WorldWideScience

Sample records for broadband microwave phase

  1. Silicon graphene waveguide tunable broadband microwave photonics phase shifter

    OpenAIRE

    Capmany, Jose; Domenech, David; Muñoz, Pascual

    2013-01-01

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifte based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360 degree radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.

  2. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-01

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt. PMID:24718185

  3. Broadband microwave photonic phase shifter based on polarisation rotation

    DEFF Research Database (Denmark)

    Xue, Weiqi; Öhman, Filip; Blaaberg, Søren; Chen, Yaohui; Sales, Salvador; Mørk, Jesper

    2008-01-01

    A broadband microwave photonic phase shifter is presented based on the polarisation properties of a Mach-Zehnder intensity modulator and nonlinear polarisation rotation in a semiconductor optical amplifier. The system can realise about 150deg phase shift in the frequency range from 50 MHz to 19 GHz....

  4. Broadband all-optical microwave photonics phase detector.

    Science.gov (United States)

    Ashourian, Mohsen; Emami, Hossein; Sarkhosh, Niusha

    2013-12-15

    A microwave photonics phase detector is conceived and practically demonstrated. The phase-detector system employs a semiconductor optical amplifier as a four-wave mixer to enable phase detection over a broad frequency range. The system behavior is first mathematically modeled and then demonstrated practically. Phase measurement over a frequency range of 1-18 GHz is achieved. This phase detector is an excellent candidate for wideband applications such as frequency-agile radar. PMID:24322231

  5. Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring.

    Science.gov (United States)

    Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi

    2016-08-01

    An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics. PMID:27472628

  6. Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers.......We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers....

  7. Optical technique for broadband microwave absorption spectroscopy in aqueous media

    International Nuclear Information System (INIS)

    Precise measurements of microwave absorption over a large range of frequencies in aqueous media are difficult to obtain and can result in conflicting results as a consequences of small differences in instrumentation. Traditional methods of microwave spectroscopy that make use of time-domain spectrometers or network analyzer systems provide only indirect measurement of the microwave absorption coefficient because they measure the real and imaginary parts of the dielectric constant, ε' and ε'', separately. The absorption coefficient must then be calculated from ε' and ε'' taking into account the geometry (e.g., of the waveguide and mode) among other factors. It has been shown that direct measurement of the microwave absorption coefficient α is possible using phase fluctuation optical heterodyne spectroscopy. Taking advantage of this hybrid optical-microwave technique the authors report on a broadband spectrometer with demonstrated accurate operation from 3 to 20 GHz

  8. Ultra-broadband Microwave Metamaterial Absorber

    CERN Document Server

    Ding, Fei; Ge, Xiaochen; Jin, Yi; He, Sailing

    2012-01-01

    A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-frequencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.

  9. Broadband RF front-end using microwave photonics filter.

    Science.gov (United States)

    Wang, Jingjing; Chen, Minghua; Liang, Yunhua; Chen, Hongwei; Yang, Sigang; Xie, Shizhong

    2015-01-26

    We propose and demonstrate a novel RF front-end with broadened processing bandwidth, where a tunable microwave photonic filter based on optical frequency comb (OFC) is incorporated to accomplish simultaneous down-conversion and filtering. By designing additional phase shaping and time delay controlling, the frequency tunability of the system could be enhanced. More importantly, the beating interferences generated from broadband RF input could also be suppressed, which help to break the limitation on the processing bandwidth. In our experiments, a photonics RF receiver front-end for RF input with wide bandwidth of almost 20 GHz was realized using 10-GHz-space OFC, where the center frequency of the pass band signals could be tuned continuously. PMID:25835844

  10. The Quest for Ultimate Broadband High Power Microwaves

    CERN Document Server

    Podgorski, Andrew S

    2014-01-01

    Paper describes High Power Microwave research of combining GW peak power to achieve MV/m and GV/m radiated fields in 1 to 500 GHz band. To achieve such fields multiple independently triggered broadband GW sources, supplying power to multiple spatially distributed broadband radiators/antennas are used. Single TW array is used as an ultimate microwave weapon in 1 to 5 GHz range while multiple TW arrays provide GV/m radiating field at plasma frequencies in 300 GHz range leading to fusion power.

  11. High-sensitivity broadband microwave spectroscopy with small nonresonant coils

    Science.gov (United States)

    Mahdjour, H.; Clark, W. G.; Baberschke, K.

    1986-06-01

    The use of a small, nonresonant, coil of micron dimensions as the microwave magnetic field structure of a broadband electron-spin-resonance (ESR) spectrometer is described. The coil is driven by a broadband microwave generator which operates between 0.1 and 8.5 GHz. The samples may fill the coil to approximately 100 percent. It is shown that for small size samples this system offers higher sensitivity than a conventional cavity spectrometer. Because the system is broadband, either frequency scans or the conventional magnetic field scans can be used to traverse the resonance. Examples for DPPH and for the spin glass AgMn using this method are reported. Since the sample coil is small, it has many potential applications, such as insertion into the mixing chamber of dilution refrigerator or high-pressure cell, efficient use of power in ENDOR and other double resonance experiments, and rapid recovery from transients in pulsed ESR experiments.

  12. Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy.

    Science.gov (United States)

    Steber, Amanda L.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Plusquellic, D. F.; Lattanzi, V.; Spezzano, S.; McCarthy, M. C.

    2010-06-01

    Broadband microwave spectra often contain overlapping spectra from a large number of species in the sample mixture, whether in the study of conformational isomers, molecular complexes, reaction products from reactive molecular sources (e.g., electrical discharge), or analysis of chemical mixtures. In these experiments, the identification of individual spectra in the full spectrum through pattern recognition becomes difficult when there is a high density of transitions. Strategies for extracting individual spectra from broadband measurements are discussed. Two approaches for microwave-microwave double resonance spectroscopy have been evaluated. One uses a transition-by-transition screening in a narrowband cavity spectrometer to identify an unknown spectrum and has a time advantage from the increased sensitivity of cavity spectroscopy. The second double-resonance approach uses a broadband spectral editing approach that gives a multiplex advantage in the detection. Both of these experimental techniques are combined with computer-aided assignment algorithms to make the spectral assignment in a minimum of double-resonance observations. The performance of spectral analysis solely using computer-aided assignment is also evaluated. The potential for fully automated spectral decomposition of the broadband spectrum of a complex mixture will be described.

  13. Adjustable, Broadband, Selective Excitation with Uniform Phase

    Science.gov (United States)

    Cano, Kristin E.; Smith, Mari A.; Shaka, A. J.

    2002-03-01

    An advance in the problem of achieving broadband, selective, and uniform-phase excitation in NMR spectroscopy of liquids is outlined. Broadband means that, neglecting relaxation, any frequency bandwidth may be excited even when the available radiofrequency (RF) field strength is strictly limited. Selective means that sharp transition edges can be created between pure-phase excitation and no excitation at all. Uniform phase means that, neglecting spin-spin coupling, all resonance lines have nearly the same phase. Conventional uniform-phase excitation pulses (e.g., E-BURP), mostly based on amplitude modulation of the RF field, are not broadband: they have an achievable bandwidth that is strictly limited by the peak power available. Other compensated pulses based on adiabatic half-passage, like BIR-4, are not selective. By contrast, inversion pulses based on adiabatic fast passage can be broadband (and selective) in the sense above. The advance outlined is a way to reformulate these frequency modulated (FM) pulses for excitation, rather than just inversion.

  14. Broadband phase-preserved optical elevator

    OpenAIRE

    Luo, Yuan; Han, Tiancheng; Zhang, Baile; Qiu, Cheng-Wei; Barbastathis, George

    2011-01-01

    Phase-preserved optical elevator is an optical device to lift up an entire plane virtually without distortion in light path or phase. Using transformation optics, we have predicted and observed the realization of such a broadband phase-preserved optical elevator, made of a natural homogeneous birefringent crystal without resorting to absorptive and narrowband metamaterials involving time-consuming nano-fabrication. In our demonstration, the optical elevator is designed to lift a sheet upwards...

  15. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering

    CERN Document Server

    Long, Xin; Chen, Jianping

    2015-01-01

    Pulse compression processing based on stimulated Brillouin scattering (SBS) in an optical fiber is theoretically and experimentally demonstrated. Broadband microwave signal is electro-optically modulated onto the pump lightwave that is launched into one end of the fiber. Acoustic wave in the fiber inherits the amplitude and phase information of the pump lightwave and thus the coupling between the acoustic wave and pump lightwave leads to the auto-correlated process of the pump lightwave as well as the modulated microwave signal. Derivation of the SBS coupling equations shows that the short-pulse probe lightwave amplified by the pump lightwave possesses the nature of auto-correlation formula. All-optical pulse compression of the broadband microwave signal is implemented after a subtraction between the detected probe pulse with and without SBS. A proof-of-concept experiment is carried out. The pulse compression of a linear frequency-modulated microwave signal with 1 GHz sweep range at the carrier frequency of 4...

  16. Broadband sample holder for microwave spectroscopy of superconducting qubits

    International Nuclear Information System (INIS)

    We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm2. The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature

  17. Broadband ultrathin low-profile metamaterial microwave absorber

    Science.gov (United States)

    Sood, Deepak; Tripathi, Chandra Charu

    2016-04-01

    In this paper, a single-layer broadband low-profile ultrathin metamaterial microwave absorber is proposed for wide angle of incidence. The proposed absorber provides triple-band absorption under normal incidence of electromagnetic wave with two peaks lying in X-band and one in Ku-band. The unit cell is designed by using parametric optimization in such a way that the three peaks merge together to give broadband absorption. The absorber exhibits full width at half maxima bandwidth (FWHM) of 7.75 GHz from 7.55 to 15.30 GHz for wide angle of incidence up to 60° for both TE and TM polarizations. The mechanism of absorption of the absorber has been analyzed by field and surface current distributions. The proposed absorber has been fabricated and experimentally tested for different angles of incidence and polarization of the incident wave. The absorber is low profile with unit cell dimension of the order of 0.168 λ 0, and it is ultrathin with a thickness of ~ λ 0/17 at the center frequency of 11.43 GHz corresponding to the FWHM absorption bandwidth. This proposed absorber can be used for many potential applications such as stealth technology, cloaking and in antenna systems.

  18. Broadband Microwave Spectroscopy as a Tool to Study the Structures of Odorant Molecules and Weakly Bound Complexes in the Gas Phase

    Science.gov (United States)

    Zinn, Sabrina; Betz, Thomas; Medcraft, Chris; Schnell, Melanie

    2015-06-01

    The rotational spectrum of trans-cinnamaldehyde ((2E)-3-phenylprop-2-enal) has been obtained with chirped-pulse microwave spectroscopy in the frequency range of 2 - 8.5 GHz. The odorant molecule is the essential component in cinnamon oil and causes the characteristic smell. In the measured high-resolution spectrum, we were able to assign the rotational spectra of two conformers of trans-cinnamaldehyde as well as all singly 13C-substituted species of the lowest-energy conformer in natural abundance. Two different methods were used to determine the structure from the rotational constants, which will be compared within this contribution. In addition, the current progress of studying ether-alcohol complexes, aiming at an improved understanding of the interplay between hydrogen bonding and dispersion interaction, will be reported. Here, a special focus is placed on the complexes of diphenylether with small aliphatic alcohols.

  19. Broadband phase-preserved optical elevator

    CERN Document Server

    Luo, Yuan; Zhang, Baile; Qiu, Cheng-Wei; Barbastathis, George

    2011-01-01

    Phase-preserved optical elevator is an optical device to lift up an entire plane virtually without distortion in light path or phase. Using transformation optics, we have predicted and observed the realization of such a broadband phase-preserved optical elevator, made of a natural homogeneous birefringent crystal without resorting to absorptive and narrowband metamaterials involving time-consuming nano-fabrication. In our demonstration, the optical elevator is designed to lift a sheet upwards, and the phase is verified to be preserved always. The camouflage capability is also demonstrated in the presence of adjacent objects of the same scale at will. The elevating device functions in different surrounding media over the wavelength range of 400-700 nm. Our work opens up prospects for studies of light trapping, solar energy, illusion optics, communication, and imaging.

  20. Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source.

    Science.gov (United States)

    Huang, Long; Chen, Dalei; Zhang, Fangzheng; Xiang, Peng; Zhang, Tingting; Wang, Peng; Lu, Linlin; Pu, Tao; Chen, Xiangfei

    2015-10-01

    In this paper, a novel microwave photonic filter (MPF) with multiple independently tunable passbands is proposed. A broadband optical source (BOS) is employed and split by a 1:N coupler into several branches. One branch is directed to a phase modulator which is modulated by a radio frequency signal and the other branches are delayed by optical delay lines (ODLs), respectively. All of these branches are combined by another 1:N coupler and sent to a dispersion compensation fiber which is used to introduce group delay dispersion to the optical signal. At a photodetector, each time-delayed broadband lightwave beating with the sidebands produced by the phase modulator forms a passband of the MPF. By tuning the delay of each broadband lightwave, the center frequency of the passband can be independently tuned. An MPF with two independently tunable passbands is experimentally demonstrated. The two passbands can be tuned from DC to 30 GHz with a 3-dB bandwidth of about 250 MHz. The stability and dynamic range of the MPF are also evaluated. By employing more branches delayed by ODLs, more passbands can be generated. PMID:26480071

  1. A broadband toolbox for scanning microwave microscopy transmission measurements

    Science.gov (United States)

    Lucibello, Andrea; Sardi, Giovanni Maria; Capoccia, Giovanni; Proietti, Emanuela; Marcelli, Romolo; Kasper, Manuel; Gramse, Georg; Kienberger, Ferry

    2016-05-01

    In this paper, we present in detail the design, both electromagnetic and mechanical, the fabrication, and the test of the first prototype of a Scanning Microwave Microscope (SMM) suitable for a two-port transmission measurement, recording, and processing the high frequency transmission scattering parameter S21 passing through the investigated sample. The S21 toolbox is composed by a microwave emitter, placed below the sample, which excites an electromagnetic wave passing through the sample under test, and is collected by the cantilever used as the detector, electrically matched for high frequency measurements. This prototype enhances the actual capability of the instrument for a sub-surface imaging at the nanoscale. Moreover, it allows the study of the electromagnetic properties of the material under test obtained through the measurement of the reflection (S11) and transmission (S21) parameters at the same time. The SMM operates between 1 GHz and 20 GHz, current limit for the microwave matching of the cantilever, and the high frequency signal is recorded by means of a two-port Vector Network Analyzer, using both contact and no-contact modes of operation, the latter, especially minded for a fully nondestructive and topography-free characterization. This tool is an upgrade of the already established setup for the reflection mode S11 measurement. Actually, the proposed setup is able to give richer information in terms of scattering parameters, including amplitude and phase measurements, by means of the two-port arrangement.

  2. Profile evaluation techniques for O-mode broadband microwave reflectometry on ASDEX

    International Nuclear Information System (INIS)

    Density profiles from reflectometry can be obtained, in principle, with phase or time delay measurements. In the first case frequency-modulated continuous waves (FM-CW) are launched into the plasma, and in the second one different types of signals, namely pulses, are used. Whereas in the ionosphere density profiles are normally obtained with pulsed radar techniques, in fusion plasmas FM-CW reflectometry has been mostly used. In both techniques the localization of each reflecting layer cannot be deducted from single measurements as, for the same measured phase shift or time delay, the location depends on the density of the plasma that the waves have encountered in their propagating path. So, in order to determine the correct position of each layer all the layers with lower densities have to be probed. As microwaves are very sensitive to plasma modes and broadband turbulence the resulting phase or time delay perturbations may lead to the incorrect interpretation of the data, causing large errors in the evaluated profiles. Also, in some cases, it is not possible to probe the complete plasma and deviations may occur due to the missing information. The evaluation of the profiles must, therefore, include data analysis procedures that take into account both the effect of plasma fluctuations and the limitations of the diagnostic. Here we present the techniques developed to analyse the ASDEX data, and discuss their potentialities for the routine evaluation of the density profiles from broadband reflectometry. (author). 3 refs, 12 figs

  3. Planar metamaterial-based beam-scanning broadband microwave antenna

    International Nuclear Information System (INIS)

    The broadband directive emission from the use of waveguided metamaterials is numerically and experimentally reported. The metamaterials, which are composed of non-resonant circular complementary closed ring structures printed on a dielectric substrate, are designed to obey the refractive index of a Luneburg lens. An arc array of planar radiating slot antennas placed at the periphery of the lens is used as wave launchers. A prototype of the lens associated with the feed structures has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, far-field radiation patterns have been measured. Furthermore, this metamaterial-based lens can be used to achieve beam-scanning with a coverage of up to 120 °. Far-field measurements agree qualitatively with calculated near-field distributions

  4. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  5. Microwave photonic bandpass filter based on spectrumslicing and phase modulator

    Institute of Scientific and Technical Information of China (English)

    JIN Sheng-cai; ZHANG Ai-ling

    2011-01-01

    A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slicing a broadband source using a Mach-Zehnder interferometer (MZI) which results in a high MSR of 25 dB, The tunability of the filter is realized by an optical variable delay line (OVDL) in one arm of the MZI, which changes the wavelength spacing of the sliced broadband source and results in a tunable free spectrum range (FSR) of the filter. The central frequency of the bandpass filter is tunable from 10.7 GHz to 27 GHz by changing the wavelength spacing from 0.145 nm to 0.054 nm.

  6. Broadband Analysis of Microwave Structures by Enhanced Finite-Element Methods

    OpenAIRE

    Z. Raida; Motl, M.

    2005-01-01

    The paper deals with the broadband modeling of microwave structures by finite-element methods. The attention is turned to original enhancements of accuracy, efficiency and stability of finite-element codes. The partial improvements are based on novel approximations both in the spatial domain and in the time one, in the adoption of complex frequency hopping, fast frequency sweep and envelope finite-element techniques. In the paper, a possible hybridization of approaches is discussed. Proposed ...

  7. Coupled Lines Filters for Broadband Impedance Matching of Microwave Amplifiers

    Directory of Open Access Journals (Sweden)

    Mohammed Lahsaini

    2014-08-01

    Full Text Available In this paper we present a broadband matching technique for the design of low noise amplifiers. This technique is based on the use of coupled lines filters and quarter wave transformers for the adaptation and stabilization of these amplifiers, presenting the theory and the design process of these circuits. The type of transistors used for modeling this amplifier is the HEMT of Alpha Industries®. The results we found show that this amplifier is unconditionally stable with a satisfactory gain of about 20 dB and good impedance matching across the band of interest [10-12] GHz. The amplifier modeled in this work can be integrated in satellite receiving systems and radar systems.

  8. AMiBA: Broadband Heterodyne Cosmic Microwave Background Interferometry

    Science.gov (United States)

    Chen, Ming-Tang; Li, Chao-Te; Hwang, Yuh-Jing; Jiang, Homin; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chiueh, Tzi-Dar; Chu, Tah-Hsiung; Han, Chih-Chiang; Huang, Yau-De; Kesteven, Michael; Kubo, Derek; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wang, Huei; Wilson, Warwick; Ho, Paul T. P.; Huang, Chih-Wei; Koch, Patrick; Liao, Yu-Wei; Lin, Kai-Yang; Liu, Guo-Chin; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Wu, Jiun-Huei Proty

    2009-04-01

    The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first results on the detection of galaxy clusters via the Sunyaev-Zel'dovich effect. The objectives required small reflectors in order to sample large-scale structures (20'), while interferometry provided modest resolutions (2'). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102 GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. Monolithic millimeter-wave integrated circuit technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operation since 2006, and we are in the process to expand the array from seven to 13 elements.

  9. Structure determination of trans-cinnamaldehyde by broadband microwave spectroscopy.

    Science.gov (United States)

    Zinn, Sabrina; Betz, Thomas; Medcraft, Chris; Schnell, Melanie

    2015-06-28

    The rotational spectrum of trans-cinnamaldehyde ((E)-3-phenyl-2-propenal, C9H8O) was recorded by chirped-pulse Fourier transform microwave spectroscopy in the frequency range of 2-8.5 GHz. The odourant molecule is the essential component of cinnamon oil and causes the characteristic smell. The rotational signatures of two conformers were observed: s-trans-trans- and s-cis-trans-cinnamaldehyde. The rotational spectra of s-trans-trans-cinnamaldehyde and all of its (13)C-monosubstituted species in natural abundance were assigned and the corresponding carbon backbone structure was determined. The second conformer s-cis-trans-cinnamaldehyde is about 9 kJ mol(-1) higher in energy and could also be identified in the spectrum. PMID:26030313

  10. Broadband microwave propagation in a novel large coaxial gridded hollow cathode helium plasma

    Science.gov (United States)

    Gao, Ruilin; Yuan, Chengxun; Liu, Sha; Yue, Feng; Jia, Jieshu; Zhou, Zhongxiang; Wu, Jian; Li, Hui

    2016-06-01

    The broadband microwave propagating characteristics of a novel, large volume, coaxial gridded hollow cathode helium plasma is reported in this paper. The basic plasma parameters were determined using an Impedans Ltd. Langmuir probe under a variety of conditions. The transmission attenuation was recorded by using Scattering Parameters (S-parameters) of a vector network analyzer with the frequency range from 2 GHz to 18 GHz and a propagation model was established using the Z transform finite-difference time-domain method for simulating the transmission of microwave. The effects of both the gas pressure and the input power on the electromagnetic wave propagation are analyzed. The results showed that the computational and experimental results of transmission attenuation were in good agreements. Moreover, the electron density ne and the effective collision rate ν c were found to play important roles in the propagation of microwave.

  11. Broadband sum frequency generation via chirped quasi-phase-matching

    OpenAIRE

    Rangelov, A. A.; Vitanov, N. V.

    2011-01-01

    An efficient broadband sum frequency generation (SFG) technique using the two collinear optical parametric processes \\omega 3=\\omega 1+\\omega 2 and \\omega 4=\\omega 1+\\omega 3 is proposed. The technique uses chirped quasi-phase-matched gratings, which, in the undepleted pump approximation, make SFG analogous to adiabatic population transfer in three-state systems with crossing energies in quantum physics. If the local modulation period %for aperiodically poled quasi-phase-matching first makes ...

  12. Phase noise measurement of phase modulation microwave photonic links

    Science.gov (United States)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  13. Phase 2 microwave concrete decontamination results

    International Nuclear Information System (INIS)

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm2/s and 4.9 cm3/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard

  14. Broadband Analysis of Microwave Structures by Enhanced Finite-Element Methods

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2005-12-01

    Full Text Available The paper deals with the broadband modeling of microwave structuresby finite-element methods. The attention is turned to originalenhancements of accuracy, efficiency and stability of finite-elementcodes. The partial improvements are based on novel approximations both in thespatial domain and in the time one, in the adoption of complexfrequency hopping, fast frequency sweep and envelope finite-elementtechniques. In the paper, a possible hybridization of approaches isdiscussed. Proposed finite-element schemes are applied to the analysis ofcanonical longitudinally homogeneous transmission lines in order todemonstrate their advantages.

  15. Tunable microwave photonic notch filter based on sliced broadband optical source.

    Science.gov (United States)

    Yu, Yang; Li, Shangyuan; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2015-09-21

    A microwave photonic filter is demonstrated with both tunable center frequency and bandwidth. This filter is switchable from all-pass, bandpass to notch filter, and the notch filter is a result of the subtraction of a bandpass filter from an all-pass filter based on a balanced photodetector. The all-pass filter is achieved based on a single wavelength radio over fiber link, and the bandpass one is acquired by using the spectrum-sliced broadband optical source. Theoretical analysis and experimental results show that both the center frequency and the bandwidth of the notch filter can be widely tuned. PMID:26406636

  16. Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies

    Science.gov (United States)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-09-01

    We propose to realize a broadband and wide-angle reflective polarization converter in microwave regions. The proposed converter can convert a linearly polarized (LP) wave to its cross-polarized wave at three resonant frequencies. It can also convert the LP wave to a circularly polarized wave at other two resonant frequencies. Furthermore, the proposed converter can achieve broad bandwidth with incident angle up to 45°. The simulated and measured results are in agreement in the entire frequency regions, and the bandwidth of polarization conversion over 75 % can be obtained from 7.6 to 15.5 GHz under normal incidence and from 7.8 to 13.0 GHz under incident angle of 45°. The surface current distributions of the proposed converter are discussed to analyze the physical mechanism. The converter tolerance to wide angle of incidence and the broad bandwidth could be useful in the range of applications in the microwave regions.

  17. Broadband Active Phase Shifter GaAs MMIC

    OpenAIRE

    Duême, Ph.; Dequen, Th.; Funck, R.; Caillon, B.; Guerbeur, G.

    2002-01-01

    A broadband multifunction MMIC, achieving combined amplification and phase shift, has been developed on 2 (3.2 x 4) mm² chips using the UMS PH25 process. The frequency range is as large as characterised by a ratio of Fmax/Fmin = 6. The 5 bit phase shifter section is based on switched "all-pass" cells. The amplification function is realised through active switches consuming less than a total of 40 mA under 3V and providing an overall gain of about +6 dB.

  18. Experimental study of a high-current FEM with a broadband microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, G.G.; Bratman, V.L.; Ginzburg, N.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    One of the main features of FELs and FEMs is the possibility of fast and wideband tuning of the resonant frequency of active media, which can be provided by changing the particle energy. For a frequency adjustable FEM-oscillator, a broadband microwave system, which is simply combined with an electron-optical FEM system and consists of an oversized waveguide and reflectors based on the microwave beams multiplication effect has been proposed and studied successfully in {open_quotes}cold{close_quotes} measurements. Here, the operating ability of a cavity, that includes some key elements of the broadband microwave system, was tested in the presence of an electron beam. To provide large particle oscillation velocities in a moderate undulator field and the presence of a guide magnetic field, the FEM operating regime of double resonance was chosen. In this regime the cyclotron as well as undulator resonance conditions were satisfied. The FEM-oscillator was investigated experimentally on a high-current accelerator {open_quotes}Sinus-6{close_quotes} that forms an electron beam with particle energy 500keV and pulse duration 25ns. The aperture with a diameter 2.5mm at the center of the anode allows to pass through only the central fraction of the electron beam with a current about 100A and a small spread of longitudinal velocities of the particles. Operating transverse velocity was pumped into the electron beam in the pulse plane undulator of a 2.4cm period. The cavity with a frequency near 45GHz consists of a square waveguide and two reflectors. The broadband up-stream reflector based on the multiplication effect had the power reflectivity coefficient more than 90% in the frequency band 10% for the H{sup 10} wave of the square waveguide with the maximum about 100% at a frequency 45GHz. The down-stream narrow-band Bragg reflector had the power reflection coefficient approximately 80% in the frequency band of 4% near 45GHz for the operating mode.

  19. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    International Nuclear Information System (INIS)

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules

  20. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, D.; Shubert, V. A. [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); Giuliano, B. M. [Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid (Spain); Schnell, M., E-mail: melanie.schnell@mpsd.mpg.de [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg (Germany)

    2014-07-21

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules.

  1. Low-error and broadband microwave frequency measurement in a silicon chip

    CERN Document Server

    Pagani, Mattia; Zhang, Yanbing; Casas-Bedoya, Alvaro; Aalto, Timo; Harjanne, Mikko; Kapulainen, Markku; Eggleton, Benjamin J; Marpaung, David

    2015-01-01

    Instantaneous frequency measurement (IFM) of microwave signals is a fundamental functionality for applications ranging from electronic warfare to biomedical technology. Photonic techniques, and nonlinear optical interactions in particular, have the potential to broaden the frequency measurement range beyond the limits of electronic IFM systems. The key lies in efficiently harnessing optical mixing in an integrated nonlinear platform, with low losses. In this work, we exploit the low loss of a 35 cm long, thick silicon waveguide, to efficiently harness Kerr nonlinearity, and demonstrate the first on-chip four-wave mixing (FWM) based IFM system. We achieve a large 40 GHz measurement bandwidth and record-low measurement error. Finally, we discuss the future prospect of integrating the whole IFM system on a silicon chip to enable the first reconfigurable, broadband IFM receiver with low-latency.

  2. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  3. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis.

    Science.gov (United States)

    Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-08-24

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response. PMID:26368182

  4. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  5. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    Science.gov (United States)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with

  6. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    Directory of Open Access Journals (Sweden)

    Phatcharee Phoempoon

    2014-01-01

    Full Text Available The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M was prepared from NH4VO3 and H2C2O4·2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties.

  7. A broadband reflective filter for applying dc biases to high-Q superconducting microwave cavities

    Science.gov (United States)

    Hao, Yu; Rouxinol, Francisco; Lahaye, Matt

    2015-03-01

    The integration of dc-bias circuitry into low-loss microwave cavities is an important technical issue for topics in many fields that include research with qubit- and cavity-coupled mechanical system, circuit QED and quantum dynamics of nonlinear systems. The applied potentials or currents serve a variety of functions such as maintaining the operating state of device or establishing tunable electrostatic interactions between devices (for example, in order to couple a nanomechanical resonator to a superconducting qubit to generate and detect quantum states of a mechanical resonator). Here we report a bias-circuit design that utilizes a broadband reflective filter to connect to a high-Q superconducting coplanar waveguide (CPW) cavity. Our design allows us to apply dc-voltages to the center trace of CPW, with negligible changes in loaded quality factors of the fundamental mode. Simulations and measurements of the filter demonstrate insertion loss greater than 20 dB in the range of 3 to 10 GHz. Transmission measurements of the voltage-biased CPW show that loaded quality factors exceeding 105 can be achieved for dc-voltages as high as V = +/- 20V for the cavity operated in the single photon regime. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  8. Recent Breakthroughs in Microwave Photonics

    OpenAIRE

    Gasulla Mestre, Ivana; Lloret Soler, Juan Antonio; Sancho Durá, Juan; Sales Maicas, Salvador; Capmany Francoy, José

    2011-01-01

    We present a brief review of recent accomplishments in the field of Microwave Photonics (MWP). Recent research across a broad range of MWP applications is summarized, including photonic generation of microwave, millimeter, and Terahertz waves; broadband optical beamforming for phased array antennas; tunable, reconfigurable, and adaptive microwave photonic filtering, as well as the application of slow and fast light effects to the implementation of tunable microwave phase shifting and true tim...

