WorldWideScience

Sample records for broadband spectral modeling

  1. Broadband Advanced Spectral System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  2. New Spectral Model for Constraining Torus Covering Factors from Broadband X-Ray Spectra of Active Galactic Nuclei

    Science.gov (United States)

    Baloković, M.; Brightman, M.; Harrison, F. A.; Comastri, A.; Ricci, C.; Buchner, J.; Gandhi, P.; Farrah, D.; Stern, D.

    2018-02-01

    The basic unified model of active galactic nuclei (AGNs) invokes an anisotropic obscuring structure, usually referred to as a torus, to explain AGN obscuration as an angle-dependent effect. We present a new grid of X-ray spectral templates based on radiative transfer calculations in neutral gas in an approximately toroidal geometry, appropriate for CCD-resolution X-ray spectra (FWHM ≥ 130 eV). Fitting the templates to broadband X-ray spectra of AGNs provides constraints on two important geometrical parameters of the gas distribution around the supermassive black hole: the average column density and the covering factor. Compared to the currently available spectral templates, our model is more flexible, and capable of providing constraints on the main torus parameters in a wider range of AGNs. We demonstrate the application of this model using hard X-ray spectra from NuSTAR (3–79 keV) for four AGNs covering a variety of classifications: 3C 390.3, NGC 2110, IC 5063, and NGC 7582. This small set of examples was chosen to illustrate the range of possible torus configurations, from disk-like to sphere-like geometries with column densities below, as well as above, the Compton-thick threshold. This diversity of torus properties challenges the simple assumption of a standard geometrically and optically thick toroidal structure commonly invoked in the basic form of the unified model of AGNs. Finding broad consistency between our constraints and those from infrared modeling, we discuss how the approach from the X-ray band complements similar measurements of AGN structures at other wavelengths.

  3. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  4. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  5. The broadband spectral energy distributions of SDSS blazars

    Science.gov (United States)

    Li, Huai-Zhen; Chen, Luo-En; Jiang, Yun-Guo; Yi, Ting-Feng

    2015-07-01

    We compiled the radio, optical and X-ray data of blazars from the Sloan Digital Sky Survey database, and presented the distribution of luminosities and broadband spectral indices. The distribution of luminosities shows that the averaged luminosity of flat spectrum radio quasars (FSRQs) is larger than that of BL Lacertae (BL Lac) objects. On the other hand, the broadband spectral energy distribution reveals that FSRQs and low energy peaked BL Lac objects have similar spectral properties, but high energy peaked BL Lac objects have a distinct spectral property. This may be due to the fact that different subclasses of blazars have different intrinsic environments and are at different cooling levels. Even so, a unified scheme is also revealed from the color-color diagram, which hints that there are similar physical processes operating in all objects under a range of intrinsic physical conditions or beaming parameters. Supported by the National Natural Science Foundation of China.

  6. Observations involving broadband impedance modelling

    International Nuclear Information System (INIS)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances

  7. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  8. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.

    Science.gov (United States)

    Shi, Fenghua; Chen, Yihang; Han, Peng; Tassin, Philippe

    2015-12-02

    Advances in the efficient manipulation of terahertz waves are crucial for the further development of terahertz technology, promising applications in many diverse areas, such as biotechnology and spectroscopy, to name just a few. Due to its exceptional electronic and optical properties, graphene is a good candidate for terahertz electro-absorption modulators. However, graphene-based modulators demonstrated to date are limited in bandwidth due to Fabry-Perot oscillations in the modulators' substrate. Here, a novel method is demonstrated to design electrically controlled graphene-based modulators that can achieve broadband and spectrally flat modulation of terahertz beams. In our design, a graphene layer is sandwiched between a dielectric and a slightly doped substrate on a metal reflector. It is shown that the spectral dependence of the electric field intensity at the graphene layer can be dramatically modified by optimizing the structural parameters of the device. In this way, the electric field intensity can be spectrally flat and even compensate for the dispersion of the graphene conductivity, resulting in almost invariant absorption in a wide frequency range. Modulation depths up to 76% can be achieved within a fractional operational bandwidth of over 55%. It is expected that our modulator designs will enable the use of terahertz technology in applications requiring broadband operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    Directory of Open Access Journals (Sweden)

    R. A. Washenfelder

    2013-04-01

    Full Text Available Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360–390 and 385–420 nm spectral regions using two light emitting diodes (LED and a grating spectrometer with charge-coupled device (CCD detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate, slightly absorbing (Suwannee River fulvic acid, and strongly absorbing (nigrosin dye. We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360–420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03 + 0.19 (± 0.08i at 360 nm and 1.63 (± 0.03 + 0.21 (± 0.05i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02 + 0.07 (± 0.06i at 360 nm and 1.66 (± 0.02 + 0.06 (± 0.04i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  10. Tracing the Jet Contribution to the Mid-IR over the 2005 Outburst of GRO J1655-40 via Broadband Spectral Modeling

    Science.gov (United States)

    Migliari, S.; Tomsick, J. A.; Markoff, S.; Kalemci, E.; Bailyn, C. D.; Buxton, M.; Corbel, S; Fender, R. P.; Kaaret, P.

    2007-01-01

    We present new results from a multi-wavelength (radio/infrared/optical/X-ray) study of the black hole Xray binary GRO 51655-40 during its 2005 outburst. We detected, for the first time, mid-infrared emission at 24 micron from the compact jet of a black hole X-ray binary during its hard state, when the source shows emission from a radio compact jet, as well as a strong non-thermal hard X-ray component. These detections strongly constrain the optically thick part of the synchrotron spectrum of the compact jet, which is consistent with it being flat over 4 orders of magnitude in frequency. Moreover, using this unprecedented coverage, and especially thanks to the new Spitzer observations, we can test broadband disk and jet models during the hard state. Two of the hard-state broadband spectra are reasonably well fitted using a jet model with parameters that overall are similar to those previously found for Cyg X-1 and GX 339-4. Differences are also present; most notably, the jet power in GRO J1655-40 appears to be a factor of at least approximately 3-5 higher (depending on the distance) than those of Cyg X-1 and GX-339-4 at comparable disk luminosities. Furthermore, a few discrepancies between the model and the data, previously not found for the other two black hole systems for which there was no mid-IR/IR and optical coverage, are evident, and will help to constrain and refine theoretical models.

  11. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  12. Computing broadband accelerograms using kinematic rupture modeling

    International Nuclear Information System (INIS)

    Ruiz Paredes, J.A.

    2007-05-01

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k -2 source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w 2 model with spectral amplitudes at high frequency scaled to the coefficient of directivity C d . To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C d , as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M w 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  13. Broad-Band Spectral Indices Variability of BL Lacertae by Wavelet ...

    Indian Academy of Sciences (India)

    by Wavelet Method. Hao-Jing Zhang1,2,∗, Jing-Ming Bai1, Yu-Ying Bao3 & Xiong Zhang2. 1Yunnan Astronomical Observatory, National Astronomical Observatory, ... broad-band spectral indices—periodic variation—methods: numerical: .... corrected for the galactic extinction and the host galaxy contribution has been sub-.

  14. Broad-Band Spectral Indices Variability of BL Lacertae by Wavelet ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We compile R-band data and radio 22 GHz database from the available literature to build the light curves and to calculate broad-band spectral indices. This paper ... Yunnan Astronomical Observatory, National Astronomical Observatory, Chinese Academy of Science, Kunming, Yunnan 650011, China.

  15. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  16. Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao; Kroll, Jay A.; Rad, Mary L.; Hays, Brian M.; Sanders, James L.; Cross, Trevor N.; Wehres, Nadine; McGuire, Brett A. [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Lis, Dariusz C.; Sumner, Matthew C., E-mail: susanna.widicus.weaver@emory.edu [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States)

    2017-09-01

    Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ  = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature, density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.

  17. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  18. Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing

    Science.gov (United States)

    Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.

    2011-01-01

    Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.

  19. Flat spectral response all-digital broadband variable fiber optic attenuator

    Science.gov (United States)

    Sheikh, Mumtaz

    2012-03-01

    The Texas Instruments (TI) digital micromirror device (DMD) is inherently a two dimensional (2-D) blaze grating that causes wavelength-dependent angular spreading of reflected broadband light limiting its use as a broadband variable fiber optic attenuator (VFOA). In this paper, we propose a novel design that utilizes a double-reflection architecture to counter angular spreading while at the same time eliminates the need to use any narrowband components such as wave plates thus delivering a truly flat spectral response VFOA. The key feature of this design is that the DMD, instead of being oriented in the Littrow retro-reflective configuration for the center wavelength, is oriented at a different angle to the input beam such that the blaze condition is still satisfied albeit for a different diffraction order n. The only wavelength dependent loss (WDL) in this design is due to the fact that the blaze condition is satisfied only for a center wavelength λc at which the diffraction efficiency is maximum while at other wavelengths, the blaze condition is not perfectly satisfied resulting in a loss in diffraction efficiency. Simulation results show a WDL of only 0.01 dB over the C-band compared to the previously reported experimental value of +/-0.37 dB thus resulting in a truly flat spectral response VFOA.

  20. Spectrally resolved single-shot wavefront sensing of broadband high-harmonic sources

    Science.gov (United States)

    Freisem, L.; Jansen, G. S. M.; Rudolf, D.; Eikema, K. S. E.; Witte, S.

    2018-03-01

    Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be present in a beam, which limits their applicability for intrinsically broadband high-harmonic generation (HHG) sources. Here we introduce a wavefront sensor that measures the wavefronts of all the harmonics in a HHG beam in a single camera exposure. By replacing the mask apertures with transmission gratings at different orientations, we simultaneously detect harmonic wavefronts and spectra, and obtain sensitivity to spatiotemporal structure such as pulse front tilt as well. We demonstrate the capabilities of the sensor through a parallel measurement of the wavefronts of 9 harmonics in a wavelength range between 25 and 49 nm, with up to lambda/32 precision.

  1. Developing a Broadband Adoption Model in the UK Context

    Science.gov (United States)

    Dwivedi, Yogesh K.; Mustafee, Navonil; Williams, Michael D.; Lal, Banita

    This research examines the factors affecting the consumer adoption of broadband in the United Kingdom. A conceptual model of broadband adoption was developed by selecting and justifying a number of relevant constructs from the technology adoption literature. The model was then empirically tested by employing survey data that was randomly collected from 358 UK broadband consumers. The findings suggest that, with the exception of one construct that was included in the conceptual model (namely, knowledge), all of the con structs significantly influence consumers when adopting broadband in a UK household. The significant constructs include relative advantage, utilitarian outcomes, hedonic outcomes, primary influence, facilitating conditions resources, and self-efficacy. Furthermore, when considering the behavioral intention and facilitating conditions resources constructs together, they significantly explain UK broad band adoption behavior. The theoretical contri bution of this research is that it determines and integrates the appropriate constructs from the technology adoption literature in order to enhance the knowledge of technology adoption from the consumer's perspective. This research has implications for policy makers and broadband providers since the results of this study can be exploited by the aforementioned stakeholders in order to encourage and promote the adoption and usage of broadband among the general population.

  2. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  3. Broadband seismic analysis and modeling of the 2015 Taan Fjord, Alaska landslide using Instaseis

    Science.gov (United States)

    Gualtieri, Lucia; Ekström, Göran

    2018-03-01

    We carry out a broadband analysis of the seismic signals generated by a massive landslide that occurred near Icy Bay (Alaska) on October 17, 2015. The event generated seismic signals recorded globally. Using Instaseis, a recently developed tool for rapid computation of complete broadband synthetic seismograms, we simulate the seismic wave propagation between the event and five seismic stations located around the landslide. By modeling the broadband seismograms in the period band 5 to 200 s, we reconstruct by inversion a time-varying point force to characterize the landslide time history. We compute the broadband spectrum of the landslide force history and find that it has a corner period of about 100 s, corresponding to the duration of sliding. In contrast with standard earthquakes, the landslide force spectrum below the corner frequency decays as ω, while the spectral amplitudes at higher frequencies is proportional to ω-2, similar to the rate of spectral decay seen in earthquakes. From the inverted force history and an estimate of the final run-out distance, we deduce the mass, the trajectory and characteristics of the landslide dynamics associated with the center of mass, such as acceleration, velocity, displacement and friction. Inferring an effective run-out distance of ˜900 m from a satellite image, we estimate a landslide mass of ˜150 million metric tons.

  4. Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs

    Science.gov (United States)

    Puchert, Robin P.; Steiner, Florian; Plechinger, Gerd; Hofmann, Felix J.; Caspers, Ines; Kirschner, Johanna; Nagler, Philipp; Chernikov, Alexey; Schüller, Christian; Korn, Tobias; Vogelsang, Jan; Bange, Sebastian; Lupton, John M.

    2017-07-01

    Few inventions have shaped the world like the incandescent bulb. Edison used thermal radiation from ohmically heated conductors, but some noble metals also exhibit 'cold' electroluminescence in percolation films, tunnel diodes, electromigrated nanoparticle aggregates, optical antennas or scanning tunnelling microscopy. The origin of this radiation, which is spectrally broad and depends on applied bias, is controversial given the low radiative yields of electronic transitions. Nanoparticle electroluminescence is particularly intriguing because it involves localized surface-plasmon resonances with large dipole moments. Such plasmons enable very efficient non-radiative fluorescence resonance energy transfer (FRET) coupling to proximal resonant dipole transitions. Here, we demonstrate nanoscopic FRET-light-emitting diodes which exploit the opposite process, energy transfer from silver nanoparticles to exfoliated monolayers of transition-metal dichalcogenides. In diffraction-limited hotspots showing pronounced photon bunching, broadband silver electroluminescence is focused into the narrow excitonic resonance of the atomically thin overlayer. Such devices may offer alternatives to conventional nano-light-emitting diodes in on-chip optical interconnects.

  5. Improving Solar Soft X-Ray (SXR) Irradiance Results from Broadband Photometers with New SXR Spectral Measurements from a CubeSat

    Science.gov (United States)

    Woods, T. N.; Caspi, A.; Chamberlin, P. C.; Didkovsky, L. V.; Eparvier, F. G.; Jones, A. R.; Mason, J. P.; Moore, C. S.; Solomon, S. C.; Viereck, R. A.

    2016-12-01

    There are four decades of broadband soft X-ray (SXR) measurements, but these measurements cannot directly quantify the varying contributions of emission lines (bound-bound) amongst the thermal radiative recombination (free-bound) and thermal and non-thermal bremsstrahlung (free-free) continua. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat mission, that was deployed into orbit in May 2016, was designed to directly measure the SXR spectra to improve the understanding of flare energetics and for studying the SXR radiation impacts in Earth's ionosphere. The broadband SXR measurements include the two bands of 1.6-25 keV (0.05-0.8 nm) by the GOES X-Ray Sensor (XRS) since the 1970s and the even broader band of 0.2-12 keV (0.1-7 nm) from several missions, including the Yohkoh Soft X-ray Telescope (SXT, 1991-2001), Student Nitric Oxide Experiment (SNOE, 1998-2002), Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED, 2002-present), the Solar Radiation and Climate Experiment (SORCE, 2003-present), and the Solar Dynamics Observatory (SDO, 2010-present). These broadband SXR measurements have been helpful for resolving some differences between ionosphere models and measurements, but differences remain in understanding solar SXR spectral distribution and atmospheric photoelectron flux. The lack of spectral resolution in the SXR range is thought to be the culprit for most of these disagreements and is thus an underlying motivation for the MinXSS CubeSat mission. The new solar SXR spectra in the range of 0.5 to 30 keV (0.04 - 2.5 nm) from MinXSS, along with how they can improve the accuracy of the broadband SXR photometer measurements, will be presented.

  6. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. \\tRecent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. \\tIn this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis

  7. Coloration Determination of Spectral Darkening Occurring on a Broadband Earth Observing Radiometer: Application to Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Matthews, Grant; Priestley, Kory; Loeb, Norman G.; Loukachine, Konstantin; Thomas, Susan; Walikainen, Dale; Wielicki, Bruce A.

    2006-01-01

    It is estimated that in order to best detect real changes in the Earth s climate system, space based instrumentation measuring the Earth Radiation Budget (ERB) must remain calibrated with a stability of 0.3% per decade. Such stability is beyond the specified accuracy of existing ERB programs such as the Clouds and the Earth s Radiant Energy System (CERES, using three broadband radiometric scanning channels: the shortwave 0.3 - 5microns, total 0.3. > 100microns, and window 8 - 12microns). It has been shown that when in low earth orbit, optical response to blue/UV radiance can be reduced significantly due to UV hardened contaminants deposited on the surface of the optics. Since typical onboard calibration lamps do not emit sufficient energy in the blue/UV region, this darkening is not directly measurable using standard internal calibration techniques. This paper describes a study using a model of contaminant deposition and darkening, in conjunction with in-flight vicarious calibration techniques, to derive the spectral shape of darkening to which a broadband instrument is subjected. Ultimately the model uses the reflectivity of Deep Convective Clouds as a stability metric. The results of the model when applied to the CERES instruments on board the EOS Terra satellite are shown. Given comprehensive validation of the model, these results will allow the CERES spectral responses to be updated accordingly prior to any forthcoming data release in an attempt to reach the optimum stability target that the climate community requires.

  8. Full field tomography using interference fringes casting of a non spatially-coherent extended spectrally modulated broadband light source

    Science.gov (United States)

    Arieli, Yoel; Epshtein, Shlomi; Harris, Alon; Yaacubov, Igor; Cohen, Yoel

    2018-01-01

    A method for full field tomographic measurements using a fully non spatially-coherent extended broadband light source and a common path interferometry is described. A layered object's is being tomographed by acquiring multiple images of the object while modulating the spectrum of the extended broadband light source. In order to overcome the non spatially-coherence of the light source, interference fringes are created by amplitude division interferometry at a focal plane of the illuminating optical system and are casted on the measured object. In addition, due to exploiting one of the object's layers as a reference layer for the interference the need for an auxiliary reference beam is avoided and inherent Full Field ;en-face; common path interferometry measurements are obtained. Another advantage is that by using spectrally modulated broadband illumination and obviating the reference beam, the requirement that the object should be used as one of the interferometer arms as in common dual beam interferometry is also avoided. This enables to relay the spectrally modulated light to illuminate the measured object which is just being imaged using a simplified imaging system while modulating the light. However, since there is no reference arm, the tomography of the object is calculated by a complex iterative algorithm where some knowledge on the object's structure is required.

  9. A variable-tune spatial heterodyne spectrometer for broadband spectral line studies in the visible and near-UV

    Science.gov (United States)

    Dawson, Olivia R.; Harris, Walter M.

    2017-11-01

    Reflective Spatial Heterodyne Spectroscopy (SHS) is an interferometric technique that combines high resolving power and a large input acceptance angle in a format that is compact enough for use at small telescope focal planes and in spacecraft observations of targets in the visible to far ultra-violet (FUV) spectral range. SHS instruments are well suited to the study of faint, extended emission line sources, particularly in the UV where stellar background continuum becomes weak. Their primary limitation comes from the limited spatial sampling of the output interference pattern generated by the incoming spectral source, which limits their use to narrow bandpass near the central tuning wavelength. We describe a the first light results from a broadband SHS that can be used to scan the tuning wavelength across a bandpass extending from 300 to 700 nm. The limitations on the bandpass are arbitrary and can easily be extended into the UV or near infrared. We discuss the results of these validation program and the potential improvements that could be used to expand and/or improve the broadband spectral response of the instrument.

  10. Modeling of broadband airborne electromagnetic responses from saline environments

    Energy Technology Data Exchange (ETDEWEB)

    Buselli, G.; Williamson, D.R. [CSIRO, Perth, Western Australia (Australia)

    1996-11-01

    The removal of vegetation for the development of nonirrigated agriculture and the associated increase in groundwater recharge and discharge has caused significant areas of salinization of surface soil and water resources in Australia. At least three types of salt profiles are known to indicate the relative magnitude of recharge. These profiles may be differentiated by their resistivity structure. Since a broadband airborne electromagnetic (AEM) method offers the possibility of readily obtaining resistivity soundings, modeling was carried out to investigate the ability of a broadband AEM system to distinguish different salt profile types. Salt profile types may be represented by a four-layer resistivity model. The use of a broadband AEM system to distinguish the relative magnitude of the resistivity of a layer of high salt accumulation and the underlying layer forms the basis for efficiently identifying areas of high or low recharge. Where the resistivity of the underlying layer is greater than that of the salt accumulation, high recharge is indicated, and a lower resistivity of this layer implies low recharge. The response of each of the salt profile models was calculated in the frequency domain and then inverted back to a layered model. With noise added to the calculated responses, the inversion results show that the depth, thickness, and resistivity of a layer of high salt accumulation can be resolved by AEM measurements. Furthermore, the resistivity of this layer can be distinguished from the resistivity of the underlying layer.

  11. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to

  12. Broadband model of the distribution network

    DEFF Research Database (Denmark)

    Jensen, Martin Høgdahl

    of the four-wire cable, but above and below the natural frequency there is good agreement between simulation and measurements. The problem with the natural frequency is not IV related specificly with the four-wire cable model, but is a general problem related with the distributed nature of transmission lines...... measurement and simulation, once the Phase model is used. No explanation is found on why the new material properties cause error in the Phase model. At the kyndby 10 kV test site a non-linear load is inserted on the secondary side of normal distribution transformer and the phase voltage and current...... is measured. The measurement are performed with and without the four-wire cable inserted between the transformer and load. The 10 kV test-site is modelled in EMTDC with standard components. Similarly, the non-linear load is modelled as a six-pulse diode bridge loaded with a resistor on the DC...

  13. Characteristics of broadband slow earthquakes explained by a Brownian model

    Science.gov (United States)

    Ide, S.; Takeo, A.

    2017-12-01

    Brownian slow earthquake (BSE) model (Ide, 2008; 2010) is a stochastic model for the temporal change of seismic moment release by slow earthquakes, which can be considered as a broadband phenomena including tectonic tremors, low frequency earthquakes, and very low frequency (VLF) earthquakes in the seismological frequency range, and slow slip events in geodetic range. Although the concept of broadband slow earthquake may not have been widely accepted, most of recent observations are consistent with this concept. Then, we review the characteristics of slow earthquakes and how they are explained by BSE model. In BSE model, the characteristic size of slow earthquake source is represented by a random variable, changed by a Gaussian fluctuation added at every time step. The model also includes a time constant, which divides the model behavior into short- and long-time regimes. In nature, the time constant corresponds to the spatial limit of tremor/SSE zone. In the long-time regime, the seismic moment rate is constant, which explains the moment-duration scaling law (Ide et al., 2007). For a shorter duration, the moment rate increases with size, as often observed for VLF earthquakes (Ide et al., 2008). The ratio between seismic energy and seismic moment is constant, as shown in Japan, Cascadia, and Mexico (Maury et al., 2017). The moment rate spectrum has a section of -1 slope, limited by two frequencies corresponding to the above time constant and the time increment of the stochastic process. Such broadband spectra have been observed for slow earthquakes near the trench axis (Kaneko et al., 2017). This spectrum also explains why we can obtain VLF signals by stacking broadband seismograms relative to tremor occurrence (e.g., Takeo et al., 2010; Ide and Yabe, 2014). The fluctuation in BSE model can be non-Gaussian, as far as the variance is finite, as supported by the central limit theorem. Recent observations suggest that tremors and LFEs are spatially characteristic

  14. [Study and design on Dyson imaging spectrometer in spectral broadband with high resolution].

    Science.gov (United States)

    Yan, Ling-Wei

    2014-04-01

    The paper designs and improves a telecentric imaging spectrometer, the Dyson imaging spectrometer. The optical structure of the imaging spectrometer is simple and compact, which is only composed of a hemispherical lens and a concave grating. Based on the Rowland circle and refraction theory, the broadband anastigmatic imaging condition of Dyson imaging spectrometer which is the ratio of the grating radius and hemispherical lens radius has been analyzed. By imposing this condition for two different wavelengths, the parameters of the optical system presenting low aberrations and excellent imaging quality are obtained. To make the design spectrometer more suitable for the engineering application, the paper studies the method making the detector not to attach the surface of the hemispherical lens. A design example using optimal conditions was designed to prove our theory. The Dyson imaging spectrometer of which the imaging RMS radii are less than 2.5 microm and the advanced spectrometer of which the imaging RMS radii are less than 8 microm, with NA 0.33, waveband 0.38-1.7 microm and the slit length 15 mm, have been obtained. The design method and results are more feasible and predominant, and can be applied in the areas of the industry and remote sensing.

  15. A jet model for the broadband spectrum of the Seyfert 1 galaxy NGC 4051

    NARCIS (Netherlands)

    Maitra, D.; Miller, J.M.; Markoff, S.; King, A.

    2011-01-01

    Recent radio very long baseline interferometry observations of the ~ parsec-scale nuclear region of the narrow line Seyfert 1 galaxy NGC 4051 hint toward the presence of outflowing plasma. From available literature we have collected high-quality, high-resolution broadband spectral energy

  16. Validation of the SCEC broadband platform V14.3 simulation methods using pseudo spectral acceleration data

    Science.gov (United States)

    Dreger, Douglas S.; Beroza, Gregory C.; Day, Steven M.; Goulet, Christine A.; Jordan, Thomas H; Spudich, Paul A.; Stewart, Jonathan P.

    2015-01-01

    This paper summarizes the evaluation of ground motion simulation methods implemented on the SCEC Broadband Platform (BBP), version 14.3 (as of March 2014). A seven-member panel, the authorship of this article, was formed to evaluate those methods for the prediction of pseudo-­‐spectral accelerations (PSAs) of ground motion. The panel’s mandate was to evaluate the methods using tools developed through the validation exercise (Goulet et al. ,2014), and to define validation metrics for the assessment of the methods’ performance. This paper summarizes the evaluation process and conclusions from the panel. The five broadband, finite-source simulation methods on the BBP include two deterministic approaches herein referred to as CSM (Anderson, 2014) and UCSB (Crempien and Archuleta, 2014); a band-­‐limited stochastic white noise method called EXSIM (Atkinson and Assatourians, 2014); and two hybrid approaches, referred to as G&P (Graves and Pitarka, 2014) and SDSU (Olsen and Takedatsu, 2014), which utilize a deterministic Green’s function approach for periods longer than 1 second and stochastic methods for periods shorter than 1 second. Two acceptance tests were defined to validate the broadband finite‐source ground methods (Goulet et al., 2014). Part A compared observed and simulated PSAs for periods from 0.01 to 10 seconds for 12 moderate to large earthquakes located in California, Japan, and the eastern US. Part B compared the median simulated PSAs to published NGA-­‐West1 (Abrahamson and Silva, 2008; Boore and Atkinson, 2008; Campbell and Bozorgnia, 2008; and Chiou and Youngs, 2008) ground motion prediction equations (GMPEs) for specific magnitude and distance cases using a pass-­‐fail criteria based on a defined acceptable range around the spectral shape of the GMPEs. For the initial Part A and Part B validation exercises during the summer of 2013, the software for the five methods was locked in at version 13.6 (see Maechling et al., 2014). In the

  17. Measuring broadband in Europe: : development of a market model and performance index using structural equations modelling

    NARCIS (Netherlands)

    Lemstra, W.; Voogt, B.; Gorp, van N.

    2015-01-01

    This contribution reports on the development of a performance index and underlying market model with application to broadband developments in the European Union. The Structure–Conduct–Performance paradigm provides the theoretical grounding. Structural equations modelling was applied to determine the

  18. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  19. Broad-band spectral studies of optical lightnings and possible correlation with solar activity

    International Nuclear Information System (INIS)

    Bhat, C.L.; Sapru, M.L.; Kaul, R.K.; Razdan, H.

    1984-01-01

    Optical pulses from lightning discharges have been recorded in a ground-based experiment, meant primarily for the detection of cosmic X- and γ-ray bursts through the atmospheric fluorescence technique. It is shown that the spectral ratio Asub(v)/Asub(y), i.e. the ratio of pulse amplitudes in the violet to that in yellow wavelength bands (3400-4300 A and 4400-6000 A respectively) provides a good indication of the lightning channel temperature, the range of derived temperatures extending from 5.000 K to 60.000 K. Based on the distribution of observed Asub(v)/Asub(y) values on a daily basis, it has been possible to separate the observed lightning activity into two classes. One class of event is shown to be correlated with the peaking of the global atmospheric electric field and occurs preferentially on days when the ground-level cosmic ray intensity shows a significant decrease in association with an increase in geomagnetic activity. The results are discussed in terms of the contemporary views regarding solar control of atmospheric electricity and the various sun-weather correlations reported earlier. (author)

  20. Spectral modeling of magnetohydrodynamic turbulent flows.

    Science.gov (United States)

    Baerenzung, J; Politano, H; Ponty, Y; Pouquet, A

    2008-08-01

    We present a dynamical spectral model for large-eddy simulation of the incompressible magnetohydrodynamic (MHD) equations based on the eddy damped quasinormal Markovian approximation. This model extends classical spectral large-eddy simulations for the Navier-Stokes equations to incorporate general (non-Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD flows and show that the introduction of an eddy damping time for the dynamics of spectral tensors, in the absence of equipartition between the velocity and magnetic fields, leads to better agreement with direct numerical simulations, an important point for dynamo computations.

  1. A BROADBAND EMISSION MODEL OF MAGNETAR WIND NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shuta J. [Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501 (Japan)

    2016-08-20

    Angular momentum loss by the plasma wind is considered as a universal feature of isolated neutron stars including magnetars. The wind nebulae that are powered by magnetars allow us to compare the wind properties and the spin evolution of magnetars with those of rotation-powered pulsars (RPPs). In this paper, we construct a broadband emission model of magnetar wind nebulae (MWNe). This model is similar to past studies of young pulsar wind nebulae (PWNe) around RPPs, but is modified for the application to MWNe that have far less observational information than the young PWNe. We apply the model to the MWN around the youngest (∼1 kyr) magnetar, 1E 1547.0-5408, which has the largest spin-down power L {sub spin} among all the magnetars. However, the MWN is faint because of the low L {sub spin} of 1E 1547.0-5408 when compared to the young RPPs. Since most parameters are not well constrained by only an X-ray flux upper limit of the MWN, we adopt the model’s parameters from the young PWN Kes 75 around PSR J1846-0258, which is a peculiar RPP showing magnetar-like behaviors. The model predicts that γ -ray flux will be detected in a future TeV γ -ray observation by CTA (Cherenkov Telescope Array). The MWN spectrum does not allow us to test the hypothesis that 1E 1547.0-5408 had a period of milliseconds at its birth because the particles injected during the early phase of evolution suffered from severe adiabatic and synchrotron losses. Furthermore, both observational and theoretical studies of the wind nebulae around magnetars are required to constrain the wind and the spin-down properties of magnetars.

  2. iSEDfit: Bayesian spectral energy distribution modeling of galaxies

    Science.gov (United States)

    Moustakas, John

    2017-08-01

    iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

  3. Designing a dual-mode broadband solar spectral converter: The example of Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+}-tridoped perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li-Tian; Wu, Xuan-Ming; Wang, Ting; Chen, Dong-Ju; Deng, Chao; Meng, Jian-Xin, E-mail: tmjx@jnu.edu.cn; Cao, Li-Wei

    2016-07-15

    A promising dual-mode broadband solar spectral converter CaTiO{sub 3}: Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+} was successfully developed by solid-stated reaction. The structure, photoluminescence (PL), photoluminescence excitation (PLE) and diffuse reflectance (DR) spectra in the UV–vis–NIR region have been systematically investigated. The results show that the as-prepared samples simultaneously exhibit two distinct spectral converting patterns, nonlinear quantum-cutting (QC) involving Bi{sup 3+}–Ti{sup 4+} metal-to-metal charge transfer state (BT-MMCTs) → Yb{sup 3+}: {sup 2}F{sub 5/2} + Yb{sup 3+}: {sup 2}F{sub 5/2} and linear downshift (DS) involving Cr{sup 3+}: {sup 4}T{sub 2} → Yb{sup 3+}: {sup 2}F{sub 5/2}. It deduces that the nonlinear QC is based on a cooperative energy transfer (CET) process while the linear DS belongs to a dipole–dipole mechanism. With the present converter, broadband UV–vis (300–700 nm) photons, which are not fully utilized by the existing c-Si solar cells, can be efficiently harvested and converted into ∼1000 nm NIR photons via the dual-mode mechanism. Moreover, not only the PLE spectrum of CaTiO{sub 3}: Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+} matched well with that of the solar radiation, but also its NIR emission peak position fell well over the spectral response of the commercial crystalline Si (c-Si) solar cells. This as-prepared dual-mode solar spectral converter with multiple advantages can simultaneously realize high quantum yield and broadband conversion, which offers a new and effective way to boost the conversion efficiency of c-Si solar cells. We believe this novel design of dual-mode solar spectral converters can inspire a direction for the synthesis of more advanced UV–vis–NIR phosphors that can be used in Si solar cells. - Highlights: • A dual-mode broadband solar spectral converter is designed and developed. • The energy transfer mechanism relies on quantum-cutting as well as downshift. • The PLE

  4. Spectral methods applied to Ising models

    International Nuclear Information System (INIS)

    DeFacio, B.; Hammer, C.L.; Shrauner, J.E.

    1980-01-01

    Several applications of Ising models are reviewed. A 2-d Ising model is studied, and the problem of describing an interface boundary in a 2-d Ising model is addressed. Spectral methods are used to formulate a soluble model for the surface tension of a many-Fermion system

  5. a Variable Resolution Global Spectral Model.

    Science.gov (United States)

    Hardiker, Vivek Manohar

    A conformal transformation suggested by F. Schimdt is followed to implement a global spectral model with variable horizontal resolution. A conformal mapping is defined between the real physical sphere (Earth) to a transformed (Computational) sphere. The model equations are discretized on the computational sphere and the conventional spectral technique is applied to solve the model equations. There are two types of transformations used in the present study, namely, the Stretching transformation and the Rotation of the horizontal grid points. Application of the stretching transformation results in finer resolution along the meridional direction. The stretching is controlled by a parameter C. The rotation transformation can be used to relocate the North Pole of the model to any point on the geographic sphere. The idea is now to rotate the pole to the area of interest and refine the resolution around the new pole by applying the stretching transformation. The stretching transformation can be applied alone without the rotation. A T-42 Spectral Shallow-Water model is transformed by applying the stretching transformation alone as well as the two transformations together. A T-42 conventional Spectral Shallow-Water model is run as the control experiment and a conventional T-85 Spectral Shallow-Water model run is treated as the benchmark (Truth) solution. RMS error analysis for the geopotential field as well as the wind field is performed to evaluate the forecast made by the transformed model. It is observed that the RMS error of the transformed model is lower than that of the control run in a latitude band, for the case of stretching transformation alone, while for the total transformation (rotation followed by stretching), similar results are obtained for a rectangular domain. A multi-level global spectral model is designed from the current FSU global spectral model in order to implement the conformal transformation. The transformed T-85 model is used to study Hurricane

  6. Development of an accurate 3D Monte Carlo broadband atmospheric radiative transfer model

    Science.gov (United States)

    Jones, Alexandra L.

    Radiation is the ultimate source of energy that drives our weather and climate. It is also the fundamental quantity detected by satellite sensors from which earth's properties are inferred. Radiative energy from the sun and emitted from the earth and atmosphere is redistributed by clouds in one of their most important roles in the atmosphere. Without accurately representing these interactions we greatly decrease our ability to successfully predict climate change, weather patterns, and to observe our environment from space. The remote sensing algorithms and dynamic models used to study and observe earth's atmosphere all parameterize radiative transfer with approximations that reduce or neglect horizontal variation of the radiation field, even in the presence of clouds. Despite having complete knowledge of the underlying physics at work, these approximations persist due to perceived computational expense. In the current context of high resolution modeling and remote sensing observations of clouds, from shallow cumulus to deep convective clouds, and given our ever advancing technological capabilities, these approximations have been exposed as inappropriate in many situations. This presents a need for accurate 3D spectral and broadband radiative transfer models to provide bounds on the interactions between clouds and radiation to judge the accuracy of similar but less expensive models and to aid in new parameterizations that take into account 3D effects when coupled to dynamic models of the atmosphere. Developing such a state of the art model based on the open source, object-oriented framework of the I3RC Monte Carlo Community Radiative Transfer ("IMC-original") Model is the task at hand. It has involved incorporating (1) thermal emission sources of radiation ("IMC+emission model"), allowing it to address remote sensing problems involving scattering of light emitted at earthly temperatures as well as spectral cooling rates, (2) spectral integration across an arbitrary

  7. Broadband Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Broadband Access. Worldwide market for broadband access $30 Billion! Over 200 million broadband subscribers worldwide! Various Competing Broadband access. Digital Subscriber line; Wireless; Optical Fiber.

  8. Broadband Radiometric LED Measurements.

    Science.gov (United States)

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  9. The Broadband Spectral Variability of MCG-6-30-15 Observed by NUSTAR and XMM-NEWTON

    DEFF Research Database (Denmark)

    Marinucci, A.; Matt, G.; Miniutti, G.

    2014-01-01

    MCG-6-30-15, at a distance of 37 Mpc (z = 0.008), is the archetypical Seyfert 1 galaxy showing very broad Fe K alpha emission. We present results from a joint NuSTAR and XMM-Newton observational campaign that, for the first time, allows a sensitive, time-resolved spectral analysis from 0.35 keV up...... to 80 keV. The strong variability of the source is best explained in terms of intrinsic X-ray flux variations and in the context of the light-bending model: the primary, variable emission is reprocessed by the accretion disk, which produces secondary, less variable, reflected emission. The broad Fe K...

  10. Color discrimination with broadband photoreceptors.

    Science.gov (United States)

    Schnaitmann, Christopher; Garbers, Christian; Wachtler, Thomas; Tanimoto, Hiromu

    2013-12-02

    Color vision is commonly assumed to rely on photoreceptors tuned to narrow spectral ranges. In the ommatidium of Drosophila, the four types of so-called inner photoreceptors express different narrow-band opsins. In contrast, the outer photoreceptors have a broadband spectral sensitivity and were thought to exclusively mediate achromatic vision. Using computational models and behavioral experiments, we demonstrate that the broadband outer photoreceptors contribute to color vision in Drosophila. The model of opponent processing that includes the opsin of the outer photoreceptors scored the best fit to wavelength discrimination data. To experimentally uncover the contribution of individual photoreceptor types, we restored phototransduction of targeted photoreceptor combinations in a blind mutant. Dichromatic flies with only broadband photoreceptors and one additional receptor type can discriminate different colors, indicating the existence of a specific output comparison of the outer and inner photoreceptors. Furthermore, blocking interneurons postsynaptic to the outer photoreceptors specifically impaired color but not intensity discrimination. Our findings show that receptors with a complex and broad spectral sensitivity can contribute to color vision and reveal that chromatic and achromatic circuits in the fly share common photoreceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Decimative Spectral Estimation with Unconstrained Model Order

    Directory of Open Access Journals (Sweden)

    Stavroula-Evita Fotinea

    2012-01-01

    Full Text Available This paper presents a new state-space method for spectral estimation that performs decimation by any factor, it makes use of the full set of data and brings further apart the poles under consideration, while imposing almost no constraints to the size of the Hankel matrix (model order, as decimation increases. It is compared against two previously proposed techniques for spectral estimation (along with derived decimative versions, that lie among the most promising methods in the field of spectroscopy, where accuracy of parameter estimation is of utmost importance. Moreover, it is compared against a state-of-the-art purely decimative method proposed in literature. Experiments performed on simulated NMR signals prove the new method to be more robust, especially for low signal-to-noise ratio.

  12. A MODEL FOR PRODUCING STABLE, BROADBAND TERAHERTZ COHERENT SYNCHROTRON RADIATION IN STORAGE RINGS

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Martin, MichaelC.; Venturini, Marco

    2003-01-01

    We present a model for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use this model to optimize the performance of a source for CSR emission

  13. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  14. Accretion flow dynamics during 1999 outburst of XTE J1859+226—modeling of broadband spectra and constraining the source mass

    Science.gov (United States)

    Nandi, Anuj; Mandal, S.; Sreehari, H.; Radhika, D.; Das, Santabrata; Chattopadhyay, I.; Iyer, N.; Agrawal, V. K.; Aktar, R.

