→ 5I 8) emissions is observed. The full width at half maximum (FWHM) of this broadband increases up to a value of ˜370 nm with an optimal [Tm 3+]/[Ho 3+] concentration ratio. The energy transfer processes of Tm 3+↔Ho 3+ are analyzed and the results show that energy transfer between Tm 3+ and Ho 3+ plays an important role in the luminescence mechanism. The OH - influence on the broadband emission is also discussed. These results indicate that Tm 3+-Ho 3+ co-doped TWL glass could be a promising material for widely tunable laser or broadband amplifier applications.

  12. Polarizing Ytterbium-Doped all-Solid Photonic Bandgap Fiber with 1150 micrometers2 Effective Mode Area

    Science.gov (United States)

    2015-02-11

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Liang Dong Fanting Kong,, Guancheng Gu,, Thomas W. Hawkins ,, Joshua Parsons, Maxwell Jones,, Christopher...Dunn,, Monica T. Kalichevsky-Dong,, Benjamin Pulford,, Iyad Dajani,, Kunimasa Saitoh,, Stephen P. Palese,, Eric Cheung,, Liang Dong c. THIS PAGE The...ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area Fanting Kong,1,* Guancheng Gu,1 Thomas W. Hawkins ,1 Joshua Parsons

  13. Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser

    Science.gov (United States)

    Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang

    2018-03-01

    In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.

  14. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  15. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    Science.gov (United States)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  16. Combined up conversion, down conversion and down shifting photo-luminescence of low cost erbium-ytterbium co-doped porous silicon produced by stain etching

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Herrera, B. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Linsun Power Technology (Quanzhou) Corp. Ltd. Co., Economic Development Zone, Jinjiang 362200, Fujian (China); Jimenez-Rodriguez, E. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Instituto Tecnologico y de Energias Renovables, S.A. (ITER), Poligono Industrial de Granadilla, S/N, E38600, Granadilla de Abona (Spain); Montesdeoca-Santana, A. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Velazquez, J.J. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Guerrero-Lemus, R., E-mail: rglemus@ull.es [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Fundacion de Estudios de Economia Aplicada, Programa Focus-Abengoa de Energia y Cambio Climaticoi, Jorge Juan 46, 28001 Madrid (Spain)

    2011-07-01

    In this work, erbium and ytterbium have been incorporated into luminescent porous silicon (PS) layers by simple impregnation of the PS substrate with a saturated nitrate solution of erbium and ytterbium. The photoluminescence of the co-doped rare earth layers have been evaluated. The doping process has been designed for its potential in silicon-based solar cell production, with the aim to improve the Shockley-Queisser limit with a reasonable cost effective method for the industry, which implies a significant enhancement of the efficiency under non-concentrated sunlight irradiation. The temperature and annealing time of the doping process were selected according to industry standards in order to ease a trial adoption. The composition was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy in order to characterize the doping profile. Different up-conversion and down-conversion contributions from the rare earths in the visible and IR were detected, together with the down shifting effect of the stain etched PS. There is no evidence of energy transference between the PS matrix and the rare earths.

  17. Combined up conversion, down conversion and down shifting photo-luminescence of low cost erbium-ytterbium co-doped porous silicon produced by stain etching

    International Nuclear Information System (INIS)

    Diaz-Herrera, B.; Jimenez-Rodriguez, E.; Gonzalez-Diaz, B.; Montesdeoca-Santana, A.; Velazquez, J.J.; Guerrero-Lemus, R.

    2011-01-01

    In this work, erbium and ytterbium have been incorporated into luminescent porous silicon (PS) layers by simple impregnation of the PS substrate with a saturated nitrate solution of erbium and ytterbium. The photoluminescence of the co-doped rare earth layers have been evaluated. The doping process has been designed for its potential in silicon-based solar cell production, with the aim to improve the Shockley-Queisser limit with a reasonable cost effective method for the industry, which implies a significant enhancement of the efficiency under non-concentrated sunlight irradiation. The temperature and annealing time of the doping process were selected according to industry standards in order to ease a trial adoption. The composition was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy in order to characterize the doping profile. Different up-conversion and down-conversion contributions from the rare earths in the visible and IR were detected, together with the down shifting effect of the stain etched PS. There is no evidence of energy transference between the PS matrix and the rare earths.

  18. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    International Nuclear Information System (INIS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Graphical abstract: - Highlights: • Yb-doped TiO_2/diatomite composite photocatalysts were prepared by a sol-gel method. • Yb-doped TiO_2/diatomite photocatalysts show much higher photocatalytic activity. • The higher photodegradation rate is due to the effect of diatomite and Yb doping. - Abstract: Ytterbium-doped titanium dioxide (Yb-TiO_2)/diatomite composite materials with different Yb concentrations were prepared by sol–gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet–visible (UV–vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO_2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO_2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV–vis diffuse reflection spectra showed that the band gap of TiO_2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Compared to TiO_2 and TiO_2/diatomite, the Yb-TiO_2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  19. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-30

    Graphical abstract: - Highlights: • Yb-doped TiO{sub 2}/diatomite composite photocatalysts were prepared by a sol-gel method. • Yb-doped TiO{sub 2}/diatomite photocatalysts show much higher photocatalytic activity. • The higher photodegradation rate is due to the effect of diatomite and Yb doping. - Abstract: Ytterbium-doped titanium dioxide (Yb-TiO{sub 2})/diatomite composite materials with different Yb concentrations were prepared by sol–gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet–visible (UV–vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO{sub 2} existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO{sub 2} nanoparticles with little agglomeration on the surfaces of diatoms. The UV–vis diffuse reflection spectra showed that the band gap of TiO{sub 2} could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Compared to TiO{sub 2} and TiO{sub 2}/diatomite, the Yb-TiO{sub 2}/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  20. Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating

    International Nuclear Information System (INIS)

    Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.

    1989-01-01

    Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW

  1. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds

    International Nuclear Information System (INIS)

    Boukhachem, A.; Fridjine, S.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M.

    2010-01-01

    In this study, conducting and transparent indium-doped zinc oxide (ZnO) thin films have been deposited on glass substrates by the micro-spray technique. First, zinc oxide layers were obtained by spaying a solution of propanol and zinc acetate in acidified medium. Alternatively, some of the obtained films were doped with indium (In) at the molar rates of: 1%, 2% and 3%. In addition to the classical structural investigated using XRD, AFM and SEM techniques, microhardness Vickers (Hv) measurements have been carried out along with comparative morphological prospecting. The specific gases sensitivity-related surface morphology of the doped ZnO compounds was favorably different from that of the non-doped ones, and showed a thin overlay structure. Results were compared to those recorded for similar ytterbium-doped material.

  3. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  4. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  5. Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass

    International Nuclear Information System (INIS)

    Sun Hongtao; Zhanga Liyan; Zhang Junjie; Wen Lei; Yu Chunlei; Duan Zhongchao; Dai Shixun; Hu Lili; Jiang Zhonghong

    2005-01-01

    Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl 2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1 G 4 → 3 H 6 and 1 G 4 → 3 H 4 , respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers

  6. Tunable two-phase coexistence in half-doped manganites

    Indian Academy of Sciences (India)

    Our recent work on half-doped manganites builds on those ideas to explain our data showing continuously tunable phase coexistence of FM and AFM states. Macroscopic hysteresis across transitions is often used to assert their first-order nature, and this has also been done in the case of half-doped manganites [6]. Kuwa-.

  7. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S; Andrianov, A V; Muravyev, S V; Kim, A V [Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Bobkov, K K; Likhachev, M E; Levchenko, A E; Aleshkina, S S; Semjonov, S L; Denisov, A N; Bubnov, M M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Laptev, A Yu; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)

  8. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.

    Science.gov (United States)

    Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A

    2006-01-15

    A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 clad fiber lasers.

  9. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    Science.gov (United States)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  10. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  11. A cladding-pumped, tunable holmium doped fiber laser.

    Science.gov (United States)

    Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian

    2013-11-18

    We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.

  12. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  13. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    International Nuclear Information System (INIS)

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-01-01

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications

  14. A broadband frequency-tunable dynamic absorber for the vibration control of structures

    International Nuclear Information System (INIS)

    Komatsuzaki, T; Inoue, T; Terashima, O

    2016-01-01

    A passive-type dynamic vibration absorber (DVA) is basically a mass-spring system that suppresses the vibration of a structure at a particular frequency. Since the natural frequency of the DVA is usually tuned to a frequency of particular excitation, the DVA is especially effective when the excitation frequency is close to the natural frequency of the structure. Fixing the physical properties of the DVA limits the application to a narrowband, harmonically excited vibration problem. A frequency-tunable DVA that can modulate its stiffness provides adaptability to the vibration control device against non-stationary disturbances. In this paper, we suggest a broadband frequency-tunable DVA whose natural frequency can be extended by 300% to the nominal value using the magnetorheological elastomers (MREs). The frequency adjustability of the proposed absorber is first shown. The real-time vibration control performance of the frequency-tunable absorber for an acoustically excited plate having multiple resonant peaks is then evaluated. Investigations show that the vibration of the structure can be effectively reduced with an improved performance by the DVA in comparison to the conventional passive- type absorber. (paper)

  15. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    Science.gov (United States)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  16. Erbium–ytterbium fibre laser emitting more than 13 W of power in ...

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... We report the work on erbium:ytterbium-doped double clad fibre laser (EYDFL), that is pumped at ... reduction in life-time. The active ... region. Figure 2 shows plot of output power vs. absorbed pump power (after accounting.

  17. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  18. Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion

    International Nuclear Information System (INIS)

    Huang, S S; Yan, P G; Zhang, G L; Zhao, J Q; Li, H Q; Lin, R Y; Wang, Y G

    2014-01-01

    We experimentally investigated soliton rains in an ytterbium-doped fiber (YDF) laser with a net normal dispersion cavity using a graphene-oxide (GO) saturable absorber (SA). The 195 m-long-cavity, the fiber birefringence filter and the inserted 2.5 nm narrow bandwidth filter play important roles in the formation of the soliton rains. The soliton rain states can be changed by the effective gain bandwidth of the laser. The experimental results can be conducive to an understanding of dissipative soliton features and mode-locking dynamics in all-normal dispersion fiber lasers with GOSAs. To the best of our knowledge, this is the first demonstration of soliton rains in a GOSA passively mode-locked YDF laser with a net normal dispersion cavity. (letter)

  19. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    Science.gov (United States)

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  20. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W

    DEFF Research Database (Denmark)

    Midilli, Yakup; Efunbajo, Oyewole Benjamin; Şimşek, Bartu

    2017-01-01

    laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped...

  1. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    Science.gov (United States)

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.

  2. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  3. Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures ...

    Indian Academy of Sciences (India)

    Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures: a morphological ... different microstructures material at relatively low temper- ..... Chem. C 114. 2776. 5. Gao P X and Wang Z L 2003 J. Am. Chem. Soc. 125 11299. 6.

  4. A disorder-based strategy for tunable, broadband wave attenuation

    Science.gov (United States)

    Zhang, Weiting; Celli, Paolo; Cardella, Davide; Gonella, Stefano

    2017-04-01

    One of the most daunting limitations of phononic crystals and acoustic/elastic metamaterials is their passivity: a given configuration is bound to display its phononic properties only around its design point, i.e., working at some pre-determined operating conditions. In the past decade, this shortcoming has inspired the design of phononic media with tunable wave characteristics; noteworthy results have been obtained through a family of methodologies involving shunted piezoelectric elements. Shunting a piezoelectric element means connecting it to a passive electric circuit; tunability stems from the ability to modify the effective mechanical properties of the piezoelectric medium by modifying the circuit characteristics. One of the most popular shunting circuits is the resistor-inductor, which allows the patch-and-shunt system to behave as an electromechanical resonator. A common motif among the works employing shunted piezos for phononic control is periodicity: the patches are typically periodically placed in the domain and the circuits are identically tuned. The objective of this work is to demonstrate that the wave attenuation performance of structures with shunted piezoelectric patches can be improved by leveraging notions of organized disorder. Based on the idea of rainbow trapping broadband wave attenuation obtained by tuning an array of resonators at distinct neighboring frequencies we design and test an electromechanical waveguide structure capable of attenuating waves over broad frequency ranges. In order to emphasize the fact that periodicity is not a binding requirement when working with RL shunts (which induce locally resonant bandgaps), we report on the performance of random arrangements of patches. In an attempt to demonstrate the tunability attribute of our strategy, we take advantage of the reconfigurability of the circuits to show how a single waveguide can attenuate both waves and vibrations over different frequency ranges.

  5. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  6. All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating.

    Science.gov (United States)

    Zang, Zhigang

    2013-08-10

    A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

  7. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    Science.gov (United States)

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C.

  8. Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2

    Directory of Open Access Journals (Sweden)

    Zhejun Liu

    Full Text Available In this letter, we numerically demonstrate a thermally tunable super absorber by using phase change material VO2 as absorbing layer in metal-insulator-metal structure. An omnidirectional super absorption at λ=2.56μm can be realized by heating the patterned grating VO2 film due to magnetic resonance mechanism. Furthermore, a broadband super absorption higher than 0.8 in the entire 1.6μm–4μm region is achieved when VO2 film is patterned chessboard structure and transformed to metal phase beyond transition temperature. This broadband super absorption can be fulfilled in a wide range of incident angle (0°–70° and under all polarization conditions. Keywords: Phase change material, Metal-insulator-metal, Super absorption, Magnetic resonance

  9. Structural properties of pure and Fe-doped Yb films prepared by vapor condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Ayala, C., E-mail: chachi@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, P.O.B. 14-149, Lima 14 (Peru); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES (Brazil); Suguihiro, N.M. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig (Germany); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil)

    2014-10-15

    Ytterbium and iron-doped ytterbium films were prepared by vapor quenching on Kapton substrates at room temperature. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. The aim was to study the microstructure of pure and iron-doped films and thereby to understand the effects induced by iron incorporation. A coexistence of face centered cubic and hexagonal close packed-like structures was observed, the cubic-type structure being the dominant contribution. There is an apparent thickness dependence of the cubic/hexagonal relative ratios in the case of pure ytterbium. Iron-clusters induce a crystalline texture effect, but do not influence the cubic/hexagonal volume fraction. A schematic model is proposed for the microstructure of un-doped and iron-doped films including the cubic- and hexagonal-like structures, as well as the iron distribution in the ytterbium matrix. - Highlights: • Pure and Fe-doped Yb films have been prepared by vapor condensation. • Coexistence of fcc- and hcp-type structures was observed. • No oxide phases have been detected. • Fe-clustering does not affect the fcc/hcp ratio, but favors a crystalline texture. • A schematic model is proposed to describe microscopically the microstructure.

  10. Tunable dielectric properties of Barium Magnesium Niobate (BMN) doped Barium Strontium Titanate (BST) thin films by magnetron sputtering

    Science.gov (United States)

    Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-03-01

    We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.

  11. Multicolor tunable emission induced by Cu ion doping of perovskite zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.J. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Lee, Y.S., E-mail: ylee@ssu.ac.kr [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Noh, H.-J. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2016-01-15

    We report on a multicolor tunable emission induced by Cu ion doping of perovskite zirconate SrZrO{sub 3} with a fairly large bandgap (5.6 eV). X-ray photoelectron spectroscopy of our samples revealed the existence of two mixed valence states of the doped Cu ions, +1 and +2, with a ratio of 3:1. In photoluminescence excitation spectroscopy the absorption structures of the 3d states in monovalent Cu{sup +} and divalent Cu{sup 2+} were identified near 5 eV and 3.5 eV, respectively. Interestingly, in relation to the valence states of the Cu ions, the emission spectra depended strongly on the photo-excitation energy (E{sub ex}). For E{sub ex}<3.8 eV (UVA) two orange and green emissions were observed with the involvement of the Cu{sup 2+} state. For E{sub ex}>3.8 eV (UVB/UVC), however, the Cu{sup +} state, instead of the Cu{sup 2+} state, was dominant in the emission process, causing the visible emission to be turned into violet. Our results were indicative of the complementary role of the different Cu-ion valence states in a wide range of visible emission with respect to E{sub ex}. - Highlights: • Visible emission induced by the Cu doping of SrZrO3. • Tunable colors from orange to violet with respect to the photo-excitation energy. • Multicolor emission should be related to the mixed valence states of the doped Cu ions.

  12. Effects of adding metals to MoS2 in a ytterbium doped Q-switched fiber laser

    Science.gov (United States)

    Khaleque, Abdul; Liu, Liming

    2018-03-01

    Molybdenum disulfide (MoS2) is widely used in lubricants, metallic alloys and in electronic and optical components. It is also used as saturable absorbers (SAs) in lasers (e.g. fiber lasers): a simple deposition of MoS2 on the fiber end can create a saturable absorber without the necessity of extensive alignment of the optical beam. In this article, we study the effects of adding different metals (Cr, Au, and Al) to MoS2 in a ytterbium (Yb)-doped Q-switched fiber laser. Experimental results show that the addition of a thin layer of gold and aluminium can reduce pulse durations to about 5.8 μs and 8.5 μs, respectively, compared with pure MoS2 with pulse duration of 12 μs. Experimental analysis of the combined metal and MoS2 based composite SAs can be useful in fiber laser applications where it may also find applications in medical, three dimensional (3D) active imaging and dental applications.

  13. Multicomponent doped barium strontium titanate thin films for tunable microwave applications

    Science.gov (United States)

    Alema, Fikadu Legesse

    In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST

  14. Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

    KAUST Repository

    Mansour, Ahmed

    2016-01-01

    Herein, we explore non-covalent doping routes of CVD FLG, such as surface doping, intercalation and combination thereof, through in-depth and systematic characterization of the electrical transport properties and energy levels shifts. The intercalation of FLG with Br2 and FeCl3 is demonstrated, showing the highest improvements of the figure of merit of TCEs of any doping scheme, which results from up to a five-fold increase in conductivity while maintaining the transmittance within 3% of that for the pristine value. Importantly the intercalation yields TCEs that are air-stable, due to encapsulation of the intercalant in the bulk of FLG. Surface doping with novel solution-processed metal-organic molecular species (n- and p-type) is demonstrated with an unprecedented range of work function modulation, resulting from electron transfer and the formation of molecular surface dipoles. However, the conductivity increases compared modestly to intercalation as the electron transfer is limited to the uppermost graphene layers. Finally, a novel and universal multi-modal doping strategy is developed, thanks to the unique platform offered by FLG, where surface and intercalation doping are combined to mutually achieve high conductivity with an extended tunability of the work function. This work presents doped-FLG as a prospective and versatile candidate among emerging TCEs, given the need for efficient and stable doping routes capable of controllably tuning its properties to meet the criteria of a broad range of applications.

  15. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  16. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, B.J. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-15

    Highlights: • Effective near-infrared emission (1380-1525 nm) is observed in Pr{sup 3+}-doped phosphate glasses. • Effective bandwidth of {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm. • Channel waveguides have been fabricated by K{sup +}-Na{sup +} ion-exchange method. • Pr{sup 3+}-doped phosphate glasses are promising in developing integrated broadband waveguide amplifier. - Abstract: Effective near-infrared emission covering the fifth optical telecommunication window (1380-1525 nm) has been observed in Pr{sup 3+}-doped phosphate (NMAP) glasses. Judd-Ofelt parameters Ω{sub 2} (6.38 × 10{sup −20} cm{sup 2}), Ω{sub 4} (20.30 × 10{sup −20} cm{sup 2}) and Ω{sub 6} (0.40 × 10{sup −20} cm{sup 2}) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth (Δλ{sub eff}) of the corresponding {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σ{sub em-max}) at 1468 nm is derived to be 1.14 × 10{sup −20} cm{sup 2}. Channel waveguide was fabricated successfully by K{sup +}-Na{sup +} ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr{sup 3+}-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

  17. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  18. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer

    Science.gov (United States)

    Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong

    2018-03-01

    Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.

  19. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles

    Science.gov (United States)

    Riley, Conor T.; Smalley, Joseph S. T.; Brodie, Jeffrey R. J.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2017-02-01

    Broadband absorbers are essential components of many light detection, energy harvesting, and camouflage schemes. Current designs are either bulky or use planar films that cause problems in cracking and delamination during flexing or heating. In addition, transferring planar materials to flexible, thin, or low-cost substrates poses a significant challenge. On the other hand, particle-based materials are highly flexible and can be transferred and assembled onto a more desirable substrate but have not shown high performance as an absorber in a standalone system. Here, we introduce a class of particle absorbers called transferable hyperbolic metamaterial particles (THMMP) that display selective, omnidirectional, tunable, broadband absorption when closely packed. This is demonstrated with vertically aligned hyperbolic nanotube (HNT) arrays composed of alternating layers of aluminum-doped zinc oxide and zinc oxide. The broadband absorption measures >87% from 1,200 nm to over 2,200 nm with a maximum absorption of 98.1% at 1,550 nm and remains large for high angles. Furthermore, we show the advantages of particle-based absorbers by transferring the HNTs to a polymer substrate that shows excellent mechanical flexibility and visible transparency while maintaining near-perfect absorption in the telecommunications region. In addition, other material systems and geometries are proposed for a wider range of applications.

  20. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  1. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  2. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kole, A. K.; Kumbhakar, P. [Nanoscience Laboratory, Department of Physics, National Institute of Technology, Durgapur 713209, West Bengal (India); Tiwary, C. S. [Department of Materials Engineering, Indian Institute of Science (IISc.), Bangalore 560012 (India)

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  3. Tunable graphene doping by modulating the nanopore geometry on a SiO2/Si substrate

    KAUST Repository

    Lim, Namsoo; Yoo, Tae Jin; Kim, Jin Tae; Pak, Yusin; Kumaresan, Yogeenth; Kim, Hyeonghun; Kim, Woochul; Lee, Byoung Hun; Jung, Gun Young

    2018-01-01

    A tunable graphene doping method utilizing a SiO2/Si substrate with nanopores (NP) was introduced. Laser interference lithography (LIL) using a He–Cd laser (λ = 325 nm) was used to prepare pore size- and pitch-controllable NP SiO2/Si substrates

  4. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

    Science.gov (United States)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele

    2016-08-01

    In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

  5. High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    DEFF Research Database (Denmark)

    Jain, Deepak; Sidharthan, Raghuraman; Moselund, Peter M.

    2017-01-01

    We demonstrate a 74 mol % GeO2 doped fiber for mid-infrared supercontinuum generation. Experiments ensure a highest output power for a broadest spectrum from 700nm to 3200nm from this fiber, while being pumped by a broadband 4 stage Erbium fiber based MOPA. The effect of repetition rate of pump...

  6. A nonuniform-polarization high-energy ultra-broadband laser with a long erbium-doped fiber

    International Nuclear Information System (INIS)

    Mao, Dong

    2013-01-01

    We have experimentally investigated nonuniformly polarized broadband high-energy pulses delivered from a mode-locked laser with an ultra-long erbium-doped fiber (EDF). The pulses exhibit a broadband spectrum of ∼73 nm and can avoid optical wave breaking at high-pump regimes. The polarization states of the pulses evolve from uniform to nonuniform at each round trip in the oscillator, which is distinct from other pulses. Remarkably, the output pulses broaden in anomalous- or normal-dispersion regimes while they can be shortened with an EDF amplifier external to the cavity. Our results suggest that the long EDF results in a nonuniform-polarization state and plays a decisive role in the formation of high-energy pulses. (paper)

  7. High-power broad-band tunable microwave oscillator, driven by REB in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kuzelev, M V; Loza, O T; Ponomarev, A V; Rukhadze, A A; Strel` kov, P S; Shkvarunets, A G; Ulyanov, D K [General Physics Inst. of Russian Academy of Sciences, Moscow (Russian Federation)

    1997-12-31

    The radiation spectra of a plasma relativistic broad-band microwave oscillator were measured. A hollow relativistic electron beam (REB) was injected into the plasma waveguide, consisting of annular plasma in a circular metal waveguide. The radiation spectra were measured by means of a calorimeter-spectrometer with a large cross section in the band of 3-39 GHz. The mean frequency was tunable in the band of 20-27 GHz, the spectrum width was 5-25 GHz with a power level of 40-85 MW. Calculations were carried out based on non-linear theory, taking into account electromagnetic noise amplification due to REB injection into the plasma waveguide. According to the theory the radiation regime should change from the single-particle regime to the collective regime when the plasma density and the gap between the annular plasma and REB are increased. Comparison of the experimental results with the non-linear theory explains some peculiarities of the measured spectrum. (author). 4 figs., 2 refs.

  8. Broadband features of passively harmonic mode locking in dispersion-managed erbium-doped all-fiber lasers

    Science.gov (United States)

    Geng, Y.; Li, L.; Shu, C. J.; Wang, Y. F.; Tang, D. Y.; Zhao, L. M.

    2018-06-01

    Broadband features of passively harmonic mode locking (HML) in dispersion-managed erbium-doped all-fiber lasers are explored. The bandwidth of HML state is generally narrower than that of fundamental mode locking before pulse breaking occurs. There exists a broadest bandwidth versus the order of HML. HML state with bandwidth up to 61.5 nm is obtained.

  9. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  10. Optical properties of Ni-doped MgGa2O4 single crystals grown by floating zone method

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Hughes, Mark; Ohishi, Yasutake

    2010-01-01

    The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa 2 O 4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa 2 O 4 single crystals have broadband fluorescence in the 1100-1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and 1.05x10 -21 cm 2 stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.

  11. Tunable Broadband Nanocarbon Transparent Conductor by Electrochemical Intercalation.

    Science.gov (United States)

    Wan, Jiayu; Xu, Yue; Ozdemir, Burak; Xu, Lisha; Sushkov, Andrei B; Yang, Zhi; Yang, Bao; Drew, Dennis; Barone, Veronica; Hu, Liangbing

    2017-01-24

    Optical transparent and electrical conducting materials with broadband transmission are important for many applications in optoelectronic, telecommunications, and military devices. However, studies of broadband transparent conductors and their controlled modulation are scarce. In this study, we report that reversible transmittance modulation has been achieved with sandwiched nanocarbon thin films (containing carbon nanotubes (CNTs) and reduced graphene oxide (rGO)) via electrochemical alkali-ion intercalation/deintercalation. The transmittance modulation covers a broad range from the visible (450 nm) to the infrared (5 μm), which can be achieved only by rGO rather than pristine graphene films. The large broadband transmittance modulation is understood with DFT calculations, which suggest a decrease in interband transitions in the visible range as well as a reduced reflection in the IR range upon intercalation. We find that a larger interlayer distance in few-layer rGO results in a significant increase in transparency in the infrared region of the spectrum, in agreement with experimental results. Furthermore, a reduced plasma frequency in rGO compared to few-layer graphene is also important to understand the experimental results for broadband transparency in rGO. The broadband transmittance modulation of the CNT/rGO/CNT systems can potentially lead to electrochromic and thermal camouflage applications.

  12. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  13. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    Directory of Open Access Journals (Sweden)

    Sethi Ruchi

    2009-01-01

    Full Text Available Abstract Highly luminescent Ag-ion-doped Cd1−xZnxS (0 ≤ x ≤ 1 alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD and high resolution transmission electron microscope (HRTEM to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL intensity corresponding to Ag impurity (570 nm, relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation.

  14. Emission tunability and local environment in europium-doped OH{sup −}-free calcium aluminosilicate glasses for artificial lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Aline M.; Sandrini, Marcelo; Viana, José Renato M.; Baesso, Mauro L.; Bento, Antônio C.; Rohling, Jurandir H. [Departamento de Física, Universidade Estadual de Maringá, Av Colombo, 5790, 87020-900, Maringá, PR (Brazil); Guyot, Yannick [Laboratoire de Physico–Chimie des Matériaux Luminescents, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, UMR 5620 CNRS 69622 (France); De Ligny, Dominique [Department of Materials Science and Engineering, University of Erlangen Nürnberg, Martens str. 5, 91058, Erlangen (Germany); Nunes, Luiz Antônio O. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense400, 13566-590, São Carlos, SP (Brazil); Gandra, Flávio G. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Sampaio, Juraci A. [Lab Ciências Físicas, Universidade Estadual Norte Fluminense, 28013-602, Campos Dos Goytacazes, RJ (Brazil); Lima, Sandro M.; Andrade, Luis Humberto C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul-UEMS, Dourados, MS, C. P. 351, CEP 79804-970 (Brazil); and others

    2015-04-15

    The relationship between emission tunability and the local environment of europium ions in OH{sup −}-free calcium aluminosilicate glasses was investigated, focusing on the development of devices for artificial lighting. Significant conversion of Eu{sup 3+} to Eu{sup 2+} was obtained by means of melting the glasses under a vacuum atmosphere and controlling the silica content, resulting in broad, intense, and tunable luminescence ranging from blue to red. Electron spin resonance and X-ray absorption near edge structure measurements enabled correlation of the luminescence behavior of the material with the Eu{sup 2+}/Eu{sup 3+} concentration ratio and changes in the surrounding ions' crystal field. The coordinates of the CIE 1931 chromaticity diagram were calculated from the spectra, and the contour maps showed that the light emitted from Eu{sup 2+} presented broad bands and enhanced color tuning, ranging from reddish-orange to blue. The results showed that these Eu doped glasses can be used for tunable white lighting by combining matrix composition and the adjustment of the pumping wavelength. - Highlights: • Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass as a new source for white lighting. • Correlation between emission tunability and local environment of europium ions. • Significant reduction of Eu{sup 3+} to Eu{sup 2+} by melting the glasses under vacuum atmosphere. • Broad, intense and tunable luminescence ranging from blue to red.

  15. Versatile and Tunable Transparent Conducting Electrodes Based on Doped Graphene

    KAUST Repository

    Mansour, Ahmed E.

    2016-11-25

    , the conductivity increases compared modestly to intercalation as the electron transfer is limited to the uppermost graphene layers. Finally, a novel and universal multi-modal doping strategy is developed, thanks to the unique platform offered by FLG, where surface and intercalation doping are combined to mutually achieve high conductivity with an extended tunability of the work function. This work presents doped-FLG as a prospective and versatile candidate among emerging TCEs, given the need for efficient and stable doping routes capable of controllably tuning its properties to meet the criteria of a broad range of applications.

  16. Cathodoluminescence study of ytterbium doped GaSb

    International Nuclear Information System (INIS)

    Hidalgo, P.; Mendez, B.; Ruiz, C.; Bermudez, V.; Piqueras, J.; Dieguez, E.

    2005-01-01

    Yb-doped GaSb ingots have been grown by the Bridgman method. The defect structure and compositional homogeneity of the crystals have been investigated by cathodoluminescence and X-ray microanalysis in the scanning electron microscope. The nature of the point defects has been found to depend on the position along the growth axis. Doping with Yb has been found to reduce the luminescence intensity of GaSb and no infrared emission related to intra-ionic transitions of the Yb 3+ ions has been detected

  17. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    Science.gov (United States)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  18. Diagnostics of ytterbium/aluminium laser plasmas

    International Nuclear Information System (INIS)

    Bailey, J.; Lee, R.W.; Landen, O.L.; Kilkenny, J.D.; Lewis, C.L.; Busquet, M.

    1986-11-01

    Microdot spectroscopy was used to study the x-ray emission from laser-produced plasmas consisting of 10% ytterbium, 90% aluminium. Spectra were recorded with a space-resolving flat crystal (PET) mini-spectrometer in the 4.0-8.0 A range. The Janus research laser at LLNL irradiated the targets with green (0.53 μm) light in a 1 nsec pulse. The power density was varied between 4x10 13 and 3x10 14 W/cm 2 . The plasma electron density and temperature were determined from the aluminium XI, XII and XIII line emission. By examining correlations between changes in the plasma conditions with changes in the ytterbium spectra, we will determine the potential for using ytterbium line emission as a plasma diagnostic

  19. Reaction of organic ytterbium derivatives with alkyl- and arylhalogenides

    International Nuclear Information System (INIS)

    Rybakova, L.F.; Syutkina, O.P.; Garbar, A.V.; Petrov, Eh.S.