  9. Microwave photonics: Harnessing slow light

    OpenAIRE

    Capmany J.; Gasulla I.; Sales S.

    2011-01-01

    Slow-light techniques originally conceived for buffering high-speed digital optical signals now look set to play an important role in providing broadband phase and true time delays for microwave signals.

  10. Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators

    Science.gov (United States)

    Ehteshami, Nasrin; Zhang, Weifeng; Yao, Jianping

    2016-08-01

    A broadband optically tunable microwave phase shifter with a tunable phase shift covering the entire 360° range using three cascaded silicon-on-insulator (SOI) microring resonators (MRRs) that are optically pumped is proposed and experimentally demonstrated. The phase tuning is implemented based on the thermal nonlinear effect in the MRRs. By optically pumping the MRRs, the stored light in the MRRs is absorbed due to two photon absorption (TPA) to generate free carriers, which result in free carrier absorption (FCA). The FCA effect would lead to the heating of the MRRs and cause a redshift in the phase response, which is used to implement a microwave phase shifter with a tunable phase shift. The device is designated and fabricated on an SOI platform, which is experimentally evaluated. The experimental results show that by optically pumping the MRRs, a broadband microwave photonic phase shifter with a bandwidth of 7 GHz from 16 to 23 GHz with a tunable phase shift covering the entire 360° phase shift range is achieved.

  11. Microwave pulse phase encoding using a photonic microwave delay-line filter.

    Science.gov (United States)

    Dai, Yitang; Yao, Jianping

    2007-12-15

    A novel technique to perform microwave pulse phase encoding using an incoherent photonic microwave delay-line filter is proposed and experimentally demonstrated. Being different from a regular microwave delay-line filter, in which the time-delay differences are identical between any adjacent taps, the proposed filter has nonidentical time-delay differences. A phase-encoded microwave pulse with the required code pattern is generated by properly adjusting the time-delay differences. The chip number of a generated phase code is determined by the number of the filter taps, and the phase shift of each chip is determined by the corresponding time-delay difference. The proposed technique is verified by experiments. The generation of binary and quaternary phase-coded pulses is experimentally demonstrated. PMID:18087517

  12. Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope

    Science.gov (United States)

    Gu, Sijia; Lin, Tianjun; Lasri, Tuami

    2016-06-01

    The complex dielectric permittivity of aqueous saline solutions has been determined in the frequency range [2-18 GHz] with a home-made near-field microwave microscope. The instrument is built on a vector network analyzer, a matching network, and an evanescent microwave probe. The interferometer-based matching network enables highly reproducible, sensitive, and accurate measurements on the entire frequency band of operation. NaCl solutions concentrations ranging from 0 to 160 mg/ml are investigated at 25 °C. A maximum measurement sensitivity for NaCl concentrations is found to be equal to 2.3 dB/(mg/ml) and 7.7°/(mg/ml) for magnitude and phase-shift, respectively. To translate the measurement data (S parameters) to the corresponding complex permittivities, an inversion procedure based on a simple calibration model is applied. The resulting complex permittivities are found to be in a very good agreement with those calculated by Cole-Cole model.

  13. 3D printed broadband transformation optics based all-dielectric microwave lenses

    Science.gov (United States)

    Yi, Jianjia; Nawaz Burokur, Shah; Piau, Gérard-Pascal; de Lustrac, André

    2016-04-01

    Quasi-conformal transformation optics is applied to design electromagnetic devices for focusing and collimating applications at microwave frequencies. Two devices are studied and conceived by solving Laplace’s equation that describes the deformation of a medium in a space transformation. As validation examples, material parameters of two different lenses are derived from the analytical solutions of Laplace’s equation. The first lens is applied to produce an overall directive in-phase emission from an array of sources conformed on a cylindrical structure. The second lens allows deflecting a directive beam to an off-normal direction. Full-wave simulations are performed to verify the functionality of the calculated lenses. Prototypes presenting a graded refractive index are fabricated through three-dimensional polyjet printing using solely dielectric materials. Experimental measurements carried out show very good agreement with numerical simulations, thereby validating the proposed lenses. Such easily realizable designs open the way to low-cost all-dielectric microwave lenses for beam forming and collimation.

  14. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities.

    Science.gov (United States)

    Zhang, Xueqian; Tian, Zhen; Yue, Weisheng; Gu, Jianqiang; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2013-09-01

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. PMID:23787976

  15. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian

    2013-06-21

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    CERN Document Server

    Meszarosova, Hana; Kashapova, Larisa; Gomory, Peter; Tokhchukova, Susanna; Myshyakov, Ivan

    2016-01-01

    We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz/s. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal l...

  17. Linear coherent receiver based on a broadband and sampling optical phase-locked loop

    DEFF Research Database (Denmark)

    Bowers, J.E.; Ramaswamy, A.; Johansson, L.A.; Klamkin, J.; Sysak, M.; Zibar, Darko; Coldren, L.; Rodwell, M.; Lembo, L.; Yoshimitsu, R.; Scott, D.; Davis, R.; Ly, P.

    A novel coherent receiver for linear optical phase demodulation is proposed and experimentally demonstrated. The receiver, based on a broadband optical phase-lock loop has a bandwidth of 1.45 GHz. Using the receiver in an analog link experiment, a spurious free dynamic range of 125 dBHz2/3 is mea...

  18. Broadband Chirped-Pulse Fourier-Transform Microwave Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers

    Science.gov (United States)

    Steber, Amanda L.; Obenchain, Daniel A.; Peebles, Rebecca A.; Peebles, Sean A.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Guirgis, Gamil A.

    2009-06-01

    The rotational spectrum of diethylsilane has been assigned using broadband chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy. Previously, Fourier-transform microwave rotational spectra were observed using a Balle-Flygare type instrument for the ^{28}Si isotopologues of the gauche-gauche, trans-gauche, and trans-trans conformers. In the present study, a broadband microwave spectrum was obtained at the University of Virginia, taking advantage of the ability to perform deep signal averaging to increase the measurement sensitivity. To obtain a full structural determination of the conformers of this molecule, spectra for the ^{29}Si, ^{30}Si, and single ^{13}C substitutions for the gauche-gauche, the trans-gauche, and the trans-trans species were assigned. Substitution (r_s) structures and inertial fit (r_0) structures were determined and a comparison between the experimental and ab initio structures will be presented. For the ^{28}Si isotopologues, the percent differences between the experimental and ab initio rotational constants are less than 1.5% for the trans-trans and trans-gauche and are between 2.0 and 5.0% for the gauche-gauche conformer. The structural parameters will be compared between this molecule, diethylgermane and other silicon containing molecules and the relative abundances of the three conformers will be discussed. S.A. Peebles, M.M. Serafin, R.A. Peebles, G.A. Guirgis, and H.D. Stidham J. Phys. Chem. A, (2009), DOI: 10.1021/jp811049n.

  19. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter.

    Science.gov (United States)

    Zhang, Yamei; Pan, Shilong

    2013-03-01

    A scheme for the generation of phase-coded microwave signals using an electrically tunable photonic microwave phase shifter is proposed and demonstrated. The photonic phase shifter is based on a single-sideband polarization modulator (PolM), and the tuning of the phase shifter is implemented by a second PolM. By introducing an RF signal to the first PolM and an electrical coding signal to the second PolM, a phase-coded microwave signal with binary phase codes or polyphase codes is achieved. An experiment is performed. The simple and flexible operation, high coding rate, large frequency range, excellent transmission performance, and high stability of the system is confirmed. PMID:23455292

  20. Broadband Microwave Wireless Power Transfer for Weak-Signal and Multipath Environments

    Science.gov (United States)

    Barton, Richard J.

    2014-01-01

    In this paper, we study the potential benefits of using relatively broadband wireless power transmission WPT strategies in both weak-signal and multipath environments where traditional narrowband strategies can be very inefficient. The paper is primarily a theoretical and analytical treatment of the problem that attempts to derive results that are widely applicable to many different WPT applications, including space solar power SSP.

  1. Spatio-spectral phase-matching in broadband soliton mode-locked lasers

    OpenAIRE

    Chia, Shih-Hsuan; Chen, Li-Jin; Kaertner, Franz

    2013-01-01

    A spatio-spectral phase-matching theory is introduced. It is used to improve broadband modelocking of a Ti:sapphire laser with a tunable enhancement of >15dB at long wavelengths while maintaining a good beam profile.

  2. Tunable all-optical single-bandpass photonic microwave filter based on spectrally sliced broad optical source and phase modulation.

    Science.gov (United States)

    Chen, Ming; Pan, Wei; Zou, Xihua; Luo, Bin; Yan, Lianshan; Liu, Xinkai

    2013-01-10

    A tunable all-optical single-bandpass photonic microwave filter (PMF) based on spectrally sliced broadband optical source and phase modulation is proposed and experimentally demonstrated. A broadband optical source and a Mach-Zehnder interferometer (MZI) are used to generate continuous optical spectral samples, which are employed to form a finite impulse response filter with a single-bandpass response with the help of a single-mode fiber. A phase modulator is then adopted to eliminate the baseband components in the filtering response. The center frequency of the PMF can be tuned by changing the free spectral range of the MZI. An experiment is performed, and the results demonstrate that the proposed PMF has a single-bandpass without baseband components and a tuning range of 5-15 GHz. PMID:23314649

  3. Broadband metasurface for independent control of reflected amplitude and phase

    OpenAIRE

    Sheng Li Jia; Xiang Wan; Pei Su; Yong Jiu Zhao; Tie Jun Cui

    2016-01-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with pola...

  4. Broadband nanoelectromechanical phase shifting of light on a chip

    OpenAIRE

    Poot, Menno; Tang, Hong X.

    2013-01-01

    We demonstrate an optomechanical phase shifter. By electrostatically deflecting the nanofabricated mechanical structure, the effective index of a nearby waveguide is changed and the resulting phase shift is measured using an integrated Mach-Zehnder interferometer. Comparing to thermo-optical phase shifters, our device does not consume power in static operation and also it can operate over large frequency, wavelength, and power ranges. Operation in the MHz range and sub-$\\mu$s pulses are demon...

  5. Phase-compensated metasurface for a conformal microwave antenna

    OpenAIRE

    Germain, Dylan; Seetharamdoo, Divitha; Burokur, Shah Nawaz; De Lustrac, André

    2013-01-01

    The in-phase radiation from a conformal metamaterial surface is numerically and experimentally reported. The LC-resonant metasurface is composed of a simultaneously capacitive and an inductive grid constituted by copper strips printed on both sides of a dielectric board. The metasurface is designed to fit a curved surface by modifying its local phase. The latter phase-compensated metasurface is used as a reflector in a conformal Fabry-Pérot resonant cavity designed to operate at microwave fre...

  6. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    Science.gov (United States)

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-08-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing.

  7. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Science.gov (United States)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  8. Broadband metasurface for independent control of reflected amplitude and phase

    Directory of Open Access Journals (Sweden)

    Sheng Li Jia

    2016-04-01

    Full Text Available We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with polarization orthogonal to the incident waves. The simulated and measured results of the presented metasurfaces show very good agreements. The proposed method has potential applications in engineering high-efficiency holography and complex electromagnetic and optical patterns.

  9. Broadband metasurface for independent control of reflected amplitude and phase

    Science.gov (United States)

    Jia, Sheng Li; Wan, Xiang; Su, Pei; Zhao, Yong Jiu; Cui, Tie Jun

    2016-04-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with polarization orthogonal to the incident waves. The simulated and measured results of the presented metasurfaces show very good agreements. The proposed method has potential applications in engineering high-efficiency holography and complex electromagnetic and optical patterns.

  10. Performance characterization of a broadband vector Apodizing Phase Plate coronagraph

    CERN Document Server

    Otten, G P P L; Kenworthy, M A; Miskiewicz, M N; Escuti, M J

    2014-01-01

    One of the main challenges for the direct imaging of planets around nearby stars is the suppression of the diffracted halo from the primary star. Coronagraphs are angular filters that suppress this diffracted halo. The Apodizing Phase Plate coronagraph modifies the pupil-plane phase with an anti-symmetric pattern to suppress diffraction over a 180 degree region from 2 to 7 {\\lambda}/D and achieves a mean raw contrast of 10^-4 in this area, independent of the tip-tilt stability of the system. Current APP coronagraphs implemented using classical phase techniques are limited in bandwidth and suppression region geometry (i.e. only on 1 side of the star). In this paper, we show the vector-APP (vAPP) whose phase pattern is implemented by the orientation of patterned liquid crystals. Beam-splitting according to circular polarization states produces two, complementary PSFs with dark holes on either side. We have developed a prototype vAPP that consists of a stack of 3 twisting liquid crystal layers with a bandwidth o...

  11. Microwave synthesis of phase-pure, fine silicon carbide powder

    International Nuclear Information System (INIS)

    Fine, monophasic silicon carbide powder has been synthesized by direct solid-state reaction of its constituents namely silicon and carbon in a 2.45 GHz microwave field. Optimum parameters for the silicon carbide phase formation have been determined by varying reaction time and reaction temperature. The powders have been characterized for their particle size, surface area, phase composition (X-ray diffraction) and morphology (scanning electron microscope). Formation of phase-pure silicon carbide can be achieved at 1300 deg. C in less than 5 min of microwave exposure, resulting in sub-micron-sized particles. The free energy values for Si + C → SiC reaction were calculated for different temperatures and by comparing them with the experimental results, it was determined that phase-pure silicon carbide can be achieved at around 1135 deg. C

  12. Broadband quasi-phase-matched second-harmonic generation in MgO: LiNbO3 waveguide

    Institute of Scientific and Technical Information of China (English)

    LIU Gui-hua; GUO Hai-run; FU Xing-hu; ZENG Xiang-long

    2011-01-01

    The quasi-phase-matched (QPM) condition of broadband second harmonic generation (SHG) in Ti-diffused MgO:LiNbOwaveguide is theoretically simulated. The results show that the center wavelength of broadband SHG dependent on the waveguide width is around 1550 nm and the bandwidth is 50 nm.

  13. Microwave photonic phase shifter based on tunable silicon-on-insulator microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi; Frandsen, Lars Hagedorn; Ou, Haiyan; Yvind, Kresten; Hvam, Jørn Märcher

    We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained.......We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained....

  14. Broadband Microwave Filters Based on Open Split Ring Resonators (OSRRs) and Open Complementary Split Ring Resonators (OCSRRs): Improved Models and Design Optimization

    OpenAIRE

    J. Bonache; Duran-Sindreu, M.; Velez, P; Martin, F.

    2011-01-01

    The paper is focused on the design of broadband bandpass filters at microwave frequencies. The proposed filters are based on a combination of open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs) loaded in a host transmission line. Since these resonators (OSRRs and OCSRRs) are electrically small, the resulting filters are compact. As compared to previous papers by the authors on this topic, the main aim and originality of the present paper is to demonstrate ...

  15. Broadband Focal Plane Wavefront Control of Amplitude and Phase Aberrations

    CERN Document Server

    Groff, Tyler D; Carlotti, Alexis; Riggs, A J Eldorado

    2012-01-01

    The Stroke Minimization algorithm developed at the Princeton High Contrast Imaging Laboratory has proven symmetric dark hole generation using minimal stroke on two deformable mirrors (DM) in series. The windowed approach to Stroke Minimization has proven symmetric dark holes over small bandwidths by using three wavelengths to define the bandwidth of correction in the optimization problem. We address the relationship of amplitude and phase aberrations with wavelength, how this changes with multiple DMs, and the implications for simultaneously correcting both to achieve symmetric dark holes. Operating Stroke Minimization in the windowed configuration requires multiple wavelength estimates. To save on exposures, a single estimate is extrapolated to bounding wavelengths using the established relationship in wavelength to produce multiple estimates of the image plane electric field. Here we demonstrate better performance by improving this extrapolation of the estimate to other wavelengths. The accuracy of the func...

  16. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    OpenAIRE

    Yin Zhang; Lanju Liang; Jing Yang; Yijun Feng; Bo Zhu; Junming Zhao; Tian Jiang; Biaobing Jin; Weiwei Liu

    2016-01-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patche...

  17. Efficient broadband sum and difference frequency generation with a single chirped quasi-phase-matching crystal

    OpenAIRE

    Rangelov, Andon A.

    2012-01-01

    We propose an efficient broadband frequency generation technique for two collinear optical parametric processes $\\omega_3=\\omega_1+\\omega_2$ and $\\omega_4=\\omega_1-\\omega_2$. It exploits chirped quasi-phase-matched gratings, which in the undepleted pump approximation regime perform population transfer that is analogous to adiabatic population transfer in a three-state ``vee'' quantum system. The energy of the input fields is transferred adiabatically either into $\\omega_3$ or $\\omega_4$ field...

  18. Broadband Millimeter-Wave In-Phase and Out-of-Phase Waveguide Dividers with High Isolation

    Science.gov (United States)

    Dong, Jun; Liu, Yu; Yang, Ziqiang; Peng, Hao; Yang, Tao

    2015-11-01

    In this paper, two novel broadband in-phase and out-of-phase waveguide power dividers with high isolation are presented. Based on the substrate-integrated waveguide (SIW) divider and SIW-to-waveguide transition circuit, two kinds of E-plane waveguide dividers have been implemented. Due to the features of in-phase and out-of-phase performances, the proposed waveguide dividers can provide much more flexibilities than that of conventional E-plane waveguide T-junction. A broadband phase and amplitude performances are achieved across the whole Ka-band owing to the wideband characteristic of the SIW divider and transition circuits. To minimize the size and loss of the divider, a compact and low-loss SIW-to-waveguide transition circuit has been developed using the antisymmetric tapered probes. Two prototypes of the Ka-band waveguide dividers, including the in-phase and out-of-phase types, have been fabricated and measured. Measured results show that the isolation, input return loss, output return loss, amplitude imbalance, and phase imbalance of the in-phase divider are better than 15.5, 13.1, 10.8, 0.4 dB, and 3.50, while those of the out-of-phase divider are better than 15.0, 13.4, 10.4, 0.5 dB, and 3.60, respectively, over the frequency range from 26.5 to 40 GHz. The measured results agree well with the simulated ones. Considering their wide bandwidth, high isolation, good port matching performance, and compact configuration, the two types of waveguide dividers can be good candidates for broadband applications in millimeter-wave waveguide systems.

  19. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks. PMID:20941075

  20. Efficient Generation of Stable Photonic Microwaves by Controlling the Limit-Cycle Oscillations of Optically Injected Semiconductor Lasers

    OpenAIRE

    AlMulla, Mohammad

    2015-01-01

    Photonic microwave or millimeter wave (MMW) sources that produce highly stable and broadly tunable microwave frequencies of low phase noise are anticipated for many applications ranging from broadband wireless access networks and satellite communication systems to emerging broadband photonics-based phased-array antennas and radars.The goal of this dissertation is to investigate and control the characteristics of the generated photonic microwave frequencies induced by an optically injected sem...

  1. Structured illumination diffraction phase microscopy for broadband, sub-diffraction resolution, quantitative phase imaging

    OpenAIRE

    Chowdhury, Shwetadwip; Izatt, Joseph A.

    2014-01-01

    Structured illumination microscopy (SIM) is an established technique that allows sub-diffraction resolution imaging by heterodyning high sample frequencies into the system’s passband via structured illumination. However, until now, SIM has been typically used to achieve sub-diffraction resolution for intensity-based imaging. Here, we present a novel optical setup that uses structured illumination with a broadband-light source to obtain noise-reduced, sub-diffraction resolution, quantitative-p...

  2. Magnonic crystals-based tunable microwave phase shifters

    International Nuclear Information System (INIS)

    Tunable microwave phase shifters using magnetostatic backward volume waves in yttrium iron garnet/gadolinium gallium garnet thin film-based one-dimensional (1-D) and two-dimensional (2-D) magnonic crystals (MCs) are reported in this paper. Large differential phase shifts with small insertion loss variations were achieved in the passbands neighboring the bandgaps by tuning of the bias magnetic field. Large phase tuning rates up to 13.48 °/(Oe cm) and 25.9 °/(Oe cm) together with small insertion loss variations of 2.08 dB/cm and 0.97 dB/cm were demonstrated in the 1-D and 2-D MCs, respectively. An excellent agreement between the measured and the calculated results based on Walker's equation was obtained.

  3. Magnonic crystals-based tunable microwave phase shifters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Chi, K. H. [Department of Electrical Engineering and Computer Science, and Institute for Surface and Interface Science, University of California, Irvine, California 92697 (United States); Tsai, C. S., E-mail: cstsai@uci.edu [Department of Electrical Engineering and Computer Science, and Institute for Surface and Interface Science, University of California, Irvine, California 92697 (United States); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China)

    2014-07-14

    Tunable microwave phase shifters using magnetostatic backward volume waves in yttrium iron garnet/gadolinium gallium garnet thin film-based one-dimensional (1-D) and two-dimensional (2-D) magnonic crystals (MCs) are reported in this paper. Large differential phase shifts with small insertion loss variations were achieved in the passbands neighboring the bandgaps by tuning of the bias magnetic field. Large phase tuning rates up to 13.48 °/(Oe cm) and 25.9 °/(Oe cm) together with small insertion loss variations of 2.08 dB/cm and 0.97 dB/cm were demonstrated in the 1-D and 2-D MCs, respectively. An excellent agreement between the measured and the calculated results based on Walker's equation was obtained.

  4. Phase dependent impedance and temperature dependent response of microwave SQUID

    International Nuclear Information System (INIS)

    We report measurements of the microwave impedance of superconducting point contacts as a function of the quantum mechanical phase difference phi. They yield a conductance of the form G(phi) = G/sub o/(1+alpha cos phi) where alpha is a dimensionless parameter reflecting an interference between the Cooper pairs and the quasiparticles. Experimental results agree with a negative alpha approximately equal to -.5 which can be interpreted in terms of a phenomenological model that follows essentially the Time Dependent Landau Ginzburg theory (TDLG). In the second part we report measurements of the response of a microwave SQUID using a Ta point contact at various temperatures. They give a progression of operating conditions from the non-hysteretic to the hysteretic mode. The responses calculated by Soerensen and by Burhman and Jackel are in qualitative agreement with the measurements. We also present a theory based on a calculation of the reflection coefficient from the point contact. This theory reproduces the results of Bunhman and Jackel and Soerensen and is directly adaptable to our microwave geometry. In the last chapter we present a calculation that exhibits explicitly the dependence of the response on OMEGA = PHI/sub o/nu/I/sub X sub/R where nu is the microwave frequency, I/sub c/ and R the critical current and resistance of the junction and PHI/sub o/ fluxoid quantum, and that agrees with their data and their interpretation of it in terms of a limiting time tau for the supercurrent response with tau varies as DELTA(T)/sup -1/ where DELTA (T) is the BCS gap parameter

  5. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-01

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  6. Advances in Low-Frequency 3-color Broadband Coherent Raman Spectroscopy of Condensed Phase Samples

    Science.gov (United States)

    Ujj, Laszlo

    2016-05-01

    Low-frequency dispersive spontaneous Raman spectroscopy is a very useful method to measure phonon frequencies in crystals or characterize collective vibrational motions of macromolecules. The coherent version of the method has not been fully explored yet. It is shown here that the 3-color Broadband Coherent Raman scattering can be a very powerful extension to not only gas phase but condensed phase low frequency (5-500 cm-1) vibrational measurements with large frequency separation between the narrowband and broadband radiation generating the signal. The spectral measurements presented here used volumetric Brag filters for the first time to record coherent Raman spectra. Specific spectral analysis using model independent methods to derive the vibrational information is also presented. The technic can be extended to measure electronic resonance enhanced spectra by tuning only the frequency of the narrowband laser close to the electronic transition frequencies. This makes the method suitable for coherent Raman microscopy. The polarization properties of the signal is also explained and experimentally verified. Financial support from the College of Sciences and Engineering of UWF is acknowledged.

  7. Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.

    Science.gov (United States)

    Girshovitz, Pinhas; Frenklach, Irena; Shaked, Natan T

    2015-11-01

    We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells. PMID:26440914

  8. Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design

    International Nuclear Information System (INIS)

    We present broadband near-zero-index metamaterials composed of dielectric resonators and metallic rods, whose permittivity ε and permeability μ are near-zero simultaneously. It is notable that the values of permittivity ε are equal to those of permeability μ over a broadband frequency range of 8.45 GHz to 10.5 GHz, indicating the impedances of the proposed near-zero-index metamaterials match vacuum in this broadband. The broadband near-zero-index metamaterials for manipulating radiation sources are analyzed. We also demonstrate numerically that such near-zero-index metamaterials can offer a unique grating condition in a phased array antenna, with the beam scanning angle range beyond the critical angle limit of the grating lobe. (paper)

  9. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu; Ou, Haiyan; Yvind, Kresten; Hvam, Jørn Märcher

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  10. Broadband Chirped-Pulse Fourier Transform Microwave Spectroscopy and Molecular Structure of the ARGON-{ {(Z)}}-1-CHLORO-2-FLUOROETHYLENE Complex

    Science.gov (United States)

    Marshall, Mark D.; Leung, Helen O.

    2012-06-01

    A chirped-pulse Fourier transform microwave spectrometer is used to obtain the 6--18 GHz rotational spectrum of the gas-phase complex formed between argon and (Z)-1-chloro-2-fluoroethylene. Both the 35Cl and 37Cl isotopologues are observed in natural abundance, and analysis of these spectra provides predictions for both singly-substituted 13C species with sufficient precision to allow their observation with minimal searching using the more sensitive narrow band Balle-Flygare cavity technique. The non-planar structure of the complex is similar to previously observed argon-fluoroethylene complexes with the argon atom closer to the fluorine than to the chlorine. In contrast to the argon-vinyl chloride and argon-cis-1,2-difluoroethylene complexes, tunneling of the argon atom between the two equivalent, non-planar geometries is not observed.

  11. Efficient broadband sum and difference frequency generation with a single chirped quasi-phase-matching crystal

    CERN Document Server

    Rangelov, Andon A

    2012-01-01

    We propose an efficient broadband frequency generation technique for two collinear optical parametric processes $\\omega_3=\\omega_1+\\omega_2$ and $\\omega_4=\\omega_1-\\omega_2$. It exploits chirped quasi-phase-matched gratings, which in the undepleted pump approximation regime perform population transfer that is analogous to adiabatic population transfer in a three-state ``vee'' quantum system. The energy of the input fields is transferred adiabatically either into $\\omega_3$ or $\\omega_4$ field, depending on which of the two phase matchings occurs first by the local modulation period in the crystal. One can switch the output between $\\omega_3$ and $\\omega_4$ by inverting the direction of the local modulation sweep, which corresponds to a rotation of the crystal by angle $\\pi$

  12. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  13. Phase-Dependent Electron-Ion Recombination in a Microwave Field

    International Nuclear Information System (INIS)

    Using picosecond laser photoionization of Li in a microwave field we have observed phase-dependent recombination of the photoelectrons with their parent Li+ ions. Recombination occurs at phases of the microwave field such that energy is removed from the photoelectron in the first microwave cycle after excitation, and there are two maxima in the recombination in each microwave cycle. These observations are consistent with observations made using an attosecond pulse train phase locked to an infrared pulse and with the ''simpleman's'' model, modified to account for the fact that the photoelectrons are produced in a Coulomb potential.

  14. Compact and stable temporally magnified tomography using a phase-locked broadband source.

    Science.gov (United States)

    Li, Bowen; Wei, Xiaoming; Tan, Sisi; Kang, Jiqiang; Wong, Kenneth K Y

    2016-04-01

    The temporally magnified tomography system is further improved in terms of resolution and imaging stability. We simplify the system configuration and improve the axial resolution simultaneously by utilizing a stabilized all-fiber broadband source. The highly stable spectrum of the source assisted by a phase-locked loop guarantees an improved imaging quality. In addition, the impact of the repetition-rate fluctuation of the source to the system stability is analyzed, which also applies to other temporal imaging systems. Achieving a 90-μm in-air resolution at 89-MHz A-scan rate and improved stability, we are taking one major step toward the practical application of this new optical tomographic modality. PMID:27192287

  15. Tunable microwave phase shifter based on silicon-on-insulator microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi; Ding, Yunhong; Frandsen, Lars Hagedorn; Ou, Haiyan; Yvind, Kresten; Hvam, Jørn Märcher

    2010-01-01

    We demonstrate microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators (MRRs). MRRs with different quality factors are fabricated and tested. A continuously tunable phase shift of up to 336 at a microwave frequency of 40 GHz is obtained using a high...

  16. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip;

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  17. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen

    2013-09-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  18. Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase

    Directory of Open Access Journals (Sweden)

    Alessandra Basso

    2009-01-01

    Full Text Available Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads' integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used.

  19. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  20. A novel phase noise measurement of phase modulation microwave photonic links

    Science.gov (United States)

    Ye, Quanyi; Gao, Yingjie; Yang, Chun

    2016-07-01

    Microwave photonic links can provide many advantages over traditional coaxial due to its low loss, small size, lightweight, large bandwidth and immunity to external interference. In this paper, a novel phase noise measurement system is built, since the input signal and the power supply noise can be effectively cancelled by a two-arm configuration without the phase locking. Using this approach, the phase noise performance of the 10-GHz phase modulation photonic link has been measured for the first time, evaluated the values of -124 dBc/Hz at 1 kHz offset and -132 dBc/Hz at 10 kHz offset is obtained. Theoretical analysis on the phase noise measurement system calibration is also discussed.