    2018-05-01

    We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (˜166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3-150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\\dot{m}d), sub-Keplerian accretion rate (\\dot{m}h), shock location (rs) and black hole mass (M_{bh}) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as L^{obs}_{jet} ˜3-6 ×10^{37} erg s^{-1} during one of the observed radio flares which indicates that jet power corresponds to 8-16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (˜14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2-7.9 M_{⊙} with 90% confidence.

  15. Spectral properties in supersymmetric matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, Lyonell, E-mail: L.Boulton@hw.ac.uk [Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Garcia del Moral, Maria Pilar, E-mail: garciamormaria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain); Restuccia, Alvaro, E-mail: arestu@usb.ve [Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas (Venezuela, Bolivarian Republic of); Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain)

    2012-03-21

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  16. The Impact of Noise Models on Capacity Performance of Distribution Broadband over Power Lines Networks

    Directory of Open Access Journals (Sweden)

    Athanasios G. Lazaropoulos

    2016-01-01

    Full Text Available This paper considers broadband potential of distribution Broadband over Power Lines (BPL networks when different well-known noise models of the BPL literature are applied. The contribution of this paper is twofold. First, the seven most representative and used noise models of the BPL literature are synopsized in this paper. With reference to this set, the broadband performance of a great number of distribution BPL topologies either Overhead (OV or Underground (UN, either Medium-Voltage (MV or Low-Voltage (LV, is investigated in terms of suitable capacity metrics. Second, based on the proposed capacity metrics, a comparative capacity analysis is performed among various well-validated noise models. Through the careful study of its results, it is demonstrated that during capacity computations of distribution BPL networks, the flat Additive White Gaussian Noise (FL noise model can be comfortably assumed as an efficient noise model either in 3–30 MHz or in 3–88 MHz frequency range since its capacity differences with the other well-proven noise models are negligible.

  17. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  18. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ostorero, L.; /Turin U. /INFN, Turin; Moderski, R.; /Warsaw, Copernicus Astron. Ctr. /KIPAC, Menlo Park; Stawarz, L.; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Diaferio, A.; /Turin U. /INFN, Turin; Kowalska, I.; /Warsaw U. Observ.; Cheung, C.C.; /NASA, Goddard /Naval Research Lab, Wash., D.C.; Kataoka, J.; /Waseda U., RISE; Begelman, M.C.; /JILA, Boulder; Wagner, S.J.; /Heidelberg Observ.

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  19. X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    International Nuclear Information System (INIS)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.

    2010-01-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the γ-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N H ) and radio (N HI ) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  20. Rural Broadband Mobile Communications: Spectrum Occupancy and Propagation Modeling in Western Montana

    Science.gov (United States)

    Wiles, Erin

    Fixed and mobile spectrum monitoring stations were implemented to study the spectrum range from 174 to 1000 MHz in rural and remote locations within the mountains of western Montana, USA. The measurements show that the majority of this spectrum range is underused and suitable for spectrum sharing. This work identifies available channels of 5-MHz bandwidth to test a remote mobile broadband network. Both TV broadcast stations and a cellular base station were modeled to test signal propagation and interference scenarios.

  1. Modelling and control of broadband traffic using multiplicative ...

    Indian Academy of Sciences (India)

    The results of the detailed statistical and multifractal analysis performed on the original and the synthesised traces are presented and the performance is compared with other models in the literature, such as the Poisson process, and the Multifractal Wavelet Model (MWM) process. It is also shown empirically that a single ...

  2. New Investment Models for Broadband in Denmark and Sweden

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders; Tadayoni, Reza

    2016-01-01

    The aim of this paper is to analyse whether the developmental policy model applied for fibre roll-out in Sweden can be used as inspiration for the Danish telecom policy. This is done through a comparison of the two very different policy approaches applied in Denmark and Sweden. A case study on pu...

  3. Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms

    Science.gov (United States)

    Basharov, A. M.

    2018-03-01

    The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.

  4. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  5. An articulated predictive model for fluid-free artificial basilar membrane as broadband frequency sensor

    Science.gov (United States)

    Ahmed, Riaz; Banerjee, Sourav

    2018-02-01

    In this article, an extremely versatile predictive model for a newly developed Basilar meta-Membrane (BM2) sensors is reported with variable engineering parameters that contribute to it's frequency selection capabilities. The predictive model reported herein is for advancement over existing method by incorporating versatile and nonhomogeneous (e.g. functionally graded) model parameters that could not only exploit the possibilities of creating complex combinations of broadband frequency sensors but also explain the unique unexplained physical phenomenon that prevails in BM2, e.g. tailgating waves. In recent years, few notable attempts were made to fabricate the artificial basilar membrane, mimicking the mechanics of the human cochlea within a very short range of frequencies. To explain the operation of these sensors a few models were proposed. But, we fundamentally argue the "fabrication to explanation" approach and proposed the model driven predictive design process for the design any (BM2) as broadband sensors. Inspired by the physics of basilar membrane, frequency domain predictive model is proposed where both the material and geometrical parameters can be arbitrarily varied. Broadband frequency is applicable in many fields of science, engineering and technology, such as, sensors for chemical, biological and acoustic applications. With the proposed model, which is three times faster than its FEM counterpart, it is possible to alter the attributes of the selected length of the designed sensor using complex combinations of model parameters, based on target frequency applications. Finally, the tailgating wave peaks in the artificial basilar membranes that prevails in the previously reported experimental studies are also explained using the proposed model.

  6. Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

    2009-11-04

    We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

  7. Modeling broadband poroelastic propagation using an asymptotic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Donald W.

    2009-05-01

    An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic medium. The solution is defined along trajectories through the porous medium model, in the manner of ray theory. The lowest order expression in the asymptotic expansion provides an eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal displacement and a single mode of transverse displacement. The two longitudinal modes define the Biot fast and slow waves which have very different propagation characteristics. In the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and numerical solutions shows reasonably good agreement for both homogeneous and heterogeneous Earth models.

  8. THE CHANDRA MULTI-WAVELENGTH PROJECT: OPTICAL SPECTROSCOPY AND THE BROADBAND SPECTRAL ENERGY DISTRIBUTIONS OF X-RAY-SELECTED AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Trichas, Markos; Green, Paul J.; Aldcroft, Tom; Kim, Dong-Woo; Mossman, Amy [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Silverman, John D. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8568 (Japan); Barkhouse, Wayne [Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202 (United States); Cameron, Robert A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Constantin, Anca [Department of Physics and Astronomy, James Madison University, PHCH, Harrisonburg, VA 22807 (United States); Ellison, Sara L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Foltz, Craig [Division of Astronomical Sciences, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230 (United States); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Jannuzi, Buell T. [NOAO, Kitt Peak National Observatory, Tucson, AZ 85726 (United States); Marshall, Herman L. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Perez, Laura M. [Department of Astronomy, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States); Romero-Colmenero, Encarni [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Ruiz, Angel [Osservatorio Astronomico di Brera-INAF, Milan (Italy); Smith, Malcolm G., E-mail: mtrichas@cfa.harvard.edu [Cerro Tololo Interamerican Observatory, La Serena (Chile); and others

    2012-06-01

    From optical spectroscopy of X-ray sources observed as part of the Chandra Multi-wavelength Project (ChaMP), we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow-up using the FLWO/1.5 m, SAAO/1.9 m, WIYN 3.5 m, CTIO/4 m, KPNO/4 m, Magellan/6.5 m, MMT/6.5 m, and Gemini/8 m telescopes, and from archival Sloan Digital Sky Survey (SDSS) spectroscopy. We classify the optical counterparts as 50% broad-line active galactic nuclei (AGNs), 16% emission line galaxies, 14% absorption line galaxies, and 20% stars. We detect QSOs out to z {approx} 5.5 and galaxies out to z {approx} 3. We have compiled extensive photometry, including X-ray (ChaMP), ultraviolet (GALEX), optical (SDSS and ChaMP-NOAO/MOSAIC follow-up), near-infrared (UKIDSS, Two Micron All Sky Survey, and ChaMP-CTIO/ISPI follow-up), mid-infrared (WISE), and radio (FIRST and NVSS) bands. Together with our spectroscopic information, this enables us to derive detailed spectral energy distributions (SEDs) for our extragalactic sources. We fit a variety of template SEDs to determine bolometric luminosities, and to constrain AGNs and starburst components where both are present. While {approx}58% of X-ray Seyferts (10{sup 42} erg s{sup -1} < L{sub 2-10keV} <10{sup 44} erg s{sup -1}) require a starburst event (>5% starburst contribution to bolometric luminosity) to fit observed photometry only 26% of the X-ray QSO (L{sub 2-10keV} >10{sup 44} erg s{sup -1}) population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z > 1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO

  9. Equivalent-circuit model for stacked slot-based 2D periodic arrays of arbitrary geometry for broadband analysis

    Science.gov (United States)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2018-03-01

    The analysis of the transmission and reflection spectra of stacked slot-based 2D periodic structures of arbitrary geometry and the ability to devise and control their electromagnetic responses have been a matter of extensive research for many decades. The purpose of this paper is to develop an equivalent Π circuit model based on the transmission-line theory and Floquet harmonic interactions, for broadband and short longitudinal period analysis. The proposed circuit model overcomes the limits of identical and symmetrical configurations imposed by the even/odd excitation approach, exploiting both the circuit topology of a single 2D periodic array of apertures and the ABCD matrix formalism. The transmission spectra obtained through the equivalent-circuit model have been validated by comparison with full-wave simulations carried out with a finite-element commercial electromagnetic solver. This allowed for a physical insight into the spectral and angular responses of multilayer devices with arbitrary aperture shapes, guaranteeing a noticeable saving of computational resources.

  10. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V. [CEA/DAM/DIF, Bruyères le Châtel, 91297 Arpajon (France); Emprin, B. [CEA/DAM/DIF, Bruyères le Châtel, 91297 Arpajon (France); Laboratoire Charles Fabry, Institut d’Optique, CNRS, University Paris-Sud, 2, Avenue Augustin Fresnel, RD128, 91127 Palaiseau Cedex (France); Bridou, F.; Delmotte, F. [Laboratoire Charles Fabry, Institut d’Optique, CNRS, University Paris-Sud, 2, Avenue Augustin Fresnel, RD128, 91127 Palaiseau Cedex (France); Krumrey, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  11. Design of a Novel Spectral Albedometer for Validating the MODerate Resolution Imaging Spectroradiometer Spectral Albedo Product

    Directory of Open Access Journals (Sweden)

    Hongmin Zhou

    2018-01-01

    Full Text Available Land surface shortwave broadband albedo is a key parameter in general circulation models and surface energy budget models. Multispectral satellite data are typically used to generate broadband albedo products in a three-step process: atmospheric correction, for converting the top-of-atmosphere observations to surface directional reflectance; angular modeling, for converting the surface directional reflectance to spectral albedo of each individual band; and finally, narrowband-to-broadband conversion, for transforming the spectral albedos to broadband albedos. Spectroradiometers can be used for validating surface directional reflectance products and pyranometers or broadband albedometers, for validating broadband albedo products, but spectral albedo products are rarely validated using ground measurements. In this study, we designed a new type of albedometer that can measure spectral albedos. It consists of multiple interference filters and a silicon detector, for measuring irradiance from 400–1100 nm. The linearity of the sensors is 99%, and the designed albedometer exhibits consistency up to 0.993, with a widely-used commercial instrument. A field experiment for measuring spectral albedo of grassland using this new albedometer was conducted in Yudaokou, China and the measurements are used for validating the MODerate Resolution Imaging Spectroradiometer (MODIS spectral albedos. The results show that the biases of the MODIS spectral albedos of the first four bands are −0.0094, 0.0065, 0.0159, and −0.0001, respectively. This new instrument provides an effective technique for validating spectral albedos of any satellite sensor in this spectral range, which is critical for improving satellite broadband albedo products.

  12. Spectral modeling of Type II SNe

    Science.gov (United States)

    Dessart, Luc

    2015-08-01

    The red supergiant phase represents the final stage of evolution in the life of moderate mass (8-25Msun) massive stars. Hidden from view, the core changes considerably its structure, progressing through the advanced stages of nuclear burning, and eventually becomes degenerate. Upon reaching the Chandrasekhar mass, this Fe or ONeMg core collapses, leading to the formation of a proto neutron star. A type II supernova results if the shock that forms at core bounce, eventually wins over the envelope accretion and reaches the progenitor surface.The electromagnetic display of such core-collapse SNe starts with this shock breakout, and persists for months as the ejecta releases the energy deposited initially by the shock or continuously through radioactive decay. Over a timescale of weeks to months, the originally optically-thick ejecta thins out and turns nebular. SN radiation contains a wealth of information about the explosion physics (energy, explosive nucleosynthesis), the progenitor properties (structure and composition). Polarised radiation also offers signatures that can help constrain the morphology of the ejecta.In this talk, I will review the current status of type II SN spectral modelling, and emphasise that a proper solution requires a time dependent treatment of the radiative transfer problem. I will discuss the wealth of information that can be gleaned from spectra as well as light curves, from both the early times (photospheric phase) and late times (nebular phase). I will discuss the diversity of Type SNe properties and how they are related to the diversity of red supergiant stars from which they originate.SN radiation offers an alternate means of constraining the properties of red-supergiant stars. To wrap up, I will illustrate how SNe II-P can also be used as probes, for example to constrain the metallicity of their environment.

  13. Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dokkum, Pieter G. van [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Byler, Nell [Department of Astronomy, University of Washington, Seattle, WA 98185 (United States)

    2017-03-10

    Broadband photometry of galaxies measures an unresolved mix of complex stellar populations, gas, and dust. Interpreting these data is a challenge for models: many studies have shown that properties derived from modeling galaxy photometry are uncertain by a factor of two or more, and yet answering key questions in the field now requires higher accuracy than this. Here, we present a new model framework specifically designed for these complexities. Our model, Prospector- α , includes dust attenuation and re-radiation, a flexible attenuation curve, nebular emission, stellar metallicity, and a six-component nonparametric star formation history. The flexibility and range of the parameter space, coupled with Monte Carlo Markov chain sampling within the Prospector inference framework, is designed to provide unbiased parameters and realistic error bars. We assess the accuracy of the model with aperture-matched optical spectroscopy, which was excluded from the fits. We compare spectral features predicted solely from fits to the broadband photometry to the observed spectral features. Our model predicts H α luminosities with a scatter of ∼0.18 dex and an offset of ∼0.1 dex across a wide range of morphological types and stellar masses. This agreement is remarkable, as the H α luminosity is dependent on accurate star formation rates, dust attenuation, and stellar metallicities. The model also accurately predicts dust-sensitive Balmer decrements, spectroscopic stellar metallicities, polycyclic aromatic hydrocarbon mass fractions, and the age- and metallicity-sensitive features D{sub n}4000 and H δ . Although the model passes all these tests, we caution that we have not yet assessed its performance at higher redshift or the accuracy of recovered stellar masses.

  14. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  15. Solar Spectral Proxy Irradiance from GOES (SSPRING: a model for solar EUV irradiance

    Directory of Open Access Journals (Sweden)

    Suess Katherine

    2016-01-01

    Full Text Available Several currently operating instruments are able to measure the full EUV spectrum at sufficient wavelength resolution for use in upper-atmosphere modeling, the effects of space weather, and modeling satellite drag. However, no missions are planned at present to succeed the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED and Solar Dynamics Observatory (SDO missions, which currently provide these data sources. To develop a suitable replacement for these measurements, we use two broadband EUV channels on the NOAA GOES satellites, the magnesium core-to-wing ratio (Mg II index from the SOlar Radiation and Climate Experiment (SORCE as well as EUV and Mg II time averages to model the EUV spectrum from 0.1 to 105 nm at 5-nm spectral resolution and daily time resolution. A Levenberg-Marquardt least squares fitting algorithm is used to determine a coefficient matrix that best reproduces a reference data set when multiplied by input data. The coefficient matrix is then applied to model data outside of the fitting interval. Three different fitting intervals are tested, with a variable fitting interval utilizing all days of data before the prediction date producing the best results. The correlation between the model results and the observed spectrum is found to be above 95% for the 0.1–50 nm range, and between 74% and 95% for the 50–105 nm range. We also find a favorable comparison between our results and the Flare Irradiance Spectral Model (FISM. These results provide a promising potential source for an empirical EUV spectral model after direct EUV measurements are no longer available, and utilize a similar EUV modeling technique as the upcoming GOES-R satellites.

  16. Spectral statistics in particles-rotor model and cranking model

    CERN Document Server

    Zhou Xian Rong; Zhao En Guang; Guo Lu

    2002-01-01

    Spectral statistics for six particles in single-j and two-j model coupled with a deformed core are studied in the frames of particles-rotor model and cranking shell model. The nearest-neighbor-distribution of energy levels and spectral rigidity are studied as a function of the spin or cranking frequency, respectively. The results of single-j shell are compared with those in two-j case. The system becomes more regular when single-j space (i sub 1 sub 3 sub / sub 2) is replaced by two-j shell (g sub 7 sub / sub 2 + d sub 5 sub / sub 2), although the basis size of the configuration space is unchanged. However, the degree of chaoticity of the system changes slightly when configuration space is enlarged by extending single-j shell (i sub 1 sub 3 sub / sub 2) to two-j shell (i sub 1 sub 3 sub / sub 2 + g sub 9 sub / sub 2). Nuclear chaotic behavior is studied when authors take a two-body interaction as delta force and pairing interaction, respectively

  17. Validation of buoyancy driven spectral tensor model using HATS data

    DEFF Research Database (Denmark)

    Chougule, A.; Mann, Jakob; Kelly, Mark C.

    2016-01-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper....... The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model...

  18. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications.

    Science.gov (United States)

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-07-01

    Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more

  19. A user credit assessment model based on clustering ensemble for broadband network new media service supervision

    Science.gov (United States)

    Liu, Fang; Cao, San-xing; Lu, Rui

    2012-04-01

    This paper proposes a user credit assessment model based on clustering ensemble aiming to solve the problem that users illegally spread pirated and pornographic media contents within the user self-service oriented broadband network new media platforms. Its idea is to do the new media user credit assessment by establishing indices system based on user credit behaviors, and the illegal users could be found according to the credit assessment results, thus to curb the bad videos and audios transmitted on the network. The user credit assessment model based on clustering ensemble proposed by this paper which integrates the advantages that swarm intelligence clustering is suitable for user credit behavior analysis and K-means clustering could eliminate the scattered users existed in the result of swarm intelligence clustering, thus to realize all the users' credit classification automatically. The model's effective verification experiments are accomplished which are based on standard credit application dataset in UCI machine learning repository, and the statistical results of a comparative experiment with a single model of swarm intelligence clustering indicates this clustering ensemble model has a stronger creditworthiness distinguishing ability, especially in the aspect of predicting to find user clusters with the best credit and worst credit, which will facilitate the operators to take incentive measures or punitive measures accurately. Besides, compared with the experimental results of Logistic regression based model under the same conditions, this clustering ensemble model is robustness and has better prediction accuracy.

  20. Solar spectral irradiance variability in cycle 24: observations and models

    Science.gov (United States)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  1. Solar spectral irradiance variability in cycle 24: observations and models

    Directory of Open Access Journals (Sweden)

    Marchenko Sergey V.

    2016-01-01

    Full Text Available Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI, we characterize both short-term (solar rotation and long-term (solar cycle changes of the solar spectral irradiance (SSI between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2 and Solar Radiation and Climate Experiment (SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2 and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S models.

  2. MODELING SPECTRAL AND TEMPORAL MASKING IN THE HUMAN AUDITORY SYSTEM

    DEFF Research Database (Denmark)

    Dau, Torsten; Jepsen, Morten Løve; Ewert, Stephan D.

    2007-01-01

    An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997)] but inclu......An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997...... was tested in conditions of tone-in-noise masking, intensity discrimination, spectral masking with tones and narrowband noises, forward masking with (on- and off-frequency) noise- and pure-tone maskers, and amplitude modulation detection using different noise carrier bandwidths. One of the key properties...

  3. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  4. Chebyshev super spectral viscosity method for a fluidized bed model

    CERN Document Server

    Sarra, S A

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations.

  5. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  6. Composite spectral functions for solving Volterra's population model

    International Nuclear Information System (INIS)

    Ramezani, M.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result

  7. A methodology for spectral wave model evaluation

    Science.gov (United States)

    Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.

    2017-12-01

    Model evaluation is accomplished by comparing bulk parameters (e.g., significant wave height, energy period, and mean square slope (MSS)) calculated from the model energy spectra with those calculated from buoy energy spectra. Quality control of the observed data and choice of the frequency range from which the bulk parameters are calculated are critical steps in ensuring the validity of the model-data comparison. The compared frequency range of each observation and the analogous model output must be identical, and the optimal frequency range depends in part on the reliability of the observed spectra. National Data Buoy Center 3-m discus buoy spectra are unreliable above 0.3 Hz due to a non-optimal buoy response function correction. As such, the upper end of the spectrum should not be included when comparing a model to these data. Bioufouling of Waverider buoys must be detected, as it can harm the hydrodynamic response of the buoy at high frequencies, thereby rendering the upper part of the spectrum unsuitable for comparison. An important consideration is that the intentional exclusion of high frequency energy from a validation due to data quality concerns (above) can have major implications for validation exercises, especially for parameters such as the third and fourth moments of the spectrum (related to Stokes drift and MSS, respectively); final conclusions can be strongly altered. We demonstrate this by comparing outcomes with and without the exclusion, in a case where a Waverider buoy is believed to be free of biofouling. Determination of the appropriate frequency range is not limited to the observed spectra. Model evaluation involves considering whether all relevant frequencies are included. Guidance to make this decision is based on analysis of observed spectra. Two model frequency lower limits were considered. Energy in the observed spectrum below the model lower limit was calculated for each. For locations where long swell is a component of the wave

  8. Stochastic Spectral Descent for Discrete Graphical Models

    International Nuclear Information System (INIS)

    Carlson, David; Hsieh, Ya-Ping; Collins, Edo; Carin, Lawrence; Cevher, Volkan

    2015-01-01

    Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.

  9. Investigating community-led broadband initiatives as a model for neo-endogenous development

    OpenAIRE

    Bosworth, Gary; Salemink, Koen

    2014-01-01

    In the context of community-led local development, this research aims to understand the blend of top down and bottom up influences that combine in campaigns for improved rural broadband provision. The representativeness of the membership of rural community broadband initiatives and the motivations and dominant arguments behind their campaigns are analysed from the perspective of neo-endogenous development, which concerns endogenous actors linking to exogenous networks and resources to raise “...

  10. Computing broadband accelerograms using kinematic rupture modeling; Generation d'accelerogrammes synthetiques large-bande par modelisation cinematique de la rupture sismique

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Paredes, J.A

    2007-05-15

    In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k{sup -2} source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w{sup 2} model with spectral amplitudes at high frequency scaled to the coefficient of directivity C{sub d}. To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C{sub d}, as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M{sub w} 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)

  11. CO observations of high-z radio galaxies MRC 2104-242 and MRC 0943-242 : spectral-line performance of the Compact Array Broadband Backend

    NARCIS (Netherlands)

    Emonts, B. H. C.; Norris, R. P.; Feain, I.; Miley, G.; Sadler, E. M.; Villar-Martin, M.; Mao, M. Y.; Oosterloo, T. A.; Ekers, R. D.; Stevens, J. B.; Wieringa, M. H.; Coppin, K. E. K.; Tadhunter, C. N.

    We present the first 7-mm observations of two high-redshift, Ly alpha-bright radio galaxies (MRC 2104-242 and MRC 0943-242) performed with the 2 x 2 GHz instantaneous bandwidth of the Compact Array Broadband Backend (CABB) at the Australia Telescope Compact Array (ATCA). The aim was to search for

  12. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  13. Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jusub Kim

    2009-01-01

    Full Text Available Interactive high quality volume rendering is becoming increasingly more important as the amount of more complex volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used, ray casting has been recognized as an effective approach for generating high quality visualization. However, for most users, the use of ray casting has been limited to datasets that are very small because of its high demands on computational power and memory bandwidth. However the recent introduction of the Cell Broadband Engine (Cell B.E. processor, which consists of 9 heterogeneous cores designed to handle extremely demanding computations with large streams of data, provides an opportunity to put the ray casting into practical use. In this paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The implementation is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically, we introduce streaming model based schemes and techniques to efficiently implement acceleration techniques for ray casting on Cell B.E. In addition to ensuring effective SIMD utilization, our method provides two key benefits: there is no cost for empty space skipping and there is no memory bottleneck on moving volumetric data for processing. Our experimental results show that we can interactively render practical datasets on a single Cell B.E. processor.

  14. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  15. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  16. Modelling rotational and cyclical spectral solar irradiance variations

    Science.gov (United States)

    Unruh, Yvonne

    Solar irradiance changes are highly wavelength dependent: solar-cycle variations in the UV can be on the order of tens of percent, while changes in the visible are typically only of the order of one or two permille. With the launch of a number of instruments to measure spectral solar irradiance, we are now for a first time in a good position to explore the changing solar irradiance over a large range of wavelengths and to test our irradiance models as well as some of their underlying assumptions. I will introduce some of the current modelling approaches and present model-data comparisons, using the SATIRE irradiance model and SORCE/SIM measurements as an example. I will conclude by highlighting a number of outstanding questions regarding the modelling of spectral irradiance and current approaches to address these.

  17. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling

    Science.gov (United States)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo

    2018-02-01

    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  18. Stochastic model theory of broadband shock associated noise from supersonic jets

    Science.gov (United States)

    Tam, C. K. W.

    1987-01-01

    A method based on the work of Tam and Tanna (1982) for calculating the near field noise spectrum and the spatial distribution of broadband shock associated noise from supersonic jets is proposed. Multiple-scales expansion is used to decompose the quasi-periodic shock cells into time-independent waveguide modes of the jet flow, and the interaction of the instability waves with each of the waveguide modes is shown to generate unsteady disturbances which become part of the broadband shock associated noise when radiated to the far field. The observed broadband shock associated noise is composed of a superposition of the various distinct spectra of the different waveguide modes, and the multispectra can be easily identified in many of the existing far and near field noise measurements.

  19. Broadband luminescent materials in waveguide geometry

    NARCIS (Netherlands)

    Pollnau, Markus

    2003-01-01

    Our recent research toward the development of novel spectrally broadband, spatially coherent light sources based on transition-metal-ion-doped crystalline channel waveguides for applications in interferometry, specifically optical low coherence reflectometry and optical coherence tomography, is

  20. Spectral database constitutive representation within a spectral micromechanical solver for computationally efficient polycrystal plasticity modelling

    Science.gov (United States)

    Eghtesad, Adnan; Zecevic, Miroslav; Lebensohn, Ricardo A.; McCabe, Rodney J.; Knezevic, Marko

    2018-02-01

    We present the first successful implementation of a spectral crystal plasticity (SCP) model into a spectral visco-plastic fast Fourier transform (VPFFT) full-field solver. The SCP database allows for non-iterative retrieval of constitutive solutions for a crystal of any orientation subjected to any state of deformation at every voxel representing an FFT point of the overall voxel-based polycrystalline microstructure. Details of this approach are described and validated through example case studies involving a rigid-visco-plastic response and microstructure evolution of polycrystalline copper. It is observed that the novel implementation is able to speed up the overall VPFFT calculations because the conventional Newton-Raphson iterative solution procedure for single crystals in VPFFT is replaced by the more efficient SCP constitutive representation of the solution. As a result, the implementation facilitates efficient simulations of large voxel-based microstructures. Additionally, it provides an incentive for conceiving a multi-level SCP-VPFFT computational scheme. Here, every FFT point of the model is a polycrystal whose response is calculated using a Taylor-type homogenization.

  1. Running of the Scalar Spectral Index from Inflationary Models

    CERN Document Server

    Chung, D J H; Trodden, M; Chung, Daniel J.H.; Shiu, Gary; Trodden, Mark

    2003-01-01

    The scalar spectral index n is an important parameter describing the nature of primordial density perturbations. Recent data, including that from the WMAP satellite, shows some evidence that the index runs (changes as a function of the scale k at which it is measured) from n>1 (blue) on long scales to n<1 (red) on short scales. We investigate the extent to which inflationary models can accomodate such significant running of n. We present several methods for constructing large classes of potentials which yield a running spectral index. We show that within the slow-roll approximation, the fact that n-1 changes sign from blue to red forces the slope of the potential to reach a minimum at a similar field location. We also briefly survey the running of the index in a wider class of inflationary models, including a subset of those with non-minimial kinetic terms.

  2. Modeling Broadband Variability of Blazars with Time-Dependent Multi-Zone Radiative Transfer Simulations

    Science.gov (United States)

    Fossati, Giovanni

    This proposal aims at fully exploiting the large body of X-ray and multiwavelength observational data on TeV gamma-ray bright blazars for a detailed comparison with state- of-the art blazar radiation transfer simulations. The aim of this investigation is to develop diagnostics on critical jet parameters and shock physics, such as the magnetic field, the kinetic energy content in the jets, the characteristics of the shock acceleration mechanisms, and the detailed influence on geometry on the observed spectral variability features. Our project will comprises a systematic, uniform re-analysis of the relevant (in particular, X-ray) data sets. We will extract time-dependent spectral energy distributions, light curves, and intra-band as well as inter-band time lags from the available data. The modeling tasks will start with a quick sweep through parameter space using a semi- analytical internal-shock model. This will help to narrow down parameters such as the Lorentz factors of interacting emission regions, the overall energy requirements, the characteristics of the electron distributions accelerated at internal shocks, and the magnetic field. The parameters of this semi-analytical internal-shock model that allow for a representation of time-dependent SEDs, light curves and inter-band time lags, will form the starting point for our detailed modeling using our state-of-the-art time-dependent multi-zone Monte-Carlo simulation code. Using that code, we will explore in more detail the characteristics of the particle acceleration in active regions and the influence of various geometries on the observable features. By capitalizing on archival data of several NASA space astrophysics missions our proposal is in agreement with the NASA ADAP research objective, "the analysis io NASA space astrophysics data that are archived in the public domain at the time of submission", as stated in the NASA Research announcement.

  3. Spectral model of an electro-photographic printing system

    Science.gov (United States)

    Kriss, Michael A.

    2011-01-01

    At EI 2007 in San Jose, California detailed physical models for monochrome and color electro-photographic printers were presented. These models were based on computer simulations of toner-dot formation for a variety of halftone structures. The optical interactions between the toner-dots and the paper substrate were incorporated by means of an optical scattering function, which allowed for the calculation of optical dot-gain (and physical dot-gain) as function of the halftone structure. The color model used simple red-green-blue channels to measure the effect of the absorption and scattering properties of the cyan, magenta, yellow and black toners on the final half-tone image. The new spectral model uses the full absorption and scattering spectrum of the image toners in calculating the final color image in terms of CIE XYZ values for well-defined color and gray patches. The new spectral model will be used to show the impact of halftone structure and toner-layerorder on conventional dot-on-dot, rotated dot and error diffusion color halftone systems and how to minimize the impact of image toner scattering. The model has been expanded to use the Neugebauer equations to approximate the amount of cyan, magenta, and yellow toners required to give a "good" neutral in the rotated dot halftone and fine tuning is achieved by adjusting the development threshold level for each layer to hold a good neutral over the full tonal range. In addition to the above fine-tuning, cyan, yellow and magenta offsets are used to find an optimum use of the halftone dither patterns. Once a "good" neutral is obtained the impact on dot gain, color reproduction and optimum layer order can studied with an emphasis on how the full spectral model differs from the simpler three-channel model. The model is used to explore the different approaches required in dot-on-dot, rotated dot and error diffusion halftones to achieve good results.

  4. A regular analogue of the Smilansky model: spectral properties

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel

    2017-01-01

    Roč. 80, č. 2 (2017), s. 177-192 ISSN 0034-4877 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : discrete spectrum * eigenvalue estimates * Smilansky model * spectral transition Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.604, year: 2016

  5. Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Science.gov (United States)

    Gómez, Cristina; White, Joanne C.; Wulder, Michael A.; Alejandro, Pablo

    2014-07-01

    Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984-2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (˜2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990-2000 are mapped (70% accuracy when validated with plot values of

  6. EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS

    Science.gov (United States)

    Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky

    2018-01-01

    The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.

  7. Optimizing UV Index determination from broadband irradiances

    Science.gov (United States)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0

  8. Algebraic properties and spectral collapse in nonlinear quantum Rabi models

    Science.gov (United States)

    Penna, V.; Raffa, F. A.; Franzosi, R.

    2018-01-01

    We investigate the origin of spectral collapse occurring in nonlinear Rabi Hamiltonians with an su(1,1) coupling scheme, showing how the collapse can be triggered by the competition between the Rabi parameter g and the field frequency W. The collapse already appears in the model Hamiltonian where the atomic-energy term is absent. After showing that su(1,1) is the dynamical algebra of the Hamiltonian, we demonstrate how the occurrence of spectral collapse can be directly related to the three types of equivalence classes characterizing the structure of this algebra. We highlight how the dramatic change of the spectrum significantly affects the structure of eigenstates represented in a suitable momentum–coordinate picture.

  9. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates.

    Science.gov (United States)

    von Benda-Beckmann, Alexander M; Thomas, Len; Tyack, Peter L; Ainslie, Michael A

    2018-02-01

    Passive acoustic monitoring with widely-dispersed hydrophones has been suggested as a cost-effective method to monitor population densities of echolocating marine mammals. This requires an estimate of the area around each receiver over which vocalizations are detected-the "effective detection area" (EDA). In the absence of auxiliary measurements enabling estimation of the EDA, it can be modelled instead. Common simplifying model assumptions include approximating the spectrum of clicks by flat energy spectra, and neglecting the frequency-dependence of sound absorption within the click bandwidth (narrowband assumption), rendering the problem amenable to solution using the sonar equation. Here, it is investigated how these approximations affect the estimated EDA and their potential for biasing the estimated density. EDA was estimated using the passive sonar equation, and by applying detectors to simulated clicks injected into measurements of background noise. By comparing model predictions made using these two approaches for different spectral energy distributions of echolocation clicks, but identical click source energy level and detector settings, EDA differed by up to a factor of 2 for Blainville's beaked whales. Both methods predicted relative density bias due to narrowband assumptions ranged from 5% to more than 100%, depending on the species, detector settings, and noise conditions.

  10. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    Science.gov (United States)

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  11. Analyzing availability using transfer function models and cross spectral analysis

    International Nuclear Information System (INIS)

    Singpurwalla, N.D.

    1980-01-01

    The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems

  12. Analysis of errors in spectral reconstruction with a Laplace transform pair model

    International Nuclear Information System (INIS)

    Archer, B.R.; Bushong, S.C.

    1985-01-01

    The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)

  13. A Spectral Evaluation of Models Performances in Mediterranean Oak Woodlands

    Science.gov (United States)

    Vargas, R.; Baldocchi, D. D.; Abramowitz, G.; Carrara, A.; Correia, A.; Kobayashi, H.; Papale, D.; Pearson, D.; Pereira, J.; Piao, S.; Rambal, S.; Sonnentag, O.

    2009-12-01

    Ecosystem processes are influenced by climatic trends at multiple temporal scales including diel patterns and other mid-term climatic modes, such as interannual and seasonal variability. Because interactions between biophysical components of ecosystem processes are complex, it is important to test how models perform in frequency (e.g. hours, days, weeks, months, years) and time (i.e. day of the year) domains in addition to traditional tests of annual or monthly sums. Here we present a spectral evaluation using wavelet time series analysis of model performance in seven Mediterranean Oak Woodlands that encompass three deciduous and four evergreen sites. We tested the performance of five models (CABLE, ORCHIDEE, BEPS, Biome-BGC, and JULES) on measured variables of gross primary production (GPP) and evapotranspiration (ET). In general, model performance fails at intermediate periods (e.g. weeks to months) likely because these models do not represent the water pulse dynamics that influence GPP and ET at these Mediterranean systems. To improve the performance of a model it is critical to identify first where and when the model fails. Only by identifying where a model fails we can improve the model performance and use them as prognostic tools and to generate further hypotheses that can be tested by new experiments and measurements.

  14. Remote sensing of oceanic primary production: Computations using a spectral model

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Platt, T.; Caverhill, C.M.; Warnock, R.E.; Lewis, M.R.

    A spectral model of underwater irradiance is coupled with a spectral version of the photosynthesis-light relationship to compute oceanic primary production. The results are shown to be significantly different from those obtained using...

  15. The diverse broad-band light-curves of Swift GRBs reproduced with the cannonball model

    CERN Document Server

    Dado, Shlomo; De Rújula, A

    2009-01-01

    Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the cannonball (CB) model of long gamma ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows. Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early time until late time and well represent the entire diversity of the broad band light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of glory light. During their fast decline phase, ICS is taken over by SR which dominates their broad band afterglow. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical `humps' in XRFs, are correctly predicted. The canonical and non-canonical X-ra...

  16. Spectral action for Bianchi type-IX cosmological models

    International Nuclear Information System (INIS)

    Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde

    2015-01-01

    A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors w 1 (t),w 2 (t),w 3 (t), and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients a 0 ,a 2 ,a 4 of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki’s noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi type-IX metric, yield an elegant proof of the rationality result.

  17. Toward an Empirically-based Parametric Explosion Spectral Model

    Science.gov (United States)

    Ford, S. R.; Walter, W. R.; Ruppert, S.; Matzel, E.; Hauk, T. F.; Gok, R.

    2010-12-01

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases (Pn, Pg, and Lg) that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. These parameters are then correlated with near-source geology and containment conditions. There is a correlation of high gas-porosity (low strength) with increased spectral slope. However, there are trade-offs between the slope and corner-frequency, which we try to independently constrain using Mueller-Murphy relations and coda-ratio techniques. The relationship between the parametric equation and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source, and aid in the prediction of observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing.

  18. Canopy spectral invariants for remote sensing and model applications

    NARCIS (Netherlands)

    Huang, D.; Knyazikhin, Y.; Dickinson, R.E.; Rautiainen, M.; Stenberg, P.; Disney, M.; Lewis, P.; Cescatti, A.; Tian, Y.; Verhoef, W.; Martonchik, J.V.; Myneni, R.B.

    2007-01-01

    The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral transmittance and reflectance become wavelength independent and determine a small set of canopy structure specific variables. This set includes the canopy interceptance,

  19. Modeling photoacoustic spectral features of micron-sized particles.

    Science.gov (United States)

    Strohm, Eric M; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C

    2014-10-07

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a

  20. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    Science.gov (United States)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  1. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    Science.gov (United States)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  2. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    Science.gov (United States)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  3. Re-acceleration Model for Radio Relics with Spectral Curvature

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2016-05-01

    Most of the observed features of radio gischt relics, such as spectral steepening across the relic width and a power-law-like integrated spectrum, can be adequately explained by a diffusive shock acceleration (DSA) model in which relativistic electrons are (re-)accelerated at shock waves induced in the intracluster medium. However, the steep spectral curvature in the integrated spectrum above ˜2 GHz detected in some radio relics, such as the Sausage relic in cluster CIZA J2242.8+5301, may not be interpreted by the simple radiative cooling of postshock electrons. In order to understand such steepening, we consider here a model in which a spherical shock sweeps through and then exits out of a finite-size cloud with fossil relativistic electrons. The ensuing integrated radio spectrum is expected to steepen much more than predicted for aging postshock electrons, since the re-acceleration stops after the cloud-crossing time. Using DSA simulations that are intended to reproduce radio observations of the Sausage relic, we show that both the integrated radio spectrum and the surface brightness profile can be fitted reasonably well, if a shock of speed {u}s ˜ 2.5-2.8 × {10}3 {km} {{{s}}}-1 and a sonic Mach number {M}s ˜ 2.7-3.0 traverses a fossil cloud for ˜45 Myr, and the postshock electrons cool further for another ˜10 Myr. This attempt illustrates that steep curved spectra of some radio gischt relics could be modeled by adjusting the shape of the fossil electron spectrum and adopting the specific configuration of the fossil cloud.

  4. Two-zone model for the broadband Crab nebula spectrum: microscopic interpretation

    Directory of Open Access Journals (Sweden)

    Fraschetti F.

    2017-01-01

    Full Text Available We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10−5 eV and ~ 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to ~ 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.