    1988-01-01

    Interaction of a series of organic halogenides with organic bivalent ytterbium derivatives (like Grignard reagent, RYbX, where R=CH 3 , C 6 H 5 ; X=Br, I) under metal complex catalysis is studied. Aromatic and aliphatic ytterbium derivatives undergo a reaction of cross combination with organic iodides and bromides under catalysis by NiCl 2 (PPh 3 ) 2 and Pd(PPh 3 ) 4 complexes. Therewith organo-ytterbium compounds quantitatively react with alkyl (aryl) iodides, bromine substitution for iodine in arylhalogenides results in decrease of yield of cross-combination products. Reactions of organo-ytterbium compounds with organic halogenides are more effectively catalysed by nickel complexes than by palladium ones

  20. Toward tunable doping in graphene FETs by molecular self-assembled monolayers

    Science.gov (United States)

    Li, Bing; Klekachev, Alexander V.; Cantoro, Mirco; Huyghebaert, Cedric; Stesmans, André; Asselberghs, Inge; de Gendt, Stefan; de Feyter, Steven

    2013-09-01

    In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic dopant.In this paper, we report the formation of self-assembled monolayers (SAMs) of oleylamine (OA) on highly oriented pyrolytic graphite (HOPG) and graphene surfaces and demonstrate the potential of using such organic SAMs to tailor the electronic properties of graphene. Molecular resolution Atomic Force Microscopy (AFM) and Scanning Tunneling Microscopy (STM) images reveal the detailed molecular ordering. The electrical measurements show that OA strongly interacts with graphene leading to n-doping effects in graphene devices. The doping levels are tunable by varying the OA deposition conditions. Importantly, neither hole nor electron mobilities are decreased by the OA modification. As a benefit from this noncovalent modification strategy, the pristine characteristics of the device are recoverable upon OA removal. From this study, one can envision the possibility to correlate the graphene-based device performance with the molecular structure and supramolecular ordering of the organic

  1. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  2. Atomic frequency reference at 1033 nm for ytterbium (Yb)-doped fiber lasers and applications exploiting a rubidium (Rb) 5S_1/2 to 4D_5/2 one-colour two-photon transition

    Science.gov (United States)

    Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn

    2017-04-01

    We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.

  3. Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Navrátil, P.; Maria, J.; Dussardier, B.; Slavík, Radan; Honzátko, Pavel; Kubeček, V.

    2012-01-01

    Roč. 9, č. 6 (2012), s. 445-450 ISSN 1612-2011 R&D Projects: GA MŠk(CZ) ME10119 Institutional support: RVO:67985882 Keywords : fiber laser * tunable laser * ytterbium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 7.714, year: 2012

  4. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    Directory of Open Access Journals (Sweden)

    Anirban Dhar

    2014-01-01

    Full Text Available The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  5. Tunable light emission and similarities with garnet structure of Ce-doped LSCAS glass for white-light devices

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, L.H.C., E-mail: luishca@uems.br [Grupo de Espectroscopia Optica e Fototermica, Universidade Estadual de Mato Grosso do Sul - UEMS, C.P. 351, Dourados, MS (Brazil); Lima, S.M. [Grupo de Espectroscopia Optica e Fototermica, Universidade Estadual de Mato Grosso do Sul - UEMS, C.P. 351, Dourados, MS (Brazil); Baesso, M.L.; Novatski, A.; Rohling, J.H. [Grupo de Estudos de Fenomenos Fototermicos, Departamento de Fisica, Universidade Estadual de Maringa, Av. Colombo 5790, 87020-900 Maringa, PR (Brazil); Guyot, Y.; Boulon, G. [Laboratoire de Physico-Chimie des Materiaux Luminescents, Universite Claude Bernard Lyon 1, UMR 5620 CNRS, 69622 Villeurbanne (France)

    2012-01-05

    Highlights: > Ce{sup 3+}-doped LSCAS glass exhibits broad, simultaneously blue and yellow emissions under UV excitation. > In this phosphor is possible to continuously tune the emission, covering the entire visible spectrum. > The ability to change the color temperature in accordance to the occasion is a feature of this glass system. - Abstract: In this paper, we report results concerning tunable light emission and color temperature in cerium-doped low-silica-calcium-alumino-silicate (LSCAS) glass for smart white-light devices. Spectroscopic results, analyzed using the CIE 1931 x-y chromatic diagram, show that this glass presents two broad emission bands centered at 475 and 540 nm, whose intensities can be tuned by the excitation wavelength. Moreover, the same emission can be achieved from a color temperature range from 3200 to 10,000 K, with a color-rendering index (CRI) of around 75% obtained by changing the optical path length of the sample. Our new phosphor LSCAS glass, which is a unique system that exhibits tunable yellow emission, combines all qualities for white-light devices.

  6. Linearly polarized intracavity passive Q-switched Yb-doped ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... ytterbium-doped photonic crystal fibre laser with a Cr4+:YAG crystal ... average output power of 9.4 W with pulse duration of 64 ns and ... applications of nonlinear frequency shifting like frequency doubling and optical paramet-.

  7. Effects of Ge- and Sb-doping and annealing on the tunable bandgaps of SnS films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsuan-Tai; Chiang, Ming-Hung; Huang, Chen-Hao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Fu, Yaw-Shyan [Department of Greenergy, National University of Tainan, Tainan 700, Taiwan (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-06-01

    SnS, Ge- and Sb-doped SnS films with single orthorhombic SnS phase were fabricated via solvothermal routes and subsequent spin-coating, respectively. The substitution solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. The bandgaps of Ge- and Sb-doped SnS films can be tuned in the ranges of 1.25–1.35 and 1.30–1.39 eV, respectively. The possible mechanisms for the tunable bandgaps of Ge- and Sb-doped SnS films are discussed. For the Ge- and Sb-doped SnS films subjected to annealing at 200–350 °C in N{sub 2}, the bandgaps of 200 °C-annealed films remain unchanged, while those of 300 °C- and 350 °C-annealed films decrease with the annealing temperature because of the evaporation of Ge and Sb respectively. - Highlights: • Ge- and Sb-doped SnS films were fabricated via spin-coating. • The solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. • The bandgaps of SnS films can be tuned by Ge and Sb doping respectively. • Annealing above 300 °C reduces the bandgaps of Ge- and Sb-doped SnS films.

  8. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1995-01-01

    The spectroscopic properties of Cr 2+ , Co 2+ , and Ni 2+ -doped single crystals of ZnS, ZnSe, and ZnTe have been investigated to understand their potential application as mid-IR tunable solid-state laser media. The spectroscopy indicated divalent Cr was the most favorable candidate for efficient room temperature lasing, and accordingly, a laser-pumped laser demonstration of Cr:ZnS and Cr:ZnSe has been performed. The lasers' output were peaked at ∼ 2.35 μm and the highest measured slope efficiencies were ∼ 20% in both cases

  9. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  10. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    Science.gov (United States)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  11. Optical gain at 1.53 {mu}m in Er{sup 3+}-Yb{sup 3+} co-doped porous silicon waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia)], E-mail: najar.adel@laposte.net; Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Lorrain, N.; Haesaert, S. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France)

    2008-01-15

    Erbium-ytterbium (Er-Yb)-co-doped porous silicon planar waveguides were prepared from P{sup +}-type (1 0 0) oriented silicon wafer. Erbium and ytterbium ions were electrochemically introduced into the porous structure of the waveguide core. The doping profiles of erbium and ytterbium ions were determined by EDX analysis performed on sample cross-section. The mean concentration in the guiding layer is of about 1 x 10{sup 20} cm{sup -3}. The refractive indices were measured from co-doped porous silicon and undoped waveguides after the thermal treatments. The photoluminescence (PL) peak of optically activated erbium ions at 1.53 {mu}m was recorded. The PL enhancement is the result of the energy transfer from the excited state of Yb to the state of Er. Optical losses at 1.55 {mu}m were measured on these waveguides and were of about 2 dB/cm. An internal gain at 1.53 {mu}m of 5.8 dB/cm has been measured with a pump power of 65 mW at 980 nm.

  12. Optical properties of ion beam modified waveguide materials doped with erbium and silver

    NARCIS (Netherlands)

    Strohhöfer, C. (Christof)

    2001-01-01

    In the first part of this thesis we investigate codoping of erbium-doped waveguide materials with different ions in order to increase the efficiency of erbium-doped optical amplifiers. Codoping with ytterbium can overcome the limitations due to the small absorption cross section of Er3+ in Al2O3 at

  13. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  14. Structural, spectroscopic, and tunable laser properties of Yb3+ -doped NaGd(WO4)2

    Science.gov (United States)

    Cascales, C.; Serrano, M. D.; Esteban-Betegón, F.; Zaldo, C.; Peters, R.; Petermann, K.; Huber, G.; Ackermann, L.; Rytz, D.; Dupré, C.; Rico, M.; Liu, J.; Griebner, U.; Petrov, V.

    2006-11-01

    Single crystals of Yb3+ -doped NaGd(WO4)2 with up to 20mol% ytterbium content have been grown by the Czochralski technique in air or in N2+O2 atmosphere and cooled to room temperature at different rates (4-250°C/h) . Only the noncentrosymmetric tetragonal space group I4¯ accounts for all reflections observed in the single crystal x-ray diffraction analysis. The distortion of this symmetry with respect to the centrosymmetric tetragonal space group I41/a is much lower for crystals cooled at a fast rate. Na+ , Gd3+ , and Yb3+ ions share the two nonequivalent 2b and 2d sites of the I4¯ structure, but Yb3+ (and Gd3+ ) ions are found preferentially in the 2b site. Optical spectroscopy at low (5K) temperature provides additional evidence of the existence of these two sites contributing to the line broadening. The comparison with the F7/22(n) and F5/22(n') Stark energy levels calculated using the crystallographic Yb-O bond distances allows to correlate the experimental optical bands with the 2b and 2d sites. As a novel uniaxial laser host for Yb3+ , NaGd(WO4)2 is characterized also with respect to its transparency, band-edge, refractive indices, and main optical phonons. Continuous-wave Yb3+ -laser operation is studied at room temperature both under Ti:sapphire and diode laser pumping. A maximum slope efficiency of 77% with respect to the absorbed power is achieved for the π polarization by Ti:sapphire laser pumping in a three-mirror cavity with Brewster geometry. The emission is tunable in the 1014-1079nm spectral range with an intracavity Lyot filter. Passive mode locking of this laser produces 120fs long pulses at 1037.5nm with an average power of 360mW at ≈97MHz repetition rate. Using uncoated samples of Yb:NaGd(WO4)2 at normal incidence in simple two-mirror cavities, output powers as high as 1.45W and slope efficiencies as high as 51% are achieved with different diode laser pump sources.

  15. Cladding-pumped Yb-doped fiber laser with vortex output beam

    OpenAIRE

    Lin, Di; Clarkson, William

    2015-01-01

    A simple technique for selectively generating a donut-shaped LP11 mode with vortex phase front in a cladding-pumped ytterbium-doped fiber laser is reported. The laser yielded 36W of output with a slope efficiency of 74%.

  16. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    Science.gov (United States)

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-09

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.

  17. Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Paul, Mukul C. [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Guanajuato (Mexico); Bysakh, Sandip [Electron Microscopic Section, Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-08-15

    The basic material and optical properties of chromium-doped nanophase-separated yttria-alumina-silica (YAS) glass based optical preforms and fibers, fabricated through the modified chemical vapor deposition process in conjunction with solution doping technique under suitable thermal annealing conditions are reported. The size of the phase-separated particles within the core of the annealed preform is around 20-30 nm which is significantly reduced to around 5.0 nm in the drawn fiber. The absorption spectra of fibers drawn from the annealed and non-annealed preform samples revealed the presence of Cr{sup 4+}, Cr{sup 3+}, and Cr{sup 6+} specie. Numerically, extinction of absorption drops ∝3-3.5 times for the annealed sample as a result of nano-phase restructuration during annealing process. Intense broadband emission (within 500-800 nm) in case of the annealed preform sample is observed as compared to the non-annealed one and is associated with the presence of Cr{sup 3+} ions in nanostructured environment inside the YAS core glass. The final fibers show broadband emission ranging from 900 to 1400 nm under pumping at 1064 nm which is attributed mainly to the presence of Cr{sup 3+}/Cr{sup 4+} ions. The fabricated fibers seem to be a potential candidate for the development of fiber laser sources for the visible and near-infra ranges and for effective Q-switching units for ∝1-1.1 μm all-fiber ytterbium lasers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  19. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    Science.gov (United States)

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  20. Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: A first-principles study

    Science.gov (United States)

    Zhu, Yupeng; Liang, Xiao; Qin, Jun; Deng, Longjiang; Bi, Lei

    2018-05-01

    In this article, a systematic study on the magnetic properties and strain tunability of 3d transition metal ions (Mn, Fe, Co, Ni) doped MoS2 using first-principles calculations is performed. Antiferromagnetic coupling is observed between Mn, Fe ions and the nearest neighbor Mo ions; whereas ferromagnetic coupling is observed in Co and Ni systems. It is also shown that by applying biaxial tensile strain, a significant change of the magnetic moment is observed in all transition metal doped MoS2 materials with a strain threshold. The changes of total magnetic moment have different mechanisms for different doping systems including an abrupt change of the bond lengths, charge transfer and strain induced structural anisotropy. These results demonstrate applying strain as a promising method for tuning the magnetic properties in transition metal ion doped monolayer MoS2.

  1. Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides

    NARCIS (Netherlands)

    Kumalaputri, Angela J; Bottari, Giovanni; Erne, Petra M; Heeres, Hero J; Barta, Katalin

    Tunable and selective hydrogenation of the platform chemical 5-hydroxymethylfurfural into valuable C-6 building blocks and liquid fuel additives is achieved with copper-doped porous metal oxides in ethanol. A new catalyst composition with improved hydrogenation/hydrogenolysis activity is obtained by

  2. White light emission and color tunability of dysprosium doped barium silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Lokesh; Sharma, Anchal; Vishwakarma, Amit K.; Jha, Kaushal [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Jayasimhadri, M., E-mail: jayaphysics@yahoo.com [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Ratnam, B.V.; Jang, Kiwan [Department of Physics, Changwon National University, Changwon 641-77 (Korea, Republic of); Rao, A.S.; Sinha, R.K. [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India)

    2016-01-15

    The present work elucidates the synthesis of Dy{sup 3+} doped barium silicate glasses, along with the subsequent studies performed to evaluate its viability in solid state lighting applications. The synthesized photonic glasses were investigated via X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy. The photoluminescence properties were examined under ultraviolet (UV)/near UV (NUV) excitation. Photoluminescence spectrum exhibited characteristic emission bands at λ{sub em}=483 nm (blue) and λ{sub em}=576 nm (yellow) which are ascribed to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions of Dy{sup 3+} ion, respectively. The chromaticity coordinates under excitation of λ{sub ex}=348 nm are (0.31, 0.34), which lies in the white region of CIE 1931 chromaticity diagram and are in excellent proximity with the standard equal energy white illuminant (0.333, 0.333). The calculated correlated color temperature and the yellow to blue (Y/B) ratio are found to be 6602 K and 1.12, respectively for the optimized sample. The synthesized photonic glass also offered the possibility of tuning the color as exemplified through the variation in CIE coordinates, correlated color temperature and the Y/B ratio. The results confirm the possibility of color tunability from the proposed glass and may be useful for various photonic device applications. - Highlights: • Successfully synthesized Dy{sup 3+} doped barium silicate glasses. • Structural properties thoroughly discussed by using XRD and FT-IR. • Photoluminescence and colorimetry properties have been investigated. • Y/B ratio and the reason for color tunability have been successfully explained. • CIE coordinates of Dy{sup 3+}:BBS glass confirm its suitability for w-LEDs.

  3. Tunable graphene doping by modulating the nanopore geometry on a SiO2/Si substrate

    KAUST Repository

    Lim, Namsoo

    2018-02-28

    A tunable graphene doping method utilizing a SiO2/Si substrate with nanopores (NP) was introduced. Laser interference lithography (LIL) using a He–Cd laser (λ = 325 nm) was used to prepare pore size- and pitch-controllable NP SiO2/Si substrates. Then, bottom-contact graphene field effect transistors (G-FETs) were fabricated on the NP SiO2/Si substrate to measure the transfer curves. The graphene transferred onto the NP SiO2/Si substrate showed relatively n-doped behavior compared to the graphene transferred onto a flat SiO2/Si substrate, as evidenced by the blue-shift of the 2D peak position (∼2700 cm−1) in the Raman spectra due to contact doping. As the porosity increased within the substrate, the Dirac voltage shifted to a more positive or negative value, depending on the initial doping type (p- or n-type, respectively) of the contact doping. The Dirac voltage shifts with porosity were ascribed mainly to the compensation for the reduced capacitance owing to the SiO2–air hetero-structured dielectric layer within the periodically aligned nanopores capped by the suspended graphene (electrostatic doping). The hysteresis (Dirac voltage difference during the forward and backward scans) was reduced when utilizing an NP SiO2/Si substrate with smaller pores and/or a low porosity because fewer H2O or O2 molecules could be trapped inside the smaller pores.

  4. Broadband polymer microstructured THz fiber coupler with downdoped cores

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Bang, Ole

    2010-01-01

    We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz.......We demonstrate a broadband THz directional coupler based on a dual core photonic crystal fiber (PCF) design with mechanically down-doped core regions. For a center frequency of 1.3 THz we demonstrate a bandwidth of 0.65 THz....

  5. Contrast opacification for CT from iodine, gadolinium and ytterbium

    International Nuclear Information System (INIS)

    Zwicker, C.; Langer, M.; Ullrich, V.; Felix, R.

    1993-01-01

    The absorption of the elements iodine, gadolinium und ytterbium in various dilutions was studied in relation to CT. Regression analysis and specific CT density measurements showed that absorption decreases from gadolinium to ytterbium and iodine. These results were confirmed by experiments using ten dogs. Boli of 0.5 molar gadolinium used for angio-CT without table movement showed the largest increase in density in the aorta and liver with an average of 190 HU and 21 HU respectively compared with iodine which gave 157 HU and 12 HU respectively. The animal experimental studies suggest that gadolinium and ytterbium are suitable contrast media for dynamic CT investigations. (orig.) [de

  6. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  7. Controlled fabrication and tunable photoluminescence properties of Mn2+ doped graphene–ZnO composite

    International Nuclear Information System (INIS)

    Luan, Xinglong; Zhang, Yihe; Tong, Wangshu; Shang, Jiwu; An, Qi; Huang, Hongwei

    2014-01-01

    Highlights: • Graphene–ZnO composites were synthesized by a mixed solvothermal method. • ZnO quantum dots are distributed uniformly on the graphene sheets. • A possible hypothesis is raised for the influence of graphene oxide on the nucleation of ZnO. • Mn 2+ doped graphene–ZnO composites were fabricated and the emission spectra can be tuned by doping. - Abstract: Graphene–ZnO composites (G–ZnO) with controlled morphology and photoluminescence property were synthesized by a mixed solvothermal method. Mixed solvent were composed by dimethyl sulfoxide and ethylene glycol. Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectra were used to characterize G–ZnO. Graphene as a substrate can help the distribution and the dispersity of ZnO, and a possible model of the interaction between graphene oxide and ZnO particles is proposed. At the same time, graphene also reduce the size of ZnO particles to about 5 nm. Furthermore, Mn 2+ ions dopes G–ZnO successfully by the mixed solvothermal synthesis and the doping of Mn 2+ makes G–ZnO shift red from 465 nm to 548 nm and 554 nm in the emission spectrum. The changes of the emission spectrum by the adding of Mn 2+ make G–ZnO have tunable photoluminescence spectrum which is desirable for practical applications

  8. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  9. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    Science.gov (United States)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  10. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  11. Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback

    International Nuclear Information System (INIS)

    Zhao Mao-Rong; Wu Zheng-Mao; Deng Tao; Zhou Zhen-Li; Xia Guang-Qiong

    2015-01-01

    Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented. (paper)

  12. Mid-infrared spectroscopic characterisation of an ultra-broadband tunable EC-QCL system intended for biomedical applications

    Science.gov (United States)

    Vahlsing, T.; Moser, H.; Grafen, M.; Nalpantidis, K.; Brandstetter, M.; Heise, H. M.; Lendl, B.; Leonhardt, S.; Ihrig, D.; Ostendorf, A.

    2015-07-01

    Mid-infrared spectroscopy has been successfully applied for reagent-free clinical chemistry applications. Our aim is to design a portable bed-side system for ICU patient monitoring, based on mid-infrared absorption spectra of continuously sampled body-fluids. Robust and miniature bed-side systems can be achieved with tunable external cavity quantum cascade lasers (EC-QCL). Previously, single EC-QCL modules covering a wavenumber interval up to 250 cm-1 have been utilized. However, for broader applicability in biomedical research an extended interval around the mid-infrared fingerprint region should be accessible, which is possible with at least three or four EC-QCL modules. For such purpose, a tunable ultra-broadband system (1920 - 780 cm-1, Block Engineering) has been studied with regard to its transient emission characteristics in ns time resolution during different laser pulse widths using a VERTEX 80v FTIR spectrometer with step-scan option. Furthermore, laser emission line profiles of all four incorporated EC-QCL modules have been analysed at high spectral resolution (0.08 cm-1) and beam profiles with few deviations from the TEM 00 spatial mode have been manifested. Emission line reproducibility has been tested for various wavenumbers in step tune mode. The overall accuracy of manufacturer default wavenumber setting has been found between ± 3 cm-1 compared to the FTIR spectrometer scale. With regard to an application in clinical chemistry, theoretically achievable concentration accuracies for different blood substrates based on blood plasma and dialysate spectra previously recorded by FTIRspectrometers have been estimated taking into account the now accessible extended wavenumber interval.

  13. Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.

    Science.gov (United States)

    Peng, Mingying; Qiu, Jianrong; Chen, Danping; Meng, Xiangeng; Zhu, Congshan

    2005-09-05

    The broadband emission in the 1.2~1.6mum region from Li2O-Al2O3-ZnO-SiO2 ( LAZS ) glass codoped with 0.01mol.%Cr2O3 and 1.0mol.%Bi2O3 when pumped by the 808nm laser at room temperature is not initiated from Cr4+ ions, but from bismuth, which is remarkably different from the results reported by Batchelor et al. The broad ~1300nm emission from Bi2O3-containing LAZS glasses possesses a FWHM ( Full Width at Half Maximum ) more than 250nm and a fluorescent lifetime longer than 500mus when excited by the 808nm laser. These glasses might have the potential applications in the broadly tunable lasers and the broadband fiber amplifiers.

  14. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings

    Science.gov (United States)

    Sui, Yulei; Liu, Qingxia; Jiang, Tao; Guo, Yufeng

    2018-01-01

    In this work, highly pure nano-TiO2 photocatalysts with varying Fe doping concentration were successfully synthesized from low-cost Ti-bearing tailings by an acidolysis-hydrothermal route. The effects of H2SO4 concentration, leaching temperature, acid/tailings ratio and leaching time on the recovery of TiO2 from the tailings were investigated. Synthesized samples were characterized by XRD, TEM, EDS, XPS, and UV-vis spectroscopy. The results showed that the material prepared is characteristic anatase with the average size of 20 nm and the Fe doping concentration in the synthesized nano-TiO2 is tunable. The photocatalytic activity of synthesized nano-TiO2 photocatalyst was also evaluated by the photodegradation of Rhodamine B under visible light and UV light irradiation. Our study demonstrates a low-cost approach to synthesize highly efficient and visible light responsive catalysts.

  15. Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers

    DEFF Research Database (Denmark)

    Lester, Christian; Bjarklev, Anders Overgaard; Rasmussen, Thomas

    1995-01-01

    A model for Yb3+-sensitized Er3+-doped silica waveguide amplifiers is described and numerically investigated in the small-signal regime. The amplified spontaneous emission in the ytterbium-band and the quenching process between excited erbium ions are included in the model. For pump wavelengths...

  16. Radiation Effects on Ytterbium-doped Optical Fibers

    Science.gov (United States)

    2014-06-02

    conducted on Er- doped fiber amplifiers (Lezius, et al., 2012; Ahrens, et al., 1999; Ahrens, Jaques , LuValle, DiGiovanni, & Windeler, 2001; Ott, 2004...Ahrens, R. G., Abate, J. A., Jaques , J. J., Presby, H. M., Fields, A. B., DiGiovanni, D. J., LuValle, M. J. (1999). Radiation reliability of rare... Jaques , J. J., LuValle, M. J., DiGiovanni, D. J., & Windeler, R. S. (2001). Radiation effects on optical fibers and amplifiers. Testing, Reliability

  17. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  18. CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan; Li, Yue; Xu, Jianqiu; Tang, Yulong, E-mail: yulong@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE), Department of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 (China); Hu, Zhiping; Tang, Xiaosheng [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-27

    Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  19. Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions.

    Science.gov (United States)

    Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2014-06-30

    In the paper, we developed a dispersive method for transmission function synthesis of collinear and quasi-collinear acousto-optic tunable filters. General theoretical consideration was performed, and modelling was made for broadband and narrowband signals. Experimental results on spectral shaping of femtosecond laser emission were obtained. Binary spectral encoding of broadband emission was demonstrated.

  20. System of ytterbium nitrate-hydrazine(mono-)dinitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Katamanov, V.L.

    1986-01-01

    Solubility in ternary systems ytterbium nitrate-hydrazine monohydrate-water and ytterbium nitrate-hydrazine dinitrate-water is studied at 25 and 50 deg C. Salt components of both systems do not form with each other double addition compounds in the chosen temperature range. Initial salts are equilibrium solid phases of saturated solutions. Correlation of the range of primary crystallization of nitrate acydocomplexes of lanthanides formed in similar systems with their atomic number is considered. It is shown that hydrazine dinitrate can be used for separation of rare earth elements of cerium group

  1. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure

    International Nuclear Information System (INIS)

    Feng, Ting; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Tan, Siyu; Liang, Xiao; Wen, Xiaodong

    2014-01-01

    A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure is proposed and demonstrated experimentally. The compound-cavity is composed of a main-linear-cavity and a subring-cavity. Using a pump power of 150 mW, the optical signal to noise ratio of the laser output is as high as ∼67 dB; the wavelength and output power fluctuation are 0.7 pm and 0.07 dBm respectively in an experimental period of 1 h; the linewidth of the laser output is as narrow as 650 Hz; the degree of polarization of the laser output is stable at a value of 100.8% in 15 min and the polarization extinction ratio is as high as 30.57 dB; the wavelength-tunable range is as wide as ∼8.1 nm. The proposed fiber laser can be used in areas where high stability, narrow-linewidth, single-polarization and wide wavelength-tunable range are needed. (letter)

  2. Characterization of channel waveguides and tunable microlasers in SU8 doped with rhodamine B fabricated using proton beam writing

    International Nuclear Information System (INIS)

    Rao, S Venugopal; Bettiol, A A; Watt, F

    2008-01-01

    We present our results on the fabrication and characterization of buried channel waveguides and tunable microlasers in SU8 doped with rhodamine B achieved using direct writing with a 2.0 MeV proton beam. The channel waveguides, fabricated in single exposure, had an optical propagation loss of -1 at 532 nm measured using the scattering technique while the microlasers with dimensions of 250 x 250 μm 2 had a threshold of ∼150 μJ mm -2 when pumped with 532 nm nanosecond pulses. The emitted wavelength from the microlasers was tunable to an extent of ∼15 nm with increasing pump intensity and different pumping angles. The advantages of such micro-photonic components for the realization of a lab-on-a-chip device are discussed briefly. (fast track communication)

  3. Dielectric properties of BaMg1/3Nb2/3O3 doped Ba0.45Sr0.55Tio3 thin films for tunable microwave applications

    Science.gov (United States)

    Alema, Fikadu; Pokhodnya, Konstantin

    2015-11-01

    Ba(Mg1/3Nb2/3)O3 (BMN) doped and undoped Ba0.45Sr0.55TiO3 (BST) thin films were deposited via radio frequency magnetron sputtering on Pt/TiO2/SiO2/Al2O3 substrates. The surface morphology and chemical state analyses of the films have shown that the BMN doped BST film has a smoother surface with reduced oxygen vacancy, resulting in an improved insulating properties of the BST film. Dielectric tunability, loss, and leakage current (LC) of the undoped and BMN doped BST thin films were studied. The BMN dopant has remarkably reduced the dielectric loss (˜38%) with no significant effect on the tunability of the BST film, leading to an increase in figure of merit (FOM). This is attributed to the opposing behavior of large Mg2+ whose detrimental effect on tunability is partially compensated by small Nb5+ as the two substitute Ti4+ in the BST. The coupling between MgTi″ and VO•• charged defects suppresses the dielectric loss in the film by cutting electrons from hopping between Ti ions. The LC of the films was investigated in the temperature range of 300-450K. A reduced LC measured for the BMN doped BST film was correlated to the formation of defect dipoles from MgTi″, VO•• and NbTi• charged defects. The carrier transport properties of the films were analyzed in light of Schottky thermionic emission (SE) and Poole-Frenkel (PF) emission mechanisms. The result indicated that while the carrier transport mechanism in the undoped film is interface limited (SE), the conduction in the BMN doped film was dominated by bulk processes (PF). The change of the conduction mechanism from SE to PF as a result of BMN doping is attributed to the presence of uncoupled NbTi• sitting as a positive trap center at the shallow donor level of the BST.

  4. Overview of ultraviolet and infrared spectroscopic properties of Yb{sup 3+} doped borate and oxy-borates compounds; De l'ultraviolet a l'infrarouge: caracterisation spectroscopique de materiaux type borate et oxyborate dopes a l'ytterbium trivalent

    Energy Technology Data Exchange (ETDEWEB)

    Sablayrolles, J

    2006-12-15

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li{sub 6}Y(BO{sub 3}){sub 3} and two oxy-borates: LiY{sub 6}O{sub 5}(BO{sub 3}){sub 3} and Y{sub 17,33}B{sub 8}O{sub 38}. For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+}. An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+} crystal are reported. (author)

  5. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm.

    Science.gov (United States)

    Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca

    2018-02-05

    We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

  6. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    Science.gov (United States)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  7. Density of liquid Ytterbium

    International Nuclear Information System (INIS)

    Stankus, S.V.; Basin, A.S.

    1983-01-01

    Results are presented for measurements of the density of metallic ytterbium in the liquid state and at the liquid-solid phase transition. Based on the numerical data obtained, the coefficient of thermal expansion βZ of the liquid and the density discontinuity on melting deltarho/sub m/ are calculated. The magnitudes of βZ and deltarho/sub m/ for the heavy lanthanides are compared

  8. New fluorophosphate glasses co-doped with Eu{sup 3+} and Tb{sup 3+} as candidates for generating tunable visible light

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, T.B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Botelho, M.B.S. [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); University of Brasilia, 70910-900 Brasilia, DF (Brazil); Gonçalves, T.S.; Dousti, M. Reza [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); Camargo, A.S.S. de, E-mail: andreasc@ifsc.usp.br [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil)

    2015-10-25

    A series of optically active Eu{sup 3+} and Tb{sup 3+} doped fluorophosphate glasses with compositions (BaF{sub 2}){sub 0.25}(SrF{sub 2}){sub 0.25}(AlF{sub 3}){sub 0.10}[Al(PO{sub 3}){sub 3}]{sub 0.20}(YF{sub 3}){sub 0.20-x}(EuF{sub 3} and/or TbF{sub 3}){sub x} (x = 0 to 0.04) was prepared and characterized by optical spectroscopy. While embedded in the oxyfluoride host, the cited rare earth (RE) ions exhibit improved spectroscopic properties such as longer excited state lifetimes than in oxide glasses and intense emissions in the red ({sup 5}D{sub 0} → {sup 7}F{sub 2}, Eu{sup 3+}), green and blue ({sup 5}D{sub 4} → {sup 7}F{sub 5} and {sup 5}D{sub 3},{sup 5}G{sub 6} → {sup 7}F{sub 5},{sup 7}F{sub 4}, Tb{sup 3+}) spectral regions. Based on this fact, co-doped samples can be designed with appropriate concentrations of these two ions and generate tunable and white light upon excitation with suitable wavelengths, dispensing the need for a third blue emitting RE ion. Four co-doped samples with equal amounts of EuF{sub 3} and TbF{sub 3} and total concentration of 0.3, 0.5, 1.0 and 1.5 mol% were tested. Their CIE chromaticity coordinates were calculated for various excitation wavelengths in the region from 350 to 360 nm allowing tuned emission from blue to red. The long lifetime values of the emitting levels in these co-doped samples (τ ≈ 3.1 ms for Eu{sup 3+5}D{sub 0}, and τ ≈ 4.0 ms for Tb{sup 3+5}D{sub 4}), associated with fairly high quantum yields (Q.Y. = 5–12%) of the samples indicate that these materials could be efficiently pumped by high power LEDs around 355 nm. - Highlights: • Fluorophosphate glasses doped with Eu{sup 3+} and Tb{sup 3+} and excellent optical properties. • Tunable visible emission and white emission in co-doped samples. • Rare earth bonding preference to fluoride rather than phosphate ions.