  1. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  2. Coupling of microwave magnetic dynamics in thin ferromagnetic films to stripline transducers in the geometry of the broadband stripline ferromagnetic resonance

    International Nuclear Information System (INIS)

    We constructed a quasi-analytical self-consistent model of the stripline-based broadband ferromagnetic resonance (FMR) measurements of ferromagnetic films. Exchange-free description of magnetization dynamics in the films allowed us to obtain simple analytical expressions. They enable quick and efficient numerical simulations of the dynamics. With this model, we studied the contribution of radiation losses to the ferromagnetic resonance linewidth, as measured with the stripline FMR. We found that for films with large conductivity of metals the radiation losses are significantly smaller than for magneto-insulating films. Excitation of microwave eddy currents in these materials contributes to the total microwave impedance of the system. This leads to impedance mismatch with the film environment resulting in decoupling of the film from the environment and, ultimately, to smaller radiation losses. We also show that the radiation losses drop with an increase in the stripline width and when the sample is lifted up from the stripline surface. Hence, in order to eliminate this measurement artefact, one needs to use wide striplines and introduce a spacer between the film and the sample surface. The radiation losses contribution is larger for thicker films

  3. Coupling of microwave magnetic dynamics in thin ferromagnetic films to stripline transducers in the geometry of the broadband stripline ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics, The University of Western Australia, Crawley 6009 (Australia)

    2016-01-07

    We constructed a quasi-analytical self-consistent model of the stripline-based broadband ferromagnetic resonance (FMR) measurements of ferromagnetic films. Exchange-free description of magnetization dynamics in the films allowed us to obtain simple analytical expressions. They enable quick and efficient numerical simulations of the dynamics. With this model, we studied the contribution of radiation losses to the ferromagnetic resonance linewidth, as measured with the stripline FMR. We found that for films with large conductivity of metals the radiation losses are significantly smaller than for magneto-insulating films. Excitation of microwave eddy currents in these materials contributes to the total microwave impedance of the system. This leads to impedance mismatch with the film environment resulting in decoupling of the film from the environment and, ultimately, to smaller radiation losses. We also show that the radiation losses drop with an increase in the stripline width and when the sample is lifted up from the stripline surface. Hence, in order to eliminate this measurement artefact, one needs to use wide striplines and introduce a spacer between the film and the sample surface. The radiation losses contribution is larger for thicker films.

  4. Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter.

    Science.gov (United States)

    Li, Wei; Sun, Wen Hui; Wang, Wen Ting; Wang, Li Xian; Liu, Jian Guo; Zhu, Ning Hua

    2014-03-10

    We propose and demonstrate a photonic-assisted wideband 360° microwave phase shifter based on a conventional dual-drive Mach-Zehnder modulator (DMZM) and an optical bandpass filter (OBPF). The two arms of the DMZM are driven by the fundamental microwave signal to be phase shifted and its frequency doubled component, respectively. The OBPF followed after the DMZM is used to remove the optical carrier and the sidebands at either side of the optical carrier. As a result, only two sidebands corresponding to the fundamental microwave signal and its frequency doubled component, respectively, are left. Moreover, the phase shift between the two sidebands can be continuously tunable by adjusting the bias voltage of the DMZM. This phase shift is mapped to the fundamental microwave signal which is recovered by beating the two sidebands in a photodetector (PD). The proposed approach is theoretically analyzed and experimentally verified. PMID:24663892

  5. Phase Noise Reduction of Narrow Linewidth Optical Fibre-Ring Based Microwave Oscillators : Modelling and Experimental Results

    OpenAIRE

    Bouchier, Aude; Saleh, Khaldoun; Merrer, Pierre-Henri; Llopis, Olivier

    2011-01-01

    Ultra high-Q optical resonators are interesting for microwave generation. We present the theoretical and experimental optimization of resonant fibre rings in order to reduce the phase noise of narrow linewidth microwave photonics oscillators.

  6. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi; Ding, Yunhong; Ou, Haiyan; Yvind, Kresten; Hvam, Jørn Märcher

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator. A...... quasi-linear phase shift of 360° with RF-power variation lower than 2dB and a continuous 270° phase shift without RF-power variation at a microwave frequency of 40GHz are also demonstrated....

  7. Research of low-frequency model of a low noise microwave frequency (phase) detector

    OpenAIRE

    Ri, Bak Son; Solodkov, O. V.

    2009-01-01

    The analysis of a low frequency model of an original microwave frequency (phase) detector with amplitude modulator, shift generator and subtracting unit is performed and the results of experimental research are presented. This research leads to a conclusion on the possibility of suppressing the most intensive phase noise at the output of the considered frequency (phase) detector.

  8. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.;

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitter...

  9. Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps.

    Science.gov (United States)

    Song, Minhyup; Torres-Company, Victor; Wu, Rui; Metcalf, Andrew J; Weiner, Andrew M

    2014-03-24

    Microwave photonic filters with arbitrary phase response can be achieved by merging high-repetition-rate electro-optic frequency comb technology with line-by-line pulse shaping. When arranged in an interferometric configuration, the filter features a number of programmable complex-coefficient taps equal to the number of available comb lines. In this work, we use an ultrabroadband comb generator resulting in a microwave photonic phase filter with >100 complex-coefficient taps. We demonstrate the potential of this filter by performing programmable chirp control of ultrawideband waveforms that extend over long (>10 ns) temporal apertures. This work opens new possibilities for compensating realistic linear distortion impairments on ultrabroadband wireless signals spanning over dozens of nanosecond temporal apertures. PMID:24663981

  10. Microwave hydrothermal synthesis of perovskite BiFeO{sub 3} nanoparticles: An insight into the phase purity during the microwave heating process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi; Zhu, Junyu; Xu, Wenfei [Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China); Sui, Jin [Key Laboratory of Rubber Plastic, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Peng, Hui, E-mail: hpeng@ee.ecnu.edu.cn [Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China); Tang, Xiaodong, E-mail: xdtang@sist.ecnu.edu.cn [Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2012-08-15

    In this work, a facile method for the synthesis of pure phase BiFeO{sub 3} (BFO) nanoparticles with the microwave assistance was reported. BFO nanoparticles with high pure phase can be prepared in 20 min, which is much shorter than that of the traditional hydrothermal methods. The effect of microwave heating time on the phase purity of obtained samples was investigated in detail by using X-ray diffraction (XRD). An interesting phenomenon was observed that the pervoskite-type BFO with pure phase periodically appeared during the microwave heating process. The investigation of the magnetic properties of prepared samples also revealed the periodical formation of the pure phase BFO. The sample with a microwave heating time of 20 min shows a magnetization of 1.05 emu g{sup -1} which is in accordance with the reported value. -- Highlights: Black-Right-Pointing-Pointer Pure phase BiFeO{sub 3} nanoparticles were prepared with microwave assistance in 20 min Black-Right-Pointing-Pointer Pure phase BiFeO{sub 3} formed, decomposed and reformed periodically during the microwave heating process. Black-Right-Pointing-Pointer The special heating mechanism of microwave causes this phenomenon. Black-Right-Pointing-Pointer The evolution of the magnetization testified the periodical formation of the pure phase BiFeO{sub 3}.

  11. SOLVENT-FREE SOLID SUPPORTED AND PHASE TRANSFERRED CATALYZED SYNTHESIS OF BENZANILINE DERIVATIVES USING MICROWAVE IRRADIATION

    Directory of Open Access Journals (Sweden)

    Kadir Ozden Yerdelen

    2012-01-01

    Full Text Available In this study, solvent-free and phase transfer catalysis conditions coupled with microwave irradiation and their advantages in synthesis of N-alkylation of primary anilines were reported. In this way two different microwave processing techniques were compared in terms of reaction yields. Consequently, microwave irradiation significantly reduced reaction times compared to traditional heating methods. Particularly synthesis by solvent-free solid supported microwave irradiaton was found more eco-friendly and had higher reaction efficiency against to phase transfer catalysis condition. Organic reactions under solvent-free conditions is advantageous because of enhanced selectivity, efficiency and more importantly, toxic and volatile solvents are avoided. So that this eco-friendly green approach might be applied to the rapid assembly of various alkylation reactions.

  12. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose;

    2010-01-01

    oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the......In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population...

  13. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond.

    Science.gov (United States)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya; Fujita, Ryushiro; Watanabe, Hideyuki; Ishi-Hayase, Junko; Itoh, Kohei M; Abe, Eisuke

    2016-05-01

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature. PMID:27250439

  14. A wideband photonic microwave phase shifter using polarization-dependent intensity modulation

    Science.gov (United States)

    Wang, Weiyu; Sun, Wenhui; Wang, Wenting; Tong, Youwan; Zheng, Jianyu; Yuan, Haiqing; Wang, Xin; Bai, Jinhua; Yu, Lijuan; Liu, Jianguo; Zhu, Ninghua

    2015-12-01

    We present a tunable and wideband microwave photonic phase shifter based on polarization-dependence of the LiNbO3 Mach-Zehender modulator (MZM). In the proposed device, an orthogonal single sideband modulation is implemented by using a MZM and an optical band-pass filter. With the polarizer to synthesize the polarization orthogonal optical carrier and sideband, the phase of the optical microwave signal output from the polarizer can be tuned from 0 to 360° by simply adjusting the polarization direction of the lights whereas the amplitude keeps constant. A full range tunable phase shifting in the frequency range of 10-35 GHz is achieved.

  15. Wireless Power Transfer to a Microaerial Vehicle with a Microwave Active Phased Array

    OpenAIRE

    Shotaro Nako; Kenta Okuda; Kengo Miyashiro; Kimiya Komurasaki; Hiroyuki Koizumi

    2014-01-01

    A wireless power transfer system using a microwave active phased array was developed. In the system, power is transferred to a circling microaerial vehicle (MAV) by a microwave beam of 5.8 GHz, which is formed and directed to the MAV using an active phased array antenna. The MAV is expected to support observation of areas that humans cannot reach. The power beam is formed by the phased array with eight antenna elements. Input power is about 5.6 W. The peak power density at 1,500 mm altitude w...

  16. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    Science.gov (United States)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  17. High-frequency noise contribution to phase noise in microwave oscillators and amplifiers

    Science.gov (United States)

    Cibiel, Gilles; Escotte, Laurent; Llopis, Olivier; Chaubet, Michel

    2004-05-01

    Phase noise of microwave free running sources has always been an important problem in various applications. This noise generates an increased bit error rate in a telecommunication link and degrades the sensitivity of a radar (particularly in the case of Doppler or FM-CW radar). Reducing this noise contribution is a difficult challenge for microwave engineers and circuit designers. The main contributor to this noise is well known to be the microwave transistor and finally an improvement of the oscillator phase noise will result from an optimization of the transistor phase noise. The 10 kHz to 1 MHz offset frequency range is the most important frequency range for many microwave oscillators applications. An improvement of the transistor (or oscillator) phase noise in this frequency range cannot be obtained without a good knowledge of the noise mechanisms involved in the device. In this frequency range, two different mechanisms may be at the origin of the phase noise. The first one involves the conversion to high frequencies of the transistor baseband noise (or 1/f noise) through the devices nonlinearities. The second one is due to the direct superposition of the transistor high frequency noise. This noise is simply added to the carrier, and this contribution may be described using the amplifier noise figure. In this paper, the evidence of the transistor high-frequency noise contribution in residual phase noise data is demonstrated. This behavior is observed in several bipolar devices in which the low-frequency noise contribution has been carefully minimized using an optimized bias network. Then, the phase noise behavior is correlated to nonlinear noise figure measurements. This study has been carried on numerous different microwave transistors, including FET and bipolar devices. An increase of the noise figure with the microwave signal level has been observed in each case.

  18. Broadband Chirped-Pulse Fourier Transform Microwave Spectroscopy and Molecular Structure of the ARGON-1-CHLORO-1-FLUOROETHYLENE Complex

    Science.gov (United States)

    Marshall, Mark D.; Leung, Helen O.

    2013-06-01

    Previous studies of argon complexes with fluoroethylenes have revealed a preference for a geometry that maximizes the contact of the argon atom with heavy atoms on the fluoroethylene. We have observed a continuation of this trend when one of the fluorine atoms is replaced by chlorine. As part of a systematic study of the effect of chlorine substitution on intermolecular interactions, we have examined the argon-1-chloro-1-fluoroethylene complex, and obtained the 5.6 - 18.1 GHz chirped-pulse Fourier transform microwave spectrum of this species. Transitions for both the ^{35}Cl and ^{37}Cl isotopologues are observed and analyzed to provide geometric parameters for this non-planar complex. The structure is found to be similar to those of analogous complexes and agrees well with ab initio predictions. Z. Kisiel, P.W. Fowler, and A.C. Legon, J. Chem. Phys. {95,} 2283 (1991).

  19. Broadband Response of Second Harmonic Generation in a Two-Dimensional Quasi-Random Quasi-Phase-Matching Structure

    International Nuclear Information System (INIS)

    The broadband response of second harmonic generation (SHG) is experimentally observed in a two-dimensional (2D) quasi-random quasi-phase-matching (QPM) structure. A nonlinear conversion efficiency of more than 50% is obtained. Due to the line-type distribution of the reciprocal vector, the second harmonic wave (SHW) covering a broad frequency band is efficiently radiated in the shape of one single spot or three spots instead of a stripe. This is believed to be favorable for its practical application and paves the way for the use of ultrahigh-bandwidth light sources and devices in modern optical technologies. (fundamental areas of phenomenology(including applications))

  20. Photonic microwave quadrature filter with low phase imbalance and high signal-to-noise ratio performance.

    Science.gov (United States)

    Cao, Yuan; Chan, Erwin H W; Wang, Xudong; Feng, Xinhuan; Guan, Bai-ou

    2015-10-15

    A photonic microwave quadrature filter is presented. It has a very simple structure, very low phase imbalance, and high signal-to-noise ratio performance. Experimental results are presented that demonstrate a photonic microwave quadrature filter with a 3 dB operating frequency range of 10.5-26.5 GHz, an amplitude and phase imbalance of less than ±0.3  dB and ±0.15°, and a signal-to-noise ratio of more than 121 dB in a 1 Hz noise bandwidth. PMID:26469589

  1. Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    OpenAIRE

    A. Didier; Millo, J.; Grop, S.; Dubois, B.; Bigler, E.; Rubiola, E.; Lacroûte, C.; Kersalé, Y.

    2015-01-01

    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $\\mathcal{L}(f)=-104 \\ \\mathrm{dBc}/\\mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained ...

  2. A novel method to augment extraction of mangiferin by application of microwave on three phase partitioning

    Directory of Open Access Journals (Sweden)

    Vrushali M. Kulkarni

    2015-06-01

    Full Text Available This work reports a novel approach where three phase partitioning (TPP was combined with microwave for extraction of mangiferin from leaves of Mangifera indica. Soxhlet extraction was used as reference method, which yielded 57 mg/g in 5 h. Under optimal conditions such as microwave irradiation time 5 min, ammonium sulphate concentration 40% w/v, power 272 W, solute to solvent ratio 1:20, slurry to t-butanol ratio 1:1, soaking time 5 min and duty cycle 50%, the mangiferin yield obtained was 54 mg/g by microwave assisted three phase partitioning extraction (MTPP. Thus extraction method developed resulted into higher extraction yield in a shorter span, thereby making it an interesting alternative prior to down-stream processing.

  3. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  4. Low-frequency model of the microwave frequency (phase) detector with amplitude modulator and shift oscillator

    OpenAIRE

    Ri, Bak Son; Solodkov, O. V.; Chizhikova, E. V.

    2009-01-01

    A low-frequency model of the microwave frequency (phase) detector with amplitude modulator and shift generator has been studied theoretically and experimentally. The results of experiment indicate that such FM (PM) detector can be also used in the HF band of radio frequencies.

  5. Phase locking and flux-flow resonances in Josephson oscillators driven by homogeneous microwave fields

    DEFF Research Database (Denmark)

    Salerno, Mario; Samuelsen, Mogens Rugholm

    1999-01-01

    We investigate both analytically and numerically phase locking and flux-flow resonances of long Josephson junctions in the presence of homogeneous microwave fields. We use a power balance analysis and a perturbation expansion around the uniform rotating solution to derive analytical expressions for...

  6. Microwave-assisted solid-phase Ugi four-component condensations

    DEFF Research Database (Denmark)

    Nielsen, John

    1999-01-01

    An 18-member library was constructed from 2 isocyanides, 3 aldehydes and 3 carboxylic acids via microwave-assisted solid-phase Ugi reactions on TentaGel S RAM. Products of high purity were obtained in moderate to excellent yields after reaction times of 5 minutes or less (irradiation at 60W). (C)...

  7. Nonlinear 3-D Microwave Imaging for Breast-Cancer Screening: Log, Phase, and Log-Phase Formulation

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob;

    2011-01-01

    The imaging algorithm used in the 3-D microwave imaging system for breast cancer screening, currently being developed at the Technical University of Denmark, is based on an iterative Newton-type algorithm. In this algorithm, the distribution of the electromagnetic constitutive parameters is updated...... their amplitudes and their unwrapped phases. In this paper, simplifications of the log-phase formulation are proposed, namely the log formulation, in which only the logarithm of the amplitudes are used, and the phase formulation, in which only the unwrapped phases are used. These formulations allow for...

  8. Filter-less frequency-doubling microwave signal generator with tunable phase shift

    Science.gov (United States)

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin

    2016-07-01

    A prototype for frequency-doubling microwave signal generator with tunable phase shift based on a filter-less architecture is proposed and analyzed. In the proposal, one dual parallel polarization modulator is used as the key component to generate two ±1st order sidebands along the orthogonal polarization directions with suppressed carrier. Then the polarization states of the two sidebands are aligned with the principal axes of an electro-optical phase modulator (EOPM). Tunable phase shift is implemented by controlling the direct current voltage applied to the EOPM. Without using any filters or wavelength-dependent components, the system possesses good frequency tunability and it can be applied to multi-wavelength operation. Taking advantage of the ability of frequency multiplication, the frequency tuning range can be wider than the operation bandwidth of the modulator. By theoretical analyses and simulated verifications, a frequency-doubling microwave signal ranging from 22 to 40 GHz with full range phase shift is achieved.

  9. Simple microwave interferometer for measuring small phase shifts with high spatial resolution

    International Nuclear Information System (INIS)

    A simple X-band microwave interferometer is described. Spatial resolution to approx.0.2 cm was obtained by using a simple Lecher wire system to transmit the microwaves through the test region. Power levels were such (approx.1 mW) that in the vicinity of the balance point the crystal detectors operated in their linear region. Under these conditions the output from the phase-sensitive detector varied linearly with phase over +- 10degree to better than 1%. The sensitivity in the region of the balance point was about 18 mV per degree of phase shift with a noise level of 9--10/sup 10/ electrons/cm3), cold plasmas, as well as other media in which small phase shifts are to be measured

  10. Phase and Amplitude Responses of Narrow-Band Optical Filter Measured by Microwave Network Analyzer

    OpenAIRE

    Wang, Hsi-Cheng; Ho, Keang-Po

    2006-01-01

    The phase and amplitude responses of a narrow-band optical filter are measured simultaneously using a microwave network analyzer. The measurement is based on an interferometric arrangement to split light into two paths and then combine them. In one of the two paths, a Mach-Zehnder modulator generates two tones without carrier and the narrow-band optical filter just passes through one of the tones. The temperature and environmental variations are removed by separated phase and amplitude averag...

  11. Multiobjective Optimization Method for Multichannel Microwave Components of Active Phased Array Antenna

    OpenAIRE

    Wang, Lu; Wang, Zhihai; Wang, Congsi; Li, Guozhou; Yin, Lei

    2016-01-01

    Multichannel microwave components are widely used and the active phased array antenna is a typical representative. The high power generated from T/R modules in active phased array antenna (APAA) leads to the degradation of its electrical performances, which seriously restricts the development of high-performance APAA. Therefore, to meet the demand of thermal design for APAA, a multiobjective optimization design model of cold plate is proposed. Furthermore, in order to achieve temperature unif...

  12. Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed

    CERN Document Server

    Delorme, J R; Galicher, R; Dohlen, K; Baudoz, P; Caillat, A; Rousset, G; Soummer, R; Dupuis, O

    2016-01-01

    Specific high contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable the direct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light. Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory. First, we recall the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components and the quality-control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared wi...

  13. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source.

    Science.gov (United States)

    Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui

    2015-11-15

    A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables. PMID:26565832

  14. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    OpenAIRE

    Ke Chen; Zhongjie Yang; Yijun Feng; Bo Zhu; Junming Zhao; Tian Jiang

    2015-01-01

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase ch...

  15. Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference

    Science.gov (United States)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.

  16. Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light

    International Nuclear Information System (INIS)

    Graphical abstract: Organic shape-stabilized solar thermal energy storage materials (OCSPCMs) with broadband harvesting for visible light were obtained by crosslinking and color matching, which provided a new platform for improving the efficiency of solar radiation utilization. - Highlights: • Novel phase change materials (OCSPCMs) were obtained by crosslinking and color matching. • The η of the OCSPCM was higher than 0.74 (visible light from 400 nm to 700 nm). • The phase change latent heats of the OCSPCMs were more than 120 J/g. • The OCSPCM has excellent form-stable effect during phase change process. - Abstract: Broadband visible sunlight usage and shape-stabilized effect were achieved using organic, cross-linking, and shape-stabilized phase-changed materials (OCSPCMs) with broadband visible light absorption, which were obtained by cross-linking reticulation and color matching (yellow, red, and blue) according to solar irradiation energy density. The obtained OCSPCMs exhibited excellent form-stable phase-change energy storage and broadband visible light-harvesting. Under broadband irradiation (from 400 nm to 700 nm), the light-to-heat conversion and the thermal energy storage efficiency (η > 0.74) of the OCSPCMs were significantly improved upon solar irradiation by color matching compared with those of OCSPCMs with single-band selective absorption of visible light (yellow, red, or blue). Differential scanning calorimetric results indicated that the phase change temperatures and latent heats of OCSPCMs ranged from 32.6 °C to 60.2 °C and from 120.1 J/g to 132.7 J/g, respectively. The novel materials show a reversible (more than 200 cycles) phase transition via ON/OFF switching of visible light irradiation

  17. Broad-band multisection electrooptic modulators

    Science.gov (United States)

    Lax, Benjamin; Marino, Richard M.; Eng, Richard S.

    1988-10-01

    A general solution has been derived for expressing the conversion of power from a base frequency to a modulation sideband using a multisection electrooptic modulator. The objective is to obtain broadband frequency modulation of a laser by the use of multiple collinear electrooptic crystals with microwave power levels well below the breakdown threshold. It is found that segmented structures lead to greater bandwidths, which increase with the number of modulator sections. This is achieved by adjusting the phases of microwaves between sections to maximize the single-sideband conversion efficiency. It is shown that a 10.6-micron CO2 laser modulator with six geometrically identical CdTe sections can potentially achieve a 3-dB bandwidth of nearly 6 GHz using a 10-kW traveling-wave tube operating at 16-GHz center frequency.

  18. Fast Microwave-Induced Thermoacoustic Tomography Based on Multi-Element Phase-Controlled Focus Technique

    Institute of Scientific and Technical Information of China (English)

    ZENG Lü-Ming; XING Da; GU Huai-Min; YANG Di-Wu; YANG Si-Hua; XIANG Liang-Zhong

    2006-01-01

    @@ We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 μs and an incident energy density of 0.45 m J/cm2, and the microwave energy is delivered by a rectangular waveguide with a cross section of (80.01 ± 0.02) × 10-4 m2. Compared to single transducer collection, the system with the multi-element linear transducer array can eliminate the mechanical rotation of the transducer, hence can effectively reduce the image blurring and improve the image resolution. Using a phase-controlled focus technique to collect thermoacoustic signals, the data need not be averaged because of a high signal-to-noise ratio, resulting in a total data acquisition time of less than 5s. The system thus provides a rapid and reliable approach to thermoacoustic imaging, which can potentially be developed as a powerful diagnostic tool for early-stage breast caners.

  19. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun, E-mail: yjfeng@nju.edu.cn; Zhu, Bo; Zhao, Junming; Jiang, Tian [Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China)

    2015-06-15

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  20. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  1. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    International Nuclear Information System (INIS)

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave

  2. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements

    Science.gov (United States)

    Soomro, R. A.; Weidle, C.; Cristiano, L.; Lebedev, S.; Meier, T.; Passeq Working Group

    2016-01-01

    The increasingly dense coverage of Europe with broad-band seismic stations makes it possible to image its lithospheric structure in great detail, provided that structural information can be extracted effectively from the very large volumes of data. We develop an automated technique for the measurement of interstation phase velocities of (earthquake-excited) fundamental-mode surface waves in very broad period ranges. We then apply the technique to all available broad-band data from permanent and temporary networks across Europe. In a new implementation of the classical two-station method, Rayleigh and Love dispersion curves are determined by cross-correlation of seismograms from a pair of stations. An elaborate filtering and windowing scheme is employed to enhance the target signal and makes possible a significantly broader frequency band of the measurements, compared to previous implementations of the method. The selection of acceptable phase-velocity measurements for each event is performed in the frequency domain, based on a number of fine-tuned quality criteria including a smoothness requirement. Between 5 and 3000 single-event dispersion measurements are averaged per interstation path in order to obtain robust, broad-band dispersion curves with error estimates. In total, around 63,000 Rayleigh- and 27,500 Love-wave dispersion curves between 10 and 350 s have been determined, with standard deviations lower than 2 per cent and standard errors lower than 0.5 per cent. Comparisons of phase-velocity measurements using events at opposite backazimuths and the examination of the variance of the phase-velocity curves are parts of the quality control. With the automated procedure, large data sets can be consistently and repeatedly measured using varying selection parameters. Comparison of average interstation dispersion curves obtained with different degrees of smoothness shows that rough perturbations do not systematically bias the average dispersion measurement. They

  3. Microwave-Assisted Solid Phase Organic Synthesis.Application to Indole Library Construction

    Institute of Scientific and Technical Information of China (English)

    DAI Wei-Min; SUN Li-Ping; GUO Dian-Shun; HUANG Xiang-Hong

    2004-01-01

    Microwave-assisted organic synthesis (MAOS) has attained increasing popularity due to recent advancement in the instrumentation of microwave technology. Now, MAOS can be performed under controlled temperature and pressure to yield reproducible results. For combinatorial chemistry,the dramatically increased reaction rate under microwave irradiation at high temperature provides an ideal solution to those sluggish reactions, in particular the combinatorial reactions carried out on solid supports. In this presentation, we describe our results on microwave-assisted solid-phase organic synthesis (MASPOS) applied to the construction of indole libraries such as 5. Compounds 4 were synthesized on the Rink amide resins using IRORI MicroKanTM reactors encoded with a radio-frequency (Rf) tag. The resin-bound terminal alkynes 2, prepared via the amide bond, were cross-coupled with the nitroaryl triflate under the conditions adopted from the solution reactions developed by us1,2. The nitro group of 3 was then reduced and sulfonylated to give 4. Ring closure reactions within 4 with Cu(OAc)2 were examined initially in refluxing DCE for 24 h, but no indole product was detected after cleavage from the resin. Therefore, the same reactions were carried out under microwave irradiation at 200 ℃ for 10 min on a Personal Chemistry Emrys Creator, the desired indoles 5 were obtained in 60-95% overall yields calculated from 1 and in >90% purities in most cases3. It is necessary to mention that the IRORI microreactors cannot tolerate the high temperature and the resin-bound 4 must be transferred to the reaction vials for the microwave-assisted ring closure reactions. A traceless synthesis of an indole library via MASPOS will be discussed as well.4

  4. Monolithically integrated optical phase lock loop for microwave photonics

    OpenAIRE

    Balakier, K.; Fice, M. J.; Ponnampalam, L.; Seeds, A. J.; Renaud, C. C.

    2014-01-01

    We present a review of the critical design aspects of monolithically integrated optical phase lock loops (OPLLs). OPLL design procedures and OPLL parameters are discussed. A technique to evaluate the gain of the closed loop operating system is introduced and experimentally validated for the first time. A dual-OPLL system, when synchronised to an optical frequency comb generator without any prior filtering of the comb lines, allows generation of high spectral purity signals at any desired freq...

  5. Bone sonometry: reducing phase aberration to improve estimates of broadband ultrasonic attenuation.

    Science.gov (United States)

    Bauer, Adam Q; Anderson, Christian C; Holland, Mark R; Miller, James G

    2009-01-01

    Previous studies suggest that phase cancellation at the receiving transducer can result in the overestimation of the frequency dependent ultrasonic attenuation of bone, a quantity that has been shown to correlate with bone mineral density and ultimately with osteoporotic fracture risk. Evidence supporting this interpretation is provided by phase insensitive processing of the data, which appear to reduce the apparent overestimates of attenuation. The present study was designed to clarify the components underlying phase aberration artifacts in such through-transmission measurements by conducting systematic studies of the simplest possible test objects capable of introducing phase aberration. Experimental results are presented for a Lexan phantom over the frequency range 300-700 kHz and a Plexiglas phantom over the 3-7 MHz range. Both phantoms were flat and parallel plates featuring a step discontinuity milled into one of their initially flat sides. The through-transmitted signals were received by a 0.6 mm diameter membrane hydrophone that was raster scanned over a grid coaxial with the transmitting transducer. Signals received by the pseudoarray were processed offline to emulate phase sensitive and phase insensitive receivers with different aperture diameters. The data processed phase sensitively were focused to demonstrate the results of planar, geometrical, and correlation-based aberration correction methods. Results are presented illustrating the relative roles of interference in the ultrasonic field and phase cancellation at the receiving transducer in producing phase aberration artifacts. It was found that artifacts due to phase cancellation or interference can only be minimized with phase insensitive summation techniques by choosing an appropriately large receiving aperture. Data also suggest the potentially confounding role of time-and frequency-domain artifacts on ultrasonic measurements and illustrate the advantages of two-dimensional receiving arrays in

  6. Algebraic decay and phase-space metamorphoses in microwave ionization of hydrogen Rydberg atoms

    International Nuclear Information System (INIS)

    We study classically the microwave ionization of hydrogen atoms using the standard one-dimensional model. We find that the survival probability of an electron decays algebraically for long exposure times. Furthermore, as the microwave field strength increases, we find that the asymptotic algebraic decay exponent can decrease due to phase-space metamorphoses in which new layers of Kolmogorov-Arnold-Moser (KAM) islands are exposed when KAM surfaces are destroyed. We also find that after such phase-space metamorphoses, the survival probability of an electron as a function of time can have a crossover region with different decay exponents. We argue that this phenomenon is typical for open Hamiltonian systems that exhibit nonhyperbolic chaotic scattering

  7. X-band microwave phase detector manufactured using GaAs micromachining technologies

    International Nuclear Information System (INIS)

    A novel integrated X-band microwave phase detector fabricated using GaAs micromachining technologies is presented in this paper. The proposed phase detector is composed of a power combiner and a thermoelectric microwave power sensor based on the Seebeck effect. The power sensor is used to sense the power of the combined signal, which is proportional to the phase difference. This detector is compatible with GaAs MMIC technology. Since it is entirely composed of passive devices, zero dc power consumption is realized with a simple structure. Different power levels from 2 to 23 dBm at 10 GHz are applied to the detector, and the measured result shows a function of 1 + cos ψ (ψ is the phase difference). Good linearity appears from about 45° to 135°, and sensitivities are 58.57, 27.86, 14.52 and 7.22 µV deg−1 with 23, 20, 17 and 14 dBm signal applied, respectively. Frequency characteristics are measured at three different phase shifts, 0°, 90° and 180°, and the phase detector shows the frequency detection capability in principle, if a proper phase shifter is adopted.