  5. Angle-resolved spectral Fabry-Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

    Science.gov (United States)

    Dong, J. T.; Ji, F.; Xia, H. J.; Liu, Z. J.; Zhang, T. D.; Yang, L.

    2018-01-01

    An angle-resolved spectral Fabry-Pérot interferometer is reported for fast and accurate measurement of the refractive index dispersion of optical materials with parallel plate shape. The light sheet from the wavelength tunable laser is incident on the parallel plate with converging angles. The transmitted interference light for each angle is dispersed and captured by a 2D sensor, in which the rows and the columns are used to simultaneously record the intensities as a function of wavelength and incident angle, respectively. The interferogram, named angle-resolved spectral intensity distribution, is analyzed by fitting the phase information instead of finding the fringe peak locations that present periodic ambiguity. The refractive index dispersion and the physical thickness can be then retrieved from a single-shot interferogram within 18 s. Experimental results of an optical substrate standard indicate that the accuracy of the refractive index dispersion is less than 2.5  ×  10-5 and the relative uncertainty of the thickness is 6  ×  10-5 mm (3σ) due to the high stability and the single-shot measurement of the proposed system.

  6. An intense charge transfer broadband sensitized near-infrared emitting CaLaGa3S3O:Yb3+ phosphor suitable for solar spectral convertor.

    Science.gov (United States)

    Zhang, Gongguo; Liu, Chunmeng; Wang, Jing; Kuang, Xiaojun; Su, Qiang

    2011-11-21

    A near-infrared (NIR) phosphor, CaLaGa(3)S(6)O:Yb(3+), is developed as a promising solar spectral convertor for Si solar cells. The structure, photoluminescence excitation and emission spectra, concentration effect are investigated. The results show that CaLaGa(3)S(6)O:Yb(3+) has an efficient broad absorption band dominating around the 345 nm ascribing to the charge transfer state (CTS) of Yb(3+)-S(2-) and exhibits an intense NIR emission of Yb(3+) between 920 and 1150 nm, perfectly matching the maximum spectral response of Si solar cells. The NIR emission intensity of CaLaGa(3)S(6)O:Yb(3+) is 12 times as intense as that of a NIR quantum cutting phosphor Ca(2)BO(3)Cl:Ce(3+), Tb(3+), Yb(3+) (CBC) upon 4f-5d excitation of Ce(3+). These results demonstrate that the allowed CTS of Yb(3+)-S(2-) with high absorption cross-section can be an efficient and direct sensitizer harvesting UV-blue photons and greatly enhancing the NIR emission of Yb(3+) ion. © 2011 Optical Society of America

  7. Sensitivity experiments to mountain representations in spectral models

    Directory of Open Access Journals (Sweden)

    U. Schlese

    2000-06-01

    Full Text Available This paper describes a set of sensitivity experiments to several formulations of orography. Three sets are considered: a "Standard" orography consisting of an envelope orography produced originally for the ECMWF model, a"Navy" orography directly from the US Navy data and a "Scripps" orography based on the data set originally compiled several years ago at Scripps. The last two are mean orographies which do not use the envelope enhancement. A new filtering technique for handling the problem of Gibbs oscillations in spectral models has been used to produce the "Navy" and "Scripps" orographies, resulting in smoother fields than the "Standard" orography. The sensitivity experiments show that orography is still an important factor in controlling the model performance even in this class of models that use a semi-lagrangian formulation for water vapour, that in principle should be less sensitive to Gibbs oscillations than the Eulerian formulation. The largest impact can be seen in the stationary waves (asymmetric part of the geopotential at 500 mb where the differences in total height and spatial pattern generate up to 60 m differences, and in the surface fields where the Gibbs removal procedure is successful in alleviating the appearance of unrealistic oscillations over the ocean. These results indicate that Gibbs oscillations also need to be treated in this class of models. The best overall result is obtained using the "Navy" data set, that achieves a good compromise between amplitude of the stationary waves and smoothness of the surface fields.

  8. Validation of spectral domain optical coherence tomographic Doppler shifts using an in vitro flow model.

    Science.gov (United States)

    Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Townsend, Kelly A; Schuman, Joel S

    2009-02-01

    To validate velocity measurements produced by spectral domain optical coherence tomography (SD-OCT) in an in vitro laminar flow model. A 30-mL syringe filled with skim milk was inserted into a syringe pump. Intravenous (i.v.) tubing connected the syringe within the pump to a glass capillary tube (internal diameter, 0.579 mm) shallowly embedded in agarose gel, then to a collection reservoir. SD-OCT imaging was performed with an anterior segment eye scanner and optics engine coupled with a 100-nm bandwidth broadband superluminescent diode. Scan density of 128 x 128 A-scans was spread over a 4 x 4 mm area, and each A-scan was 2 mm in length. Fifteen sequential stationary A-scans were obtained at each 128 x 128 position, and Doppler shifts were calculated from temporal changes in phase. The beam-to-flow vector Doppler angle was determined from three-dimensional scans. In all reflectance and Doppler images, a clear laminar flow pattern was observed, with v(max) appearing in the center of the flow column. Phase wrapping was observed at all measured flow velocities, and fringe washout progressively shattered reflectance and phase signals beyond the Nyquist limit. The observed percentages of the velocity profile at or below Nyquist frequency was highly correlated with the predicted percentages (R(2)=0.934; P=0.007). SD-OCT provides objective Doppler measurements of laminar fluid flow in an in vitro flow system in a range up to the Nyquist limit.

  9. Spectral cumulus parameterization based on cloud-resolving model

    Science.gov (United States)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  10. Spectral analysis and markov switching model of Indonesia business cycle

    Science.gov (United States)

    Fajar, Muhammad; Darwis, Sutawanir; Darmawan, Gumgum

    2017-03-01

    This study aims to investigate the Indonesia business cycle encompassing the determination of smoothing parameter (λ) on Hodrick-Prescott filter. Subsequently, the components of the filter output cycles were analyzed using a spectral method useful to know its characteristics, and Markov switching regime modeling is made to forecast the probability recession and expansion regimes. The data used in the study is real GDP (1983Q1 - 2016Q2). The results of the study are: a) Hodrick-Prescott filter on real GDP of Indonesia to be optimal when the value of the smoothing parameter is 988.474, b) Indonesia business cycle has amplitude varies between±0.0071 to±0.01024, and the duration is between 4 to 22 quarters, c) the business cycle can be modelled by MSIV-AR (2) but regime periodization is generated this model not perfect exactly with real regime periodzation, and d) Based on the model MSIV-AR (2) obtained long-term probabilities in the expansion regime: 0.4858 and in the recession regime: 0.5142.

  11. Interpreting Flux from Broadband Photometry

    Science.gov (United States)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.; Siegel, Michael

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.

  12. Graph spectral characterization of the XY model on complex networks.

    Science.gov (United States)

    Expert, Paul; de Nigris, Sarah; Takaguchi, Taro; Lambiotte, Renaud

    2017-07-01

    There is recent evidence that the XY spin model on complex networks can display three different macroscopic states in response to the topology of the network underpinning the interactions of the spins. In this work we present a way to characterize the macroscopic states of the XY spin model based on the spectral decomposition of time series using topological information about the underlying networks. We use three different classes of networks to generate time series of the spins for the three possible macroscopic states. We then use the temporal Graph Signal Transform technique to decompose the time series of the spins on the eigenbasis of the Laplacian. From this decomposition, we produce spatial power spectra, which summarize the activation of structural modes by the nonlinear dynamics, and thus coherent patterns of activity of the spins. These signatures of the macroscopic states are independent of the underlying network class and can thus be used as robust signatures for the macroscopic states. This work opens avenues to analyze and characterize dynamics on complex networks using temporal Graph Signal Analysis.

  13. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most...... successful markets for broadband. This is done through analysis of national policies in three European countries-Denmark, Sweden, and Germany-and the U.S., Japan, and South Korea. We concluded that successful implementation of broadband depends on the kind of policy measures to be taken at the national level...

  14. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    Directory of Open Access Journals (Sweden)

    Myriam Desainte-Catherine

    2005-07-01

    Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  15. Modeling and Halftoning for Multichannel Printers: A Spectral Approach

    OpenAIRE

    Slavuj, Radovan

    2015-01-01

    Printing has been has been the major communication medium for many centuries. In the last twenty years, multichannel printing has brought new opportunities and challenges. Beside of extended colour gamut of the multichannel printer, the opportunity was presented to use a multichannel printer for ‘spectral printing’. The aim of spectral printing is typically the same as for colour printing; that is, to match input signal with printing specific ink combinations. In order to control printers so ...

  16. Characterisation of optical filters for broadband UVA radiometer

    International Nuclear Information System (INIS)

    Alves, Luciana C; Coelho, Carla T; Corrêa, Jaqueline S P M; Menegotto, Thiago; Da Silva, Thiago Ferreira; De Souza, Muriel Aparecida; Da Silva, Elisama Melo; De Lima, Maurício Simões; De Alvarenga, Ana Paula Dornelles

    2016-01-01

    Optical filters were characterized in order to know its suitability for use in broadband UVA radiometer head for spectral irradiance measurements. The spectral transmittance, the angular dependence and the spatial uniformity of the spectral transmittance of the UVA optical filters were investigated. The temperature dependence of the transmittance was also studied. (paper)

  17. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  18. Broadband Phase Shifter for High Contrast Nulling Interferometry

    Data.gov (United States)

    National Aeronautics and Space Administration — All approaches to starlight suppression are subject to spectral bandpass limitations. For nulling interferometers (“nullers”), the issue lies in achieving broadband...

  19. Using a Genetic Algorithm to Model Broadband Regional Waveforms for Crustal Structure in the Western United States

    Science.gov (United States)

    Bhattacharyya, Joydeep; Sheehan, Anne F.; Tiampo, Kristy; Rundle, John

    1999-01-01

    In this study, we analyze regional seismograms to obtain the crustal structure in the eastern Great Basin and western Colorado plateau. Adopting a for- ward-modeling approach, we develop a genetic algorithm (GA) based parameter search technique to constrain the one-dimensional crustal structure in these regions. The data are broadband three-component seismograms recorded at the 1994-95 IRIS PASSCAL Colorado Plateau to Great Basin experiment (CPGB) stations and supplemented by data from U.S. National Seismic Network (USNSN) stations in Utah and Nevada. We use the southwestern Wyoming mine collapse event (M(sub b) = 5.2) that occurred on 3 February 1995 as the seismic source. We model the regional seismograms using a four-layer crustal model with constant layer parameters. Timing of teleseismic receiver functions at CPGB stations are added as an additional constraint in the modeling. GA allows us to efficiently search the model space. A carefully chosen fitness function and a windowing scheme are added to the algorithm to prevent search stagnation. The technique is tested with synthetic data, both with and without random Gaussian noise added to it. Several separate model searches are carried out to estimate the variability of the model parameters. The average Colorado plateau crustal structure is characterized by a 40-km-thick crust with velocity increases at depths of about 10 and 25 km and a fast lower crust while the Great Basin has approximately 35- km-thick crust and a 2.9-km-thick sedimentary layer.

  20. Galaxy Evolution Insights from Spectral Modeling of Large Data Sets from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, Erik A. [Johns Hopkins Univ., Baltimore, MD (United States)

    2007-10-01

    This thesis centers on the use of spectral modeling techniques on data from the Sloan Digital Sky Survey (SDSS) to gain new insights into current questions in galaxy evolution. The SDSS provides a large, uniform, high quality data set which can be exploited in a number of ways. One avenue pursued here is to use the large sample size to measure precisely the mean properties of galaxies of increasingly narrow parameter ranges. The other route taken is to look for rare objects which open up for exploration new areas in galaxy parameter space. The crux of this thesis is revisiting the classical Kennicutt method for inferring the stellar initial mass function (IMF) from the integrated light properties of galaxies. A large data set (~ 105 galaxies) from the SDSS DR4 is combined with more in-depth modeling and quantitative statistical analysis to search for systematic IMF variations as a function of galaxy luminosity. Galaxy Hα equivalent widths are compared to a broadband color index to constrain the IMF. It is found that for the sample as a whole the best fitting IMF power law slope above 0.5 M is Γ = 1.5 ± 0.1 with the error dominated by systematics. Galaxies brighter than around Mr,0.1 = -20 (including galaxies like the Milky Way which has Mr,0.1 ~ -21) are well fit by a universal Γ ~ 1.4 IMF, similar to the classical Salpeter slope, and smooth, exponential star formation histories (SFH). Fainter galaxies prefer steeper IMFs and the quality of the fits reveal that for these galaxies a universal IMF with smooth SFHs is actually a poor assumption. Related projects are also pursued. A targeted photometric search is conducted for strongly lensed Lyman break galaxies (LBG) similar to MS1512-cB58. The evolution of the photometric selection technique is described as are the results of spectroscopic follow-up of the best targets. The serendipitous discovery of two interesting blue compact dwarf galaxies is reported. These

  1. The spectral cell method in nonlinear earthquake modeling

    Science.gov (United States)

    Giraldo, Daniel; Restrepo, Doriam

    2017-12-01

    This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

  2. An empirical spectral bandwidth model for superior conjunction. [spacecraft communication

    Science.gov (United States)

    Rockwell, R. S.

    1978-01-01

    The downlink signal from spacecraft in superior solar conjunction phases suffers a great reduction in signal-to-noise ratio. Responsible in large part for this effect is the line broadening of the signal spectrum. An analytic empirical expression was developed for spectral bandwidth as a function of heliocentric distance from 1 to 20 solar radii. The study is based on spectral broadening data obtained from the superior conjunctions of Helios 1 (1975), Helios 2 (1976), and Pioneer 6 (1968). The empirical fit is based in part on a function describing the electron content in the solar corona.

  3. Building Spectral Element Dynamic Matrices Using Finite Element Models of Waveguide Slices and Elastodynamic Equations

    Directory of Open Access Journals (Sweden)

    P.B. Silva

    2013-01-01

    Full Text Available Structural spectral elements are formulated using the analytical solution of the applicable elastodynamic equations and, therefore, mesh refinement is not needed to analyze high frequency behavior provided the elastodynamic equations used remain valid. However, for modeling complex structures, standard spectral elements require long and cumbersome analytical formulation. In this work, a method to build spectral finite elements from a finite element model of a slice of a structural waveguide (a structure with one dimension much larger than the other two is proposed. First, the transfer matrix of the structural waveguide is obtained from the finite element model of a thin slice. Then, the wavenumbers and wave propagation modes are obtained from the transfer matrix and used to build the spectral element matrix. These spectral elements can be used to model homogeneous waveguides with constant cross section over long spans without the need of refining the finite element mesh along the waveguide. As an illustrating example, spectral elements are derived for straight uniform rods and beams and used to calculate the forced response in the longitudinal and transverse directions. Results obtained with the spectral element formulation are shown to agree well with results obtained with a finite element model of the whole beam. The proposed approach can be used to generate spectral elements of waveguides of arbitrary cross section and, potentially, of arbitrary order.

  4. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  5. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  6. Testing a Model of Planck-Scale Quantum Geometry With Broadband Correlation of Colocated 40m Interferometers

    Energy Technology Data Exchange (ETDEWEB)

    McCuller, Lee Patrick [Univ. of Chicago, IL (United States)

    2015-12-01

    The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude of $7\\times10^{−21}$ m/$\\sqrt{\\rm Hz}$ with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of $2.5\\times 10^{−18}$ m/$\\sqrt{\\rm Hz}$, but their correlation with a time-bandwidth product of $4\\times 10^{11}$ digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.

  7. Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments

    DEFF Research Database (Denmark)

    Becher, Valentin; Clausen, Sønnik; Fateev, Alexander

    2011-01-01

    AbstractCombustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition as combustion with air. Standard CFD spectral gas radiation models for air combustion are out of their validity range. The series of three articles provides a common spectral basis...

  8. Perceptual interaction between carrier periodicity and amplitude modulation in broadband stimuli: A comparison of the autocorrelation and modulation-filterbank model

    DEFF Research Database (Denmark)

    Stein, A.; Ewert, Stephan; Wiegrebe, L.

    2005-01-01

    , autocorrelation is applied. Considering the large overlap in pitch and modulation perception, this is not parsimonious. Two experiments are presented to investigate the interaction between carrier periodicity, which produces strong pitch sensations, and envelope periodicity using broadband stimuli. Results show......Recent temporal models of pitch and amplitude modulation perception converge on a relatively realistic implementation of cochlear processing followed by a temporal analysis of periodicity. However, for modulation perception, a modulation filterbank is applied whereas for pitch perception...

  9. Spectral-spatial classification combined with diffusion theory based inverse modeling of hyperspectral images

    Science.gov (United States)

    Paluchowski, Lukasz A.; Bjorgan, Asgeir; Nordgaard, Hâvard B.; Randeberg, Lise L.

    2016-02-01

    Hyperspectral imagery opens a new perspective for biomedical diagnostics and tissue characterization. High spectral resolution can give insight into optical properties of the skin tissue. However, at the same time the amount of collected data represents a challenge when it comes to decomposition into clusters and extraction of useful diagnostic information. In this study spectral-spatial classification and inverse diffusion modeling were employed to hyperspectral images obtained from a porcine burn model using a hyperspectral push-broom camera. The implemented method takes advantage of spatial and spectral information simultaneously, and provides information about the average optical properties within each cluster. The implemented algorithm allows mapping spectral and spatial heterogeneity of the burn injury as well as dynamic changes of spectral properties within the burn area. The combination of statistical and physics informed tools allowed for initial separation of different burn wounds and further detailed characterization of the injuries in short post-injury time.

  10. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  11. Exploring the origin of broad-band emissions of Mrk 501 with a two-zone model

    Science.gov (United States)

    Lei, Maichang; Yang, Chuyuan; Wang, Jiancheng; Yang, Xiaolin

    2018-04-01

    We propose a two-zone synchrotron self-Compton (SSC) model, including an inner gamma-ray emitting region with spherical shape and a conical radio emitting region located at the extended jet, to alleviate the long-standing "bulk Lorentz factor crisis" in blazars. In this model, the spectral energy distributions (SEDs) of blazars are produced by considering the gamma-ray emitting region inverse Compton scattering of both the synchrotron photons itself and the ambient photons from the radio emitting region. Applying the model to Mrk 501, we obtain that the radio emitting region has a comoving length of ˜0.15 pc and is located at sub-parsec scale from the central engine by modeling the radio data; the flux of the Compton scattering of the ambient photons is so low that it can be neglected safely. The characteristic hard gamma-ray spectrum can be explained by the superposition of two SSC processes, and the model can approximately explain the very high energy (VHE) data. The insights into the spectral shape and the inter-band correlations under the flaring state will provide us with a diagnostic for the bulk Lorentz factor of radio emitting region, where the low and upper limits of 8 and 15 are preferred, and for the two-zone SSC model itself. In addition, our two-zone SSC model shows that the gamma-ray emitting region creates flare on the timescale of merely a few hours, and the long time outbursts more likely originate from the extended radio emitting region.

  12. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, Lucianne M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08534 (United States); Basri, Gibor [Astronomy Department, University of California at Berkeley, Hearst Field Annex, Berkeley, CA 94720 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  13. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    International Nuclear Information System (INIS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-01-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  14. Broadband pendulum energy harvester

    Science.gov (United States)

    Liang, Changwei; Wu, You; Zuo, Lei

    2016-09-01

    A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.

  15. Efficient and stable model reduction scheme for the numerical simulation of broadband acoustic metamaterials

    DEFF Research Database (Denmark)

    Hyun, Jaeyub; Kook, Junghwan; Wang, Semyung

    2015-01-01

    and basis vectors for use according to the target system. The proposed model reduction scheme is applied to the numerical simulation of the simple mass-damping-spring system and the acoustic metamaterial systems (i.e., acoustic lens and acoustic cloaking device) for the first time. Through these numerical...

  16. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  17. Beam-based model of broad-band impedance of the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2015-06-01

    Full Text Available In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  18. PSpice modeling of broadband RF cavities for transient and frequency domain simulations

    Energy Technology Data Exchange (ETDEWEB)

    Harzheim, Jens [Institut fuer Theorie Elektromagnetischer Felder, Fachgebiet Beschleunigertechnik, TU Darmstadt (Germany)

    2016-07-01

    In the future accelerator facility FAIR, Barrier-Bucket Systems will play an important role for different longitudinal beam manipulations. As the function of this type of system is to provide single sine gap voltages, the components of the system have to operate in a broad frequency range. To investigate the different effects and to design the different system components, the whole Barrier-Bucket System is to be modeled in PSpice. While for low power signals, the system shows linear behavior, nonlinear effects arise at higher amplitudes. Therefore, simulations in both, frequency and time domain are needed. The highly frequency dependent magnetic alloy ring cores of the future Barrier-Bucket cavity have been mod eled in a first step and based on these models, the whole cavity was analyzed in PSpice. The simulation results show good agreement with former measurements.

  19. Extending distributed shared memory for the cell broadband engine to a channel model

    DEFF Research Database (Denmark)

    Skovhede, Kenneth; Larsen, Morten Nørgaard; Vinter, Brian

    2010-01-01

    at the price of a quite complex programming model. In this paper we present an easy-to-use, CSP-like, communication method, which enables transfers of shared memory objects. The channel based communication method can significantly reduce the complexity of massively parallel programs. By implementing a few...... scientific computational cores we show that performance and scalability of the system is acceptable for most problems....

  20. Customer Churn Prediction for Broadband Internet Services

    Science.gov (United States)

    Huang, B. Q.; Kechadi, M.-T.; Buckley, B.

    Although churn prediction has been an area of research in the voice branch of telecommunications services, more focused studies on the huge growth area of Broadband Internet services are limited. Therefore, this paper presents a new set of features for broadband Internet customer churn prediction, based on Henley segments, the broadband usage, dial types, the spend of dial-up, line-information, bill and payment information, account information. Then the four prediction techniques (Logistic Regressions, Decision Trees, Multilayer Perceptron Neural Networks and Support Vector Machines) are applied in customer churn, based on the new features. Finally, the evaluation of new features and a comparative analysis of the predictors are made for broadband customer churn prediction. The experimental results show that the new features with these four modelling techniques are efficient for customer churn prediction in the broadband service field.

  1. Particle acceleration model for the broad-band baseline spectrum of the Crab nebula

    Science.gov (United States)

    Fraschetti, F.; Pohl, M.

    2017-11-01

    We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.

  2. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: niedermayer@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Eidam, L. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); GSI Helmholzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-03-11

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  3. The spectral-element method, Beowulf computing, and global seismology.

    Science.gov (United States)

    Komatitsch, Dimitri; Ritsema, Jeroen; Tromp, Jeroen

    2002-11-29

    The propagation of seismic waves through Earth can now be modeled accurately with the recently developed spectral-element method. This method takes into account heterogeneity in Earth models, such as three-dimensional variations of seismic wave velocity, density, and crustal thickness. The method is implemented on relatively inexpensive clusters of personal computers, so-called Beowulf machines. This combination of hardware and software enables us to simulate broadband seismograms without intrinsic restrictions on the level of heterogeneity or the frequency content.

  4. Spectral modeling of laser-produced underdense titanium plasmas

    Science.gov (United States)

    Chung, Hyun-Kyung; Back, Christina A.; Scott, Howard A.; Constantin, Carmen; Lee, Richard W.

    2004-11-01

    Experiments were performed at the NIKE laser to create underdense low-Z plasmas with a small amount of high-Z dopant in order to study non-LTE population kinetics. An absolutely calibrated spectra in 470-3000 eV was measured in time-resolved and time-averaged fashion from SiO2 aerogel target with 3% Ti dopant. K-shell Ti emission was observed as well as L-shell Ti emission. Time-resolved emission show that lower energy photons peak later than higher energy photons due to plasma cooling. In this work, we compare the measured spectra with non-LTE spectral calculations of titanium emission at relatively low temperatures distributions dominated by L-shell ions will be discussed.

  5. Broadband Fiber Raman Power-Amplifier for Narrow Linewidth Tunable Seed Lasers Used in Spectroscopic Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an energy and space efficient high power continuous wave (cw) narrow linewidth broadband fiber Raman amplifier (FRA) with spectrally tunable...

  6. Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations

    Science.gov (United States)

    Marchenko, S.; DeLand, M.; Lean, J.

    2016-01-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.

  7. Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, Maija; Kaerhae, Petri; Ikonen, Erkki

    2010-02-10

    We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

  8. Local government broadband policies for areas with limited Internet access

    Directory of Open Access Journals (Sweden)

    Yoshio Arai

    2014-03-01

    Full Text Available Despite their wide diffusion in developed countries, broadband services are still limited in areas where providing them is not profitable for private telecom carriers. To address this, many local governments in Japan have implemented broadband deployment projects subsidized by the national government. In this paper, we discuss local government broadband policies based on survey data collected from municipalities throughout the country. With the support of national promotion policies, broadband services were rapidly introduced to most local municipalities in Japan during the 2000s. Local government deployment policies helped to reduce the number of areas with no broadband access. A business model based on the Indefeasible Right of Use (IRU contract between a private telecom carrier and a local government has been developed in recent years. Even local governments without the technical capacity to operate a broadband business can introduce broadband services into their territory using the IRU business model.

  9. Extracting the noise spectral densities parameters of JFET transistor by modeling a nuclear electronics channel response

    International Nuclear Information System (INIS)

    Assaf, J.

    2009-07-01

    Mathematical model for the RMS noise of JFET transistor has been realized. Fitting the model according to the experimental results gives the noise spectral densities values. Best fitting was for the model of three noise sources and real preamplifier transfer function. After gamma irradiation, an additional and important noise sources appeared and two point defects are estimated through the fitting process. (author)

  10. An assessment of wind forcing impact on a spectral wave model for ...

    Indian Academy of Sciences (India)

    The focus of the present study is the assessment of the impact of wind forcing on the spectral wave model MIKE 21 SW in the Indian Ocean region. Three different wind fields, namely the ECMWF analyzed winds, the ECMWF blended winds, and the NCEP blended winds have been used to drive the model. The wave model ...

  11. Broadband Faraday Isolator

    OpenAIRE

    Berent, Michal; Rangelov, Andon A.; Vitanov, Nikolay V.

    2012-01-01

    Driving on an analogy with the technique of composite pulses in quantum physics, we propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

  12. Broadband Faraday isolator.

    Science.gov (United States)

    Berent, Michał; Rangelov, Andon A; Vitanov, Nikolay V

    2013-01-01

    Driving on an analogy with the technique of composite pulses in quantum physics, we theoretically propose a broadband Faraday rotator and thus a broadband optical isolator, which is composed of sequences of ordinary Faraday rotators and achromatic quarter-wave plates rotated at the predetermined angles.

  13. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2017-01-01

    A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...

  14. Wind turbine fatigue damage evaluation based on a linear model and a spectral method

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2015-01-01

    presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high-order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied...... to power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time...

  15. Modeling Fire Severity in Black Spruce Stands in the Alaskan Boreal Forest Using Spectral and Non-Spectral Geospatial Data

    Science.gov (United States)

    Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface

  16. Underresolved absorption spectroscopy of OH radicals in flames using broadband UV LEDs

    Science.gov (United States)

    White, Logan; Gamba, Mirko

    2018-04-01

    A broadband absorption spectroscopy diagnostic based on underresolution of the spectral absorption lines is evaluated for the inference of species mole fraction and temperature in combustion systems from spectral fitting. The approach uses spectrally broadband UV light emitting diodes and leverages low resolution, small form factor spectrometers. Through this combination, the method can be used to develop high precision measurement sensors. The challenges of underresolved spectroscopy are explored and addressed using spectral derivative fitting, which is found to generate measurements with high precision and accuracy. The diagnostic is demonstrated with experimental measurements of gas temperature and OH mole fraction in atmospheric air/methane premixed laminar flat flames. Measurements exhibit high precision, good agreement with 1-D flame simulations, and high repeatability. A newly developed model of uncertainty in underresolved spectroscopy is applied to estimate two-dimensional confidence regions for the measurements. The results of the uncertainty analysis indicate that the errors in the outputs of the spectral fitting procedure are correlated. The implications of the correlation between uncertainties for measurement interpretation are discussed.

  17. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Science.gov (United States)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  18. Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model

    Directory of Open Access Journals (Sweden)

    Lotter Thomas

    2005-01-01

    Full Text Available This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.

  19. Spectral Characterization of Suspected Acid Deposition Damage in Red Spruce (picea Rubens) Stands from Vermont

    Science.gov (United States)

    Vogelmann, J. E.; Rock, B. N.

    1985-01-01

    In an attempt to demonstrate the utility of remote sensing systems to monitor sites of suspected acid rain deposition damage, intensive field activities, coupled with aircraft overflights, were centered on red spruce stands in Vermont during August and September of 1984. Remote sensing data were acquired using the Airborne Imaging Spectrometer, Thematic Mapper Simulator, Barnes Model 12 to 1000 Modular Multiband Radiometer and Spectron Engineering Spectrometer (the former two flown on the NASA C-130; the latter two on A Bell UH-1B Iroquois Helicopter). Field spectral data were acquired during the week of the August overflights using a high spectral resolution spectrometer and two broad-band radiometers. Preliminary analyses of these data indicate a number of spectral differences in vegetation between high and low damage sites. Some of these differences are subtle, and are observable only with high spectral resolution sensors; others are less subtle and are observable using broad-band sensors.

  20. Research on marine and freshwater fish identification model based on hyper-spectral imaging technology

    Science.gov (United States)

    Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai

    2013-08-01

    With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.

  1. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  2. Spectral evaluation of Earth geopotential models and an experiment ...

    Indian Academy of Sciences (India)

    and an experiment on its regional improvement for geoid modelling. B Erol. Department of Geomatics Engineering, Civil Engineering Faculty,. Istanbul Technical University, Maslak 34469, Istanbul, Turkey. e-mail: bihter@itu.edu.tr. As the number of Earth geopotential models (EGM) grows with the increasing number of data ...

  3. Spectral evaluation of Earth geopotential models and an experiment ...

    Indian Academy of Sciences (India)

    As the number of Earth geopotential models (EGM) grows with the increasing number of data collected by dedicated satellite gravity missions, CHAMP, GRACE and GOCE, measuring the differences among the models and monitoring the improvements in gravity field recovery are required. This study assesses the ...

  4. Spectral coherence model for power fluctuations in a wind farm

    DEFF Research Database (Denmark)

    Vigueras-Rodriguez, A.; Sørensen, Poul Ejnar; Viedma, A.

    2012-01-01

    This paper provides a model for the coherence between wind speeds located in a horizontal plane corresponding to hub height of wind turbines in a large wind farm. The model has been developed using wind speed and power measurements from the 72 Wind Turbines and two of the meteorological masts from...

  5. A Spectral Geometrical Model for Compton Scatter Tomography Based on the SSS Approximation

    DEFF Research Database (Denmark)

    Kazantsev, Ivan G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2016-01-01

    The forward model of single scatter in the Positron Emission Tomography for a detector system possessing an excellent spectral resolution under idealized geometrical assumptions is investigated. This model has the form of integral equations describing a flux of photons emanating from the same ann...

  6. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...

  7. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  8. Reverberation Mapping Quasars: X-ray and broadband SED properties

    Science.gov (United States)

    Merloni, A.; Simm, T.; Nandra, K.; Green, P.

    2017-10-01

    An ongoing SDSS reverberation mapping (RM) program (Shen et al. 2015) provides significantly improved black hole mass estimates for a large sample of QSOs out to redshift ˜3 in a single 7 square degree field. A recently approved large XMM-Newton program will complete the X-ray coverage of the field, contributing to a unique legacy sample of hundreds of QSOs with accurately measured bolometric luminosity, spectral energy distributions, Eddington ratios and variability properties. As illustration, we present here the X-ray spectral properties of the RM-QSOs derived from the analysis of all existing XMM-Newton and deep Chandra (AEGIS field) observations of the field. Taking advantage of the unprecedented multi-band, multi-epoch imaging and spectroscopy provided by the SDSS-RM campaign, the Pan-STARRS1 medium deep survey and the GALEX time domain survey we study in detail their instantaneous broadband spectral energy distributions to obtain accurate measures of the bolometric luminosity and to test accretion disk models. This data set allows us to dissect correlations between optical/X-ray spectral properties with black hole mass and Eddington ratio, as well as to constrain evolution of the radiative efficiency providing a first handle on black hole spin evolution in a large, statistical sample of AGN.

  9. Construction of Spectral Discoloration Model for Red Lead Pigment by Aging Test and Simulating Degradation Experiment

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2016-01-01

    Full Text Available The construction of spectral discoloration model, based on aging test and simulating degradation experiment, was proposed to detect the aging degree of red lead pigment in ancient murals and to reproduce the spectral data supporting digital restoration of the ancient murals. The degradation process of red lead pigment under the aging test conditions was revealed by X-ray diffraction, scanning electron microscopy, and spectrophotometer. The simulating degradation experiment was carried out by proportionally mixing red lead and lead dioxide with referring to the results of aging test. The experimental result indicated that the pure red lead was gradually turned into black lead dioxide, and the amount of tiny particles of the aging sample increased faced with aging process. Both the chroma and lightness of red lead pigment decreased with discoloration, and its hue essentially remains unchanged. In addition, the spectral reflectance curves of the aging samples almost started rising at about 550 nm with the inflection moving slightly from about 570 nm to 550 nm. The spectral reflectance of samples in long- and in short-wavelength regions was fitted well with the logarithmic and linear function. The spectral discoloration model was established, and the real aging red lead pigment in Dunhuang murals was measured and verified the effectiveness of the model.

  10. Earthquake Source Spectral Study beyond the Omega-Square Model

    Science.gov (United States)

    Uchide, T.; Imanishi, K.

    2017-12-01

    Earthquake source spectra have been used for characterizing earthquake source processes quantitatively and, at the same time, simply, so that we can analyze the source spectra for many earthquakes, especially for small earthquakes, at once and compare them each other. A standard model for the source spectra is the omega-square model, which has the flat spectrum and the falloff inversely proportional to the square of frequencies at low and high frequencies, respectively, which are bordered by a corner frequency. The corner frequency has often been converted to the stress drop under the assumption of circular crack models. However, recent studies claimed the existence of another corner frequency [Denolle and Shearer, 2016; Uchide and Imanishi, 2016] thanks to the recent development of seismic networks. We have found that many earthquakes in areas other than the area studied by Uchide and Imanishi [2016] also have source spectra deviating from the omega-square model. Another part of the earthquake spectra we now focus on is the falloff rate at high frequencies, which will affect the seismic energy estimation [e.g., Hirano and Yagi, 2017]. In June, 2016, we deployed seven velocity seismometers in the northern Ibaraki prefecture, where the shallow crustal seismicity mainly with normal-faulting events was activated by the 2011 Tohoku-oki earthquake. We have recorded seismograms at 1000 samples per second and at a short distance from the source, so that we can investigate the high-frequency components of the earthquake source spectra. Although we are still in the stage of discovery and confirmation of the deviation from the standard omega-square model, the update of the earthquake source spectrum model will help us systematically extract more information on the earthquake source process.

  11. The next step in coastal numerical models: spectral/hp element methods?

    DEFF Research Database (Denmark)

    Eskilsson, Claes; Engsig-Karup, Allan Peter; Sherwin, Spencer J.

    2005-01-01

    In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations.......In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations....

  12. Spectral evaluation of Earth geopotential models and an experiment ...

    Indian Academy of Sciences (India)

    the case study provide a comparison among the EGMs by means of their fit to the local gravity field. 1. Introduction. The gravity field of the ... Compute Restore technique; GNSS/levelling; Turkey; data analysis; modelling. J. Earth Syst. Sci. 121, No. ..... (ΔgFA) (as an approximation of Helmert gravity anomalies) on land were ...

  13. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations

    International Nuclear Information System (INIS)

    Iskandarani, M.; Haidvogel, D.B.; Levin, J.C.

    2003-01-01

    We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of the model in the idealized/process-oriented limits

  14. Illuminating the origins of spectral properties of green fluorescent proteins via proteochemometric and molecular modeling.

    Science.gov (United States)

    Nantasenamat, Chanin; Simeon, Saw; Owasirikul, Wiwat; Songtawee, Napat; Lapins, Maris; Prachayasittikul, Virapong; Wikberg, Jarl E S

    2014-10-15

    Green fluorescent protein (GFP) has immense utility in biomedical imaging owing to its autofluorescent nature. In efforts to broaden the spectral diversity of GFP, there have been several reports of engineered mutants via rational design and random mutagenesis. Understanding the origins of spectral properties of GFP could be achieved by means of investigating its structure-activity relationship. The first quantitative structure-property relationship study for modeling the spectral properties, particularly the excitation and emission maximas, of GFP was previously proposed by us some years ago in which quantum chemical descriptors were used for model development. However, such simplified model does not consider possible effects that neighboring amino acids have on the conjugated π-system of GFP chromophore. This study describes the development of a unified proteochemometric model in which the GFP chromophore and amino acids in its vicinity are both considered in the same model. The predictive performance of the model was verified by internal and external validation as well as Y-scrambling. Our strategy provides a general solution for elucidating the contribution that specific ligand and protein descriptors have on the investigated spectral property, which may be useful in engineering novel GFP variants with desired characteristics. Copyright © 2014 Wiley Periodicals, Inc.

  15. Spectral model for long-term computation of thermodynamics and potential evaporation in shallow wetlands

    Science.gov (United States)

    de la Fuente, Alberto; Meruane, Carolina

    2017-09-01

    Altiplanic wetlands are unique ecosystems located in the elevated plateaus of Chile, Argentina, Peru, and Bolivia. These ecosystems are under threat due to changes in land use, groundwater extractions, and climate change that will modify the water balance through changes in precipitation and evaporation rates. Long-term prediction of the fate of aquatic ecosystems imposes computational constraints that make finding a solution impossible in some cases. In this article, we present a spectral model for long-term simulations of the thermodynamics of shallow wetlands in the limit case when the water depth tends to zero. This spectral model solves for water and sediment temperature, as well as heat, momentum, and mass exchanged with the atmosphere. The parameters of the model (water depth, thermal properties of the sediments, and surface albedo) and the atmospheric downscaling were calibrated using the MODIS product of the land surface temperature. Moreover, the performance of the daily evaporation rates predicted by the model was evaluated against daily pan evaporation data measured between 1964 and 2012. The spectral model was able to correctly represent both seasonal fluctuation and climatic trends observed in daily evaporation rates. It is concluded that the spectral model presented in this article is a suitable tool for assessing the global climate change effects on shallow wetlands whose thermodynamics is forced by heat exchanges with the atmosphere and modulated by the heat-reservoir role of the sediments.

  16. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  17. Spectral decomposition of model operators in de Branges spaces

    International Nuclear Information System (INIS)

    Gubreev, Gennady M; Tarasenko, Anna A

    2011-01-01

    The paper is devoted to studying a class of completely continuous nonselfadjoint operators in de Branges spaces of entire functions. Among other results, a class of unconditional bases of de Branges spaces consisting of values of their reproducing kernels is constructed. The operators that are studied are model operators in the class of completely continuous non-dissipative operators with two-dimensional imaginary parts. Bibliography: 22 titles.

  18. Context Modeler for Wavelet Compression of Spectral Hyperspectral Images

    Science.gov (United States)

    Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.

  19. THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Valencic, Lynne A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-241, Cambridge, MA 02139 (United States)

    2016-02-20

    Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model as a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.

  20. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  1. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations

    CERN Document Server

    Iskandarani, M; Levin, J C

    2003-01-01

    We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...

  2. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    International Nuclear Information System (INIS)

    Semenova, V A; Kulya, M S; Bespalov, V G

    2016-01-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)

  3. A polychromatic adaption of the Beer-Lambert model for spectral decomposition

    Science.gov (United States)

    Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.

    2017-03-01

    We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.

  4. Assessing the sensitivity and robustness of prediction models for apple firmness using spectral scattering technique

    Science.gov (United States)

    Spectral scattering is useful for nondestructive sensing of fruit firmness. Prediction models, however, are typically built using multivariate statistical methods such as partial least squares regression (PLSR), whose performance generally depends on the characteristics of the data. The aim of this ...

  5. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  6. A simple spectral model for the modification of turbulence in flow over gentle hills

    DEFF Research Database (Denmark)

    Frank, H.P.