  9. XAFS studies of ytterbium doped lead-telluride

    International Nuclear Information System (INIS)

    Radisavljevic, I.; Novakovic, N.; Romcevic, N.; Manasijevic, M.; Mahnke, H.-E.; Ivanovic, N.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) measurements were performed on uniformly doped PbTe:Yb (1.3 at.%) at all elemental absorption edges and the analysis of the results has provided precise information on the local structure around each atom. From the near edge part of the absorption spectra it was determined that Yb is in the mixed valent state, which is predominantly divalent with a small trivalent contribution. The analysis of the high energy region of the absorption spectra revealed that Yb incorporation causes deformation of the host PbTe lattice, manifested through extension of all the nearest-, and next-nearest neighbour distances.

  10. Sympathetic cooling of ytterbium with rubidium; Sympathetische Kuehlung von Ytterbium mit Rubidium

    Energy Technology Data Exchange (ETDEWEB)

    Tassy, S.

    2007-12-14

    Within the scope of this thesis, a mixture of ultracold ytterbium and rubidium atoms was experimentally realized and investigated. For these experiments, a novel trap geometry was developed which allows simultaneous trapping and cooling of diamagnetic and paramagnetic atomic species. The main focus was put on the investigation of the interspecies scattering properties, where sympathetic cooling of ytterbium through elastic collisions with rubidium could be demonstrated. In addition, the interspecies scattering length could be determined. In the current configuration the combined trap allows the preparation of up to 2.10{sup 5} atoms of {sup 170}Yb, {sup 171}Yb, {sup 172}Yb, {sup 174}Yb or {sup 176}Yb at a temperature of 40..60 {mu}K and a density in the range of 10{sup 12} cm{sup -3}, and of about 10{sup 7} {sup 87}Rb atoms at a temperature of 25 {mu}K and a density in the range of 5.10{sup 11} cm{sup -3}. Detailed studies of the thermalization of bosonic {sup 170}Yb, {sup 172}Yb, {sup 174}Yb and {sup 176}Yb and of fermionic {sup 171}Yb each with {sup 87}Rb were performed under varying experimental conditions. The deduced total scattering cross section was clearly found to increase with higher mass of the ytterbium isotope. In general, a mass scaling of the scattering properties is in agreement with theoretical models and former experimental work. With the assumption of pure s-wave scattering, which is approximately fulfilled for the given experimental parameters, the interspecies scattering length could be derived from the measured thermalization data and was found to be (in units of the Bohr radius a{sub 0}): {sup 170}Yb-{sup 87}Rb:(18{sup +12}{sub -4})a{sub 0}, {sup 171}Yb-{sup 87}Rb:(25{sup +14}{sub -7})a{sub 0}, {sup 172}Yb-{sup 87}Rb:(33{sup +23}{sub -7})a{sub 0}, {sup 174}Yb-{sup 87}Rb:(83{sup +89}{sub -25})a{sub 0}, {sup 176}Yb-{sup 87}Rb:(127{sup +245}{sub -45})a{sub 0}. (orig./HSI)

  11. Temperature controlled infrared broadband cloaking with the bilayer coatings of semiconductor and superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); Liu, Youwen, E-mail: ywliu@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Feng, Yuncai [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-06-15

    Highlights: • We first propose that the cloak is composed of the bilayer of semiconductor and superconductor. • We realize the infrared broadband cloaking based on the scattering cancellation method. • The cloaking frequency can be tuned by external temperature. - Abstract: The infrared broadband tunable cloaking have been proposed and investigated with the bilayer coating materials of semiconductor (n-Ge) and high-temperature superconductor (YBa{sub 2}Cu{sub 3}O{sub 7}), whose cloaking frequency can be controlled by external temperature. The analytical solution is derived based on the scattering cancellation cloaking technique from the Mie scattering theory, and the full-wave numerical simulation is performed by the finite element method. The calculated and simulated results have demonstrated that this invisibility cloak may reduce the total scattering cross section of the composite structure of 90% over a broad frequency band of nearly 20 THz, and the infrared cloaking frequency can be tuned by the external temperature. It can provide a feasible way to design a broadband tunable cloak.

  12. The ytterbium nitrate-quinoline (piperidine) nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.; Zhuravlev, E.F.

    1985-01-01

    Using the method of cross sections the solubility of solid phases in the ytterbium nitrate-quinoline nitrate - water (1) and ytterbium nitrate-piperidine nitrate-water (2) systems is studied at 25 and 50 deg C. It is established, that in system 1 congruently melting compound of the composition Yb(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x3H 2 O is formed. The new solid phase has been isolated as a preparation and subjected to chemical X-ray diffraction, differential thermal and IR spectroscopic analyses. Isotherms of system 2 in the studied range of concentrations and temperatures consist of two branches, corresponding to crystallization of tetruaqueous ytterbi um nitrate and nitric acid piperidine

  13. Novel O-band tunable fiber laser using an array waveguide grating

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Latif, A A; Harun, S W

    2010-01-01

    A novel tunable fibre laser (TFL) operating in the ordinary band (O-band) of 1310 nm is proposed and demonstrated. The proposed TFL is developed using a 1×16 arrayed waveguide grating (AWG) as a slicing mechanism for the broadband amplified spontaneous emission (ASE) source and an optical channel selector (OCS) to provide the tunability. A semiconductor optical amplifier (SOA) with a centre wavelength of 1310 nm serves as the compact gain medium for the TFL and also as a broadband ASE source. The TFL has a tuning range of 1301.26 nm to 1311.18 nm with 9.92 nm span and a channel spacing of 0.7 nm. The measured output power is about –4 and –8 dBm and with a side node suppression ratio (SMSR) of 29 to 33 dB

  14. Visible Discrimination of Broadband Infrared Light by Dye-Enhanced Upconversion in Lanthanide-Doped Nanocrystals

    Directory of Open Access Journals (Sweden)

    Charles G. Dupuy

    2014-01-01

    Full Text Available Optical upconversion of near infrared light to visible light is an attractive way to capture the optical energy or optical information contained in low-energy photons that is otherwise lost to the human eye or to certain photodetectors and solar cells. Until the recent application of broadband absorbing optical antennas, upconversion efficiency in lanthanide-doped nanocrystals was limited by the weak, narrow atomic absorption of a handful of sensitizer elements. In this work, we extend the role of the optical antenna to provide false-color, visible discrimination between bands of infrared radiation. By pairing different optical antenna dyes to specific nanoparticle compositions, unique visible emission is associated with different bands of infrared excitation. In one material set, the peak emission was increased 10-fold, and the width of the spectral response was increased more than 10-fold.

  15. Tunable Direct Writing of FBGs into a Non-Photosensitive Tm-Doped Fiber Core with an fs Laser and Phase Mask

    International Nuclear Information System (INIS)

    Cheng-Wei, Song; Yang, Wang; Yun-Jun, Zhang; You-Lun, Ju

    2009-01-01

    Fiber Bragg gratings (FBGs) are successfully written in a non-photosensitive Tm-doped single-mode fiber by a 800 nm fs laser and a 2.7 μm period phase mask. The intra-core FBGs are written using the phase mask ±1 order interference, and have a period of 1.35 μm, which responds to the second-order reflective central wavelength at 1946.4 nm. Based on the magnification tuning writing technology, the tunable writing technology is also experimentally investigated. The distance between the phase mask and the fiber, between the phase mask and the tuning lens, and the focal length of the tuning lens all have an influence on the tunable characteristics. Four different FBGs tuning refiective central wavelengths located at 1958.7 nm, 1970.8 nm, 1882.5 nm and 1899.7 nm are obtained

  16. Thermal effects on light emission in Yb3+ -sensitized rare-earth doped optical glasses

    International Nuclear Information System (INIS)

    Gouveia, E.A.; Araujo, M.T. de; Gouveia-Neto, A.S.

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb 3+ -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb 3+ -codoped Ga 2 S 3 :La 2 O 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La 2 O 3 chalcogenide and fluoroindate glasses codoped with Pr 3+ /Yb 3+ , excited off-resonance at 1.064μm. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends upon the phonon occupation number in the host matrices, has proven to agree very well with the experimental data. As beneficial applications of the thermal enhancement, a temperature tunable amplifier and a fiber laser with improved power performance are presented. (author)

  17. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  18. Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride for high-performance dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Yue, Jingyi; Xiao, Yaoming; Li, Yanping; Han, Gaoyi

    2017-01-01

    Graphical abstract: Multifunctional SnO 2 compact bilayer respectively modified by YbF 3 :Eu 3+ (SYEu) and YbF 3 :Er 3+ (SYEr) demonstrates three functions: 1) reducing the recombination rate of electron-hole pairs, 2) improving the utilization of sunlight, and 3) enhancing the long-term stability of the photovoltaic device. Display Omitted -- Highlights: •Multifunctional SYEu/SYEr compact bilayer is designed and fabricated. •The compact bilayer exhibits a reduced electron recombination rate. •The compact bilayer shows enhanced UV and IR light response via light-conversions. •The double layer has no significant influence on arising quenching effect. -- Abstract: Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride (SYEu/SYEr) is designed and prepared by a convenient and low-cost spin-coating approach for dye-sensitized solar cell. The most important three functions of the compact bilayer are reducing the recombination rate of electrons as a barrier layer, enlarging the utilization of sunlight as a luminescence material both with down- and up- conversions, and enhancing the long-term stability of the device as a defender of the dye. Besides, the construction of double layer with down- and up- conversion functions has no significant influence on giving rise to quenching effect. Furthermore, these findings offer potential applications for photovoltaic device with a wide range response of sunlight via the variation in rare-earth species and cell structures.

  19. A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser

    International Nuclear Information System (INIS)

    Feng, T; Yan, F P; Li, Q; Peng, W J; Tan, S Y; Feng, S C; Wen, X D; Liu, P

    2013-01-01

    We report the configuration and operation of a wavelength-tunable single frequency and single polarization erbium-doped fiber laser (EDFL) with a stable and high optical signal to noise ratio (OSNR) laser output. A narrow-band fiber Bragg grating (NBFBG), a FBG-based Fabry–Perot (FP) filter, a polarization controller (PC) and an unpumped erbium-doped fiber (EDF) as a saturable absorber (SA) are employed to realize stable single frequency lasing operation. An all-fiber polarizer (AFP) is introduced to suppress mode hopping and ensure the single polarization mode operation. By adjusting the length of the NBFBG using a stress adjustment module (SAM), four stable single frequency and single polarization laser outputs at wavelengths of 1544.946, 1545.038, 1545.118 and 1545.182 nm are obtained. At room temperature, performance with an OSNR of larger than 60 dB, power fluctuation of less than 0.04 dB, wavelength variation of less than 0.01 nm for about 5 h measurement, and degree of polarization (DOP) of close to 100% has been experimentally demonstrated for the fiber laser operating at these four wavelengths. (paper)

  20. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    Science.gov (United States)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  1. Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses

    International Nuclear Information System (INIS)

    Qiao Yanbo; Wen Lei; Wu Botao; Ren Jinjun; Chen Danping; Qiu Jianrong

    2008-01-01

    Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm 2 , respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers

  2. Ytterbium triflate as a new catalyst on the curing of epoxy-isocyanate based thermosets

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marjorie; Fernandez-Francos, Xavier [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain); Morancho, Josep M. [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Serra, Angels [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain); Ramis, Xavier, E-mail: ramis@mmt.upc.es [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Ytterbium triflate is an active catalyst for diepoxides/diisocyanate formulations. Black-Right-Pointing-Pointer Ytterbium triflate promotes the formation of oxazolidone, isocyanurate, urethane and allophanate groups and the polyetherification of epoxides. Black-Right-Pointing-Pointer Diepoxides/diisocyanate formulations catalyzed by ytterbium triflate show higher pot-life than equivalent formulations catalyzed by benzyldimethylamine. - Abstract: Networks containing oxazolidone, isocyanurate, urethane, allophanate and ether groups were prepared by copolymerization of mixtures of diglycidylether of bisphenol A and toluene-2,4-diisocyanate in presence of ytterbium triflate. It has been demonstrated that ytterbium triflate promotes six elemental reactions that coexist during curing and yield the aforementioned groups. Changes during curing, fraction of different groups present in the network and final properties of the cured materials were investigated by thermal analysis and infrared spectroscopy. The influence of the molar ratio of isocyanate to epoxide groups on the properties and curing has been studied. The curing kinetics were analyzed by means of an integral isoconversional non-isothermal procedure. The results obtained were compared with those obtained by using a common catalyst such as the benzyldimethylamine. The structure and the properties of the resulting thermosets are controlled by the initial composition of the formulation and the catalyst used.

  3. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    Science.gov (United States)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  4. PULSION registered HP: Tunable, High Productivity Plasma Doping

    International Nuclear Information System (INIS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism--deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  5. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  7. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    Science.gov (United States)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  8. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  9. Tunable photoluminescence and magnetic properties of Dy(3+) and Eu(3+) doped GdVO4 multifunctional phosphors.

    Science.gov (United States)

    Liu, Yanxia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2015-10-28

    A series of Dy(3+) or/and Eu(3+) doped GdVO4 phosphors were successfully prepared by a simple hydrothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometry (EDS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the as-prepared samples are pure tetragonal phase GdVO4, taking on nanoparticles with an average size of 45 nm. Under ultraviolet (UV) light excitation, the individual Dy(3+) or Eu(3+) ion activated GdVO4 phosphors exhibit excellent emission properties in their respective regions. The mechanism of energy transfer from the VO4(3-) group and the charge transfer band (CTB) to Dy(3+) and Eu(3+) ions is proposed. Color-tunable emissions in GdVO4:Dy(3+),Eu(3+) phosphors are realized through adopting different excitation wavelengths or adjusting the appropriate concentration of Dy(3+) and Eu(3+) when excited by a single excitation wavelength. In addition, the as-prepared samples show paramagnetic properties at room temperature. This kind of multifunctional color-tunable phosphor has great potential applications in the fields of photoelectronic devices and biomedical sciences.

  10. Resonance ionization mass spectrometry using tunable diode lasers

    International Nuclear Information System (INIS)

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1990-01-01

    Tunable semiconductor diode lasers will find many important applications in atomic spectroscopy. They exhibit the desirable attributes of lasers: narrow bandwidth, tunability, and spatial coherence. At the same time, they possess few of the disadvantages of other tunable lasers. They require no alignment, are simple to operate, and are inexpensive. Practical laser spectroscopic instruments can be envisioned. The authors have applied diode lasers to resonance ionization mass spectrometry (RIMS) of some of the lanthanide elements. Sub-Doppler resolution spectra have been recorded and have been used for atomic hyperfine structure analysis. Isotopically-selective ionization has been accomplished, even in cases where photons from a broadband dye laser are part of the overall ionization process and where the isotopic spectral shift is very small. A convenient RIMS instrument for isotope ratio measurements that employs only diode lasers, along with electric field ionization, should be possible

  11. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  12. Tunable negative index metamaterial using yttrium iron garnet

    International Nuclear Information System (INIS)

    He, Yongxue; He, Peng; Dae Yoon, Soack; Parimi, P.V.; Rachford, F.J.; Harris, V.G.; Vittoria, C.

    2007-01-01

    A magnetic field tunable, broadband, low-loss, negative refractive index metamaterial is fabricated using yttrium iron garnet (YIG) and a periodic array of copper wires. The tunability is demonstrated from 18 to 23 GHz under an applied magnetic field with a figure of merit of 4.2 GHz/kOe. The tuning bandwidth is measured to be 5 GHz compared to 0.9 GHz for fixed field. We measure a minimum insertion loss of 4 dB (or 5.7 dB/cm) at 22.3 GHz. The measured negative refractive index bandwidth is 0.9 GHz compared to 0.5 GHz calculated by the transfer function matrix theory and 1 GHz calculated by finite element simulation

  13. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2011-01-01

    We investigate the effect of temperature gradients in high-power Yb-doped fiber amplifiers by a numerical beam propagation model, which takes thermal effects into account in a self-consistent way. The thermally induced change in the refractive index of the fiber leads to a thermal lensing effect...

  14. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  15. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  16. Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3

    Directory of Open Access Journals (Sweden)

    K. X. Jin

    2012-12-01

    Full Text Available We report on the tunable photovoltaic effect of self-doped single-crystal SrTiO3 (STO, a prototypical perovskite-structured complex oxide, and evaluate its performance in Schottky junction solar cells. The photovaltaic characteristics of vacuum-reduced STO single crystals are dictated by a thin surface layer with electrons donated by oxygen vacancies. Under UV illumination, a photovoltage of 1.1 V is observed in the as-received STO single crystal, while the sample reduced at 750 °C presents the highest incident photon to carrier conversion efficiency. Furthermore, in the STO/Pt Schottky junction, a power conversion efficiency of 0.88% was achieved under standard AM 1.5 illumination at room temperature. This work establishes STO as a high-mobility photovoltaic semiconductor with potential of integration in self-powered oxide electronics.

  17. Tunable Resonant-Cavity-Enhanced Photodetector with Double High-Index-Contrast Grating Mirrors

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Yvind, Kresten; Chung, Il-Sug

    2013-01-01

    In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists....... Furthermore, the fact that it can be fabricated on a silicon platform offers us a possibility of integration with electronics.......In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists...... of a top InP HCG mirror, a p-i-n photodiode embedding multiple quantum wells, and a Si HCG mirror formed in the Si layer of a silicon-on-insulator wafer. The detection wavelength can be changed by moving the top InP HCG mirror suspended in the air. High reflectivity and small penetration length of HCGs...

  18. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal.

    Science.gov (United States)

    Wang, Yuye; Tang, Longhuang; Xu, Degang; Yan, Chao; He, Yixin; Shi, Jia; Yan, Dexian; Liu, Hongxiang; Nie, Meitong; Feng, Jiachen; Yao, Jianquan

    2017-04-17

    A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

  19. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    Science.gov (United States)

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  20. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  1. Ultrabroadband terahertz characterization of highly doped ZnO and ITO

    DEFF Research Database (Denmark)

    Wang, Tianwu; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2015-01-01

    The broadband complex conductivities of transparent conducting oxides (TCO), namely, aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO) and tin-doped indium oxide (ITO), were investigated by using THz-TDS from 0.5 to 18 THz. The complex conductivities were accurately calculated using...

  2. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  3. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  4. Tunable multicolor and white-light upconversion luminescence in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 micro-crystals.

    Science.gov (United States)

    Lin, Hao; Xu, Dekang; Teng, Dongdong; Yang, Shenghong; Zhang, Yueli

    2015-09-01

    NaYF4 micro-crystals with various concentrations of Yb(3+) /Tm(3+) /Ho(3+) were prepared successfully via a simple and reproducible hydrothermal route using EDTA as the chelating agent. Their phase structure and surface morphology were studied using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns revealed that all the samples were pure hexagonal phase NaYF4. SEM images showed that Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 were hexagonal micro-prisms. Upconversion photoluminescence spectra of Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 micro-crystals with various dopant concentrations under 980 nm excitation with a 665 mW pump power were studied. Tunable multicolor (purple, purplish blue, yellowish green, green) and white light were achieved by simply adjusting the Ho(3+) concentration in 20%Yb(3+)/1%Tm(3+)/xHo(3+) tri-doped NaYF4 micro-crystals. Furthermore, white-light emissions could be obtained using different pump powers in 20%Yb(3+)/1%Tm(3+)/1%Ho(3+) tri-doped NaYF4 micro-crystals at 980 nm excitation. The pump power-dependent intensity relationship was studied and relevant energy transfer processes were discussed in detail. The results suggest that Yb(3+)/Tm(3+) Ho(3+) tri-doped NaYF4 micro-crystals have potential applications in optoelectronic devices such as photovoltaic, plasma display panel and white-light-emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Science.gov (United States)

    Barho, Franziska B.; Gonzalez-Posada, Fernando; Milla, Maria-Jose; Bomers, Mario; Cerutti, Laurent; Tournié, Eric; Taliercio, Thierry

    2017-11-01

    Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA) spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR) with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  6. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin

    Directory of Open Access Journals (Sweden)

    Barho Franziska B.

    2017-11-01

    Full Text Available Tailored plasmonic nanoantennas are needed for diverse applications, among those sensing. Surface-enhanced infrared absorption (SEIRA spectroscopy using adapted nanoantenna substrates is an efficient technique for the selective detection of molecules by their vibrational spectra, even in small quantity. Highly doped semiconductors have been proposed as innovative materials for plasmonics, especially for more flexibility concerning the targeted spectral range. Here, we report on rectangular-shaped, highly Si-doped InAsSb nanoantennas sustaining polarization switchable longitudinal and transverse plasmonic resonances in the mid-infrared. For small array periodicities, the highest reflectance intensity is obtained. Large periodicities can be used to combine localized surface plasmon resonances (SPR with array resonances, as shown in electromagnetic calculations. The nanoantenna arrays can be efficiently used for broadband SEIRA spectroscopy, exploiting the spectral overlap between the large longitudinal or transverse plasmonic resonances and narrow infrared active absorption features of an analyte molecule. We demonstrate an increase of the vibrational line intensity up to a factor of 5.7 of infrared-active absorption features of vanillin in the fingerprint spectral region, yielding enhancement factors of three to four orders of magnitude. Moreover, an optimized readout for SPR sensing is proposed based on slightly overlapping longitudinal and transverse localized SPR.

  7. Short-wavelength multiline erbium-doped fiber ring laser by a broadband long-period fiber grating inscribed in a taper transition

    International Nuclear Information System (INIS)

    Anzueto-Sánchez, G; Martínez-Rios, A

    2014-01-01

    A stable multiwavelength all-fiber erbium-doped fiber ring laser (EDFRL) based on a broadband long-period fiber grating (LPFG) inscribed in a fiber taper transition is presented. The LPFG’s characteristics were engineered to provide a higher loss at the natural lasing wavelength of the laser cavity. The LPFG inscribed on a taper transition provided a depth greater than 25 dB, and posterior chemical etching provided a broad notch band to inhibit laser generation on the long-wavelength side of the EDF gain. Up to four simultaneous laser wavelengths are generated in the range of 1530–1535 nm. (paper)

  8. Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap

    Science.gov (United States)

    Cardella, Davide; Celli, Paolo; Gonella, Stefano

    2016-08-01

    In this work, we propose and test a strategy for tunable, broadband wave attenuation in electromechanical waveguides with shunted piezoelectric inclusions. Our strategy is built upon the vast pre-existing literature on vibration attenuation and bandgap generation in structures featuring periodic arrays of piezo patches, but distinguishes itself for several key features. First, we demystify the idea that periodicity is a requirement for wave attenuation and bandgap formation. We further embrace the idea of ‘organized disorder’ by tuning the circuits as to resonate at distinct neighboring frequencies. In doing so, we create a tunable ‘rainbow trap’ (Tsakmakidis et al 2007 Nature 450 397-401) capable of attenuating waves with broadband characteristics, by distilling (sequentially) seven frequencies from a traveling wavepacket. Finally, we devote considerable attention to the implications in terms of packet distortion of the spectral manipulation introduced by shunting. This work is also meant to serve as a didactic tool for those approaching the field of shunted piezoelectrics, and attempts to provide a different perspective, with abundant details, on how to successfully design an experimental setup involving resistive-inductive shunts.

  9. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  10. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  11. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  12. Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure

    Science.gov (United States)

    Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng

    2018-03-01

    Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.

  13. The influence of ytterbium doping on the optical properties of tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jaglarz, Janusz; Burtan, Bozena [Institute of Physics, Cracow University of Technology, ul. Podchorazych 1, 30-084 Cracow (Poland); Reben, Manuela; Wasylak, Jan [Faculty of Materials Science and Ceramics, AGH - University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow (Poland); Cisowski, Jan [Institute of Physics, Cracow University of Technology, ul. Podchorazych 1, 30-084 Cracow (Poland); Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowskiej 34, 41-819 Zabrze (Poland); Jarzabek, Bozena [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Sklodowskiej 34, 41-819 Zabrze (Poland)

    2011-09-15

    The goal of this work was to investigate the influence of rare earth ion Yb{sup 3+} doping on the thermal and optical properties of tellurite glass (TG) of the TeO{sub 2}-ZnO-PbO-La{sub 2}O{sub 3} system. The reflectance, transmittance and ellipsometric measurements have been done. Decreasing of the refractive index of TG with the Yb{sup 3+} ion doping has been concluded. For determination of the refractive index variation in the bulk, the small angle light scatter (SALS) measurements have been carried out. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  15. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors

    Science.gov (United States)

    Liu, Dan; Zeng, Chao; Qu, Deyu; Tang, Haolin; Li, Yu; Su, Bao-Lian; Qu, Deyang

    2016-07-01

    Nitrogen-doped ordered mesoporous carbons (OMCs) have been synthesized via aqueous cooperative assembly route in the presence of basic amino acids as either polymerization catalysts or nitrogen dopants. This method allows the large-scale production of nitrogen-doped OMCs with tunable composition, structure and morphology while maintaining highly ordered mesostructures. For instances, the nitrogen content can be varied from ∼1 wt% to ∼6.3 wt% and the mesophase can be either 3-D body-centered cubic or 2-D hexagonal. The specific surface area for typical OMCs is around 600 m2 g-1, and further KOH activation can significantly enhance the surface area to 1866 m2 g-1 without destroying the ordered mesostructures. Benefiting from hierarchically ordered porous structure, nitrogen-doping effect and large-scale production availability, the synthesized OMCs show a great potential towards supercapacitor application. When measured in a symmetrical two-electrode configuration with an areal mass loading of ∼3 mg cm-2, the activated OMC exhibits high capacitance (186 F g-1 at 0.25 A g-1) and good rate capability (75% capacity retention at 20 A g-1) in ionic liquid electrolyte. Even as the mass loading is up to ∼12 mg cm-2, the OMC electrode still yields a specific capacitance of 126 F g-1 at 20 A g-1.

  16. Etherification of Ferrocenyl Alcohol by Highly-efficient Ytterbium Triflate%Etherification of Ferrocenyl Alcohol by Highly-efficient Ytterbium Triflate

    Institute of Scientific and Technical Information of China (English)

    Jiang, Ran; Shen, Yechen; Zhang, Ying; Xu, Xiaoping; Shao, Jinjun; Ji, Shunjun

    2011-01-01

    Nucleophilic substitution of ferrocenyl alcohols with various aliphatic alcohols in the presence of a catalytic amount of ytterbium triflate [Yb(OTf)3] was studied. It was found the unsymmetrical ferrocenyl ethers could be easily obtained in excellent yields when the reactions were performed in primary and secondary alcohols. However, in other organic non-alcoholic solvents such as acetonitrile, the formation of symmetrical ferrocenyl ethers rather than unsymmetrical ones was observed.

  17. Broadband Electric-Field Sensor Array Technology

    Science.gov (United States)

    2012-08-05

    output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into

  18. Ti:Sapphire waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Pashinin, P.P.; Grivas, C.; Laversenne, L.; Wilkinson, J.S.; Eason, R.W.; Shepherd, D.P.

    2007-01-01

    Titanium-doped sapphire is one of the most prominent laser materials and is appreciated for its excellent heat conductivity and broadband gain spectrum, allowing for a wide wavelength tunability and generation of ultrashort pulses. As one of the hardest materials, it can also serve as a model system

  19. Multicolor Tunable Luminescence Based on Tb3+/Eu3+ Doping through a Facile Hydrothermal Route.

    Science.gov (United States)

    Wang, Chao; Zhou, Ting; Jiang, Jing; Geng, Huiyuan; Ning, Zhanglei; Lai, Xin; Bi, Jian; Gao, Daojiang

    2017-08-09

    Ln 3+ -doped fluoride is a far efficient material for realizing multicolor emission, which plays an important part in full-color displays, biolabeling, and MRI. However, studies on the multicolor tuning properties of Ln 3+ -doped fluoride are mainly concentrated on a complicated process using three or more dopants, and the principle of energy transfer mechanism is still unclear. Herein, multicolor tunable emission is successfully obtained only by codoping with Tb 3+ and Eu 3+ ions in β-NaGdF 4 submicrocrystals via a facile hydrothermal route. Our work reveals that various emission colors can be obtained and tuned from red, orange-red, pink, and blue-green to green under single excitation energy via codoping Tb 3+ and Eu 3+ with rationally changed Eu 3+ /Tb 3+ molar ratio due to the energy transfer between Tb 3+ and Eu 3+ ions in the β-NaGdF 4 host matrix. Meanwhile, the energy transfer mechanism in β-NaGdF 4 : x Eu 3+ /y Tb 3+ (x + y = 5 mol %) submicrocrystals is investigated. Our results evidence the potential of the dopants' distribution density as an effective way for analyzing energy transfer and multicolor-controlled mechanism in other rare earth fluoride luminescence materials. Discussions on the multicolor luminescence under a certain dopant concentration based on single host and wavelength excitation are essential toward the goal of the practical applications in the field of light display systems and optoelectronic devices.

  20. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO2 lasers

    International Nuclear Information System (INIS)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyat'ev, V B

    2014-01-01

    Processes of cutting stainless steel by ytterbium fibre and CO 2 lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO 2 laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO 2 laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  1. Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films

    International Nuclear Information System (INIS)

    Karakuscu, Aylin; Guider, Romain; Pavesi, Lorenzo; Soraru, Gian Domenico

    2011-01-01

    Strong broad band tunable visible emission of SiBOC ceramic films is reported and the results are compared with one of boron free SiOC ceramic films. The insertion of boron into the SiOC network is verified by Fourier-Transform Infrared Spectroscopy. Optical properties are studied by photoluminescence and ultraviolet-visible spectroscopy measurements. Boron addition causes a decrease in the emission intensity attributed to defect states and shifts the emission to the visible range at lower temperatures (800-900 o C) leading to a very broad tunable emission with high external quantum efficiency.

  2. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO{sub 2} lasers

    Energy Technology Data Exchange (ETDEWEB)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyat' ev, V B [S.A. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  3. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    Science.gov (United States)

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  4. Absorption Spectra Of Rbcl:Yb Rbbr:Yb And Rbi:Yb Crystals ...

    African Journals Online (AJOL)

    Single crystals of rubidium chloride, bromide and iodide were doped with substitutional divalent ytterbium, Yb ions, by heating them in ytterbium atmosphere. The absorption spectra of the Yb doped crystals were measured at room and liquid nitrogen temperatures. The spectra were found to consist of intense broad ...

  5. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  6. Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm

    Science.gov (United States)

    Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.

    2018-05-01

    Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.