  8. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.; Pagano, S.; Parmentier, R. D.

    1990-01-01

    -dimensional functional map. Phase-locked states correspond to fixed points of the map. For junctions of in-line geometry, the existence and stability of such fixed points can be studied analytically. Study of overlap-geometry junctions requires the numerical inversion of a functional equation, but the results are...... qualitatively very similar. The map predicts significantly different behaviors for locking at odd and even subharmonic frequencies and at superharmonic frequencies. It also gives indications regarding hysteresis in the current-voltage characteristic, the existence of zero-crossing steps, and a description of...

  9. Phase space structures and ionization dynamics of hydrogen atom in elliptically polarized microwaves

    OpenAIRE

    Shchekinova, Elena; Chandre, Cristel; Uzer, Turgay

    2006-01-01

    International audience The multiphoton ionization of hydrogen atoms in a strong elliptically polarized microwave field exhibits complex features that are not observed for ionization in circular and linear polarized fields. Experimental data reveal high sensitivity of ionization dynamics to the small changes of the field polarization. The multidimensional nature of the problem makes widely used diagnostics of dynamics, such as Poincaré surfaces of section, impractical. We analyze the phase ...

  10. Mode and phase locking of a cavity vircator by injected microwave power from a relativistic magnetron

    International Nuclear Information System (INIS)

    The authors report results of experimental research which demonstrates the influence of externally injected microwave power on the behavior of a cavity vircator oscillator. The injected signal is provided by a relativistic magnetron. The virtual cathode oscillator can be primed to start at the magnetron frequency if the injected signal prefills the vircator cavity, or the vircator frequency can be pulled to the magnetron frequency if the injected signal arrives in the cavity after the vircator starts emitting. In either case the vircator is rapidly frequency locked to the injected signal. They are exploring a high injected power regime, the ratio of the oscillating vircator and the driving magnetron electric field amplitude (in the cavity) is nearly unity. Recently, the authors demonstrated that resonant cavities which enclose the virtual cathode reduce the vircator bandwidth and enhance its efficiency. They successfully demonstrated the phase-locking of two identical well-coupled, high power magnetrons. By combining the expertise gained from these two experiments they demonstrate the feasibility of phase control of an array of high power oscillators by connection to a single driving master oscillator. Time resolved measurements of the frequency and phase difference between the two microwave sources are presented and compared to theory. Details of both the injected and radiated microwave pulses and intracacies of the tuning procedures are discussed

  11. Ultrahigh-frequency microwave phase shifts mediated by ultrafast dynamics in quantum-dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2010-01-01

    We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers....

  12. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  13. Removal of contaminated concrete surfaces by microwave heating: Phase 1 results

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) is developing a microwave heating process to remove radiologically contaminated surface layers from concrete. The microwave energy is directed at the concrete surface and heats the concrete and free water present in the concrete matrix. Continued heating produces steam-pressure-induced mechanical stresses that cause the concrete surface to burst. The concrete particles from this steam explosion are small enough to be removed by a vacuum system, yet less than 1% of the debris is small enough to pose an airborne contamination hazard. The first phase of this program has demonstrated reliable removal of noncontaminated concrete surfaces at frequencies of 2.45 GHz and 10.6 GHz. Continuous concrete removal rates of 1.07 cm3/s with 5.2 kW of 2.45.-GHz power and 2.11 cm3/s with 3.6 kW of 10.6-GHz power have been demonstrated. Figures-of-merit for microwave removal of concrete have been calculated to be 0.21 cm3/s/kW at 2.45 GHz and 0.59 cm3/s/kW at 10.6 GHz. The amount of concrete removed in a single pass can be controlled by choosing the frequency and power of the microwave system

  14. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Science.gov (United States)

    Suryani, Puput Eka; Purnama, Herry; Susanto, Heru

    2015-12-01

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  15. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    International Nuclear Information System (INIS)

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance

  16. Bone sonometry: Reducing phase aberration to improve estimates of broadband ultrasonic attenuation

    OpenAIRE

    Bauer, Adam Q.; Anderson, Christian C.; Holland, Mark R.; Miller, James G.

    2009-01-01

    Previous studies suggest that phase cancellation at the receiving transducer can result in the overestimation of the frequency dependent ultrasonic attenuation of bone, a quantity that has been shown to correlate with bone mineral density and ultimately with osteoporotic fracture risk. Evidence supporting this interpretation is provided by phase insensitive processing of the data, which appear to reduce the apparent overestimates of attenuation. The present study was designed to clarify the c...

  17. Analysis of an effective optical filtering technique to enhance microwave phase shifts based on slow and fast light effects

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Xue, Weiqi;

    2008-01-01

    We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects.......We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects....

  18. Broadband antenna arrays using planar horns

    OpenAIRE

    Braude, V. B.; Sukhovetskaya, S. B.

    1997-01-01

    Broadband antennas are vitally important for various applications ranging from TV broadcasting to carrier-free ground-probing radars. We propose a microwave broadband antenna array (BAA), which may be realised using microstrip planar horns — flared end-fire radiating slot lines, known as Vivaldi-type antennas.

  19. Broadband terahertz spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wenhui Fan

    2011-01-01

    1.Introduction Spanning the frequency range between the infrared (IR) radiation and microwaves,terahertz (THz) waves are,also known as T-rays,T-lux,or simply called THz,assigned to cover the electromagnetic spectrum typically from 100 GHz (1011 Hz) to 10 THz (1013 Hz),namely,from 3 mm to 30 μm in wavelength,although slightly different definitions have been quoted by different authors.For a very long time,THz region is an almost unexplored field due to its rather unique location in the electromagnetic spectrum.Well-known techniques in optical or microwave region can not be directly employed in the THz range because optical wavelengths are too short and microwave wavelengths are too long compared to THz wavelengths.%An overview of the major techniques to generate and detect THz radiation so far, especially the major approaches to generate and detect coherent ultra-short THz pulses using ultra-short pulsed laser, has been presented. And also, this paper, in particularly, focuses on broadband THz spectroscopy and addresses on a number of issues relevant to generation and detection of broadband pulsed THz radiation as well as broadband time-domain THz spectroscopy (THz-TDS) with the help of ultra-short pulsed laser. The time-domain waveforms of coherent ultra-short THz pulses from photoconductive antenna excited by femtosecond laser with different pulse durations and their corresponding Fourier-transformed spectra have been obtained via the numerical simulation of ultrafast dynamics between femtosecond laser pulse and photoconductive material. The origins of fringes modulated on the top of broadband amplitude spectrum, which is measured by electric-optic detector based on thin nonlinear crystal and extracted by fast Fourier transformation, have been analyzed and the major solutions to get rid of these fringes are discussed.

  20. Influence of beam-loaded effects on phase-locking in the high power microwave oscillator

    International Nuclear Information System (INIS)

    Owing to the power limitation of a single device, much more attentions are focused on developing high power microwave (HPM) oscillators that can be phase-locked to the external signal in the recent HPM researches. Although the phase-locking is proved to be feasible in the conventional devices (such as magnetrons), challenges still exist in the HPM devices due to beam-loaded effects, which are more obvious in HPM devices because of its high current and the low Q-factor of the device. A simple structured HPM oscillator (Bitron) is introduced to study such effects on the phase-locking in the HPM oscillator. The self-consistent analysis is carried out to study such effects together with particle in cell simulations. Then the modified Adler equation is established for the phase-locking HPM oscillator. Finally, conditions for the phase-locking in the HPM oscillator are given

  1. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  2. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter.

    Science.gov (United States)

    Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P

    2015-01-01

    A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz. PMID:25531605

  3. Electromagnetic properties of high-carbon ferrochrome powders decarburized in solid phase by microwave heating

    International Nuclear Information System (INIS)

    Highlights: • High-carbon ferrochrome powders present diamagnetism. • We study the effect of temperature and time on electromagnetic properties. • The relative permittivity and permeability exhibit an opposite change trend. • The absorption peak shifts to lower frequency with the increasing temperature. - Abstract: During solid-phase decarburization, the changes of the electromagnetic properties can reflect the variation degree of material components. High-carbon ferrochrome powders (HCFCP) with addition of CaCO3 were decarburized in solid phase by microwave heating and the electromagnetic properties of the decarburized materials were investigated. With increasing in heating temperature from 1173 to 1473 K, the relative permittivity of the decarburized materials increases initially and then decreases, whereas the relative permeability exhibits an opposite change trend. As holding time ranges from 40 to 60 min at 1273 K, the relative permittivity and dielectric loss factor tend to decrease while the relative permeability and magnetic loss factor tend to increase, corresponding to the maximum mean velocity of decarburization. In microwave fields, electromagnetic properties of the decarburized materials principally vary with carbon content, C-vacancies and crystal structure, and their changes in turn affect the interaction of microwaves with the decarburized materials

  4. Broadband suppression of phase-noise with cascaded phase-locked-loops for the generation of frequency ramps

    Directory of Open Access Journals (Sweden)

    T. Musch

    2003-01-01

    Full Text Available The generation of analogue frequency ramps with non-fractional phase-locked-loops (PLL is a cost effective way of linearising varactor controlled oscillators (VCO. In case that the VCO shows a high phase-noise level, a single non-fractional PLL is not able to suppress the phase-noise of the VCO sufficiently. The reason for this is the limited loopbandwidth of the PLL. In the field of precise measurements a high phase-noise level is mostly not tolerable. Examples of VCO-types with an extremely high phase noise level are integrated millimetre wave oscillators based on GaAs-HEMT technology. Both, a low quality factor of the resonator and a high flicker-noise corner frequency of the transistors are the main reason for the poor phase-noise behaviour. On the other hand this oscillator type allows a cost effective implementation of a millimetre-wave VCO. Therefore, a cascaded two-loop structure is presented that is able to linearise a VCO and additionally to reduce its phase-noise significantly.

  5. Microwave hemorrhagic stroke detector

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  6. Microwave hemorrhagic stroke detector

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  7. A GaAs phase digitizing and summing system for microwave signal storage

    Science.gov (United States)

    Vu, Tho T.; Hattis, James M.

    1989-02-01

    The analysis, design, and development of a microwave signal storage prototype system using phase-quantization sampling are described. A GaAs 4-bit D/A converter has been demonstrated in a 3-bit DRFM prototype system with digital Si emitter-coupled logic (ECL) and RF microwave components at a sample rate of 200 MHz and exhibiting typically a -17-dBc harmonic suppression. A monolithic GaAs A/D and D/A converter has been demonstrated within an RF signal acquisition system. Performance data on the monolithic sampler reveal that the 3-bit quantization system exhibits signal reconstruction with harmonic supression exceeding 25 dB across an IF bandwidth of greater than 900 MHz.

  8. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials

    CERN Document Server

    Rudé, Miquel; Cetin, Arif E; Miller, Timothy A; Carrilero, Albert; Wall, Simon; de Abajo, F Javier García; Altug, Hatice; Pruneri, Valerio

    2015-01-01

    The phenomenon of extraordinary optical transmission {EOT} through arrays of nanoholes patterned in a metallic film has emerged as a promising tool for a wide range of applications, including photovoltaics, nonlinear optics, and sensing. Designs and methods enabling the dynamic tuning of the optical resonances of these structures are essential to build efficient optical devices, including modulators, switches, filters, and biosensors. However, the efficient combination of EOT and dynamic tuning remains a challenge, mainly because of the lack of materials that can induce modulation over a broad spectral range at high speeds. Here, we demonstrate tuneable resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - through the combination of phase change materials {PCMs}, which exhibit dramatic variations in optical properties upon transitions between amorphous and crystalline phases, with properly designed subwavelength nanohole metallic arrays. We further find throu...

  9. Broadband polarizing films by photopolymerization-induced phase separation and in situ Swelling

    International Nuclear Information System (INIS)

    This letter describes the spectral broadening of cholesteric liquid crystal films prepared from a blend comprising a cross-linkable liquid crystal polymer and a noncross-linkable low-molecular-weight liquid crystal. The bandwidth of the broadened reflection band can be increased by several times upon photopolymerization. The spectral broadening arises from the formation of gradient pitch across the film thickness. It is shown that both phase separation and in situ swelling are important mechanisms for the resulting film structure

  10. Advanced integrated optical beam forming networks for broadband phased array antenna systems

    OpenAIRE

    Burla, Maurizio

    2013-01-01

    Since the first half of the twentieth century, a large interest has been addressed by the scientific and engineering community to the world of phased arrays antennas. Their technology started to be developed during the Second World War for early warning radar techniques to identify threats from the skies. Those capable antennas have been deployed over the years in a number of diversified fields to address different applications needs. First employed almost exclusively in the defense and space...

  11. On the sensitivity of broadband regional seismic phases to multi-dimensional earth structure: implications for phase identification

    International Nuclear Information System (INIS)

    We have developed and are utilizing state-of-the-art, elastic wave propagation modeling capabilities to understand the physical basis of regional wave propagation phenomena. Understanding the physical basis of these phenomena is essential for developing transportable seismic identification techniques and for predicting the behavior of regional phases in relatively aseismic regions. Based on modeling of data in the vicinity of the Eastern Mediterranean, we find that regional phases (body waves, guided waves, and surface waves) are very sensitive to the existence of deep sedimentary basins. Crustal thinning also affects the regional body and guided waves but to a much lesser degree

  12. An example of resonances, coherent structures and topological phase transitions - the origin of the low frequency broadband spectrum in the auroral zone

    Directory of Open Access Journals (Sweden)

    T. Chang

    2001-01-01

    Full Text Available We consider the phenomena of intermittent turbulence in magnetized space plasmas from the point of view of topological phase transitions involving the merging and interactions of anisotropic coherent structures. The stochastic behaviour of these coherent plasma structures can undergo complex changes as the dynamic system evolves, similar to those commonly observed in (first and second order equilibrium phase transitions. When conditions are favourable, such topological entities can evolve into a state of forced and/or self-organized criticality (FSOC. As an example, we apply these ideas to the understanding of the origin of the commonly observed broadband power-law low frequency electric field spectral densities and the characteristic filamentary current structures in the auroral zone. The broadband turbulence can provide efficient resonant energization of the ionospheric oxygen ions.

  13. Design of a dc SQUID Phase Qubit with Controlled Coupling to the Microwave Signal

    Science.gov (United States)

    Budoyo, R. P.; Przybysz, A. J.; Cooper, B. K.; Kwon, H.; Kim, Z.; Cheng, B.; Dragt, A. J.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.; Khalil, M.; Gladchenko, S.; Stoutimore, M.; Palmer, B. S.; Osborn, K. D.

    2011-03-01

    We have designed an Al/ Al Ox /Al dc SQUID phase qubit on a sapphire substrate with a qubit junction area of 0.3 μ m 2 to minimize loss associated with two-level systems in the junction oxide barrier. The qubit junction is shunted with a 1.5 pF interdigitated capacitor, and is isolated from the bias leads by an LC filter and an inductive isolation network using a larger Josephson junction. A previous device we built with similar parameters had its relaxation time T1 limited by coupling to the microwave line. To reduce this coupling, we adopted a transmission line design and verified the coupling strength using microwave simulations. The new design will also allow us to measure the coupling to the SQUID by throughput measurements. We will discuss our design, the microwave simulations, our estimates for the overall coherence time due to losses and noise from various sources, and our progress towards testing the device. Acknowledgement: DOD, JQI, and CNAM.

  14. Microwave photonic link with improved phase noise using a balanced detection scheme

    Science.gov (United States)

    Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan

    2016-07-01

    A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.

  15. Wireless Power Transfer to a Microaerial Vehicle with a Microwave Active Phased Array

    Directory of Open Access Journals (Sweden)

    Shotaro Nako

    2014-01-01

    Full Text Available A wireless power transfer system using a microwave active phased array was developed. In the system, power is transferred to a circling microaerial vehicle (MAV by a microwave beam of 5.8 GHz, which is formed and directed to the MAV using an active phased array antenna. The MAV is expected to support observation of areas that humans cannot reach. The power beam is formed by the phased array with eight antenna elements. Input power is about 5.6 W. The peak power density at 1,500 mm altitude was 2.63 mW/cm2. The power is sent to a circling MAV. Therefore, the transfer beam should be polarized circularly to achieve a constant power supply independent of its yaw angle. To minimize the polarization loss, a sequentially routed antenna (SRA was applied to the transmitter antenna. Results show that the axial ratio of 0.440 dB was accomplished and that power fluctuation was kept below 1%.

  16. Amino Acids and Sugars in the Gas Phase: Microwave Data for Astrochemistry

    Science.gov (United States)

    Mata, S.; Cabezas, C.; Varela, M.; Peña, I.; Perez, C.; Blanco, S.; Sanz, M. E.; Lopez, J. C.; Alonso, J. L.

    2011-05-01

    Microwave spectroscopy, considered the most definitive gas phase structural probe, can distinguish between different conformational structures since they have unique spectroscopic constants and give separate rotational spectra. However it has been limited to molecular specimens having an appreciable vapor pressure. In general, molecules of biological importance have low vapor pressures and tend to undergo degradation upon heating. The combination of laser ablation with Fourier transform microwave spectroscopy in supersonic jets (LA-MB-FTMW) which overcomes the problems of thermal decomposition has rendered accessible the gas phase structural studies of these molecules. To date different α-, β- and γ-amino acids have been studied using this technique. Even in conformationally challenging systems the preferred conformations can be identified by rotational spectroscopy, as has been illustrated with the assignment of seven low-energy conformers in serine and threonine, six in cysteine and aspartic acid , and nine in γ-amino butyric (gaba). This technique has been successfully applied to the study of monosaccarides. Three conformers of the prototypes α-D-glucose and β-D-glucose have been characterized for the first time in the gas phase. After the first experimental observation of the monohydrated cluster of glycine, complexes between amino acids and nitrogen bases with water have also been investigated to obtain information on the changes induced in the conformational or tautomeric preferences by the addition of solvent molecules. The information given here is relevant for the unambiguous identification of these amino acids and sugars in the interstellar medium.

  17. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. copyright 1996 The American Physical Society

  18. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    Science.gov (United States)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  19. Integrated microwave photonic splitter with reconfigurable amplitude, phase, and delay offsets.

    Science.gov (United States)

    Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Roeloffzen, Chris G H; Hoekman, Marcel; Leinse, Arne; Boller, Klaus-J; Lowery, Arthur J

    2015-12-01

    This work presents an integrated microwave photonics splitter with reconfigurable amplitude, phase, and delay offsets. The core components for this function are a dual-parallel Mach-Zehnder modulator, a deinterleaver, and tunable delay lines, all implemented using photonic integrated circuits. Using a demonstrator with an optical free spectral range of 25 GHz, we show experimentally the RF splitting function over two continuous bands, i.e., 0.9-11.6 GHz and 13.4-20 GHz. This result promises a deployable solution for creating wideband, reconfigurable RF splitters in integrated forms. PMID:26625065

  20. A 2-10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators

    OpenAIRE

    Bruun, Marlene; Gliese, Ulrik Bo; Petersen, Anders Kongstad; Nielsen, Torben Nørskov; Stubkjær, Kristian

    1994-01-01

    Optical transmission of microwave signals becomes increasingly important. Techniques using beat between optical carriers of semiconductor lasers are promising if efficient optical phase locked loops are realized. A highly efficient GaAs MMIC optoelectronic phase detector for a 2-10 GHz OPLL is reported

  1. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links

    NARCIS (Netherlands)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; Dijk, van Paulus; Roeloffzen, Chris

    2013-01-01

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero

  2. A 2-10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators

    DEFF Research Database (Denmark)

    Bruun, Marlene; Gliese, Ulrik Bo; Petersen, Anders Kongstad;

    1994-01-01

    Optical transmission of microwave signals becomes increasingly important. Techniques using beat between optical carriers of semiconductor lasers are promising if efficient optical phase locked loops are realized. A highly efficient GaAs MMIC optoelectronic phase detector for a 2-10 GHz OPLL is...

  3. The high-precision phase measurement research of microwave s-band phased array antenna

    International Nuclear Information System (INIS)

    A 3.7 GHz Lower Hybrid Current Drive (LHCD) system will be implemented on EAST Tokomak for further research on controlled nuclear fusion. This paper presents the design of phase detection according to the requirement of 3.7 GHz Lower Hybrid Current Drive phase control system. First frequency is down converted, then it uses digital I/Q phase discrimination to realize high-precision phase measurement. (authors)

  4. Importance of phase unwrapping for the reconstruction of microwave tomographic images.

    Science.gov (United States)

    Grzegorczyk, Tomasz M; Meaney, Paul M; Jeon, Soon Ik; Geimer, Shireen D; Paulsen, Keith D

    2011-01-01

    Microwave image reconstruction is typically based on a regularized least-square minimization of either the complex-valued field difference between recorded and modeled data or the logarithmic transformation of these field differences. Prior work has shown anecdotally that the latter outperforms the former in limited surveys of simulated and experimental phantom results. In this paper, we provide a theoretical explanation of these empirical findings by developing closed form solutions for the field and the inverted electromagnetic property parameters in one dimension which reveal the dependency of the estimated permittivity and conductivity on the absolute (unwrapped) phase of the measured signal at the receivers relative to the source transmission. The analysis predicts the poor performance of complex-valued field minimization as target size and/or frequency and electromagnetic contrast increase. Such poor performance is avoided by logarithmic transformation and preservation of absolute measured signal phase. Two-dimensional experiments based on both synthetic and clinical data are used to confirm these findings. Robustness of the logarithmic transformation to variation in the initial guess of the reconstructed target properties is also shown. The results are generalizable to three dimensions and indicate that the minimization form with logarithmic transformation offers image reconstruction performance characteristics that are much more desirable for medial microwave imaging applications relative to minimizing differences in complex-valued field quantities. PMID:21339877

  5. Solid-phase microextraction and gas chromatography-mass spectrometry of volatile compounds from avocado puree after microwave processing.

    Science.gov (United States)

    López, Mercedes G; Guzmán, G R; Dorantes, A L

    2004-05-14

    Microwave processing offers an alternative to blanch fruits and vegetables, since the application of high temperature and short time often results in minimum damage. An experimental design was used to investigate the effect of microwave time, pH, and avocado leaves (independent variables) on avocado flavor (response) using solid-phase microextraction (SPME)-GC-MS. Among the fully characterized flavor volatiles, 19 compounds were derived from lipid oxidation and only 4 from the avocado leaves. The main components derived from lipids were aldehydes, ketones and alcohols. Terpenoids, estragole, and 2-hexenal [E] were volatiles derived from avocado leaves. When leaves were added to fresh and microwaved avocado terpenoids and 2-hexenal [E]/hexanal ratio increased, this behavior was considered to have a positive effect on the sensorial quality of the product. From the statistical analysis of the experimental design, it was possible to determinate that the most important factors influencing the abundance of flavor compounds derived from lipids were microwave time and pH. Maximum values of these compounds were detected at high levels of microwave time and low values of pH. On the other hand, response surface of terpenoids and estragole showed an increment when microwave time and avocado leaf was increased. The region of optimum response was 30 s microwave time, pH 5.5, and 1% of avocado leaf. PMID:15139417

  6. Microwave-assisted headspace solid-phase microextraction for the analysis of bioemissions from Eucalyptus citriodora leaves.

    Science.gov (United States)

    Xiong, Guohua; Goodridge, Carolyn; Wang, Limei; Chen, Yong; Pawliszyn, Janusz

    2003-12-31

    Microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) was developed as a simple and effective method for fast sampling of volatile organic compounds (VOCs) from Eucalyptus citriodora Hook (E. citriodora) leaves. During microwave heating, a simple shielding device made of aluminum foil was used to protect the SPME fiber from microwave irradiation while allowing the sample to be heated. A room temperature water bath was also used to allow microwave heating to be conducted in a more controlled manner. The inner heating caused by microwave irradiation dramatically accelerated the emission of VOCs from the sample, but no marked change in headspace temperature in the sample vial was found. Under optimum conditions, the extraction efficiencies obtained with microwave heating were much higher than those obtained without microwave heating for all fibers used, namely, 7-microm polydimethylsiloxane (PDMS), 100-microm polydimethylsiloxane (PDMS), 65-microm polydimethylsiloxane/divinylbenzene (PDMS/DVB), and 75-microm carboxen/polydimethylsiloxane (CAR/PDMS). The improvement of extraction efficiency using MA-HS-SPME allowed more VOC events to be detected, with more balanced extraction of VOCs of lower and higher molecular masses. Moreover, a good linear relationship was found between sample size and GC-FID response (total peak area of VOCs), indicating the usefulness of MA-HS-SPME for quantitative analysis of individual volatile compounds in E. citriodora leaves. PMID:14690362

  7. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    OpenAIRE

    Yanqin Wang; Mingbo Pu; Zuojun Zhang; Xiong Li; Xiaoliang Ma; Zeyu Zhao; Xiangang Luo

    2015-01-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated b...

  8. Phase equilibria at 773 K and microwave absorbing properties of Er–Fe–Cr alloys

    International Nuclear Information System (INIS)

    Highlights: • The phase equilibria of Er–Fe–Cr system at 773 K were investigated experimentally. • The isothermal section consists of 8 single-phase regions, 14 two-phase regions and 7 three-phase regions. • The solid solubilities of Cr in ErFe2, ErFe3, Er6Fe23, Er2Fe17, and Fe at 773 K are determined by experimental method. • The intermetallic compounds in Er–Fe–Cr system exhibit good microwave absorbing property in the X–band (8–12 GHz). - Abstract: The phase equilibria of Er–Fe–Cr system at 773 K were investigated by X-ray powder diffraction (XRD), differential thermal analysis (DTA), and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The isothermal section consists of 8 single-phase regions, 14 two-phase regions and 7 three-phase regions. The homogeneity range of the ternary compound ErFe12−xCrx was determined to be x = 1.6–3.0. The maximum solid solubilities of Cr in ErFe2, ErFe3, Er6Fe23, Er2Fe17, and Fe are about 8.2, 1.2, 15.6, 9.6 and 13.8 at.% Cr, respectively, and the solubility limit of Fe in Cr is about 13.3 at.% Fe. The microwave absorbing properties of the intermetallic compounds in Er–Fe–Cr system were determined. All the samples exhibited good absorbing property in the X-band (8–12 GHz). With a coating thickness of d = 2.0 mm, the minimum return loss at the absorption peak frequency of the ErFe2, ErFe3, Er6Fe23, Er2Fe17 and ErFe10Cr2 are −19.66 dB at 9.6 GHz, −29.57 dB at 8.16 GHz, −35.04 dB at 12.72 GHz, −22.72 dB at 9.76 GHz and −13.51 dB at 11.2 GHz, respectively

  9. A low phase noise microwave source for atomic spin squeezing experiments in 87Rb

    International Nuclear Information System (INIS)

    We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of 87Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 x 10587Rb atoms.

  10. Phase Analysis for Frequency Standards in the Microwave and Optical Domains

    CERN Document Server

    Kazda, M; Huntemann, N; Lipphardt, B; Weyers, S

    2015-01-01

    Coherent manipulation of atomic states is a key concept in high-precision spectroscopy and used in atomic fountain clocks and a number of optical frequency standards. Operation of these standards can involve a number of cyclic switching processes, which may induce cycle synchronous phase excursions of the interrogation signal and thus lead to shifts in the output of the frequency standard. We have built a FPGA-based phase analyzer to investigate these effects and conducted measurements on two frequency standards. For the caesium fountain PTB-CSF2 we were able to exclude phase variations of the microwave source at the level of a few $\\mu$rad, corresponding to relative frequency shifts of less than 10$^{-16}$. In the optical domain, we investigated phase variations in PTB's Yb$^+$ optical frequency standard and made detailed measurements of AOM chirps and their scaling with duty cycle and driving power. We ascertained that cycle-synchronous as well as long-term phase excursion do not cause frequency shifts larg...

  11. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    Science.gov (United States)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  12. Phase-space structures and ionization dynamics of the hydrogen atom in elliptically polarized microwaves

    Science.gov (United States)

    Shchekinova, E.; Chandre, C.; Uzer, T.

    2006-10-01

    The multiphoton ionization of hydrogen atoms in a strong elliptically polarized microwave field exhibits complex features that are not observed for ionization in circular and linear polarized fields. Experimental data reveal high sensitivity of ionization dynamics to the small changes of the field polarization. The multidimensional nature of the problem makes widely used diagnostics of dynamics, such as Poincaré surfaces of section, impractical. We analyze the phase-space dynamics using the finite time stability analysis rendered by the fast Lyapunov indicators technique. The concept of zero-velocity surface is used to initialize the calculations and visualize the dynamics. Our analysis provides stability maps calculated for the initial energy at the maximum and below the saddle of the zero-velocity surface. We estimate qualitatively the dependence of ionization thresholds on the parameters of the applied field, such as polarization and scaled amplitude.