    1996-01-01

    A model is presented which calculates the changes of the velocity variances and stress <(u'w')over bar> in flow over gentle isolated hills. At intermediate frequencies spectra of the velocity components are modified according to rapid distortion theory. At low frequencies spectral densities chang...

  7. On terahertz pulsed broadband Gauss-Bessel beam free-space propagation.

    Science.gov (United States)

    Kulya, Maksim S; Semenova, Varvara A; Bespalov, Victor G; Petrov, Nikolay V

    2018-01-23

    Terahertz pulse time-domain holography is the ultimate technique allowing the evaluating a propagation of pulse broadband terahertz wavefronts and analyze their spatial, temporal and spectral evolution. We have numerically analyzed pulsed broadband terahertz Gauss-Bessel beam's both spatio-temporal and spatio-spectral evolution in the non-paraxial approach. We have characterized two-dimensional spatio-temporal beam behavior and demonstrated all stages of pulse reshaping during the propagation, including X-shape pulse forming. The reshaping is also illustrated by the energy transfer dynamics, where the pulse energy flows from leading edge to trailing edge. This behavior illustrates strong spatio-temporal coupling effect when spatio-temporal distribution of Bessel beam's wavefront depends on propagation distance. The spatio-temporal and spatio-spectral profiles for different spectral components clearly illustrate the model where the Bessel beam's wavefront at the exit from the axicon can be divided into radial segments for which the wave vectors intersect. Phase velocity via propagation distance is estimated and compared with existing experimantal results. Results of the phase velocity calculation depend strongly on distance increment value, thus demonstrating superluminal or subluminal behavior.

  8. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra

    DEFF Research Database (Denmark)

    Peng, Yi; Xiong, Xiong; Adhikari, Kabindra

    2015-01-01

    the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46). Plant-available water (PAW) was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference......There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC) models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first...... parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE) (2.8%) and higher R2 (0.59) than...

  9. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  10. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  11. Broadband accelerator control network

    International Nuclear Information System (INIS)

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  12. Approaching Terahertz Range with 3-color Broadband Coherent Raman Micro Spectroscopy

    Science.gov (United States)

    Ujj, Laszlo; Olson, Trevor; Amos, James

    The presentation reports the recent progress made on reliable signal recording and processing using 3-color broadband coherent Raman scattering (3C-BCRS). Signals are generated either from nanoparticle structures on surfaces or from bulk samples in transmission and in epi-detected mode. Spectra are recorded with a narrowband (at 532 nm) and a broadband radiation produced by a newly optimized optical parametric oscillator using the signal or idler beams. Vibrational and librational bands are measured over the 0.15-15 THz spectral range from solution and crystalline samples. Volumetric Brag-filter approach is introduced for recording 3C-BCRS spectra at the first time. The technical limitations and advantages of the narrowband filtering relative to the Notch-filter technic is clarified. The signal is proportional to the spectral autocorrelation of the broadband radiation therefore the present scheme gives a better signal-to-noise ratio relative to the traditional multiplex CRS methods. This makes the automation of non-model dependent signal processing more reliable to extract vibrational information which is very crucial in coherent Raman microscopy. Financial support from the Hal Marcus College of Science and Engineering is greatly appreciated.

  13. Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N

    Science.gov (United States)

    García-García, Antonio M.; Verbaarschot, Jacobus J. M.

    2017-09-01

    We derive an approximate analytical formula for the spectral density of the q -body Sachdev-Ye-Kitaev (SYK) model obtained by summing a class of diagrams representing leading intersecting contractions. This expression agrees with that of Q -Hermite polynomials, with Q a nontrivial function of q ≥2 and the number of Majorana fermions N . Numerical results, obtained by exact diagonalization, are in excellent agreement with this approximate analytical spectral density even for relatively small N ˜8 . For N ≫1 and not close to the edge of the spectrum, we find that the approximate analytical spectral density simplifies to ρasym(E )=exp [2 arcsin2(E /E0)/log η ] , where η (N ,q ) is the suppression factor of the contribution of intersecting Wick contractions relative to nested contractions and E0 is the ground-state energy per particle. This spectral density reproduces the known result for the free energy in the large-q and large-N limit at arbitrary values of the temperature. In the infrared region, where the SYK model is believed to have a gravity dual, the analytical spectral density is given by ρ (E )˜sinh [2 π √{2 }√{(1 -E /E0)/(-log η ) }] . It therefore has a square-root edge, as in random matrix ensembles, followed by an exponential growth, a distinctive feature of black holes and also of low-energy nuclear excitations. Results for level statistics in this region confirm the agreement with random matrix theory. Physically this is a signature that, for sufficiently long times, the SYK model and its gravity dual evolve to a fully ergodic state whose dynamics only depends on the global symmetry of the system. Our results strongly suggest that random matrix correlations are a universal feature of quantum black holes and that the SYK model, combined with holography, may be relevant to modeling certain aspects of the nuclear dynamics.

  14. Radiation from an equilibrium CO2-N2 plasma in the [250-850 nm] spectral region: II. Spectral modelling

    International Nuclear Information System (INIS)

    Silva, M Lino da; Vacher, D; Andre, P; Faure, G; Dudeck, M

    2008-01-01

    In the first part of this work, described in a previous paper, the thermodynamic conditions in an atmospheric pressure inductively coupled CO 2 -N 2 plasma have been determined, and the radiation emission spectrum has been measured and calibrated in the [250-850 nm] spectral region. In the second part of this work, a synthetic radiation spectrum is obtained taking into account (a) the geometry of the plasma torch and (b) the local thermodynamic conditions of the plasma. This synthetic spectrum has then been compared against the measured spectrum. The good agreement between the two spectra allows validating the spectral database of the line-by-line code SPARTAN for the simulation of the radiative emission of CO 2 -N 2 plasmas from the near-UV to the near-IR spectral region.

  15. BROADBAND OBSERVATIONS OF HIGH REDSHIFT BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Stalin, C. S., E-mail: vpaliya@g.clemson.edu [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India)

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 ( z = 3.37), CGRaBS J0225+1846 ( z = 2.69), BZQ J1430+4205 ( z = 4.72), and 3FGL J1656.2−3303 ( z = 2.40) using quasi-simultaneous data from the Swift , Nuclear Spectroscopic Telescope Array ( NuSTAR ) and the Fermi -Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2−3303, none of the sources were known as γ -ray emitters, and our analysis of ∼7.5 yr of LAT data reveals the first time detection of statistically significant γ -ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical−UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ -ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  16. Techno-economic evaluation of broadband access technologies

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias; Skouby, Knud Erik

    2005-01-01

    Broadband for all is an essential element in the EU policy concerning the future of ICT-based society. The overall purpose of this paper is to present a model for evaluation of different broadband access technologies and to present some preliminary results based on the model that has been carried...

  17. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2016-01-01

    Full Text Available To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP dataset with the Weather Research and Forecasting (WRF model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.

  18. A Spectral Finite Element Approach to Modeling Soft Solids Excited with High-Frequency Harmonic Loads.

    Science.gov (United States)

    Brigham, John C; Aquino, Wilkins; Aguilo, Miguel A; Diamessis, Peter J

    2011-01-15

    An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.

  19. Modelling Perception of Structure and Affect in Music: Spectral Centroid and Wishart's Red Bird

    Directory of Open Access Journals (Sweden)

    Roger T. Dean

    2011-12-01

    Full Text Available Pearce (2011 provides a positive and interesting response to our article on time series analysis of the influences of acoustic properties on real-time perception of structure and affect in a section of Trevor Wishart’s Red Bird (Dean & Bailes, 2010. We address the following topics raised in the response and our paper. First, we analyse in depth the possible influence of spectral centroid, a timbral feature of the acoustic stream distinct from the high level general parameter we used initially, spectral flatness. We find that spectral centroid, like spectral flatness, is not a powerful predictor of real-time responses, though it does show some features that encourage its continued consideration. Second, we discuss further the issue of studying both individual responses, and as in our paper, group averaged responses. We show that a multivariate Vector Autoregression model handles the grand average series quite similarly to those of individual members of our participant groups, and we analyse this in greater detail with a wide range of approaches in work which is in press and continuing. Lastly, we discuss the nature and intent of computational modelling of cognition using acoustic and music- or information theoretic data streams as predictors, and how the music- or information theoretic approaches may be applied to electroacoustic music, which is ‘sound-based’ rather than note-centred like Western classical music.

  20. A Spectral Finite Element Approach to Modeling Soft Solids Excited with High-Frequency Harmonic Loads

    Science.gov (United States)

    Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.

    2010-01-01

    An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402

  1. Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

    Science.gov (United States)

    Brown, Cameron Scott

    Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M

  2. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

    Science.gov (United States)

    Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.

    2016-02-01

    The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December

  3. Spectral and Dynamical Properties of Random Models with Nonlocal and Singular Interactions

    CERN Document Server

    Hislop, P D; Krishna, M G

    2002-01-01

    We give a spectral and dynamical description of certain models of random Schr\\"odinger operators on $L^2 ( \\R^d)$ for which a modified version of the small moment method of Aizenman and Molchanov \\cite{[AizenmanMolchanov]} can be applied. One family of models includes includes \\Schr\\ operators with random, nonlocal interactions constructed from a wavelet basis. The second family includes \\Schr\\ operators with random singular interactions randomly located on sublattices of $\\Z^d$, for $d = 1 , 2, 3$. We prove that these models are amenable to Aizenman-Molchanov-type analysis of the Green's function, thereby eliminating the use of multiscale analysis. The basic technical result is an estimate on the expectation of small moments of the Green's function. Among our results, we prove a good Wegner estimate and the H\\"older continuity of the integrated density of states, and spectral and dynamical localization at negative energies.

  4. Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales

    Science.gov (United States)

    Unruh, Y. C.; Krivova, N. A.; Solanki, S. K.; Harder, J. W.; Kopp, G.

    2008-07-01

    Aims: We test the reliability of the observed and calculated spectral irradiance variations between 200 and 1600 nm over a time span of three solar rotations in 2004. Methods: We compare our model calculations to spectral irradiance observations taken with SORCE/SIM, SoHO/VIRGO, and UARS/SUSIM. The calculations assume LTE and are based on the SATIRE (Spectral And Total Irradiance REconstruction) model. We analyse the variability as a function of wavelength and present time series in a number of selected wavelength regions covering the UV to the NIR. We also show the facular and spot contributions to the total calculated variability. Results: In most wavelength regions, the variability agrees well between all sets of observations and the model calculations. The model does particularly well between 400 and 1300 nm, but fails below 220 nm, as well as for some of the strong NUV lines. Our calculations clearly show the shift from faculae-dominated variability in the NUV to spot-dominated variability above approximately 400 nm. We also discuss some of the remaining problems, such as the low sensitivity of SUSIM and SORCE for wavelengths between approximately 310 and 350 nm, where currently the model calculations still provide the best estimates of solar variability.

  5. Spectral decomposition of internal gravity wave sea surface height in global models

    Science.gov (United States)

    Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-10-01

    Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

  6. Hybrid Broadcast Broadband TV

    OpenAIRE

    Vaala, Jere

    2014-01-01

    Tämän insinöörityön tarkoituksena oli tutustua Hybrid Broadcast Broadband TV:een sekä TV:n nykytilaan ja tulevaisuuteen. Työ on tehty Metropolia Ammattikorkeakoululle. Media-alalla on menossa murros, joka pakottaa printtimedian ja TV-yhtiöt jatkuviin uudistuksiin. Mainosrahoitteinen TV on myös ongelmissa. Digitalisoituminen on tuonut laajakaistan perinteisten jakelutapojen rinnalle, mikä syö mainostuloja. Käyttöön tulossa oleva Hybrid Broadcast Broadband TV perustuu jo olemassa olevii...

  7. An Analytical Model for Spectral Peak Frequency Prediction of Substrate Noise in CMOS Substrates

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.

    2013-01-01

    This paper proposes an analytical model describing the generation of switching current noise in CMOS substrates. The model eliminates the need for SPICE simulations in existing methods by conducting a transient analysis on a generic CMOS inverter and approximating the switching current waveform us......- ing a Modified Raised Cosine (MORAC) equation. The proposed model is scalable, easy to implement and capable of predicting the spectral peak frequency of the substrate noise. The validation has been done via simulations and measurements. Good agreement has been found between the modeled...

  8. HERA Broadband Feed Design for Low-Frequency Radio Astronomy

    Science.gov (United States)

    Garza, Sierra; Trung, Vincent; Ewall-Wice, Aaron Michael; Li, Jianshu; Hewitt, Jacqueline; Riley, Daniel; Bradley, Richard F.; Makhija, Krishna

    2018-01-01

    As part of the Hydrogen Epoch of Reionization Array (HERA) project, we are designing a broadband low-frequency radio feed to extend the bandwidth from 100-200 MHz to 50-220 MHz. By extending the lower-limit to 50 MHz, we hope to detect the signatures of the first black holes heating the hydrogen gas in the intergalactic medium.The isolation of a very faint signal from vastly brighter foregrounds sets strict requirements on antenna spectral smoothness, polarization purity, forward gain, and internal reflections. We are currently working to meet these requirements with a broad-band sinuous antenna feed suspended over the 14-m parabolic HERA dish, using a combination of measurements and simulations to verify the performance of our design.A sinuous feed has been designed and simulated with Computer Simulation Technology (CST) software. We will present the construction of a prototype sinuous antenna and measurements of its reflection coefficient, S11, including laboratory characterization of baluns. Our measurements agree well with the CST simulations of the antenna’s performance, giving us confidence in our ability to model the feed and ensure that it meets the requirements of a 21cm cosmology measurement.

  9. 2D spectral element modeling of GPR wave propagation in inhomogeneous media

    Science.gov (United States)

    Zarei, Sajad; Oskooi, Behrooz; Amini, Navid; Dalkhani, Amin Rahimi

    2016-10-01

    We present a spectral element method, for simulation of ground-penetrating radar (GPR) in two dimensions. The technique is based upon a weak formulation of the equations of Maxwell and combines the flexibility of the elemental-based methods with the accuracy of the spectral based methods. The wave field on the elements is discretized using high-degree Lagrange interpolation and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. As a result, the mass matrix and the damping matrix are always diagonal, which drastically reduces the computational cost. We first develop the formulation of 2D spectral element method (SEM) in the time-domain based on Maxwell's equations. The presented formulation is with matrix notation that simplifies the implementation of the relations in computer programs, especially in MATLAB application. We discuss the differences between spectral element method and finite-element method in the time-domain. Also, we show that the SEM numerical dispersion is much lower than FEM. To absorb waves at the edges of the modeling domain, we implement first order Clayton and Engquist absorbing boundary conditions (CE-ABC) introduced in numerical finite-difference modeling of seismic wave propagation. We used the SEM to simulate a complex model to show its abilities and limitations. As well as, one distinct advantage of SEM is that we can easily define our model features in nodal points, because the integration points and the interpolation points are similar that makes it very flexible in simulation of complex models.

  10. Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting.

    Science.gov (United States)

    Conroy, Glenn C; Emerson, Charles W; Anemone, Robert L; Townsend, K E Beth

    2012-07-01

    Even with the most meticulous planning, and utilizing the most experienced fossil-hunters, fossil prospecting in remote and/or extensive areas can be time-consuming, expensive, logistically challenging, and often hit or miss. While nothing can predict or guarantee with 100% assurance that fossils will be found in any particular location, any procedures or techniques that might increase the odds of success would be a major benefit to the field. Here we describe, and test, one such technique that we feel has great potential for increasing the probability of finding fossiliferous sediments - a relatively simple spectral signature model using the spatial analysis and image classification functions of ArcGIS(®)10 that creates interactive thematic land cover maps that can be used for "remote" fossil prospecting. Our test case is the extensive Eocene sediments of the Uinta Basin, Utah - a fossil prospecting area encompassing ∼1200 square kilometers. Using Landsat 7 ETM+ satellite imagery, we "trained" the spatial analysis and image classification algorithms using the spectral signatures of known fossil localities discovered in the Uinta Basin prior to 2005 and then created interactive probability models highlighting other regions in the Basin having a high probability of containing fossiliferous sediments based on their spectral signatures. A fortuitous "post-hoc" validation of our model presented itself. Our model identified several paleontological "hotspots", regions that, while not producing any fossil localities prior to 2005, had high probabilities of being fossiliferous based on the similarities of their spectral signatures to those of previously known fossil localities. Subsequent fieldwork found fossils in all the regions predicted by the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. On the Consistency of Gamma-Ray Burst Spectral Indices with the Synchrotron Shock Model

    Science.gov (United States)

    Preece, R. D.; Briggs, M. S.; Giblin, T. W.; Mallozzi, R. S.; Pendleton, G. N.; Paciesad, W. S.; Band, D. L.

    2002-01-01

    The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming optically thin synchrotron emission from isotropically distributed energetic shocked electrons, GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(exp alpha) indicate a problem with this model. For spectra that do not violate this condition, additional tests of the shock model can be made by comparing the low- and high-energy spectral indices, on the basis of the model's assertion that synchrotron emission from a single power-law distribution of electrons is responsible for both the low-energy and the high-energy power-law portions of the spectra. We find in most cases that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the simple optically thin synchrotron shock emission model. In this sense, the prompt burst phase is different from the afterglow phase, and this difference may be related to anisotropic distributions of particles or to their continual acceleration in shocks during the prompt phase.

  12. SPECTRAL COLOR INDICES BASED GEOSPATIAL MODELING OF SOIL ORGANIC MATTER IN CHITWAN DISTRICT, NEPAL

    Directory of Open Access Journals (Sweden)

    U. K. Mandal

    2016-06-01

    Full Text Available Space Technology provides a resourceful-cost effective means to assess soil nutrients essential for soil management plan. Soil organic matter (SOM is one of valuable controlling productivity of crops by providing nutrient in farming systems. Geospatial modeling of soil organic matter is essential if there is unavailability of soil test laboratories and its strong spatial correlation. In the present analysis, soil organic matter is modeled from satellite image derived spectral color indices. Brightness Index (BI, Coloration Index (CI, Hue Index (HI, Redness Index (RI and Saturation Index (SI were calculated by converting DN value to radiance and radiance to reflectance from Thematic Mapper image. Geospatial model was developed by regressing SOM with color indices and producing multiple regression model using stepwise regression technique. The multiple regression equation between SOM and spectral indices was significant with R = 0. 56 at 95% confidence level. The resulting MLR equation was then used for the spatial prediction for the entire study area. Redness Index was found higher significance in estimating the SOM. It was used to predict SOM as auxiliary variables using cokringing spatial interpolation technique. It was tested in seven VDCs of Chitwan district of Nepal using Thematic Mapper remotely sensed data. SOM was found to be measured ranging from 0.15% to 4.75 %, with a mean of 2.24 %. Remotely sensed data derived spectral color indices have the potential as useful auxiliary variables for estimating SOM content to generate soil fertility management plans.

  13. Hierarchical Multi-Scale Approach To Validation and Uncertainty Quantification of Hyper-Spectral Image Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David; Thompson, Sandra E.

    2016-09-17

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  14. Broadband Internet and Income Inequality

    OpenAIRE

    HOUNGBONON , Georges Vivien; Liang , Julienne

    2017-01-01

    Policy makers are aiming for a large coverage of high-speed broadband Internet. However , there is still a lack of evidence about its effects on income distribution. In this paper, we investigate the effects of fixed broadband Internet on mean income and income inequality using a unique town-level data on broadband adoption and quality in France. We find that broadband adoption and quality raise mean income and lower income inequality. These results are robust to initial conditions, and yield...

  15. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    Science.gov (United States)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  16. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  17. Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, H., E-mail: h-sabri@tabrizu.ac.ir

    2015-09-15

    The spectral statistics of even–even rare-earth nuclei are investigated by using all the available empirical data for Ba, Ce, Nd, Sm, Gd, Dy, Er, Yb and Hf isotopes. The Berry–Robnik distribution and Maximum Likelihood estimation technique are used for analyses. An obvious deviation from GOE is observed for considered nuclei and there are some suggestions about the effect due to mass, deformation parameter and shell model configurations.

  18. Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect

    International Nuclear Information System (INIS)

    Sabri, H.

    2015-01-01

    The spectral statistics of even–even rare-earth nuclei are investigated by using all the available empirical data for Ba, Ce, Nd, Sm, Gd, Dy, Er, Yb and Hf isotopes. The Berry–Robnik distribution and Maximum Likelihood estimation technique are used for analyses. An obvious deviation from GOE is observed for considered nuclei and there are some suggestions about the effect due to mass, deformation parameter and shell model configurations

  19. Broadband and the Internet.

    Science.gov (United States)

    Gutierrez, Vicente

    2002-01-01

    The Internet is a tool one can use every day to get information. In every location, the way you can access the Internet is different. The purpose of this article is to review the different types of Internet access available with emphasis on broadband. The advantages and disadvantages of every type of access are discussed.

  20. Czech way to broadband

    Czech Academy of Sciences Publication Activity Database

    Kuchar, Anton; Peterka, J.; Hrstka, J.; Hankiewiczová, H.

    -, August (2006), s. 274-278 ISSN 1106-2975. [FITCE Congress /45./. Athens, 30.08.2006-02.09.2006] Grant - others:BReATH Consortium EU(XE) EC FP6 1ST Programme Institutional research plan: CEZ:AV0Z20670512 Keywords : telecommunication networks * Internet * broadband networks Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. 3D time-domain spectral elements for stress waves modelling

    International Nuclear Information System (INIS)

    Kudela, P; Ostachowicz, W

    2009-01-01

    Elastic stress waves induced by piezoelectric transducers are extensively used for damage detection purposes. Induced high frequency impulse signals cause that stress wave modelling by the finite element method is inefficient. Instead, numerical model based on the time-domain spectral element method has been developed to simulate stress wave propagation in metallic structures induced by the piezoelectric transducers. The model solves the coupled electromechanical field equations simultaneously in three-dimensional case. Visualisation of the propagating elastic waves generated by the actuator of different shapes and properties has been performed.

  2. Spectral Quantitative Analysis Model with Combining Wavelength Selection and Topology Structure Optimization

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2016-01-01

    Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.

  3. Calculation of broadband time histories of ground motion, Part II: Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 northridge earthquake

    Science.gov (United States)

    Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.

    2005-01-01

    In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.

  4. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, Motoki, E-mail: shiga_m@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193 (Japan); Tatsumi, Kazuyoshi; Muto, Shunsuke [Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Tsuda, Koji [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561 (Japan); Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064 (Japan); Yamamoto, Yuta [High-Voltage Electron Microscope Laboratory, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Toshiyuki [Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tanji, Takayoshi [Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-11-15

    Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI and determining the chemical state of each spectral component from the SI data stored in a huge three-dimensional matrix, it is more effective and efficient to use a statistical approach for the automatic resolution and extraction of the underlying chemical components. Among many different statistical approaches, we adopt a non-negative matrix factorization (NMF) technique, mainly because of the natural assumption of non-negative values in the spectra and cardinalities of chemical components, which are always positive in actual data. This paper proposes a new NMF model with two penalty terms: (i) an automatic relevance determination (ARD) prior, which optimizes the number of components, and (ii) a soft orthogonal constraint, which clearly resolves each spectrum component. For the factorization, we further propose a fast optimization algorithm based on hierarchical alternating least-squares. Numerical experiments using both phantom and real STEM-EDX/EELS SI datasets demonstrate that the ARD prior successfully identifies the correct number of physically meaningful components. The soft orthogonal constraint is also shown to be effective, particularly for STEM-EELS SI data, where neither the spatial nor spectral entries in the matrices are sparse. - Highlights: • Automatic resolution of chemical components from spectral imaging is considered. • We propose a new non-negative matrix factorization with two new penalties. • The first penalty is sparseness to choose the number of components from data. • Experimental results with real data demonstrate effectiveness of our method.

  5. Model of the in vivo spectral absorption of algal pigments. Part 1. Mathematical apparatus

    Directory of Open Access Journals (Sweden)

    Bogdan Wo¼niak

    2000-06-01

    Full Text Available Existing statistical models of in vivo light absorption by phytoplankton (Wozniak & Ostrowska 1990, Bricaud et al. 1995, 1998 describe the dependence of the phytoplankton specific spectral absorption coefficient a*pl(λ on the chlorophyll a concentration Ca in seawater. However, the models do not take into account the variability in this relationship due to phytoplankton acclimation. The observed variability in the light absorption coefficient and its components due to various pigments with depth and geographical position at sea, requires further accurate modelling in order to improve satellite remote sensing algorithms and interpretation of ocean colour maps.      The aim of this paper is to formulate an improved model of the phytoplankton spectral absorption capacity which takes account of the pigment composition and absorption changes resulting from photo- and chromatic acclimation processes, and the pigment package effect. It is a synthesis of earlier models and the following statistical generalisations: (1 statistical relationships between various pigment group concentrations and light field properties in the sea (described by Majchrowski & Ostrowska 2000, this volume; (2 a model of light absorption by phytoplankton capable of determining the mathematical relationships between the spectral absorption coefficients of the various photosynthetic and photoprotecting pigment groups, and their concentrations in seawater (Wozniak et al. 1999; (3 bio-optical models of light propagation in oceanic Case 1 Waters and Baltic Case 2 Waters (Wozniak et al. 1992a,b, 1995a,b. The generalised model described in this paper permits the total phytoplankton light absorption coefficient in vivo as well as its components related to the various photosynthetic and photoprotecting pigments to be determined using only the surface irradiance PAR(0+ surface chlorophyll concentration Ca(0 and depth z in the sea as input data.

  6. Flatfield correction errors due to spectral mismatching

    Science.gov (United States)

    Hagen, Nathan

    2014-12-01

    Flat field calibration of broadband imaging systems is widely used, and it has been said that users should try to make the spectrum of the flatfield calibration light source as close as possible to that of the measurement object. However, a quantitative analysis of the error induced by a mismatch of calibration and object spectra has been lacking. In order to develop this quantitative analysis, we provide a theoretical radiometric model for flatfield calibration and show how this spectral mismatching error arises. Simulations covering a variety of measurement scenarios indicate that spectral mismatching can create quantitative errors of up to a factor of 5 in situations that are regularly encountered by researchers performing quantitative work.

  7. Methods and devices for generation of broadband pulsed radiation

    Science.gov (United States)

    Borguet, Eric; Isaienko, Oleksandr

    2013-05-14

    Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.

  8. New comprehensive standard seismic noise models and 3D seismic noise variation for Morocco territory, North Africa, obtained using seismic broadband stations

    Science.gov (United States)

    El Fellah, Younes; El-Aal, Abd El-Aziz Khairy Abd; Harnafi, Mimoun; Villaseñor, Antonio

    2017-05-01

    In the current work, we constructed new comprehensive standard seismic noise models and 3D temporal-spatial seismic noise level cubes for Morocco in north-west Africa to be used for seismological and engineering purposes. Indeed, the original global standard seismic noise models published by Peterson (1993) and their following updates by Astiz and Creager (1995), Ekström (2001) and Berger et al. (2003) had no contributing seismic stations deployed in North Africa. Consequently, this preliminary study was conducted to shed light on seismic noise levels specific to north-west Africa. For this purpose, 23 broadband seismic stations recently installed in different structural domains throughout Morocco are used to study the nature and characteristics of seismic noise and to create seismic noise models for Morocco. Continuous data recorded during 2009, 2010 and 2011 were processed and analysed to construct these new noise models and 3D noise levels from all stations. We compared the Peterson new high-noise model (NHNM) and low-noise model (NLNM) with the Moroccan high-noise model (MHNM) and low-noise model (MLNM). These new noise models are comparable to the United States Geological Survey (USGS) models in the short period band; however, in the period range 1.2 s to 1000 s for MLNM and 10 s to 1000 s for MHNM display significant variations. This variation is attributed to differences in the nature of seismic noise sources that dominate Morocco in these period bands. The results of this study have a new perception about permanent seismic noise models for this spectacular region and can be considered a significant contribution because it supplements the Peterson models and can also be used to site future permanent seismic stations in Morocco.

  9. Prediction of traffic convective instability with spectral analysis of the Aw–Rascle–Zhang model

    Energy Technology Data Exchange (ETDEWEB)

    Belletti, Francois, E-mail: francois.belletti@berkeley.edu [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States); Huo, Mandy, E-mail: mhuo@berkeley.edu [Department of Physics, University of California, Berkeley (United States); Department of Mathematics, University of California, Berkeley (United States); Litrico, Xavier, E-mail: xavier.litrico@lyonnaise-des-eaux.fr [LyRE, R& D center of SUEZ environnement, Bordeaux (France); Bayen, Alexandre M., E-mail: bayen@berkeley.edu [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States); Department of Civil and Environmental Engineering, University of California, Berkeley (United States); Institute of Transportation Studies, University of California, Berkeley (United States)

    2015-10-09

    Highlights: • We linearize and diagonalize the ARZ model. We give a Froude number for traffic. • Spectral domain transfer functions are derived and decompose the model. • The linearized system is convectively unstable in the free-flow regime. • We conduct experiments with the linearized model on the NGSIM dataset. • We show that the linearization does not destroy the accuracy of the model. - Abstract: This article starts from the classical Aw–Rascle–Zhang (ARZ) model for freeway traffic and develops a spectral analysis of its linearized version. A counterpart to the Froude number in hydrodynamics is defined that enables a classification of the nature of vehicle traffic flow using the explicit solution resulting from the analysis. We prove that our linearization about an equilibrium is stable for congested regimes and unstable otherwise. NGSIM data for congested traffic trajectories is used so as to confront the linearized model's predictions to actual macroscopic behavior of traffic. The model is shown to achieve good accuracy for speed and flow. In particular, it accounts for the advection of oscillations on boundaries into the interior domain where the PDE under study is solved.

  10. Imaging acoustic vibrations in an ear model using spectrally encoded interferometry

    Science.gov (United States)

    Grechin, Sveta; Yelin, Dvir

    2018-01-01

    Imaging vibrational patterns of the tympanic membrane would allow an accurate measurement of its mechanical properties and provide early diagnosis of various hearing disorders. Various optical technologies have been suggested to address this challenge and demonstrated in vitro using point scanning and full-field interferometry. Spectrally encoded imaging has been previously demonstrated capable of imaging tissue acoustic vibrations with high spatial resolution, including two-dimensional phase and amplitude mapping. In this work, we demonstrate a compact optical apparatus for imaging acoustic vibrations that could be incorporated into a commercially available digital otoscope. By transmitting harmonic sound waves through the otoscope insufflation port and analyzing the spectral interferograms using custom-built software, we demonstrate high-resolution vibration imaging of a circular rubber membrane within an ear model.

  11. Broadband Liner Optimization for the Source Diagnostic Test Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  12. Model Atmospheres and Spectral Irradiance Library of the Exoplanet Host Stars Observed in the MUSCLES Survey

    Science.gov (United States)

    Linsky, Jeffrey

    2017-08-01

    We propose to compute state-of-the-art model atmospheres (photospheres, chromospheres, transition regions and coronae) of the 4 K and 7 M exoplanet host stars observed by HST in the MUSCLES Treasury Survey, the nearest host star Proxima Centauri, and TRAPPIST-1. Our semi-empirical models will fit theunique high-resolution panchromatic (X-ray to infrared) spectra of these stars in the MAST High-Level Science Products archive consisting of COS and STIS UV spectra and near-simultaneous Chandra, XMM-Newton, and ground-based observations. We will compute models with the fully tested SSRPM computer software incorporating 52 atoms and ions in full non-LTE (435,986 spectral lines) and the 20 most-abundant diatomic molecules (about 2 million lines). This code has successfully fit the panchromatic spectrum of the M1.5 V exoplanet host star GJ 832 (Fontenla et al. 2016), the first M star with such a detailed model, and solar spectra. Our models will (1) predict the unobservable extreme-UV spectra, (2) determine radiative energy losses and balancing heating rates throughout these atmospheres, (3) compute a stellar irradiance library needed to describe the radiation environment of potentially habitable exoplanets to be studied by TESS and JWST, and (4) in the long post-HST era when UV observations will not be possible, the stellar irradiance library will be a powerful tool for predicting the panchromatic spectra of host stars that have only limited spectral coverage, in particular no UV spectra. The stellar models and spectral irradiance library will be placed quickly in MAST.

  13. A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Katherine J [ORNL; Mahajan, Salil [ORNL; Branstetter, Marcia L [ORNL; McClean, Julie L. [Scripps Institute of Oceanography; Caron, Julie M. [National Center for Atmospheric Research (NCAR); Maltrud, Matthew E. [Los Alamos National Laboratory (LANL); Hack, James J [ORNL; Bader, David C [ORNL; Neale, Rich [National Center for Atmospheric Research (NCAR)

    2014-01-01

    A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.

  14. Determination of the spectral behaviour of atmospheric soot using different particle models

    Science.gov (United States)

    Skorupski, Krzysztof

    2017-08-01

    In the atmosphere, black carbon aggregates interact with both organic and inorganic matter. In many studies they are modeled using different, less complex, geometries. However, some common simplification might lead to many inaccuracies in the following light scattering simulations. The goal of this study was to compare the spectral behavior of different, commonly used soot particle models. For light scattering simulations, in the visible spectrum, the ADDA algorithm was used. The results prove that the relative extinction error δCext, in some cases, can be unexpectedly large. Therefore, before starting excessive simulations, it is important to know what error might occur.

  15. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  16. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  17. Maintaining the predictive abilities of multivariate calibration models by spectral space transformation.

    Science.gov (United States)

    Du, Wen; Chen, Zeng-Ping; Zhong, Li-Jing; Wang, Shu-Xia; Yu, Ru-Qin; Nordon, Alison; Littlejohn, David; Holden, Megan

    2011-03-25

    In quantitative on-line/in-line monitoring of chemical and bio-chemical processes using spectroscopic instruments, multivariate calibration models are indispensable for the extraction of chemical information from complex spectroscopic measurements. The development of reliable multivariate calibration models is generally time-consuming and costly. Therefore, once a reliable multivariate calibration model is established, it is expected to be used for an extended period. However, any change in the instrumental response or variations in the measurement conditions can render a multivariate calibration model invalid. In this contribution, a new method, spectral space transformation (SST), has been developed to maintain the predictive abilities of multivariate calibration models when the spectrometer or measurement conditions are altered. SST tries to eliminate the spectral differences induced by the changes in instruments or measurement conditions through the transformation between two spectral spaces spanned by the corresponding spectra of a subset of standardization samples measured on two instruments or under two sets of experimental conditions. The performance of the method has been tested on two data sets comprising NIR and MIR spectra. The experimental results show that SST can achieve satisfactory analyte predictions from spectroscopic measurements subject to spectrometer/probe alteration, when only a few standardization samples are used. Compared with the existing popular methods designed for the same purpose, i.e. global PLS, univariate slope and bias correction (SBC) and piecewise direct standardization (PDS), SST has the advantages of implementation simplicity, wider applicability and better performance in terms of predictive accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Very broadband seismic background noise analysis of permanent good vaulted seismic stations

    Science.gov (United States)

    Abd el-aal, Abd el-aziz Khairy

    2013-04-01

    This paper describes the results of a preliminary study conducted to analyze seismic background noise at sites of recently deployed very broadband stations of the Egyptian National Seismological Network (ENSN). The main purpose of the study is to assess the effects of permanent seismic vault construction and also to establish characteristics and origin of seismic noise at those sites. Another goal of this study is to determine the time needed for noise at those sites to stabilize. The power spectral densities of background noise at short period band (SP), very broadband (VBB), and ultra long period band (ULP) for each component of each broadband seismometer deployed in the different investigated sites are calculated. A MATLAB code has been developed that manages data processing and data analysis and compares the results with the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (1993). Based on the obtained analysis, the noise stability and the efficiency of each station to record regional and teleseismic events are measured. The results of this study could be used in the future to evaluate station quality, to improve those processes that require background noise values, such as automatic association, and to improve the estimation of station and network detection and location thresholds.

  19. Interoperability of Services in an Open Broadband Market : Cases from the Netherlands

    NARCIS (Netherlands)

    Burgmeijer, J.

    2006-01-01

    End-to-end interoperability of broadband services and networks is a condition for an open broadband market. A business model for broadband service interoperability is given. Two cases from the Netherlands, of initiatives from the market to reach interoperability, are presented: E-norm and FIST VoIP.

  20. Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame

    Energy Technology Data Exchange (ETDEWEB)

    Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.

  1. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements

    Science.gov (United States)

    Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah

    2014-02-01

    Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.

  2. a Maximum Entropy Model of the Bearded Capuchin Monkey Habitat Incorporating Topography and Spectral Unmixing Analysis

    Science.gov (United States)

    Howard, A. M.; Bernardes, S.; Nibbelink, N.; Biondi, L.; Presotto, A.; Fragaszy, D. M.; Madden, M.

    2012-07-01

    Movement patterns of bearded capuchin monkeys (Cebus (Sapajus) libidinosus) in northeastern Brazil are likely impacted by environmental features such as elevation, vegetation density, or vegetation type. Habitat preferences of these monkeys provide insights regarding the impact of environmental features on species ecology and the degree to which they incorporate these features in movement decisions. In order to evaluate environmental features influencing movement patterns and predict areas suitable for movement, we employed a maximum entropy modelling approach, using observation points along capuchin monkey daily routes as species presence points. We combined these presence points with spatial data on important environmental features from remotely sensed data on land cover and topography. A spectral mixing analysis procedure was used to generate fraction images that represent green vegetation, shade and soil of the study area. A Landsat Thematic Mapper scene of the area of study was geometrically and atmospherically corrected and used as input in a Minimum Noise Fraction (MNF) procedure and a linear spectral unmixing approach was used to generate the fraction images. These fraction images and elevation were the environmental layer inputs for our logistic MaxEnt model of capuchin movement. Our models' predictive power (test AUC) was 0.775. Areas of high elevation (>450 m) showed low probabilities of presence, and percent green vegetation was the greatest overall contributor to model AUC. This work has implications for predicting daily movement patterns of capuchins in our field site, as suitability values from our model may relate to habitat preference and facility of movement.

  3. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  4. Community Broadband Networks and the Opportunity for E-Government Services

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2017-01-01

    Community Broadband Networks (CBN) facilitate Broadband connectivity in underserved areas in many countries. The lack of Broadband connectivity is one of the reasons for the slow diffusion of e-government services in many countries.This article explains how CBNs can be enabled by governments...... to facilitate the delivery of e–government services in underserved areas in the developed and developing countries.The Community Based Broadband Mobilization (CBNM) models are used as explanatory tools....

  5. Image Retrieval Based on Multiview Constrained Nonnegative Matrix Factorization and Gaussian Mixture Model Spectral Clustering Method

    Directory of Open Access Journals (Sweden)

    Qunyi Xie

    2016-01-01

    Full Text Available Content-based image retrieval has recently become an important research topic and has been widely used for managing images from repertories. In this article, we address an efficient technique, called MNGS, which integrates multiview constrained nonnegative matrix factorization (NMF and Gaussian mixture model- (GMM- based spectral clustering for image retrieval. In the proposed methodology, the multiview NMF scheme provides competitive sparse representations of underlying images through decomposition of a similarity-preserving matrix that is formed by fusing multiple features from different visual aspects. In particular, the proposed method merges manifold constraints into the standard NMF objective function to impose an orthogonality constraint on the basis matrix and satisfy the structure preservation requirement of the coefficient matrix. To manipulate the clustering method on sparse representations, this paper has developed a GMM-based spectral clustering method in which the Gaussian components are regrouped in spectral space, which significantly improves the retrieval effectiveness. In this way, image retrieval of the whole database translates to a nearest-neighbour search in the cluster containing the query image. Simultaneously, this study investigates the proof of convergence of the objective function and the analysis of the computational complexity. Experimental results on three standard image datasets reveal the advantages that can be achieved with the proposed retrieval scheme.

  6. Recent variability of the solar spectral irradiance and its impact on climate modelling

    Science.gov (United States)

    Ermolli, I.; Matthes, K.; Dudok de Wit, T.; Krivova, N. A.; Tourpali, K.; Weber, M.; Unruh, Y. C.; Gray, L.; Langematz, U.; Pilewskie, P.; Rozanov, E.; Schmutz, W.; Shapiro, A.; Solanki, S. K.; Woods, T. N.