  7. Eu{sup 3+}/Tb{sup 3+} doped cubic BaGdF{sub 5} multifunctional nanophosphors: Multicolor tunable luminescence, energy transfer and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Honglan; Liu, Guixia, E-mail: liuguixia22@163.com; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng

    2017-06-15

    A series of BaGdF{sub 5}:Eu{sup 3+}/Tb{sup 3+} orange-green-yellow-white emitting nanophosphors (NPs) were successfully synthesized via hydrothermal method without assistance of any surfactant, catalyst, or template. The nanocrystals are in sphere-like morphology with an average size of approximately 46 nm. The quenching concentrations of Eu{sup 3+} and Tb{sup 3+} single doped BaGdF{sub 5} phosphors are 5.5% and 15%, respectively. The tunable color tone can be obtained in Eu{sup 3+} and Tb{sup 3+} co-doped BaGdF{sub 5} phosphors, the strong orange-white and green-yellow emissions can be seen in BaGdF{sub 5}:5.5%Eu{sup 3+}, y%Tb{sup 3+} and BaGdF{sub 5}:3.5%Tb{sup 3+}, x%Eu{sup 3+} phosphors, especially. More significantly, we realize the more standard white emission with a CIE chromaticity diagram point at (0.317, 0.321) and a lower correlated color temperature of 6979 K in the BaGdF{sub 5}: 5.5%Eu{sup 3+}, 4.5%Tb{sup 3+} sample. In addition, the energy transfer phenomenon from Tb{sup 3+} to Eu{sup 3+} ions is clearly observed in Tb{sup 3+}, Eu{sup 3+} co-doped BaGdF{sub 5} phosphors and the energy transfer efficiency can reach a maximum of 75%. Moreover, the as-prepared samples exhibit paramagnetic properties at room temperature. This type of multifunctional multicolor emitting nanophosphor has promising applications in the fields of full-color displays, biomedical science, MRI, and so on. - Graphical abstract: The cubic phase BaGdF{sub 5}:Eu{sup 3+}/Tb{sup 3+} sphere-like nanophosphors were prepared. Energy transfer mechanism, color-tunable emissions and magnetic properties of BaGdF{sub 5}:Eu{sup 3+}/Tb{sup 3+} have been studied, which could have promising applications in the fields of full-color displays, MRI and biomedical science, and so on.

  8. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed

    2017-05-23

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  9. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed; Kirmani, Ahmad R.; Barlow, Stephen; Marder, Seth R.; Amassian, Aram

    2017-01-01

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  10. Broadband working-waveband-tunable polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Lin, Yu; Wang, Lei; Gao, Jun; Lu, Yichao; Jiang, Suhua; Zeng, Wei

    2017-03-01

    We experimentally and theoretically demonstrate an ultrathin, broadband, and highly efficient metamaterial-based polarization converter with a metasurface/insulator/metal (MIM) configuration. In such a system, the resonance undergoes a transition from a vertical Fabry-Pérot type to a transverse type as the spacer thickness decreases. By changing the spacer thickness from 1 to 15 mm, the working waveband of this device could be tuned from 10.9-12.9 to 6-8 GHz without compromising the polarization conversion efficiency. Equivalent circuit theory and the transfer matrix method are used for demonstrating the physical mechanism of our device.

  11. Erbium–ytterbium fibre laser emitting more than 13 W of power in ...

    Indian Academy of Sciences (India)

    2014-01-05

    ytterbium fibre laser emitting more than 13W of ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015.

  12. From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption

    Science.gov (United States)

    Wang, Yana; Zhou, Zhili; Chen, Mingji; Huang, Yixing; Wang, Changxian; Song, Wei-Li

    2018-05-01

    Since achievement in electromagnetic (EM) technology dramatically promotes the critical requirement in developing advanced EM response materials, which are required to hold various advantageous features in light weight, small thickness, strong reflection loss and broadband absorption, the most important requirements, i.e. strong reflection loss and broadband absorption, are still highly pursued because of the intrinsic shortage in conventional EM absorbers. For addressing such critical problems, a unique three-dimensional nitrogen doped carbon monolith was demonstrated to understand the effects of the nitrogen doping on the dielectric and microwave absorption performance. The chemical components of the nitrogen doped carbon monoliths have been quantitatively determined for fully understanding the effects of nanoscale structures on the macroscopic composites. A modified Cole-Cole plot is plotted for guiding the chemical doping and material process, aiming to realizing the best matching conditions. The results have promised a universal route for achieving advanced materials with strong and broadband EM absorption.

  13. Two dimensional tunable photonic crystals and n doped semiconductor materials

    International Nuclear Information System (INIS)

    Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.

    2015-01-01

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications

  14. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce"3"+ doping

    International Nuclear Information System (INIS)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Lu, Wei; Hao, Jianhua

    2015-01-01

    A simple strategy of Ce"3"+ doping is proposed to realize multicolor tuning and predominant red emission in BaLnF_5:Yb"3"+/Ho"3"+ (Ln"3"+ = Gd"3"+, Y"3"+, Yb"3"+) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb"3"+/Ho"3"+ composition by doping Ce"3"+, providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce"3"+-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce"3"+, arising from the two largely promoted cross-relaxation (CR) processes between Ce"3"+ and Ho"3"+. UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba"2"+, Gd"3"+, and Ce"3"+ in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce"3"+-doped UCNPs very useful for widespread applications in optical components and bioimaging. (paper)

  15. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce(3+) doping.

    Science.gov (United States)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Lu, Wei; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Hao, Jianhua

    2015-09-25

    A simple strategy of Ce(3+) doping is proposed to realize multicolor tuning and predominant red emission in BaLnF5:Yb(3+)/Ho(3+) (Ln(3+) = Gd(3+), Y(3+), Yb(3+)) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb(3+)/Ho(3+) composition by doping Ce(3+), providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce(3+)-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce(3+), arising from the two largely promoted cross-relaxation (CR) processes between Ce(3+) and Ho(3+). UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba(2+), Gd(3+), and Ce(3+) in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce(3+)-doped UCNPs very useful for widespread applications in optical components and bioimaging.

  16. Henry's Law vaporization studies and thermodynamics of einsteinium-253 metal dissolved in ytterbium

    International Nuclear Information System (INIS)

    Kleinschmidt, P.D.; Ward, J.W.; Matlack, G.M.; Haire, R.G.

    1984-01-01

    The cohesive energy of metallic einsteinium determines whether einsteinium is a trivalent or divalent metal. The enthalpy of sublimation, a measure of the cohesive energy, is calculated from the partial pressures of einsteinium over an alloy. The partial pressure of 253 Es has been measured over the range 470--870 K, using combined target and mass spectrometric Knudsen effusion techniques. An alloy was prepared with einsteinium dissolved in a ytterbium solvent to produce a very dilute solution. Partial pressure measurements on the alloy were amenable to the experimental technique and a data analysis using a Henry's law treatment of the data. Vapor pressure data are combined with an estimated crystal entropy S 0 298 and ΔC 0 /sub p/ for ytterbium, to produce enthalpy, entropy, and free energy functions from 298 to 1300 K. The vapor pressure of einsteinium in a dilute einsteinium--ytterbium alloy is described by the equation log P(atm) = -(6815 +- 216)/T+2.576 +- 0.337, from which we calculate for the enthalpy of sublimation of pure einsteinium ΔH 0 298 (second law) = 31.76 kcal/mol. The value of the enthalpy of sublimation is consistent with the conclusion that Es is a divalent metal

  17. Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors

    Science.gov (United States)

    Thomas, Kukku; Alexander, Dinu; Sisira, S.; Gopi, Subash; Biju, P. R.; Unnikrishnan, N. V.; Joseph, Cyriac

    2018-06-01

    Tb3+/Eu3+ co-doped lanthanum molybdate nanophosphors were synthesized by conventional co-precipitation method. The Powder X-ray diffractogram revealed the formation of highly crystalline tetragonal nanocrystals with space group I41/a and the detailed analysis of the small variation of lattice parameters with Tb/Eu co-doping on the host lattice were carried out based on the ionic radii of the dopants. The FTIR spectra is employed to identify the fundamental vibrational modes in La2-x-y (MoO4)3:xTb, yEu nanocrystals. The formation of nanocrystals by oriented attachment was recognized from the HR TEM images and the d-spacing calculated was in accordance with that corresponding to highest intensity diffraction peak in the XRD patterns. The constituent elements present in the samples were identified with the aid of EDAX and elemental mapping analysis. The broad Mo6+- O2- CTB and the sharp excitation peaks of Tb and Eu identified from the UV-Vis absorption spectra facilitates the suitability of exciting the phosphors effectively over NUV and visible region of the spectra. The possibility of energy transfer from host to Tb3+/Eu3+ ions and from Tb3+ to Eu3+ ions were confirmed from the PL excitation spectra monitoring 5D0→7F2 transition of Eu3+ ions around 615 nm. The correlated analysis of PL emission spectra, life time measurements and CIE diagram, upon different excitation channels elucidate the excellent luminescent properties of La2-x-y (MoO4)3:xTb, yEu nanophosphors with tunable emission colours in a wide range varying from yellow green region to reddish orange region and the efficient energy transfer from Tb3+ to Eu3+ ions in lanthanum molybdate host lattice. The Tb→Eu energy transfer efficiency and probability were calculated from the decay measurements and the values were found to be satisfactory for exploiting the prepared nanophosphors for the development of multifunctional luminescent nanophosphors.

  18. Synthesis and characterization of Gd-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Honghu; Malik, Vikash; Mallapragada, Surya; Akinc, Mufit

    2017-01-01

    Synthesis of magnetite nanoparticles has attracted increasing interest due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. Here we investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizes under the conditions tested (0–10 at% Gd"3"+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. Our results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd"3"+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe_(_3_−_x_)Gd_xO_4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method. - Highlights: • Gd-doped magnetite nanoparticles are synthesized via aqueous co-precipitation method under mild conditions. • Gd doping affects growth of magnetite nanoparticles leading to tunable particle size. • Gd-doped magnetite nanoparticles exhibit ferrimagnetic properties.

  19. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Xiao, Sanshui

    2017-01-01

    Tunable terahertz absorbers composed of periodically cross-shaped graphene arrays with the ability to achieve nearunity absorbance are proposed and studied. Our results demonstrate that the bandwidth of absorption rate above 90% can reach up to 1.13 terahertz by use of a single layer of cross-sha...

  20. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    Science.gov (United States)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-06-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  1. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    Science.gov (United States)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-03-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  2. Investigation of diode-laser pumped thulium-doped fluoride lasers

    International Nuclear Information System (INIS)

    Matos, Paulo Sergio Fabris de

    2006-01-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  3. Ytterbium and erbium derivatives of 2-methoxyethanol and their use in the thin film deposition of Er-doped Yb.sub.3./sub.Al.sub.5./sub.O.sub.12./sub..

    Czech Academy of Sciences Publication Activity Database

    Rubešová, E.; Hlásek, T.; Jakeš, V.; Matějka, P.; Oswald, Jiří; Holzhauser, P.

    2014-01-01

    Roč. 70, č. 1 (2014), s. 142-148 ISSN 0928-0707 Institutional support: RVO:68378271 Keywords : ytterbium-aluminium garnets * sol-gel growth * thin films * IR spectroscopy * optical materials * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.532, year: 2014

  4. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.

    Science.gov (United States)

    Hazarika, Abhijit; Pandey, Anshu; Sarma, D D

    2014-07-03

    Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

  5. Tunable emission in Ln3+ (Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor synthesized by combustion method

    Science.gov (United States)

    Kolte, M. M.; Pawade, V. B.; Bhattacharya, A. B.; Dhoble, S. J.

    2018-05-01

    Ln3+ (Ln = Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor has been synthesized by Combustion method (CS) at 550° C successfully. Ln3+ (Ln = Ce3+, Dy3+, Tb3+) ions when doped in KNa3Al4Si4O16 host lattice, it shows blue and green emission band under the near Ultraviolet (NUV) excitation wavelength. The Photoluminescence excitation (PLE) and emission spectra are observed due to f-f and d-f transition of rare earth ions. Also, an effective energy transfer (ET) study from Ce3+ → Dy3+ and Ce3+ → Tb3+ ions has been studied and confirmed on the basis of Dexter-Foster theory. Further synthesized phosphor is well characterized by XRD, SEM, TEM and decay time measurement. However, the analysis of crystallite size, lattice strain has been studied by using theoretical as well as experimental techniques. Hence, the observed tunable emission in Ln3+ doped KNa3Al4Si4O16 phosphor may be applicable for solid state lighting technology.

  6. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, P.T.

    1991-11-01

    The divalent lanthanide complex, (Me{sub 5}C{sub 5}){sub 2}Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me{sub 5}C{sub 5}){sub 2}YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}, displays similar chemistry to (Me{sub 5}C{sub 5}){sub 2}YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}. Copper and silver halide salts react with (Me{sub 5}C{sub 5}){sub 2}V to produce the trivalent halide derivatives, (Me{sub 5}C{sub 5}){sub 2}VX (X + F, Cl, Br, I). The chloride complex, (Me{sub 5}C{sub 5}){sub 2}VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me{sub 5}C{sub 5}){sub 2}V producing the vanadium-oxo complex, (Me{sub 5}Ce{sub 5}){sub 2}VO. The trivalent titanium species, (Me{sub 5}C{sub 5}){sub 2}TiX (X = Cl, Br, Me, BH{sub 4}), form bimetallic coordination complexes with (Me{sub 5}C{sub 5}){sub 2}Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  7. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass for waveguide amplifier application

    International Nuclear Information System (INIS)

    Zhao Shilong; Wang Xiuli; Fang Dawei; Xu Shiqing; Hu Lili

    2006-01-01

    Tungsten-tellurite glass with molar composition of 60TeO 2 -30WO 3 -10Na 2 O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er 3+ -doped tungsten-tellurite glass have been discussed. The results show that the introduction of WO 3 increases significantly the glass transition temperature and the maximum phonon energy. Er 3+ -doped tungsten-tellurite glass exhibits high glass transition temperature (377 deg. C), large emission cross-section (0.91 x 10 -20 cm 2 ) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er 3+ -doped waveguide amplifier application

  8. NIR to visible upconversion in Er3+/Yb3+ co-doped CaYAl3O7 phosphor obtained by solution combustion process

    International Nuclear Information System (INIS)

    Singh, Vijay; Rai, Vineet Kumar; Al-Shamery, Katharina; Nordmann, Joerg; Haase, Markus

    2011-01-01

    Using the combustion synthesis, CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared at low temperatures (550 o C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er 3+ doped CaYAl 3 O 7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl 3 O 7 :Er 3+ phosphor has been studied and the process involved is discussed. - Highlights: → The green emitting up-conversion CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared by easy combustion method. → The combustion method is a simple, energy saving, fast and economical viable process. → The luminescence intensity in the co-doped phosphor is enhanced by several times compared to that of the singly (Er 3+ ) doped phosphor.

  9. Gain-assisted broadband ring cavity enhanced spectroscopy

    Science.gov (United States)

    Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2017-02-01

    Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.

  10. Polymerization of methyl methacrylate by diphenylamido bis (methylcyclopentadienyl) ytterbium complex

    Institute of Scientific and Technical Information of China (English)

    WANG, Yao-Rong(王耀荣); SHEN, Qi(沈琪); MA, Jia-Le(马家乐); ZHAO, Qun(赵群)

    2000-01-01

    Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis(methyicyclopentadienyl) ytterbium complex (MeCp)2YbNPh2(THF). Tne reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the polyMMA with high molecular weights.The initiation mechanism was demonstrated by diphenylamidoterminated methyl methacrylate oligomer.

  11. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Gang, E-mail: kezhouliu@163.com; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF{sub 3} crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF{sub 3} crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF{sub 3} but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  12. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.

    Science.gov (United States)

    Liu, Xiuyun; Zhang, Bo; Fei, Benhua; Chen, Xiufang; Zhang, Junyi; Mu, Xindong

    2017-09-21

    The search for and exploitation of efficient catalytic systems for selective conversion of furfural into various high value-added chemicals remains a huge challenge for green synthesis in the chemical industry. Here, novel Pt nanoparticles supported on bamboo shoot-derived porous heteroatom doped carbon materials were designed as highly active catalysts for controlled hydrogenation of furfural in aqueous media. The porous heteroatom doped carbon supported Pt catalysts were endowed with a large surface area with a hierarchical porous structure, a high content of nitrogen and oxygen functionalities, a high dispersion of the Pt nanoparticles, good water dispersibility and reaction stability. Benefiting from these features, the novel Pt catalysts displayed a high activity and controlled tunable selectivity for furfural hydrogenation to produce furfuryl alcohol and cyclopentanone in water. The product selectivity could be easily modulated by controlling the carbonization temperature of the porous heteroatom doped carbon support and the reaction conditions (temperature and H 2 pressure). Under mild conditions (100 °C, 1 MPa H 2 ), furfuryl alcohol was obtained in water with complete conversion of the furfural and an impressive furfuryl alcohol selectivity of >99% in the presence of Pt/NC-BS-500. A higher reaction temperature, in water, favored rearrangement of the furfural (FFA) with Pt/NC-BS-800 as the catalyst, which resulted in a high cyclopentanone yield of >76% at 150 °C and 3 MPa H 2 . The surface properties and pore structure of the heteroatom doped carbon support, adjusted using the carbonization temperature, might determine the interactions between the Pt nanoparticles, carbon support and catalytic reactants in water, which in turn could have led to a good selectivity control. The effect of different reaction temperatures and reaction times on the product selectivity was also explored. Combined with exploration of the distribution of the reaction products, a

  13. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  14. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  15. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings

    Directory of Open Access Journals (Sweden)

    Erik P. Schartner

    2014-11-01

    Full Text Available We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1–0.3 °C to be recorded over the biologically relevant range of temperatures from 23–39 °C.

  16. Synthesis of samarium, europium and ytterbium acetylenides

    International Nuclear Information System (INIS)

    Bochkarev, M.N.; Fedorova, E.A.; Glushkova, N.V.; Protchenko, A.V.; Druzhkov , O.N.; Khorshev, S.Ya.

    1995-01-01

    Ethynyl complexes of samarium, europium and ytterbium were prepared by interaction of naphthalinides of metals with acetylene in tetrahydrofuran. The compounds are isolated in the form of dark-coloured pyrophore powders. Data of magnetic measurements suggest that in the course of the reaction Sm(2) is oxidized completely to Sm(3), Yb(2) transforms into Yb(3) partially, whereas europium preserves its initial bivalent state. Hydrolysis of the compounds prepared provides acetylene, ethylene, ethane and hydrogen which indicates the presence of acethylenide Ln 2 C 2 and hydride LnH groupings (Ln = Sm, Eu, Yb). 9 refs., 2 tabs

  17. Broadband Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Broadband Access. Worldwide market for broadband access $30 Billion! Over 200 million broadband subscribers worldwide! Various Competing Broadband access. Digital Subscriber line; Wireless; Optical Fiber.

  18. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers......, which allows us to extend the measurement bandwidth to 37.4 THz (1355-1630 nm) at megahertz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy, and in particular it enables us to characterize the dispersion...

  19. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Petr; Peterka, Pavel; Honzátko, Pavel; Kubeček, V.

    2017-01-01

    Roč. 14, č. 3 (2017), č. článku 035102. ISSN 1612-2011 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 ; RVO:68378271 Keywords : laser line sweeping * ytterbium * fiber lasers Subject RIV: BH - Optics, Masers, Lasers; BH - Optics, Masers, Lasers (FZU-D) OBOR OECD: Optics (including laser optics and quantum optics); Optics (including laser optics and quantum optics) (FZU-D) Impact factor: 2.537, year: 2016

  20. Combustion synthesis and photoluminescence properties of LaAlO{sub 3} nanophosphors doped with Yb{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Dhahri, A. [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cedria, B.P. 73, Soliman 8027 (Tunisia); Horchani-Naifer, K., E-mail: karima_horchani@yahoo.com [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cedria, B.P. 73, Soliman 8027 (Tunisia); Benedetti, A. [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, F. [CIVEN – Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via Delle Industrie 5, Marghera, Venice 30175 (Italy); Ferid, M. [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cedria, B.P. 73, Soliman 8027 (Tunisia)

    2014-09-15

    Ytterbium doped lanthanum aluminate (LaAlO{sub 3}) nanophosphors have been prepared by a combustion process with glycine as a fuel. The structures of the powders were determined by X-ray diffraction (XRD), the morphology of the annealed materials was observed using scanning electron microscopy (SEM), the average crystalline grain sizes have been determined by transmission electron microscopy (TEM) and photoluminescence properties using fluorescence spectroscopy. Pure LaAlO{sub 3} phase was obtained at 800 °C heated for 4 h, with an average crystal size, as determined by TEM, of 60 nm. Emission spectra and decay times of main luminescence transitions were measured at room temperature. A strong emission is reported at 986 nm from the ({sup 2}F{sub 5/2}→{sup 2}F{sub 7/2}) transition, whose intensity depends on Yb concentration. - Highlights: • Ytterbium doped lanthanum aluminate (LaAlO{sub 3}) nanophosphors have been prepared by a combustion process with glycine as a fuel. • Powders were characterized by DRX, FTIR, TEM and fluorescence spectroscopy. • Pure LaAlO{sub 3} phase was obtained at 800 °C heated for 4 h, with an average crystal size of 60 nm. • A strong emission is reported at 986 nm from the ({sup 2}F{sub 5/2}→{sup 2}F{sub 7/2}) transition, whose intensity depends on Yb concentration.

  1. Black phosphorus: broadband nonlinear optical absorption and application

    Science.gov (United States)

    Li, Ying; He, Yanliang; Cai, Yao; Chen, Shuqing; Liu, Jun; Chen, Yu; Yuanjiang, Xiang

    2018-02-01

    Black phosphorus (BP), 2D layered material with layered dependent direct bandgap (0.3 eV (bulk), 2.0 eV (single layer)) that has gained renewed attention, has been demonstrated as an extremely appropriate optical material for broadband optical applications from infrared to mid-infrared wavebands. Herein, by coupling multi-layer BP films with microfiber, we fabricated a nonlinear optical device with long light-matter interaction distance and enhanced damage threshold. Through taking full advantage of its fine nonlinear optical absorption property, we obtained stable mode-locking (51 ps) and Q-switched mode-locking states in Yb-doped or Er-doped (403.7 fs) all-fiber lasers and the single-longitudinal-mode operation (53 kHz) in an Er-doped fiber laser with enhanced power tolerance, using the same nonlinear optical device. Our results showed that BP could be a favorable nonlinear optical material for developing BP-enabled wave-guiding photonic devices, and revealed new insight into BP for high optical power unexplored optical devices.

  2. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Laboratory of Advanced Materials, Fudan University, Shanghai 200438 (China); Chen, Qiuhang; Zhang, Wanlu; Mei, Shiliang; He, Liangjie; Zhu, Jiatao [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China); Chen, Guoping [School of Information Science and Technology, Fudan University, Shanghai 200433 (China); Guo, Ruiqian, E-mail: rqguo@fudan.edu.cn [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China)

    2015-10-01

    Highlights: • ZnSe-based QDs were formed via a microwave-assisted aqueous approach. • The stabilizer, ZnS coats and UV irradiation played a role in the PL enhancement. • Tunable white-light-emitting Mn:ZnSe QDs and Cu,Mn:ZnSe/ZnS QDs were synthesized. • The formation mechanism of Cu,Mn:ZnSe QDs was clarified. • The corresponding CIE color coordinates of different PL spectra were obtained. - Abstract: Synthesis of bright white-light emitting Mn and Cu co-doped ZnSe/ZnS core/shell quantum dots (QDs) (Cu,Mn:ZnSe/ZnS) was reported. Water-soluble ZnSe-based QDs with Mn and Cu doping were prepared using a versatile hot-injection method in aqueous solution with a microwave-assisted approach. Influence of the Se/S ratio, stabilizer, refluxing time and the concentration of Cu/Mn dopant ions on the particle size and photoluminescence (PL) were investigated. The as-prepared QDs in the different stages of growth were characterized by X-ray powder diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), UV–visible (UV–vis) spectrophotometer, and fluorescence spectrophotometer. It is found that these ZnSe-based QDs synthesized under mild conditions exhibit emission in the range of 390–585 nm. The PL quantum yield (QY) of the as-prepared water-soluble ZnSe QDs can be up to 24.3% after the UV-irradiation treatment. The band-gap emission of ZnSe is effectively restrained through Mn and Cu doping. The refluxing time influences the doping of not only Mn, but also Cu, which leads to the best refluxing time of Mn:ZnSe and the red-shift of the emission of Cu:ZnSe d-dots. Co-doping induced white-light emission (WLE) from Cu,Mn:ZnSe/ZnS core/shell QDs were obtained, which can offer the opportunity for future-generation white-light emitting diodes (LEDs)

  3. Beyond-Born-Oppenheimer effects in sub-kHz-precision photoassociation spectroscopy of ytterbium atoms

    Science.gov (United States)

    Borkowski, Mateusz; Buchachenko, Alexei A.; Ciuryło, Roman; Julienne, Paul S.; Yamada, Hirotaka; Kikuchi, Yuu; Takahashi, Kakeru; Takasu, Yosuke; Takahashi, Yoshiro

    2017-12-01

    We present high-resolution two-color photoassociation spectroscopy of Bose-Einstein condensates of ytterbium atoms. The use of narrow Raman resonances and careful examination of systematic shifts enabled us to measure 13 bound-state energies for three isotopologues of the ground-state ytterbium molecule with standard uncertainties of the order of 500 Hz. The atomic interactions are modeled using an ab initio based mass-scaled Born-Oppenheimer potential whose long-range van der Waals parameters and total WKB phase are fitted to experimental data. We find that the quality of the fit of this model, of about 112.9 kHz (rms) can be significantly improved by adding the recently calculated beyond-Born-Oppenheimer (BBO) adiabatic corrections [J. J. Lutz and J. M. Hutson, J. Mol. Spectrosc. 330, 43 (2016), 10.1016/j.jms.2016.08.007] and by partially treating the nonadiabatic effects using distance-dependent reduced masses. Our BBO interaction model represents the experimental data to within about 30.2 kHz on average, which is 3.7 times better than the "reference" Born-Oppenheimer model. We calculate the s -wave scattering lengths for bosonic isotopic pairs of ytterbium atoms with error bars over two orders of magnitude smaller than previous determinations. For example, the s -wave scattering length for 174Yb is +5.55812 (50 ) nm.

  4. Doping-controlled Coherent Electron-Phonon Coupling in Vanadium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Appavoo, Kannatassen [Vanderbilt Univ., Nashville, TN (United States) Interdisciplinary Materials Science; Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Wang, Bin [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Nag, Joyeeta [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Sfeir, Matthew Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Pantelides, Sokrates T. [Vanderbilt Univ., Nashville, TN (United States) Dept. of Physics and Astronomy; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vanderbilt Univ., Nashville, TN (United States). Dept. of Electrical Engineering and Computer Science; Haglund, Richard F. [Vanderbilt Univ., Nashville, TN (United States) Interdisciplinary Materials Science and Dept. of Physics and Astronomy

    2015-05-10

    Broadband femtosecond transient spectroscopy and density functional calculations reveal that substitutional tungsten doping of a VO2 film changes the coherent phonon response compared to the undoped film due to altered electronic and structural dynamics.

  5. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    Science.gov (United States)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  6. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Phillip Thomas [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The divalent lanthanide complex, (Me5C5)2Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me5C5)2YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me5C5)2YbCH(SiMe3)2, displays similar chemistry to (Me5C5)2YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me5C5)3YbCH(SiMe5)2. Copper and silver halide salts react with (Me5C5)2V to produce the trivalent halide derivatives, (Me5C5)2VX (X + F, Cl, Br, I). The chloride complex, (Me5C5)2VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me5C5)2V producing the vanadium-oxo complex, (Me5Ce5)2VO. The trivalent titanium species, (Me5C5)2TiX (X = Cl, Br, Me, BH4), form bimetallic coordination complexes with (Me5C5)2Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  7. Broadband photosensor with a tunable frequency range, built on the basis of nanoscale carbon structure with field localization

    Science.gov (United States)

    Yakunin, Alexander N.; Akchurin, Garif G.; Aban'shin, Nikolay P.; Gorfinkel, Boris I.

    2014-03-01

    The work is devoted to the development of a new direction in creating of broadband photo sensors which distinctive feature is the possibility of dynamic adjustment of operating frequency range. The author's results of study of red threshold control of classic photoelectric effect were the basis for the work implementation. This effect was predicted theoretically and observed experimentally during irradiation of nanoscale carbon structure of planar-edge type by stream of low-energy photons. The variation of the accelerating voltage within a small range allows you to change photoelectric threshold for carbon in a wide range - from UV to IR. This is the consequence of the localization of electrostatic field at tip of the blade planar structure and of changes in the conditions of non-equilibrium electrons tunneling from the boundary surface of the cathode into the vacuum. The generation of nonequilibrium electrons in the carbon film thickness of 20 nm has a high speed which provides high performance of photodetector. The features of the use of nanoscale carbon structure photocurrent registration as in the prethreshold regime, and in the mode of field emission existence are discussed. The results of simulation and experimental examination of photosensor samples are given. It is shown that the observed effect is a single-photon tunneling. This in combination with the possibility of highspeed dynamic tuning determines the good perspectives for creation of new devices working in the mode of select multiple operating spectral bands for the signal recording. The architecture of such devices is expected to be significantly simpler than the conventional ones, based on the use of tunable filters.

  8. Separation of thulium, ytterbium and lutetium from uranium

    International Nuclear Information System (INIS)

    Lopez, G.H.

    1987-01-01

    The behaviour at different temperatures, shaking times and hydrochloric acid concentrations on the solvent extraction system UO 2 2+ - (Tm 3+ , Yb 3+ , Lu 3+ ) - H 2 O - HCl - TBP was studied. Quantitative determinations of the elements were performed by visible spectrophotometry and X-ray fluorescence. The uranyl ion was efficiently extracted by TBP from an aqueous hydrochloric acid solution (4-7M) shaken during 10 minutes at room temperature. On these conditions the separation factors for uranium from thulium and ytterbium were found to be 3000 and from lutetium 140. (author)

  9. Ultrabroadband terahertz conductivity of highly doped ZnO and ITO

    DEFF Research Database (Denmark)

    Wang, Tianwu; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2015-01-01

    The broadband complex conductivities of transparent conducting oxides (TCO), namely aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO) and tin-doped indium oxide (ITO), were investigated by terahertz time domain spectroscopy (THz-TDS) in the frequency range from 0.5 to 18 THz using air...... to be more thickness dependent than GZO and ITO, indicating high importance of the surface states for electron dynamics in AZO. Finally, we measure the transmittance of the TCO films from 10 to 200 THz with Fourier transform infrared spectroscopy (FTIR) measurements, thus closing the gap between THz...

  10. Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires.

    Science.gov (United States)

    Zhou, Kun; Cheng, Qiang; Song, Jinlin; Lu, Lu; Jia, Zhihao; Li, Junwei

    2018-01-01

    We numerically investigate the broadband perfect infrared absorption by tuning epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances of multilayer indium tin oxide nanowires (ITO NWs). The monolayer ITO NWs array shows intensive absorption at ENZ and ENP wavelengths for p polarization, while only at the ENP wavelength for s polarization. Moreover, the ENP resonances are almost omnidirectional and the ENZ resonances are angularly dependent. Therefore, the absorption bandwidth is broader for p polarization than that for s polarization when polarized waves are incident obliquely. The ENZ resonances can be tuned by altering the doping concentration and volume filling factor of ITO NWs. However, the ENP resonances only can be tuned by changing the doping concentration of ITO NWs, and volume filling factor impacts little on the ENP resonances. Based on the strong absorption properties of each layer at their own ENP and ENZ resonances, the tuned absorption of the bilayer ITO NWs with the different doping concentrations can be broader and stronger. Furthermore, multilayer ITO NWs can achieve broadband perfect absorption by controlling the doping concentration, volume filling factor, and length of the NWs in each layer. This study has the potential to apply to applications requiring efficient absorption and energy conversion.

  11. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  12. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  13. Backward pumping kilowatt Yb3+-doped double-clad fiber laser

    Science.gov (United States)

    Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.

    2011-09-01

    A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.

  14. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    Science.gov (United States)

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).

  15. Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior.