  13. A single-phase, color-tunable, broadband-excited white light-emitting phosphor Y2WO6: Sm3+

    International Nuclear Information System (INIS)

    Un-doped and Sm3+ doped Y2WO6 were synthesized with solid state reactions. X-ray diffraction measurements show that all the samples present single-phase Y2WO6. The combination of blue emission in a broad band from the host and several groups of emission lines in yellow, orange, and red spectral region results in a desired white light. The chromaticity coordinates and color temperature can be tuned by changing the doping concentration of Sm3+. The mechanisms of energy transfer were analyzed. The present results prove Sm3+ doped Y2WO6 is a promising single-phase, color-tunable, broadband-excited white light-emitting phosphor based on AlGaN-based ultraviolet light-emitting diodes. -- Highlights: • Y2WO6: Sm3+ is a single-phase, color-tunable, broadband-excited white light-emitting phosphor. • Energy transfer from the host to Sm3+ is mainly performed by exchange interact. • The chromaticity coordinates and color temperature can be tuned by changing the doping concentration of Sm3+

  14. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose;

    2009-01-01

    with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The...

  15. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene; Christensen, Erik Lintz; Stubkjær, Kristian; Lindgren, S.; Broberg, B.

    1992-01-01

    of a microwave reference source close to carrier with a noise level of -125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 s and an...

  16. Tracking Code for Microwave Instability

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; /SLAC

    2006-09-21

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability.

  17. A high-power microwave circular polarizer and its application on phase shifter

    Science.gov (United States)

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  18. Rural Broadband At A Glance, 2009 Edition

    OpenAIRE

    Stenberg, Peter L.; Low, Sarah A

    2009-01-01

    Three-quarters of U.S. residents used the Internet to access information, education, and services in 2007. Broadband Internet access is becoming essential for both businesses and households; many compare its evolution to other technologies now considered common necessities—such as cars, electricity, televisions, microwave ovens, and cell phones. Although rural residents enjoy widespread access to the Internet, they are less likely to have high-speed, or broadband, Internet access than their u...

  19. Slow Light Devices and Their Applications to Microwaves and Photonics

    OpenAIRE

    Santagiustina, M.; Eisenstein, G.; Thévenaz, Luc; Capmany, J.; Mork, J.; Reithmaier, J. P.; Rossi, A.; Sales, S; Yvind, K.; Combrié, S.; Bourderionnet, J

    2012-01-01

    Recently developed, highly effective technologies enabling slow light propagation as a tunable feature in photonic devices, are reviewed. Several applications in ICT are also demonstrated. Controlling the group velocity of light offers a broadband solution to a necessary functionality in microwave and millimeter wave systems: a tunable time-delay/phase-shift line. Moreover, slow light can highly enhance the nonlinearity, thus opening the way to on chip, nonlinear photonics.

  20. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi;

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  1. Broadband anomalous reflection based on gradient low-Q meta-surface

    Directory of Open Access Journals (Sweden)

    Mingbo Pu

    2013-05-01

    Full Text Available Gradient–index metamaterial is crucial in the spatial manipulation of electromagnetic wave. Here we present an efficient approach to extend the bandwidth of phase modulation by utilizing the broadband characteristic of low-quality (Q meta-surface in the reflection mode. The dispersion of the meta-surface is engineered to compensate the phase difference induced by frequency change. Meanwhile, a thin gradient index cover layer is added on the top of meta-surface to extend the phase modulation range to cover the entire [0, 360°]. As a proof of concept, anomalous nearly perfect reflection with relative bandwidth near 40% is demonstrated in the microwave regime.

  2. Optimization of aqueous enzymatic oil extraction from kernel of oil palm (elaeis guineensis) using three phase partitioning and microwave

    International Nuclear Information System (INIS)

    The use of microwave irradiation as a pretreatment before aqueous enzymatic oil extraction from oil palm kernel was found to be useful. The microwave irradiation for 10 min -assisted extraction was found to be a simpler and more effective alternative to the solvent extraction methods for the productions of palm kernel oil. Further enhancement was achieved when the microwave irradiated slurries were treated with a commercial enzyme preparation of proteases, followed by three phase partitioning. This resulted in 93% (w/w) oil yields form the palm kernel. The efficiency of the present technique is comparable to solvent extraction with an added advantage of being less time consuming and using t-butanol which is a safer solvent as compared to n-hexane used in conventional oil extraction process. The technique also tries to reduce the amount of enzyme used and hence reduces the overall cost. (author)

  3. Morphology and phase evolution in microwave synthesized Al/FeO4 system.

    Science.gov (United States)

    Chuan, Lee Chang; Yoshikawaa, Noboru; Taniguchia, Shoji

    2011-01-01

    Thermite reaction between Al/Fe3O4 raised by microwave (MW) heating under N2 atmosphere has been investigated, and compared with that by the electric furnace. In addition to the stoichiometric ratio for the production of metallic iron and alumina, mixture with slightly Lower in Al content is also studied. As thermite reaction is highly exothermic, melting of reaction product and destruction of microstructure may occur, which corresponds to the enthalpy and adiabatic temperature of the reaction. Hence, to avoid this problem, reaction coupled with a smaller driving force by controlling the MW ignition condition at low temperature exotherm has been investigated. The phase and microstructure evolution during the reaction were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Thermogram of the DTA analysis, irrespective of their mole ratio, recorded two exothermic peaks, one at - 1310 degrees C and another one at - 1370 degrees C. When heated by microwave at 955 degrees C, the main products were identified as Al, FeO and Fe, minor amount of Fe3O4 and some Fe and alumina were detected. When heating to 1155 degrees C, Al and Fe3O4 peaks disappeared, formation of Fe-Al alloy was observed. For sample heated at 1265 degrees C, a porous body was obtained. Micron sized metal particles with complex morphology, irregular in size and shapes were formed, uniformly distributed within the spinel hercynite and/or alumina matrix. In contrast, conventional heating produced no porous products. Formation of alumina is also observed around the metal particles. Controlling of the reaction progress was possible while heating the sample by MW around the low temperature exotherm region, whereas the combustion wave could not be self-propagated. PMID:24427878

  4. Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation

    International Nuclear Information System (INIS)

    Highlights: ► A promising and environmentally friendly chemical recycling route of polycarbonate. ► Implementation of a phase transfer catalyst facilitates the alkaline hydrolysis. ► Microwave irradiation is used to achieve relatively mild experimental conditions. ► Surface erosion seems to be the dominant degradation mechanism. ► The method also seems promising for the treatment of wastes based on PC (e.g., CDs). - Abstract: The various and widespread uses of polycarbonate (PC) polymers require a meaningful and environmentally friendly disposal method. In this study, depolymerisation of polycarbonate with water in a microwave reactor is suggested as a recycling method. Hydrolysis was investigated in an alkaline (NaOH) solution using a phase-transfer catalyst. All of the experiments were carried out in a sealed microwave reactor, in which the reaction pressure, temperature and microwave power were continuously controlled and recorded. In the hydrolysis products, bisphenol-A monomer was obtained and identified by FTIR measurements. PC degradation higher than 80% can be obtained at 160 °C after a microwave irradiation time of either 40 min or 10 min using either a 5 or 10% (w/v) NaOH solution, respectively. GPC, TGA and DSC measurements of the PC residues revealed that surface erosion is the degradation mechanism. First-order reaction kinetics were estimated by implementing a simple kinetic model. Finally, greater than 85% degradation was achieved when waste CDs were treated with the same method. The results confirm the importance of the microwave power technique as a promising recycling method for PC-based waste plastics, resulting in monomer recovery in addition to substantial energy savings.

  5. Phase composition and morphology of nanoparticles of yttrium orthophosphates synthesized by microwave-hydrothermal treatment: The influence of synthetic conditions

    International Nuclear Information System (INIS)

    Highlights: • We synthesized YPO4 and YPO4⋅0.8H2O nanoparticles by microwave-hydrothermal treatment. • We studied “conditions–composition–properties” relations for this synthetic path. • We revealed the mechanism of stabilization of YPO4⋅0.8H2O phase at high temperatures. - Abstract: Herein we report the study of the influence of synthesis conditions during the microwave-hydrothermal crystallization of freshly precipitated gels on the phase composition and morphology of the rare-earth doped yttrium orthophosphates nanoparticles. We characterize the nanoparticles of YPO4 and YPO4⋅0.8H2O using X-ray diffraction analysis, TEM, and FT-IR spectroscopy. Furthermore, we argue that for the given phase the degree of crystallinity and thus the sample morphology depend strongly on the synthesis conditions. We establish that the hexagonal hydrate phase can be obtained by means of microwave-hydrothermal method if one uses phosphate anion excess or adjusts pH of the reaction mixture. Also we show that the metastable hydrate phase is most likely stabilized by hydroxyl groups at elevated temperatures

  6. Phase composition and morphology of nanoparticles of yttrium orthophosphates synthesized by microwave-hydrothermal treatment: The influence of synthetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vanetsev, A.S., E-mail: alexander.vanetsev@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Samsonova, E.V. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Gaitko, O.M. [Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119991 (Russian Federation); Keevend, K. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Popov, A.V. [Prokhorov General Physics Institute RAS, Vavilov St. 38, Moscow 119991 (Russian Federation); Mäeorg, U. [Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411 (Estonia); Mändar, H.; Sildos, I. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Orlovskii, Yu.V. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov St. 38, Moscow 119991 (Russian Federation)

    2015-08-05

    Highlights: • We synthesized YPO{sub 4} and YPO{sub 4}⋅0.8H{sub 2}O nanoparticles by microwave-hydrothermal treatment. • We studied “conditions–composition–properties” relations for this synthetic path. • We revealed the mechanism of stabilization of YPO{sub 4}⋅0.8H{sub 2}O phase at high temperatures. - Abstract: Herein we report the study of the influence of synthesis conditions during the microwave-hydrothermal crystallization of freshly precipitated gels on the phase composition and morphology of the rare-earth doped yttrium orthophosphates nanoparticles. We characterize the nanoparticles of YPO{sub 4} and YPO{sub 4}⋅0.8H{sub 2}O using X-ray diffraction analysis, TEM, and FT-IR spectroscopy. Furthermore, we argue that for the given phase the degree of crystallinity and thus the sample morphology depend strongly on the synthesis conditions. We establish that the hexagonal hydrate phase can be obtained by means of microwave-hydrothermal method if one uses phosphate anion excess or adjusts pH of the reaction mixture. Also we show that the metastable hydrate phase is most likely stabilized by hydroxyl groups at elevated temperatures.

  7. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  8. Metamaterial broadband angular selectivity

    Science.gov (United States)

    Shen, Yichen; Ye, Dexin; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D.; Soljačić, Marin

    2014-09-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  9. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  10. Rapid phase-controlled microwave synthesis of nanostructured hierarchical tetragonal and cubic β-In 2S 3 dandelion flowers

    Science.gov (United States)

    Naik, S. D.; Jagadale, T. C.; Apte, S. K.; Sonawane, R. S.; Kulkarni, M. V.; Patil, S. I.; Ogale, S. B.; Kale, B. B.

    2008-02-01

    Phase controlled synthesis of hierarchical nanostructured β-In 2S 3 dandelion flowers is realized by a rapid microwave solvothermal process using indium metal, nitric acid and thiourea as precursors. The tetragonal and cubic phases of the compound have been successfully and separately stabilized in the same type of dandelion morphology by using aqueous-mediated and methanol-mediated synthesis, respectively. The possible mechanism responsible for phase control is discussed. Optical properties of the flowers as well as their hydrogen generation capability by photodecomposition of H 2S under visible light are also reported.

  11. An ultra-broadband frequency-domain terahertz measurement system based on frequency conversion via DAST crystal with an optimized phase-matching condition

    International Nuclear Information System (INIS)

    By applying the frequency conversion technique to 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal, a monochromatic terahertz (THz) measurement system, including both generation and detection, has been developed over quite a broad frequency band, from 1.85 to 30 THz. In the case of frequency upconversion detection of THz waves, for the first time, we used gratings instead of filters to tackle the tough phase-matching conditions for broadband operations. By synchronizing the rotation of two gratings to extract the frequency upconverted signal, the infrared (IR) pumping beam can be tuned freely over 300 nm with decent diffraction efficiency and sufficient isolation between the weak frequency upconversion signal and the strong IR pumping beam to be realized. Such a large tuning range has overcome the limit of commercial filters with a fixed passband, while such a high optical density value has been beyond the limit of commercial tunable filters. Consequently, the proposed frequency domain system gives the largest THz frequency band. Unlike THz time-domain spectroscopy systems in which a fs laser is applied and broadband THz pulses are applied, our system works based on a ns laser and it can function at a single THz frequency with random frequency access ability from pulse to pulse. (letter)

  12. Microwave sterilization with metal thin film coated catalyst in liquid phase

    International Nuclear Information System (INIS)

    We developed a novel sterilization method by which Microwave (MW) irradiation sterilizes Escherichia coli and Bacillus subtilis using a unique material of catalyst. These materials contained SiO2- and/or Al2O3-TiO2 that were coated with Pt and/or Ag. The pellets coated with micrometer size metal had a porous structure and a phase structure that maintained anatase in the system of SiO2-TiO2. We showed that MW irradiation completely sterilized the E. coli and B. subtilis that were loaded inside the pellet. The results suggested that other factors, besides temperature, contributed to effective sterilization. This is because there is a limit temperature for the life maintenance of such microorganisms. We showed that a very short time was needed to sterilize these microorganisms in comparison with the conventional methods. The coated metal ion absorbed the energy of the MWs quickly and easily, and the anatase crystal generates hydroxyl radicals. Results indicated that the active hydroxyl radical generated by the irradiation of MWs played an important role in the sterilization of microorganisms

  13. Hybrid mid-infrared optical parametric chirped-pulse amplification system with a broadband non-collinear quasi-phase-matched power amplifier

    CERN Document Server

    Mayer, Benedikt W; Gallmann, Lukas; Keller, Ursula

    2014-01-01

    We report a hybrid OPCPA system with the capability of generating broadband mid-infrared idler pulses from a non-collinear quasi-phase-matched power amplifier on the basis of periodically poled MgO:LiNbO3. It is seeded by the idler generated from a two-stage collinear pre-amplifier based on aperiodically poled MgO:LiNbO3. The amplification and pulse compression scheme we use does not require any angular dispersion to be introduced or compensated for on either the seed or the generated idler pulses. The mid-IR idler output has a bandwidth of 800 nm centered at 3.4 $\\mu$m. After compression, we obtain a pulse duration of 43.1 fs (FWHM; 41.4-fs transform limit) and a pulse energy of 17.2 $\\mu$J at a repetition rate of 50 kHz.

  14. A 3 to 6 GHz microwave/photonic transceiver for phased-array interconnects

    Science.gov (United States)

    Ackerman, Edward; Wanuga, Stephen; Candela, Karen; Scotti, Ronald E.; MacDonald, V. W.; Gates, John V.

    1992-04-01

    The general design and operation of a microwave/photonic transceiver operating in the range 3-6 GHz are presented. The transceiver consists of drop-in submodules with optical fiber pigtails mounted on a brass carrier measuring less than 1 x 1 x 0.1 inch along with MMIC amplifiers and an alumina motherboard. Minimum 3 to 6 GHz return losses of 6 dB have been measured for both the microwave input and the microwave output of the module; the insertion loss is between 19 and 20 dB at most frequencies in the 3-6 GHz band.

  15. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-01

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators. PMID:24216825

  16. Influence of secondary phases on phase and microwave dielectric properties of new Ca2Ce2Ti5O16 ceramics

    International Nuclear Information System (INIS)

    Ca2Ce2Ti5O16 ceramics processed via mix oxide route was investigated. Phase composition and microwave dielectric properties were measured using X-ray diffraction and a cavity method, respectively. CeO2 and another unidentified phase (that vanishes at ≥1400°C) existed as secondary phases along with the parent Ca2Ce2Ti5O16 phase. The amount of the parent Ca2Ce2Ti5O16 phase increased with increasing sintering temperature from 1350°C to 1450 °C accompanied by a decrease in the apparent density. The density decreased but εr and Qufo increased with sintering temperature. An εr ∼87.2, Qufo ∼5915 GHz and τf ∼219 GHz was achieved for the sample sintered at 1450°C

  17. Effects of Optical-density and Phase Dispersion of an Imperfect Band-limited Occulting Mask on the Broadband Performance of a TPF Coronagraph

    Science.gov (United States)

    Sidiek, Erkin; Balasubramanian, Kunjithapatham

    2007-01-01

    Practical image-plane occulting masks required by high-contrast imaging systems such as the TPF-Coronagraph introduce phase errors into the transmitting beam., or, equivalently, diffracts the residual starlight into the area of the final image plane used for detecting exo-planets. Our group at JPL has recently proposed spatially Profiled metal masks that can be designed to have zero parasitic phase at the center wavelength of the incoming broadband light with small amounts of' 00 and phase dispersions at other wavelengths. Work is currently underway to design. fabricate and characterize such image-plane masks. In order to gain some understanding on the behaviors of these new imperfect band-limited occulting masks and clarify how such masks utilizing different metals or alloys compare with each other, we carried out some modeling and simulations on the contrast performance of the high-contrast imaging testbed (HCIT) at .JPL. In this paper we describe the details of our simulations and present our results.

  18. A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation

    NARCIS (Netherlands)

    MacDonald, Michael A.; Schaefers, Franz; Pohl, R.; Poole, Ian B.; Gaupp, Andreas; Quinn, Frances M.

    2008-01-01

    A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the fu

  19. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  20. Microwave Tokamak Experiment: An overview of the construction and checkout phase

    International Nuclear Information System (INIS)

    At Lawrence Livermore National Laboratory (LLNL) we constructed and presently operate the Microwave Tokamak Experiment (MTX) to demonstrate the feasibility of using microwave pulses produced from a free electron laser (FEL) to provide electron cyclotron heating (ECH) for use in tokamaks, particularly high-field machines. The MTX consists primarily of the ALCATOR C tokamak and power supplies that were documented and disassembled at the Massachusetts Institute of Technology (MIT) and shipped to LLNL in April 1987. We made many additions, including a new primary power system from the magnetic Fusion Test Facility (MFTF) substation, a new commutation system, substantially upgraded seismic support system for earthquake loading, a fast controls system for use with the FEL, a new data-acquisition system, and a new vault facility. We checked out these systems and put them into operation in October 1988; we achieved the first plasma in November 1988. We have also constructed and installed the microwave transmission system and the local microwave system to be used with the FEL. These systems transmit the microwaves to MTX quasi-optically through an evacuated tube. The ongoing plasma operations, both with and without FEL heating, are described in a companion paper. 12 refs., 2 figs., 2 tabs

  1. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled. PMID:19333263

  2. A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation

    OpenAIRE

    MacDonald, Michael A.; Schaefers, Franz; Pohl, R.; Poole, Ian B.; Gaupp, Andreas; Quinn, Frances M.

    2008-01-01

    A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the full polarization vector at soft x-ray energies above 600 eV, which was not possible before due to the lack of suitable optical elements. Thus, quantitative polarimetry is now possible at the 2p edge...

  3. Solid-Phase Synthesis of 2-Arylbenzothiazole Using Silica Sulfuric Acid under Microwave Irradiation

    International Nuclear Information System (INIS)

    The condensation of several aromatic/heteroaromatic aldehydes with 2-aminothiophenol catalyzed by silica sulfuric acid under microwave irradiation afforded 2-arylbenzothiazoles in high yields and short reaction times under solvent- free conditions. The major advantages of the present method are good yields, ecofriendly, reusable catalyst, mild and solvent-free reaction conditions

  4. Tunable Dielectric Materials and Devices for Broadband Wireless Communications

    Science.gov (United States)

    Mueller, Carl H.; Miranda, Felix A.; Dayton, James A. (Technical Monitor)

    1998-01-01

    Wireless and satellite communications are a rapidly growing industries which are slated for explosive growth into emerging countries as well as countries with advanced economies. The dominant trend in wireless communication systems is towards broadband applications such as multimedia file transfer, video transmission and Internet access. These applications require much higher data transmission rates than those currently used for voice transmission applications. To achieve these higher data rates, substantially larger bandwidths and higher carrier frequencies are required. A key roadblock to implementing these systems at K-band (18-26.5 GHz) and Ka-band (26.5-40 GHz) is the need to develop hardware which meets the requirements for high data rate transmission in a cost effective manner. In this chapter, we report on the status of tunable dielectric thin films for devices, such as resonators, filters, phased array antennas, and tunable oscillators, which utilize nonlinear tuning in the control elements. Paraelectric materials such as Barium Strontium Titanate ((Ba, Sr)TiO3) have dielectric constants which can be tuned by varying the magnitude of the electric field across the material. Therefore, these materials can be used to control the frequency and/or phase response of various devices such as electronically steerable phased array antennas, oscillators, and filters. Currently, tunable dielectric devices are being developed for applications which require high tunability, low loss, and good RF power-handling capabilities at microwave and millimeter-wave frequencies. These properties are strongly impacted by film microstructure and device design, and considerable developmental work is still required. However, in the last several years enormous progress has occurred in this field, validating the potential of tunable dielectric technology for broadband wireless communication applications. In this chapter we summarize how film processing techniques, microwave test

  5. Idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter.

    Science.gov (United States)

    Zou, Dan; Zheng, Xiaoping; Li, Shangyuan; Zhang, Hanyi; Zhou, Bingkun

    2014-07-01

    A novel structure consisting of an idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter is presented, which is comprised of a spectrum-sliced broadband optical source, a dual-parallel Mach-Zehnder modulator (DPMZM), and a spatial light amplitude and phase processor (SLAPP). By adjusting the optical phase shift in the DPMZM, the dispersion-induced mixing power fading can be eliminated. By applying a phase processor with the SLAPP, the distortion of the mixing filter brought upon by third-order dispersion is also compensated. Experiments are performed and show that the up/down-conversion signal has a clean spectrum and the mixing filter can be tuned from 12 to 20 GHz without any change to the passband shape. The out-of-band suppression ratio of the mixing filter is more than 40 dB, and the 3 dB bandwidth is 140 MHz. PMID:24978780

  6. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most...... successful markets for broadband. This is done through analysis of national policies in three European countries-Denmark, Sweden, and Germany-and the U.S., Japan, and South Korea. We concluded that successful implementation of broadband depends on the kind of policy measures to be taken at the national level...

  7. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    Science.gov (United States)

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-12-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc.

  8. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    Science.gov (United States)

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-01-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc. PMID:26635228

  9. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    Science.gov (United States)

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  10. Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics

    OpenAIRE

    Nguimdo, Romain Modeste; Lavrov, R.; Colet, Pere; Jacquot, M.; Chembo Kouomou, Yanne; Larger, Laurent

    2010-01-01

    We investigate theoretically and experimentally the detrimental e ect of ber dispersion on the synchroniza- tion of an optoelectronic phase chaos cryptosystem. We evaluate the root-mean square synchronization error and the cancellation spectra between the emitter and the re- ceiver in order to characterize the quality of the optical ber communication link. These two indicators explicitly show in temporal and spectral domain how ber dispersion does negatively a ect t...

  11. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    Science.gov (United States)

    Yuan, J. H.; Sang, X. Z.; Wu, Q.; Yu, C. X.; Zhou, G. Y.; Shen, X. W.; Wang, K. R.; Yan, B. B.; Teng, Y. L.; Xia, C. M.; Han, Y.; Li, S. G.; Farrell, G.; Hou, L. T.

    2013-08-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1-3, the conversion efficiency ηuv-v of 11% and bandwidth Buv-v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV-visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV-visible resonant Raman scattering.

  12. Microwave-assisted phase-transfer catalysis for the rapid one-pot methylation and gas chromatographic determination of phenolics.

    Science.gov (United States)

    Fiamegos, Yiannis C; Karatapanis, Andreas; Stalikas, Constantine D

    2010-01-29

    Microwave-assisted phase-transfer catalysis (PTC) is reported for the first time, for the one-step extraction-derivatization-preconcentration and gas chromatographic determination of twenty phenols and ten phenolic acids. The well established phase-transfer catalytic methylation is largely accelerated when heating is replaced with the "greener" microwave irradiation. The overall procedure was thoroughly optimized and the analytes were determined by GC/MS. The method presented adequate analytical characteristics being more sensitive in analyzing phenols than phenolic acids. The limits of detection without any additional preconcentration steps (e.g. solvent evaporation) were adequate and ranged from 0.4 to 15.8ng/mL while limits of quantitation were between 1.2 and 33.3ng/mL. The method was applied to the determination of phenols, in spiked environmental samples and phenolic acids in aqueous infusions of commercially available pharmaceutical dry plants. The recoveries of fortified composite lake water samples and Mentha spicata aqueous infusions ranged from 89.3% to 117.3% for phenols and 93.3% to 115.2% for phenolic acids. PMID:20022019

  13. Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices

    Science.gov (United States)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  14. Solid state SPS microwave generation and transmission study. Volume 1: Phase 2

    Science.gov (United States)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  15. Importance of phase unwrapping for the reconstruction of microwave tomographic images

    OpenAIRE

    Grzegorczyk, Tomasz M.; Meaney, Paul M.; Jeon, Soon Ik; Geimer, Shireen D.; Paulsen, Keith D.

    2011-01-01

    Microwave image reconstruction is typically based on a regularized least-square minimization of either the complex-valued field difference between recorded and modeled data or the logarithmic transformation of these field differences. Prior work has shown anecdotally that the latter outperforms the former in limited surveys of simulated and experimental phantom results. In this paper, we provide a theoretical explanation of these empirical findings by developing closed form solutions for the ...

  16. Lifshitz and excited-state quantum phase transitions in microwave Dirac billiards

    OpenAIRE

    Dietz, B.; Miski-Oglu, M.; N. Pietralla; Richter, A; von Smekal, L.; Wambach, J.; Iachello, F.

    2013-01-01

    We present experimental results for the density of states (DOS) of a superconducting microwave Dirac billiard which serves as an idealized model for the electronic properties of graphene. The DOS exhibits two sharp peaks which evolve into van Hove singularities with increasing system size. They divide the band structure into regions governed by the \\emph{relativistic} Dirac equation and by the \\emph{non-relativistic} Schr\\"odinger equation, respectively. We demonstrate that in the thermodynam...

  17. Gas-Phase Structures of Linalool and Coumarin Studied by Microwave Spectroscopy

    Science.gov (United States)

    Nguyen, H. V. L.; Stahl, W.; Grabow, J.-U.

    2013-06-01

    The microwave spectra of two natural substances, linalool and coumarin, were recorded in the microwave range from 9 to 16 GHz and 8.5 to 10.5 GHz, respectively.Linalool is an acyclic monoterpene and the main component of lavender oil. It has a structure with many possible conformations. The geometry of the lowest energy conformer has been determined by a combination of microwave spectroscopy and quantum chemical calculations. Surprisingly, a globular rather than a prolate shape was found. This structure is probably stabilized by a π interaction between two double bonds which are arranged in two stacked layers of atoms within the molecule. A-E splittings due to the internal rotation of one methyl group could be resolved and the barrier to internal rotation was determined to be 400.20(64) cm^{-1}. The standard deviation of the fit was close to experimental accuracy. For an identification of the observed conformer not only the rotational constants but also the internal rotation parameters of one of the methyl groups were needed. Coumarin is a widely used flavor in perfumery as sweet woodruff scent. The aromatic structure allows solely for one planar conformer, which was found under molecular beam conditions and compared to other molecules with similar structures. Here, the rotational spectrum could be described by a set of parameters including the rotational constants and the centrifugal distortion constants using a semi-rigid molecule Hamiltonian. Furthermore, the rotational transitions of all nine ^{13}C isotopologues were measured in natural abundance. As a consequence, the microwave structure of coumarin could be almost completely determined.

  18. Broadband Phonon Scattering in PbTe-based Materials Driven Near the Peierls Phase Transition by Strain or Alloying

    Science.gov (United States)

    Savic, Ivana; Murphy, Ronan; Murray, Eamonn; Fahy, Stephen

    Efficient thermoelectric energy conversion is highly desirable as 60% of the consumed energy is wasted as heat. Low lattice thermal conductivity is one of the key factors leading to high thermoelectric efficiency of a material. However, the major obstacle in the design of such materials is the difficulty in efficiently scattering phonons across the frequency spectrum. Using first principles calculations, we predict that driving PbTe materials close to a Peierls-like phase transition could be a powerful strategy to solve this problem. We illustrate this concept by applying tensile [001] strain to PbTe and its alloys with another rock-salt IV-VI material, PbSe; and by alloying PbTe with a IV-VI Peierls-distorted material, GeTe. This induces extremely soft optical modes, which increase acoustic-optical phonon coupling and decrease phonon lifetimes at all frequencies. We show that PbTe, Pb(Se,Te) and (Pb,Ge)Te alloys driven near the phase transition in the described manner could have the lattice thermal conductivity considerably lower than that of PbTe. The proposed concept may open new opportunities for the development of more efficient thermoelectric materials. This work was supported by Science Foundation Ireland and the Marie-Curie Action COFUND under Starting Investigator Research Grant 11/SIRG/E2113.

  19. Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures

    International Nuclear Information System (INIS)

    α-MnO2 nanowires and β-MnO2 nanorods with high crystallinity were obtained successfully by a hydrothermal method at 160 deg. C for different reaction times. As-synthesized samples were analyzed by X-ray diffraction (XRD) spectra, scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), and high-resolution TEM (HRTEM). The results show that the samples changed from α-MnO2 nanowires with diameters about 50 nm and lengths 2-4 μm to β-MnO2 microrods with diameters 2-5 μm and lengths 5-10 μm under the reaction time prolonged from 2 to 48 h. The dielectric properties and microwave absorbing properties of the as-prepared samples were examined in the frequency range of 2-12 GHz. The samples under the reaction time 2 and 24 h exhibited the most dielectric loss tangent values and microwave absorption performances. The effective absorption bandwidth which is lower than -10 dB is 3.2 and 1.4 GHz, respectively. The results show that the morphology is important to the microwave absorption characteristics of manganese dioxide. It is also found that MnO2 is a kind of materials with both dielectric and diamagnetic loss, and the dielectric loss results from space charge polarization, which plays the dominant role in the total loss.