    2013-04-01

    The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE

  7. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    Science.gov (United States)

    Spectral nudging – a scale-selective interior constraint technique – is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonst...

  8. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  9. Electron spectral functions in a quantum dimer model for topological metals

    Science.gov (United States)

    Huber, Sebastian; Feldmeier, Johannes; Punk, Matthias

    2018-02-01

    We study single-electron spectral functions in a quantum dimer model introduced by Punk, Allais, and Sachdev in Ref. [M. Punk, A. Allais, and S. Sachdev, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015), 10.1073/pnas.1512206112]. The Hilbert space of this model is spanned by hard-core coverings of the square lattice with two types of dimers: ordinary bosonic spin singlets, as well as fermionic dimers carrying charge +e and spin 1/2, which can be viewed as bound states of spinons and holons in a doped resonating valence bond (RVB) liquid. This model realizes a metallic phase with topological order and captures several properties of the pseudogap phase in hole-doped cuprates, such as a reconstructed Fermi surface with small hole pockets and a highly anisotropic quasiparticle residue in the absence of any broken symmetries. Using a combination of exact diagonalization and analytical methods, we compute electron spectral functions and show that this model indeed exhibits a sizable antinodal pseudogap, with a momentum dependence deviating from a simple d -wave form, in accordance with experiments on underdoped cuprates.

  10. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  11. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Data.gov (United States)

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  12. Spectral-element Method for 3D Marine Controlled-source EM Modeling

    Science.gov (United States)

    Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.

    2017-12-01

    As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).

  13. Melting spectral functions of the scalar and vector mesons in a holographic QCD model

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki

    2010-01-01

    We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.

  14. Inferring the Growth of Massive Galaxies Using Bayesian Spectral Synthesis Modeling

    Science.gov (United States)

    Stillman, Coley Michael; Poremba, Megan R.; Moustakas, John

    2018-01-01

    The most massive galaxies in the universe are typically found at the centers of massive galaxy clusters. Studying these galaxies can provide valuable insight into the hierarchical growth of massive dark matter halos. One of the key challenges of measuring the stellar mass growth of massive galaxies is converting the measured light profiles into stellar mass. We use Prospector, a state-of-the-art Bayesian spectral synthesis modeling code, to infer the total stellar masses of a pilot sample of massive central galaxies selected from the Sloan Digital Sky Survey. We compare our stellar mass estimates to previous measurements, and present some of the quantitative diagnostics provided by Prospector.

  15. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  16. An X-Ray Spectral and Temporal Model for Clumpy Tori in Active Galactic Nuclei

    Science.gov (United States)

    Liu, Yuan; Li, Xiaobo

    2015-08-01

    We recently construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4 (Liu, Y., & Li, X. 2014, ApJ, 787, 52; Liu, Y., & Li, X. 2015, MNRAS, 448, L53) and investigate the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (NH=1023 cm-2), whereas it is much more evident in the high column density case (NH=1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We have applied it to the NuSTAR spectra of NGC 1068 and found a small number of clouds along the line of sight is preferred. We will also discuss the temporal model for clumpy tori and its application in the reverberation of narrow Fe Kα line.

  17. Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Geleyn, J.- F.; Brožková, Radmila; Giot, O.; Achom, H. O.; Kuma, P.

    2016-01-01

    Roč. 142, č. 659 (2016), s. 304-326 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : shortwave radiative transfer * delta-two stream system * broadband approach * Malkmus band model * optical saturation * idealized optical paths * spectral overlap Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.444, year: 2016

  18. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  19. Total and spectral irradiance comparisons between SIM and the SATIRE model in the declining phase of cycle 23

    Science.gov (United States)

    Ball, Will; Unruh, Yvonne; Krivova, Natalie; Solanki, Sami K.; Harder, Jerald

    Climate models rely on accurate total and spectral solar irradiance inputs, but until 2003 con-tinuous spectral irradiance information across a large portion of the solar spectrum was lacking. Since the launch of the Solar Radiation and Climate Experiment (SORCE), with the Spectral Irradiance Monitor (SIM) observing the UV, visible and IR, data have been accumulating and now cover a significant portion of a cycle. For the first time this allows spectral models to be tested over periods greater than a solar rotation. We present six years of total and spectral irradiance reconstructions using the SATIRE model that incorporates SOHO/MDI continuum and magnetogram images for the period April 2004 to November 2009 in the declining phase of cycle 23 and through the recent unusual minimum. We compare these results with the SIM instrument and so cover the spectral region 200 -1600 nm. While detrended, short-term, variation is recreated well by the model, there are discrepancies in longer-term trends between observations and the model. This may become important when considering the radiative forcing from the Sun used in climate research and so understanding why there is such a significant disagreement is an important area of investigation.

  20. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  1. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber by micro......We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber...

  2. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    Science.gov (United States)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  3. Aerosol Characterization at PSA from Spectral and Broadband Measurements of Solar Radiation; Caracterizacion de los Aerosoles en la PSA a partir de Medidas Espectrales y de Banda Ancha de Radiacion Solar

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, P.; Polo, J.; Campos, A.; Espinar, B.

    2006-07-01

    When passing through the atmosphere, the solar radiation suffers extinction processes with and intensity that depends on the atmosphere state. Some of the attenuation mechanisms, in particular those oflicht scattering, are spectrally selective, and thus, the solar spectrum at the earth's surface can change drastically from one place to another. This fact can be used on the determination of some of the Earth atmosphere components. The case of aerosol turbidity has a particular interest due to its high variability. In mis work different methodologies for aerosol characterization are presented, Aerosol optical depth, turbidity and Angstrom exponent are determined by them. Moreover, a comparison among the different methods is established and two heat haze events occurring during summer in PSA (Tabernas) are analyzed. (Author) 18 refs.

  4. THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Fischer, W. J. [Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Ali, B. [Space Science Institute, 4750 Walnut Street, Boulder, CO 80301 (United States); Stutz, A. M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Stanke, T. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Megeath, S. T.; Booker, J. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Osorio, M. [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Hartmann, L.; Calvet, N. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Poteet, C. A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Allen, L., E-mail: furlan@ipac.caltech.edu [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-05-01

    We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel , and submillimeter photometry from APEX, our SEDs cover 1.2–870 μ m and sample the peak of the protostellar envelope emission at ∼100 μ m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.

  5. Single-hole spectral function and spin-charge separation in the t-J model

    Science.gov (United States)

    Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.

    2001-07-01

    Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.

  6. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra.

    Directory of Open Access Journals (Sweden)

    Yi Peng

    Full Text Available There is a great challenge in combining soil proximal spectra and remote sensing spectra to improve the accuracy of soil organic carbon (SOC models. This is primarily because mixing of spectral data from different sources and technologies to improve soil models is still in its infancy. The first objective of this study was to integrate information of SOC derived from visible near-infrared reflectance (Vis-NIR spectra in the laboratory with remote sensing (RS images to improve predictions of topsoil SOC in the Skjern river catchment, Denmark. The second objective was to improve SOC prediction results by separately modeling uplands and wetlands. A total of 328 topsoil samples were collected and analyzed for SOC. Satellite Pour l'Observation de la Terre (SPOT5, Landsat Data Continuity Mission (Landsat 8 images, laboratory Vis-NIR and other ancillary environmental data including terrain parameters and soil maps were compiled to predict topsoil SOC using Cubist regression and Bayesian kriging. The results showed that the model developed from RS data, ancillary environmental data and laboratory spectral data yielded a lower root mean square error (RMSE (2.8% and higher R2 (0.59 than the model developed from only RS data and ancillary environmental data (RMSE: 3.6%, R2: 0.46. Plant-available water (PAW was the most important predictor for all the models because of its close relationship with soil organic matter content. Moreover, vegetation indices, such as the Normalized Difference Vegetation Index (NDVI and Enhanced Vegetation Index (EVI, were very important predictors in SOC spatial models. Furthermore, the 'upland model' was able to more accurately predict SOC compared with the 'upland & wetland model'. However, the separately calibrated 'upland and wetland model' did not improve the prediction accuracy for wetland sites, since it was not possible to adequately discriminate the vegetation in the RS summer images. We conclude that laboratory Vis

  7. Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model.

    Science.gov (United States)

    Kong, Bo; Vigil, R Dennis

    2014-04-01

    A numerical method for simulating the spectral light distribution in algal photobioreactors is developed by adapting the discrete ordinate method for solving the radiative transport equation. The technique, which was developed for two and three spatial dimensions, provides a detailed accounting for light absorption and scattering by algae in the culture medium. In particular, the optical properties of the algal cells and the radiative properties of the turbid culture medium were calculated using a method based on Mie theory and that makes use of information concerning algal pigmentation, shape, and size distribution. The model was validated using a small cylindrical bioreactor, and subsequently simulations were carried out for an annular photobioreactor configuration. It is shown that even in this relatively simple geometry, nontrivial photon flux distributions arise that cannot be predicted by one-dimensional models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Contraction Options and Optimal Multiple-Stopping in Spectrally Negative Lévy Models

    International Nuclear Information System (INIS)

    Yamazaki, Kazutoshi

    2015-01-01

    This paper studies the optimal multiple-stopping problem arising in the context of the timing option to withdraw from a project in stages. The profits are driven by a general spectrally negative Lévy process. This allows the model to incorporate sudden declines of the project values, generalizing greatly the classical geometric Brownian motion model. We solve the one-stage case as well as the extension to the multiple-stage case. The optimal stopping times are of threshold-type and the value function admits an expression in terms of the scale function. A series of numerical experiments are conducted to verify the optimality and to evaluate the efficiency of the algorithm

  9. Analytic models of spectral responses of fiber-grating-based interferometers on FMC theory.

    Science.gov (United States)

    Zeng, Xiangkai; Wei, Lai; Pan, Yingjun; Liu, Shengping; Shi, Xiaohui

    2012-02-13

    In this paper the analytic models (AMs) of the spectral responses of fiber-grating-based interferometers are derived from the Fourier mode coupling (FMC) theory proposed recently. The interferometers include Fabry-Perot cavity, Mach-Zehnder and Michelson interferometers, which are constructed by uniform fiber Bragg gratings and long-period fiber gratings, and also by Gaussian-apodized ones. The calculated spectra based on the analytic models are achieved, and compared with the measured cases and those on the transfer matrix (TM) method. The calculations and comparisons have confirmed that the AM-based spectrum is in excellent agreement with the TM-based one and the measured case, of which the efficiency is improved up to ~2990 times that of the TM method for non-uniform-grating-based in-fiber interferometers.

  10. Crystal Plasticity Modeling of Microstructure Evolution and Mechanical Fields During Processing of Metals Using Spectral Databases

    Science.gov (United States)

    Knezevic, Marko; Kalidindi, Surya R.

    2017-05-01

    This article reviews the advances made in the development and implementation of a novel approach to speeding up crystal plasticity simulations of metal processing by one to three orders of magnitude when compared with the conventional approaches, depending on the specific details of implementation. This is mainly accomplished through the use of spectral crystal plasticity (SCP) databases grounded in the compact representation of the functions central to crystal plasticity computations. A key benefit of the databases is that they allow for a noniterative retrieval of constitutive solutions for any arbitrary plastic stretching tensor (i.e., deformation mode) imposed on a crystal of arbitrary orientation. The article emphasizes the latest developments in terms of embedding SCP databases within implicit finite elements. To illustrate the potential of these novel implementations, the results from several process modeling applications including equichannel angular extrusion and rolling are presented and compared with experimental measurements and predictions from other models.

  11. Recent developments in the super transition array model for spectral simulation of LTE plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1992-01-01

    Recently developed sub-picosecond pulse lasers have been used to create hot, near solid density plasmas. Since these plasmas are nearly in local thermodynamic equilibrium (LTE), their emission spectra involve a huge number of populated configurations. A typical spectrum is a combination of many unresolved clusters of emission, each containing an immense number of overlapping, unresolvable bound-bound and bound-free transitions. Under LTE, or near LTE conditions, traditional detailed configuration or detailed term spectroscopic models are not capable of handling the vast number of transitions involved. The average atom (AA) model, on the other hand, accounts for all relevant transitions, but in an oversimplified fashion that ignores all spectral structure. The Super Transition Array (STA) model, which has been developed in recent years, combines the simplicity and comprehensiveness of the AA model with the accuracy of detailed term accounting. The resolvable structure of spectral clusters is revealed by successively increasing the number of distinct STA's, until convergence is attained. The limit of this procedure is a detailed unresolved transition array (UTA) spectrum, with a term-broadened line for each accessible configuration-to-configuration transition, weighted by the relevant Boltzman population. In practice, this UTA spectrum is actually obtained using only a few thousand to tens of thousands of STA's (as opposed, typically, to billions of UTAs). The central result of STA theory is a set of formulas for the moments (total intensity, average transition energy, variance) of an STA. In calculating the moments, detailed relativistic first order quantum transition energies and probabilities are used. The energy appearing in the Boltzman factor associated with each level in a superconfiguration is the zero order result corrected by a superconfiguration averaged first order correction. Examples and application to recent measurements are presented

  12. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  13. Multispectral Photoacoustic Imaging Artifact Removal and Denoising Using Time Series Model-Based Spectral Noise Estimation.

    Science.gov (United States)

    Kazakeviciute, Agne; Ho, Chris Jun Hui; Olivo, Malini

    2016-09-01

    The aim of this study is to solve a problem of denoising and artifact removal from in vivo multispectral photoacoustic imaging when the level of noise is not known a priori. The study analyzes Wiener filtering in Fourier domain when a family of anisotropic shape filters is considered. The unknown noise and signal power spectral densities are estimated using spectral information of images and the autoregressive of the power 1 ( AR(1)) model. Edge preservation is achieved by detecting image edges in the original and the denoised image and superimposing a weighted contribution of the two edge images to the resulting denoised image. The method is tested on multispectral photoacoustic images from simulations, a tissue-mimicking phantom, as well as in vivo imaging of the mouse, with its performance compared against that of the standard Wiener filtering in Fourier domain. The results reveal better denoising and fine details preservation capabilities of the proposed method when compared to that of the standard Wiener filtering in Fourier domain, suggesting that this could be a useful denoising technique for other multispectral photoacoustic studies.

  14. Radiation Transfer of Models of Massive Star Formation. IV. The Model Grid and Spectral Energy Distribution Fitting

    Science.gov (United States)

    Zhang, Yichen; Tan, Jonathan C.

    2018-01-01

    We present a continuum radiative transfer model grid for fitting observed spectral energy distributions (SEDs) of massive protostars. The model grid is based on the paradigm of core accretion theory for massive star formation with pre-assembled gravitationally bound cores as initial conditions. In particular, following the turbulent core model, initial core properties are set primarily by their mass and the pressure of their ambient clump. We then model the evolution of the protostar and its surround structures in a self-consistent way. The model grid contains about 9000 SEDs with four free parameters: initial core mass, the mean surface density of the environment, the protostellar mass, and the inclination. The model grid is used to fit observed SEDs via {χ }2 minimization, with the foreground extinction additionally estimated. We demonstrate the fitting process and results using the example of massive protostar G35.20-0.74. Compared with other SED model grids currently used for massive star formation studies, the properties of the protostar and its surrounding structures are more physically connected in our model grid, which reduces the dimensionality of the parameter spaces and the total number of models. This excludes possible fitting of models that are physically unrealistic or are not internally self-consistent in the context of the turbulent core model. Thus, this model grid serves not only as a fitting tool to estimate properties of massive protostars, but also as a test of core accretion theory. The SED model grid is publicly released with this paper.

  15. Efficient 3D frequency response modeling with spectral accuracy by the rapid expansion method

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    Frequency responses of seismic wave propagation can be obtained either by directly solving the frequency domain wave equations or by transforming the time domain wavefields using the Fourier transform. The former approach requires solving systems of linear equations, which becomes progressively difficult to tackle for larger scale models and for higher frequency components. On the contrary, the latter approach can be efficiently implemented using explicit time integration methods in conjunction with running summations as the computation progresses. Commonly used explicit time integration methods correspond to the truncated Taylor series approximations that can cause significant errors for large time steps. The rapid expansion method (REM) uses the Chebyshev expansion and offers an optimal solution to the second-order-in-time wave equations. When applying the Fourier transform to the time domain wavefield solution computed by the REM, we can derive a frequency response modeling formula that has the same form as the original time domain REM equation but with different summation coefficients. In particular, the summation coefficients for the frequency response modeling formula corresponds to the Fourier transform of those for the time domain modeling equation. As a result, we can directly compute frequency responses from the Chebyshev expansion polynomials rather than the time domain wavefield snapshots as do other time domain frequency response modeling methods. When combined with the pseudospectral method in space, this new frequency response modeling method can produce spectrally accurate results with high efficiency. © 2012 Society of Exploration Geophysicists.

  16. Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability

    Science.gov (United States)

    Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.

    2018-02-01

    A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

  17. Leaf nitrogen spectral reflectance model of winter wheat (Triticum aestivum) based on PROSPECT: simulation and inversion

    Science.gov (United States)

    Yang, Guijun; Zhao, Chunjiang; Pu, Ruiliang; Feng, Haikuan; Li, Zhenhai; Li, Heli; Sun, Chenhong

    2015-01-01

    Through its association with proteins and plant pigments, leaf nitrogen (N) plays an important regulatory role in photosynthesis, leaf respiration, and net primary production. However, the traditional methods of measurement leaf N are rooted in sample-based spectroscopy in laboratory. There is a big challenge of deriving leaf N from the nondestructive field-measured leaf spectra. In this study, the original PROSPECT model was extended by replacing the absorption coefficient of chlorophyll in the original PROSPECT model with an equivalent N absorption coefficient to develop a nitrogen-based PROSPECT model (N-PROSPECT). N-PROSPECT was evaluated by comparing the model-simulated reflectance values with the measured leaf reflectance values. The validated results show that the correlation coefficient (R) was 0.98 for the wavelengths of 400 to 2500 nm. Finally, N-PROSPECT was used to simulate leaf reflectance using different combinations of input parameters, and partial least squares regression (PLSR) was used to establish the relationship between the N-PROSPECT simulated reflectance and the corresponding leaf nitrogen density (LND). The inverse of the PLSR-based N-PROSPECT model was used to retrieve LND from the measured reflectance with a relatively high accuracy (R2=0.77, RMSE=22.15 μg cm-2). This result demonstrates that the N-PROSPECT model established in this study can accurately simulate nitrogen spectral contributions and retrieve LND.

  18. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

    KAUST Repository

    Liu, Shaolin

    2017-09-28

    The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.

  19. CORE-COLLAPSE MODEL OF BROADBAND EMISSION FROM SNR RX J1713.7–3946 WITH THERMAL X-RAYS AND GAMMA RAYS FROM ESCAPING COSMIC RAYS

    International Nuclear Information System (INIS)

    Ellison, Donald C.; Slane, Patrick; Patnaude, Daniel J.; Bykov, Andrei M.

    2012-01-01

    We present a spherically symmetric, core-collapse model of SNR RX J1713.7–3946 that includes a hydrodynamic simulation of the remnant evolution coupled to the efficient production of cosmic rays (CRs) by nonlinear diffusive shock acceleration. High-energy CRs that escape from the forward shock (FS) are propagated in surrounding dense material that simulates either a swept-up, pre-supernova shell or a nearby molecular cloud. The continuum emission from trapped and escaping CRs, along with the thermal X-ray emission from the shocked heated interstellar medium behind the FS, integrated over the remnant, is compared against broadband observations. Our results show conclusively that, overall, the GeV-TeV emission is dominated by inverse-Compton from CR electrons if the supernova is isolated regardless of its type, i.e., not interacting with a >>100 M ☉ shell or cloud. If the supernova remnant is interacting with a much larger mass ∼> 10 4 M ☉ , pion decay from the escaping CRs may dominate the TeV emission, although a precise fit at high energy will depend on the still uncertain details of how the highest energy CRs are accelerated by, and escape from, the FS. Based on morphological and other constraints, we consider the 10 4 M ☉ pion-decay scenario highly unlikely for SNR RX J1713.7–3946 regardless of the details of CR escape. Importantly, even though CR electrons dominate the GeV-TeV emission, the efficient production of CR ions is an essential part of our leptonic model.

  20. A Lightweight Compact Multi-Spectral Imager Using Novel Computer-Generated Micro-Optics and Spectral-Extraction Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Early-stage research proposal is to demonstrate an ultra-compact, lightweight broadband hyper- and multi-spectral imaging system that is...

  1. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  2. An Assessment of Emerging Wireless Broadband Technologies

    National Research Council Canada - National Science Library

    Fountanas, Leonidas

    2001-01-01

    ... technologies in providing broadband services today, emerging wireless broadband technologies are expected to significantly increase their market share over the next years, Deploying a wireless network...

  3. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    International Nuclear Information System (INIS)

    Xu, Jin; Yu, Yaming; Van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete; Connors, Alanna; Meng, Xiao-Li

    2014-01-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  4. Improvement of and Parameter Identification for the Bimodal Time-Varying Modified Kanai-Tajimi Power Spectral Model

    Directory of Open Access Journals (Sweden)

    Huiguo Chen

    2017-01-01

    Full Text Available Based on the Kanai-Tajimi power spectrum filtering method proposed by Du Xiuli et al., a genetic algorithm and a quadratic optimization identification technique are employed to improve the bimodal time-varying modified Kanai-Tajimi power spectral model and the parameter identification method proposed by Vlachos et al. Additionally, a method for modeling time-varying power spectrum parameters for ground motion is proposed. The 8244 Orion and Chi-Chi earthquake accelerograms are selected as examples for time-varying power spectral model parameter identification and ground motion simulations to verify the feasibility and effectiveness of the improved bimodal time-varying modified Kanai-Tajimi power spectral model. The results of this study provide important references for designing ground motion inputs for seismic analyses of major engineering structures.

  5. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  6. 3D airborne EM modeling based on the spectral-element time-domain (SETD) method

    Science.gov (United States)

    Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.

    2017-12-01

    In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays

  7. Slip model and Synthetic Broad-band Strong Motions for the 2015 Mw 8.3 Illapel (Chile) Earthquake.

    Science.gov (United States)

    Aguirre, P.; Fortuno, C.; de la Llera, J. C.

    2017-12-01

    The MW 8.3 earthquake that occurred on September 16th 2015 west of Illapel, Chile, ruptured a 200 km section of the plate boundary between 29º S and 33º S. SAR data acquired by the Sentinel 1A satellite was used to obtain the interferogram of the earthquake, and from it, the component of the displacement field of the surface in the line of sight of the satellite. Based on this interferogram, the corresponding coseismic slip distribution for the earthquake was determined based on different plausible finite fault geometries. The model that best fits the data gathered is one whose rupture surface is consistent with the Slab 1.0 model, with a constant strike angle of 4º and variable dip angle ranging from 2.7º near the trench to 24.3º down dip. Using this geometry the maximum slip obtained is 7.52 m and the corresponding seismic moment is 3.78·1021 equivalent to a moment magnitude Mw 8.3. Calculation of the Coulomb failure stress change induced by this slip distribution evidences a strong correlation between regions where stress is increased as consequence of the earthquake, and the occurrence of the most relevant aftershocks, providing a consistency check for the inversion procedure applied and its results.The finite fault model for the Illapel earthquake is used to test a hybrid methodology for generation of synthetic ground motions that combines a deterministic calculation of the low frequency content, with stochastic modelling of the high frequency signal. Strong ground motions are estimated at the location of seismic stations recording the Illapel earthquake. Such simulations include the effect of local soil conditions, which are modelled empirically based on H/V ratios obtained from a large database of historical seismic records. Comparison of observed and synthetic records based on the 5%-damped response spectra yield satisfactory results for locations where the site response function is more robustly estimated.

  8. Modelling the cosmic spectral energy distribution and extragalactic background light over all time

    Science.gov (United States)

    Andrews, S. K.; Driver, S. P.; Davies, L. J. M.; Lagos, C. d. P.; Robotham, A. S. G.

    2018-02-01

    We present a phenomological model of the cosmic spectral energy distribution (CSED) and the integrated galactic light (IGL) over all cosmic time. This model, based on an earlier model by Driver et al., attributes the cosmic star formation history (CSFH) to two processes - first, chaotic clump accretion and major mergers, resulting in the early-time formation of bulges and secondly, cold gas accretion, resulting in late-time disc formation. Under the assumption of a Universal Chabrier initial mass function, we combine the Bruzual & Charlot stellar libraries, the Charlot & Fall dust attenuation prescription and template spectra for emission by dust and active galactic nuclei to predict the CSED - pre- and post-dust attenuation - and the IGL throughout cosmic time. The phenomological model, as constructed, adopts a number of basic axioms and empirical results and has minimal free parameters. We compare the model output, as well as predictions from the semi-analytic model GALFORM to recent estimates of the CSED out to z = 1. By construction, our empirical model reproduces the full energy output of the Universe from the ultraviolet to the far-infrared extremely well. We use the model to derive predictions of the stellar and dust mass densities, again finding good agreement. We find that GALFORM predicts the CSED for z < 0.3 in good agreement with the observations. This agreement becomes increasingly poor towards z = 1, when the model CSED is ˜50 per cent fainter. The latter is consistent with the model underpredicting the CSFH. As a consequence, GALFORM predicts a ˜30 per cent fainter IGL.

  9. Environmental monitoring model for a drainage basin obtained through spectral analysis of time series.

    Science.gov (United States)

    Faht, Guilherme; da Silva, Marcos Rivail; Pinheiro, Adilson; Kaufmann, Vander; de Aguida, Leandro Mazzuco

    2012-08-01

    The quality of results of an environmental monitoring plan is limited to the weakest component, which could be the analytical approach or sampling method. Considering both the possibilities and the fragility that sampling methods offer, this environmental monitoring study focused on the uncertainties caused by the time component. Four time series of nutrient concentration at two sampling points (PB1 and PB2) in the Ribeirão Garcia basin in Blumenau, Brazil, which were significantly correlated to the spatial component, were considered with a 2-hour resolution to develop efficient sampling models. These models were based on the time at which there was the highest tendency toward adverse environmental effects. Fourier spectral analysis was used to evaluated the time series and resulted in two sampling models: (1) the SMCP (sampling model for critical period) that operated with 100% efficiency for registering the highest concentration of nutrients and was valid for 83% of the studied parameters; and (2) the SMGCP (sampling model for global critical period) that operated with 83 and 50% efficiency for PB1 and PB2, respectively.

  10. Combined stellar structure and atmosphere models for massive stars. II. Spectral evolution on the main sequence.

    Science.gov (United States)

    Schaerer, D.; de Koter, A.; Schmutz, W.; Maeder, A.

    1996-08-01

    In Schaerer et al. (1995, Paper I) we have presented the first ``combined stellar structure and atmosphere models'' (CoStar) for massive stars, which consistently treat the entire mass loosing star from the center out to the outer region of the stellar wind. The models use up-to-date input physics and state-of-the-art techniques to model both the stellar interior and the spherically expanding non-LTE atmosphere. The atmosphere models include line blanketing for all elements from hydrogen to zinc. The present publication covers the spectral evolution corresponding to the main sequence interior evolution discussed in Paper I. The CoStar results presented in this paper comprise: (a) flux distributions, from the EUV to the far IR, and the ionizing fluxes in the hydrogen and helium continua, (b) absolute optical and infrared UBVRIJHKLMN photometric magnitudes and UV colors, (c) detailed line blanketed UV spectra, and (d) non-LTE hydrogen and helium line spectra in the optical and IR, including theoretical K band spectra. These results may, e.g., be used for population synthesis models intended to study the massive star content in young starforming regions. We compare our results with other predictions from LTE and non-LTE plane parallel models and point out the improvements and the importance of using adequate atmosphere models including stellar winds for massive stars. Particular emphasis is given to comparisons of the UV spectral evolution with observations, including continuum indices and several metal line signatures of P-Cygni lines and broad absorption features. Good agreement is found for most UV features. In particular, we are able to reproduce the strong observed Fe III 1920A feature in late O and early B giants and supergiants. This feature is found to depend sensitively on temperature and may be used to derive effective temperatures for these stars. We also derive a simple formula to determine mass loss rates from the equivalent width of hydrogen

  11. A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model

    Directory of Open Access Journals (Sweden)

    Thomas E. Rosmond

    2000-01-01

    Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.

  12. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Science.gov (United States)

    Labrosse, N.; Heinzel, P.; Vial, J.-C,; Kucera, T.; Parenti, S.; Gunar, S.; Schmieder, B.; Kilper, G.

    2010-01-01

    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex

  13. Robust x-ray image segmentation by spectral clustering and active shape model.

    Science.gov (United States)

    Wu, Jing; Mahfouz, Mohamed R

    2016-07-01

    Extraction of bone contours from x-ray radiographs plays an important role in joint space width assessment, preoperative planning, and kinematics analysis. We present a robust segmentation method to accurately extract the distal femur and proximal tibia in knee radiographs of varying image quality. A spectral clustering method based on the eigensolution of an affinity matrix is utilized for x-ray image denoising. An active shape model-based segmentation method is employed for robust and accurate segmentation of the denoised x-ray images. The performance of the proposed method is evaluated with x-ray images from the public-use dataset(s), the osteoarthritis initiative, achieving a root mean square error of [Formula: see text] for femur and [Formula: see text] for tibia. The results demonstrate that this method outperforms previous segmentation methods in capturing anatomical shape variations, accounting for image quality differences and guiding accurate segmentation.

  14. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  15. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    International Nuclear Information System (INIS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-01-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  16. Broadband unidirectional ultrasound propagation

    Science.gov (United States)

    Sinha, Dipen N.; Pantea, Cristian

    2017-12-12

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.

  17. Spectral Modeling of the 0.4-2.5 μm Phobos CRISM dataset

    Science.gov (United States)

    Pajola, Maurizio; Roush, Ted; Dalle Ore, Cristina; Marzo, Giuseppe A.; Simioni, Emanuele

    2017-04-01

    We present the spectral modeling of the 0.4-2.5 μm MRO/CRISM Phobos dataset. After applying a statistical clustering technique, based on a K-means partitioning algorithm, we identified eight separate clusters in the Phobos CRISM data, extending the surface coverage beyond the previous analyses of Fraeman et al. (2012, 2014). Each resulting cluster is characterized by an average and its associated variability. We modeled these different spectra using a radiative transfer code based on the approach of Shkuratov et al. (1999). We used the optical constants of the model proposed by Pajola et al. (2013) in our effort, i.e. the Tagish Lake meteorite (TL) and the Mg-rich pyroxene glass (PM80). The Shkuratov model is used in an algorithm that iteratively, and simultaneously changes the relative abundance and grain sizes of the selected components to minimize the differences between the model and observations using a chi-squared criterion. The best-fitting models were achieved with a simple intimate mixture showing that the relative percentages of TL and PM80 vary between 80-20% and 95-5%, respectively, and grain sizes for TL are 12-14 μm and 20-22 μm for PM80. This work aims to return a detailed picture of the surface properties of Phobos identifying specific areas that may be of interest for future planetary exploration, as the proposed Japanese Mars Moon eXploration (MMX) sample return mission. Acknowledgements: We make use of the public NASA-Planetary Data System MRO-CRISM spectral data of Phobos. M.P. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. References: Fraeman et al. 2012, J. Geophy. Res, E00J15, 10.1029/2012JE004137; Fraeman et al., 2014, Icarus, 229, 196-205, 10.1016/icarus.2013.11.021; Shkuratov, Y. et al. (1999), Icarus, 137, 235. Pajola et al., 2013

  18. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  19. Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, Agostino, E-mail: agostino.devastato@na.infn.it; Martinetti, Pierre, E-mail: martinetti@dima.unige.it [Università di Napoli Federico II, Dipartimento di Fisica (Italy)

    2017-03-15

    Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.

  20. Comparisons Between Model Predictions and Spectral Measurements of Charged and Neutral Particles on the Martian Surface

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios

  1. Narrowband-to-broadband albedo conversion for glacier ice and snow: equations based on modeling and ranges of validity of the equations

    NARCIS (Netherlands)

    Greuell, W.; Oerlemans, J.

    2004-01-01

    In this paper, we propose equations for narrowband-to-broadband (NTB) albedo conversion for glacier ice and snow for four types of satellite sensors: thematic mapper (TM), advanced very high resolution radiometer (AVHRR), moderate resolution imaging spectroradiometer (MODIS), and multi-angle imaging

  2. Techno-Economics of Residential Broadband Deployment

    DEFF Research Database (Denmark)

    Sigurdsson, Halldor Matthias

    2007-01-01

    as much profit as possible from their previous investments. However, the operators are not restricted by these considerations, and they will often choose a fiber-to-the home solution (FTTH, Fiber-to-the-Home), which will offer a far more substantial data capacity in the long run. The choice of the proper...... broadband deployment strategy is depending on a complexed set of parameters, and there is a demand for precise techno-economic cost models estimating financial feasibility. The existing cost models do not consider the dynamic developments in the market caused by competition. The PhD thesis has a profound...... analysis of the transmission requirements of future broadband services and the technical parameters with importance for the deployment strategy. The framework of the project is interdisciplinary and combines a solid technological knowledge about telecom networks and services with economic and telecom...

  3. Operational semi-physical spectral-spatial wheat yield model development

    Science.gov (United States)

    Tripathy, R.; Chaudhary, K. N.; Nigam, R.; Manjunath, K. R.; Chauhan, P.; Ray, S. S.; Parihar, J. S.

    2014-11-01

    Spectral yield models based on Vegetation Index (VI) and the mechanistic crop simulation models are being widely used for crop yield prediction. However, past experience has shown that the empirical nature of the VI based models and the intensive data requirement of the complex mechanistic models has limited their use for regional and spatial crop yield prediction especially for operational use. The present study was aimed at development of an intermediate method based on the use of remote sensing and the physiological concepts such as the photo-synthetically active solar radiation (PAR) and the fraction of PAR absorbed by the crop (fAPAR) in Monteith's radiation use efficiency based equation (Monteith, 1977) for operational wheat yield forecasting by the Department of Agriculture (DoA). Net Primary Product (NPP) has been computed using the Monteith model and stress has been applied to convert the potential NPP to actual NPP. Wheat grain yield has been computed using the actual NPP and Harvest index. Kalpana-VHRR insolation has been used for deriving the PAR. Maximum radiation use efficiency has been collected from literature and wheat crop mask was derived at MNCFC, New Delhi using RS2-AWiFS data. Water stress has been derived from the Land Surface Water Index (LSWI) which has been derived periodically from the MODIS surface reflectance data (NIR and SWIR1). Temperature stress has been derived from the interpolated daily mean temperature. Results indicated that this model underestimated the yield by 3.45 % as compared to the reported yield at state level and hence can be used to predict wheat yield at state level. This study will be able to provide the spatial wheat yield map, as well as the district-wise and state level aggregated wheat yield forecast. It is possible to operationalize this remote sensing based modified Monteith's efficiency model for future yield forecasting with around 0.15 t ha-1 RMSE at state level.

  4. The assimilation of spectral sensing and the WOFOST model for the dynamic simulation of cadmium accumulation in rice tissues

    Science.gov (United States)

    Wu, Ling; Liu, Xiangnan; Wang, Ping; Zhou, Botian; Liu, Meiling; Li, Xuqing

    2013-12-01

    The accurate detection of heavy metal-induced stress on crop growth is important for food security and agricultural, ecological and environmental protection. Spectral sensing offers an efficient and undamaged observation tool to monitor soil and vegetation contamination. This study proposed a methodology for dynamically estimating the total cadmium (Cd) accumulation in rice tissues by assimilating spectral information into WOFOST (World Food Study) model. Based on the differences among ground hyperspectral data of rice in three experiments fields under different Cd concentration levels, the spectral indices MCARI1, NREP and RH were selected to reflect the rice stress condition and dry matter production of rice. With assimilating these sensitive spectral indices into the WOFOST + PROSPECT + SAIL model to optimize the Cd pollution stress factor fwi, the dynamic dry matter production processes of rice were adjusted. Based on the relation between dry matter production and Cd accumulation, we dynamically simulating the Cd accumulation in rice tissues. The results showed that the method performed well in dynamically estimating the total amount of Cd accumulation in rice tissues with R2 over 85%. This study suggests that the proposed method of integrating the spectral information and the crop growth model could successfully dynamically simulate the Cd accumulation in rice tissues.

  5. Allophane on Mars: Evidence from IR Spectroscopy and TES Spectral Models

    Science.gov (United States)

    Ming, Douglas W.; Rampe, E. B.; Kraft, M. D.; Sharp. T. G.; Golden, D. C.; Christensen, P. C.

    2010-01-01

    Allophane is an alteration product of volcanic glass and a clay mineral precursor that is commonly found in basaltic soils on Earth. It is a poorly-crystalline or amorphous, hydrous aluminosilicate with Si/Al ratios ranging from approx.0.5-1 [Wada, 1989]. Analyses of thermal infrared (TIR) spectra of the Martian surface from TES show high-silica phases at mid-to-high latitudes that have been proposed to be primary volcanic glass [Bandfield et al., 2000; Bandfield, 2002; Rogers and Christensen, 2007] or poorly-crystalline secondary silicates such as allophane or aluminous amorphous silica [Kraft et al., 2003; Michalski et al., 2006; Rogers and Christensen, 2007; Kraft, 2009]. Phase modeling of chemical data from the APXS on the Mars Exploration Rover Spirit suggest the presence of allophane in chemically weathered rocks [Ming et al., 2006]. The presence of allophane on Mars has not been previously tested with IR spectroscopy because allophane spectra have not been available. We synthesized allophanes and allophanic gels with a range of Si/Al ratios to measure TIR emission and VNIR reflectance spectra and to test for the presence of allophane in Martian soils. VNIR reflectance spectra of the synthetic allophane samples have broad absorptions near 1.4 m from OH stretching overtones and 1.9 m from a combination of stretching and bending vibrations in H2O. Samples have a broad absorption centered near 2.25 microns, from AlAlOH combination bending and stretching vibrations, that shifts position with Si/Al ratio. Amorphous silica (opaline silica or primary volcanic glass) has been identified in CRISM spectra of southern highland terrains based on the presence of 1.4, 1.9, and broad 2.25 m absorptions [Mustard et al., 2008]; however, these absorptions are also consistent with the presence of allophane. TIR emission spectra of the synthetic allophanes show two spectrally distinct types: Si-rich and Al-rich. Si-rich allophanes have two broad absorptions centered near 1080

  6. Hybrid Broadband Ground-Motion Simulations: Combining Long-Period Deterministic Synthetics with High-Frequency Multiple S-to-S Backscattering

    KAUST Repository

    Mai, Paul Martin

    2010-09-20

    We present a new approach for computing broadband (0-10 Hz) synthetic seismograms by combining high-frequency (HF) scattering with low-frequency (LF) deterministic seismograms, considering finite-fault earthquake rupture models embedded in 3D earth structure. Site-specific HF-scattering Green\\'s functions for a heterogeneous medium with uniformly distributed random isotropic scatterers are convolved with a source-time function that characterizes the temporal evolution of the rupture process. These scatterograms are then reconciled with the LF-deterministic waveforms using a frequency-domain optimization to match both amplitude and phase spectra around the target intersection frequency. The scattering parameters of the medium, scattering attenuation ηs, intrinsic attenuation ηi, and site-kappa, as well as frequency-dependent attenuation, determine waveform and spectral character of the HF-synthetics and thus affect the hybrid broadband seismograms. Applying our methodology to the 1994 Northridge earthquake and validating against near-field recordings at 24 sites, we find that our technique provides realistic broadband waveforms and consistently reproduces LF ground-motion intensities for two independent source descriptions. The least biased results, compared to recorded strong-motion data, are obtained after applying a frequency-dependent site-amplification factor to the broadband simulations. This innovative hybrid ground-motion simulation approach, applicable to any arbitrarily complex earthquake source model, is well suited for seismic hazard analysis and ground-motion estimation.