    Science.gov (United States)

    Shrivastava, Navadeep; Khan, L U; Vargas, J M; Ospina, Carlos; Coaquira, J A Q; Zoppellaro, Giorgio; Brito, H F; Javed, Yasir; Shukla, D K; Felinto, M C F C; Sharma, Surender K

    2017-07-19

    Luminescence-tunable multicolored LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce 3+ , Gd 3+ , and Eu 3+ dopants in the LaF 3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu 2+ , corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f( 2 F 5/2 ) → 5d state (Ce 3+ ) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f 6 5d 1 (Eu 2+ ) and 5 D 0 (Eu 3+ ) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd 3+ ion sub-lattice as the bridge and finally trapping by Eu 2+/3+ , upon excitation of the Ce 3+ ion. The calculation of experimental intensity parameters (Ω 2,4 ) has been discussed and the highest emission quantum efficiency (η = 85%) of the Eu 3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu 2+ /Eu 3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.

  16. Investigation of self-frequency doubling crystals, yttrium calcium oxyborate (YCOB), doped with neodymium or ytterbium

    Science.gov (United States)

    Ye, Qing

    1999-09-01

    There is a need for low cost red, green, and blue (RGB) lasers for a number of commercial applications such as high-resolution laser printing, full color laser display. While semiconductor lasers still have both availability (green and blue) and beam quality (red) problems, nonlinear frequency conversion of diode-pumped solid state lasers are good alternatives. Among them, self- frequency doubling is an attractive approach because of its simpler design and lower cost. Unfortunately, few known crystals possess self-frequency doubling property. A newly discovered yttrium calcium oxyborate (YCOB) can fill in the role because it has adequate lasing and nonlinear frequency conversion efficiency. More importantly, YCOB crystal melts congruently so that high quality, large size single crystals can be grown using conventional Czochralski melt pulling technique. The thermal mechanical properties, linear and nonlinear optical properties of YCOB, laser properties of Nd:YCOB and Yb:YCOB crystals were investigated. Based on the calculated second harmonic phase matching angles, Nd:YCOB laser rods were fabricated. Self-frequency doubled green emission with 62 mW output power and red emission with 16 mW output power were successfully demonstrated using diode-pumping. It is the first time to achieve the continuous wave (cw) red lasing in Nd doped rare-earth calcium oxyborates. Rare-earth ions doping in YCOB crystal can not only achieve lasing, but also affect the physical and chemical properties of the crystal. The stability field of YCOB is reduced in proportion to both the ionic size differences from yttrium and doping concentrations of the rare-earth ions. The doping also changes the linear and nonlinear optical properties of the material. For example, the second harmonic conversion efficiency of 20% Yb doped YCOB was enhanced by more than 15% compared to undoped YCOB. The absorption cutoff edge of 20% Yb:YCOB was red- shift by more than 60 nm. Similar effects were observed in

  17. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Jin, E-mail: haejin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu [National Fusion Research Institute, Daejeon (Korea, Republic of); Hillairet, Julien [CEA/IRFM, Saint-lez-Durance (France); Choi, Jin Joo [Kwangwoon University, Seoul (Korea, Republic of)

    2015-10-15

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  18. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    International Nuclear Information System (INIS)

    Kim, Hae Jin; Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu; Hillairet, Julien; Choi, Jin Joo

    2015-01-01

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  19. Site-specific doping, tunable dielectric properties and intrinsic ...

    Indian Academy of Sciences (India)

    Mn doping in SrTiO3 leads to the emergence of qualitatively distinct and novel physi- cal properties. We show that .... Mn K-edge XANES spectra of TiMn and SrMn, along with few reference compounds: SrMnO3 [20] ..... Mn3O4 nanoparticles,.

  20. Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

    CERN Document Server

    Li, Ruohong; Rothe, Sebastian; Teigelhöfer, Andrea; Mostamand, Maryam

    2016-01-01

    A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

  1. Near infrared emission and multicolor tunability of enhanced upconversion emission from Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Ferrari, Jefferson Luis [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Maia, Lauro June Queiroz [Grupo Física de Materiais, Instituto de Física, Universidade Federal de Goiás, Campus II, C.P. 131, CEP 74001-970, Goiânia, GO (Brazil); Ribeiro, Sidney José Lima [Institute of Chemistry- São Paulo State University- UNESP, Araraquara, SP 14800-900 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); and others

    2016-02-15

    This work reports on the Yb{sup 3+} ion addition effect on the near infrared emission and infrared-to-visible up conversion from planar waveguides based on Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in SiO{sub 2}-based nanocomposite prepared by a sol–gel process with controlled crystallization in situ. Planar waveguides and xerogels containing Si/Nb molar ratio of 90:10 up to 50:50 were prepared. Spherical-like orthorhombic or monoclinic Nb{sub 2}O{sub 5} nanocrystals were grown in the amorphous SiO{sub 2}-based host depending on the niobium content and annealing temperature, resulting in transparent glass ceramics. Crystallization process was intensely affected by rare earth content increase. Enhancement and broadening of the NIR emission has been achieved depending on the rare earth content, niobium content and annealing temperature. Effective Yb{sup 3+}→Er{sup 3+} energy transfer and a high-intensity broad band emission in the near infrared region assigned to the Er{sup 3+} ions {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition, and longer {sup 4}I{sub 13/2} lifetimes were observed for samples containing orthorhombic Nb{sub 2}O{sub 5} nanocrystals. Intense green and red emissions were registered for all Er{sup 3+}–Yb{sup 3+} co-doped waveguides under 980 nm excitation, assigned to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} (525 nm),{sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (545nm) and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (670 nm) transitions, respectively. Different relative green and red intensities emissions were observed, depending upon niobium oxide content and the laser power. Upconversion dynamics were determined by the photons number, evidencing that ESA or ETU mechanisms are probably occurring. The 1931 CIE chromaticity diagrams indicated interesting color tunability based on the waveguides composition and pump power. The nanocomposite waveguides are promising materials for photonic applications as optical amplifiers and

  2. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    International Nuclear Information System (INIS)

    Pan, Y Z; Miao, J G; Liu, W J; Huang, X J; Wang, Y B

    2014-01-01

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking. (letter)

  3. Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light

    Science.gov (United States)

    Zhang, Lei; Hao, Jiaming; Ye, Huapeng; Yeo, Swee Ping; Qiu, Min; Zouhdi, Said; Qiu, Cheng-Wei

    2013-03-01

    We propose a counter-intuitive mechanism of constructing an ultrathin broadband transparent device with two perfect blackbodies. By introducing hybridization of plasmon modes, resonant modes with different symmetries coexist in this system. A broadband transmission spectrum in the near infrared regime is achieved through controlling their coupling strengths, which is governed by the thickness of high refractive index layer. Meanwhile, the transparency bandwidth is found to be tunable in a large range by varying the geometric dimension. More significantly, from the point view of applications, the proposed method of achieving broadband transparency can perfectly tolerate the misalignment and asymmetry of periodic nanoparticles on the top and bottom, which is empowered by the unique dual of coupling-in and coupling-out processes within the pair of blackbodies. Moreover, roughness has little influence on its transmission performance. According to the coupled mode theory, the distinguished transmittance performance is physically interpreted by the radiative decay rate of the entire system. In addition to the feature of uniquely robust broadband transparency, such a ultrathin seamless nanostructure (in the presence of a uniform silver layer) also provides polarization-independent and angle-independent operations. Therefore, it may power up a wide spectrum of exciting applications in thin film protection, touch screen techniques, absorber-emitter transformation, etc.We propose a counter-intuitive mechanism of constructing an ultrathin broadband transparent device with two perfect blackbodies. By introducing hybridization of plasmon modes, resonant modes with different symmetries coexist in this system. A broadband transmission spectrum in the near infrared regime is achieved through controlling their coupling strengths, which is governed by the thickness of high refractive index layer. Meanwhile, the transparency bandwidth is found to be tunable in a large range by

  4. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    Science.gov (United States)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  5. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    De Diego, J. A.; De Leo, M. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Distrito Federal (Mexico); Cepa, J.; Bongiovanni, A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Verdugo, T. [Centro de Investigaciones de Astronomía (CIDA), Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Sánchez-Portal, M. [Herschel Science Centre (HSC), European Space Agency Centre (ESAC)/INSA, Villanueva de la Cañada, Madrid (Spain); González-Serrano, J. I., E-mail: jdo@astro.unam.mx [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005 Santander (Spain)

    2013-10-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. We compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.

  6. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    De Diego, J. A.; De Leo, M. A.; Cepa, J.; Bongiovanni, A.; Verdugo, T.; Sánchez-Portal, M.; González-Serrano, J. I.

    2013-01-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. We compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs

  7. Facile synthesis of cellulose-based carbon with tunable N content for potential supercapacitor application.

    Science.gov (United States)

    Chen, Zehong; Peng, Xinwen; Zhang, Xiaoting; Jing, Shuangshuang; Zhong, Linxin; Sun, Runcang

    2017-08-15

    Producing hierarchical porous N-doped carbon from renewable biomass is an essential and sustainable way for future electrochemical energy storage. Herein we cost-efficiently synthesized N-doped porous carbon from renewable cellulose by using urea as a low-cost N source, without any activation process. The as-prepared N-doped porous carbon (N-doped PC) had a hierarchical porous structure with abundant macropores, mesopores and micropores. The doping N resulted in more disordered structure, and the doping N content in N-doped PC could be easily tunable (0.68-7.64%). The doping N functionalities could significantly improve the supercapacitance of porous carbon, and even a little amount of doping N (e.g. 0.68%) could remarkably improve the supercapacitance. The as-prepared N-doped PC with a specific surface area of 471.7m 2 g -1 exhibited a high specific capacitance of 193Fg -1 and a better rate capability, as well as an outstanding cycling stability with a capacitance retention of 107% after 5000 cycles. Moreover, the N-doped porous carbon had a high energy density of 17.1Whkg -1 at a power density of 400Wkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells.

    Science.gov (United States)

    Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin; Tong, Xiao; Sutter, Peter; Eisaman, Matthew D; Black, Charles T

    2015-01-21

    Materials providing broadband light antireflection have applications as highly transparent window coatings, military camouflage, and coatings for efficiently coupling light into solar cells and out of light-emitting diodes. In this work, densely packed silicon nanotextures with feature sizes smaller than 50 nm enhance the broadband antireflection compared with that predicted by their geometry alone. A significant fraction of the nanotexture volume comprises a surface layer whose optical properties differ substantially from those of the bulk, providing the key to improved performance. The nanotexture reflectivity is quantitatively well-modelled after accounting for both its profile and changes in refractive index at the surface. We employ block copolymer self-assembly for precise and tunable nanotexture design in the range of ~10-70 nm across macroscopic solar cell areas. Implementing this efficient antireflection approach in crystalline silicon solar cells significantly betters the performance gain compared with an optimized, planar antireflection coating.

  9. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure.

    Science.gov (United States)

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

  10. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    Science.gov (United States)

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  11. Direct UV-written broadband directional broadband planar waveguide couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation.......We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  12. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  13. The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet

    International Nuclear Information System (INIS)

    Xia, Congxin; Peng, Yuting; Wei, Shuyi; Jia, Yu

    2013-01-01

    Based on density functional theory, the electronic structures, formation energy and transition energy level of a p-type Mg-doped GaN nanosheet are investigated. Numerical results show that the transition energy level decreases monotonously with increasing Mg doping concentration in Mg-doped GaN nanosheet systems, which is lower than that of the Mg-doped bulk GaN case. Moreover, the formation energy calculations indicate that Mg-doped GaN nanosheet structures can be realized under N-rich experimental growth conditions

  14. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  15. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  16. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  17. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    Science.gov (United States)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  18. Optimization of an integrated optic broadband duplexer for 0.8/1.3-micrometer applications

    Science.gov (United States)

    Ghibaudo, Elise; Broquin, Jean-Emmanuel; Benech, Pierre

    2003-06-01

    These last years, the growth of data traffic has increased the interest for broadband integrated optic devices. Their applications include, for example, the fiber communications on a single fiber by adding the transmission capacity of two optical telecommunication windows for Local Area Networks (LAN) and Wide Area Networks (WAN) or by combining pump and signal wavelenghts in rare earth doped intergrated optical amplifiers. A promising technology to realize those devices is ion-exchange on glass. Indeed, it allows the integration of different functions in a glass substrate with efficient results and a better compatibility in fiber systems with a low cost. We propose in this paper an original broadband duplexer based on a leaky structure. First, the physical principle of the component is explained. The core of the structure is a leaky zone which involves a non-resonant coupling and ensures a broadband spectral behavior to the component. Then, the broadband duplexer is presented and the focus is specially made on the improvement of the outputs crosstalk through the suppression of parasitical back reflections. Theoretical optimization and validation by simulations are presented. Finally, perspectives of this work are proposed.

  19. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    Science.gov (United States)

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-07

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.

  20. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing

    Directory of Open Access Journals (Sweden)

    Manoj Sharma

    2012-03-01

    Full Text Available The present work describes the tunable emission in inorganic-organic hybrid NPs which can be useful for optoelectronic and biosensing applications. In this work, Mn- ZnS nanoparticles emitting various colors, including blue and orange, were synthesized by simple chemical precipitation method using chitosan as a capping agent. Earlier reports describe that emission color characteristics in nanoparticles are tuned by varying particle size and with doping concentration. Here in this article tunable emission has been achieved by varying excitation wavelength in a single sample. This tunable emission property with high emission intensity was further achieved by changing capping concentration keeping host Mn-ZnS concentration same. Tunable emission is explained by FRET mechanism. Commission Internationale de l’Eclairage (CIE chromaticity coordinates shifts from (0.273, 0.20 and (0.344, 0.275 for same naocrystals by suitably tuning excitation energy from higher and lower ultra-violet (UV range. Synthesized nanoparticles have been characterized by X-ray diffraction, SEM, HRTEM, UV- Visible absorption and PL spectroscopy for structural and optical studies. Using tunable emission property, these highly emissive nanoparticles functionalized with biocompatible polymer chitosan were further used for glucose sensing applications.

  1. Etudes optiques de nouveaux materiaux laser: Des orthosilicates dopes a l'ytterbium: Le yttrium (lutetium,scandium) pentoxide de silicium

    Science.gov (United States)

    Denoyer, Aurelie

    La decouverte et l'elaboration de nouveaux materiaux laser solides suscitent beaucoup d'interet parmi la communaute scientifique. En particulier les lasers dans la gamme de frequence du micron debouchent sur beaucoup d'applications, en telecommunication, en medecine, dans le domaine militaire, pour la, decoupe des metaux (lasers de puissance), en optique non lineaire (doublage de frequence, bistabilite optique). Le plus couramment utilise actuellement est le Nd:YAG dans cette famille de laser, mais des remplacants plus performants sont toujours recherches. Les lasers a base d'Yb3+ possedent beaucoup d'avantages compares aux lasers Nd3+ du fait de leur structure electronique simple et de leur deterioration moins rapide. Parmi les matrices cristallines pouvant accueillir l'ytterbium, les orthosilicates Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5 se positionnent tres bien, du fait de leur bonne conductivite thermique et du fort eclatement de leur champ cristallin necessaire a l'elaboration de lasers quasi-3 niveaux. De plus l'etude fine et systematique des proprietes microscopiques de nouveaux materiaux s'avere toujours tres interessante du point de vue de la recherche fondamentale, c'est ainsi que de nouveaux modeles sont concus (par exemple pour le champ cristallin) ou que de nouvelles proprietes inhabituelles sont decouvertes, menant a de nouvelles applications. Ainsi d'autres materiaux dopes a l'ytterbium sont connus pour leurs proprietes de couplage electron-phonon, de couplage magnetique, d'emission cooperative ou encore de bistabilite optique, mais ces proprietes n'ont encore jamais ete mises en evidence dans Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5. Ainsi, cette these a pour but l'etude des proprietes optiques et des interactions microscopiques dans Yb:Y2SiO 5, Yb:Lu2SiO5 et Yb:Sc2SiO5. Nous utilisons principalement les techniques d'absorption IR et de spectroscopie Raman pour determiner les excitations du champ cristallin et les modes de vibration dans le materiau

  2. Tunable Bandgap Opening in the Proposed Structure of Silicon Doped Graphene

    OpenAIRE

    Azadeh, Mohammad S. Sharif; Kokabi, Alireza; Hosseini, Mehdi; Fardmanesh, Mehdi

    2011-01-01

    A specific structure of doped graphene with substituted silicon impurity is introduced and ab. initio density-functional approach is applied for energy band structure calculation of proposed structure. Using the band structure calculation for different silicon sites in the host graphene, the effect of silicon concentration and unit cell geometry on the bandgap of the proposed structure is also investigated. Chemically silicon doped graphene results in an energy gap as large as 2eV according t...

  3. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics

    Science.gov (United States)

    Zhang, Ying; Li, Jun; Chai, Xiaona; Wang, Xusheng; Li, Yongxiang; Yao, Xi

    2017-03-01

    Er-doped Bi3Ti1.5W0.5O9 (BTW-x) ferroelectric ceramics were prepared by a conventional solid-state reaction synthesis method, and their structure, electrical properties, up-conversion (UC) luminescence, and temperature sensing behaviour were investigated. A high piezoelectric coefficient d33 (9.6 pC/N), a large remnant polarization Pr (12.75 μC/cm2), a high Curie temperature Tc (730.2 °C), and the optimal luminescent intensity are obtained for the samples at x = 0.05. By changing the Er doped concentration, the BTW-x ceramics are capable of generating various UC spectra and the color could be tunable from green to yellow. According to the fluorescence intensity ratio of green emissions at 532.6 nm and 549.2 nm in the temperature range from 83 K to 423 K, optical temperature sensing properties are investigated and the maximum sensing sensitivity is found to be 0.00314 K-1 at 423 K. The results conclude that BTW-x would be a candidate in high temperature sensor, fluorescence thermometry, and opto-electronic integration applications.

  4. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  5. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  6. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  7. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most suc....... Many countries have provided active support for stimulating diffusion of broadband and national variants of this type of policies in different countries are important for an explanation of national differences in adoption of broadband....

  8. Photochemical Hydrogen Doping Induced Embedded Two-Dimensional Metallic Channel Formation in InGaZnO at Room Temperature.

    Science.gov (United States)

    Kim, Myeong-Ho; Lee, Young-Ahn; Kim, Jinseo; Park, Jucheol; Ahn, Seungbae; Jeon, Ki-Joon; Kim, Jeong Won; Choi, Duck-Kyun; Seo, Hyungtak

    2015-10-27

    The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

  9. A 98 W 1178 nm Yb-doped solid-core photonic bandgap fiber oscillator

    International Nuclear Information System (INIS)

    Fan, Xinyan; Chen, Mingchen; Shirakawa, Akira; Ueda, Ken-ichi; Olausson, Christina B; Broeng, Jes

    2013-01-01

    A high-power ytterbium-doped solid-core photonic bandgap fiber laser directly oscillating at 1178 nm is reported. The sharp-cut bandpass distributed filtering effect of photonic bandgap fiber can suppress amplified spontaneous emission (ASE) in the conventional high-gain spectral region. The oscillator is composed of a high reflection fiber Bragg grating spliced with a 39 m gain fiber and a Fresnel fiber end surface. A model based on rate equations is investigated numerically. A record output power of 98 W is achieved with a slope efficiency of 54%. The laser linewidth is 0.5 nm. The spectrum at 98 W indicates that ASE and parasitic lasing are suppressed effectively. (letter)

  10. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  11. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    International Nuclear Information System (INIS)

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  12. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    Science.gov (United States)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  13. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    Science.gov (United States)

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  14. The incorporation of selenium and ytterbium into the eyes of mice

    International Nuclear Information System (INIS)

    Samochocka, K.; Czauderna, M.; Konecki, J.; Wolna, M.

    1984-01-01

    The incorporation of Se and Yb into the eyes of mice has been studied. Selenodiglutathione, (GS) 2 Se, or ytterbium chloride, YbCl 3 , were injected intraperitoneally into mice: either alone, combined, or after various time intervals. Instrumental neutron activation analysis was applied as the analytical method for the determination of the levels of Se and Yb. The concentrations of both investigated elements were highest in the retinal tissue of the eye. YbCl 3 influenced the distribution of Se in the eye. (author)

  15. The origin of magnetism in anatase Co-doped TiO2 magnetic semiconductors

    NARCIS (Netherlands)

    Lee, Y.J.

    2010-01-01

    Dilute magnetic semiconductors (DMS) can be tailored by doping a small amount of elements containing a magnetic moment into host semiconductors, which leads to a new class of semiconductors with the functionality of tunable magnetic properties. Recently, oxide semiconductors have attained interests

  16. Microwave characteristics of sol-gel based Ag-doped (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Tae; Kim, Cheolbok [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States); Senior, David E. [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States); Department of Electrical and Electronic Engineering, Universidad Tecnológica de Bolívar Cartagena, 130011 Colombia (Colombia); Kim, Dongsu [Packaging Research Center, Korea Electronics Technology Institute, Gyeonggi-do, 463-816 (Korea, Republic of); Yoon, Yong-Kyu, E-mail: ykyoon@ece.ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2014-08-28

    Dielectric Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films with a different concentration of Ag-dopant of 0.5, 1, 1.5, 2, 3, and 5 mol % have been prepared using an alkoxide-based sol-gel method on a Pt(111)/TiO{sub 2}/SiO{sub 2}/Si substrate and their surface morphology and crystallinity have been examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. An on-chip metal-insulator-metal capacitor has been fabricated with the prepared thin film ferroelectric sample. Concentric coplanar electrodes are used for high frequency electrical characterization with a vector network analyzer and a probe station. The SEM images show that increasing Ag doping concentration leads to a decrease in grain size. XRD reveals that the fabricated films show good BST crystallinity for all the concentration while a doping concentration of 5 mol % starts to show an Ag peak, implying a metallic phase. Improved microwave dielectric loss properties of the BST thin films are observed in a low Ag doping level. Especially, BST with an Ag doping concentration of 1 mol % shows the best properties with a dielectric constant of 269.3, a quality factor of 48.1, a tunability at the electric field of 100 kV/cm of 41.2 %, a leakage-current density of 1.045 × 10{sup −7}A/cm{sup 2} at an electric field of 100 kV/cm and a figure of merit (defined by tunability (%) divided by tan δ (%)) of 19.59 under a dc bias voltage of 10 V at 1 GHz. - Highlights: • High quality Ag-doped Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films were derived by the sol-gel method. • Doped Ag replaced the A site ions in the ABO{sub 3} type structure. • Doped Ag helped lower leakage current by filling oxygen vacancies, which is a leakage path. • Microwave characteristics of low dielectric loss and good tunability were confirmed. • Great potential is envisioned for low loss tunable microwave applications.

  17. All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber

    Science.gov (United States)

    Muhammad, A. R.; Haris, H.; Arof, H.; Tan, S. J.; Ahmad, M. T.; Harun, S. W.

    2018-05-01

    We demonstrate the generation of a passively Q-switched ytterbium-doped fibre laser (YDFL) using a bismuth-doped fibre (BDF) as a solid-state fibre saturable absorber (FSA) in a ring cavity. The BDF used has a wide and low absorption band of 5 dB/m at the 1.0 μm region due to the ion transition of ? that occurs around the region. When introduced into a YDFL laser cavity, a stable Q-switched pulse operation was observed and the pulse repetition rate was proportional to the input pump power. It was limited to 72.99 kHz by the maximum power that the laser diode could supply. Meanwhile, the pulse width decreased from 12.22 to 4.85 μs as the pump power was increased from 215.6 to 475.6 mW. The finding suggests that BDF could be used as a potential SA for the development of robust, compact, efficient and low cost Q-switched fibre lasers operating at 1 micron region.

  18. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    Science.gov (United States)

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  19. Ln{sup 3+}:KLu(WO{sub 4}){sub 2}/KLu(WO{sub 4}){sub 2} epitaxial layers: Crystal growth and physical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, O.; Pujol, M.C.; Sole, R.; Bolanos, W.; Carvajal, J.J.; Massons, J.; Aguilo, M. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain); Diaz, F. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain)], E-mail: f.diaz@urv.cat

    2008-01-15

    Monoclinic epitaxial layers of single doped KLu{sub 1-x}Ln{sub x}(WO{sub 4}){sub 2} (Ln{sup 3+} = Yb{sup 3+} and Tm{sup 3+}) have been grown on optically passive KLuW substrates by liquid phase epitaxy (LPE) technique using K{sub 2}W{sub 2}O{sub 7} as solvent. The ytterbium content in the layer is in the range of 0.05 < x < 0.75 atomic substitution and the studied thulium concentrations are 0.05 < x < 0.10. The grown epitaxies are free of macroscopic defects and only in highly ytterbium-doped epilayers do some cracks or inclusions appear. The refractive indices of the epilayers were determined. The absorption and emission cross sections of ytterbium and thulium in KLuW are characterised and laser generation results are presented and discussed.

  20. Cross sections for fast-neutron interaction with ytterbium isotopes

    International Nuclear Information System (INIS)

    Luo, Junhua; Liu, Rong; Jiang, Li; Ge, Suhong; Liu, Zhenlai; Sun, Guihua

    2013-01-01

    Highlights: ► The cross sections for the (n,x) reactions on ytterbium isotopes have been measured. ► Mono-energetic neutron beams using the D + T reaction; Energies: 13.5 and 14.8 MeV. ► Neutron cross-section measurements by means of the activation technique. ► Reference reactions 93 Nb(n,2n) 92m Nb and 27 (n,α) 24 Na. ► Data for 172 Yb(n,p) 172 Tm and 176 Yb(n,d * ) 175 Tm are reported for the first time. - Abstract: Measurements of (n,2n), (n,p), and (n,d * ) (The expression (n,d * ) cross section used in this work includes a sum of (n,d), (n,np) and (n,pn) cross sections.) reaction cross-sections on ytterbium isotopes have been carried out in the range of 13.5–14.8 MeV using the activation technique. The monoenergetic neutron beams were produced via the 3 H(d,n) 3 He reaction. The neutron energies of different directions were determined using the Nb/Zr method. Samples were activated along with along with Nb and Al monitor foils to determine the incident neutron flux. Data are reported for the following reactions: 168 Yb(n,2n) 167 Yb, 170 Yb(n,2n) 169m+g Yb, 176 Yb(n,2n) 175m+g Yb, 172 Yb(n,p) 172 Tm, 173 Yb(n,p) 173 Tm, 176 Yb(n,d * ) 175 Tm, 174 Yb(n,p) 174 Tm, and 176 Yb(n,p) 176 Tm. The experimentally deduced cross-sections are compared with the existing experimental data. Furthermore, theoretical statistical model, based on the Hauser–Feshbach formalism, have been carried out using the HFTT

  1. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  2. The tunable bistable and multistable memory effect in polymer nanowires

    International Nuclear Information System (INIS)

    Rahman, Atikur; Sanyal, Milan K

    2008-01-01

    Tunable bistable and multistable resistance switching in conducting polymer nanowires has been reported. These wires show reproducible switching transition under several READ-WRITE-ERASE cycles. The switching is observed at low temperature and the ON/OFF resistance ratio for the voltage biased switching transition was found to be more than 10 3 . Current biased measurements show lower ON/OFF ratio and some of the nanowires exhibit a multistable switching transition in current biased measurements. The threshold voltage for switching and the ON/OFF resistance ratio can be tuned by changing doping concentration of the nanowires

  3. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    International Nuclear Information System (INIS)

    Zhu, L.

    2011-01-01

    solid-state oscillator seeder in terms of the pulse fidelity and pulse energy while offering the robustness of a fiber oscillator. Finally, a broadband difference-frequency converter is demonstrated, by employing the monolithic Yb-doped FCPA system as a robust and efficient front-end for a two-stage optical parametric amplifier (OPA) system. This converter is able to emit carrier-envelope-offset-free pulses with energy of tens of ∼nJ that is tunable in the wavelength range from 1200 nm to beyond 2 um. The measurement results of the OPA output phase stability, through spectral broadening in a piece of single mode fiber together with a so-called f-to-2f interferometer, prove the passive carrier-envelope-phase stability nature of this OPA system. (author)

  4. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    Science.gov (United States)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  5. Effect of concurrent Mg/Nb-doping on dielectric properties of Ba0.45Sr0.55TiO3 thin films

    Science.gov (United States)

    Alema, Fikadu; Reich, Michael; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-08-01

    Composition, microstructure, and dielectric properties of undoped and Ba(Mg1/3Nb2/3)O3 (BMN) doped Ba0.45Sr0.55TiO3 (BST) thin films deposited via rf. magnetron sputtering on platinized alumina substrates have been investigated. The analysis of microstructure has shown that despite the sizable effect of doping on the residual stress, the latter is partially compensated by the thermal expansion coefficient mismatch, and its influence on the BST film crystal structure is insignificant. It was revealed that BMN doped film demonstrated an average (over 2000 devices) of 52.5% tunability at 640 kV/cm, which is ˜8% lower than the value for the undoped film. This drop is associated with the presence of Mg ions in BMN; however, the effect of Mg doping is partially compensated by that of Nb ions. The decrease in grain size upon doping may also contribute to the tunability drop. Doping with BMN allows achievement of a compensation concentration yielding no free carriers and resulting in significant leakage current reduction when compared with the undoped film. In addition, the presence of large amounts of empty shallow traps related to NbTi• allows localizing free carriers injected from the contacts thus extending the device control voltage substantially above 10 V.

  6. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    Science.gov (United States)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  7. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  8. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    Science.gov (United States)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  9. Thulium-doped fibre broadband source for spectral region near 2 micrometers

    Czech Academy of Sciences Publication Activity Database

    Písařík, Michael; Peterka, P.; Aubrecht, J.; Cajzl, J.; Benda, A.; Mareš, D.; Todorov, F.; Podrazký, O.; Honzatko, P.; Kašík, I.

    2016-01-01

    Roč. 24, č. 4 (2016), s. 223-231 ISSN 1230-3402 Institutional support: RVO:68378271 Keywords : fibre lasers * amplified spontaneous emission * thulium-doped fibres Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.449, year: 2016

  10. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    Science.gov (United States)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  11. Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si

    Science.gov (United States)

    Biagioni, P.; Sakat, E.; Baldassarre, L.; Calandrini, E.; Samarelli, A.; Gallacher, K.; Frigerio, J.; Isella, G.; Paul, D. J.; Ortolani, M.

    2015-03-01

    We address the behavior of mid-infrared localized plasmon resonances in elongated germanium antennas integrated on silicon substrates. Calculations based on Mie theory and on the experimentally retrieved dielectric constant allow us to study the tunability and the figures of merit of plasmon resonances in heavily-doped germanium and to preliminarily compare them with those of the most established plasmonic material, gold.

  12. The solvent extraction of ytterbium from a molten eutectic

    International Nuclear Information System (INIS)

    Lengyel, T.

    1977-01-01

    The paper summarizes the results which were obtained in measurements performed with different binary mixtures of solvents being capable of effectively extracting ytterbium from the molten eutectic lithium nitrate--ammonium nitrate. In the course of elaborating the possible ways of extractive separation of rare earths systematic investigations regarding the individual members of the group are required. The binary solvent mixtures consisted of thenoyl-trifluoracetone (TTA), β-isopropil-tropolone (IPT), tributyl phosphate (TBP), di-2-ethylhexyl phosphoric acid (HDEHP), 2,2'-bipyridyl (bipy), dibutyl phtalate (DBP) and Amberlite LA-2 (LA-2). The concentration of the central ion was kept at 5x10 -6 M by using Yb-169 of high specific activity as a tracer for the radiometric assay. (T.I.)

  13. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    Science.gov (United States)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  14. Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure

    Science.gov (United States)

    Kaibiao, Zhang; Hong, Zhang; Xinlu, Cheng

    2016-03-01

    The graphene/hexagonal boron-nitride (h-BN) hybrid structure has emerged to extend the performance of graphene-based devices. Here, we investigate the tunable plasmon in one-dimensional h-BN/graphene/h-BN quantum-well structures. The analysis of optical response and field enhancement demonstrates that these systems exhibit a distinct quantum confinement effect for the collective oscillations. The intensity and frequency of the plasmon can be controlled by the barrier width and electrical doping. Moreover, the electron doping and the hole doping lead to very different results due to the asymmetric energy band. This graphene/h-BN hybrid structure may pave the way for future optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217) and the Scientific Research Fund of Sichuan University of Science and Engineering, China (Grant No. 2014PY07).