  20. Small phase-space structures and their relevance to pulsed quantum evolution: Stepwise ionization of the excited hydrogen atom in a microwave pulse

    International Nuclear Information System (INIS)

    Experiments have shown that the microwave ionization probability of a highly excited, almost monodimensional, hydrogen atom subjected to a microwave pulse sometimes grows in steps when the peak electric field of the pulse is increased. Classical pulsed simulations display the same steps, which have been traced to phase-space metamorphoses. Quantum numerical calculations again exhibit the same ionization steps. I show that the time sequence of two-level interactions, responsible for the observed steps in the quantum picture, is strictly related to the classical phase-space structures generated by the above-mentioned metamorphoses.

  1. Resonant Phase Escape from the First Resistive State of Bi2Sr2CaCu2Oy Intrinsic Josephson Junctions under Strong Microwave Irradiation

    Science.gov (United States)

    Takahashi, Yusaku; Kakehi, Daiki; Takekoshi, Shuho; Ishikawa, Kazuki; Ayukawa, Shin-ya; Kitano, Haruhisa

    2016-07-01

    We report a study of the phase escape in Bi2Sr2CaCu2Oy intrinsic Josephson junctions under the strong microwave irradiation, focusing on the switch from the first resistive state (2nd SW). The resonant double-peak structure is clearly observed in the switching current distributions below 10 K and is successfully explained by a quantum-mechanical model on the quantum phase escape under the strong microwave field. These results provide the first evidence for the formation of the energy level quantization for the 2nd SW, supporting that the macroscopic quantum tunneling for the 2nd SW survives up to ˜10 K.

  2. Resonantly phase-matched Josephson junction traveling wave parametric amplifier

    OpenAIRE

    O'Brien, Kevin; Macklin, Chris; Siddiqi, Irfan; Zhang, Xiang

    2014-01-01

    We develop a technique to overcome phase-mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well-suited to cryogenic broadband microwave m...

  3. Broadband high efficiency active integrated antenna

    OpenAIRE

    Qin, Yi

    2007-01-01

    Active integrated antenna (MA) is a very popular topic of research during recent decades. This is mostly due to its advantages, such as compact size, multiple functions and low cost, etc. The MA system can be regarded as an active microwave circuit which the output or input port is free space instead of a conventional 50-ohm interface. The major drawbacks of the conventional MA include narrow bandwidth, low efficiency, etc. An experimental investigation on broadband slot-coupled antenna is ca...

  4. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    Science.gov (United States)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  5. Accelerated Sparse Microwave Imaging Phase Error Compensation Algorithm Based on Combination of SAR Raw Data Simulator and Map-drift Autofocus Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Zhe

    2016-02-01

    Full Text Available Sparse microwave imaging is new concept, theory and methodology of microwave imaging, which introduces the sparse signal processing theory to microwave imaging and combines them together to overcome the paradox of increasing system complexity and imaging performance of current Synthetic Aperture Radar (SAR systems. Traditional airborne SAR systems are facing a phase error problem in the echo which is caused by the non-ideal motion of the aircraft. This phase error could be compensated by autofocus algorithms. But in the sparse microwave imaging, such autofocus algorithm are no longer valid because traditional signal processing based on matched filtering has been replaced with sparse reconstruction. Current autofocus algorithms under sparse constraints are usually based on a two-step iteration, which convergences slowly and costs plenty of computation. In this paper, we introduce the Map-Drift (MD autofocus algorithm to the accelerated sparse microwave imaging algorithm based on SAR raw data simulator, and propose the novel “MD-SAR raw data simulator autofocus algorithm”. This algorithm keeps the advantages of both accelerated imaging algorithm and MD algorithm, including the fast convergence and accurate compensation of two-order phase error in echo. Compared with current algorithms based on two-step iteration, the propose method convergences fast and effectively.

  6. A Performance Study of Wireless Broadband Access (WiMAX)

    OpenAIRE

    Maan A. S. Al-Adwany

    2011-01-01

    WiMAX (worldwide interoperability for microwave access) is one of the wireless broadband access technologies which supplies broadband services to clients, but it surpasses other technologies by its coverage area, where one base station can cover a small city. In this paper, WiMAX technology is studied by exploring its basic concepts, applications, and advantages / disadvantages. Also a MATLAB simulator is used to verify the operation of the WiMAX system under various chan...

  7. Constructing a 3D Crustal Model Across the Entire Contiguous US Using Broadband Rayleigh Wave Phase Velocity and Ellipticity Measurements

    Science.gov (United States)

    Lin, F. C.; Schmandt, B.

    2015-12-01

    Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear

  8. Single-step microwave assisted headspace liquid-phase microextraction of trihalomethanes and haloketones in biological samples.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Basheer, Chanbasha; Sajid, Muhammad

    2015-12-15

    A single-step microwave assisted headspace liquid-phase microextraction (MA-HS-LPME) method was developed for determination of trihalomethanes (THMs) and haloketones (HKs) in biological samples. In this method, a porous membrane envelope was filled with few microliters of extraction solvent and then placed inside the microwave extraction vial. A PTFE ring was designed to support the membrane envelope over a certain height inside the vial. An optimum amount of biological sample was placed in the vial equipped with magnetic stirrer. After that nitric acid was added to the vial for digestion of biological sample. The sample was digested and the volatile THMs and HKs were extracted at headspace in the solvent containing porous membrane. After simultaneous digestion and extraction, the extract was injected to gas chromatography/mass spectrometry for analysis. Factors affecting the extraction efficiency were optimized to achieve higher extraction performance. Quantification was carried out over a concentration range of 0.3-100ngg(-1) for brominated compounds while for the chlorinated ones linear range was between 0.5-100ngg(-1). Limit of detections (LODs) were ranged from 0.051 to 0.110ngg(-1) while limit of quantification (LOQ) were in the range of 0.175-0.351ngg(-1). The relative standard deviations (RSDs) of the calibrations were ranged between 1.1 and 6.8%. The MA-HS-LPME was applied for the determination of trace level THMs and HKs in fish tissue and green alga samples. PMID:26571453

  9. Effect of short milling time and microwave heating on phase evolution, microstructure and mechanical properties of alumina-mullite-zirconia composites

    Energy Technology Data Exchange (ETDEWEB)

    Majidian, Hudsa; Nikzad, Leila; Eslami-Shahed, Hossein; Ebadzadeh, Touradj [Materials and Energy Research Center, Alborz (Iran, Islamic Republic of). Ceramic Dept.

    2015-12-15

    Alumina-mullite-zirconia composites were prepared using alumina and zircon powders pressed uniaxially at 250 MPa and sintered in a microwave furnace held at 1 550 C for 90 min. The effects of short milling and sintering time on the density, phase evaluation and mechanical strength of the sintered composites were analyzed and compared with composites sintered in a conventional furnace. The goal was to decrease sintering time and temperature over that for conventional heating. The results showed that, although the densities were similar for both methods, the hardness, mechanical strength and fraction of the tetragonal zirconia phase of the microwave-sintered composites were much higher. The milling time yielded better densification and higher mechanical properties. It was found that the shorter sintering time in a microwave furnace requires longer milling time of the powders to obtain the same composite properties.

  10. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    International Nuclear Information System (INIS)

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad2/Hz and −129 dB rad2/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10−14 at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out

  11. A novel structure for a broadband left-handed metamaterial

    International Nuclear Information System (INIS)

    A low absorptivity broadband negative refractive index metamaterial with a multi-gap split-ring and metallic cross (MSMC) structure is proposed and investigated numerically and experimentally in the microwave frequency range. The effective media parameters were retrieved from the numerical and experimental results, which clearly show that there exists a very wide frequency band where the permittivity and permeability are negative. The influence of the structure parameters on the magnetic response and the cut-off frequency of the negative permittivity are studied in detail. This metamaterial would have potential application in designing broadband microwave devices

  12. Studies on the switching speed effect of the phase shift keying in SLED for generating high power microwave

    CERN Document Server

    Zhengfeng, Xiong; Jian, Yu; Huaibi, Chen; Hui, Ning

    2015-01-01

    SLAC energy doubler (SLED) type radio-frequency pulse compressors are widely used in large-scale particle accelerators for converting long-duration moderate-power input pulse into short-duration high-power output pulse. The phase shift keying (PSK) is one of the key components in SLED pulse compression systems. Performance of the PSK will influence the output characteristics of SLED, such as rise-time of the output pulse, the maximal peak power gain, and the energy efficiency. In this paper, high power microwave source based on power combining and pulse compression of conventional klystrons was introduced, the nonideal PSK with slow switching speed and without power output during the switching process were investigated, the experimental results with nonideal PSK agreed well with the analytical results.

  13. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    International Nuclear Information System (INIS)

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe3O4 nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis

  14. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); Bondioli, Federica [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Manfredini, Tiziano [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Gualtieri, Alessandro [Department of Chemical and Geological Science, University of Modena and Reggio Emilia, Via S. Eufemia 19, 41121 Modena Italy (Italy)

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  15. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    Science.gov (United States)

    Schroeder, K. G.; Petroff, I. K.

    1980-01-01

    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  16. Coherent Optical Generation of a 6 GHz Microwave Signal with Directly Phase Locked Semiconductor DFB Lasers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene;

    1992-01-01

    Experimental results of a wideband heterodyne second order optical phase locked loop with 1.5 ¿m semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...

  17. Large microwave phase shift and small distortion in an integrated waveguide device

    DEFF Research Database (Denmark)

    Öhman, Filip; Sales, Salvador; Chen, Yaohui; Granell, E.; Mørk, Jesper

    2007-01-01

    We have obtained a tunable phase shift of 150 degrees in an integrated semiconductor waveguide by optimizing the interplay of fast and slow light effects. Furthermore, the distortions imposed by device nonlinearities have been quantified....

  18. Phase-controlled synthesis of Cu{sub 2}ZnSnS{sub 4} powders via the microwave-assisted solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hsung; Das, Subrata; Yang, Che-Yuan; Sung, Jen-Cheng; Lu, Chung-Hsin, E-mail: chlu@ntu.edu.tw

    2015-05-25

    Highlights: • Cu{sub 2}ZnSnS{sub 4} powders were prepared via the microwave-assisted solvothermal route. • Kesterite and wurtzite phase were formed via adjusting the amount of ethylenediamine. • Cu{sub 2}S was reacted with constituent ions and hydrogen sulfide ions to form Cu{sub 2}ZnSnS{sub 4}. • Single-phased kesterite and wurtzite Cu{sub 2}ZnSnS{sub 4} powders were derived in this study. - Abstract: Cu{sub 2}ZnSnS{sub 4} was successfully prepared via the microwave-assisted solvothermal route at the reaction temperature as low as 180 °C. In comparison with the conventional solution process for preparing Cu{sub 2}ZnSnS{sub 4} powders, the reaction time was significantly reduced to 1 h, and the preparation procedures were simplified with the incorporation of microwave irradiation technique. The mobility of ions and dipoles are suggested to have been accelerated via the microwave, thereby enhancing the reaction rates. Kesterite and wurtzite Cu{sub 2}ZnSnS{sub 4} powders were formed via adjusting the volume fraction of ethylenediamine in the microwave-solvothermal process. The amount of ethylenediamine affected the morphology of the derived powders due to the selective passivation of ethylenediamine on Cu{sub 2}ZnSnS{sub 4}. The microscopic analysis revealed that the samples prepared with high ethylenediamine concentrations had large particle sizes. The enhanced grain size reduced the surface recombination and increased the photoluminescence intensity of Cu{sub 2}ZnSnS{sub 4} particles. During the microwave-assisted solvothermal process, Cu{sub 2}S was formed first and reacted with the constituent ions and hydrogen sulfide ions to form Cu{sub 2}ZnSnS{sub 4} powders.

  19. Microwave Three-Wave Mixing Experiments for Chirality Determination: Current Status

    Science.gov (United States)

    Perez, Cristobal; Shubert, V. Alvin; Schmitz, David; Medcraft, Chris; Krin, Anna; Schnell, Melanie

    2015-06-01

    Microwave three-wave mixing experiments have been shown to provide a novel and sensitive way to generate and measure enantiomer-specific molecular signatures. The handedness of the sample can be obtained from the phase of the molecular free induction decay whereas the enantiomeric excess can be determined by the amplitude of the chiral signal. After the introduction of this technique by Patterson et al. remarkable improvements have been realized and experimental strategies for both absolute phase determination and enantiomeric excess have been presented. This technique has been also successfully implemented at higher microwave frequencies. Here we present the current status of this technique as well future directions and perspectives. This will be illustrated through our systematic study of chiral terpenes as well as preliminary results in molecular clusters. Patterson, D.; Schnell, M.; Doyle, J. M. Enantiomer-Specific Detection of Chiral Molecules via Microwave Spectroscopy. Nature 2013, 497, 475-477. Patterson, D.; Doyle, J. M. Sensitive Chiral Analysis via Microwave Three-Wave Mixing. Phys. Rev. Lett. 2013, 111, 023008. Shubert, V. A.; Schmitz, D.; Patterson, D.; Doyle, J. M.; Schnell, M. Identifying Enantiomers in Mixtures of Chiral Molecules with Broadband Microwave Spectroscopy. Angew. Chem. Int. Ed. 2014, 53, 1152-1155. Lobsiger, S.; Perez, C.; Evangelisti, L.; Lehmann, K. K.; Pate, B. H. Molecular Structure and Chirality Detection by Fourier Transform Microwave Spectroscopy. J. Phys. Chem. Lett. 2014, 6, 196-200.

  20. A microwave photonic generator of chaotic and noise signals

    Science.gov (United States)

    Ustinov, A. B.; Kondrashov, A. V.; Kalinikos, B. A.

    2016-04-01

    The transition to chaos in a microwave photonic generator has been experimentally studied for the first time, and the generated broadband chaotic microwave signal has been analyzed. The generator represented a ring circuit with the microwave tract containing a low-pass filter and a microwave amplifier. The optical tract comprised a fiber delay line. The possibility of generating chaotic oscillations with uniform spectral power density in a 3-8 GHz range is demonstrated.

  1. Broadband Telecommunications Benchmarking Study

    OpenAIRE

    2004-01-01

    This report assesses Ireland's competitiveness relative to 21 countries, with particular focus on the broadband telecommunications requirements of the enterprise sector. The report outlines strengths and weaknesses that currently exist and progress that has already been made. It also makes a series of recommendations to further promote the development of the broadband market in Ireland.

  2. The Broadband Buzz.

    Science.gov (United States)

    Buchanan, Bruce

    2003-01-01

    "Broadband," the term for a variety of high-speed Internet options, opens up many opportunities for online classroom learning. Challenges for school districts include keeping the network running, training teachers, and paying for it. A sidebar lists broadband resources. (MLF)

  3. A substrate-modified CPW-based linear microwave phase shifter

    Science.gov (United States)

    Kulandhaisamy, Indhumathi; Kumar, Shrivastav Arun; Kanagasabai, Malathi

    2015-10-01

    A novel method for achieving linear phase shift is proposed over the frequency range of 2 - 6 GHz. Dielectric characterization of FR4 substrate interfaced with air as well as water produces the phase shift. The substrate property is modified by introducing a plain rectangular packet and W-shaped packet within the FR4 substrate. The overall dimension of the proposed structure is 30 × 60 mm2. Across the entire proposed frequency range, the reflection coefficient is less than -10 dB. The proposed coplanar waveguide with water- and air-stacked FR4 substrate is simulated, fabricated, and measured for its linear phase shifting characteristics analyzed in ISM 2.45, 3.3, and 5.8 GHz bands. The analysis over the entire band depicts that the differential shift in phase is directly proportional to the effective dielectric constant of the material used. The design will be more useful in automotive anti-collision radars in military, cellular base stations, and satellite communications.

  4. Sideband generation technique for optical phase locking for coherent optical/microwave applications

    Science.gov (United States)

    Vallestero, Neil John

    2000-12-01

    The goal of this research is to build a prototype frequency agile optical millimeter wave generator. The generator output consists of a pair of optical signals on the slow axis of a polarization maintaining optical fiber. The signals then produce a low phase noise electrical modulation when interfered on the active area of a photodiode. One advantage of our approach is that it does not require high speed electronics-unlike the optical phase lock loop approach, which requires signal processing at the millimeter wave frequency. Specifically, we use an optical sideband filtering technique, in which two lines of a comb spectrum are selected and interfered to produce a radio-frequency optical power modulation. The comb spectrum is generated using a phase modulator, and fiber Bragg grating optical filters are used to block all but the two desired sidebands. This technique can meet the mm-wave generator specifications without the need to develop wideband frequency or phase locking loops, reducing risk and the generator cost.

  5. Three-dimensional microwave imaging for breast-cancer detection using the log-phase formulation

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Meincke, Peter; Kim, Oleksiy S.

    2007-01-01

    The log-phase formulation is applied for the reconstruction of images from a simulation of a three-dimensional imaging system. By using this formulation, a clear improvement in the quality of the reconstructed images is achieved compared to the case in which the usual complex phasor notation is e...

  6. Microwave field-efffect transistors theory, design, and application

    CERN Document Server

    Pengelly, Raymond

    1994-01-01

    This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.

  7. Microwave detection of the primary ozonide of ethylene in the gas phase

    Science.gov (United States)

    Zozom, J.; Gillies, C. W.; Suenram, R. D.; Lovas, F. J.

    1987-09-01

    The primary ozonide of ethylene ? has been observed and studied in the gas phase for the first time. A specially designed low-temperature absorption cell was employed in which the primary ozonide was prepared in situ by the low-temperature reaction of ozone with ethylene. An assignment of the rotational spectrum and electric dipole moment measurements have established the oxygen envelope conformation (C s symmetry) to the lowest-energy form for this elusive chemical species.

  8. Opto-microwave technique in the promising active phased antenna arrays

    OpenAIRE

    Bakhrakh, Lev D.; Shifrin, Yakov S.

    1995-01-01

    Implementation of multi-element active phased antenna arrays (APAA) due to poor mass-overall dimensions characteristics, signals distribution system complexity is rather difficult. Extra difficulties arise with wide-band signals and millimeter waves APAA. The signal distribution fiber-optical systems using elements of laser technique and other elements of opto-electronics allow in many cases to solve completely the problem of the signals distribution system and pilot and monitor signals in AP...

  9. Generation of triangular waveforms based on a microwave photonic filter with negative coefficient.

    Science.gov (United States)

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Wei Yu; Zhu, Ning Hua

    2014-06-16

    We report a novel approach to generating full-duty-cycle triangular waveforms based on a microwave photonic filter (MPF) with negative coefficient. It is known that the Fourier series expansion of a triangular waveform has only odd-order harmonics. In this work, the undesired even-order harmonics are suppressed by the MPF that has a periodic transmission response. A triangular waveform at fundamental frequency can be generated by setting the bias of a Mach-Zehnder modulator (MZM) at quadrature point. However, it is found that a broadband 90° microwave phase shifter has to be used after photodetection to adjust the phases of odd-order harmonics. Alternatively, a frequency doubling triangular waveform can be generated by setting the bias of the MZM at maximum or minimum transmission point. This approach is more promising because the broadband microwave phase shifter is no longer required in this case but it is more power consuming. The proposed approach is theoretically analyzed and experimentally verified. PMID:24977593

  10. Application of microwave-assisted micro-solid-phase extraction for determination of parabens in human ovarian cancer tissues.

    Science.gov (United States)

    Sajid, Muhammad; Basheer, Chanbasha; Narasimhan, Kothandaraman; Choolani, Mahesh; Lee, Hian Kee

    2015-09-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are widely used as preservatives in food, cosmetics and pharmaceutical products. However, weak estrogenicity of some parabens has been reported in several studies, which provided the impetus for this work. Here, a simple and efficient analytical method for quantifying parabens in cancer tissues has been developed. This technique involves the simultaneous use of microwave-assisted solvent extraction (MASE) and micro-solid phase extraction (μ-SPE), in tandem with high performance liquid chromatography (HPLC/UV) analysis for the determination of parabens. The pollutants studied included four parabens (methyl, ethyl, propyl and butyl parabens). Optimization of the experimental parameters for MASE and μ-SPE was performed. Good relative standard deviation (%RSD) ranged from 0.09 to 2.81% and high enrichment factors (27-314) were obtained. Coefficients of determination (r(2)) up to 0.9962 were obtained across a concentration range of 5.0-200ngg(-1). The method detection limits for parabens ranged from 0.005 to 0.0244ngg(-1). The procedure was initially tested on prawn samples to demonstrate its feasibility on a complex biological matrix. Preliminary studies on human ovarian cancer (OC) tissues showed presence of parabens. Higher levels of parabens were detected in malignant ovarian tumor tissues compared to benign tumor tissue samples. PMID:26245364

  11. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Science.gov (United States)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  12. High-power Microwave Pulse Compression of Klystrons by Phase-Modulation of High-Q Storage Cavities

    CERN Document Server

    Bossart, Rudolf; Mourier, J; Syratchev, I V; Tanner, L

    2004-01-01

    At the CERN linear electron accelerators LIL and CTF, the peak RF power from the 3GHz-klystrons was doubled by means of LIPS microwave pulse compressors. To produce constant RF power from the cavity-based pulse compressors, the klystrons were driven by a fast RF-phase modulation program. For the CLIC Test Facility CTF3, a new type of a Barrel Open Cavity (BOC) with a high quality factor Q0 has been developed. Contrary to LIPS with two resonant cavities, BOC operates with a single cavity supporting two orthogonal resonant modes TM 10,1,1 in the same cavity. For both LIPS and BOC storage cavities, it is important that the RF power reflected back to the klystron is minimal. This implies that the resonant frequencies, Q-factors and coupling factors of the two resonant modes of a pulse compressor are closely matched, and that the resonant frequencies are accurate to within a few KHz. The effects of small differences between the two orthogonal modes of the BOC cavity have been investigated. The dynamic pulse respon...

  13. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    Science.gov (United States)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  14. Microwave Oscillator with Phase Noise Reduction Using Nanoscale Technology for Wireless Systems

    OpenAIRE

    Aqeeli, Mohammed Ali M

    2015-01-01

    This thesis introduces, for the first time, a novel 4-bit, metal-oxide-metal (MOM) digital capacitor switching array (MOMDCSA) which has been implemented into a wideband CMOS voltage controlled oscillator (VCO) for 5 GHz WiMAX/WLAN applications. The proposed MOMDCSA is added both in series and parallel to nMOS varactors. For further gain linearity, a wider tuning range and minor phase noise variations, this varactor bank is connected in parallel to four nMOS varactor pairs, each of which is b...

  15. Volatile organo-selenium speciation in biological matter by solid phase microextraction–moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

    OpenAIRE

    Dietz, Christian; Sanz Landaluze, Jon; Ximenez Embun, Pilar; Madrid Albarrán, Yolanda; Cámara, Carmen

    2004-01-01

    Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MCcolumn were in-house developed and multicapillary column was operated at moderate temperatures (30–100 ◦C). The method was...

  16. Microwave enhanced processing of ores

    OpenAIRE

    Kobusheshe, Joseph

    2010-01-01

    Recent research developments have suggested that microwave assisted comminution could provide a step change in ore processing. This is based on the fact that microwave-absorbent phases within a multi-mineral ore can be selectively heated by microwave energy hence inducing internal stresses that create fracture. A detailed review of existing literature revealed that little or no information is available which relates and examines the influence of hydrated minerals on microwave assisted fr...

  17. Broadband adoption by SMES

    OpenAIRE

    Oni, Oluwasola

    2007-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Because the benefits of broadband for businesses have been widely publicized, the UK government has tried to ensure that there is a wide and fast take-up of the technology. Initial figures showed that broadband adoption by SMEs was particularly slow and there has been little research on the use of broadband by businesses, particularly SMEs. An in-depth study into the roles and activities of t...

  18. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N's F09

    Science.gov (United States)

    Pines, D.

    1999-01-01

    This is the Performance Verification Report, METSAT (Meteorological Satellites) Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  19. Phase and amplitude stabilization of short-pulsed, high-power microwave amplifiers

    International Nuclear Information System (INIS)

    In recent years, much effort has gone into research on high-power, short-pulsed free-electron lasers (FELs) and relativistic klystrons (RKs) driven by linear induction accelerators (LIAs). These devices are potential power sources for future linear colliders several kilometers in length. The new high-power devices must meet certain practical requirements on such parameters as stability, efficiency and cost. In this paper, the authors address the problem of phase and amplitude stability of the rf pulse and present a technique for improving it in these devices to a level that is acceptable for accelerator applications. They summarize the results of bench tests and computer simulations, and discuss a proposed high-power klystron experiment aimed at establishing the feasibility of the overall concept and the workability of the stabilization circuits

  20. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  1. Microwave spectroscopy of biomolecular building blocks.

    Science.gov (United States)

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment. PMID:25721775

  2. A compact broadband high efficient X-Band 9-Watt PHEMT MMIC high-power amplifier for phased array radar applications

    OpenAIRE

    Hek, A.P. de; Hunneman, P.A.H.; Demmler, M.; Hülsmann, A.

    1999-01-01

    In this paper the development and measure­ment results of a compact broadband 9-Watt high-efficient X-band high-power amplifier are discussed. The described amplifier has the following state-of-the-art performance: an average output power of 9 Watt, a gain of 20 dB and an average Power Added Effi­ciency of 35% over a relative bandwidth of 40% at X-band. The amplifier is realised in a pseudomorphic HEMT GaAs MMIC technology developed by the Fraunhofer Institute for Applied Solid State Physics ...

  3. MICROWAVE ZEBRA PATTERN STRUCTURES IN THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15

    International Nuclear Information System (INIS)

    A zebra pattern (ZP) structure is the most intriguing fine structure on the dynamic spectrograph of a solar microwave burst. On 2011 February 15, an X2.2 flare event erupted on the solar disk, which is the first X-class flare since the solar Schwabe cycle 24. It is interesting that there are several microwave ZPs observed by the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou) at a frequency of 6.40-7.00 GHz (ZP1) and at a frequency of 2.60-2.75 GHz (ZP2) and by the Yunnan Solar Broadband Radio Spectrometer (SBRS/Yunnan) at a frequency of 1.04-1.13 GHz (ZP3). The most important phenomenon is the unusual high-frequency ZP structure (ZP1, up to 7.00 GHz) that occurred in the early rising phase of the flare and the two ZP structures (ZP2, ZP3) with relatively low frequencies that occurred in the decay phase of the flare. By scrutinizing the current prevalent theoretical models of ZP structure generations and comparing their estimated magnetic field strengths in the corresponding source regions, we suggest that the double plasma resonance model is the most probable one for explaining the formation of microwave ZPs, which may derive the magnetic field strengths at about 230-345 G, 126-147 G, and 23-26 G in the source regions of ZP1, ZP2, and ZP3, respectively.

  4. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    Science.gov (United States)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  5. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    Science.gov (United States)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-01-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs. PMID:27481661

  6. Microwave and RF Applications for Micro-resonator based Frequency Combs

    CERN Document Server

    Nguyen, Thach G; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contr...

  7. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC.

    Science.gov (United States)

    Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z

    2016-06-25

    A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. PMID

  8. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  9. Direct UV-written broadband directional broadband planar waveguide couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation.......We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  10. Optical frequency comb technology for ultra-broadband radio-frequency photonics

    CERN Document Server

    Torres-Company, Victor

    2014-01-01

    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.

  11. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    Science.gov (United States)

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system. PMID:26699033

  12. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    Science.gov (United States)

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field. PMID:20411021

  13. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver

    CERN Document Server

    Portuondo-Campa, Erwin; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-01-01

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the current phase-noise limitations in the system.

  14. BCT phase formation in synthesis via microwave assisted hydrothermal method; Limite da concentracao de Ca na formacao da fase BCT em sintese via metodo hidrotermico assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Barra, B.C.; Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Lanzi, C.A.C. [Universidade Estadual Paulista Julio de Mesquita Filho (FCT/DFQB/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencia e Tecnologia. Dept. de Fisica, Quimica e Biologia; Longo, E. [Universidade Estadual Paulista Julio de Mesquita Filho (IQ/UNESP/), Araraquara, SP (Brazil); Instituto Nacional de Ciencias e Tecnologia de Materiais em Nanotecnologia (INCTMN), Araraquara, SP (Brazil)

    2012-07-01

    In previous work, samples of barium and calcium titanate (Ba1-xCaxTiO3 (BCT x = 0- 1) were prepared using the microwave assisted hydrothermal method in conditions of relatively short time and temperature. To the sample with 75wt% of Ca no BCT phase was formed but the photoluminescent emission was improved. In the present study, these titanates were synthesized by the same method with other concentrations of Ca, Ba1-xCaxTiO3 (x = 0, 0.20, 0.40, 0. 60, 0.80 and 1) to evaluate the limit of BCT phase formation. Results of X-ray diffraction showed that the phase BCT is formed between zero and 50wt%-Ca, in Ba substitution. Above this concentration, was observed only the formation of carbonates, and to x = 1 there was carbonate formation together with CaTiO3. These results were confirmed by micro Raman spectroscopy. (author)

  15. A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts

    Institute of Scientific and Technical Information of China (English)

    Qi-Jun Fu; Yi-Hua Yan; Yu-Ying Liu; Min Wang; Shu-Juan Wang

    2004-01-01

    The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS)superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations(tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave "patches", unlike those reported previously, were observed with very short durations (about 300 ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths(about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.

  16. Microwave Radiometer for Aviation Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SBIR Phase I Project proposes a new passive microwave airborne sensor for in flight icing hazard detection, Microwave Radiometer for Aviation Safety. A feasibility...