  7. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  8. Evaluation of the Utility of Static and Adaptive Mesh Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model

    Science.gov (United States)

    2015-04-09

    Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...amined for idealized tropical cyclone (TC) simulations in a spectral element f-plane shallow water model. The SMR simulations have varying sizes of...adaptive mesh refinement1 for idealized tropical cyclone problems in a spectral element2 shallow water model3 Eric A. Hendricks ∗ Marine Meteorology Division

  9. Broadband CyberShake Platform: Seismogram Synthesis for Broadband Physics-Based Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Callaghan, S.; Maechling, P. J.; Small, P.; Milner, K.; Graves, R. W.; Jordan, T. H.; CyberShake Collaboration

    2011-12-01

    Researchers at the Southern California Earthquake Center (SCEC) have developed the CyberShake computational platform to perform probabilistic seismic hazard analysis (PSHA) in the Los Angeles region (Graves et al., 2010) using deterministic wave propagation simulations at frequencies up to 0.5 Hz. CyberShake uses seismic reciprocity to calculate synthetic seismograms for a suite of more than 600,000 rupture realizations. From this set of seismograms we compute intensity measures, which are then combined into a PSHA hazard curve for the site of interest. SCEC has also developed the SCEC Broadband Ground Motion Simulation Platform, a software system that can calculate broadband seismograms at frequencies up to 10 Hz for historical and scenario earthquakes using multiple earthquake rupture generators, multiple low- and high-frequency wave propagation simulation codes, and multiple site effects modules. Here we report how we have integrated the high-frequency computational capabilities of the SCEC Broadband Platform into CyberShake, producing the Broadband CyberShake Platform. The Broadband CyberShake Platform extends the frequency range up to 10 Hz by combining low frequency deterministic synthetic seismograms with higher frequency stochastic seismograms. We can now calculate physics-based seismograms and PSHA hazard curves for intensity measures such as PGA that are strongly dependent on higher frequency ground motions. A potential benefit of this approach, particularly at higher frequencies, is that given adequate sampling of the parameter space, the physics-based model naturally limits the upper bound of the estimated ground motion response. This often leads to a reduction in hazard at longer return periods. We are applying the computational capabilities of the SCEC Broadband CyberShake Platform at southern California sites selected to support validation of this newly developed PSHA computational technique. This includes calculation of Broadband Cyber

  10. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  11. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  12. GISS GCMAM Modeled Climate Responses to Total and Spectral Solar Forcing on Decadal and Centennial Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R. F.; Rind, D. H.; Jonas, J.; Pilewskie, P.; Harder, J. W.; Krivova, N.

    2014-12-01

    We examine the influence of the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral Irradiance Monitor) observed spectral solar irradiance (SSI) variations on Earth's climate. We apply two reconstructed spectral solar forcing scenarios, one SIM based, the other based on the SATIRE (Spectral And Total Irradiance REconstruction) model, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine the climate responses on decadal and centennial time scales. We show that the atmosphere has different temperature, ozone, and dynamic responses to the two solar spectral forcing scenarios, even when the variations in TSI (Total Solar Irradiance) are the same. We find that solar variations under either scenario contribute a small fraction of the observed temperature increase since the industrial revolution. The trend of global averaged surface air temperature response to the SIM-based solar forcing is 0.02 °C/century, about half of the temperature trend to the SATIRE-based SSI. However the temporal variation of the surface air temperature for the SIM-based solar forcing scenario is much larger compared to its SATIRE counterpart. Further research is required to examine TSI and SSI variations in the ascending phase of solar cycle 24, to assess their implications for the solar influence on climate.

  13. Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry

    Science.gov (United States)

    Coakley, Kevin J.; Qu, Jifeng

    2017-04-01

    In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency. We model this spectrum as an even polynomial function of frequency where the constant term in the polynomial determines the Boltzmann constant. When determining this constant (offset) from experimental data, the assumed complexity of the ratio spectrum model and the maximum frequency analyzed (fitting bandwidth) dramatically affects results. Here, we select the complexity of the model by cross-validation—a data-driven statistical learning method. For each of many fitting bandwidths, we determine the component of uncertainty of the offset term that accounts for random and systematic effects associated with imperfect knowledge of model complexity. We select the fitting bandwidth that minimizes this uncertainty. In the most recent measurement of the Boltzmann constant, results were determined, in part, by application of an earlier version of the method described here. Here, we extend the earlier analysis by considering a broader range of fitting bandwidths and quantify an additional component of uncertainty that accounts for imperfect performance of our fitting bandwidth selection method. For idealized simulated data with additive noise similar to experimental data, our method correctly selects the true complexity of the ratio spectrum model for all cases considered. A new analysis of data from the recent experiment yields evidence for a temporal trend in the offset

  14. Validating data analysis of broadband laser ranging

    Science.gov (United States)

    Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.

    2018-03-01

    Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.

  15. Climatic impact of spectrally resolved irradiances during the late Archean as modeled with EMAC-FUB

    Science.gov (United States)

    Kunze, M.; Langematz, U.; Godolt, M.; Hamann-Reinus, A.; Rauer, H.; Joeckel, P.

    2011-12-01

    During the Archean eon the surface temperatures of the Earth are assumed to have been high enough to support liquid water, despite a lower luminosity of the young Sun. This fact, known as the faint young Sun paradox, can be explained by assuming higher concentrations of greenhouse gases during the early stages of the Earth. But there is still an ongoing debate about the possible range of greenhouse gas concentrations that are consistent with the geologic evidence. We present a study in which we investigate this problem using the Chemistry Climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) in a resolution of T42/L39 with the high-resolution shortwave radiation scheme FUBRad (EMAC-FUB). We are using a constructed, spectrally resolved irradiance dataset valid for the Archean Sun, and analyze the climatic impact of the reduced solar luminosity, an anoxic environment, an increased CO2 concentration, and the different land mass. In total six simulations have been performed, where two simulations only differ by the O2 and O3 content and otherwise have present day conditions. Four simulations use a global ocean, as the distribution and fraction of the continents are highly uncertain during the Archean, and anoxic conditions. Three simulations use a reduced solar luminosity, where two CO2 scenarios are tested (3 ± PAL and 10 ± PAL). As proxy for the early Sun during the late Archean at 2.5 Ga (109 years ago) we take the dwarf star β Com. The spectrally resolved irradiances are compiled from measurements and modeled data, and scaled to a total solar irradiance (TSI) of 82 % the present TSI (i.e. 1121 W m-2). We show that in an anoxic environment with reduced solar luminosity at 2.5 Ga, a global ocean, and present day greenhouse gases, it is still possible to have liquid water in tropical latitudes, even though the global, annual mean surface temperature is below the freezing point of water. When the CO2 concentration is increased, the region of open water widens. The

  16. Heterogeneous broadband network

    Science.gov (United States)

    Dittmann, Lars

    1995-11-01

    Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.

  17. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  18. Radiation thermo-chemical models of protoplanetary discs - III. Impact of inner rims on spectral energy distributions

    NARCIS (Netherlands)

    Thi, W. -F.; Woitke, P.; Kamp, I.

    We study the hydrostatic density structure of the inner disc rim around Herbig Ae stars using the thermo-chemical hydrostatic code prodimo. We compare the spectral energy distributions (SEDs) and images from our hydrostatic disc models to that from prescribed density structure discs. The 2D

  19. Optimizing the regularization in broadband wavefront control algorithm for WFIRST coronagraph

    Science.gov (United States)

    Sidick, Erkin; Seo, Byoung-Joon; Kern, Brian; Marx, David; Poberezhskiy, Ilya; Nemati, Bijan

    2017-09-01

    The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs sequential deformable mirrors to compensate for phase and amplitude errors. Using the optical model of an Occulting Mask Coronagraph (OMC) testbed at the Jet Propulsion Laboratory (JPL), we have investigated and compared through modeling and simulations the performance of several actuator regularization-schemes in broadband wavefront control algorithm used to generate dark holes in an OMC, such as a Hybrid Lyot Coronagraph (HLC). Using the concept of a Tikhonov filter constituting the G-matrix, we have explained what the different regularization schemes do to singular-modes during a wavefront control (WFC) process called Electric Field Conjugation (EFC). In some cases we confirmed the numerical predictions with the testbed measured results. We present our findings in this paper.

  20. Spectral signatures of the tropical Pacific dynamics from model and altimetry

    Science.gov (United States)

    Lionel, Tchilibou Michel; Gourdeau, Lionel; Morrow, Rosemary; Djath, Bugshin; Jouanno, Julien; Marin, Frederic

    2017-04-01

    The tropics are distinguishable from mid latitudes by their small Coriolis parameter vanishing at the equator, large Rossby radius, and strong anisotropic circulation. These peculiarities are at the origin of dynamics that strongly respond to the wind forcing through zonally propagating tropical waves, and of a large range of wavenumbers covering meso and submesoscale interactions. The main tropical meso and submesoscales features are associated with Tropical Instability Waves (Marchesiello et al., 2011), but coherent vorticity structures span the tropical band as described by Ubelmann and Fu (2011). This study aims to infer the dynamics of the tropical Pacific through spectral EKE and SSH analyses by looking at their latitudinal dependence. Also, a question of interest is the observability of such dynamics using along track altimetric wavenumber spectra since the tracks are mainly oriented meridionally in the tropics. This study is based on the 1.12° resolution DRAKKAR global model. Frequency-zonal wavenumber EKE spectra, and their corresponding 1D frequency and zonal wavenumber are analyzed in different latitudinal bands in the tropics illustrating the contrast between the dynamics in the equatorial belt and in the off -equatorial belt. Zonal and meridional wavenumber EKE spectra, and 2D (horizontal wavenumber) spectra of zonal and meridional velocities are used to illustrate the degree of anisotropy in the tropics depending on latitude. These EKE spectra and the relationship between EKE and SSH spectra helps us to discuss the validity of QG turbulence theories in the tropics. These model results combined with those from a 1/36° resolution regional model with explicit tides point out the actual limitation of along track altimetric SSH to infer small scale dynamics in the tropics due the high energy level of high frequency ageostrophic motions.

  1. Application of agrometeorological spectral model in rice area in southern Brazil

    Science.gov (United States)

    Leivas, Janice F.; de C. Teixeira, Antonio Heriberto; Andrade, Ricardo G.; de C. Victoria, Daniel; Bayma-Silva, Gustavo; Bolfe, Edson L.

    2015-10-01

    The southern region is responsible for 70% of rice production in Brazil. In this study, rice areas of Rio Grande do Sul were selected, using the land use classification, scale 1: 100,000, provided by Brazilian Institute of Geography and Statistics (IBGE). MODIS Images were used and meteorological data, available by National Institute of Meteorology (INMET). The period of analysis was crop season 2011/2012, October to March. To obtain evapotranspiration was applied agrometeorological-spectral model SAFER (Simple Algorithm For Retrieving Evapotranspiration). From the analysis of the results, on planting and cultivation period , the average evapotranspiration (ET) daily was 1.93 +/- 0.96 mm.day-1. In the vegetative development period of rice, the daily ET has achieved 4.94 mm.day-1, with average value 2,31+/- 0.97 mm.day-1. In the period of harvest, evapotranspiration daily average was 1.84 +/- 0.80 mm.day-1. From results obtained, the estimation of evapotranspiration from satellite images may assist in monitoring the culture during the cycle, assisting in estimates of water productivity and crop yield.

  2. Spectral properties of natural and oil polluted Baltic seawater — results of measurements and modelling

    Science.gov (United States)

    Drozdowska, V.; Freda, W.; Baszanowska, E.; Rudź, K.; Darecki, M.; Heldt, J. R.; Toczek, H.

    2013-10-01

    Seawater in addition to natural components such as living and non-living organic matter contains also components artificially introduced into the marine environment, such as oil substances. These components, present in the surface layer of the sea, can significantly affect radiative transfer processes. Therefore, taking into account these processes in remote sensing measurements can improve assessment of the environment. To improve local seawater optical models, it is necessary to measure the luminescence properties of all components of seawater as well as the water leaving radiance values. Additionally, substances which form the surface microlayer (surfactants — surface active agents) can affect both the dynamic characteristics of the fluxes (in particular the gas exchange and marine aerosol production) as well as inherent optical properties of surface seawater. This paper contains both the results of research focused on introducing of an efficient method for identifying oils by their fluorescence spectra as well as a marine experiment on the identification of luminescent properties of surfactants — sampled in different regions of the Baltic Sea. Moreover, the aim of the presented study is to assess the impact of the oil emulsion to spectral water leaving signal. Those results are obtained both from running Monte Carlo radiative transfer code and from approximated formulas.

  3. Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank

    DEFF Research Database (Denmark)

    Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2013-01-01

    A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev Tau...... method in the vertical for the discretization of the Laplace equation in the fluid domain, which yields a sparse and spectrally accurate Dirichletto-Neumann operator. The Laplace problem is solved with an efficient Defect Correction method preconditioned with a spectral discretization of the linearised...... wave problem, ensuring fast convergence and optimal scaling with the problem size. Preliminary results for very nonlinear waves show expected convergence rates and a clear advantage of using spectral schemes....

  4. A broadband accelerator control network

    International Nuclear Information System (INIS)

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AGS) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control Channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating System has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  5. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  6. Spectral-element global waveform tomography: A second-generation upper-mantle model

    Science.gov (United States)

    French, S. W.; Lekic, V.; Romanowicz, B. A.

    2012-12-01

    The SEMum model of Lekic and Romanowicz (2011a) was the first global upper-mantle VS model obtained using whole-waveform inversion with spectral element (SEM: Komatitsch and Vilotte, 1998) forward modeling of time domain three component waveforms. SEMum exhibits stronger amplitudes of heterogeneity in the upper 200km of the mantle compared to previous global models - particularly with respect to low-velocity anomalies. To make SEM-based waveform inversion tractable at global scales, SEMum was developed using: (1) a version of SEM coupled to 1D mode computation in the earth's core (C-SEM, Capdeville et al., 2003); (2) asymptotic normal-mode sensitivity kernels, incorporating multiple forward scattering and finite-frequency effects in the great-circle plane (NACT: Li and Romanowicz, 1995); and (3) a smooth anisotropic crustal layer of uniform 60km thickness, designed to match global surface-wave dispersion while reducing the cost of time integration in the SEM. The use of asymptotic kernels reduced the number of SEM computations considerably (≥ 3x) relative to purely numerical approaches (e.g. Tarantola, 1984), while remaining sufficiently accurate at the periods of interest (down to 60s). However, while the choice of a 60km crustal-layer thickness is justifiable in the continents, it can complicate interpretation of shallow oceanic upper-mantle structure. We here present an update to the SEMum model, designed primarily to address these concerns. The resulting model, SEMum2, was derived using a crustal layer that again fits global surface-wave dispersion, but with a more geologically consistent laterally varying thickness: approximately honoring Crust2.0 (Bassin, et al., 2000) Moho depth in the continents, while saturating at 30km in the oceans. We demonstrate that this approach does not bias our upper mantle model, which is constrained not only by fundamental mode surface waves, but also by overtone waveforms. We have also improved our data-selection and

  7. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F.; Plessier, R.; Till, M.; Marie, B.; Djavdan, E. [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1996-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  8. Ultra compact spectral slicer devices based on microring resonators

    NARCIS (Netherlands)

    Tan, F.S.; Kelderman, H.; Driessen, A.

    In Wavelength Division Multiplexing (WDM), access network spectral slicer devices in connection with a broadband light source are attracting low-cost alternatives for the laser diodes that are required for transmission in the desired wavelength channels. The proposed ultra-compact spectral slicer

  9. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    Science.gov (United States)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30-6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  10. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya [Raman Research Institute, C V Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Chluba, Jens, E-mail: mayuris@rri.res.in [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom)

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  11. Modeling the seismic response of 2D models of asteroid 433 Eros, based on the spectral-element method.

    Science.gov (United States)

    Blitz, Celine; Komatitsch, Dimitri; Lognonné, Philippe; Martin, Roland; Le Goff, Nicolas

    The understanding of the interior structure of Near Earth Objects (NEOs) is a fundamental issue to determine their evolution and origin, and also, to design possible mitigation techniques (Walker and Huebner, 2004). Indeed, if an oncoming Potentially Hazardous Object (PHO) were to threaten the Earth, numerous methods are suggested to prevent it from colliding our planet. Such mitigation techniques may involve nuclear explosives on or below the object surface, impact by a projectile, or concentration of solar energy using giant mirrors (Holsapple, 2004). The energy needed in such mitigation techniques highly depends on the porosity of the hazardous threatening object (asteroid or comet), as suggested by Holsapple, 2004. Thus, for a given source, the seismic response of a coherent homogeneous asteroid should be very different from the seismic response of a fractured or rubble-pile asteroid. To assess this hypothesis, we performed numerical simulations of wave propagation in different interior models of the Near Earth Asteroid 433 Eros. The simulations of wave propagation required a shape model of asteroid Eros, kindly provided by A. Cheng and O. Barnouin-Jha (personal communication). A cross-section along the longest axis has been chosen to define our 2D geometrical model, and we study two models of the interior: a homogeneous one, and a complex one characterized by fault networks below the main crosscut craters, and covered by a regolith layer of thickness ranging from 50 m to 150 m. To perform the numerical simulations we use the spectral-element method, which solves the variational weak form of the seismic wave equation (Komatitsch and Tromp, 1999) on the meshes of the 2D models of asteroid Eros. The homogeneous model is composed of an elastic material characterized by a pressure wave velocity Vp = 3000 m.s-1 , a shear wave velocity Vs = 1700 m.s-1 and a density of 2700 kg.m-3 . The fractured model possesses the same characteristics except for the presence of

  12. Seismic waves modeling with the Fourier pseudo-spectral method on massively parallel machines.

    Science.gov (United States)

    Klin, Peter

    2015-04-01

    The Fourier pseudo-spectral method (FPSM) is an approach for the 3D numerical modeling of the wave propagation, which is based on the discretization of the spatial domain in a structured grid and relies on global spatial differential operators for the solution of the wave equation. This last peculiarity is advantageous from the accuracy point of view but poses difficulties for an efficient implementation of the method to be run on parallel computers with distributed memory architecture. The 1D spatial domain decomposition approach has been so far commonly adopted in the parallel implementations of the FPSM, but it implies an intensive data exchange among all the processors involved in the computation, which can degrade the performance because of communication latencies. Moreover, the scalability of the 1D domain decomposition is limited, since the number of processors can not exceed the number of grid points along the directions in which the domain is partitioned. This limitation inhibits an efficient exploitation of the computational environments with a very large number of processors. In order to overcome the limitations of the 1D domain decomposition we implemented a parallel version of the FPSM based on a 2D domain decomposition, which allows to achieve a higher degree of parallelism and scalability on massively parallel machines with several thousands of processing elements. The parallel programming is essentially achieved using the MPI protocol but OpenMP parts are also included in order to exploit the single processor multi - threading capabilities, when available. The developed tool is aimed at the numerical simulation of the seismic waves propagation and in particular is intended for earthquake ground motion research. We show the scalability tests performed up to 16k processing elements on the IBM Blue Gene/Q computer at CINECA (Italy), as well as the application to the simulation of the earthquake ground motion in the alluvial plain of the Po river (Italy).

  13. Continental Spatio-temporal Data Analysis with Linear Spectral Mixture Model using FOSS

    Science.gov (United States)

    Kumar, U.; Nemani, R. R.; Ganguly, S.; Milesi, C.; Raja, K. S.; Wang, W.; Votava, P.; Michaelis, A.

    2015-12-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global endmembers of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  14. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR  perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29  ±  0.01, over-estimating stenosis severity as compared to 0.42  ±  0.01 (p  CT.

  15. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  16. Phobos MRO/CRISM visible and near-infrared (0.5-2.5 μm) spectral modeling

    Science.gov (United States)

    Pajola, Maurizio; Roush, Ted; Dalle Ore, Cristina; Marzo, Giuseppe A.; Simioni, Emanuele

    2018-05-01

    This paper focuses on the spectral modeling of the surface of Phobos in the wavelength range between 0.5 and 2.5 μm. We exploit the Phobos Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars (MRO/CRISM) dataset and extend the study area presented by Fraeman et al. (2012) including spectra from nearly the entire surface observed. Without a priori selection of surface locations we use the unsupervised K-means partitioning algorithm developed by Marzo et al. (2006) to investigate the spectral variability across Phobos surface. The statistical partitioning identifies seven clusters. We investigate the compositional information contained within the average spectra of four clusters using the radiative transfer model of Shkuratov et al. (1999). We use optical constants of Tagish Lake meteorite (TL), from Roush (2003), and pyroxene glass (PM80), from Jaeger et al. (1994) and Dorschner et al. (1995), as previously suggested by Pajola et al. (2013) as inputs for the calculations. The model results show good agreement in slope when compared to the averages of the CRISM spectral clusters. In particular, the best fitting model of the cluster with the steepest spectral slope yields relative abundances that are equal to those of Pajola et al. (2013), i.e. 20% PM80 and 80% TL, but grain sizes that are 12 μm smaller for PM80 and 4 μm smaller for TL (the grain sizes are 11 μm for PM80 and 20 μm for TL in Pajola et al. (2013), respectively). This modest discrepancy may arise from the fact that the areas observed by CRISM and those analyzed in Pajola et al. (2013) are on opposite locations on Phobos and are characterized by different morphological and weathering settings. Instead, as the clusters spectral slopes decrease, the best fits obtained show trends related to both relative abundance and grain size that is not observed for the cluster with the steepest spectral slope. With a decrease in slope there is general increase of relative percentage of

  17. Structural biomechanics determine spectral purity of bush-cricket calls.

    Science.gov (United States)

    Chivers, Benedict D; Jonsson, Thorin; Soulsbury, Carl D; Montealegre-Z, Fernando

    2017-11-01

    Bush-crickets (Orthoptera: Tettigoniidae) generate sound using tegminal stridulation. Signalling effectiveness is affected by the widely varying acoustic parameters of temporal pattern, frequency and spectral purity (tonality). During stridulation, frequency multiplication occurs as a scraper on one wing scrapes across a file of sclerotized teeth on the other. The frequency with which these tooth-scraper interactions occur, along with radiating wing cell resonant properties, dictates both frequency and tonality in the call. Bush-cricket species produce calls ranging from resonant, tonal calls through to non-resonant, broadband signals. The differences are believed to result from differences in file tooth arrangement and wing radiators, but a systematic test of the structural causes of broadband or tonal calls is lacking. Using phylogenetically controlled structural equation models, we show that parameters of file tooth density and file length are the best-fitting predictors of tonality across 40 bush-cricket species. Features of file morphology constrain the production of spectrally pure signals, but systematic distribution of teeth alone does not explain pure-tone sound production in this family. © 2017 The Authors.

  18. Organic-inorganic broadband photodetector

    Science.gov (United States)

    Yang, Xianguang; Li, Baojun

    2018-01-01

    The capability to detect optical signals over a broad wavelength band is highly important for practical device applications. However, high speed responsive across entire wavelength band within a single photodetector remains challenge. Here we demonstrated a broadband photodetector using a single quantum-dot-doped polyaniline nanowire with a broadband responsive at 350-700 nm (see schematic). The high responsivity is attributed to the high density of trapping states at the enormous interfaces formed in polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate, promote the separation of photogenerated carriers, and then enhance the efficiency for optical detection.

  19. The quantum-chemical modeling of structure and spectral characteristics for molecular complexes in system «penton-terlon»

    Directory of Open Access Journals (Sweden)

    Andrey V. Tokar

    2014-03-01

    Full Text Available The structure and spectral properties for molecular complexes, which formed by added monomer form of pentaplast as well as N-phenylbenzamide with some species of intermolecular interaction in system «penton-terlon» have been investigated at ab initio level of theory. It is shown, that the main contribution in total energy of molecules have included by dispersion forces, which realized between Chlorine atom of CH2Cl-group and Hydrogen atoms of benzene rings with amide fragment. The proposed theoretical models are validated in reflection of spectral and energetic characteristics of investigating system. Finally, the results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.

  20. Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project

    Science.gov (United States)

    Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop

    2018-02-01

    We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.

  1. Systematic Differences in the Spectral Excitation of Pn and Lg by the Last Lop Nor Explosions and Nearby Earthquakes: Implications on the Pn/Lg Spectral Ratio Discriminant

    National Research Council Canada - National Science Library

    Xie, Jiakang

    1998-01-01

    PD and Lg spectra from the last eight Lop Nor explosions and many nearby earthquakes are collected from many broadband seismic stations, and analyzed to obtain source spectral characteristics and path Q...

  2. THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY

    International Nuclear Information System (INIS)

    Lee, Seong-Kook; Ferguson, Henry C.; Somerville, Rachel S.; Wiklind, Tommy; Giavalisco, Mauro

    2010-01-01

    We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high-redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates, and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies (LBGs). For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially declining model overpredicts the age by 100% and 120% for B- and V-dropouts, on average, while for a linearly increasing model, the age is overpredicted by 9% and 16%, respectively. Similarly, the exponential model underpredicts star formation rates by 56% and 60%, while the linearly increasing model underpredicts by 15% and 22%, respectively. For U-dropouts, the models where the star formation rate has a peak (near z ∼ 3) provide the best match for age-overprediction is reduced from 110% to 26%-and star formation rate-underprediction is reduced from 58% to 22%. We classify different types of star formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.

  3. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain)

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the match of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.

  4. Development of yield prediction models in the maize crop using spectral data for precisión agriculture applications

    OpenAIRE

    Rueda Ayala, Victor Patricio

    2015-01-01

    Yield estimation for the maize crop (Zea mays L.) is required in Ecuador for decision making on imports and commercialization. In the literature many yield predictive models have been developed for different crops, but they need to be adapted to the local conditions. In this study, machine learning techniques and statistical tools such as simple, logistic and polynomial regression were applied in order to develop yield predictive algorithms. Spectral information was gathered from ...

  5. A framework for efficient irregular wave simulations using Higher Order Spectral method coupled with viscous two phase model

    Directory of Open Access Journals (Sweden)

    Inno Gatin

    2017-12-01

    Full Text Available In this paper a framework for efficient irregular wave simulations using Higher Order Spectral method coupled with fully nonlinear viscous, two-phase Computational Fluid Dynamics (CFD model is presented. CFD model is based on solution decomposition via Spectral Wave Explicit Navier–Stokes Equation method, allowing efficient coupling with arbitrary potential flow solutions. Higher Order Spectrum is a pseudo-spectral, potential flow method for solving nonlinear free surface boundary conditions up to an arbitrary order of nonlinearity. It is capable of efficient long time nonlinear propagation of arbitrary input wave spectra, which can be used to obtain realistic extreme waves. To facilitate the coupling strategy, Higher Order Spectrum method is implemented in foam-extend alongside the CFD model. Validation of the Higher Order Spectrum method is performed on three test cases including monochromatic and irregular wave fields. Additionally, the coupling between Higher Order Spectrum and CFD is validated on three hour irregular wave propagation. Finally, a simulation of a 3D extreme wave encountering a full scale container ship is shown.

  6. The Engineering Model for the multi spectral imager of the EarthCARE spacecraft

    NARCIS (Netherlands)

    Albiñana, A.P.; Gelsthorpe, R.; Lefebvre, A.; Sauer, M.; Kruse, K.-W.; Münzenmayer, R.; Baister, G.; Chang, M.; Everett, J.; Barnes, A.; Bates, N.; Price, M.; Skipper, M.; Goeij, B.T.G. de; Meijer, E.A.; Knaap, F.G.P. van der; Hof, C.A. van 't

    2012-01-01

    The Multi-Spectral Imager (MSI) will be flown on board the EarthCARE spacecraft, under development by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). The fundamental objective of the EarthCARE mission is improving the understanding of the processes involving

  7. Specdata: Automated Analysis Software for Broadband Spectra

    Science.gov (United States)

    Oliveira, Jasmine N.; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    With the advancement of chirped-pulse techniques, broadband rotational spectra with a few tens to several hundred GHz of spectral coverage are now routinely recorded. When studying multi-component mixtures that might result, for example, with the use of an electrical discharge, lines of new chemical species are often obscured by those of known compounds, and analysis can be laborious. To address this issue, we have developed SPECdata, an open source, interactive tool which is designed to simplify and greatly accelerate the spectral analysis and discovery. Our software tool combines both automated and manual components that free the user from computation, while giving him/her considerable flexibility to assign, manipulate, interpret and export their analysis. The automated - and key - component of the new software is a database query system that rapidly assigns transitions of known species in an experimental spectrum. For each experiment, the software identifies spectral features, and subsequently assigns them to known molecules within an in-house database (Pickett .cat files, list of frequencies...), or those catalogued in Splatalogue (using automatic on-line queries). With suggested assignments, the control is then handed over to the user who can choose to accept, decline or add additional species. Data visualization, statistical information, and interactive widgets assist the user in making decisions about their data. SPECdata has several other useful features intended to improve the user experience. Exporting a full report of the analysis, or a peak file in which assigned lines are removed are among several options. A user may also save their progress to continue at another time. Additional features of SPECdata help the user to maintain and expand their database for future use. A user-friendly interface allows one to search, upload, edit or update catalog or experiment entries.

  8. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    Science.gov (United States)

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  9. 75 FR 3791 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-01-22

    ... broadband capacity at public computer centers, and promoting sustainable broadband adoption projects. In... from BTOP for public computer center projects. In addition, parties filed more than 320 applications... projects; $15.9 million for Public Computer Center projects; and $2.4 million for Sustainable Broadband...

  10. New radiative transfer models for obscuring tori in active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Dullemond, CP

    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed

  11. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Tharkabhushanam, Sri Harsha

    2009-01-01

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S d-1 . The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ( )]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously

  12. Achieving universal access to broadband

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    2009-01-01

    The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures...

  13. Cap integration in spectral gravity forward modelling: near- and far-zone gravity effects via Molodensky's truncation coefficients

    Science.gov (United States)

    Bucha, Blažej; Hirt, Christian; Kuhn, Michael

    2018-04-01

    Spectral gravity forward modelling is a technique that converts a band-limited topography into its implied gravitational field. This conversion implicitly relies on global integration of topographic masses. In this paper, a modification of the spectral technique is presented that provides gravity effects induced only by the masses located inside or outside a spherical cap centred at the evaluation point. This is achieved by altitude-dependent Molodensky's truncation coefficients, for which we provide infinite series expansions and recurrence relations with a fixed number of terms. Both representations are generalized for an arbitrary integer power of the topography and arbitrary radial derivative. Because of the altitude-dependency of the truncation coefficients, a straightforward synthesis of the near- and far-zone gravity effects at dense grids on irregular surfaces (e.g. the Earth's topography) is computationally extremely demanding. However, we show that this task can be efficiently performed using an analytical continuation based on the gradient approach, provided that formulae for radial derivatives of the truncation coefficients are available. To demonstrate the new cap-modified spectral technique, we forward model the Earth's degree-360 topography, obtaining near- and far-zone effects on gravity disturbances expanded up to degree 3600. The computation is carried out on the Earth's surface and the results are validated against an independent spatial-domain Newtonian integration (1 μGal RMS agreement). The new technique is expected to assist in mitigating the spectral filter problem of residual terrain modelling and in the efficient construction of full-scale global gravity maps of highest spatial resolution.

  14. ANÁLISIS ESPECTRAL DE OLAS MARINAS: MODELOS UNIVARIADOS // SPECTRAL ANALYSIS OF WAVE SEA: UNIVARIATE MODELS

    Directory of Open Access Journals (Sweden)

    Nestor Escudero Mora

    2015-12-01

    Full Text Available El análisis espectral, es el proceso técnico de la descomposición de una señal compleja en partes más simples. Muchos procesos físicos se describen mejor como una suma de muchas componentes de frecuencias individuales, alternativamente una señal puede dividirse en segmentos cortos y el análisis del espectro puede aplicarse a estos segmentos individuales. Desde el punto de vista del estudio de olas marinas, el espectro juega un rol fundamental y es interpretado como la energía presente en la serie de tiempo durante el periodo. Este estudio se basa en el análisis del espectro asociado a datos del mar del Norte en el ano de 1999 en la plataforma North Alwyn almacenados en la Universidad Heriot-Watt de Edimburgo, separados en periodos de 20 minutos, el total a estudiar son 244 periodos. Para ello, se determinó que existe información que no aporta al problema, representa ruido y es el 3% de la energía, la cual no fue tomada para el estudio. Se dividió el espectro en 12 subintervalos y se ajustaron modelos autorregresivos bajo el esquema de Box-Jenskin and Reinsel, estudiados estos hasta encontrar la mejor aproximación posible para cada subintervalo mediante las propiedades estadísticas obtenidas por cada modelo, junto con los pronósticos respectivos. // ABSTRACT: Spectral analysis is the technical process of a complex signal decomposition into simpler parts. Many physical processes are better described as a sum of many individual frequency components; alternatively a signal can be divided into short segments and the spectrum analysis can be applied to these individual segments. From the point of view of the study of Waves Sea, the spectrum plays a vital role and it is interpreted as the energy in the time series during the period. This study is based on analysis of the spectrum associated to data from the North Sea in the year of 1999, taken in North Alwyn platform, stored in the Heriot-Watt University in Edinburgh, separated in

  15. Advances in universal scaling for broadband turbulent noise in internal flow devices

    NARCIS (Netherlands)

    Violato, D.; Jong, A.T. de; Golliard, J.

    2014-01-01

    This paper focuses on the scalability of broadband turbulent noise in internal pipe flows. It discusses a universal scaling approach for broadband turbulent noise that is based on surface acoustic power modeled by ANSYS Fluent. This investigation proposes a strategy for amplitude scaling at

  16. Broadband for all: Connecting people from the ground up – one last mile at a time

    CSIR Research Space (South Africa)

    Matthee, K

    2012-10-01

    Full Text Available -economic development) ? The Broadband for All Project ? Research and Development outcomes ? Impact of the Village Operator Model ? Next Steps and Future Research ? CSIR 2012 Slide 2 What is possible with Broadband? ? CSIR 2012 Slide 3Source: Infographic, Intel...

  17. A unified spectral variation model for Seyfert 1 Galaxies observed with NuSTAR and XMM/Suzaku

    Science.gov (United States)

    Ebisawa, K.; Kusunoki, E.; Mizumoto, M.; Sameshima, H.

    2017-10-01

    NuSTAR satellite was launched in 2012 and high-quality energy spectra of Seyfert 1 galaxies above ˜ 10 keV have been made available for the first time. In this paper, we analyze archival data of the NuSTAR and XMM/Suzaku simultaneous observations of particularly variable Seyfert 1 galaxies, MCG-6-30-15, NGC 4593, NGC 1365, Swift J2127.4+5654 and MCG-5-23-16. Our aim is to construct a unified spectral model that explains spectral variations in 0.2-78 keV with minimum free parameters. Consequently, we were successful to explain observed spectral variations of all the five sources at timescales below ˜ 1 day with only two independently variable parameters; partial covering fraction and normalization of the power-law component. In this model, the continuum is composed of disk-black body component, cut-off power-law component, and thin-thermal plasma component, if any. The central X-ray source is fully or partially absorbed by ionized absorbers, and the partial covering fraction is significantly variable. Variations of the partial covering fraction and the power-law normalization mostly explain the soft X-ray variation below ˜ 10 keV and the hard X-ray variations above ˜ 10 keV, respectively. The variable partial absorbers are composed of two layers with different ionization states/column densities.

  18. Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study.

    Science.gov (United States)

    Blocquet, M; Guo, F; Mendez, M; Ward, M; Coudert, S; Batut, S; Hecquet, C; Blond, N; Fittschen, C; Schoemaecker, C

    2018-05-01

    The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The STAGGER-grid: A grid of 3D stellar atmosphere models. V. Synthetic stellar spectra and broad-band photometry

    Science.gov (United States)

    Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thévenin, F.; Asplund, M.

    2018-03-01

    Context. The surface structures and dynamics of cool stars are characterised by the presence of convective motions and turbulent flows which shape the emergent spectrum. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical simulations from the STAGGER-grid to calculate synthetic spectra with the radiative transfer code OPTIM3D for stars with different stellar parameters to predict photometric colours and convective velocity shifts. Methods: We calculated spectra from 1000 to 200 000 Å with a constant resolving power of λ/Δλ = 20 000 and from 8470 and 8710 Å (Gaia Radial Velocity Spectrometer - RVS - spectral range) with a constant resolving power of λ/Δλ = 300 000. Results: We used synthetic spectra to compute theoretical colours in the Johnson-Cousins UBV (RI)C, SDSS, 2MASS, Gaia, SkyMapper, Strömgren systems, and HST-WFC3. Our synthetic magnitudes are compared with those obtained using 1D hydrostatic models. We showed that 1D versus 3D differences are limited to a small percent except for the narrow filters that span the optical and UV region of the spectrum. In addition, we derived the effect of the convective velocity fields on selected Fe I lines. We found the overall convective shift for 3D simulations with respect to the reference 1D hydrostatic models, revealing line shifts of between -0.235 and +0.361 km s-1. We showed a net correlation of the convective shifts with the effective temperature: lower effective temperatures denote redshifts and higher effective temperatures denote blueshifts. We conclude that the extraction of accurate radial velocities from RVS spectra need an appropriate wavelength correction from convection shifts. Conclusions: The use of realistic 3D hydrodynamical stellar atmosphere simulations has a small but significant impact on the predicted photometry compared with classical 1D hydrostatic models for late-type stars. We make all the spectra publicly available for the community through the POLLUX database

  20. Soot and Spectral Radiation Modeling in ECN Spray A and in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States); Ge, Wenjun [University of California Merced (United States)

    2017-04-03

    The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gas radiation and spectral radiation properties are important for engine-relevant conditions.

  1. LADAR Performance Simulations with a High Spectral Resolution Atmospheric Transmittance and Radiance Model-LEEDR

    Science.gov (United States)

    2012-03-01

    and service has made my life possible. Most of all, I am especially grateful for the love and patience of my wife who sustained me with a positive...attitude through the late nights and stressful moments. May every moment together be cherished as we experience life together as a family...American Society for Testing and Materials (ASTM) 2000 extraterrestrial solar spectra is used for the solar spectral irradiance at the top of the

  2. Broadband low-frequency sound isolation by lightweight adaptive metamaterials

    Science.gov (United States)

    Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming

    2018-03-01

    Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.

  3. Application of a Spectral Wave Model to Assess Breakwater Configurations at a Small Craft Harbour on Lake Ontario

    Directory of Open Access Journals (Sweden)

    Amelia H. Cooper

    2016-08-01

    Full Text Available A surface wave model using three nested grids is applied to the eastern end of Lake Ontario to investigate wave propagation from an open lake environment to a small craft harbour protected by a breakwater. The Simulating WAves Nearshore (SWAN spectral wave model, coupled with the Delft3D hydrodynamic model, is applied to simulate a series of storms in November, 2013. The model results are compared to observations from two pressure sensors, and used to quantify wave properties around existing and future breakwaters to evaluate the bulk changes to the harbour configuration. Overall, the results indicate that the rubblemound breakwater reduces wave heights in the existing harbour by 63% compared to no breakwater, and that the addition of a surface breakwater extension could reduce wave heights by an additional 54%. Wave height attenuation was found to be highly dependent on the incident wave direction relative to breakwater orientation. The spectral wave model is useful for simulating wave transformation for broad directional spectra in wind-sea conditions over large scales to semi-protected areas such as small craft harbours.

  4. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  5. Assessment of broadband SNR estimation for hearing aid applications

    DEFF Research Database (Denmark)

    May, Tobias; Kowalewski, Borys; Fereczkowski, Michal

    2017-01-01

    An accurate estimation of the broadband input signal-to-noise ratio (SNR) is a prerequisite for many hearing-aid algorithms. An extensive comparison of three SNR estimation algorithms was performed. Moreover, the influence of the duration of the analysis window on the SNR estimation performance...... was systematically investigated. The most accurate approach utilized an estimation of the clean speech power spectral density (PSD) and the noisy speech power across a sliding window of 1280 ms and achieved an total SNR estimation error below 3 dB across a wide variety of background noises and input SNRs...

  6. INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650

    International Nuclear Information System (INIS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Barnacka, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Collins-Hughes, E.; Bouvier, A.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Eisch, J. D.

    2014-01-01

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV

  7. Development of Jet Noise Power Spectral Laws

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single

  8. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

    Science.gov (United States)

    Buchner, J.; Georgakakis, A.; Nandra, K.; Hsu, L.; Rangel, C.; Brightman, M.; Merloni, A.; Salvato, M.; Donley, J.; Kocevski, D.