  15. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    International Nuclear Information System (INIS)

    Magno, Wictor C.; Cavasso Filho, Reinaldo L.; Cruz, Flavio C.

    2003-01-01

    The possibility of laser cooling of alkaline-earth-metal atoms and ytterbium atoms using a two-photon transition is analyzed. We consider a 1 S 0 - 1 S 0 transition with excitation in near resonance with the 1 P 1 level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 μK. The efficiency of this cooling scheme and the main loss mechanisms are analyzed

  16. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  17. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  18. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  19. Electrically tunable solid-state silicon nanopore ion filter

    Directory of Open Access Journals (Sweden)

    Gracheva Maria

    2006-01-01

    Full Text Available AbstractWe show that a nanopore in a silicon membrane connected to a voltage source can be used as an electrically tunable ion filter. By applying a voltage between the heavily doped semiconductor and the electrolyte, it is possible to invert the ion population inside the nanopore and vary the conductance for both cations and anions in order to achieve selective conduction of ions even in the presence of significant surface charges in the membrane. Our model based on the solution of the Poisson equation and linear transport theory indicates that in narrow nanopores substantial gain can be achieved by controlling electrically the width of the charge double layer.

  20. Thulium-doped fibre broadband source for spectral region near 2 micrometers

    Czech Academy of Sciences Publication Activity Database

    Písařík, M.; Peterka, Pavel; Aubrecht, Jan; Cajzl, Jakub; Benda, Adam; Mareš, D.; Todorov, Filip; Podrazký, Ondřej; Honzátko, Pavel; Kašík, Ivan

    2016-01-01

    Roč. 24, č. 4 (2016), s. 223-231 ISSN 1230-3402 R&D Projects: GA MZd(CZ) NV15-33459A Institutional support: RVO:67985882 ; RVO:68378271 Keywords : fibre lasers * amplified spontaneous emission * thulium-doped fibres Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.449, year: 2016

  1. Investigation of diode-laser pumped thulium-doped fluoride lasers; Investigacao de lasers de floureto dopados com tulio e bombeados por diodo-laser

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Paulo Sergio Fabris de

    2006-07-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  2. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    International Nuclear Information System (INIS)

    Wang Wen-Li; Xu Xin-Ye

    2011-01-01

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)

  3. Epoxy-based broadband antireflection coating for millimeter-wave optics.

    Science.gov (United States)

    Rosen, Darin; Suzuki, Aritoki; Keating, Brian; Krantz, William; Lee, Adrian T; Quealy, Erin; Richards, Paul L; Siritanasak, Praween; Walker, William

    2013-11-20

    We have developed epoxy-based, broadband antireflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 K, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.

  4. Broadband Faraday isolator.

    Science.gov (United States)

    Berent, Michał; Rangelov, Andon A; Vitanov, Nikolay V

    2013-01-01

    Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

  5. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fazio, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frisch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guehr, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hettel, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hoffmann, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kirchmann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Limborg, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lindenberg, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Raubenheimer, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Reis, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ross, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tian, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xiang, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  6. Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures.

    Science.gov (United States)

    Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-28

    Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2.

  7. Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films

    Science.gov (United States)

    Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian

    2018-02-01

    The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.

  8. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation.

    Science.gov (United States)

    Chang, Dong Wook; Baek, Jong-Beom

    2016-04-20

    Photocatalytic hydrogen (H2 ) generation in a water splitting process has recently attracted tremendous interest because it allows the direct conversion of clean and unlimited solar energy into the ideal energy resource of H2 . For efficient photocatalytic H2 generation, the role of the photocatalyst is critical. With increasing demand for more efficient, sustainable, and cost-effective photocatalysts, various types of semiconductor photocatalysts have been intensively developed. In particular, on the basis of its superior catalytic and tunable electronic properties, nitrogen-doped graphene is a potential candidate for a high-performance photocatalyst. Nitrogen-doped graphene also offers additional advantages originating from its unique two-dimensional sp(2) -hybridized carbon network including a large specific surface area and exceptional charge transport properties. It has been reported that nitrogen-doped graphene can play diverse but positive functions including photo-induced charge acceptor/meditator, light absorber from UV to visible light, n-type semiconductor, and giant molecular photocatalyst. Herein, we summarize the recent progress and general aspects of nitrogen-doped graphene as a photocatalyst for photocatalytic H2 generation. In addition, challenges and future perspectives in this field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. An optical tunable filter array based on LCOS phase grating

    Science.gov (United States)

    Feng, Dong; Wan, Zhujun; Chen, Xu; Yan, Shijia; Luo, Zhixiang

    2018-01-01

    This paper reports an optical tunable filter array (TFA) based on a LCOS (liquid crystal on silicon) chip. The input broadband optical beam is first dispersed by a bulk grating and then incident on the LCOS chip. The LCOS chip is phase-only modulated and constructed as a dynamic reflective phase grating. The phase modulation is adjusted to meet the Littrow angle for a specified passband wavelength and thus the optical beam corresponding to this wavelength is steered to the output. The input/output optical beams are coupled to optical fibers with a dual-fiber collimator. Four dualfiber collimators are vertically aligned as the inputs/outputs and the pixels of the LCOS chip are vertically allocated as four independent zones. Thus the device can act as a 4-channel TFA, which is assembled and functionally demonstrated.

  10. Tunable emission and the systematic study on energy-transfer properties of Ce3+- and Tb3+-co-doped Sr3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Liu, Zhijun

    2015-01-01

    An emitting color tunable phosphor Sr 3 (PO 4 ) 2 :Ce 3+ , Tb 3+ was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce 3+ - and Tb 3+ -doped Sr 3 (PO 4 ) 2 host were studied in detail. The obtained phosphors show both a blue emission from Ce 3+ and a yellowish green emission from Tb 3+ with considerable intensity under ultraviolet (UV) excitation (∝311 nm). When the content of Ce 3+ was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb 3+ ions with the aid of ET process. The critical distance between Ce 3+ and Tb 3+ is 14.69 A. The ET mechanism from Ce 3+ to Tb 3+ ions was identified with dipole-dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce 3+ to Tb 3+ ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices. (orig.)

  11. Broadband radiometric LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  12. One-pot noninjection synthesis of Cu-doped Zn(x)Cd(1-x)S nanocrystals with emission color tunable over entire visible spectrum.

    Science.gov (United States)

    Zhang, Wenjin; Zhou, Xinggui; Zhong, Xinhua

    2012-03-19

    Unlike Mn doped quantum dots (d-dots), the emission color of Cu dopant in Cu d-dots is dependent on the nature, size, and composition of host nanocrystals (NCs). The tunable Cu dopant emission has been achieved via tuning the particle size of host NCs in previous reports. In this paper, for the first time we doped Cu impurity in Zn(x)Cd(1-x)S alloyed NCs and tuned the dopant emission in the whole visible spectrum via variation of the stoichiometric ratio of Zn/Cd precursors in the host Zn(x)Cd(1-x)S alloyed NCs. A facile noninjection and low cost approach for the synthesis of Cu:Zn(x)Cd(1-x)S d-dots was reported. The optical properties and structure of the obtained Cu:Zn(x)Cd(1-x)S d-dots have been characterized by UV-vis spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The influences of various experimental variables, including Zn/Cd ratio, reaction temperature, and Cu dopant concentration, on the optical properties of Cu dopant emission have been systematically investigated. The as-prepared Cu:Zn(x)Cd(1-x)S d-dots did show PL emission but with quite low quantum yield (QY) (typically below 6%). With the deposition of ZnS shell around the Cu:Zn(x)Cd(1-x)S core NCs, the PL QY increased substantially with a maximum value of 65%. More importantly, the high PL QY can be preserved when the initial oil-soluble d-dots were transferred into aqueous media via ligand replacement by mercaptoundeconic acid. In addition, these d-dots have thermal stability up to 250 °C. © 2012 American Chemical Society

  13. Broadband Internet and Income Inequality

    OpenAIRE

    HOUNGBONON , Georges Vivien; Liang , Julienne

    2017-01-01

    Policy makers are aiming for a large coverage of high-speed broadband Internet. However , there is still a lack of evidence about its effects on income distribution. In this paper, we investigate the effects of fixed broadband Internet on mean income and income inequality using a unique town-level data on broadband adoption and quality in France. We find that broadband adoption and quality raise mean income and lower income inequality. These results are robust to initial conditions, and yield...

  14. Rare earths (Ce, Eu, Tb) doped Y2Si2O7 phosphors for white LED

    International Nuclear Information System (INIS)

    Sokolnicki, Jerzy

    2013-01-01

    Nanocrystalline yttrium pyrosilicate Y 2 Si 2 O 7 (YPS) singly, doubly or triply doped with Ce 3+ , Eu 3+ , Tb 3+ was obtained by the reaction of nanostructured Y 2 O 3 :Ln 3+ and colloidal SiO 2 at high temperatures. X-ray diffraction analysis confirmed the formation of a single phase of α-YPS at 1200 °C. Two series of YPS samples doped with Eu 3+ or Eu 3+ /Tb 3+ were obtained by applying the reducing atmosphere (75%N 2 +25%H 2 ) at different temperatures. The luminescence and excitation spectra are reported. The singly Eu 3+ doped YPS emit from both Eu 3+ and Eu 2+ ions, with the spectral position and width of the Eu 2+ emission different in both series. The presence of Eu 2+ in the samples was confirmed by electron paramagnetic resonance (EPR) spectra. A broadband emission of Eu 2+ (380–650 nm), combined with the red emission of Eu 3+ is perceived by the naked eye as white light. Co-doping of YPS:Eu 3+ with Tb 3+ results in enhancement of the green component of the emission, and well-balanced white luminescence. The colour of this emission is tunable, and it is possible to get Commission International de I'Eclairage (CIE) chromaticity coordinates of (0.327, 0.327), colour-rendering index (CRI) of 85, and quantum efficiency (QE) of 71%. These phosphors are efficiently excited in the wavelength range of 300–420 nm, which perfectly matches a near UV-emitting InGaN chip. It was shown that for triply (Ce 3+ , Eu 3+ and Tb 3+ ) doped samples the three emissions from the particular activators can be generated using one excitation wavelength. The white light resulting from the superposition of the blue (Ce 3+ ), green (Tb 3+ ) and red (Eu 3+ ) emissions can be obtained by varying the concentration of the active ions and the treating atmosphere, i.e. reducing or oxidising. Eu 2+ was not detected in the triply doped samples, and hence line emissions mostly exhibit CRI values equal to or below 30. - Highlights: ► Nanocrystalline Y 2 Si 2 O 7 was obtained by the

  15. Tb{sup 3+}/Eu{sup 3+}: YF{sub 3} nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Wang, Zhongyi; Zhou, Yang [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China)

    2015-10-15

    Tb{sup 3+}/Eu{sup 3+} co-doped transparent bulk glass ceramics containing orthorhombic β-YF{sub 3} nanocrystals were successfully synthesized by melt-quenching and subsequent heating. The partition of the active centers into the YF{sub 3} crystalline lattice was confirmed by elemental mapping in the scanning transmission electron microscope, emission spectra and decay curves. As a consequence, Tb{sup 3+} → Eu{sup 3+} energy transfer was demonstrated to be more efficient in the glass ceramic than in the precursor glass, which resulted in color tunable luminescence by simply modifying Eu{sup 3+} content and induced the linearly temperature-dependent fluorescence intensity ratio between the Tb{sup 3+}: {sup 5}D{sub 4} → {sup 7}F{sub 5} transition and the Eu{sup 3+}: {sup 5}D{sub 0} → {sup 7}F{sub 4} one in the Tb{sup 3+}/Eu{sup 3+} co-doped glass ceramic. It is expected that the investigated glass ceramic might be a promising candidate for solid-state lighting as well as optical temperature sensor. - Highlights: • Lanthanide doped glass ceramics containing YF{sub 3} nanocrystals were fabricated. • Tb{sup 3+} and Eu{sup 3+} dopants were confirmed to incorporate into YF{sub 3} lattice. • Tunable luminescence was realized via Tb{sup 3+} → Eu{sup 3+} energy transfer. • Linearly temperature-dependent fluorescence intensity ratio was detected.

  16. Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses.

    Science.gov (United States)

    Yang, Hucheng; Lakshminarayana, G; Zhou, Shifeng; Teng, Yu; Qiu, Jianrong

    2008-04-28

    Aluminum-lanthanum-silicate glasses with different Eu doping concentration have been synthesized by conventional melt-quenching method at 1680 degrees C in reductive atmosphere. Under 395nm excitation, samples with low Eu doping concentration show mainly the cyan broad emission at 460nm due to 4f(6)5d(1)-4f(7) transition of Eu(2+); and the samples with higher Eu doping concentration show mainly some narrow emissions with maximum at 616nm due to (5)D(0)-(7)F(j) (J=0, 1, 2, 3, 4) transitions of Eu(3+). Cyan-white-red tunable luminescence under 395nm excitation has been obtained by changing the Eu doping concentration.

  17. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-01-01

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 μJ was compressed to a 27-fs pulse with an energy of 75 μJ. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  18. Broadband Radiometric LED Measurements

    OpenAIRE

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  19. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  20. High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions

    KAUST Repository

    Alwadai, Norah Mohammed Mosfer

    2017-10-17

    A high-performance vertically injected broadband UV-to-IR photodetector based on Gd-doped ZnO nanorods (NRs)/CH3NH3PbI3 perovskite heterojunction was fabricated on metal substrates. Our perovskite-based photodetector is sensitive to a broad spectral range, from ultraviolet to infrared light region (λ = 250–1357 nm). Such structure leads to a high photoresponsivity of 28 and 0.22 A/W, for white light and IR illumination, respectively, with high detectivity values of 1.1 × 1012 and 9.3 × 109 Jones. Optical characterizations demonstrate that the IR detection is due to intraband transition in the perovskite material. Metal substrate boosts carrier injection, resulting in higher responsivity compared to the conventional devices grown on glass, whereas the presence of Gd increases the ZnO NRs performance. For the first time, the perovskite-based photodetector is demonstrated to extend its detection capability to IR (>1000 nm) with high room temperature responsivity across the detected spectrum, leading to a high-performance ingenious cost-effective UV-to-IR broadband photodetector design for large-scale applications.

  1. Generation of 46 W green-light by frequency doubling of 96 W picosecond unpolarized Yb-doped fiber amplifier

    Science.gov (United States)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun

    2018-05-01

    We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.

  2. Numerical optimization of quasi-optical mode converter for frequency step-tunable gyrotron

    International Nuclear Information System (INIS)

    Drumm, O.

    2002-08-01

    This work concentrates on the design of a quasi-optical mode converter for a frequency step-tunable gyrotron. Special attention is paid to the optimization of the conversion and forming of the exited wave of different frequencies inside the resonator. The investigations were part of the HGF-strategy-fonds-project ''Optimization of Tokamak Operation with controlled ECRH-Deposition''. In the resonator of the gyrotron modes can be exited at frequencies between 105 and 140 GHz. With the designed converter the desired field distribution at the output window for all frequencies will be approximately obtained. The newly gained knowledge and invented synthesis methods are applied to this practical example and verified. In this work, the waveguide antenna and the mirror system of the quasi-optical mode converter are presented separately from each other. At the beginning the synthesis of the aperture antenna for a frequency step-tunable design of the Vlasov-type as well as the Denisov-type is considered. As a conclusion of the investigation, the important parameters for the design of all antennas are summarized and the frequency behavior is compared. In the second part of this work new broadband design methods for the synthesis of the mirror surface are presented. These mirrors make an optimal wave forming for all frequencies equally possible. Therefore new quality criteria are introduced for the broadband evaluation of the mirror. Afterwards the surface is varied until the criteria reach an optimum. For the numerical optimization, in this work the gradient method and the extended Katsenelenbaum-Semenov algorithm are invented and applied. The efficient realization of the described algorithms on a computer is the significant point. The theoretical background of the presented methods for the synthesis of a mirror system is based on the general solution of the Helmholtz equation. Due to this, these methods can be utilized in other fields outside the microwave applications in

  3. Chalcogen doping of silicon via intense femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Sheehy, Michael A.; Tull, Brian R.; Friend, Cynthia M.; Mazur, Eric

    2007-01-01

    We have previously shown that doping silicon with sulfur via femtosecond-laser irradiation leads to near-unity absorption of radiation from ultraviolet wavelengths to below band gap short-wave infrared wavelengths. Here, we demonstrate that doping silicon with two other group VI elements (chalcogens), selenium and tellurium, also leads to near-unity broadband absorption. A powder of the chalcogen dopant is spread on the silicon substrate and irradiated with femtosecond-laser pulses. We examine and compare the resulting morphology, optical properties, and chemical composition for each chalcogen-doped substrate before and after thermal annealing. Thermal annealing reduces the absorption of below band gap radiation by an amount that correlates with the diffusivity of the chalcogen dopant used to make the sample. We propose a mechanism for the absorption of below band gap radiation based on defects in the lattice brought about by the femtosecond-laser irradiation and the presence of a supersaturated concentration of chalcogen dopant atoms. The selenium and tellurium doped samples show particular promise for use in infrared photodetectors as they retain most of their infrared absorptance even after thermal annealing-a necessary step in many semiconductor device manufacturing processes

  4. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    Science.gov (United States)

    Yang, Xiaoyu; Yang, Jinghuan; Hu, Xiaoyong; Zhu, Yu; Yang, Hong; Gong, Qihuang

    2015-08-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  5. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    International Nuclear Information System (INIS)

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2015-01-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm 2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials

  6. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  7. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuhai; Kasemann, Daniel, E-mail: daniel.kasemann@iapp.de; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden (Germany)

    2015-03-09

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  8. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    Science.gov (United States)

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Luminescence properties of Y2O3:Bi3+, Yb3+ co-doped phosphor for application in solar cells

    Science.gov (United States)

    Lee, E.; Kroon, R. E.; Terblans, J. J.; Swart, H. C.

    2018-04-01

    Bismuth (Bi3+) and ytterbium (Yb3+) co-doped yttrium oxide (Y2O3) phosphor powder was successfully synthesised using the co-precipitation technique. The X-ray diffraction (XRD) patterns confirmed that a single phase cubic structure with a Ia-3 space group was formed. The visible emission confirmed the two symmetry sites, C2 and S6, found in the Y2O3 host material and revealed that Bi3+ ions preferred the S6 site as seen the stronger emission intensity. The near-infrared (NIR) emission of Yb3+ increased significantly by the presence of the Bi3+ ions when compared to the singly doped Y2O3:Yb3+ phosphor with the same Yb3+ concentration. An increase in the NIR emission intensity was also observed by simply increasing the Yb3+ concentration in the Y2O3:Bi3+, Yb3+ phosphor material where the intensity increased up to x = 5.0 mol% of Yb3+ before decreasing due to concentration quenching.

  10. Single-frequency thulium-doped distributed-feedback fibre laser

    DEFF Research Database (Denmark)

    Agger, Søren; Povlsen, Jørn Hedegaard; Varming, Poul

    2004-01-01

    We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from...... a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a singlefrequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors’ knowledge, this is the first report of a single-frequency DFB fiber laser...... that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers....

  11. Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Scazza, Francesco

    2015-01-01

    This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173 Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.

  12. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  13. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  14. Electrically tunable sign of capacitance in planar W-doped vanadium dioxide micro-switches

    Directory of Open Access Journals (Sweden)

    Mohammed Soltani, Mohamed Chaker and Joelle Margot

    2011-01-01

    Full Text Available Negative capacitance (NC in a planar W-doped VO2 micro-switch was observed at room temperature in the low-frequency range 1 kHz–10 MHz. The capacitance changed from positive to negative values as the W-doped VO2 active layer switched from semiconducting to metallic state under applied voltage. In addition, a capacitance–voltage hysteresis was observed as the applied voltage was cycled from −35 to 35 V. These observations suggest that NC results from the increase of the electrically induced conductivity in the active layer. This NC phenomenon could be exploited in advanced multifunctional devices including ultrafast switches, field-effect transistors and memcapacitive systems.

  15. Compact Design of an Electrically Tunable and Rotatable Polarizer Based on a Liquid Crystal Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    In this letter, a compact electrically controlled broadband liquid crystal (LC) photonic bandgap fiber polarizer is designed and fabricated. A good fiber coupling quality between two single-mode fibers and one 10-mm-long LC-filled photonic crystal fiber is obtained and protected by using SU-8 fiber...... fixing structures during the device assembly. The total insertion loss of this all-in-fiber device is 2.7 dB. An electrically tunable polarization extinction ratio of 21.3 dB is achieved with 45$^{circ}$ rotatable transmission axis as well as switched on and off in the wavelength range of 1300–1600 nm....

  16. Fabrication and photoluminescence properties of color-tunable light emitting lanthanide doped GdVO4 hierarchitectures

    International Nuclear Information System (INIS)

    Amurisana, Bao; Bao, Lihong; Bao, Liang; Tegus, O.

    2017-01-01

    The flower-like GdVO 4 :Ln 3+ ( Ln 3+ =Eu 3+ , Dy 3+ , Sm 3+ , Tm 3+ ) hierarchitectures have been successfully synthesized on a glass slide substrate through a one-pot hydrothermal route assisted by disodium ethylenediaminetetraacetic acid (Na 2 H 2 L, where L 4- =(CH 2 COO) 2 N(CH 2 ) 2 N(CH 2 COO) 2 4- ). A high density and ordered flower-like GdVO 4 :Ln 3+ hierarchitectures grew epitaxially on glass substrate. The as-prepared flower-like architectures with the size about 6 μm are constructed by the numerous radially oriented single-crystalline nanorods with the width from 20 nm to 200 nm and the length from 500 nm to 3 μm. The morphologies, the thickness, and the density of as-grown flower clusters can be readily tuned by tailoring the growth time and Na 2 H 2 L/Gd 3+ molar ratio. The possible formation mechanism of flower-like GdVO 4 :Ln 3+ hierarchitectures is discussed on the basis of the results from the controlled experiments under hydrothermal conditions. Because of an energy transfer from vanadate groups to dopants, the flower-like GdVO 4 :Ln 3+ ( Ln 3+ =Eu 3+ , Dy 3+ , Sm 3+ and Tm 3+ ) superstructures showed strong characteristic dominant emissions of the Eu 3+ , Dy 3+ , Sm 3+ and Tm 3+ ions at 617 nm ( 5 D 0 → 7 F 2 , strong red), 575 nm ( 4 F 9/2 → 6 H 13/2 , yellow), 604 nm ( 4 G 5/2 → 6 H 7/2 , orange-red) and 476 nm ( 1 G 4 – 3 H 6 , blue) under ultraviolet excitation, respectively.Further, the emission color of the product can also be tuned by selecting the dopant Ln 3+ with characteristic emissions and varying the concentration ratio of co-doping activators. This approach could be extended to the fabrication of hierarchical structures for other oxide micro/nanomaterials, and may provide a general way to achieve multicolor-tunable emission for many applications.

  17. Barium iodide and strontium iodide crystals and scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold

    2016-09-13

    In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.

  18. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  19. Doping of two-dimensional MoS2 by high energy ion implantation

    Science.gov (United States)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  20. Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties.

    Science.gov (United States)

    Pan, Gencai; Bai, Xue; Yang, Dongwen; Chen, Xu; Jing, Pengtao; Qu, Songnan; Zhang, Lijun; Zhou, Donglei; Zhu, Jinyang; Xu, Wen; Dong, Biao; Song, Hongwei

    2017-12-13

    Cesium lead halide (CsPbX 3 ) perovskite nanocrystals (NCs) have demonstrated extremely excellent optical properties and great application potentials in various optoelectronic devices. However, because of the anion exchange, it is difficult to achieve white-light and multicolor emission for practical applications. Herein, we present the successful doping of various lanthanide ions (Ce 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Dy 3+ , Er 3+ , and Yb 3+ ) into the lattices of CsPbCl 3 perovskite NCs through a modified hot-injection method. For the lanthanide ions doped perovskite NCs, high photoluminescence quantum yield (QY) and stable and widely tunable multicolor emissions spanning from visible to near-infrared (NIR) regions are successfully obtained. This work indicates that the doped perovskite NCs will inherit most of the unique optical properties of lanthanide ions and deliver them to the perovskite NC host, thus endowing the family of perovskite materials with excellent optical, electric, or magnetic properties.

  1. Conversion of broadband IR radiation and structural disorder in lithium niobate single crystals with low photorefractive effect

    Science.gov (United States)

    Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.

    2016-11-01

    The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.

  2. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density

    International Nuclear Information System (INIS)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-01-01

    Stable n-doping of WSe 2 using thin films of SiN x deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN x act to dope WSe 2 thin flakes n-type via field-induced effect. The electron concentration in WSe 2 can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN x through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe 2 junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe 2 n-MOSFETs with a mobility of ∼70 cm 2 /V s

  3. A broadly tunable autocorrelator for ultra-short, ultra-high power infrared optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Szarmes, E.B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)

    1995-12-31

    We describe the design of a crossed-beam, optical autocorrelator that uses an uncoated, birefringent beamsplitter to split a linearly polarized incident pulse into two orthogonally polarized pulses, and a Type II, SHG crystal to generate the intensity autocorrelation function. The uncoated beamsplitter accommodates extremely broad tunability while precluding any temporal distortion of ultrashort optical pulses at the dielectric interface, and the specific design provides efficient operation between 1 {mu}m and 4 {mu}m. Furthermore, the use of Type II SHG completely eliminates any single-beam doubling, so the autocorrelator can be operated at very shallow crossed-beam angles without generating a background pedestal. The autocorrelator has been constructed and installed in the Mark III laboratory at Duke University as a broadband diagnostic for ongoing compression experiments on the chirped-pulse FEL.

  4. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  5. Continuous wave and tunable laser operation of Yb3+ in disordered NaLa(MoO4)2

    Science.gov (United States)

    Rico, M.; Liu, J.; Cano-Torres, J. M.; García-Cortés, A.; Cascales, C.; Zaldo, C.; Griebner, U.; Petrov, V.

    2005-09-01

    Continuous-wave Yb3+ laser operation is studied in single crystals of disordered NaLa(MoO4)2 at room temperature. The sample used was grown by the Czochralski technique and incorporates an Yb ion density of 3.1×1020 cm-3. The effect of the Yb concentration on some of the crystal properties is described as well as the spectroscopic Yb3+ properties at 5 K. Maximum slope efficiencies of about 40% for π and 38% for σ polarization were obtained under Ti:sapphire laser pumping near 976 nm, respectively. The maximum output power for the π polarization was 400 mW at 1039.5 nm, the threshold in this case amounted to 240 mW (absorbed pump power). The laser emission was tunable between 1016 and 1064 nm with a Lyot filter. Lasing was also realized by pumping with a fiber-coupled diode laser module. Maximum output power of 900 mW at 1035 nm was achieved in this case for the π polarization and the threshold was 280 mW. The results, in terms of output power and tunability, are superior in comparison to all previous reports on Yb-doped disordered double tungstate or molybdate crystals and represent a significant improvement in comparison to earlier experiments with low-doped Yb:NaLa(MoO4)2.

  6. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    Science.gov (United States)

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  7. High-efficiency 2 μm Tm-doped fiber laser

    International Nuclear Information System (INIS)

    Dvornikov, D.

    2013-01-01

    Full text: Tm doped fiber laser operating in so called 'eye safe' wavelength region and designed in a MOPA configuration has been demonstrated. Large-mode-area fiber design and availability of high-brightness, high-power pump diodes at 795 nm made possible maximum output power of 25 W achieved at incident pump power of 72 W resulting in optical conversion efficiency about 35%. An important factor that led to an interest in 2 μm Tm-doped lasers is significantly broader spectral tunability of Tm-doped fibers compared to Yb-doped fibers, spanning wavelengths from below 1850 nm to beyond 2100 nm, corresponding to more than 200 nm of available bandwidth. This wavelength region covers the water absorption peaks around 1940 nm, making these lasers a valuable tool for precise medical procedures including noninvasive surgery, as well as several atmospheric transmission windows that are useful for remote sensing, laser radar and range-finding. This work was carried out as part of the EU funded Joint Operational Programme 'Black Sea Basin 2007-2013' and project 2.2.1.74459.339, MIS-ETC 1443 'Research networking for the environmental monitoring and mitigation of adverse ecological effects in the Black Sea Basin (BSB Net-Eco)'.

  8. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    Science.gov (United States)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  9. Color tunable green–yellow–orange–red Er{sup 3+}/Eu{sup 3+}-codoped PbGeO{sub 3}:PbF{sub 2}:CdF{sub 2} glass phosphor for application in white-LED technology

    Energy Technology Data Exchange (ETDEWEB)

    Souza, W.S.; Domingues, R.O.; Bueno, L.A.; Costa, E.B. da; Gouveia-Neto, A.S., E-mail: artur@df.ufrpe.br

    2013-12-15

    Color tunable wide gamut light covering the greenish, yellow–green, yellow, orange, and reddish tone chromaticity region in Er{sup 3+}/Eu{sup 3+}-codoped lead–cadmium–germanate PbGeO{sub 3}:PbF{sub 2}:CdF{sub 2} glass phosphor is presented. The phosphors were synthesized, and their light emission properties examined under UV and blue LED excitation. Luminescence emission around 525, 550, 590, 610, and 660 nm was obtained and analyzed as a function of Eu/Er concentration, excitation wavelength, and glass host composition. The color tunability was actually obtained via proper combination of Er{sup 3+} and Eu{sup 3+} active ions concentration. The combination of the emission tone with blue LEDs in the region of 400–460 nm, yielded a mixture of light with color in the white-light region presenting a color correlated temperature in the range of 2000–4000 K. Results indicate that the color-tunable fluorolead germanate erbium/europium co-doped glass phosphor herein reported is a promising novel contender for application in LED-based solid-state illumination technology -- Highlights: • Color tunability in the red–orange–yellow–green spectral region. • White-light generation presenting a CCT in the range of 2000–4000 K. • New europium/erbium co-doped lead–cadmium–germanate glass phosphor.

  10. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania

    Directory of Open Access Journals (Sweden)

    Syed Z. Islam

    2017-03-01

    Full Text Available Mesoporous titania (mp-TiO2 has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light.

  11. Structural and electronic properties of a single C chain doped zigzag BN nanoribbons

    International Nuclear Information System (INIS)

    Wu, Ping; Wang, Qianwen; Cao, Gengyu; Tang, Fuling; Huang, Min

    2014-01-01

    The effects of single C-chain on the stability, structural and electronic properties of zigzag BN nanoribbons (ZBNNRs) were investigated by first-principles calculations. C-chain was expected to dope at B-edge for all the ribbon widths N z considered. The band gaps of C-chain doped N z -ZBNNR are narrower than that of perfect ZBNNR due to new localized states induced by C-chain. The band gaps of N z -ZBNNR-C(n) are direct except for the case of C-chain position n=2. Band gaps of BN nanoribbons are tunable by C-chain and its position n, which may endow the potential applications of BNNR in electronics.

  12. Electronic and ionic conductivities and point defects in ytterbium sesquioxide at high temperature

    International Nuclear Information System (INIS)

    Carpentier, J.-L.; Lebrun, A.; Perdu, F.; Tellier, P.

    1982-01-01

    From the study of complex impedance diagrams applied to a symmetric cell Pt-Yb 2 O 3 -Pt, the authors have shown the mixed character of electrical conduction within the ytterbium sesquioxide. The measurements were performed at thermodynamic equilibrium in the temperature range from 1423 to 1623 K and the partial pressure of oxygen range from 10 -12 to 1 atm. The variations of ionic and electronic conductivity as a function of Psub(O 2 ) were interpreted in terms of four different point defects in the general case of a Frenkel disorder. The relative contributions and the activation energies of conduction of these different defects were determined. (author)

  13. Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications

    International Nuclear Information System (INIS)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz; Ferrier, Alban; Goldner, Philippe; Gonçalves, Rogéria R.