  17. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume IV. Microwave system. Preliminary design report

    International Nuclear Information System (INIS)

    The EBT-P Microwave System provides microwaves for electron cyclotron resonance heating (ECRH) to both stabilize and heat the EBT-P plasma. A 28 gigahertz (GHz) system is required to form the hot electron annulus plasma that provides MHD stabilization to the core plasma. A 60 GHz system is required to heat the core plasma and will provide some second harmonic heating of the hot electron annulus. The principal microwave system elements and their design characteristics are summarized. The microwave system includes 200 kilowatt (kW) gyrotrons at 60 GHz for core heating and 200 kW gyrotrons at 28 GHz for annulus heating. The basic operating complement will be six (6) 60 GHz tubes and two (2) 28 GHz tubes. PACE (Plant and Capital Equipment) procurement will include four (4) 60 GHz gyrotrons with two (2) GHz tubes procured under operations and the two (2) 28 GHz tubes will be provided, with mounts, from the EBT-S program. Each tube is rigidly mounted on an oil filled tank assembly which provides electrical isolation and cooling. All tubes and mounts will be located in the lower level of the torus enclosure. An extensive demineralized water flow system is required to provide gyrotron cooling

  18. Highly Reflecting, Broadband Deformable Membrane Mirror for Wavefront Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will develop a highly reflecting, broadband, radiation resistant, low-stress and lightweight, membrane integrated into an...

  19. Czech way to broadband

    Czech Academy of Sciences Publication Activity Database

    Kuchar, Anton; Peterka, J.; Hrstka, J.; Hankiewiczová, H.

    -, August (2006), s. 274-278. ISSN 1106-2975. [FITCE Congress /45./. Athens, 30.08.2006-02.09.2006] Grant ostatní: BReATH Consortium EU(XE) EC FP6 1ST Programme Institutional research plan: CEZ:AV0Z20670512 Keywords : telecommunication networks * Internet * broadband networks Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Magnetically tunable broadband transmission through a single small aperture

    OpenAIRE

    Ke Bi; Wenjun Liu; Yunsheng Guo; Guoyan Dong; Ming Lei

    2015-01-01

    Extraordinary transmission through a small aperture is of great interest. However, it faces a limitation that most of approaches can not realize the tunable transmission property, which is not benefit for the miniaturization of the microwave system. Here, we demonstrate a magnetically tunable broadband transmission through a small aperture. By placing two ferrite rods symmetrically on both sides of a single small aperture, the strongly localized electromagnetic fields are effectively coupled ...

  1. Simultaneous Information and Power Transfer for Broadband Wireless Systems

    OpenAIRE

    Huang, Kaibin; Larsson, Erik G.

    2013-01-01

    Far-field microwave power transfer (MPT) will free wireless sensors and other mobile devices from the constraints imposed by finite battery capacities. Integrating MPT with wireless communications to support simultaneous wireless information and power transfer (SWIPT) allows the same spectrum to be used for dual purposes without compromising the quality of service. A novel approach is presented in this paper for realizing SWIPT in a broadband system where orthogonal frequency division multipl...

  2. Broadband bow-tie antenna with tapered balun

    OpenAIRE

    Jaafar, Hussein Mohammed

    2014-01-01

    ABSTRACT: In microwave applications spectrum Industrial, Scientific and Medical (ISM) band, especially in wireless communication systems applications such as GSM, 3G, Wi-Fi and Wi-MAX applications, high antenna characteristics such as high gain and wide bandwidth are required. In this thesis, a broadband Bow Tie Antenna (BTA) with high performance characteristics has been designed, to cover the wireless application requirements. One of the fundamental problems of the transmission line in the ...

  3. Microwave Photonics

    OpenAIRE

    A J Seeds; Liu, C. P.; Ismail, T; Fice, M. J.; Pozzi, F.; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  4. New applications of microwave

    International Nuclear Information System (INIS)

    Interferometry and reflectometry measure phase of the transparent or the reflected wave to derive the information on plasma density. Homodyne reflectometry for an interlock and transmissiometry for sheet plasma measurements could be another class of microwave diagnostics, which does not measure the phase. (author)

  5. Analysis of volatile oil composition of Citrus aurantium L. by microwave-assisted extraction coupled to headspace solid-phase microextraction with nanoporous based fibers.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Piryaei, Marzieh; Abolghasemi, Mir Mahdi

    2013-03-01

    Nanoporous silica was prepared and functionalized with amino propyl-triethoxysilane to be used as a highly porous fiber-coating material for solid-phase microextraction (SPME). The prepared nanomaterials were immobilized onto a stainless steel wire for fabrication of the SPME fiber. The proposed fiber was evaluated for the extraction of volatile component of Citrus aurantium L. leaves. A homemade microwave-assisted extraction followed by headspace (HS) solid-phase apparatus was used for the extraction of volatile components. For optimization of factors affecting the extraction efficiency of the volatile compounds, a simplex optimization method was used. The repeatability for one fiber (n = 4), expressed as RSD, was between 3.1 and 8.6% and the reproducibility for five prepared fibers was between 10.1 and 14.9% for the test compounds. Using microwave-assisted distillation HS-SPME followed by GC-MS, 53 compounds were separated and identified in C. aurantium L., which mainly included limonene (62.0%), linalool (7.47%), trans-β-Ocimene (3.47%), and caryophyllene (2.05%). In comparison to a hydrodistillation method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, which was rapid and required a much lower amount of sample. PMID:23483734

  6. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    Science.gov (United States)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  7. Realistic modeling of microwave instability effects on the evolution of the beam energy-phase distribution in proton synchrotrons

    International Nuclear Information System (INIS)

    Either bunched or coasting beam in a synchrotron may exhibit microwave instability of the momentum spread is small. A useful physical picture is that beam particles are captured in buckets generated by the beam image current flowing in the longitudinal coupling impedance. Qualitatively, trapping and auto-deceleration occur when the height of the buckets exceed the FWHM energy spread of the beam. Microwave instability implies in addition that the coupling impedance is largest at several times the rf frequency and that the decay of the wakefield is fast enough that bunches do not affect each other. The parameters used in this paper are influenced by the Fermilab Main Ring and design of the Main Injector. The numerical modeling uses standard features of the code ESME. In most of the reported simulations 2 · 104 macroparticles and 32 values of n separated by 1113 provide the current spectrum. Microwave instability may be an intensity limitation during parts of the acceleration cycle where the beam is debunched or loosely bunched, perhaps at injection or high duty factor extraction. Probably of more general importance is the time near transition when the spread in circulation frequency is sharply reduced, i.e., when η ∼ 0. Concrete examples are given in this report

  8. Microwave radiation hazards around large microwave antenna.

    Science.gov (United States)

    Klascius, A.

    1973-01-01

    The microwave radiation hazards associated with the use of large antennas become increasingly more dangerous to personnel as the transmitters go to ever higher powers. The near-field area is of the greatest concern. It has spill over from subreflector and reflections from nearby objects. Centimeter waves meeting in phase will reinforce each other and create hot spots of microwave energy. This has been measured in front of and around several 26-meter antennas. Hot spots have been found and are going to be the determining factor in delineating safe areas for personnel to work. Better techniques and instruments to measure these fields are needed for the evaluation of hazard areas.

  9. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-01

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits. PMID:26783033

  10. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-01

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  11. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  12. Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers

    Science.gov (United States)

    O'Brien, Kevin; Macklin, Chris; Siddiqi, Irfan; Zhang, Xiang

    2014-10-01

    We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nanomechanical elements, as well as traditional astronomical detectors.

  13. Resonant phase matching of Josephson junction traveling wave parametric amplifiers.

    Science.gov (United States)

    O'Brien, Kevin; Macklin, Chris; Siddiqi, Irfan; Zhang, Xiang

    2014-10-10

    We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nanomechanical elements, as well as traditional astronomical detectors. PMID:25375734

  14. Ultra-Broadband Coherent Supercontinuum Frequency Comb

    CERN Document Server

    Ruehl, Axel; Cossel, Kevin C; Chen, Lisheng; McKay, Hugh; Thomas, Brian; Benko, Craig; Dong, Liang; Dudley, John M; Fermann, Martin E; Hartl, Ingmar; Ye, Jun

    2011-01-01

    We present detailed studies of the coherence properties of an ultra-broadband super-continuum, enabled by a new approach involving continuous wave laser sources to independently probe both the amplitude and phase noise quadratures across the entire spectrum. The continuum coherently spans more than 1.5 octaves, supporting Hz-level comparison of ultrastable lasers at 698 nm and 1.54 {\\mu}m. We present the first numerical simulation of the accumulated comb coherence in the limit of many pulses, in contrast to the single-pulse level, with systematic experimental verification. The experiment and numerical simulations reveal the presence of quantum-seeded broadband amplitude noise without phase coherence degradation, including the discovery of a dependence of the super-continuum coherence on the fiber fractional Raman gain.

  15. Broadband Approximations for Doubly Curved Reflector Antenna

    OpenAIRE

    V. Schejbal; J. Pidanic

    2010-01-01

    The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn) producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth ...

  16. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Data.gov (United States)

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  17. Rapid determination of alkylphenols in aqueous samples by in situ acetylation and microwave-assisted headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Wu, Yu-Pei; Wang, Yu-Chen; Ding, Wang-Hsien

    2012-08-01

    A rapid and solvent-free procedure for the determination of 4-tert-octylphenol and 4-nonylphenol isomers in aqueous samples is described. The method involves in-situ acetylation and microwave-assisted headspace solid-phase microextraction prior to their determination using gas chromatography-ion trap mass spectrometry operated in the selected ion storage mode. The dual experimental protocols to evaluate the effects of various derivatization and extraction parameters were investigated and the conditions optimized. Under optimized conditions, 300 μL of acetic anhydride mixed with 1 g of potassium hydrogencarbonate and 2 g of sodium chloride in a 20 mL aqueous sample were efficiently extracted by a 65 μm polydimethylsiloxane-divinylbenzene fiber that was located in the headspace when the system was microwave irradiated at 80 W for 5 min. The limits of quantitation were 5 and 50 ng/L for 4-tert-octylphenol and 4-nonylphenol isomers, respectively. The precision for these analytes, as indicated by relative standard deviations, were less than 8% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 74 to 88%. A standard addition method was used to quantitate 4-tert-octylphenol and 4-nonylphenol isomers, and the concentrations ranged from 120 to 930 ng/L in various environmental water samples. PMID:22899640

  18. Phase Transition and Microwave Dielectric Properties of Low-Temperature Sintered BiCu2VO6 Ceramic and its Chemical Compatibility with Silver

    Science.gov (United States)

    Li, Chunchun; Xiang, Huaicheng; Fang, Liang

    2016-01-01

    In this work, a low-firing microwave dielectric ceramic BiCu2VO6 with monoclinic structure was prepared through a solid state reaction method. Dense ceramic could be obtained when sintered at 740°C with a relative density about 96.7%. A diffusive phase transition was observed from the temperature dependence of the relative permittivity and loss tangent. The best sintered sample at 740°C exhibited the optimum microwave dielectric properties with a relative permittivity ~22.7, a quality factor ~11,960 GHz (at 11.0 GHz), and a temperature coefficient of resonant frequency of -17.2 ppm/°C. From the x-ray diffraction, backscattered electron imaging results of the cofired sample with 20 wt.% silver, the BiCu2VO6 ceramic was found not to react with Ag at 740°C. It might be promising for the low-temperature cofired ceramics and dielectric resonator applications.

  19. Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux

    Institute of Scientific and Technical Information of China (English)

    YANG Qing-Hui; ZHNAG Huai-Wu; WEN Qi-Ye; LIU Ying-Li; Ihor M. Syvorotka; Ihor I. Syvorotka

    2009-01-01

    @@ Lu2.1Bi0.9Fe5O12 (LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on gadolinium gallium garnet (GGG) substrates from lead-free flux. Three-inch single crystal garnet films with (444) orientation and good surface are successfully fabricated. The lattice mismatch to the GGG(111) substrate is as small as 0.08%. The ferromagnetic resonance (FMR) linewidth of the film is 2△H = 2.8-5.1 Oe, the Faraday rotation is 1.64 deg/μm at 633nm at room temperature and the optical absorption coefficient of the film is 600 cm-1 in visible range and about 100-170cm-1 when the wavelength is larger than 800nm. The epitaxy film possesses dominating in-plane magnetization with a saturation magnetization of about 1562G. These superior optical, magnetic-optical (MO) and microwave properties of our garnet films have potential applications in both MO and microwave devices.

  20. Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux

    International Nuclear Information System (INIS)

    Lu2.1 Bi0.9Fe5 O12 (LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on gadolinium gallium garnet (GGG) substrates from lead-free flux. Three-inch single crystal garnet films with (444) orientation and good surface are successfully fabricated. The lattice mismatch to the GGG(111) substrate is as small as 0.08%. The ferromagnetic resonance (FMR) linewidth of the film is 2ΔH = 2.8–5.1 Oe, the Faraday rotation is 1.64 deg/μm at 633 nm at room temperature and the optical absorption coefficient of the film is 600 cm−1 in visible range and about 100–170 cm−1 when the wavelength is larger than 800 nm. The epitaxy film possesses dominating in-plane magnetization with a saturation magnetization of about 1562G. These superior optical, magnetic-optical (MO) and microwave properties of our garnet films have potential applications in both MO and microwave devices

  1. Determination of semi-volatile priority pollutants in landfill leachates and sediments using microwave-assisted headspace solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Paulo; Silva, Ana L.; Joao, Maria J.; Santos, Lucia; Alves, Arminda [University of Porto, LEPAE - Laboratory of Process, Environment and Energy Engineering, Faculty of Engineering, Porto (Portugal)

    2006-09-15

    The present work was focused on the development of a simple method aimed at the determination of 12 polycyclic aromatic hydrocarbons (PAHs) and 15 polychlorinated biphenyls (PCBs) in landfill leachates and sediments by adapting a domestic microwave oven to perform microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) followed by gas chromatographic separation and tandem mass spectrometric detection. Good linearity was observed within the concentration range studied; detection limits ranged from 0.1 ng/l to 7 ng/l for PCBs and from 5 ng/l to 926 ng/l for PAHs. Concerning precision, the relative standard deviations obtained were, on average for the leachate and sediment samples analysed, 18% for PCBs and 20% for PAHs. Average recovery values were 37% and 76% for PCBs, and 58% and 48% for PAHs, respectively, for the leachate and reference sediment studied. The method allows the determination of PAHs and PCBs in landfill leachates and sediments, avoiding clean-up steps and the consumption of organic solvents. (orig.)

  2. One-step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature

    International Nuclear Information System (INIS)

    In this paper, we presented a seed-mediated approach for rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature in 1 h. In the synthesis, CdSe seeds were first formed by the reaction of NaHSe and Cd2+, and then alloyed quantum dots (CdSe-CdS) were rapidly produced by releasing of sulfide ions from 3-mercaptopropionic acid as sulfide source with microwave irradiation. The alloyed quantum dots synthesized had good optical properties, the quantum yield was up to 25%, and the full width at half maximum of the emission spectrum peak was about 28 nm. The as-prepared alloyed CdSe-CdS QDs were characterized by XRD, XPS and ICP-AES in order to explore the structure and component of the alloyed nanocrystals and the reaction mechanism. We speculate that the alloyed CdSe-CdS quantum dots may exist a gradient internal structure according to our preliminary results

  3. Michelson interferometer diagnostics for broadband ECE measurement

    International Nuclear Information System (INIS)

    A Michelson interferometer (MI) diagnostic is capable of measuring broadband intensity spectra in the microwave and near infrared spectral range. The Michelson interferometer diagnostics is dedicated to probe the full electron cyclotron emission (ECE) spectrum emitted by plasmas in tokamak experiments with magnetic confinement. At the SST-1 Tokamak at IPR, Michelson interferometer will be used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The Michelson interferometer has spectral resolution of 3.66 GHz and temporal resolution of about 16.67 ms. Installation of the Michelson interferometer diagnostics is in process at IPR. (author)

  4. Preparation, phase structure and microwave dielectric properties of CoLi2/3Ti4/3O4 ceramic

    International Nuclear Information System (INIS)

    Graphical abstract: For chemical compatibility tests with silver electrode, mixtures of ceramic powders with 20 wt% Ag powders were cofired and analyzed to detect interactions between the low-fired samples and electrodes. XRD patterns and backscattered electron image of CoLi2/3Ti4/3O4 ceramics added with 1.5 wt% BCB cofired with Ag at 900 °C for 2 h are presented in . Backscattered electron image analysis reveals no interaction to form new phases after firing. This observation is also confirmed by the evidence of no difference between the XRD patterns before and after firing. It is obvious that the reaction of low-fired CoLi2/3Ti4/3O4 ceramics with Ag electrodes did not occur. Highlights: ► A new microwave dielectric ceramic with good properties was reported. ► The addition of BaCu(B2O5) can lower the sintering temperature from 1050 °C to 900 °C. ► The addition of BaCu(B2O5) does not induce degradation of properties. ► BCB added CoLi2/3Ti4/3O4 ceramics can co-fire with Ag electrode. -- Abstract: A new low loss microwave dielectric ceramic with composition of CoLi2/3Ti4/3O4 was prepared by a conventional solid-state reaction method. The compound has a cubic spinel structure [Fd-3m (227)] similar to MgFe2O4 with lattice parameters of a = 8.3939 Å, V = 591.42 Å3, Z = 8 and ρ = 4.30 g/cm3. This ceramic has a low sintering temperature (∼1050 °C) and good microwave dielectric properties with relative permittivity of 21.4, Q × f value of 35,000 GHz and τf value of −22 ppm/°C. Furthermore, the addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1050 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added CoLi2/3Ti4/3O4 ceramics are good candidates for LTCC applications.

  5. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  6. Broadband frequency conversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter;

    We present a simple, passive and static setup for broadband frequency conversion. By using simple optical components like lenses, mirrors and gratings, we obtain the spectral angular dispersion to match the second harmonic generation phasematching angles in a nonlinear BiBO crystal. We are able to...... frequency double a single-frequency diode laser, tunable in the 1020-1090 nm range, with almost equal efficiency for all wavelengths. In the experimental setup, the width of the phasematch was increased with a factor of 50. The method can easily be extended to other wavelength ranges and nonlinear crystals...

  7. Broadband pendulum energy harvester

    Science.gov (United States)

    Liang, Changwei; Wu, You; Zuo, Lei

    2016-09-01

    A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.

  8. Nanocrystalline TiO2 preparation by microwave route and nature of anatase–rutile phase transition in nano TiO2

    Indian Academy of Sciences (India)

    G M Neelgund; S A Shivashankar; B K Chethana; P P Sahoo; K J Rao

    2011-10-01

    Nanopowders of TiO2 has been prepared using a microwave irradiation-assisted route, starting from a metalorganic precursor, bis(ethyl-3-oxo-butanoato)oxotitanium (IV), [TiO(etob)2]2. Polyvinylpyrrolidone (PVP) was used as a capping agent. The as-prepared amorphous powders crystallize into anatase phase, when calcined. At higher calcination temperature, the rutile phase is observed to form in increasing quantities as the calcination temperature is raised. The structural and physicochemical properties were measured using XRD, FT–IR, SEM, TEM and thermal analyses. The mechanisms of formation of nano-TiO2 from the metal–organic precursor and the irreversible phase transformation of nano TiO2 from anatase to rutile structure at higher temperatures have been discussed. It is suggested that a unique step of initiation of transformation takes place in Ti1/2O layers in anatase which propagates. This mechanism rationalizes several key observations associated with the anatase–rutile transformation.

  9. Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Manan Abdul

    2015-03-01

    Full Text Available Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.

  10. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd; Bang, Ole

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber by...

  11. Influence of secondary phases on phase and microwave dielectric properties of new Ca{sub 2}Ce{sub 2}Ti{sub 5}O{sub 16} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Manan, Abdul, E-mail: drmanan82@yahoo.com, E-mail: samiullah685@yahoo.com; Khan, Sami Ullah, E-mail: drmanan82@yahoo.com, E-mail: samiullah685@yahoo.com [Department of Physics, University of Science and Technology Bannu, 28100 KPK (Pakistan); Qazi, Ibrahim, E-mail: dr.ibrahim.qazi@gmail.com [Departments of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000 (Pakistan)

    2014-11-05

    Ca{sub 2}Ce{sub 2}Ti{sub 5}O{sub 16} ceramics processed via mix oxide route was investigated. Phase composition and microwave dielectric properties were measured using X-ray diffraction and a cavity method, respectively. CeO{sub 2} and another unidentified phase (that vanishes at ≥1400°C) existed as secondary phases along with the parent Ca{sub 2}Ce{sub 2}Ti{sub 5}O{sub 16} phase. The amount of the parent Ca{sub 2}Ce{sub 2}Ti{sub 5}O{sub 16} phase increased with increasing sintering temperature from 1350°C to 1450 °C accompanied by a decrease in the apparent density. The density decreased but ε{sub r} and Qufo increased with sintering temperature. An ε{sub r} ∼87.2, Qufo ∼5915 GHz and τ{sub f} ∼219 GHz was achieved for the sample sintered at 1450°C.

  12. Phase evolution, Raman spectroscopy and microwave dielectric behavior of (Li1/4Nb3/4) doped ZrO2-TiO2 system

    International Nuclear Information System (INIS)

    The phase evolution, Raman spectroscopy and microwave dielectric properties of (Li1/4Nb3/4) doped ZrO2-TiO2 system were investigated. The effects of the Zr/Ti ratio and the (Li1/4Nb3/4) substitution were addressed. X-ray diffraction and electron diffraction analysis showed that the crystalline phases of the (Li1/4Nb3/4) doped ZrO2-TiO2 ceramics depended greatly on the Zr/Ti ratio. The sample with Zr/Ti ratio of 7/9 crystallized as Zr5Ti7O24 phase structure, a commensurate structure with a tripled a-axis superstructure and a ZTTZTT sequence. Secondary phase of monoclinic ZrO2 phase appeared when the Zr/Ti ratio was as high as 9/7. Raman analysis showed that the Raman peaks located at 651 and 624 cm-1 were assigned to the vibration modes of Zr-O octahedron and Ti-O octahedron, respectively. The dielectric constant and quality factor (Qf value) of the (Li1/4Nb3/4) doped ZrO2-TiO2 ceramics decreased slightly as the Zr/Ti ratio changed from 6/10 to 9/7. The temperature coefficient of resonate frequency (TCF value) was sensitive to the Zr/Ti ratio and it showed a negative value when the Zr/Ti ratio was close to 5:7. Meanwhile, the TCF value of ZrO2-TiO2 ceramics could also be tailored by the (Li1/4Nb3/4) substitution. (orig.)

  13. Wide-field broadband radio imaging with phased array feeds: a pilot multi-epoch continuum survey with ASKAP-BETA

    CERN Document Server

    Heywood, I; Marvil, J; Allison, J R; Ball, L; Bell, M E; Bock, D C -J; Brothers, M; Bunton, J D; Chippendale, A P; Cooray, F; Cornwell, T J; DeBoer, D; Edwards, P; Gough, R; Gupta, N; Harvey-Smith, L; Hay, S; Hotan, A W; Indermuehle, B; Jacka, C; Jackson, C A; Johnston, S; Kimball, A E; Koribalski, B S; Lenc, E; Macleod, A; McClure-Griffiths, N; McConnell, D; Mirtschin, P; Murphy, T; Neuhold, S; Norris, R P; Pearce, S; Popping, A; Qiao, R Y; Reynolds, J E; Sadler, E M; Sault, R J; Schinckel, A E T; Serra, P; Shimwell, T W; Stevens, J; Tuthill, J; Tzioumis, A; Voronkov, M A; Westmeier, T; Whiting, M T

    2016-01-01

    The Boolardy Engineering Test Array is a 6 x 12 m dish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAP's phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within a 30 square degree field of view. By cycling the array through 12 interleaved pointing positions and using 9 digitally formed beams we effectively mimic a traditional 1 hour x 108 pointing survey, covering 150 square degrees over 711 - 1015 MHz in 12 hours of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1-sigma thermal noise level of 375 micro-Jy per beam, although the effective noise is a factor 3 higher due to residual sidelobe confusion...

  14. Wide-field broad-band radio imaging with phased array feeds: a pilot multi-epoch continuum survey with ASKAP-BETA

    Science.gov (United States)

    Heywood, I.; Bannister, K. W.; Marvil, J.; Allison, J. R.; Ball, L.; Bell, M. E.; Bock, D. C.-J.; Brothers, M.; Bunton, J. D.; Chippendale, A. P.; Cooray, F.; Cornwell, T. J.; De Boer, D.; Edwards, P.; Gough, R.; Gupta, N.; Harvey-Smith, L.; Hay, S.; Hotan, A. W.; Indermuehle, B.; Jacka, C.; Jackson, C. A.; Johnston, S.; Kimball, A. E.; Koribalski, B. S.; Lenc, E.; Macleod, A.; McClure-Griffiths, N.; McConnell, D.; Mirtschin, P.; Murphy, T.; Neuhold, S.; Norris, R. P.; Pearce, S.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Sadler, E. M.; Sault, R. J.; Schinckel, A. E. T.; Serra, P.; Shimwell, T. W.; Stevens, J.; Tuthill, J.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Whiting, M. T.

    2016-04-01

    The Boolardy Engineering Test Array is a 6 × 12 m dish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAP's phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within an ˜30 deg2 field of view. By cycling the array through 12 interleaved pointing positions and using nine digitally formed beams, we effectively mimic a traditional 1 h × 108 pointing survey, covering ˜150 deg2 over 711-1015 MHz in 12 h of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1σ thermal noise level of 375 μJy beam-1, although the effective noise is a factor of ˜3 higher due to residual sidelobe confusion. From this we derive a catalogue of 3722 discrete radio components, using the 35 per cent fractional bandwidth to measure in-band spectral indices for 1037 of them. A search for transient events reveals one significantly variable source within the survey area. The survey covers approximately two-thirds of the Spitzer South Pole Telescope Deep Field. This pilot project demonstrates the viability and potential of using PAFs to rapidly and accurately survey the sky at radio wavelengths.

  15. Broadband second harmonic generation in whispering gallery mode resonators

    OpenAIRE

    Lin, Guoping; Fürst, Josef U.; Strekalov, Dmitry V.; Yu, Nan

    2013-01-01

    Optical frequency conversion processes in nonlinear materials are limited in wavelength by the accessible phase matching and the required high pump powers. In this letter, we report a novel broadband phase matching (PM) technique in high quality factor (Q) whispering gallery mode (WGM) resonators made of birefringent crystalline materials. This technique relies on two interacting WGMs, one with constant and the other with spatially oscillating phase velocity. Thus, phase matching occurs cycli...