    2014-04-01

    Context. Aims: Active galactic nuclei are known to have complex X-ray spectra that depend on both the properties of the accreting super-massive black hole (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity (i.e. the "torus"). Often however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN, which do not capture the complexity and diversity of the observations. In the case of blank field surveys in particular, this should have an impact on e.g. the determination of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between AGN and their host galaxies. Methods: We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account uncertainties associated with both the Poisson nature of X-ray data and the determination of source redshift using photometric methods. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray spectral models the one that provides a better representation of the observations. This methodology is applied to X-ray AGN in the 4 Ms Chandra Deep Field South. Results: For the ~350 AGN in that field, our analysis identifies four components needed to represent the diversity of the observed X-ray spectra: (1) an intrinsic power law; (2) a cold obscurer which reprocesses the radiation due to photo-electric absorption, Compton scattering and Fe-K fluorescence; (3) an unabsorbed power law associated with Thomson scattering off ionised clouds; and (4) Compton reflection, most noticeable from a stronger-than-expected Fe-K line. Simpler models, such as a photo-electrically absorbed power law with a Thomson scattering component, are ruled out with decisive evidence (B > 100). We also find that ignoring the Thomson scattering component results in underestimation of the inferred column density, NH, of the obscurer

  9. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  10. Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing.

    Science.gov (United States)

    Li, Y; Fullager, D B; Angelbello, E; Childers, D; Boreman, G; Hofmann, T

    2018-01-15

    Three-dimensional direct laser writing via two-photon polymerization is used to fabricate anti-reflective structured surfaces (ARSSs) composed of subwavelength conicoid features optimized to operate over a wide bandwidth in the near-infrared range from 3700  cm -1 to 6600  cm -1 (2.7-1.52 μm). Analytic Bruggemann effective medium calculations are used to predict nominal geometric parameters such as the fill factor of the constitutive conicoid features of the anti-reflective structured surfaces (ARSSs) presented here. The performance of the ARSSs was investigated experimentally using infrared reflection and transmission measurements. An enhancement of the transmittance by 1.35%-2.14% over a broadband spectral range from 3700  cm -1 to 6600  cm -1 (2.7-1.52 μm) was achieved. We further report on finite-element-based reflection and transmission data using three-dimensional (3D) model geometries for comparison. A good agreement between experimental results and the finite-element-based numerical analysis is observed once as-fabricated deviations from the nominal conicoid forms are included in the model. 3D direct laser writing is demonstrated here as an efficient method for the fabrication and optimization of ARSSs designed for the infrared spectral range.

  11. Broadband near-infrared antireflection coatings fabricated by three-dimensional direct laser writing

    Science.gov (United States)

    Li, Y.; Fullager, D. B.; Angelbello, E.; Childers, D.; Boreman, G.; Hofmann, T.

    2018-01-01

    Three-dimensional direct laser writing via two photon polymerization is used to fabricate anti-reflective structured surfaces composed of sub-wavelength conicoid features optimized to operate over a wide bandwidth in the near-infrared range from 3700 cm$^{-1}$ to 6600 cm$^{-1}$ (2.7 to 1.52 $\\mu$m). Analytic Bruggemann effective medium calculations are used to predict nominal geometric parameters such as the fill factor of the constitutive conicoid features of the anti-reflective structured surfaces presented here. The performance of the anti-reflective structured surfaces was investigated experimentally using infrared transmission measurements. An enhancement of the transmittance by 1.35\\% to 2.14\\% over a broadband spectral range from 3700 cm$ ^{-1} $ to 6600 cm$^{-1}$ (2.7 to 1.52 $\\mu$m) was achieved. We further report on finite-element-based reflection and transmission data using three-dimensional model geometries for comparison. A good agreement between experimental results and the finite-element-based numerical analysis is observed once as-fabricated deviations from the nominal conicoid forms are included in the model. Three-dimensional direct laser writing is demonstrated here as an efficient method for the fabrication and optimization of anti-reflective structured surfaces designed for the infrared spectral range.

  12. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    Science.gov (United States)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  13. Increasing the Accuracy of Mapping Urban Forest Carbon Density by Combining Spatial Modeling and Spectral Unmixing Analysis

    Directory of Open Access Journals (Sweden)

    Hua Sun

    2015-11-01

    Full Text Available Accurately mapping urban vegetation carbon density is challenging because of complex landscapes and mixed pixels. In this study, a novel methodology was proposed that combines a linear spectral unmixing analysis (LSUA with a linear stepwise regression (LSR, a logistic model-based stepwise regression (LMSR and k-Nearest Neighbors (kNN, to map the forest carbon density of Shenzhen City of China, using Landsat 8 imagery and sample plot data collected in 2014. The independent variables that contributed to statistically significantly improving the fit of a model to data and reducing the sum of squared errors were first selected from a total of 284 spectral variables derived from the image bands. The vegetation fraction from LSUA was then added as an independent variable. The results obtained using cross-validation showed that: (1 Compared to the methods without the vegetation information, adding the vegetation fraction increased the accuracy of mapping carbon density by 1%–9.3%; (2 As the observed values increased, the LSR and kNN residuals showed overestimates and underestimates for the smaller and larger observations, respectively, while LMSR improved the systematical over and underestimations; (3 LSR resulted in illogically negative and unreasonably large estimates, while KNN produced the greatest values of root mean square error (RMSE. The results indicate that combining the spatial modeling method LMSR and the spectral unmixing analysis LUSA, coupled with Landsat imagery, is most promising for increasing the accuracy of urban forest carbon density maps. In addition, this method has considerable potential for accurate, rapid and nondestructive prediction of urban and peri-urban forest carbon stocks with an acceptable level of error and low cost.

  14. BEYOND THE STANDARD MODEL OF THE DISC–LINE SPECTRAL PROFILES FROM BLACK HOLE ACCRETION DISCS

    Directory of Open Access Journals (Sweden)

    Vjaceslav Sochora

    2014-08-01

    Full Text Available The strong gravitational field of a black hole has distinct effects on the observed profile of a spectral line from an accretion disc near a black hole. The observed profile of the spectral line is broadened and skewed by a fast orbital motion and redshifted by a gravitational field. These effects can help us to constrain the parameters of a system with a black hole, both in active galactic nuclei and in a stellar-mass black hole. Here we explore the fact that an accretion disc emission can be mathematically imagined as a superposition of radiating accretion rings that extend from the inner edge to the outer rim of the disc, with some radially varying emissivity. In our work, we show that a characteristic double-horn profile of several radially confined (relatively narrow accretion rings or belts could be recognized by the planned instruments onboard future satellites (such as the proposed ESA Large Observatory for X-ray Timing.

  15. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  16. Broadband waveguide quantum memory for entangled photons.

    Science.gov (United States)

    Saglamyurek, Erhan; Sinclair, Neil; Jin, Jeongwan; Slater, Joshua A; Oblak, Daniel; Bussières, Félix; George, Mathew; Ricken, Raimund; Sohler, Wolfgang; Tittel, Wolfgang

    2011-01-27

    The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.

  17. 8-Channel Broadband Laser Ranging Hardware Development

    Science.gov (United States)

    Bennett, Corey; La Lone, Brandon; Younk, Patrick; Daykin, Ed; Rhodes, Michelle; Perry, Daniel; Tran, Vu; Miller, Edward

    2017-06-01

    Broadband Laser Ranging (BLR) is a new diagnostic being developed to precisely measure the position vs. time of surfaces, shock break out, particle clouds, jets, and debris moving at kilometers per second speeds. The instrument uses interferometry to encode distance into a modulation in the spectrum of pulses from a mode-locked fiber laser and uses a dispersive Fourier transformation to map the spectral modulation into time. Range information is thereby recorded on a fast oscilloscope at the repetition rate of the laser, approximately every 50 ns. Current R&D is focused on developing a compact 8-channel system utilizing one laser and one high-speed oscilloscope. This talk will emphasize the hardware being developed for applications at the Contained Firing Facility at LLNL, but has a common architecture being developed in collaboration with NSTec and LANL for applications at multiple other facilities. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.

  18. Broadband microstrip patch antennas

    International Nuclear Information System (INIS)

    El Sharkawy, Z.F.M

    2010-01-01

    Personal communication systems such as cellular telephones, global positioning systems, indoor and outdoor wireless communication are become very popular . Highly efficient, low profile antenna with large impedance bandwidth capabilities is desired. Microstrip patch antennas are applicable in these systems. Using three methods to analyze the MPA, analytical models i.e (transmission line model TLM, and cavity model CM), finite element method via HFSS, and finite integration technique via CST MWS. investigate and classify the techniques that used to improve the operating impedance bandwidth for MPA, so as to use them in our new MPA structures. New MPA configurations are introduced. In the first application, two symmetrical rectangular ring slots are introduced on the patch. An impedance bandwidth of about 48.1% is experimentally obtained. Further modifications (i.e., probe position,and substrate thickness) have been made to obtain a wider impedance bandwidth. An impedance bandwidth of about 48.7% has been obtained.In the second structure, two identical slits have been cut out from the patch.This makes the patch seems like 2-shape.An impedance bandwidth about 49.24% is obtained.In third structure, two techniques are used for MPA.The first: is segmenting the fed parch, the second : another square patch is stacked over the fed one.This arrangement increases the impedance bandwidth up to 2.04:1. In the fourth structure,two techniques are introduced. The first: F-probe technique.The second : diamond patch with parasitic elements.This arrangement increases the impedance bandwidth up to 78.1%.In the fifth structure, three techniques are introduced.The first : two slots have been cut out from the patch, and two levels have been etched from its edges.The second : Two symmetrical parasitic rectangle patches are introduced. The third : partial ground plane is used.

  19. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    Science.gov (United States)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  20. Phytoplankton Pigment Communities Can be Modeled Using Unique Relationships With Spectral Absorption Signatures in a Dynamic Coastal Environment

    Science.gov (United States)

    Catlett, D.; Siegel, D. A.

    2018-01-01

    Understanding the roles of phytoplankton community composition in the functioning of marine ecosystems and ocean biogeochemical cycles is important for many ocean science problems of societal relevance. Remote sensing currently offers the only feasible method for continuously assessing phytoplankton community structure on regional to global scales. However, methods are presently hindered by the limited spectral resolution of most satellite sensors and by uncertainties associated with deriving quantitative indices of phytoplankton community structure from phytoplankton pigment concentrations. Here we analyze a data set of concurrent phytoplankton pigment concentrations and phytoplankton absorption coefficient spectra from the Santa Barbara Channel, California, to develop novel optical oceanographic models for retrieving metrics of phytoplankton community composition. Cluster and Empirical Orthogonal Function analyses of phytoplankton pigment concentrations are used to define up to five phytoplankton pigment communities as a representation of phytoplankton functional types. Unique statistical relationships are found between phytoplankton pigment communities and absorption features isolated using spectral derivative analysis and are the basis of predictive models. Model performance is substantially better for phytoplankton pigment community indices compared with determinations of the contributions of individual pigments or taxa to chlorophyll a. These results highlight the application of data-driven chemotaxonomic approaches for developing and validating bio-optical algorithms and illustrate the potential and limitations for retrieving phytoplankton community composition from hyperspectral satellite ocean color observations.

  1. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane.

    Science.gov (United States)

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali, Md Nasim; Majumdar, K; Ray, D P

    2014-07-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Broadband spectroscopy for characterization of tissue-like phantom optical properties

    Science.gov (United States)

    Shahin, Ali; Bachir, Wesam

    2017-12-01

    Optical phantoms are widely used for evaluating the performance of biomedical optical modalities, and hence, absorbing and scattering materials are required for the construction of optical phantoms. Towards that aim, new readily available and inexpensive black Ink (Parker) as a simulating absorber as well as Intralipid 20% as a simulating scatterer are thoroughly investigated. Broadband Transmittance and Diffuse reflectance spectroscopic measurements were performed in the visible range 400 - 700 nm. Optical properties of the phantom materials are determined. Analytical expressions for absorption and scattering coefficient related to the concentrations and wavelength of the Parker ink and Intralipid are also presented and discussed. The results show nonlinear trend in the absorption coefficient of Parker ink over the examined visible spectral range. Furthermore, Intralipid scattering coefficient variation across the mentioned spectral range shows a tissue-like scattering trend. The findings demonstrate the capability of the broadband transmission and diffuse reflectance for characterizing tissue-like phantom materials in the examined spectral range.

  3. Estimating Crop Albedo in the Application of a Physical Model Based on the Law of Energy Conservation and Spectral Invariants

    Directory of Open Access Journals (Sweden)

    Jingjing Peng

    2015-11-01

    Full Text Available Albedo characterizes the radiometric interface of land surfaces, especially vegetation, and the atmosphere. Albedo is a critical input to many models, such as crop growth models, hydrological models and climate models. For the extensive attention to crop monitoring, a physical albedo model for crops is developed based on the law of energy conservation and spectral invariants, which is derived from a prior forest albedo model. The model inputs have been efficiently and physically parameterized, including the dependency of albedo on the solar zenith/azimuth angle, the fraction of diffuse skylight in the incident radiance, the canopy structure, the leaf reflectance/transmittance and the soil reflectance characteristics. Both the anisotropy of soil reflectance and the clumping effect of crop leaves at the canopy scale are considered, which contribute to the improvement of the model accuracy. The comparison between the model results and Monte Carlo simulation results indicates that the canopy albedo has high accuracy with an RMSE < 0.005. The validation using ground measurements has also demonstrated the reliability of the model and that it can reflect the interaction mechanism between radiation and the canopy-soil system.

  4. Polarization modeling and predictions for DKIST part 3: focal ratio and thermal dependencies of spectral polarization fringes and optic retardance

    Science.gov (United States)

    Harrington, David M.; Sueoka, Stacey R.

    2018-01-01

    Data products from high spectral resolution astronomical polarimeters are often limited by fringes. Fringes can skew derived magnetic field properties from spectropolarimetric data. Fringe removal algorithms can also corrupt the data if the fringes and object signals are too similar. For some narrow-band imaging polarimeters, fringes change the calibration retarder properties and dominate the calibration errors. Systems-level engineering tools for polarimetric instrumentation require accurate predictions of fringe amplitudes, periods for transmission, diattenuation, and retardance. The relevant instabilities caused by environmental, thermal, and optical properties can be modeled and mitigation tools developed. We create spectral polarization fringe amplitude and temporal instability predictions by applying the Berreman calculus and simple interferometric calculations to optics in beams of varying F/ number. We then apply the formalism to superachromatic six-crystal retarders in converging beams under beam thermal loading in outdoor environmental conditions for two of the world's largest observatories: the 10-m Keck telescope and the Daniel K. Inouye Solar Telescope (DKIST). DKIST will produce a 300-W optical beam, which has imposed stringent requirements on the large diameter six-crystal retarders, dichroic beamsplitters, and internal optics. DKIST retarders are used in a converging beam with F/ ratios between 8 and 62. The fringe spectral periods, amplitudes, and thermal models of retarder behavior assisted DKIST optical designs and calibration plans with future application to many astronomical spectropolarimeters. The Low Resolution Imaging Spectrograph with polarimetry instrument at Keck also uses six-crystal retarders in a converging F / 13 beam in a Cassegrain focus exposed to summit environmental conditions providing observational verification of our predictions.

  5. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system

    OpenAIRE

    Johansson, Johannes D.; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-01-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in hei...

  6. Speckle noise reduction on a laser projection display via a broadband green light source.

    Science.gov (United States)

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display.

  7. Analysis of the Proposed Ghana Broadband Strategy

    DEFF Research Database (Denmark)

    Williams, Idongesit; Botwe, Yvonne

    This project studied the Ghana Broadband Strategy with the aim of evaluating the recommendations in the strategy side by side the broadband development in Ghana. The researchers conducted interviews both officially and unofficially with ICT stakeholders, made observations, studied Government...... intervention policies recommended in the Ghana broadband policy is used to evaluate the broadband market to find out whether the strategy consolidates with the Strengths and opportunities of the market and whether it corrects the anomalies that necessitate the weaknesses and threats to the market....... The strategy did address some threats and weaknesses of the broadband market. It also consolidated on some strengths and opportunities of the broadband market. The researchers also discovered that a market can actually grow without a policy. But a market will grow faster if a well implemented policy is guiding...

  8. Spectral fitting, shock layer modeling, and production of nitrogen oxides and excited nitrogen

    Science.gov (United States)

    Blackwell, H. E.

    1991-01-01

    An analysis was made of N2 emission from 8.72 MJ/kg shock layer at 2.54, 1.91, and 1.27 cm positions and vibrational state distributions, temperatures, and relative electronic state populations was obtained from data sets. Other recorded arc jet N2 and air spectral data were reviewed and NO emission characteristics were studied. A review of operational procedures of the DSMC code was made. Information on other appropriate codes and modifications, including ionization, were made as well as a determination of the applicability of codes reviewed to task requirement. A review was also made of computational procedures used in CFD codes of Li and other codes on JSC computers. An analysis was made of problems associated with integration of specific chemical kinetics applicable to task into CFD codes.

  9. Gain-assisted broadband ring cavity enhanced spectroscopy

    Science.gov (United States)

    Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2017-02-01

    Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.

  10. Application of digital micromirror devices for spectral-response characterization of solar cells and photovoltaics

    Science.gov (United States)

    Fong, Alexandre Y.

    2010-02-01

    A key parameter in evaluating the performance of photovoltaic (PV) solar cells is characterization of electrical response to various incident source spectra. Conventional techniques utilize monochromators that emit single band-passes across a spectral region of interest. Since many solar cells respond differently at different broadband source light levels, a white bias light source that raises the overall light level to simulate the sun's broadband emission is typically introduced. However, such sources cannot render realistic solar continua. We present some initial results demonstrating how a spectrally-dispersed broadband source modulated with Texas Instruments' Digital Light Projection (DLP®) technology can be used to more faithfully synthesize solar spectra for this application.

  11. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  12. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model

    Science.gov (United States)

    Ehn, S.; Sellerer, T.; Mechlem, K.; Fehringer, A.; Epple, M.; Herzen, J.; Pfeiffer, F.; Noël, P. B.

    2017-01-01

    Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.

  13. The social surplus of broadband initiatives in compulsory education

    Directory of Open Access Journals (Sweden)

    David Peter Parsons

    2016-10-01

    Full Text Available In 2010, the New Zealand government embarked upon an ambitious programme of broadband infrastructure investment, a process that will continue until at least 2019. Part of this investment is specifically targeted at compulsory education, with initiatives that include bringing fibre connections to the school gate, supporting on-site network upgrades (including wireless and providing teaching, learning and support services delivered through these networks. Such investments are not made without some projections of the likely rate of return, but calculating return on investment (ROI in educational broadband is complex, as it encompasses a range of factors. This article reports on an interview-based study engaging a range of stakeholders in educational broadband provision. The study utilises a research model that considers the various elements of social surplus, namely; producer surplus (savings, producer surplus (profit and consumer surplus (perceived value over and above cost, to explore the elements of social surplus that have been used to define educational broadband ROI calculations and justify the scale of investment. The results indicate that all three components of social surplus are relevant, though the concept of profit can only be seen in the broader context of long term contributions to the economy. A note of caution is that projections of ROI based only on positive returns fail to acknowledge the potential for some innovations to actually increase costs. Further, purely quantitative models do not properly take into account qualitative components of consumer surplus.

  14. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005, Santander (Spain); Hatziminaoglou, Evanthia [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Spoon, Henrik W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Almeida, Cristina Ramos [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Santos, Tanio Díaz [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO18 1BJ (United Kingdom); González-Martín, Omaira [Centro de Radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia (Mexico); Esquej, Pilar, E-mail: ahernan@ifca.unican.es [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  15. Electron spectral functions of two-dimensional high-T sub c superconductors in the model of fermion condensation

    CERN Document Server

    Khodel, V A

    2001-01-01

    Spectral functions of strongly correlated two-dimensional electron systems in solids are studied on the assumption that these systems undergo as phase transition, called fermion condensation, whose characteristic feature is flattening of the electron spectrum epsilon (p). Unlike the previous models in the present study, the decay of single-particle states is properly taken into account. Results of calculations are shown to be in qualitative agreement with ARPES data. The universal behavior of the ration Im EPSILON(p, epsilon, T)/T as a function of x = epsilon/T are found to be reproduced reasonably well. However, in the present model this behavior is destroyed in vicinities of the van Hove points where the fermion condensate resides

  16. A new spectral framework for crystal plasticity modeling of cubic and hexagonal polycrystalline metals

    Science.gov (United States)

    Knezevic, Marko

    Crystal plasticity physics-based constitutive theories are used in understanding and predicting the evolution of the underlying microstructure and the concomitant anisotropic stress-strain response in polycrystalline metals subjected to finite plastic strains. A new scheme for efficient crystal plasticity computations for both cubic and hexagonal polycrystalline metals subjected to arbitrary deformation modes has been developed in this thesis. This new computational scheme involves building material databases comprised of spectral coefficients. These spectral coefficients are computed using discrete Fourier transforms (DFTs) and allow for compact representation and fast retrieval of crystal plasticity solutions for a crystal of any orientation subjected to any deformation mode. The novel approach is able to speed up the conventional crystal plasticity computations by two orders of magnitude. Furthermore, mathematical procedures for delineation of property closures that identify the complete set of theoretically feasible combinations of macroscale effective properties has been developed for a broad set of mechanical properties. Subsequently, these constructs were used in microstructure design for identifying an optimal microstructure for selected performance criteria. And finally, hybrid processing recipes that transform a given initial microstructure into a member of the set of optimal microstructures that exhibit superior properties or performance characteristics have been described. Insights and tremendous potential of these novel materials knowledge systems are discussed and demonstrated through specific case-studies. The anisotropic stress-strain response measured in simple compression and simple tension tests in different sample directions on an annealed, strongly textured, AZ31 sheet has been studied. New insights into the mechanical response of this material were obtained by correlating the changes in the measured strain-hardening rates in the different

  17. Nonlinear whistler wave model for lion roars in the Earth's magnetosheath

    Science.gov (United States)

    Dwivedi, N. K.; Singh, S.

    2017-09-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.

  18. Understanding broadband over power line

    CERN Document Server

    Held, Gilbert

    2006-01-01

    Understanding Broadband over Power Line explores all aspects of the emerging technology that enables electric utilities to provide support for high-speed data communications via their power infrastructure. This book examines the two methods used to connect consumers and businesses to the Internet through the utility infrastructure: the existing electrical wiring of a home or office; and a wireless local area network (WLAN) access point.Written in a practical style that can be understood by network engineers and non-technologists alike, this volume offers tutorials on electric utility infrastru

  19. Achieving Universal Access to Broadband

    Directory of Open Access Journals (Sweden)

    Morten FALCH

    2009-01-01

    Full Text Available The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures to be applied. The paper concludes that other policy measure than the classical universal service obligation are in play, and discusses various policy measures taking the Lisbon process as a point of departure. Available policy measures listed in the paper include, universal service obligation, harmonization, demand stimulation, public support for extending the infrastructure, public private partnerships (PPP, and others.

  20. POTS to broadband ... cable modems.

    Science.gov (United States)

    Kabachinski, Jeff

    2003-01-01

    There have been 3 columns talking about broadband communications and now at the very end when it's time to compare using a telco or cableco, I'm asking does it really matter? So what if I can actually get the whole 30 Mbps with a cable network when the website I'm connecting to is running on an ISDN line at 128 Kbps? Broadband offers a lot more bandwidth than the connections many Internet servers have today. Except for the biggest websites, many servers connect to the Internet with a switched 56-Kbps, ISDN, or fractional T1 line. Even with the big websites, my home network only runs a 10 Mbps Ethernet connection to my cable modem. Maybe it doesn't matter that the cable lines are shared or that I can only get 8 Mbps from an ADSL line. Maybe the ISP that I use has a T1 line connection to the Internet so my new ADSL modem has a fatter pipe than my provider! (See table 1). It all makes me wonder what's in store for us in the future. PC technology has increased exponentially in the last 10 years with super fast processor speeds, hard disks of hundreds of gigabytes, and amazing video and audio. Internet connection speeds have failed to keep the same pace. Instead of hundreds of times better or faster--modem speeds are barely 10 times faster. Broadband connections offer some additional speed but still not comparable growth as broadband connections are still in their infancy. Rather than trying to make use of existing communication paths, maybe we need a massive infrastructure makeover of something new. How about national wireless access points so we can connect anywhere, anytime? To use the latest and fastest wireless technology you will simply need to buy another $9.95 WLAN card or download the latest super slick WLAN compression/encryption software. Perhaps it is time for a massive infra-restructuring. Consider the past massive infrastructure efforts. The telcos needed to put in their wiring infrastructure starting in the 1870s before telephones were useful to the

  1. The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum

    Science.gov (United States)

    Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2018-02-01

    We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.

  2. Broadband mid-infrared and THz chemical detection with quantum cascade laser multi-heterodyne spectrometers (Conference Presentation)

    Science.gov (United States)

    Westberg, Jonas; Sterczewski, Lukasz A.; Patrick, Link; Wysocki, Gerard

    2017-05-01

    Majority of chemical species of interest in security and safety applications (e.g. explosives) have complex molecular structures that produce unresolved rotational-vibrational spectroscopic signatures in the mid-infrared. This requires spectroscopic techniques that can provide broadband coverage in the mid-IR region to target broadband absorbers and high resolution to address small molecules that exhibit well-resolved spectral lines. On the other hand, many broadband mid-IR absorbers exhibit well-resolved rotational components in the THz spectral region. Thus, development of spectroscopic sensing technologies that can address both spectral regions is of great importance. Here we demonstrate recent progress towards broadband high-resolution spectroscopic sensing applications with Fabry-Perot quantum cascade lasers (QCLs) and frequency combs using multi-heterodyne spectroscopy (MHS) techniques. In this paper, we will present spectroscopic sensing of large and small molecules in the mid-IR region using QCLs operating at 8.5µm. An example high-resolution, broadband MHS of ammonia (small molecule) and isobutane (broadband absorber) at atmospheric pressure in the 1165-1190 cm^-1 range will be discussed. We have developed a balanced MHS system for mitigation of the laser intensity fluctuations. Absorption spectroscopy as well as dispersion spectroscopy with minimum fractional absorption down to 10^-4/Hz1/2 and fast spectral acquisition capabilities down to 10 µs/spectrum range will be demonstrated. In order to mitigate the shortcomings of the limited chemical selectivity in the mid-IR, THz QCL based spectrometer is currently under development to provide spectral de-congestion and thus significantly improve chemical identification. Preliminary characterization of the performance of THZ QCL combs for the THz QCL-MHS will be presented.

  3. Frequency Doubling Broadband Light in Multiple Crystals

    International Nuclear Information System (INIS)

    Alford, William J.; Smith, Arlee V.

    2000-01-01

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth

  4. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    NARCIS (Netherlands)

    Van de Par, S.; Kohlrausch, A.; Heusdens, R.; Jensen, J.; Holdt Jensen, S.

    2005-01-01

    Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of

  5. A perceptual model for sinusoidal audio coding based on spectral integration

    NARCIS (Netherlands)

    Van de Par, S.; Kohlrauch, A.; Heusdens, R.; Jensen, J.; Jensen, S.H.

    2005-01-01

    Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of

  6. 25 years of spectral UV measurements at Sodankylä

    Science.gov (United States)

    Lakkala, Kaisa; Heikkilä, Anu; Kärhä, Petri; Ialongo, Iolanda; Karppinen, Tomi; Karhu, Juha Matti; Lindfors, Anders Vilhelm; Meinander, Outi

    2017-02-01

    At Sodankylä (67°N), spectra of solar ultraviolet radiation (UVR) have been measured with a Brewer spectroradiometer since 1990. The time series is one of the longest in the European Arctic region. In this work, the time series 1990-2014 was homogenized, and the data were corrected with respect to known error sources using laboratory characterizations and theoretical approaches. Methods for cosine correction, temperature correction and determination of long-term changes in spectral responsivity were applied. Bad measurements were identified by using various quality assurance tools including comparisons with reconstructed UV dose rates, synchronous broadband UV dose rates, global radiation and clear sky model calculations. We calculated daily maximum UV indices from the spectral time series. The daily maxima reached on average a value of 5 in midsummer, whereas the maximum UV index value of 6 was measured only twice: in 2011 and in 2013. We calculated the relative spectral changes in measured UV irradiances. An anti-correlation with total ozone was found in April and June, but no statistically significant long-term changes were found. The effect of snow, enhancing the measured UVR due to high albedo, was important during late spring. Short-term variations were mostly due to changes in cloudiness, which was the dominant factor during summertime.

  7. Broadband Wireline Provider Service Summary; BBRI_wirelineSum12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of broadband Internet access in Rhode Island via all wireline technologies assessed by Broadband Rhode Island. Broadband...

  8. Application of spectral deconvolution and inverse mechanistic modelling as a tool for root cause investigation in protein chromatography.

    Science.gov (United States)

    Brestrich, Nina; Hahn, Tobias; Hubbuch, Jürgen

    2016-03-11

    In chromatographic protein purification, process variations, aging of columns, or processing errors can lead to deviations of the expected elution behavior of product and contaminants and can result in a decreased pool purity or yield. A different elution behavior of all or several involved species leads to a deviating chromatogram. The causes for deviations are however hard to identify by visual inspection and complicate the correction of a problem in the next cycle or batch. To overcome this issue, a tool for root cause investigation in protein chromatography was developed. The tool combines a spectral deconvolution with inverse mechanistic modelling. Mid-UV spectral data and Partial Least Squares Regression were first applied to deconvolute peaks to obtain the individual elution profiles of co-eluting proteins. The individual elution profiles were subsequently used to identify errors in process parameters by curve fitting to a mechanistic chromatography model. The functionality of the tool for root cause investigation was successfully demonstrated in a model protein study with lysozyme, cytochrome c, and ribonuclease A. Deviating chromatograms were generated by deliberately caused errors in the process parameters flow rate and sodium-ion concentration in loading and elution buffer according to a design of experiments. The actual values of the three process parameters and, thus, the causes of the deviations were estimated with errors of less than 4.4%. Consequently, the established tool for root cause investigation is a valuable approach to rapidly identify process variations, aging of columns, or processing errors. This might help to minimize batch rejections or contribute to an increased productivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  10. 78 FR 32165 - Broadband Over Power Lines

    Science.gov (United States)

    2013-05-29

    ... applications for broadband and Smart Grid uses--while protecting incumbent radio services against harmful... Access BPL technology--which has potential applications for broadband and Smart Grid uses--while... that BPL systems increase the noise floor only within a relatively short distance (15-400 meters) from...

  11. 76 FR 71892 - Broadband Over Power Lines

    Science.gov (United States)

    2011-11-21

    ... that has potential applications for broadband and Smart Grid while protecting incumbent radio services... providing for Access BPL technology that has potential applications for broadband and Smart Grid while... line 230 meters from the coupler. ii. The proper distance extrapolation factor for assumed signal decay...

  12. 75 FR 10464 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-03-08

    ... window for Public Computer Center (PCC) and Sustainable Broadband Adoption (SBA) projects. DATES: All...; Extension of Application Closing Deadline for Comprehensive Community Infrastructure (CCI) Projects. SUMMARY... Infrastructure (CCI) projects under the Broadband Technology Opportunities Program (BTOP) is extended until 5:00...

  13. Catalyzing Broadband Internet in Africa | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Those without access, often women and the poor, risk being further excluded. Public policies can contribute to an affordable and inclusive broadband Internet infrastructure. To ensure the benefits of access to broadband are widely distributed, it is critical that policies take the needs of marginalized populations into ...

  14. Analyzing Broadband Divide in the Farming Sector

    DEFF Research Database (Denmark)

    Jensen, Michael; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2013-01-01

    , upstream and downstream connection. The main constraint is that farms are naturally located in rural areas where the required access broadband data rates are not available. This paper studies the broadband divide in relation to the Danish agricultural sector. Results show how there is an important...

  15. 75 FR 25185 - Broadband Initiatives Program

    Science.gov (United States)

    2010-05-07

    ... applicable federal rules and regulations protecting against fraud, waste and abuse, contact [email protected] region create wealth so that they are self-sustaining, repopulating, and thriving economically... and focus on wealth and job creation through the use of broadband. Regional broadband development...

  16. Spectral resolution measurement technique for Czerny-Turner spectrometers based on spectral interferometry

    Science.gov (United States)

    Contreras Martínez, Ramiro; Garduño Mejía, Jesús; Rosete Aguilar, Martha; Román Moreno, Carlos J.

    2016-08-01

    We propose the design of a new technique for measuring the spectral resolution of a Czerny-Turner Spectrometer based on spectral interferometry of ultrashort laser pulses. It is well known that ultrashort pulse measurement like SPIDER and TADPOLE techniques requires a precise and well characterized spectrum, especially in fringe resolution. We developed a new technique, to our knowledge, in which by measuring the nominal fringe spacing of a spectral interferogram one can characterize the spectral resolution in a Czerny-Turner spectrometer using Ryleigh's criteria. This technique was tested in a commercial Czerny-Turner spectrometer. The results demonstrate a consistent spectral resolution between what was reported by the manufacturer. The actual calibration technique was applied in a homemade broadband astigmatism-free Czerny-Turner spectrometer. Theory and experimental results are presented.

  17. Underwater Cylindrical Object Detection Using the Spectral Features of Active Sonar Signals with Logistic Regression Models

    Directory of Open Access Journals (Sweden)

    Yoojeong Seo

    2018-01-01

    Full Text Available The issue of detecting objects bottoming on the sea floor is significant in various fields including civilian and military areas. The objective of this study is to investigate the logistic regression model to discriminate the target from the clutter and to verify the possibility of applying the model trained by the simulated data generated by the mathematical model to the real experimental data because it is not easy to obtain sufficient data in the underwater field. In the first stage of this study, when the clutter signal energy is so strong that the detection of a target is difficult, the logistic regression model is employed to distinguish the strong clutter signal and the target signal. Previous studies have found that if the clutter energy is larger, false detection occurs even for the various existing detection schemes. For this reason, the discrete Fourier transform (DFT magnitude spectrum of acoustic signals received by active sonar is applied to train the model to distinguish whether the received signal contains a target signal or not. The goodness of fit of the model is verified in terms of receiver operation characteristic (ROC, area under ROC curve (AUC, and classification table. The detection performance of the proposed model is evaluated in terms of detection rate according to target to clutter ratio (TCR. Furthermore, the real experimental data are employed to test the proposed approach. When using the experimental data to test the model, the logistic regression model is trained by the simulated data that are generated based on the mathematical model for the backscattering of the cylindrical object. The mathematical model is developed according to the size of the cylinder used in the experiment. Since the information on the experimental environment including the sound speed, the sediment type and such is not available, once simulated data are generated under various conditions, valid simulated data are selected using 70% of the

  18. Evaluation of Fourier integral. Spectral analysis of seismic events

    International Nuclear Information System (INIS)

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  19. Enhanced Modified Bark Spectral Distortion (EMBSD): An objective speech quality measure based on audible distortion and cognition model

    Science.gov (United States)

    Yang, Wonho

    The Speech Processing Lab at Temple University developed an objective speech quality measure called the Modified Bark Spectral Distortion (MBSD). The MBSD uses auditory perception models derived from psychoacoustic studies. The MBSD measure extends the Bark Spectral Distortion (BSD) method by incorporating noise making threshold to differentiate audible/inaudible distortions. The performance of the MBSD was comparable to that of the ITU-T Recommendation P.861 for various coding distortions. Based on the experiments with Time Division Multiple Access (TDMA) data that contains distortions encountered in real network applications, modifications have been made to the MBSD algorithm. These are: use of the first 15 loudness components, normalization of loudness vectors, deletion of the spreading function in the noise masking threshold calculation, and use of a new cognition model based on postmasking effects. The Enhanced MBSD (EMBSD) shows significant improvement over the MBSD for TDMA data. Also, the performance of the EMBSD is better than that of the ITU-T Recommendation P.861 and Measuring Normalizing Blocks (MNB) measures for TDMA data. The performance of the EMBSD was compared to various other objective speech quality measures with the speech data including a wide range of distortion conditions. The EMBSD showed clear improvement over the MBSD and had the correlation coefficient of 0.89 for the conditions of MNRUs, codecs, tandem cases, bit errors, and frame erasures. Mean Opinion Score (MOS) has been used to evaluate objective speech quality measures. Recognizing the procedural difference between the MOS test and current objective speech quality measures, it is proposed that current objective speech quality measures should be evaluated with Degradation Mean Opinion Score (DMOS). The Pearson product-moment correlation coefficient has been the main performance parameter for evaluation of objective speech quality measures. The Standard Error of the Estimates (SEE

  20. A Spectral Unmixing Model for the Integration of Multi-Sensor Imagery: A Tool to Generate Consistent Time Series Data

    Directory of Open Access Journals (Sweden)

    Georgia Doxani

    2015-10-01

    Full Text Available The Sentinel missions have been designed to support the operational services of the Copernicus program, ensuring long-term availability of data for a wide range of spectral, spatial and temporal resolutions. In particular, Sentinel-2 (S-2 data with improved high spatial resolution and higher revisit frequency (five days with the pair of satellites in operation will play a fundamental role in recording land cover types and monitoring land cover changes at regular intervals. Nevertheless, cloud coverage usually hinders the time series availability and consequently the continuous land surface monitoring. In an attempt to alleviate this limitation, the synergistic use of instruments with different features is investigated, aiming at the future synergy of the S-2 MultiSpectral Instrument (MSI and Sentinel-3 (S-3 Ocean and Land Colour Instrument (OLCI. To that end, an unmixing model is proposed with the intention of integrating the benefits of the two Sentinel missions, when both in orbit, in one composite image. The main goal is to fill the data gaps in the S-2 record, based on the more frequent information of the S-3 time series. The proposed fusion model has been applied on MODIS (MOD09GA L2G and SPOT4 (Take 5 data and the experimental results have demonstrated that the approach has high potential. However, the different acquisition characteristics of the sensors, i.e. illumination and viewing geometry, should be taken into consideration and bidirectional effects correction has to be performed in order to reduce noise in the reflectance time series.

  1. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A.; Vaquero, J. J., E-mail: juanjose.vaquero@uc3m.es [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Desco, M. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid ES28911 (Spain); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid ES28007 (Spain); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid ES28029 (Spain)

    2014-01-15

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  2. Modification of the TASMIP x-ray spectral model for the simulation of microfocus x-ray sources

    International Nuclear Information System (INIS)

    Sisniega, A.; Vaquero, J. J.; Desco, M.

    2014-01-01

    Purpose: The availability of accurate and simple models for the estimation of x-ray spectra is of great importance for system simulation, optimization, or inclusion of photon energy information into data processing. There is a variety of publicly available tools for estimation of x-ray spectra in radiology and mammography. However, most of these models cannot be used directly for modeling microfocus x-ray sources due to differences in inherent filtration, energy range and/or anode material. For this reason the authors propose in this work a new model for the simulation of microfocus spectra based on existing models for mammography and radiology, modified to compensate for the effects of inherent filtration and energy range. Methods: The authors used the radiology and mammography versions of an existing empirical model [tungsten anode spectral model interpolating polynomials (TASMIP)] as the basis of the microfocus model. First, the authors estimated the inherent filtration included in the radiology model by comparing the shape of the spectra with spectra from the mammography model. Afterwards, the authors built a unified spectra dataset by combining both models and, finally, they estimated the parameters of the new version of TASMIP for microfocus sources by calibrating against experimental exposure data from a microfocus x-ray source. The model was validated by comparing estimated and experimental exposure and attenuation data for different attenuating materials and x-ray beam peak energy values, using two different x-ray tubes. Results: Inherent filtration for the radiology spectra from TASMIP was found to be equivalent to 1.68 mm Al, as compared to spectra obtained from the mammography model. To match the experimentally measured exposure data the combined dataset required to apply a negative filtration of about 0.21 mm Al and an anode roughness of 0.003 mm W. The validation of the model against real acquired data showed errors in exposure and attenuation in

  3. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis

    Science.gov (United States)

    Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng

    2011-01-01

    Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...