    2016-01-01

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu 3+ and Er 3+ -doped Nb 2 O 5 prepared by sol–gel method. The Eu 3+ ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu 3+ -doped Nb 2 O 5 nanocrystalline powders were annealed at different temperatures to verify how the different Nb 2 O 5 crystalline phases affect the structure and the luminescence properties. Er 3+ -doped Nb 2 O 5 was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb 2 O 5 . • Eu 3+ -doped Nb 2 O 5 as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb 2 O 5 . • Potential application as biological markers. • Broad band NIR emission.

  14. Broadband in schools: towards a definition and model of broadband for South African schools

    CSIR Research Space (South Africa)

    Ford, Merryl

    2017-05-01

    Full Text Available South Africa is about to provide broadband internet connectivity to all schools in the country via the implementation of the national broadband policy. The challenge is to ensure a balance between the schools’ demand-side usage and supply...

  15. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  16. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  17. Analysis of the Proposed Ghana Broadband Strategy

    DEFF Research Database (Denmark)

    Williams, Idongesit; Botwe, Yvonne

    This project studied the Ghana Broadband Strategy with the aim of evaluating the recommendations in the strategy side by side the broadband development in Ghana. The researchers conducted interviews both officially and unofficially with ICT stakeholders, made observations, studied Government...... intervention policies recommended in the Ghana broadband policy is used to evaluate the broadband market to find out whether the strategy consolidates with the Strengths and opportunities of the market and whether it corrects the anomalies that necessitate the weaknesses and threats to the market....... The strategy did address some threats and weaknesses of the broadband market. It also consolidated on some strengths and opportunities of the broadband market. The researchers also discovered that a market can actually grow without a policy. But a market will grow faster if a well implemented policy is guiding...

  18. Peramalan Pengguna Broadband di Indonesia [Forecasting of Broadband Users in Indonesia

    Directory of Open Access Journals (Sweden)

    Azwar Aziz

    2016-07-01

    Full Text Available Negara Indonesia memiliki peluang yang sangat besar untuk merealisasikan potensi pitalebar, mengingat Indonesia memiliki jumlah penduduk 253 juta orang dan pengguna internet 88,1 juta orang pada tahun 2014. Di sisi lain sektor komunikasi (salah satunya termasuk telekomunikasi merupakan satu-satunya sektor yang secara konsisten memberikan kontribusi pertumbuhan terhadap Pendapatan Domestik Bruto (PDB sebesar dua angka (double digit. Kemudian peran penting pemerintah adalah selalu mengantisipasi dalam membuat regulasi telekomunikasi, salah satu nya untuk mempercepat penggelaran prasarana pitalebar, seperti menerbitkan Peraturan Presiden RI. Nomor 96 Tahun 2014 tentang Rencana Pitalebar Indonesia 2014 – 2019.  Secara riil pembangunan jaringan pitalebar di Indonesia masih dilakukan di kota-kota besar, mengingat pengguna telekomunikasi sebagian besar berada di kota-kota besar. Selain itu perangkat hanset atau handphone, ketersediaan di pasaran masih terbatas dan harganya masih mahal. Kajian ini menggunakan metodologi penelitian kuantitatif dengan menghitung peramalan dan kualitatif, dengan melakukan observasi atau pengamatan langsung ke lapangan kepada perusahaan Telkom, Telkomsel, XL Axiata dan Indosat. Selanjutnya hasil penelitian ini diperoleh lima faktor yang mempengaruhi penggunaan pitalebar yaitu jumlah penduduk, produk domestik bruto, pendapatan per kapita, laju pertumbuhan ekonomi dan inflasi, dan laju penetrasi. Selain itu, hasil pitalebar menunjukkan pengguna pitalebar lima tahun kedepan selalu meningkat.*****Indonesia has a tremendous opportunity to implement the potential of broadband, as Indonesia has a population of 253 million people and 88.1 million Internet users in 2014. On the other hand, the communication sector (one of them including telecommunications is the only sector that is consistently contributed to the growth of Gross Domestic Product (GDP as many as two numbers (double-digit. Then the important role of government is

  19. Role of electron filling in the magnetic anisotropy of monolayer WSe2 doped with 5 d transition metals

    Science.gov (United States)

    Song, Yan; Wang, Xiaocha; Mi, Wenbo

    2017-12-01

    Exploring magnetic anisotropy (MA) in single-atom-doped two-dimensional materials provides a viable ground for realizing information storage and processing at ultimate length scales. Herein, the MA of 5 d transition-metal doped monolayer WSe2 is investigated by first-principles calculations. Large MA energy (MAE) is achieved in several doping systems. The direction of MA is determined by the dopant in-plane d states in the vicinity of the Fermi level in line with previous studies. An occupation rule that the parity of the occupation number of the in-plane d orbital of the dopant determines the preference between in-plane and out-of-plane anisotropy is found in this 5 d -doped system. Furthermore, this rule is understood by second-order perturbation theory and proved by charge-doping analysis. Considering relatively little research on two-dimensional MA and not sufficiently large MAE, suitable contact medium dopant pairs with large MAE and tunable MA pave the way to novel data storage paradigms.

  20. Overview of ultraviolet and infrared spectroscopic properties of Yb3+ doped borate and oxy-borates compounds

    International Nuclear Information System (INIS)

    Sablayrolles, J.

    2006-12-01

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li 6 Y(BO 3 ) 3 and two oxy-borates: LiY 6 O 5 (BO 3 ) 3 and Y 17,33 B 8 O 38 . For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li 6 Y(BO 3 ) 3 : Yb 3+ . An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li 6 Y(BO 3 ) 3 : Yb 3+ crystal are reported. (author)

  1. 47 CFR 27.1305 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  2. 47 CFR 90.1405 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  3. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  4. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  5. Impulse voltage control of continuously tunable bipolar resistive switching in Pt/Bi{sub 0.9}Eu{sub 0.1}FeO{sub 3}/Nb-doped SrTiO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Maocai; Liu, Meifeng; Wang, Xiuzhang [Hubei Normal University, Institute for Advanced Materials, and School of Physics and Electronic Science, Huangshi (China); Li, Meiya; Zhu, Yongdan; Zhao, Meng; Zhang, Feng; Xie, Shuai [Wuhan University, School of Physics and Technology, and Key Laboratory of Artificial Micro/Nano Structures of the Ministry of Education, Wuhan (China); Hu, Zhongqiang [Northeastern University, Department of Electrical and Computer Engineering, Boston, MA (United States); Liu, Jun-Ming [Nanjing University, Laboratory of Solid State Microstructures, Nanjing (China)

    2017-03-15

    Epitaxial Bi{sub 0.9}Eu{sub 0.1}FeO{sub 3} (BEFO) thin films are deposited on Nb-doped SrTiO{sub 3} (NSTO) substrates by pulsed laser deposition to fabricate the Pt/BEFO/NSTO (001) heterostructures. These heterostructures possess bipolar resistive switching, where the resistances versus writing voltage exhibits a distinct hysteresis loop and a memristive behavior with good retention and anti-fatigue characteristics. The local resistive switching is confirmed by the conductive atomic force microscopy (C-AFM), suggesting the possibility to scale down the memory cell size. The observed memristive behavior could be attributed to the ferroelectric polarization effect, which modulates the height of potential barrier and width of depletion region at the BEFO/NSTO interface. The continuously tunable resistive switching behavior could be useful to achieve non-volatile, high-density, multilevel random access memory with low energy consumption. (orig.)

  6. Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Noor-Ul-Ain

    2016-11-01

    Full Text Available Tuning the emission energy of graphene quantum dots (GQDs and understanding the reason of tunability is essential for the GOD function in optoelectronic devices. Besides material-based challenges, the way to realize chemical doping and band gap tuning also pose a serious challenge. In this study, we tuned the emission energy of GQDs by substitutional doping using chlorine, nitrogen, boron, sodium, and potassium dopants in solution form. Photoluminescence data obtained from (Cl- and N-doped GQDs and (B-, Na-, and K-doped GQDs, respectively exhibited red- and blue-shift with respect to the photoluminescence of the undoped GQDs. X-ray photoemission spectroscopy (XPS revealed that oxygen functional groups were attached to GQDs. We qualitatively correlate red-shift of the photoluminescence with the oxygen functional groups using literature references which demonstrates that more oxygen containing groups leads to the formation of more defect states and is the reason of observed red-shift of luminescence in GQDs. Further on, time resolved photoluminescence measurements of Cl- and N-GQDs demonstrated that Cl substitution in GQDs has effective role in radiative transition whereas in N-GQDs leads to photoluminescence (PL quenching with non-radiative transition to ground state. Presumably oxidation or reduction processes cause a change of effective size and the bandgap.

  7. Broadband dielectric characterization of sapphire/TiOx/Ba₀.₃Sr₀.₇TiO₃ (111)-oriented thin films for the realization of a tunable interdigitated capacitor.

    Science.gov (United States)

    Ghalem, Areski; Ponchel, Freddy; Remiens, Denis; Legier, Jean-Francois; Lasri, Tuami

    2013-05-01

    A complete microwave characterization up to 67 GHz using specific coplanar waveguides was performed to determine the dielectric properties (permittivity, losses, and tunability) of sapphire/TiOx/Ba0.3Sr0.7TiO3 (BST) (111)-oriented thin films. To that end, BaxSr1-xTiO3 thin films were deposited by RF magnetron sputtering on sapphire (0001) substrate. To control the preferred (111) orientation, a TiOx buffer layer was deposited on sapphire. According to the detailed knowledge of the material properties, it has been possible to conceive, fabricate, and test interdigitated capacitors, the basic element for future microwave tunable applications. Retention of capacitive behavior up to 67 GHz and a tunability of 32% at 67 GHz at an applied voltage of 30 V (150 kV/cm) were observed. The Q-factor remains greater than 30 over the entire frequency band. The possibility of a complete characterization of the material for the realization of high-performance interdigitated capacitors opens the door to microwave device fabrication.

  8. Waveguide source of amplified spontaneous emission ASE 1550 nm

    International Nuclear Information System (INIS)

    Razik, M.; Budnicki, A.; Abramski, M.

    2003-01-01

    Light source of amplified spontaneous emission (ASE) type has been built on the base of double-clad waveguide doped with ytterbium and erbium. The characteristics and applications of the ASE source have been also presented

  9. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  10. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  11. TUNABLE MAGNETIC AND ELECTRICAL PROPERTIES OF Co-DOPED ZnO FILMS BY VARYING OXYGEN PARTIAL PRESSURE

    OpenAIRE

    L. G. WANG; H. W. ZHANG; X. L. TANG; Y. X. LI; Z. Y. ZHONG

    2011-01-01

    High quality Co-doped ZnO films with good reproducibility have been prepared under different oxygen partial pressure by radio-frequency magnetron sputtering. These films were characterized using numerous characterization techniques including X-ray diffraction, electrical transport, and magnetization measurements. The effect of oxygen partial pressure on the structural, magnetic, and electrical properties of Co-doped ZnO films has been systematically studied. It was found that the structural, ...

  12. Efficient green and red up-conversion emissions in Er/Yb co-doped TiO{sub 2} nanopowders prepared by hydrothermal-assisted sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Rached, E-mail: salhi_rached@yahoo.fr [Laboratoire de chimie industrielle, Ecole Nationale d’ingénieurs de Sfax, Université de Sfax, 3018 Sfax (Tunisia); Deschanvres, Jean-Luc [Laboratoire des Matériaux et du Génie Physique, 3 Parvis Louis Néel, BP 257, 38016 Grenoble (France)

    2016-08-15

    In this work, erbium and ytterbium co-doped titanium dioxide (Er–Yb:TiO{sub 2}) nanopowders have been successfully prepared by hydrothermal-assisted sol–gel method using supercritical drying of ethyl alcohol and annealing at 500 °C for 1 h. Nanopowders were prepared with fixed 5 mol% Erbium concentration and various Ytterbium concentrations of 5 and 10 mol%. The powders were characterized by studying their structural, morphology and photo-luminescent properties. The annealing treatment at 500 °C was found to enhance the crystallinity of the TiO{sub 2} anatase structure and the upconversion (UC) emission of the nanopowders. UC emissions were investigated under 980 nm excitation, and the Er–Yb:TiO{sub 2} nanopowders exhibited the intense green (520–570 nm) and red (640–690 nm) upconverted emissions of Er ions originating from an efficient Yb–Er energy transfer process. The absolute upconversion quantum yield (UC-QY) of each nanopowders was measured for the UC emissions centered at 525, 550 and 655 nm at varying excitation power densities. UC-QY analysis has revealed that 5 mol% Er–5 mol% Yb:TiO{sub 2} nanopowders possess the highest total quantum yield of 2.8±0.1% with a power density of 16.7 W/cm{sup 2}. These results make these nanopowders promising materials for efficient upconversion in photonic applications.

  13. Up-conversion mechanisms in Er{sup 3+} doped YbAG crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczkan, Marcin; Borowska, Maja [Institute of Microelectronics and Optoelectronics PW, Warsaw (Poland); Malinowski, Michal [Institute of Microelectronics and Optoelectronics PW, Warsaw (Poland); Institute of Electronic Materials Technology, Warsaw (Poland); Lukasiewicz, Tadeusz; Kolodziejak, Katarzyna [Institute of Electronic Materials Technology, Warsaw (Poland)

    2009-07-15

    Up-conversion phenomena leading to the red, green and violet emissions in erbium doped ytterbium-aluminum garnet (YbAG) are investigated. Absorption and emission spectra and luminescence dynamics from various excited states of YbAG:Er{sup 3+} were registered. The low temperature absorption spectra were used to determine Stark levels energies of Er{sup 3+} ion in the investigated host. Emissions from the high lying excited states {sup 2}G{sub 9/2}, {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} of Er{sup 3+} were characterized under pulsed multi-photon IR excitation in the region of wavelength corresponding to the strong {sup 2}F{sub 7/2} {yields} {sup 2}F{sub 5/2} absorption transition of Yb{sup 3+} ions. Using the rate equations formalism the dynamics of the observed emissions were modeled. From the comparison of the measured and calculated decays the energy transfer rates between Yb{sup 3+} and Er{sup 3+} ions were evaluated. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  15. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  16. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  17. Trace electrochemical analysis of Europium, Ytterbium, and Cerium at their joint presence in solution

    Directory of Open Access Journals (Sweden)

    Rema Matakova

    2012-03-01

    Full Text Available In the course of several decades at the department of analytical chemistry and chemistry of rare elements there were studied the electrode processes with participation of rare-earth metals (REM in accordance with the long awaiting problem of the development of rare-metal and rare-earth branch of non-ferrous metallurgy of Kazakhstan. With the aim of express and highly sensitive analytical control of raw materials and final product of rare-earth industry there were developed the methods of inversion-voltamperometric determination of low concentrations of europium, ytterbium and cerium under the conditions of their individual and combined presence in the solution.

  18. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  19. A femtosecond Yb-doped fiber laser with generalized vector vortex beams output (Conference Presentation)

    Science.gov (United States)

    Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping

    2017-03-01

    Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.

  20. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Katherine P.; Russek, Stephen E., E-mail: stephen.russek@nist.gov; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Geiss, Roy H. [Colorado State University, Fort Collins, Colorado 80523 (United States); Arenholz, Elke [Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, California 94720 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  2. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    International Nuclear Information System (INIS)

    Rice, Katherine P.; Russek, Stephen E.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-01-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures

  3. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  4. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    Science.gov (United States)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  5. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  6. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  7. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  8. Advent of broadband public-switched communications

    Science.gov (United States)

    Casey, John J.

    1992-02-01

    Advances in data communications infrastructure, display technology, and man-machine interfaces have changed business applications and the requirements of public network data transport. These changes have created opportunities for a new generation of public broadband services to more efficiently extend high speed communications capabilities beyond the customer premises. This paper provides a view of the technology and market evolution of these public broadband data communications services, and suggests early customer networked applications that justify the deployment of a public switched broadband network infrastructure.

  9. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  10. Customer Churn Prediction for Broadband Internet Services

    Science.gov (United States)

    Huang, B. Q.; Kechadi, M.-T.; Buckley, B.

    Although churn prediction has been an area of research in the voice branch of telecommunications services, more focused studies on the huge growth area of Broadband Internet services are limited. Therefore, this paper presents a new set of features for broadband Internet customer churn prediction, based on Henley segments, the broadband usage, dial types, the spend of dial-up, line-information, bill and payment information, account information. Then the four prediction techniques (Logistic Regressions, Decision Trees, Multilayer Perceptron Neural Networks and Support Vector Machines) are applied in customer churn, based on the new features. Finally, the evaluation of new features and a comparative analysis of the predictors are made for broadband customer churn prediction. The experimental results show that the new features with these four modelling techniques are efficient for customer churn prediction in the broadband service field.

  11. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  12. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Data.gov (United States)

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  13. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers

    Science.gov (United States)

    Sharma, Venus; Srivastava, Sunita

    2018-04-01

    Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.

  14. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.

    Science.gov (United States)

    DiPippo, William; Lee, Bong Jae; Park, Keunhan

    2010-08-30

    This paper reports the design analysis of a microfabricatable mid-infrared (mid-IR) surface plasmon resonance (SPR) sensor platform. The proposed platform has periodic heavily doped profiles implanted into intrinsic silicon and a thin gold layer deposited on top, making a physically flat grating SPR coupler. A rigorous coupled-wave analysis was conducted to prove the design feasibility, characterize the sensor's performance, and determine geometric parameters of the heavily doped profiles. Finite element analysis (FEA) was also employed to compute the electromagnetic field distributions at the plasmon resonance. Obtained results reveal that the proposed structure can excite the SPR on the normal incidence of mid-IR light, resulting in a large probing depth that will facilitate the study of larger analytes. Furthermore, the whole structure can be microfabricated with well-established batch protocols, providing tunability in the SPR excitation wavelength for specific biosensing needs with a low manufacturing cost. When the SPR sensor is to be used in a Fourier-transform infrared (FTIR) spectroscopy platform, its detection sensitivity and limit of detection are estimated to be 3022 nm/RIU and ~70 pg/mm(2), respectively, at a sample layer thickness of 100 nm. The design analysis performed in the present study will allow the fabrication of a tunable, disposable mid-IR SPR sensor that combines advantages of conventional prism and metallic grating SPR sensors.

  15. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  16. High-Power Yb-Doped Solid-Core Photonic Bandgap Fiber Amplifier at 1150-1200nm

    DEFF Research Database (Denmark)

    Maruyama, H.; Shirakawa, A.; Ueda, K.

    2008-01-01

    Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained.......Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained....

  17. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya; Yang, Yang; Khan, Jafar I.; Alarousu, Erkki; Guo, Zaibing; Zhang, Xixiang; Zhang, Qiang; Mohammed, Omar F.

    2014-01-01

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  18. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya

    2014-06-11

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  19. A mass spectrometric study of the neutral and ionic vapor components of ytterbium chlorides; formation enthalpies of YbCl2 and YbCl3 molecules, and YbCl3- and YbCl4- ions in the gas phase

    International Nuclear Information System (INIS)

    Kuznetsov, F.Yh.; Kudin, L.S.; Pogrebnoj, A.M.; Butman, M.F.; Burdukovskaya, G.G.

    1997-01-01

    Ionic and neutral components of saturated vapour over the ytterbium di-and trichloride is studied through the Knudsen effusive method with mass-spectromic registration of evaporated products within the temperature range of 1000-1300 K. It is found that ytterbium trichloride is subjected to thermal decomposition with formation of ytterbium dichloride and molecular chloride. Sublimation enthalpy and enthalpy of YbCl 2 and YbCl 3 molecules formation in a gaseous phase at 298 K, comprising 356±6, 293±8, -425±6 and -667±6 kJ/mole correspondingly, are determined with application of 2 and 3 thermodynamical laws. Enthalpies of YbCl 3 - and YbCl 4 - negative ions formation in a gaseous phase at 298 K equal to -895 and -1211±30 kJ/mole correspondingly are calculated by measured equilibrium constants ion-molecular reaction. 30 refs., 3 figs., 3 tabs

  20. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  1. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  2. Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions

    CSIR Research Space (South Africa)

    Kabongo, GL

    2014-01-01

    Full Text Available In this work, the sol–gel method was used to prepare Ytterbium (Yb(sup3+)) doped ZnO nano-phosphors with different concentrations of Yb(sup3+) ions. Their structural, morphological, photoluminescence, electronic states and the chemical composition...

  3. Chaos-assisted broadband momentum transformation in optical microresonators

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-01

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

  4. Polarization-Independent Electrically Tunable Holographic Polymer Dispersed Liquid Crystals Grating Doped with Chiral Molecules

    Directory of Open Access Journals (Sweden)

    Hui LI

    2017-08-01

    Full Text Available This study proposes a holographic grating made of polymer dispersed liquid crystal (PDLC, with a small amount of chiral molecules doped into PDLC material. The major advantage of this grating is that it is independent of light polarization. This characteristic was verified by applying the interference beam intensity of a He-Cd laser at 150 mW/cm2, with an incidence angle between the two interference beams of 24°, for an irradiation curing duration of 120 s. The observed periodic structure of the grating is consistent with the theoretical value. As chiral molecules are doped, nematic-LC experiences a phase-change in the grating. However, the electro-optical features are only slightly affected. This proposed grating has greatly potential in 3D imaging because of its polarization-independent feature.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16312

  5. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A [National Research Nuclear University ' MEPhI' (Russian Federation)

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  6. Evolution of electronic structure in highly charge doped MoS2 compounds

    Science.gov (United States)

    Bin Subhan, Mohammed; Watson, Matthew; Liu, Zhongkai; Walters, Andrew; Hoesch, Moritz; Howard, Chris; Diamond I05 beamline Collaboration

    Transition-metal dichalcogenides (TMDCs) are a group of layered materials that exhibit a rich array of electronic ground states including semiconductivity, metallicity, superconductivity and charge density waves. In recent years, 2D TMDCs have attracted considerable attention due to their unique properties and potential applications in optoelectronics. It has been shown that the charge carrier density in few layer MoS2 can be tunably increased via electrostatic gating. At high levels of doping, MoS2 exhibits superconductivity with a dome-like dependence of Tc on doping analogous to that found in the cuprate superconductors. High doping can also be achieved via intercalation of alkali metals in bulk MoS2. The origin of this superconductivity is not yet fully understood with predictions ranging from exotic pairing mechanisms in bulk systems to Ising superconductivity in single layers. Despite these interesting properties, there has been limited research to date on the electronic structure of these doped compounds. Here we present our work on alkali metal intercalated MoS2 using the low temperature metal ammonia solution method. Using X-ray diffraction, Raman spectroscopy and ARPES measurements we will discuss the physical and electronic structure of these materials. EPSRC, Diamond Light Source.

  7. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  8. An Assessment of Emerging Wireless Broadband Technologies

    National Research Council Canada - National Science Library

    Fountanas, Leonidas

    2001-01-01

    ... technologies in providing broadband services today, emerging wireless broadband technologies are expected to significantly increase their market share over the next years, Deploying a wireless network...

  9. The gadolinium nitrate-carbamide-water and the ytterbium nitrate-carbamide-water systems at 30 deg C

    International Nuclear Information System (INIS)

    Khudajbergenova, N.; Sulajmankulov, K.

    1980-01-01

    Gadolinium nitrate-carbamide-water(1) and ytterbium nitrate-carbamide-water(2) systems are studied at 30 deg C by the solubility method. Two new compounds are formed in the system(1). One of them is incongruent Gd(NO 3 ) 3 x3CON 2 H 4 and Gd(NO 3 ) 3 x4CON 2 H 4 is congruently soluble. Incongruent compound of Yb(NO 3 ) 3 xCON 2 H 4 composition and congruently soluble Yb(NO 3 ) 3 x4CON 2 H 4 are also formed in the system(2). Presented are solubility isotherms of the systems [ru

  10. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  11. Broadband Wireline Provider Service Summary; BBRI_wirelineSum12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of broadband Internet access in Rhode Island via all wireline technologies assessed by Broadband Rhode Island. Broadband...

  12. Nanostructured rare earth doped Nb{sub 2}O{sub 5}: Structural, optical properties and their correlation with photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Rafael Ramiro; Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); Goldner, Philippe [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Gonçalves, Rogéria R., E-mail: rrgoncalves@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP CEP 14040-901 (Brazil)

    2016-02-15

    In the present work, we report on a systematic study on structural and spectroscopic properties Eu{sup 3+} and Er{sup 3+}-doped Nb{sub 2}O{sub 5} prepared by sol–gel method. The Eu{sup 3+} ions were used as structural probe to determine the symmetry sites occupied by lanthanide ions. The Eu{sup 3+}-doped Nb{sub 2}O{sub 5} nanocrystalline powders were annealed at different temperatures to verify how the different Nb{sub 2}O{sub 5} crystalline phases affect the structure and the luminescence properties. Er{sup 3+}-doped Nb{sub 2}O{sub 5} was prepared showing an intense NIR luminescence, and, visible luminescence on the green and red, deriving from upconversion process. The synthetized materials can find widespread applicability in photonics as red luminophor for white LED (with tricolor), optical amplifiers and upconverter materials. - Highlights: • Vis and NIR emission from nanostructured lanthanide doped Nb{sub 2}O{sub 5}. • Eu{sup 3+}-doped Nb{sub 2}O{sub 5} as Red luminophor. • Multicolor tunability of intense upconversion emission from lanthanide doped Nb{sub 2}O{sub 5}. • Potential application as biological markers. • Broad band NIR emission.

  13. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    Science.gov (United States)

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  14. Switchable Q-switched and modelocked operation in ytterbium doped fiber laser under all-normal-dispersion configuration

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal; Singh, Amarjeet; Sharma, Sunil K.; Bindra, Kushvinder S.; Oak, Shrikant M. [Solid State Laser Division, Raja Ramanna Center for Advanced Technology, Indore, M.P. 452013 (India)

    2015-03-15

    We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmission characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.

  15. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  16. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  17. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward; van der Werf, Kees; Hollink, Anton; Worhoff, Kerstin; de Ridder, R.M.; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminium oxide is presented. Single micro-particles with diameters ranging between 1 μm and 20 μm are detected.

  18. Analisis Perkembangan Internet Broadband di Daerah Perbatasan Sulawesi Utara

    Directory of Open Access Journals (Sweden)

    Riva'atul Adaniah Wahab

    2016-12-01

    Full Text Available Adopsi teknologi internet broadband dapat memberikan dampak ekonomi bagi masyarakat perbatasan. Karenanya pemerataan pembangunan internet broadband di wilayah  ini harus segera diwujudkan. Penelitian deskriptif kuantitatif ini dilaksanakan di wilayah perbatasan Provinsi Sulawesi Utara untuk mengetahui kondisi aspek supply dan demand perkembangan internet broadband di wilayah tersebut. Berdasarkan hasil penelitian, dapat disimpulkan bahwa dari aspek supply, kondisi infrastruktur masih sangat kurang, ketersediaan layanan internet broadband berkualitas tinggi dengan tarif rendah juga masih sulit diwujudkan. Dari aspek demand, stigma atau persepsi masyarakat bahwa internet tidak penting menjadi salah satu faktor penyebab tidak memiliki akses internet. Adapun hambatan yang paling dominan adalah ketidakpahaman dalam penggunaan internet. Faktor ini juga menjadi mendasari literasi internet broadband masyarakat pada level 0 yaitu  tidak peduli akan pentinya internet. Menanggapai kondisi ini, penyusunan dan penetapan kebijakan serta regulasi seperti QoS layanan, tarif interkoneksi, infrastructure sharing dibuat untuk menyediakan internet broadband berkualitas tinggi dengan harga murah. Selain itu distribusi perangkat mobile berharga murah (smartphone juga perlu didorong dengan penerapan TKDN untuk produksi perangkat. Tidak kalah pentingnya adalah peningkatan literasi internet broadband masyarakat melalui sosialisasi atau pelatihan baik formal maupun nonformal. Abstract   Adoption of internet broadband internet can provide the economic impact for border communities. Hence equitable development of internet broadband in the region should be immediately implemented. This quantitative descriptive study was conducted in the border region of North Sulawesi to determine the condition of supply and demand aspects of the development of internet broadband. Based on the results, it can be concluded that from the aspect of supply, the condition of the

  19. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  20. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2014-01-08

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs) was selected as the base photoelectrode. The self-doped TiO2 NTPCs demonstrated a 10-fold increase in visible-light photocurrent density compared to the nondoped one, and the optimized saturation photocurrent density under simulated AM 1.5G illumination was identified to be 2.5 mA cm-2 at 1.23 V versus reversible hydrogen electrode, which is comparable to the highest values ever reported for TiO2-based photoelectrodes. The significant enhancement of photoelectrochemical performance can be ascribed to the rational coupling of morphological and electronic features of the self-doped TiO 2 NTPCs: (1) the periodically morphological structure of the photonic crystal layer traps broadband visible light, (2) the electronic interband state induced from self-doping of Ti3+ can be excited in the visible-light region, and (3) the captured light by the photonic crystal layer is absorbed by the self-doped interbands. © 2013 American Chemical Society.

  1. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  2. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  3. Dynamic population gratings in rare-earth-doped optical fibres

    International Nuclear Information System (INIS)

    Stepanov, Serguei

    2008-01-01

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  4. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  5. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    Science.gov (United States)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  6. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic

  7. Tunable eye-safe Er:YAG laser

    International Nuclear Information System (INIS)

    Němec, M; Šulc, J; Indra, L; Fibrich, M; Jelínková, H

    2015-01-01

    Er:YAG crystal was investigated as the gain medium in a diode (1452 nm) pumped tunable laser. The tunability was reached in an eye-safe region by an intracavity birefringent filter. The four tuning bands were obtained peaking at wavelengths 1616, 1632, 1645, and 1656 nm. The broadest continuous tunability was 6 nm wide peaking at 1616 nm. The laser was operating in a pulsed regime (10 ms pulse length, 10 Hz repetition rate). The maximum mean output power was 26.5 mW at 1645 nm. The constructed system demonstrated the tunability of a resonantly diode-pumped Er:YAG laser which could be useful in the development of compact diode-pumped lasers for spectroscopic applications. (paper)

  8. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    Science.gov (United States)

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  9. Optical properties of highly Er{sup 3+}-doped sodium-aluminium-phosphate glasses for broadband 1.5 {mu}m emission

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. Amarnath [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Babu, S. Surendra [Laser Instrumentation Design Centre, Instrument Research and Development Establishment, Dehradun 248008 (India); Pradeesh, K. [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Otton, C.J. [Valencia Nanophotonics Technology Center, Universidad Politecnica de Valencia, 46022 Valencia (Spain); Vijaya Prakash, G., E-mail: prakash@physics.iitd.ac.in [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2011-03-03

    Research highlights: > Highly Er{sup 3+} doped phosphate glasses for the 1.54 {mu}m laser emission were explored. > Emission from these doped glasses shows larger lifetimes and quantum efficiencies. > Optical amplifier parameters are greater than other reported phosphate glasses. > The durability and obtained results are most favourable for short-length amplifiers. - Abstract: Erbium-doped Na{sub 3}Al{sub 2}P{sub 3}O{sub 12} (NAP) glasses with compositions 92NAP-(8-x)Al{sub 2}O{sub 3}-(x)Er{sub 2}O{sub 3} (where x = 2-8) were prepared and characterized for absorption, visible and NIR emission and decay time properties. Judd-Ofelt analysis has been carried out to predict radiative properties of luminescent levels of Er{sup 3+} ions. Comparatively larger photoluminescence lifetimes (7.86 ms) and larger quantum efficiencies (74%) for the laser transition, {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} (at 1.54 {mu}m) are observed. The moisture insensitivity, large Er{sup 3+} ion doping capability and relatively high-gain and broad emission at 1.5 {mu}m are the most notable features of these glasses to realize efficient short-length optical amplifiers.

  10. Chaos-assisted broadband momentum transformation in optical microresonators.

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Anodic Titania Nanotube Arrays Sensitized with Mn- or Co-Doped CdS Nanocrystals

    International Nuclear Information System (INIS)

    Smith, York R.; Gakhar, Ruchi; Merwin, Augustus; Mohanty, Swomitra K.; Chidambaram, Dev; Misra, Mano

    2014-01-01

    Highlights: • Mn or Co doped CdS where synthesized and deposited onto TiO 2 nanotubular arrays. • Synthesis and deposition were achieved simultaneously using SILAR method. • Various characterization techniques demonstrate lattice incorporation of dopant. • Photoelectrochemical performance was analyzed using AM 1.5 irradiation. • Dopants increases depletion width of CdS and increase photoelectrochemical responses. - Abstract: The use of doped luminescent nanocrystals or quantum dots have mainly been explored for imaging applications; however, recently they have gained interest in solar energy conversion applications due to long electron lifetimes, tunable band gaps and emission by compositional control. In this study, we have examined the application of Mn or Co doped CdS nanocrystals as a sensitizing layer over titania nanotubular arrays synthesized via electrochemical anodization in photoelectrochemical applications. The doped and undoped CdS nanocrystals were simultaneously synthesized and deposited onto the titania surface by adoption of a successive ion layer adsorption-reaction (SILAR) method. Various characterization methods indicate lattice incorporation of the dopant within CdS. The addition of dopants to CdS was found to improve the photoelectrochemical performance by increasing the depletion width of the CdS nanocrystals and reducing recombination losses of charge carriers

  12. Broadband availability in metropolitan and non-metropolitan Pennsylvania

    Directory of Open Access Journals (Sweden)

    Lawrence E. Wood

    2016-09-01

    Full Text Available Over the past few years having a broadband connection has become essential for many Internet activities. As broadband increases in importance, it becomes imperative to assess how its use and availability may vary, especially in relation to issues such as geographic location. For rural areas in particular, the availability of broadband service is especially important. This research assesses broadband service availability in rural areas of Pennsylvania, USA. In particular, it examines the extent to which Digital Subscriber Line (DSL and broadband cable modem services are being deployed throughout rural Pennsylvania. It compares this deployment with the availability of such services in the state’s urban and metropolitan areas. The results of this research suggest that there is a “digital divide” in terms of broadband availability between rural and urban areas of Pennsylvania. However, this “divide” is perhaps not as wide as might be expected. Thus, as broadband is becoming increasingly available in rural areas of the U.S. and throughout much of the rest of the world, this research concludes that while research must remain vigilant in terms of assessing advanced telecommunications availability in rural areas, future research should also be sure to focus on how such technologies can be used to promote economic and social concerns, including in relation to building online networks and diminishing social and professional isolation in rural areas.

  13. Infrared frequency-tunable coherent thermal sources

    International Nuclear Information System (INIS)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-01-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor–capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm −1 . The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region. (paper)

  14. Analyzing Broadband Divide in the Farming Sector

    DEFF Research Database (Denmark)

    Jensen, Michael; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2013-01-01

    , upstream and downstream connection. The main constraint is that farms are naturally located in rural areas where the required access broadband data rates are not available. This paper studies the broadband divide in relation to the Danish agricultural sector. Results show how there is an important......Agriculture industry has been evolving for centuries. Currently, the technological development of Internet oriented farming tools allows to increase the productivity and efficiency of this sector. Many of the already available tools and applications require high bandwidth in both directions...... difference between the broadband availability for farms and the rest of the households/buildings the country. This divide may be slowing down the potential technological development of the farming industry, in order to keep their competitiveness in the market. Therefore, broadband development in rural areas...

  15. Wideband multi-element Er-doped fiber amplifier

    International Nuclear Information System (INIS)

    Thipparapu, N K; Jain, S; May-Smith, T C; Sahu, J K

    2014-01-01

    A multi-element Er-doped fiber amplifier (MEEDFA) is demonstrated in which the gain profile is extended into the S and L bands. Each fiber element of the MEEDFA is found to provide a maximum gain of 37 dB and a noise figure of < 4 dB in the C-band. The gain profile of the amplifier is shifted towards longer wavelength by cascading fiber elements. The novel geometry of the multi-element fiber (MEF) could allow for the development of a broadband amplifier in a split-band configuration. The proposed amplifier can operate in the wavelength band of 1520 to 1595 nm (75 nm), with a minimum gain of 20 dB. (letter)

  16. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Well-crystalline structured ZnO nanoparticles with cobalt (Co) and ytterbium (Yb) multiple ions doping were successfully synthesized by the chemical precipitation technique. The structures, optical and magnetic properties of the samples were analysed with X-ray diffraction (XRD), UV–visible spectroscopy and magnetic ...

  18. Undulator tunability and synchrotron ring-energy

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Sheony, G.K.

    1992-01-01

    An undulator has two properties which make it an extremely attractive source of electromagnetic radiation. The first is that the radiation is concentrated in a number of narrow energy bands known as harmonics of the device. The second characteristic is that under favorable operating conditions, the energy of these harmonics can be shifted or open-quote tunedclose quotes over an energy interval which can be as large as two or three times the value of the lowest energy harmonic. Both the photon energy of an undulator as well as its tunability are determined by the period, λ, of the device, the magnetic gap, G (which is larger than the minimum aperture required for injection and operation of the storage ring) and the storage ring energy E R . Given the photon energy, E p , the above parameters ultimately define the limits of operation or tunability of the undulator. In general, the larger the tunability range, the more useful the device. Therefore, for a given required maximum photon energy, it is desirable to find the operating conditions and device parameters which result in the largest tunability interval possible. With this in mind, we have investigated the question of undulator tunability with emphasis on the role of the ring energy in order to find the smallest E R consistent with the desired tunability interval and photon energy. As a guideline, we have included a preliminary criteria, concerning the tunability requirements for the Advanced Photon Source (APS) to be built at Argonne. The analysis is aimed at X-ray undulator sources on the APS but is applicable to any storage ring

  19. Combined effect of oxygen deficient point defects and Ni doping in radio frequency magnetron sputtering deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Saha, B., E-mail: biswajit.physics@gmail.com [Thin Film and Nano Science Laboratory, Department of Physics, Jadavpur University, 700 032 Kolkata (India); Department of Physics, National Institute of Technology Agartala, Jirania 799046, Tripura (India); Das, N.S.; Chattopadhyay, K.K. [Thin Film and Nano Science Laboratory, Department of Physics, Jadavpur University, 700 032 Kolkata (India)

    2014-07-01

    Ni doped ZnO thin films with oxygen deficiency have been synthesized on glass substrates by radio frequency magnetron sputtering technique using argon plasma. The combined effect of point defects generated due to oxygen vacancies and Ni doping on the optical and electrical properties of ZnO thin films has been studied in this work. Ni doping concentrations were varied and the structural, optical and electrical properties of the films were studied as a function of doping concentrations. The films were characterized with X-ray diffractometer, UV–Vis–NIR spectrophotometer, X-ray photoelectron spectroscopy, atomic force microscopy and electrical conductivity measurements. Oxygen deficient point defects (Schottky defects) made the ZnO thin film highly conducting while incorporation of Ni dopant made it more functional regarding their electrical and optical properties. The films were found to have tunable electrical conductivity with Ni doping concentrations. - Highlights: • ZnO thin films prepared by radio frequency magnetron sputtering technique • Synthesis process was stimulated to introduce Schottky-type point defects. • Point defects and external doping of Ni made ZnO thin films more functional. • Point defect induced high electrical conductivity in ZnO thin film. • Significant shift in optical bandgap observed in ZnO with Ni doping concentrations.

  20. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    Energy Technology Data Exchange (ETDEWEB)

    Shim, HongShik [Samsung Advanced Institute of Technology, Yongin-Si, Gyeonggi-do (Korea, Republic of); Department of Chemistry, Seoul National University, Seoul (Korea, Republic of); Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon, E-mail: moongyu.han@samsung.com, E-mail: jinklee@snu.ac.kr [Samsung Advanced Institute of Technology, Yongin-Si, Gyeonggi-do (Korea, Republic of); Lim, Joohyun; Lee, Jin-Kyu, E-mail: moongyu.han@samsung.com, E-mail: jinklee@snu.ac.kr [Department of Chemistry, Seoul National University, Seoul (Korea, Republic of)

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  1. Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-05-01

    One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.

  2. Color tunability in green, red and infra-red upconversion emission in Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} with potential application for improvement of efficiency in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz G.A.; Rocha, Leonardo A.; Buarque, Juliana M.M. [Laboratório de Materiais Inorgânicos Fotoluminescentes e Polímeros Biodegradáveis (LAFOP), Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Gonçalves, Rogéria Rocha [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil); Nascimento Jr, Clébio S. [Laboratório de Química Teórica e Computacional – (LQTC), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João del-Rei, MG (Brazil); and others

    2015-03-15

    The preparation of Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the precipitation method using ammonium hydroxide as a precursor is presented. By X-ray diffraction the materials show the phase-type of fluorite structure and the crystallite sizes were calculated by the Scherrer's equation. No other phase was observed evincing that the rare earth ions were inserted into the fluorite phase as substitutional or interstitial dopants. The microstrain calculated by the Williamson–Hall method do not show significant changes in their values, indicating that the inclusion of rare earths does not causes structural changes in the CeO{sub 2} used as a host matrix. All material showed intense upconversion emission at red and green region under excitation with diode laser at 980 nm. The color of emission changes from green to red with increasing excitation power pump. The materials showed suitable photoluminescent properties for applications as a laser source, solar cells, and great emitter at 800 nm. - Highlights: • Tm{sup 3+}/Yb{sup 3+}/Ho{sup 3+} co-doped CeO{sub 2} prepared by the simple way. • Intense upconversion emission regions and the tunability of emission color by the laser power pump. • The materials showed suitable photoluminescent properties for different applications.

  3. Hydrothermal synthesis and tunable luminescent properties of Sr{sub 2-x}Dy {sub x}CeO{sub 4} rod-like phosphors derived from co-precipitation precursors

    Energy Technology Data Exchange (ETDEWEB)

    He Xianghong [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China) and Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China)]. E-mail: hexh@jstu.edu.cn; Li Weihua [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China); Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China); Zhou Quanfa [School of Chemistry and Chemical Engineering, Jiangsu Teachers' University of Technology, Changzhou, Jiangsu 213001 (China); Jiangsu Province Key Laboratory of Precious Metal Chemistry and Technology, Changzhou, Jiangsu 213001 (China)

    2006-09-25

    Uniform rod-like Sr{sub 2-x}Dy {sub x}CeO{sub 4} nano-phosphors with orthorhombic structure were prepared via a hydrothermal method, in the absence of any surfactant or template. The structure, morphology, particle size, and tunable luminescence properties of the samples were investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis absorption and photoluminescence spectrum, respectively. The as-prepared phase-pure Sr{sub 2-x}Dy {sub x}CeO{sub 4} nanorods had the length of 50-150 nm and width of 80 nm. The Dy{sup 3+} ions emission in Sr{sub 2-x}Dy {sub x}CeO{sub 4} could be effectively excited through the energy absorbed by Sr{sub 2}CeO{sub 4} host. The tunable photoluminescence has been observed from Sr{sub 2}CeO{sub 4} doped with Dy{sup 3+} ions. Emission color of Sr{sub 2-x}Dy {sub x}CeO{sub 4} phosphor could be regulated from blue-white to white to yellow by adjusting the Dy{sup 3+} doping content in Sr{sub 2}CeO{sub 4} host, which originated from energy transfer between two different emission centers.

  4. Low temperature synthesis, characterization and tunable optical properties of Eu3+, Tb3+ doped CaMoO4 nanoparticles

    International Nuclear Information System (INIS)

    Sharma, K. Gayatri; Singh, Th. Prasanta; Singh, N. Rajmuhon

    2014-01-01

    Highlights: • Red and green nanophosphors of CaMoO 4 :Eu 3+ and Tb 3+ were synthesized via an ethylene glycol route at very low temperature. • The prepared nanoparticles have tetragonal structure. • The luminescence properties of the nanoparticles are also studied extensively. • CIE chromaticity coordinates of the phosphors are also studied. • The blue-green emission of host could be easily tuned to red or green by varying the dopant ion used in the host. - Abstract: CaMoO 4 doped with Eu 3+ and Tb 3+ nanoparticles are obtained using ethylene glycol as the solvent. The synthesis has been carried out at 130 °C temperature. The XRD patterns reveal that all the doped samples are well assigned to the scheelite structure of the CaMoO 4 phase. Upon excitation by ultraviolet radiation, the CaMoO 4 :Eu 3+ , Tb 3+ phosphors show the characteristic emission lines of Eu 3+ and Tb 3+ . For Eu 3+ doped samples, red emission dominates over other transitions and for Tb 3+ doped, green emission is the predominant one. The blue-green emission of the host could be easily tuned to red and green by doping with activator ions. The emission intensity is also dependent on the concentration of the dopant ions. The prepared nanoparticles could find applications in LEDs and other optical devices

  5. Tunable white light of a Ce3+,Tb3+,Mn2+ triply doped Na2Ca3Si2O8 phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer.

    Science.gov (United States)

    Lü, Wei; Xu, Huawei; Huo, Jiansheng; Shao, Baiqi; Feng, Yang; Zhao, Shuang; You, Hongpeng

    2017-07-18

    A tunable white light emitting Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor with a high color rendering index (CRI) has been prepared. Under UV excitation, Na 2 Ca 3 Si 2 O 8 :Ce 3+ phosphors present blue luminescence and exhibit a broad excitation ranging from 250 to 400 nm. When codoping Tb 3+ /Mn 2+ ions into Na 2 Ca 3 Si 2 O 8 , energy transfer from Ce 3+ to Tb 3+ and Ce 3+ to Mn 2+ ions is observed from the spectral overlap between Ce 3+ emission and Tb 3+ /Mn 2+ excitation spectra. The energy-transfer efficiencies and corresponding mechanisms are discussed in detail. The mechanism of energy transfer from Ce 3+ to Tb 3+ is demonstrated to be a dipole-quadrupole mechanism by the Inokuti-Hirayama model. The wavelength-tunable white light can be realized by coupling the emission bands centered at 440, 550 and 590 nm ascribed to the contribution from Ce 3+ , Tb 3+ and Mn 2+ , respectively. The commission on illumination value of color tunable emission can be tuned by controlling the content of Ce 3+ , Tb 3+ and Mn 2+ . Temperature-dependent luminescence spectra proved the good thermal stability of the as-prepared phosphor. White LEDs with CRI = 93.5 are finally fabricated using a 365 nm UV chip and the as-prepared Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor. All the results suggest that Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ can act as potential color-tunable and single-phase white emission phosphors for possible applications in UV based white LEDs.

  6. Management of broadband technology and innovation policy, deployment, and use

    CERN Document Server

    Choudrie, Jyoti

    2013-01-01

    When one considers broadband, the Internet immediately springs to mind. However, broadband is impacting society in many ways. For instance, broadband networks can be used to deliver healthcare or community related services to individuals who don't have computers, have distance as an issue to contend with, or don't use the internet. Broadband can support better management of scarce energy resources with the advent of smart grids, enables improved teleworking capacity and opens up a world of new entertainment possibilities. Yet scholarly examinations of broadband technology have so far examin

  7. 75 FR 10464 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-03-08

    ... window for Public Computer Center (PCC) and Sustainable Broadband Adoption (SBA) projects. DATES: All...; Extension of Application Closing Deadline for Comprehensive Community Infrastructure (CCI) Projects. SUMMARY... Infrastructure (CCI) projects under the Broadband Technology Opportunities Program (BTOP) is extended until 5:00...

  8. Broadband for all closing the infrastructure gap

    CSIR Research Space (South Africa)

    Roux, K

    2015-10-01

    Full Text Available than just addressing the infrastructure issue. The CSIR is mapping the country’s broadband infrastructure to understand where the largest gaps are, is developing models for how those gaps in broadband infrastructure can be closed. In this presentation...

  9. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-09-04

    Time dependent density functional theory and the hybrid B3LYP functional are used to investigate the structural and optical properties of pristine and carbon doped hexagonal boron nitride nanodots. In agreement with recent experiments, the embedded carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical response in a wide energy window. We identify cluster sizes and shapes with optimal conversion efficiency for solar radiation and a wide absorption range form infrared to ultraviolet. This journal is

  10. Local government broadband policies for areas with limited Internet access

    Directory of Open Access Journals (Sweden)

    Yoshio Arai

    2014-03-01

    Full Text Available Despite their wide diffusion in developed countries, broadband services are still limited in areas where providing them is not profitable for private telecom carriers. To address this, many local governments in Japan have implemented broadband deployment projects subsidized by the national government. In this paper, we discuss local government broadband policies based on survey data collected from municipalities throughout the country. With the support of national promotion policies, broadband services were rapidly introduced to most local municipalities in Japan during the 2000s. Local government deployment policies helped to reduce the number of areas with no broadband access. A business model based on the Indefeasible Right of Use (IRU contract between a private telecom carrier and a local government has been developed in recent years. Even local governments without the technical capacity to operate a broadband business can introduce broadband services into their territory using the IRU business model.

  11. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng; Deng, Rui; Lin, Weinan; Tian, Yufeng; Peng, Haiyang; Yi, Jiabao; Yao, Bin; Wu, Tao

    2013-01-01

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  12. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  13. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    Science.gov (United States)

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  14. Service Differentiation in Residential Broadband Networks

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias

    2004-01-01

    As broadband gains widespread adoption with residential users, revenue generating voice- and video-services have not yet taken off. This slow uptake is often attributed to lack of Quality of Service management in residential broadband networks. To resolve this and induce service variety, network...... access providers are implementing service differentiation in their networks where voice and video gets prioritised before data. This paper discusses the role of network access providers in multipurpose packet based networks and the available migration strategies for supporting multimedia services...... in digital subscriber line (DSL) based residential broadband networks. Four possible implementation scenarios and their technical characteristics and effects are described. To conclude, the paper discusses how network access providers can be induced to open their networks for third party service providers....

  15. Broadband light trapping strategies for quantum-dot photovoltaic cells (>10%) and their issues with the measurement of photovoltaic characteristics.

    Science.gov (United States)

    Cho, Changsoon; Song, Jung Hoon; Kim, Changjo; Jeong, Sohee; Lee, Jung-Yong

    2017-12-12

    Bandgap tunability and broadband absorption make quantum-dot (QD) photovoltaic cells (PVs) a promising candidate for future solar energy conversion systems. Approaches to improving the electrical properties of the active layer increase efficiency in part. The present study focuses on optical room for enhancement in QD PVs over wide spectrum in the near-infrared (NIR) region. We find that ray-optical light trapping schemes rather than the nanophotonics approach may be the best solution for enhancing broadband QD PVs by suppressing the escape probability of internal photons without spectral dependency. Based on the theoretical study of diverse schemes for various bandgaps, we apply a V-groove structure and a V-groove textured compound parabolic trapper (VCPT) to PbS-based QD PVs along with the measurement issues for PVs with a light scattering layer. The efficiency of the best device is improved from 10.3% to 11.0% (certified to 10.8%) by a V-groove structure despite the possibility of underestimation caused by light scattering in small-area devices (aperture area: 0.0625 cm 2 ). By minimizing such underestimation, even greater enhancements of 13.6% and 15.6% in short circuit current are demonstrated for finger-type devices (0.167 cm 2 without aperture) and large-area devices (2.10 cm 2 with an aperture of 0.350 cm 2 ), respectively, using VCPT.

  16. Large scale graphene/hexagonal boron nitride heterostructure for tunable plasmonics

    KAUST Repository

    Zhang, Kai

    2013-09-01

    Vertical integration of hexagonal boron nitride (h-BN) and graphene for the fabrication of vertical field-effect transistors or tunneling diodes has stimulated intense interest recently due to the enhanced performance offered by combining an ultrathin dielectric with a semi-metallic system. Wafer scale fabrication and processing of these heterostructures is needed to make large scale integrated circuitry. In this work, by using remote discharged, radio-frequency plasma chemical vapor deposition, wafer scale, high quality few layer h-BN films are successfully grown. By using few layer h-BN films as top gate dielectric material, the plasmon energy of graphene can be tuned by electrostatic doping. An array of graphene/h-BN vertically stacked micrometer-sized disks is fabricated by lithography and transfer techniques, and infrared spectroscopy is used to observe the modes of tunable graphene plasmonic absorption as a function of the repeating (G/h-BN)n units in the vertical stack. Interestingly, the plasmonic resonances can be tuned to higher frequencies with increasing layer thickness of the disks, showing that such vertical stacking provides a viable strategy to provide wide window tuning of the plasmons beyond the limitation of the monolayer. An array of graphene/h-BN vertically stacked micrometer-sized disks is fabricated by lithography and transfer techniques, and infrared spectroscopy is used to observe the modes of tunable graphene plasmonic absorption as a function of the repeating (G/h-BN)n units in the vertical stack. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamic behavior of correlated electrons in the insulating doped semiconductor Si:P

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Elvira

    2009-06-04

    At low energy scales charge transport in the insulating Si:P is dominated by activated hopping between the localized donor electron states. Theoretical models for a disordered electronic system with a long-range Coulomb interaction are appropriate to interpret the electric conductivity spectra. With a novel and advanced method we perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 5 GHz, employing a vector network analyzer with a 2.4 mm coaxial sensor, which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity and dielectric function, we present a closed calibration and evaluation procedure with an optimized theoretical and experimental complexity, based on the rigorous solution for the electromagnetic field inside the insulating sample, combined with the variational principle. Basically no limiting assumptions are necessary in a strictly defined parameter range. As an application of our new method, we have measured the complex broadband microwave conductivity of Si:P in a broad range of phosphorus concentration n/n{sub c} from 0.56 to 0.9 relative to the critical value n{sub c}=3.5 x 10{sup 18} cm{sup -3} of the metal-insulator transition driven by doping at temperatures down to 1.1 K, and studied unresolved issues of fundamental research concerning the electronic correlations and the metal-insulator transition. (orig.)

  18. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  19. Fabrication and photoluminescence properties of color-tunable light emitting lanthanide doped GdVO{sub 4} hierarchitectures

    Energy Technology Data Exchange (ETDEWEB)

    Amurisana, Bao, E-mail: amurisana@163.com [Institute of Chemical Biology, Hohhot Vocational College, Hohhot 010051 (China); Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022 (China); Bao, Lihong [Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022 (China); Bao, Liang [Institute of Chemical Biology, Hohhot Vocational College, Hohhot 010051 (China); Tegus, O., E-mail: tegusph@imnu.edu.cn [Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022 (China)

    2017-04-15

    The flower-like GdVO{sub 4}:Ln{sup 3+}( Ln{sup 3+}=Eu{sup 3+}, Dy{sup 3+}, Sm{sup 3+}, Tm{sup 3+}) hierarchitectures have been successfully synthesized on a glass slide substrate through a one-pot hydrothermal route assisted by disodium ethylenediaminetetraacetic acid (Na{sub 2}H{sub 2}L, where L{sup 4-}=(CH{sub 2}COO){sub 2}N(CH{sub 2}){sub 2}N(CH{sub 2}COO){sub 2}{sup 4-}). A high density and ordered flower-like GdVO{sub 4}:Ln{sup 3+} hierarchitectures grew epitaxially on glass substrate. The as-prepared flower-like architectures with the size about 6 μm are constructed by the numerous radially oriented single-crystalline nanorods with the width from 20 nm to 200 nm and the length from 500 nm to 3 μm. The morphologies, the thickness, and the density of as-grown flower clusters can be readily tuned by tailoring the growth time and Na{sub 2}H{sub 2}L/Gd{sup 3+} molar ratio. The possible formation mechanism of flower-like GdVO{sub 4}:Ln{sup 3+} hierarchitectures is discussed on the basis of the results from the controlled experiments under hydrothermal conditions. Because of an energy transfer from vanadate groups to dopants, the flower-like GdVO{sub 4}:Ln{sup 3+}( Ln{sup 3+}=Eu{sup 3+}, Dy{sup 3+}, Sm{sup 3+} and Tm{sup 3+}) superstructures showed strong characteristic dominant emissions of the Eu{sup 3+}, Dy{sup 3+}, Sm{sup 3+} and Tm{sup 3+} ions at 617 nm ({sup 5}D{sub 0}→{sup 7}F{sub 2}, strong red), 575 nm ({sup 4}F{sub 9/2}→{sup 6}H{sub 13/2}, yellow), 604 nm ({sup 4}G{sub 5/2}→{sup 6}H{sub 7/2}, orange-red) and 476 nm ({sup 1}G{sub 4}–{sup 3}H{sub 6}, blue) under ultraviolet excitation, respectively.Further, the emission color of the product can also be tuned by selecting the dopant Ln{sup 3+} with characteristic emissions and varying the concentration ratio of co-doping activators. This approach could be extended to the fabrication of hierarchical structures for other oxide micro/nanomaterials, and may provide a general way to achieve multicolor-tunable

  20. The relationship investigation between factors affecting demand for broadband and the level of satisfaction among broadband customers in the South East Coast of Sabah, Malaysia

    Science.gov (United States)

    Hashim, S. H. A.; Hamid, F. A.; Kiram, J. J.; Sulaiman, J.

    2017-09-01

    This paper aims to investigate the relationship between factors that affecting the demand for broadband and the level of satisfaction. Previous researchers have found that the adoption of broadband is greatly influenced by many factors. Thus, in this study, a self-administered questionnaire was developed to obtain the factors affecting demand for broadband among broadband customers as well as their level of satisfaction. Pearson correlation, one-way analysis of variance (ANOVA) and t-test were used for statistical interpretation of the relationship. This study shows that there are better relationships between several factors over demand for broadband and satisfaction level.

  1. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    Science.gov (United States)

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  2. VT Public Locations of Broadband Data - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  3. VT Public Locations of Broadband Data - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  4. VT Public Locations of Broadband Data - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  5. VT Public Locations of Broadband Data - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  6. 7 CFR 1738.11 - Availability of broadband service.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE RURAL BROADBAND ACCESS LOANS AND LOAN GUARANTEES Loan Purposes and Basic Policies... given to loans to finance service to eligible rural communities in which broadband service is not...

  7. VT Public Locations of Broadband Data - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  8. VT Public Locations of Broadband Data - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  9. Broadband Liner Optimization for the Source Diagnostic Test Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  10. Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors.

    Science.gov (United States)

    Guan, Hongxia; Sheng, Ye; Xu, Chengyi; Dai, Yunzhi; Xie, Xiaoming; Zou, Haifeng

    2016-07-20

    A series of Dy(3+), Tb(3+), Eu(3+) singly or doubly or triply doped GdF3 phosphors were synthesized by a glutamic acid assisted one-step hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) spectroscopy. The results show that the synthesized samples are all pure GdF3. The obtained samples have a peanut-like morphology with a diameter of about 270 nm and a length of about 600 nm. Under UV excitation, GdF3:Dy(3+), GdF3:Tb(3+) and GdF3:Eu(3+) samples exhibit strong blue, green and red emissions, respectively. By adjusting their relative doping concentrations in the GdF3 host, the different color hues of green and red light are obtained by co-doped Dy(3+), Tb(3+) and Tb(3+), Eu(3+) ions in the GdF3 host, respectively. Besides, there exist two energy transfer pairs in the GdF3 host: (1) Dy(3+) → Tb(3+) and (2) Tb(3+) → Eu(3+). More significantly, in the Dy(3+), Tb(3+), and Eu(3+) tri-doped GdF3 phosphors, white light can also be achieved upon excitation of UV light by adjusting the doping concentration of Eu(3+). In addition, the obtained samples also exhibit paramagnetic properties at room temperature (300 K) and low temperature (2 K). It is obvious that multifunctional Dy(3+), Tb(3+), Eu(3+) tri-doped GdF3 materials including tunable multicolors and intrinsic paramagnetic properties may have potential applications in the field of full-color displays.

  11. Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yifeng; Du, Juan; Liu, Lei; Wang, Guoxu; Zhang, Hongliang; Chen, Aibing, E-mail: chen-ab@163.com [Hebei University of Science and Technology, College of Chemical and Pharmaceutical Engineering (China)

    2017-03-15

    Porous carbon monoliths have attracted great interest in many fields due to their easy availability, large specific surface area, desirable electronic conductivity, and tunable pore structure. In this work, hierarchical porous nitrogen-doped partial graphitized carbon monoliths (N–MC–Fe) with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron salts as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method. In the reactant system, hexamethylenetetramine (HMT) is used as nitrogen source and one of the carbon precursors under hydrothermal conditions instead of using toxic formaldehyde. The N–MC–Fe show hierarchically porous structures, with interconnected macroporous and ordered hexagonally arranged mesoporous. Nitrogen element is in situ doped into carbon through decomposition of HMT. Iron catalyst is helpful to improve the graphitization degree and pore volume of N–MC–Fe. The synthesis strategy is user-friendly, cost-effective, and can be easily scaled up for production. As supercapacitors, the N–MC–Fe show good capacity with high specific capacitance and good electrochemical stability.

  12. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    Science.gov (United States)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  13. Community Broadband Networks and the Opportunity for E-Government Services

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2017-01-01

    Community Broadband Networks (CBN) facilitate Broadband connectivity in underserved areas in many countries. The lack of Broadband connectivity is one of the reasons for the slow diffusion of e-government services in many countries.This article explains how CBNs can be enabled by governments...... to facilitate the delivery of e–government services in underserved areas in the developed and developing countries.The Community Based Broadband Mobilization (CBNM) models are used as explanatory tools....

  14. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength selfsweeping

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Honzátko, Pavel; Koška, Pavel; Todorov, Filip; Aubrecht, Jan; Podrazký, Ondřej; Kašík, Ivan

    2014-01-01

    Roč. 22, č. 24 (2014), s. 30024-30031 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GAP205/11/1840 Institutional support: RVO:67985882 Keywords : Ytterbium-doped fiber * Laser optics * Q switched lasers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.488, year: 2014

  15. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping: erratum

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Honzátko, Pavel; Koška, Pavel; Todorov, Filip; Aubrecht, Jan; Podrazký, Ondřej; Kašík, Ivan

    2016-01-01

    Roč. 24, č. 14 (2016), s. 16222-16223 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 Keywords : Ytterbium-doped fiber * Laser optics * Q switched lasers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.307, year: 2016

  16. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  17. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser

    Science.gov (United States)

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo0.5W0.5S2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo0.5W0.5S2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm‑2. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo0.5W0.5S2 SAs.

  18. A comparative study of humidity sensing and photocatalytic applications of pure and nickel (Ni)-doped WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, S. [Bannari Amman Institute of Technology, Department of Physics, Erode, Tamilnadu (India); Rajarajan, G. [Vidhya Mandhir Institute of Technology, Department of Physics, Erode, Tamilnadu (India)

    2017-06-15

    Nanocrystalline of pristine and nickel (Ni)-doped tungsten trioxide (WO{sub 3}) thin films was deposited by chemical bath deposition method. The concentrations of Ni ions were varied from 0 to 10 wt%. In order to improve the crystallinity of the films were annealed at 600 C for 2 h in the ambient atmosphere. X-ray diffraction results reveal that the WO{sub 3} doped with nickel crystallizes in monoclinic structure and the results are in good agreement with the standard JCPDS data (card no: 83-0951). AFM micrographs reveal that average grain size of about 27-39 nm for pure and Ni-doped WO{sub 3} thin films. In addition, the band gap of the Ni-doped WO{sub 3} nanostructures is facilely tunable by controlling the Ni contents. The humidity sensor setup was fabricated and measured for pure and Ni-doped WO{sub 3} thin film sensor with various level of RH (10-90%). The Ni-doped WO{sub 3} sensor showed fast response and high sensitivity than pure WO{sub 3}. The photocatalytic activities of the films were evaluated by degradation of methyl orange, methylene blue and phenol in an aqueous solution under visible light irradiation. The photocatalytic activity of WO{sub 3} nanostructures could be remarkably enhanced by doping the Ni impurity. (orig.)

  19. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-01-01

    multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which

  20. Techno-economic evaluation of broadband access technologies

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias; Skouby, Knud Erik

    2005-01-01

    Broadband for all is an essential element in the EU policy concerning the future of ICT-based society. The overall purpose of this paper is to present a model for evaluation of different broadband access technologies and to present some preliminary results based on the model that has been carried...