  4. Combination of broadband diffuse optical spectroscopy with magnetic resonance imaging

    Science.gov (United States)

    Merritt, Sean Isaiah

    Broadband diffuse optical spectroscopy (DOS) is an emerging optical technique used to measure absorption and scattering of bulk tissue non-invasively within the near-infrared (600--1050 nm). The ultimate aim of my advisors group is for broadband DOS to become an established medical diagnostic technique used clinically on various tissue types including breast, muscle and bone. The specific goal for my research is to use established magnetic resonance (MR) techniques for the purpose of continued development and validation of broadband DOS. The initial studies carried out were a validation of broadband DOS through a direct comparison with MRI. Both techniques are sensitive to signals produced by water and lipids in tissue. There is also sensitivity to blood flow, which MRI measures using exogenous contrast agents and broadband DOS is sensitive through measurement of total hemoglobin content (THC) and tissue oxygen saturation (StO2). These validation studies were compared initially in a rat tumor model in which both techniques were used simultaneously. A qualitative correlation was found between the MR images of water content and blood perfusion compared with the DOS water and THC values. A more quantitative comparison was made between measuring absolute water and lipid content in phantoms and in human tissue, which showed a strong correlation. The in vivo study also validated that broadband DOS was interrogating bone marrow in the tibia. The second half of this thesis is focused on developing new capabilities of broadband DOS and the MRI literature is used as a guide. When a water molecule hydrogen bonds to another molecule, the absorption spectrum in the near-infrared which is due to the vibrational overtone of the OH bond will change. The expected changes were observed in tissue and an algorithm was developed to fit for a tissue bound water parameter. Also, as tissue temperature changes, the fraction of water bound to other water molecules changes and can be used to

  5. Spectral and scattering theory for translation invariant models in quantum field theory

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud

    This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... field e.g. describing mesons or phonons. The models are given by three inputs: - the dispersion relation for the matter particle, - the dispersion relation for the field particle, and - the (UV cut-off) coupling function. The assumptions imposed on , and are rather weak and are satisfied...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...

  6. Development of dual-broadband rotational CARS for combustion diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bood, Joakim

    2000-06-01

    The present thesis concerns development and application of dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) for temperature and species concentration measurements in combustion processes. Both fundamental development of the technique, including experimental as well as modelling results, and measurements in practical combustion devices were conducted. A code for calculation of rotational CARS spectra of pure acetylene as well as mixtures of acetylene and nitrogen was developed. Using this code, temperatures and relative acetylene to nitrogen concentrations were evaluated from DB-RCARS measurements in pure acetylene and different acetylene/nitrogen mixtures. Moreover, rotational CARS spectra of dimethyl-ether (DME) have been analyzed. A powerful tool for simultaneous temperature and multiple species concentration measurements was developed by combining rotational CARS with vibrational CARS. The concept was demonstrated for measurements of temperature, oxygen, and carbon monoxide concentrations simultaneously in a premixed sooting ethene/air flame. Rotational CARS spectra of nitrogen at very high pressures (0.1-44 MPa) at room temperature were investigated. The experimental spectra were compared with calculated spectra using different Raman linewidth models. The results indicate some shortcomings in the present model, basically the density calculation and neglecting overlapping effects between adjacent spectral lines. A new method for CARS measurements in several spatially separated points simultaneously was developed. By using DB-RCARS the method was demonstrated for quantitative measurements of profiles of temperatures and oxygen concentrations. An atomic filter for rejection of stray light was developed. The filter was shown to efficiently reject stray light from the narrowband laser without affecting the shape of the rotational CARS spectrum or causing any signal losses. Within an interdisciplinary project intended to increase the

  7. Tuchola County Broadband Network (TCBN)

    DEFF Research Database (Denmark)

    Zabludowski, Antoni; Dubalski, B.; Zabludowski, Lukasz

    2012-01-01

    In the paper the designing project (plan) of Tuchola City broadband IP optical network has been presented. The extended version of network plan constitute technical part of network Feasibility Study, that it is expected to be implemented in Tuchola and be financed from European Regional Development...... Funds. The network plan presented in the paper contains both topological structure of fiber optic network as well as the active equipment for the network. In the project described in the paper it has been suggested to use Modular Cable System - MCS for passive infrastructure and Metro Ethernet...... technology for active equipment. The presented solution provides low cost of construction (CAPEX), ease of implementation of the network and low operating cost (OPEX). Moreover the parameters of installed Metro Ethernet switches in the network guarantee the scalability of the network for at least 10 years....

  8. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution

    Science.gov (United States)

    Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.

    1994-01-01

    High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.

  9. Spectral imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Rosario, Dalton; Farley, Vincent; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL for the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of adverse weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives at 549 and 1280m from the sensor location. The collected database will allow for: 1) Understand of signature variability under the different weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of hyperspectral and polarimetric technologies; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  10. Broadband infrared reflective surfaces using doped and stacked polar dielectric layers

    Science.gov (United States)

    Janipour, Mohsen; Sendur, Kursat

    2018-02-01

    Polar dielectrics, such as SiC, are excellent candidates for operation in extreme environments due to their excellent mechanical and thermal properties. In addition, they can achieve good IR reflection in the Reststrahlen band. However, these materials have relatively narrow spectral bandwidth for reflection, especially considering that the broadband illumination sources in extreme environments. In this study, we investigated the broadband reflection properties of polar dielectrics by engineering the Reststrahlen band through doping and stacked layers. Our results indicate that by doping polar dielectrics, spectral reflection bandwidth can be significantly broadened. In addition, we demonstrate that by stacking different polar dielectric layers, the reflection spectrum of different materials can be overlapped, and thereby, significantly broader spectrum is obtained.

  11. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Vibrational spectral simulation for peptides of mixed secondary structure: Method comparisons with the Trpzip model hairpin

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Keiderling, T. A.

    2005-01-01

    Roč. 109, - (2005), 23687-23697 ISSN 1089-5647 R&D Projects: GA AV ČR(CZ) IAA4055104 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : VCD * trpzin model hairpin * peptides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  13. QUANTUM CHEMICAL MODELING OF SPECTRAL PROPERTIES AND ELECTRON TRANSFER IN EXTENDED SYSTEMS

    Czech Academy of Sciences Publication Activity Database

    Záliš, Stanislav; Kvapilová, Hana; Kratochvílová, Irena; Šebera, Jakub; Vlček, Antonín; Winter, R. F.

    2011-01-01

    Roč. 2011, č. 1 (2011), P1299 ISSN 1708-5284 R&D Projects: GA AV ČR KAN100400702; GA MŠk LD11086 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : quantum chemical modeling * electron transfer Subject RIV: CF - Physical ; Theoretical Chemistry

  14. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    Science.gov (United States)

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  15. A mixed spectral-integration model for neutral mean wind flow over hills

    DEFF Research Database (Denmark)

    Corbett, Jean-Francois; Ott, Søren; Landberg, Lars

    2008-01-01

    A linear model for neutral surface-layer flow over orography is presented. The Reynolds-Averaged Navier-Stokes and E - epsilon turbulence closure equations are expressed in a terrain-following coordinate system created from a simple analytical expression in the Fourier domain. The perturbation eq...

  16. Photospheric modeling through spectral line inversion. temperature and radial velocity stratifications and fluctuations

    NARCIS (Netherlands)

    Koza, J.; Kucera, A.; Rybák, J.; Wöhl, H.

    2006-01-01

    We aim to determine average radial stratifications of various physical parameters throughout the solar photosphere at high angular resolution for non-magnetic and magnetic areas and to compare these with standard semiempirical 1D modeling and with 3D hydrodynamics (HD) and magnetohydrodynamics (MHD)

  17. The SATIRE-S model and why getting solar cycle spectral irradiance trends correct is so important

    Science.gov (United States)

    Ball, William; Haigh, Joanna; Krivova, Natalie; Unruh, Yvonne; Solanki, Sami

    2014-05-01

    There is currently a wide range of potential spectral solar irradiance (SSI) solar cycle (SC) amplitudes suggested by observations and models. Therefore, SSI SC changes are still not fully understood. The magnitude of the SC flux changes has a direct impact upon the temperature and chemistry of the Earth's atmosphere. To contribute to an understanding of the solar-climate connection, it is critical that we, as the solar community, communicate effectively with the climate community, providing uncertainties in SSI data and assessments of possible SSI options. We present the SATIRE-S reconstruction in the context of these SSI datasets. SATIRE-S is a physically based, consistent SSI reconstruction over the last three solar cycles. It shows different SC spectral variability at all wavelengths compared to the NRLSSI model, widely used in climate research. Most-importantly, SC changes in the ultra-violet (UV) can be twice as large in SATIRE-S as NRLSSI. Typically NRLSSI provides a lower limit of SC SSI UV variability. SORCE satellite observations provide SC magnitudes at the upper limit of variability, exceeding that of SATIRE-S by a factor of three at some UV wavelengths. There is currently no way to be certain if any of these three SSI datasets, or others, is correct. We also present the SSI datasets in terms of their impact on stratospheric ozone, within a 2D atmospheric model, as an example of why it is important to get SC changes correct. Using NRLSSI results in the 2D atmospheric model, we see a decrease in ozone concentration at all altitudes from solar maximum to minimum. SATIRE-S and SORCE/SOLSTICE observations instead show an increase in ozone concentration in the mesosphere. The magnitude of the increase in the mesosphere when using SOLSTICE also depends greatly upon the version of the data, which means that studies using different data versions of SOLSTICE may lead to different conclusions. These results highlight why an accurate understanding of SC SSI

  18. A case study of forward calculations of the gravity anomaly by spectral method for a three-dimensional parameterised fault model

    Science.gov (United States)

    Xu, Weimin; Chen, Shi

    2018-02-01

    Spectral methods provide many advantages for calculating gravity anomalies. In this paper, we derive a kernel function for a three-dimensional (3D) fault model in the wave number domain, and present the full Fortran source code developed for the forward computation of the gravity anomalies and related derivatives obtained from the model. The numerical error and computing speed obtained using the proposed spectral method are compared with those obtained using a 3D rectangular prism model solved in the space domain. The error obtained using the spectral method is shown to be dependent on the sequence length employed in the fast Fourier transform. The spectral method is applied to some examples of 3D fault models, and is demonstrated to be a straightforward and alternative computational approach to enhance computational speed and simplify the procedures for solving many gravitational potential forward problems involving complicated geological models. The proposed method can generate a great number of feasible geophysical interpretations based on a 3D model with only a few variables, and can thereby improve the efficiency of inversion.

  19. Robust excitation power spectrum design for broadband impedance spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, B; Rojas, C R

    2014-01-01

    This paper focuses on the robust design of broadband impedance spectroscopy (IS) experiments. This contribution extends the optimal IS experiment design presented in previous work (Sanchez et al 2012 Meas. Sci. Technol. 23 085702) in order to design a robust broadband excitation which gives relatively good estimation performance over a large number of possible impedance models. To this end, we assume as prior knowledge that the parameters of the impedance model lie in a compact set. Then, we pose the experiment design problem as a convex optimization program, which gives the excitation signal of bounded power that minimizes the worst value of a given scalar function of the Fisher information matrix, as the parameters range over the given compact set. Supported by numerical simulations, our results reveal the robust excitation for impedance experiments has a discrete power spectrum, e.g. (periodic) multisine signals. (paper)

  20. Spectral reflectance of solar light from dirty snow: a simple theoretical model and its validation

    OpenAIRE

    A. Kokhanovsky

    2013-01-01

    A simple analytical equation for the snow albedo as the function of snow grain size, soot concentration, and soot mass absorption coefficient is presented. This simple equation can be used in climate models to assess the influence of snow pollution on snow albedo. It is shown that the squared logarithm of the albedo (in the visible) is directly proportional to the soot concentration. A new method of the determination of the soot mass absorption coefficient in snow is proposed. The equations d...

  1. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis

    International Nuclear Information System (INIS)

    Youness, Rasha A.; Taha, Mohammed A.; Elhaes, Hanan; Ibrahim, Medhat

    2017-01-01

    Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder has been successively synthesized by mechanochemical method. The effect of milling times on the formation of B-CHA was investigated by Fourier transform infrared spectroscopy, X-ray diffraction technique and scanning electron microscopy. Moreover, physical as well as mechanical properties were examined as a function of milling time. Furthermore, theoretical model was presented for hydroxyapatite (HA). Semiempirical calculations at PM6 level were used to calculate thermal parameters including entropy; enthalpy; heat capacity; free energy and heat of formation in the temperature range from 200 up to 500 k. The results revealed that single phase B-CHA was successfully formed after 8 h of milling when Ball to Powder Ratio (BPR) equals to 10:1. Results revealed that entropy; enthalpy and heat capacity gradually increased as a function of temperature while, free energy and heat of formation decreased with the increasing of temperature. Comparison with higher level of theory was conducted at HF and DFT using the models HF/3-21g**; B3LYP/6-31G(d,p) and B3LYP/LANL2DZ, respectively and indicated that PM6 could be utilized with appropriate accuracy and time to study physical and thermochemical parameters for HA. - Highlights: • Preparation of Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder by mechanochemical method. • Characterization of CHA. • Semiemperical and DFT models for CHA.

  2. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Youness, Rasha A. [Spectroscopy Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt); Taha, Mohammed A. [Solid-State Physics Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt); Elhaes, Hanan [Physics Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, 11757 Cairo (Egypt); Ibrahim, Medhat, E-mail: medahmed6@yahoo.com [Spectroscopy Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt)

    2017-04-01

    Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder has been successively synthesized by mechanochemical method. The effect of milling times on the formation of B-CHA was investigated by Fourier transform infrared spectroscopy, X-ray diffraction technique and scanning electron microscopy. Moreover, physical as well as mechanical properties were examined as a function of milling time. Furthermore, theoretical model was presented for hydroxyapatite (HA). Semiempirical calculations at PM6 level were used to calculate thermal parameters including entropy; enthalpy; heat capacity; free energy and heat of formation in the temperature range from 200 up to 500 k. The results revealed that single phase B-CHA was successfully formed after 8 h of milling when Ball to Powder Ratio (BPR) equals to 10:1. Results revealed that entropy; enthalpy and heat capacity gradually increased as a function of temperature while, free energy and heat of formation decreased with the increasing of temperature. Comparison with higher level of theory was conducted at HF and DFT using the models HF/3-21g**; B3LYP/6-31G(d,p) and B3LYP/LANL2DZ, respectively and indicated that PM6 could be utilized with appropriate accuracy and time to study physical and thermochemical parameters for HA. - Highlights: • Preparation of Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder by mechanochemical method. • Characterization of CHA. • Semiemperical and DFT models for CHA.

  3. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal Mohammed

    2017-09-18

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  4. A broadband electromagnetic energy harvester with a coupled bistable structure

    OpenAIRE

    Zhu, Dibin; Beeby, Steve

    2013-01-01

    This paper investigates a broadband electromagnetic energy harvester with a coupled bistable structure. Both analytical model and experimental results showed that the coupled bistable structure requires lower excitation force to trigger bistable operation than conventional bistable structures. A compact electromagnetic vibration energy harvester with a coupled bistable structure was implemented and tested. It was excited under white noise vibrations. Experimental results showed that the coupl...

  5. Policy factors affecting broadband development in Poland

    DEFF Research Database (Denmark)

    Henten, Anders; Windekilde, Iwona Maria

    2014-01-01

    ’s telecommunications market with the European market. The market reflects all the global trends, a gradually growing significance of mobile telecommunications services, broadband Internet access, construction of offers directed towards clients’ needs, and a strong trend towards market consolidation, which...... and discuss broadband access development in Poland and the policy factors influencing this development as well as to examine national strategies used to stimulate service and infrastructure competition in Poland. There are, indeed, many other factors affecting broadband development such as the income level...

  6. Spectral properties of a two-orbital Anderson impurity model across anon-Fermi-liquid fixed point

    Science.gov (United States)

    Leo, Lorenzo De; Fabrizio, Michele

    2004-06-01

    We study by Wilson numerical renormalization group the spectral properties of a two-orbital Anderson impurity model in the presence of an exchange splitting that follows either regular or inverted Hund’s rules. The phase diagram contains a non-Fermi-liquid fixed point separating a screened phase, where conventional Kondo effect occurs, from an unscreened one, where the exchange splitting takes care of quenching the impurity degrees of freedom. On the Kondo screened side close to this fixed point the impurity density of states shows a narrow Kondo peak on top of a broader resonance. This narrow peak transforms in the unscreened phase into a narrow pseudogap inside the broad resonance. Right at the fixed point only the latter survives. The fixed point is therefore identified by a jump of the density of states at the chemical potential. We also consider the effect of several particle-hole symmetry-breaking terms. We show that particle-hole perturbations that simply shift the orbital energies do not wash out the fixed point, unlike those perturbations that hybridize the two orbitals. Consequently the density-of-state jump at the chemical potential remains finite even away from particle-hole symmetry. In other words, the pseudogap stays pinned at the chemical potential, although it is partially filled in. We also discuss the relevance of these results for lattice models that map onto this Anderson impurity model in the limit of large lattice coordination. Upon approaching the Mott metal-insulator transition, these lattice models necessarily enter a region with a local criticality that reflects the impurity non-Fermi-liquid fixed point. However, unlike the impurity, the lattice can get rid of the single-impurity fixed-point instability by spontaneously developing bulk coherent symmetry-broken phases, which we identify for different lattice models.

  7. Coupling the Community Atmospheric Model (CAM) with the Statistical Spectral Interpolation (SSI) System under ESMF

    Science.gov (United States)

    daSilva, Arlindo

    2004-01-01

    The first set of interoperability experiments illustrates the role ESMF can play in integrating the national Earth science resources. Using existing data assimilation technology from NCEP and the National Weather Service, the Community Atmosphere Model (CAM) was able to ingest conventional and remotely sensed observations, a capability that could open the door to using CAM for weather as well as climate prediction. CAM, which includes land surface capabilities, was developed by NCAR, with key components from GSFC. In this talk we will describe the steps necessary for achieving the coupling of these two systems.

  8. Spectral reflectance of solar light from dirty snow: a simple theoretical model and its validation

    Directory of Open Access Journals (Sweden)

    A. Kokhanovsky

    2013-08-01

    Full Text Available A simple analytical equation for the snow albedo as the function of snow grain size, soot concentration, and soot mass absorption coefficient is presented. This simple equation can be used in climate models to assess the influence of snow pollution on snow albedo. It is shown that the squared logarithm of the albedo (in the visible is directly proportional to the soot concentration. A new method of the determination of the soot mass absorption coefficient in snow is proposed. The equations derived are applied to a dusty snow layer as well.

  9. Single-particle spectral function of a generalized Hubbard model: Metal-insulator transition

    Science.gov (United States)

    Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel

    1995-05-01

    A generalized Hubbard model with correlated hoppings is studied at half filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static properties, the Drude weight and the single-particle spectra function, suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction Uc. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U

  10. Spectral Pollution

    OpenAIRE

    Davies, E B; Plum, M

    2003-01-01

    We discuss the problems arising when computing eigenvalues of self-adjoint operators which lie in a gap between two parts of the essential spectrum. Spectral pollution, i.e. the apparent existence of eigenvalues in numerical computations, when no such eigenvalues actually exist, is commonplace in problems arising in applied mathematics. We describe a geometrically inspired method which avoids this difficulty, and show that it yields the same results as an algorithm of Zimmermann and Mertins.

  11. Modeling epileptic brain states using EEG spectral analysis and topographic mapping.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César; Ribeiro, Bernardete; Castelo-Branco, Miguel; Sales, Francisco; Dourado, António

    2012-09-30

    Changes in the spatio-temporal behavior of the brain electrical activity are believed to be associated to epileptic brain states. We propose a novel methodology to identify the different states of the epileptic brain, based on the topographic mapping of the time varying relative power of delta, theta, alpha, beta and gamma frequency sub-bands, estimated from EEG. Using normalized-cuts segmentation algorithm, points of interest are identified in the topographic mappings and their trajectories over time are used for finding out relations with epileptogenic propagations in the brain. These trajectories are used to train a Hidden Markov Model (HMM), which models the different epileptic brain states and the transition among them. Applied to 10 patients suffering from focal seizures, with a total of 30 seizures over 497.3h of data, the methodology shows good results (an average point-by-point accuracy of 89.31%) for the identification of the four brain states--interictal, preictal, ictal and postictal. The results suggest that the spatio-temporal dynamics captured by the proposed methodology are related to the epileptic brain states and transitions involved in focal seizures. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.

    Science.gov (United States)

    Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G

    2015-11-01

    The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from

  13. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  14. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    Science.gov (United States)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  15. Finding relevant spectral regions between spectroscopic techniques by use of cross model validation and partial least squares regression.

    Science.gov (United States)

    Westad, Frank; Afseth, Nils Kristian; Bro, Rasmus

    2007-07-09

    In this paper, we extend the concept of cross model validation (CMV) to multiple X and Y variables where different spectroscopic techniques serve as X and Y data in a regression context. For the first dataset on marzipan samples the main objective was to find significant regions in the spectral data, and to discuss the issue of false discovery, i.e. combinations of variables that erroneously are found to be significant. A permutation test within the framework of CMV showed that no regression coefficients in the partial least squares regression (PLSR) model between FT-IR and VIS/NIR spectra show significance at the 5% level. We believe the reason is that the CMV acts as strong filter towards spurious correlations. Corresponding CH- and OH-bands between FT-IR and NIR spectra gave significant regions. For the second dataset, the results from CMV are interpreted more in detail with chemical background knowledge in mind. Most of the significant regions found between the Raman and NIR spectra could be interpreted from the chemical composition of the oil mixtures. Some regions were more difficult to interpret, which could be due to systematic baseline effects in the NIR data.

  16. ``Statistical treatment of the spectral properties of plasmas in local thermodynamical equilibrium using a screened hydrogenic model``; ``Traitement statistique des proprietes spectrales des plasmas a l`equilibre thermodynamique local dans le cadre du modele hydrogenique ecrante``

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G.

    1996-12-31

    A new screened hydrogenic model is presented. The screening constants depend both on the principal n and orbital l quantum numbers. They have been obtained from numerical fits over a large data base containing ionization potentials and one-electron excitation energies of ions. A rapid and original method to compute the bound-bound and bound-free oscillator strengths is proposed. The discrete spectrum and the series continuum are connected by continuity, and the sum rules are respected. The screened hydrogenic average atom is well-adapted to describe multicharged ion plasmas in local thermodynamic equilibrium (LTE). Using the key principle of statistical mechanics, it is shown first that this model is properly defined and thermodynamically coherent. Secondly, a new method of detailed ionization stage accounting of a LTE plasma is explained. It can be used to reconstruct the distribution of integer charge states in such a plasma from any average atom model. The l -splitting allows one-electron transitions between two subshells with the same principal quantum number n. They may be of great importance when the Rosseland opacity is computed. Though, methods of classical statistical mechanics are required to calculate the distribution of the configurations around the average atom one and so to improve the spectral opacities. The splitting in integer ionic stages can be easily included. The formalism is tested by comparisons with theoretical and experimental results published in the literature. From the photoabsorption spectra encountered, the main results are the correct estimations of both the Rosseland opacity and the detailed charge degrees accounting. (author).

  17. Guest:host interactions of lidocaine and prilocaine with natural cyclodextrins: Spectral and molecular modeling studies

    Science.gov (United States)

    Rajendiran, N.; Mohandoss, T.; Saravanan, J.

    2014-11-01

    Inclusion complex formation of two local anesthetics drugs (lidocaine (LC) and prilocaine (PC)) with α- and β-cyclodextrins (CDs) in aqueous solution were studied by absorption, fluorescence, time-resolved fluorescence and molecular modeling methods. The formation of inclusion complexes was confirmed by 1H NMR, FTIR, differential scanning calorimetry, SEM, TEM and X-ray diffractometry. Both drugs formed 1:1 inclusion complex and exhibit biexponential decay in water whereas triexponential decay in the CD solution. Nanosized self-aggregated particles of drug: CD complexes were found by TEM. Both experimental and theoretical studies revealed that the phenyl ring with the amide group of the drug is encapsulated in the hydrophobic CD nanocavity. Investigations of energetic and thermodynamic properties confirmed the stability of the inclusion complexes. van der Waals interactions are mainly responsible for enthalpy driven complex formation of LC and PC with CDs.

  18. Analysis of Unresolved Spectral Infrared Signature for the Extraction of Invariant Features

    Science.gov (United States)

    Chaudhary, A.; Payne, T.; Wilhelm, S.; Gregory, S.; Skinner, M.; Rudy, R.; Russell, R.; Brown, J.; Dao, P.

    2010-09-01

    This paper demonstrates a simple analytical technique for extraction of spectral radiance values for the solar panel and body from an unresolved spectral infrared signature of 3-axis stabilized low-earth orbit (LEO) satellites. It uses data collected by The Aerospace Corporation’s Broad-band Array Spectrograph System (BASS) instrument at the Air Force Maui Optical and Supercomputing (AMOS) site. The observation conditions were such that the signatures were due to the emissive phenomenology and contribution of earthshine was negligible. The analysis is based on a two-facet orientation model of the satellite. This model captures the basic, known behavior of the satellite body and its solar panels. One facet points to nadir and the second facet tracks the sun. The facet areas are unknown. Special conditions are determined on the basis of observational geometry that allows separation of the spectral radiance values of the solar panel and body. These values remain unchanged (i.e., are invariant) under steady illumination conditions even if the signature appears different from one observation to another. In addition, they provide information on the individual spectral makeup of the satellite solar panel and body materials.

  19. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    International Nuclear Information System (INIS)

    Moraes, Manoel; Diaz, Marcos

    2009-01-01

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in Hα, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10 -4 M sun is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

  20. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    Science.gov (United States)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  1. Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence : Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations

    NARCIS (Netherlands)

    Hughes, T.J.R.; Wells, G.N.; Wray, A.A.

    2004-01-01

    Energy transfers within large-eddy simulation (LES) and direct numerical simulation (DNS) grids are studied. The spectral eddy viscosity for conventional dynamic Smagorinsky and variational multiscale LES methods are compared with DNS results. Both models underestimate the DNS results for a very

  2. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery; Modelisation radiative et caracterisation des panaches d'aerosols en imagerie hyperspectrale

    Energy Technology Data Exchange (ETDEWEB)

    Alakian, A

    2008-03-15

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 {mu}m] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  3. Observations of the Hubble Deep Field with the Infrared Space Observatory .5. Spectral energy distributions, starburst models and star formation history

    DEFF Research Database (Denmark)

    Rowan Robinson, M.; Mann, R.G.; Oliver, S.J.

    1997-01-01

    We have modelled the spectral energy distributions of the 13 Hubble Deep Field (HDF) galaxies reliably detected by the Infrared Space Observatory (ISO). For two galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining II...

  4. Broadband Direct UVA irradiance measurement for clear skies evaluated using a smartphone

    International Nuclear Information System (INIS)

    Igoe, D.; Parisi, A.V.

    2015-01-01

    UVA wavelengths (320-400 nm) have been implicated in recent studies to contribute to melanoma induction and skin photo-aging in humans and damage to plants. The use of smartphones in UVA observations is a way to supplement measurements made by traditional radiometric and spectro-radiometric technology. Although the smartphone image sensor is not capable of determining broadband UVA irradiances, these can be reconstructed from narrowband irradiances, which the smartphone, with narrowband and neutral density filters, can quantify with discrepancies not exceeding 5 %. Three models that reconstruct direct broadband clear sky UVA were developed from narrowband irradiances derived from smartphone image sensor pixel data with coefficients of determination of between 0.97 and 0.99. Reasonable accuracy and precision in determining the direct broadband UVA was maintained for observations made with solar zenith angles as high as 70 deg. . The developed method has the potential to increase the uptake of the measurement of broadband UVA irradiances. (authors)

  5. 75 FR 14131 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-03-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Program AGENCY: National Telecommunications and Information Administration, U.S. Department of Commerce... for the electronic submission of CCI projects under the Broadband Technology Opportunities Program...

  6. Analysis of United States' Broadband Policy

    National Research Council Canada - National Science Library

    Uzarski, Joel S

    2007-01-01

    .... With every month that passes, the United States fails to close the gap in the digital divide both inside its borders as well as among the other countries that lead the world in broadband penetration...

  7. Nanophotonic Design for Broadband Light Management

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Emily; Callahan, Dennis; Horowitz, Kelsey; Pala, Ragip; Atwater, Harry

    2014-10-13

    We describe nanophotonic design approaches for broadband light management including i) crossed-trapezoidal Si structures ii) Si photonic crystal superlattices, and iii) tapered and inhomogeneous diameter III-V/Si nanowire arrays.

  8. Sensitivity of WFIRST coronagraph broadband contrast performance to DM actuator errors

    Science.gov (United States)

    Sidick, Erkin; Seo, Byoung-Joon; Kern, Brian; Poberezhskiy, Ilya; Nemati, Bijan; Trauger, John T.

    2017-09-01

    The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs sequential deformable mirrors to compensate for phase and amplitude errors. Using the optical model of an Occulting Mask Coronagraph (OMC) testbed at the Jet Propulsion Laboratory (JPL), we have investigated the sensitivity of a Hybrid Lyot Coronagraph (HLC) broadband contrast performance to DM actuator errors and actuator limits. Considered case include drifts in actuator gains or actuator response curves, paired actuators, as well as the limits imposed by a neighboring-actuator rule. Actual data about the actuator drifts and the knowledge about the paired-actuators obtained in several DM characterization experiments conducted at JPL, as well as the neighboring-actuator rule implemented on the OMC testbed were used in simulations. We obtained good agreement between the model prediction and the testbed measurement in terms of static HLC contrast floor and contrast chromaticity.

  9. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    Science.gov (United States)

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America

  10. Characteristics of hybrid broadcast broadband television (HbbTV

    Directory of Open Access Journals (Sweden)

    Jakšić Branimir

    2017-01-01

    Full Text Available This paper describes the working principle of hybrid broadcast-broadband TV (Hybrid Broadcast Broadband TV - HbbTV. The architecture of HbbTV system is given, the principle of its operation, as well as an overview of HbbTV specification standards that are in use, with their basic characteristics. Here are described the services provided by Hybrid TV. It is also provided an overview of the distribution of HbbTV services in Europe in terms of the number of TV channels that HbbTV services offer, the number of active hybrid TV devices, HbbTV standards which are in use and models of broadcast networks used to distribute HbbTV service.

  11. Is European Broadband Ready for Smart Grid?

    DEFF Research Database (Denmark)

    Balachandran, Kartheepan; Pedersen, Jens Myrup

    2014-01-01

    In this short paper we compare the communication requirements for three Smart Grid scenarios with the availability of broadband and mobile communication networks in Europe. We show that only in the most demanding case - where data is collected and transmitted every second - a standard GSM....../GPRS connection is not enough. Whereas in the less demanding scenarios it is almost all of the European households that can be covered by a standard broadband technology for use with Smart Grid....

  12. Adjoint tomography of the crust and upper mantle structure beneath the Kanto region using broadband seismograms

    KAUST Repository

    Miyoshi, Takayuki

    2017-10-04

    A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography for application in the effective reproduction of observed waveforms. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds Vp and Vs. Additionally, all centroid times of the source solutions were determined before the structural inversion. The synthetic displacements were calculated using the spectral-element method (SEM) in which the Kanto region was parameterized using 16 million grid points. The model parameters Vp and Vs were updated iteratively by Newton’s method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. Computations of the forward and adjoint simulations were conducted on the K computer in Japan. The optimized SEM code required a total of 6720 simulations using approximately 62,000 node hours to obtain the final model after 16 iterations. The proposed model reveals several anomalous areas with extremely low-Vs values in comparison with those of the initial model. These anomalies were found to correspond to geological features, earthquake sources, and volcanic regions with good data coverage and resolution. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes showed better fit than the initial model to the observed waveforms in different period ranges within 5–30 s. This result indicates that the model can accurately predict actual waveforms.

  13. Nonrigid registration with free-form deformation model of multilevel uniform cubic B-splines: application to image registration and distortion correction of spectral image cubes.

    Science.gov (United States)

    Eckhard, Timo; Eckhard, Jia; Valero, Eva M; Nieves, Juan Luis

    2014-06-10

    In spectral imaging, spatial and spectral information of an image scene are combined. There exist several technologies that allow the acquisition of this kind of data. Depending on the optical components used in the spectral imaging systems, misalignment between image channels can occur. Further, the projection of some systems deviates from that of a perfect optical lens system enough that a distortion of scene content in the images becomes apparent to the observer. Correcting distortion and misalignment can be complicated for spectral image data if they are different at each image channel. In this work, we propose an image registration and distortion correction scheme for spectral image cubes that is based on a free-form deformation model of uniform cubic B-splines with multilevel grid refinement. This scheme is adaptive with respect to image size, degree of misalignment, and degree of distortion, and in that sense is superior to previous approaches. We support our proposed scheme with empirical data from a Bragg-grating-based hyperspectral imager, for which a registration accuracy of approximately one pixel was achieved.

  14. Broadband simulation of M7.2 earthquake on the north tehran fault, considering nonlinear soil effects

    Science.gov (United States)

    Majidinejad, A.; Zafarani, H.; Vahdani, S.

    2018-02-01

    The north Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study we provide broadband (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High frequency (2-10 Hz) motions are calculated with a physics based method based on S-to-S backscattering theory. Broadband ground motions at the bed-rock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broadband ground motions is investigated by both linear and nonlinear analyses. While linear soil response overestimate ground motion prediction equations, nonlinear response predicts plausible results within one standard deviation of empirical relationships. Average PGAs at the northern, central and southern parts of the city are estimated about 0.93 g, 0.59 g and 0.4 g, respectively. Increased damping caused by nonlinear soil behavior, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Nonlinear de-amplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account nonlinear soil de-amplification are provided for various frequencies in the range of engineering interest. In addition to fully nonlinear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to medium peaks and motions with

  15. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  16. Broadband electromagnetic environments simulator (EMES)

    International Nuclear Information System (INIS)

    Pollard, N.

    1977-01-01

    A new test facility has been developed by Sandia Laboratories for determining the effects of electromagnetic environments on systems and components. The facility is capable of producing uniform, vertically polarized, continuous wave (CW) and pulsed fields over the frequency range of dc to 10 GHz. This broadband capability addresses the electromagnetic radiation (EMR) threat and is ideally suited to computer controlled sweeping and data acquisition. EMES is also capable of producing uniform transient fields having the wave shape and magnitude characteristic of a nuclear electromagnetic pulse (EMP) and near lightning. The design consists of a truncated, triplate, rectangular coaxial transmission line. The spacing between the flat center conductor and the ground planes is 4 meters. The line is terminated in its characteristic impedance of 50 ohms. At frequencies below the first resonance of the facility it behaves as a typical coaxial system. Above resonance, a wall of electromagnetic absorbing material provides a nonreflecting termination. Thus, EMES essentially combines the elements of a transmission line and an anechoic chamber. It will not radiate electromagnetic energy into the surrounding area because it is a shielded transmission line

  17. ''Statistical treatment of the spectral properties of plasmas in local thermodynamical equilibrium using a screened hydrogenic model''

    International Nuclear Information System (INIS)

    Faussurier, G.

    1996-01-01

    A new screened hydrogenic model is presented. The screening constants depend both on the principal n and orbital l quantum numbers. They have been obtained from numerical fits over a large data base containing ionization potentials and one-electron excitation energies of ions. A rapid and original method to compute the bound-bound and bound-free oscillator strengths is proposed. The discrete spectrum and the series continuum are connected by continuity, and the sum rules are respected. The screened hydrogenic average atom is well-adapted to describe multicharged ion plasmas in local thermodynamic equilibrium (LTE). Using the key principle of statistical mechanics, it is shown first that this model is properly defined and thermodynamically coherent. Secondly, a new method of detailed ionization stage accounting of a LTE plasma is explained. It can be used to reconstruct the distribution of integer charge states in such a plasma from any average atom model. The l -splitting allows one-electron transitions between two subshells with the same principal quantum number n. They may be of great importance when the Rosseland opacity is computed. Though, methods of classical statistical mechanics are required to calculate the distribution of the configurations around the average atom one and so to improve the spectral opacities. The splitting in integer ionic stages can be easily included. The formalism is tested by comparisons with theoretical and experimental results published in the literature. From the photoabsorption spectra encountered, the main results are the correct estimations of both the Rosseland opacity and the detailed charge degrees accounting. (author)

  18. Possible Patient Early Diagnosis by Ultrasonic Noninvasive Estimation of Thermal Gradients into Tissues Based on Spectral Changes Modeling

    Directory of Open Access Journals (Sweden)

    I. Bazan

    2012-01-01

    Full Text Available To achieve a precise noninvasive temperature estimation, inside patient tissues, would open promising research fields, because its clinic results would provide early-diagnosis tools. In fact, detecting changes of thermal origin in ultrasonic echo spectra could be useful as an early complementary indicator of infections, inflammations, or cancer. But the effective clinic applications to diagnosis of thermometry ultrasonic techniques, proposed previously, require additional research. Before their implementations with ultrasonic probes and real-time electronic and processing systems, rigorous analyses must be still made over transient echotraces acquired from well-controlled biological and computational phantoms, to improve resolutions and evaluate clinic limitations. It must be based on computing improved signal-processing algorithms emulating tissues responses. Some related parameters in echo-traces reflected by semiregular scattering tissues must be carefully quantified to get a precise processing protocols definition. In this paper, approaches for non-invasive spectral ultrasonic detection are analyzed. Extensions of author's innovations for ultrasonic thermometry are shown and applied to computationally modeled echotraces from scattered biological phantoms, attaining high resolution (better than 0.1°C. Computer methods are provided for viability evaluation of thermal estimation from echoes with distinct noise levels, difficult to be interpreted, and its effectiveness is evaluated as possible diagnosis tool in scattered tissues like liver.

  19. Possible patient early diagnosis by ultrasonic noninvasive estimation of thermal gradients into tissues based on spectral changes modeling.

    Science.gov (United States)

    Bazan, I; Ramos, A; Calas, H; Ramirez, A; Pintle, R; Gomez, T E; Negreira, C; Gallegos, F J; Rosales, A J

    2012-01-01

    To achieve a precise noninvasive temperature estimation, inside patient tissues, would open promising research fields, because its clinic results would provide early-diagnosis tools. In fact, detecting changes of thermal origin in ultrasonic echo spectra could be useful as an early complementary indicator of infections, inflammations, or cancer. But the effective clinic applications to diagnosis of thermometry ultrasonic techniques, proposed previously, require additional research. Before their implementations with ultrasonic probes and real-time electronic and processing systems, rigorous analyses must be still made over transient echotraces acquired from well-controlled biological and computational phantoms, to improve resolutions and evaluate clinic limitations. It must be based on computing improved signal-processing algorithms emulating tissues responses. Some related parameters in echo-traces reflected by semiregular scattering tissues must be carefully quantified to get a precise processing protocols definition. In this paper, approaches for non-invasive spectral ultrasonic detection are analyzed. Extensions of author's innovations for ultrasonic thermometry are shown and applied to computationally modeled echotraces from scattered biological phantoms, attaining high resolution (better than 0.1 °C). Computer methods are provided for viability evaluation of thermal estimation from echoes with distinct noise levels, difficult to be interpreted, and its effectiveness is evaluated as possible diagnosis tool in scattered tissues like liver.

  20. Modelling and analysis of nonlinear guided waves interaction at a breathing crack using time-domain spectral finite element method

    Science.gov (United States)

    He, Shuai; Ng, Ching Tai

    2017-08-01

    This study proposes a time-domain spectral finite element (SFE) model and investigates nonlinear guided wave interaction at a breathing crack. An extended time-domain SFE method based on the Mindlin-Hermann rod and Timoshenko beam theory is proposed to predict the nonlinear guided wave generation at the breathing crack. An SFE crack element is proposed to simulate the mode-conversion effect, in which a bilinear crack mechanism is implemented to take into account the contact nonlinearity at the breathing crack. There is good agreement between the results calculated using the proposed time-domain SFE method and three-dimensional finite element simulation. This demonstrates the accuracy of the proposed SFE method in simulating contact nonlinearity at the breathing crack. Parametric studies using the fundamental symmetric (S0) and anti-symmetric (A0) modes of guided waves are also carried out to provide physical insights into the higher harmonics generated due to the contact nonlinearity at the breathing crack. The magnitude of the higher harmonics generated as a function of the crack depth is investigated in detail. The results show that the mode-converted higher harmonic guided waves provide valuable information for damage detection.