  16. Broadband surface-wave transformation cloak.

    Science.gov (United States)

    Xu, Su; Xu, Hongyi; Gao, Hanhong; Jiang, Yuyu; Yu, Faxin; Joannopoulos, John D; Soljačić, Marin; Chen, Hongsheng; Sun, Handong; Zhang, Baile

    2015-06-23

    Guiding surface electromagnetic waves around disorder without disturbing the wave amplitude or phase is in great demand for modern photonic and plasmonic devices, but is fundamentally difficult to realize because light momentum must be conserved in a scattering event. A partial realization has been achieved by exploiting topological electromagnetic surface states, but this approach is limited to narrow-band light transmission and subject to phase disturbances in the presence of disorder. Recent advances in transformation optics apply principles of general relativity to curve the space for light, allowing one to match the momentum and phase of light around any disorder as if that disorder were not there. This feature has been exploited in the development of invisibility cloaks. An ideal invisibility cloak, however, would require the phase velocity of light being guided around the cloaked object to exceed the vacuum speed of light--a feat potentially achievable only over an extremely narrow band. In this work, we theoretically and experimentally show that the bottlenecks encountered in previous studies can be overcome. We introduce a class of cloaks capable of remarkable broadband surface electromagnetic waves guidance around ultrasharp corners and bumps with no perceptible changes in amplitude and phase. These cloaks consist of specifically designed nonmagnetic metamaterials and achieve nearly ideal transmission efficiency over a broadband frequency range from 0(+) to 6 GHz. This work provides strong support for the application of transformation optics to plasmonic circuits and could pave the way toward high-performance, large-scale integrated photonic circuits. PMID:26056299

  17. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    over the poles. The system consists of a constellation of 4 geostationary satellites covering the earth and delivering its signals to the aircraft at S band (2.52 -2.67 GHz). The S-band spectrum is ideal for this application since it is allocated on a primary basis by the ITU for global broadcast service. The AirTV service is expected to begin in 2004 and should be unencumbered by adjacent satellite interference due to near completion of the ITU coordination process. Each satellite will deliver four 20 Mbps QPSK data streams consisting of multiplexed compressed digital video channels and IP data over the full global beam coverage. The 80 Mbps capacity of each satellite will provide approximately 60 video channels while still allocating 40 Mbits to data services. The combined constellation capacity of 320 Mbits will significantly exceed the capacity of any similar existing or currently planned global satellite system. In addition, the simplicity of the 4-satellite approach is the most cost effective means to deliver high bandwidth globally. Return links, which are required for internet service, will be provided through the existing Inmarsat Aero-H system already onboard virtually all long haul aircraft and will provide return data rates from the aircraft as high as 432 kbps. integrated receiver/decoder (IRD) assembly. The phased array antenna, a key technology element, is being developed by AirTV's strategic partner, CMC Electronics. This antenna is a scaled version of CMC's Inmarsat Aero H antenna and is capable of scanning to 5 degrees above the horizon. Wide angle scanning up to 85 degrees from zenith is necessary for aircraft traversing the northernmost latitudes on transoceanic routes. AirTV has designed both the satellite coverage and aircraft antenna performance to ensure that high signal quality is maintained along all non-polar airline routes. AirTV will be the future of aeronautical broadband delivery. It has been designed specifically for global services and

  18. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    over the poles. The system consists of a constellation of 4 geostationary satellites covering the earth and delivering its signals to the aircraft at S band (2.52 -2.67 GHz). The S-band spectrum is ideal for this application since it is allocated on a primary basis by the ITU for global broadcast service. The AirTV service is expected to begin in 2004 and should be unencumbered by adjacent satellite interference due to near completion of the ITU coordination process. Each satellite will deliver four 20 Mbps QPSK data streams consisting of multiplexed compressed digital video channels and IP data over the full global beam coverage. The 80 Mbps capacity of each satellite will provide approximately 60 video channels while still allocating 40 Mbits to data services. The combined constellation capacity of 320 Mbits will significantly exceed the capacity of any similar existing or currently planned global satellite system. In addition, the simplicity of the 4-satellite approach is the most cost effective means to deliver high bandwidth globally. Return links, which are required for internet service, will be provided through the existing Inmarsat Aero-H system already onboard virtually all long haul aircraft and will provide return data rates from the aircraft as high as 432 kbps. integrated receiver/decoder (IRD) assembly. The phased array antenna, a key technology element, is being developed by AirTV's strategic partner, CMC Electronics. This antenna is a scaled version of CMC's Inmarsat Aero H antenna and is capable of scanning to 5 degrees above the horizon. Wide angle scanning up to 85 degrees from zenith is necessary for aircraft traversing the northernmost latitudes on transoceanic routes. AirTV has designed both the satellite coverage and aircraft antenna performance to ensure that high signal quality is maintained along all non-polar airline routes. AirTV will be the future of aeronautical broadband delivery. It has been designed specifically for global services and

  19. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  20. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  1. Phase composition and microwave dielectric properties of SrTiO3 modified Mg2Al4Si5O18 cordierite ceramics

    International Nuclear Information System (INIS)

    Highlights: • Qf values obviously increased from 39,000 to 80,600 GHz by SrTiO3 addition. • Thermal stability was significantly optimized from −32 ppm/°C to −11 ppm/°C. • Densification sintering temperatures were obviously decreased by liquid phase sintering. • Microwave properties strongly depended on symmetry of [(Si4Al2)O18] hexagonal rings. - Abstract: The effects of SrTiO3 addition on phase composition and microwave dielectric properties of cordierite (Mg2Al4Si5O18) ceramics had been investigated in this paper. X-ray diffraction data showed that (1 − x)Mg2Al4Si5O18–xSrTiO3|(1 − x)MAS − xST (0 ⩽ x ⩽ 0.35)| ceramics presented β-cordierite solid solution within 0 < x ⩽ 0.10. In the range of 0.15 ⩽ x ⩽ 0.35, the perovskite-structured SrTiO3 and monoclinic phase of SrAl2Si2O8 feldspar were detected. Rietveld refinement of XRD data showed the shapes of [(Si4Al2)O18] hexagonal rings in (1 − x)MAS–xST (0 < x ⩽ 0.10) happened to adjust from non-symmetry rings to centro-symmetry equilateral rings, along with the solution of SrTiO3 into cordierite. The densification sintering temperatures of (1 − x)MAS–xST ceramics were effectively lowered as to the effect of SrAl2Si2O8 feldspar acting as liquid sintering aids, accompanying the improvement of microstructure of (1 − x)MAS–xST (0 ⩽ x ⩽ 0.35) ceramics. Finally, the (1 − x)MAS–xST (x = 0.10) ceramics possessed the best optimal Qf value: εr = 6.53, Qf = 80,600 GHz (fo = 13.6 GHz), τf = −18 ppm/°C. The (1 − x)MAS–xST (x = 0.20) ceramics achieved a relative stable temperature coefficient of resonant frequency with: εr = 6.01, Qf = 51,800 GHz (fo = 13.1 GHz), τf = −11 ppm/°C

  2. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Science.gov (United States)

    François, B.; Calosso, C. E.; Abdel Hafiz, M.; Micalizio, S.; Boudot, R.

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10-14 for the Cs cell clock and 2 × 10-14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10-15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  3. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  4. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    International Nuclear Information System (INIS)

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10−14 for the Cs cell clock and 2 × 10−14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10−15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards

  5. Volatile organo-selenium speciation in biological matter by solid phase microextraction-moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, C.; Sanz Landaluze, J.; Ximenez-Embun, P.; Madrid-Albarran, Y.; Camara, C

    2004-01-16

    Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MC column were in-house developed and multicapillary column was operated at moderate temperatures (30-100 deg. C). The method was optimized for organo-selenium species (dimethylselenide (DMSe), diethylselenide (DEtSe) and dimethyldiselenide (DMDSe)), using a chemometric approach. Stationary phases for the separation column were optimized using a conventional GC and contrasted with the results obtained with the MC. Application was focussed on selenium accumulating biological matter, such as lupine, yeast, Indian mustard and garlic. These samples were grown in hydroponic solution containing inorganic selenium (Na{sub 2}SeO{sub 3} and Na{sub 2}SeO{sub 4}). SPME sampling was carried out in fixed volume flow boxes in headspace above the living plants and in vials using treated samples. Results demonstrate inorganic selenium transformation into volatile organic species during metabolism. Separation is fast, a chromatogram can be obtained in less than 3 min and detection limits were at sub-ppb level for all investigated species. The system is independent from the use of a conventional gas chromatographic oven and can be used as a versatile alternative to highly cost intensive methods such as GC-ICP-MS.

  6. Volatile organo-selenium speciation in biological matter by solid phase microextraction-moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

    International Nuclear Information System (INIS)

    Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MC column were in-house developed and multicapillary column was operated at moderate temperatures (30-100 deg. C). The method was optimized for organo-selenium species (dimethylselenide (DMSe), diethylselenide (DEtSe) and dimethyldiselenide (DMDSe)), using a chemometric approach. Stationary phases for the separation column were optimized using a conventional GC and contrasted with the results obtained with the MC. Application was focussed on selenium accumulating biological matter, such as lupine, yeast, Indian mustard and garlic. These samples were grown in hydroponic solution containing inorganic selenium (Na2SeO3 and Na2SeO4). SPME sampling was carried out in fixed volume flow boxes in headspace above the living plants and in vials using treated samples. Results demonstrate inorganic selenium transformation into volatile organic species during metabolism. Separation is fast, a chromatogram can be obtained in less than 3 min and detection limits were at sub-ppb level for all investigated species. The system is independent from the use of a conventional gas chromatographic oven and can be used as a versatile alternative to highly cost intensive methods such as GC-ICP-MS

  7. Microwave-assisted solid-phase peptide synthesis of the 60-110 domain of human pleiotrophin on 2-chlorotrityl resin.

    Science.gov (United States)

    Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore

    2011-05-01

    A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond. PMID:20872260

  8. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  9. A Survey of Advanced Microwave Frequency Measurement Techniques

    OpenAIRE

    Anand Swaroop Khare,

    2012-01-01

    Microwaves are radio waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. The science of photonics includes the generation, emission, modulation, signal processing, switching, transmission, amplification, detection and sensing of light. Microwave photonics has been introduced for achieving ultra broadband signal processing. Instantaneous Frequency Measurement (IFM) receivers play an important ro...

  10. Bragg-Berry mirrors: reflective broadband q-plates

    CERN Document Server

    Rafayelyan, Mushegh

    2016-01-01

    We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and consequently foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies.

  11. 3D broadband isotropic NRI metamaterial based on metallic cross-pairs

    International Nuclear Information System (INIS)

    In this paper, a new type of 3D metamaterial composed of double periodic array of metallic cross-pairs printed on the six sides of a cubic dielectric substrate was proposed to obtain the characteristics of broadband NRI and isotropy for the applications of super lenses. The behaviors of NRI, isotropy and polarization were analyzed using the CST Microwave Studio. The results show that the proposed metamaterial exhibits not only a broadband NRI whose relative bandwidth can be up to 56.7%, but also polarization-independence and isotropy. Thus, the proposed metamaterial is a good candidate material for 3D broadband isotropic NRI metamaterial. - Highlights: → 3D metamaterial is composed of double periodic array of metallic cross-pairs printed on the six sides of a cubic dielectric substrate. → Broadband negative refraction index (NRI) with relative bandwidth of 56.7%. → Polarization-independence and isotropy.

  12. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  13. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  14. A Performance Study of Wireless Broadband Access (WiMAX

    Directory of Open Access Journals (Sweden)

    Maan A. S. Al-Adwany

    2011-12-01

    Full Text Available WiMAX (worldwide interoperability for microwave access is one of the wireless broadband access technologies which supplies broadband services to clients, but it surpasses other technologies by its coverage area, where one base station can cover a small city. In this paper, WiMAX technology is studied by exploring its basic concepts, applications, and advantages / disadvantages. Also a MATLAB simulator is used to verify the operation of the WiMAX system under various channel impairments and for variety of modulation schemes. From the simulation results, we found that WiMAX system works well in both AWGN and multipath fading channels, but under certain constraints that are addressed in this paper.

  15. Broadband and ultra-broadband modular half-wave plates

    Science.gov (United States)

    Dimova, Emiliya; Huang, Wei; Popkirov, George; Rangelov, Andon; Kyoseva, Elica

    2016-05-01

    We experimentally demonstrate broadband and ultra-broadband spectral bandwidth modular half-wave plates. Both modular devices comprise an array of rotated single half-wave plates (HWPs), whereby for broadband and ultra-broadband performance we use standard and commercial achromatic HWPs, respectively. The bandwidth of the modular HWPs depends on the number N of individual HWPs used and in this paper we experimentally investigate this for N = { 3 , 5 , 7 , 9 }. The elements in the arrays are rotated at specific angles with respect to their fast-polarization axes, independent of the nature of the birefringent material. We find the rotation angles using an analogy to the technique of composite pulses, which is widely used for control in nuclear magnetic resonance.

  16. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  17. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  18. Microwave Ovens

    Science.gov (United States)

    ... Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More ... Exporting Electronic Products More in Home, Business, and Entertainment Products Cell Phones Health Issues Reducing Exposure: Hands-free ...

  19. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  20. Quasi-periodic wiggles of microwave zebra structures in a solar flare

    CERN Document Server

    Yu, Sijie; Selzer, L A; Tan, Baolin; Yan, Yihua

    2013-01-01

    Quasi-periodic wiggles of microwave zebra pattern structures with period range from about 0.5 s to 1.5 s are found in a X-class solar flare on 2006 December 13 at the 2.6-3.8 GHz with the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou). Periodogram and correlation analysis show that the wiggles have two-three significant periodicities and almost in phase between stripes at different frequency. The Alfven speed estimated from the zebra pattern structures is about 700 Km/s. We obtain the spatial size of the waveguiding plasma structure to be about 1 Mm with the detected period of about 1 s. It suggests the ZP wiggles can be associated with the fast mag- netoacoustic oscillations in the flaring active region. The lack of a significant phase shift between wiggles of different stripes suggests that the ZP wiggles are caused by a standing sausage oscillation.

  1. Cumulative-Phase-Alteration of Galactic-Light Passing Through the Cosmic-Microwave-Background: A New Mechanism for Some Observed Spectral-Shifts

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-07-01

    Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.

  2. Application of Planar Broadband Slow-Wave Systems

    Directory of Open Access Journals (Sweden)

    Edvardas Metlevskis

    2012-04-01

    Full Text Available Different types of planar broadband slow-wave systems are used for designing microwave devices. The papers published by Lithuanian scientists analyze and investigate the models of helical and meander slow-wave systems. The article carefully examines the applications of meander slow-wave systems and presents the areas where similar systems, e.g. mobile devices, RFID, wireless technologies are used and reviewed nowadays. The paper also focuses on the examples of the papers discussing antennas, filters and couplers that contain designed and fabricated meander slow-wave systems.Article in Lithuanian

  3. Broadband Advanced Spectral System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  4. High Accuracy Microwave Frequency Measurement Based on Single-Drive Dual-Parallel Mach-Zehnder Modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan;

    2011-01-01

    A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method.......A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method....

  5. Heterogeneous broadband network

    Science.gov (United States)

    Dittmann, Lars

    1995-11-01

    Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.

  6. Broadband accelerator control network

    International Nuclear Information System (INIS)

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  7. Predictions from the van der Pol equation applied to high power microwave phase-locking experiments at Physics International

    International Nuclear Information System (INIS)

    In this paper, the van der Pol equation is evaluated as a model for an experiment in which a high power cavity vircator ws driven by a relativistic magnetron. It is shown that Adler's inequality gives a necessary but not sufficient condition to achieve phase locking between the driving magnetron and the driven vircator oscillations. The amplitude of the entrained oscillations is found as a function of the injected magnetron power, the initial frequency detuning and other system parameters. The stability of these oscillations is examined. Not all entrained states are stable. Boundaries between stable and unstable states are given. It is also shown that the driven oscillator can operate as a beat wave source. Predictions are compared to measurements to validate the model. A similar analysis is extended to two coupled van der Pol equations which model the Pl, phase-locked relativistic magnetron experiments

  8. Nanoscale broadband transmission lines for spin qubit control

    Science.gov (United States)

    Dehollain, J. P.; Pla, J. J.; Siew, E.; Tan, K. Y.; Dzurak, A. S.; Morello, A.

    2013-01-01

    The intense interest in spin-based quantum information processing has caused an increasing overlap between the two traditionally distinct disciplines of magnetic resonance and nanotechnology. In this work we discuss rigorous design guidelines to integrate microwave circuits with charge-sensitive nanostructures, and describe how to simulate such structures accurately and efficiently. We present a new design for an on-chip, broadband, nanoscale microwave line that optimizes the magnetic field used to drive a spin-based quantum bit (or qubit) while minimizing the disturbance to a nearby charge sensor. This new structure was successfully employed in a single-spin qubit experiment, and shows that the simulations accurately predict the magnetic field values even at frequencies as high as 30 GHz.

  9. Electron spin resonance insight into broadband absorption of the Cu3Bi(SeO32O2Br metamagnet

    Directory of Open Access Journals (Sweden)

    A. Zorko

    2016-05-01

    Full Text Available Metamagnets, which exhibit a transition from a low-magnetization to a high-magnetization state induced by the applied magnetic field, have recently been highlighted as promising materials for controllable broadband absorption. Here we show results of a multifrequency electron spin resonance (ESR investigation of the Cu3Bi(SeO32O2Br planar metamagnet on the kagome lattice. Its mixed antiferromagnetic/ferromagnetic phase is stabilized in a finite range of applied fields around 0.8 T at low temperatures and is characterized by enhanced microwave absorption. The absorption signal is non-resonant and its boundaries correspond to two critical fields that determine the mixed phase. With decreasing temperature these increase like the sublattice magnetization of the antiferromagnetic phase and show no frequency dependence between 100 and 480 GHz. On the contrary, we find that the critical fields depend on the magnetic-field sweeping direction. In particular, the higher critical field, which corresponds to the transition from the mixed to the ferromagnetic phase, shows a pronounced hysteresis effect, while such a hysteresis is absent for the lower critical field. The observed hysteresis is enhanced at lower temperatures, which suggests that thermal fluctuations play an important role in destabilizing the highly absorbing mixed phase.

  10. Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of N,N'-disubstituted thioureas derived from 3-chlorobenzoic acid.

    Science.gov (United States)

    Rauf, Muhammad Khawar; Zaib, Sumera; Talib, Ammara; Ebihara, Masahiro; Badshah, Amin; Bolte, Michael; Iqbal, Jamshed

    2016-09-15

    A facile and robust microwave-assisted solution phase parallel synthesis protocol was exercised for the development of a 38-member library of N,N'-disubstituted thiourea analogues (1-38) by using an identical set of conditions. The reaction time for synthesis of N,N'-disubstituted thiourea analogues was drastically reduced from a reported duration of 8-12h for conventional methods to only 1.5-2.0min. All the derivatives (1-38) were characterized by physico-analytical techniques such as elemental analysis in combination with FT-IR, (1)H, (13)C NMR and by single crystal XRD analysis have also been performed. These compounds were screened for their in vitro urease inhibition activities. Majority of compounds exhibited potent urease inhibition activities, however, the most significant activity was found for 16, with an IC50 value of 1.23±0.1μM. Furthermore, the synthesized compounds were screened for their cytotoxic potential against lungs cancer cell lines. Cell culture studies demonstrated significant toxicity of the compounds on the cell lines, and the levels of toxicity were altered in the presence of various side groups. The molecular docking studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the urease enzymes. These compounds have a great potential and significance for further investigations. PMID:27480030

  11. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    Science.gov (United States)

    Sidabras, Jason W.; Strangeway, Robert A.; Mett, Richard R.; Anderson, James R.; Mainali, Laxman; Hyde, James S.

    2016-03-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  12. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers

    International Nuclear Information System (INIS)

    The effect of gamma radiation on electrical characteristics of cryogenically cooled broad-band low-noise microwave preamplifiers has been preliminarily evaluated. The change in the gain and noise figure of a 1-2 GHz preamplifier using GaAs microwave transistors was determined at gamma doses between 105 rad to 5 /times/ 108 rad. The gain and noise figure was measured at ambient temperatures of 300 K and 80 K. 8 refs., 2 figs

  13. Studies on the switching speed effect of the phase shift keying in SLED for generating high power microwave

    OpenAIRE

    Zhengfeng, Xiong; Cheng, Cheng; Jian, Yu; Huaibi, Chen; Hui, Ning

    2015-01-01

    SLAC energy doubler (SLED) type radio-frequency pulse compressors are widely used in large-scale particle accelerators for converting long-duration moderate-power input pulse into short-duration high-power output pulse. The phase shift keying (PSK) is one of the key components in SLED pulse compression systems. Performance of the PSK will influence the output characteristics of SLED, such as rise-time of the output pulse, the maximal peak power gain, and the energy efficiency. In this paper, ...

  14. Artificial metamaterials for reprogrammable magnetic and microwave properties

    Science.gov (United States)

    Haldar, Arabinda; Adeyeye, Adekunle Olusola

    2016-01-01

    We demonstrate a reliable method for realizing various antiferromagnetic states in lithographically defined, dipolar coupled rhomboid nanomagnets. We directly probe the remanent state using magnetic force microscopy and measured the microwave absorptions using broadband ferromagnetic resonance spectroscopy technique. Reprogrammable microwave absorption properties are shown by switching between ferromagnetic and antiferromagnetic remanent states using a simple field initialization. There is a direct correlation between the magnetic remanent states and the microwave responses. Experimental results were supported by micromagnetic simulations which show a good agreement. The results may find applications in low power magnonic devices based on reprogrammable magnetic metamaterials.

  15. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  16. Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses

    International Nuclear Information System (INIS)

    Using a standard Levenberg–Marquardt algorithm, broadband quarter-wave plates (QWPs) with bandwidth from 3 to 18 eV in the extreme ultraviolet (EUV) region were designed using aperiodic Mo/Si multilayers. By analyzing the design results of the Mo/Si multiayers with different bilayer numbers, we found that a Mo/Si multilayer with more bilayers can achieve broader phase control, but suffers from lower total throughput and a degree of circular polarization. In addition, the pulse broadenings caused by the group delay dispersions of the designed broadband QWPs were studied, and their layer distributions were investigated. The oscillating distribution of bilayer thickness in optimized multilayers was observed, which is considered to be the reason for forming the broadband phase control. Such broadband QWPs can be applied to generate a circularly polarized broadband EUV source, such as isolated attosecond pulse, directly from a linearly polarized source. (paper)

  17. Microwave sintering of sol–gel composite films using a domestic microwave oven

    Science.gov (United States)

    Kobayashi, Makiko; Matsumoto, Makoto

    2016-07-01

    Feasibility study of sol–gel composite microwave sintering using a domestic microwave oven was carried out. Two kinds of lead zirconate titanate (PZT) powders were mixed with PZT sol–gel solution and the mixture was sprayed onto 3-mm-thick titanium substrate. The films were sintered by 700 W domestic oven for 10 min. Ultrasonic measurement was carried out in pulse–echo mode and clear multiple echoes were confirmed. It would be suitable method to fabricate high frequency broadband focused ultrasonic transducers. Further research is required to improve sintering degree.

  18. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  19. Broadband Neutron Interferometer

    CERN Document Server

    Pushin, Dmitry A; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G; Huber, Michael G; Jacobson, David; LaManna, Jacob; Parker, Joseph D; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization of the full neutron flux for precise measurements of potential gradients, and expands neutron phase-contrast imaging techniques to more intense polycromatic neutron beams.

  20. Synchrony in broadband fluctuation and the 2008 financial crisis.

    Directory of Open Access Journals (Sweden)

    Der Chyan Lin

    Full Text Available We propose phase-like characteristics in scale-free broadband processes and consider fluctuation synchrony based on the temporal signature of significant amplitude fluctuation. Using wavelet transform, successful captures of similar fluctuation pattern between such broadband processes are demonstrated. The application to the financial data leading to the 2008 financial crisis reveals the transition towards a qualitatively different dynamical regime with many equity price in fluctuation synchrony. Further analysis suggests an underlying scale free "price fluctuation network" with large clustering coefficient.

  1. Broadband Neutron Interferometer

    OpenAIRE

    Pushin, Dmitry A.; Sarenac, Dusan; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G.; Huber, Michael G.; Jacobson, David; LaManna, Jacob; Parker, Joseph D.; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization...

  2. Microwave-assisted Solid-phase Synthesis, Biological Evaluation and Molecular Docking of Angiotensin I-converting Enzyme Inhibitors

    Institute of Scientific and Technical Information of China (English)

    SUN Yang; HUANG Da-wei; LI Xiao-hui; HU Jian-en; XIU Zhi-long

    2012-01-01

    Short peptides based on the tripeptides,Leu-Arg-Pro and Leu-Lys-Pro,were synthesized by microwaveassisted solid-phase synthesis method,in order to make a search for potential inhibitors for angiotensin (I)-converting enzyme(ACE) with minimum side effects in the treatment of hypertension.One peptide with the sequence Leu-Arg-Pro-Phe-Phe shows the strongest inhibition towards ACE with an IC50 value of 0.26 μmol/L in vitro.The study of structure-activity relationship shows that the introduction of a bulky group into the N-terminal of this series of inhibitors may enlarge steric hindrance,resulting in the poor inhibitory activity towards ACE.The inhibitory activity decreased in turn when L-Pro,D-Pro or Ac6c was at the C-terminal respectively.The binding interaction between each of these inhibitors and testicular ACE(tACE) was performed by molecular docking.The results suggest that Leu-Arg-Pro-Phe-Phe mainly occupied the St subsite of tACE,and made contact with tACE via seven H-bonds.It appeared that the site on the peptide that bound with tACE was influenced by the configuration of the amino acid,L- or D-form,at the C-terminal of the peptide.

  3. Broadband second harmonic generation in whispering gallery mode resonators

    CERN Document Server

    Lin, Guoping; Strekalov, Dmitry V; Yu, Nan

    2013-01-01

    Optical frequency conversion processes in nonlinear materials are limited in wavelength by the accessible phase matching and the required high pump powers. In this letter, we report a novel broadband phase matching (PM) technique in high quality factor (Q) whispering gallery mode (WGM) resonators made of birefringent crystalline materials. This technique relies on two interacting WGMs, one with constant and the other with spatially oscillating phase velocity. Thus, phase matching occurs cyclically. The technique can be implemented with a WGM resonator with its disk plane parallel to the optic axis of the crystal. With a single beta barium borate (BBO) resonator in that configuration, we experimentally demonstrated efficient second harmonic generation (SHG) to harmonic wavelengths from 780 nm in the near infrared to 317 nm in the ultraviolet (UV). The observed SHG conversion efficiency is as high as 4.6% (mW)-1. This broadband PM technique opens a new way for nonlinear optics applications in WGM resonators. Th...

  4. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  5. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  6. A NOVEL QOS SCHEDULING FOR WIRELESS BROADBAND NETWORKS

    Directory of Open Access Journals (Sweden)

    D. David Neels Pon Kumar

    2010-09-01

    Full Text Available During the last few years, users all over the world have become more and more familiar to the availability of broadband access. When users want broadband Internet service, they are generally restricted to a DSL (Digital Subscribers Line, or cable-modem-based connection. Proponents are advocating worldwide interoperability for microwave access (WiMAX, a technology based on an evolving standard for point-to multipoint wireless networking. Scheduling algorithms that support Quality of Service (QoS differentiation and guarantees for wireless data networks are crucial to the deployment of broadband wireless networks. The performance affecting parameters like fairness, bandwidth allocation, throughput, latency are studied and found out that none of the conventional algorithms perform effectively for both fairness and bandwidth allocation simultaneously. Hence it is absolutely essential for an efficient scheduling algorithm with a better trade off for these two parameters. So we are proposing a novel Scheduling Algorithm using Fuzzy logic and Artificial neural networks that addresses these aspects simultaneously. The initial results show that a fair amount of fairness is attained while keeping the priority intact. Results also show that maximum channel utilization is achieved with a negligible increment in processing time.

  7. Broadband illumination of superconducting pair breaking photon detectors

    Science.gov (United States)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  8. Frequency Doubling Broadband Light in Multiple Crystals

    International Nuclear Information System (INIS)

    The authors compare frequency doubling of broadband light in a single nonlinear crystal with doubling in five crystals with intercrystal temporal walk off compensation, and with doubling in five crystals adjusted for offset phase matching frequencies. Using a plane-wave, dispersive numerical model of frequency doubling they study the bandwidth of the second harmonic and the conversion efficiency as functions of crystal length and fundamental irradiance. For low irradiance the offset phase matching arrangement has lower efficiency than a single crystal of the same total length but gives a broader second harmonic bandwidth. The walk off compensated arrangement gives both higher conversion efficiency and broader bandwidth than a single crystal. At high irradiance, both multicrystal arrangements improve on the single crystal efficiency while maintaining broad bandwidth

  9. Microwave and RF applications for micro-resonator based frequency combs

    Science.gov (United States)

    Nguyen, Thach G.; Shoeiby, Mehrdad; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2016-02-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  10. Ultra-Broadband Acoustic Metasurface for Manipulating the Reflected Waves

    OpenAIRE

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2014-01-01

    We have designed and experimentally realized an ultra-broadband acoustic metasurface (UBAM) capable of going beyond the intrinsic limitation of bandwidth in existing designs of optical/acoustical metasurfaces. Both the numerical and experimental results demonstrate that the UBAM made of subwavelength gratings can manipulate the reflected phase-front within a bandwidth larger than 2 octaves. A simple physical model based on the phased array theory is developed for interpreting this extraordina...

  11. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  12. Broadband perfect polarization conversion metasurfaces

    International Nuclear Information System (INIS)

    We propose a broadband perfect polarization conversion metasurface composed of copper sheet-backed asymmetric double spilt ring resonator (DSRR). The broadband perfect polarization convertibility results from metallic ground and multiple plasmon resonances of the DSRR. Physics of plasmon resonances are governed by the electric and magnetic resonances. Both the simulation and measured results show that the polarization conversion ratio (PCR) is higher than 99% for both x- and y-polarized normally incident EM waves and the fractional bandwidth is about 34.5%. The metasurface possesses the merits of high PCR and broad bandwidth, and thus has great application values in novel polarization-control devices. (paper)

  13. Recovery of ultra-broadband terahertz pulses from sum-frequency spectrograms using a generalized deconvolution method

    Directory of Open Access Journals (Sweden)

    Roskos Hartmut G.

    2013-03-01

    Full Text Available A method to recover the intensity and phase of ultra-broadband THz pulses exceeding 100 THz bandwidth is presented, using a generalized deconvolution algorithm which incorporates an arbitrary phase-matching and non-linear response.

  14. Photonic Generation of Phase-Coded Microwave Signal with Large Frequency Tunability%光生频率大范围可调的相位编码微波信号

    Institute of Scientific and Technical Information of China (English)

    刘双; 钱祖平; 王荣; 蒲涛

    2013-01-01

    提出并验证了一种光生相位编码微波信号的方法,其主要原理是对编码的相干光边带进行差拍,从而得到高频率、高编码数率、低噪声的相位编码微波信号.该方法简单易行,利于集成,能适应不同的编码速率,产生的微波信号频率大范围可调,能解决电子电路方法中遇到的“电子瓶颈”问题.介绍了所提方法的原理,并进行了理论推导,在系统分析中加入了对调制器驱动信号相位噪声的分析,使得系统建模更加科学完善;实验设计制作了所需的光纤光栅带阻滤波器,产生了20 GHz和25 GHz的相位编码微波信号,实验结果与理论值几乎吻合,证明了所提方法提高脉冲压缩比的能力.%A photonic approach to generating a phase-coded microwave signal is proposed and demonstrated. The main principle is to beat the encoded coherent optical sideband to obtain high-frequency, high-coding rate, low-noise encoded microwave signals. The proposed technique, which is simple and conducive to integration, can adapt to different coding rates, generate phase-coded microwave signals with tunable frequency, and solve the bottleneck problem of traditional electronic approaches. The principle is discussed in detail. Mathematical models are developed to consider perturbation on the generated coded signal caused by the phase fluctuations of the microwave driving signal and the optical carrier. The required fiber Bragg grating notch filter is fabricated, and 20 GHz and 25 GHz phase-coded microwave signals are experimentally generated, respectively. The experimental results agree well with theoretical values, and it is proved that the proposed method improves the pulse compression capability.

  15. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jianjia [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Université Paris-Ouest, 92410 Ville d' Avray (France); Piau, Gérard-Pascal [AIRBUS Group Innovations, 92150 Suresnes (France)

    2015-07-13

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  16. An electromagnetically induced grating by microwave modulation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik, E-mail: kisik@inha.ac.k [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of)

    2010-08-28

    We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of {sup 87}Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field. (fast track communication)

  17. Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal.

    Science.gov (United States)

    Regelskis, K; Želudevičius, J; Gavrilin, N; Račiukaitis, G

    2012-12-17

    We demonstrate an efficient technique for the second harmonic generation (SHG) of the broadband radiation based on the temperature gradient along a nonlinear crystal. The characteristics of Type I non-critical phase-matched SHG of broadband radiation in the LiB(3)O(5) (LBO) crystal with the temperature gradient imposed along the crystal were investigated both numerically and experimentally. The frequency doubling efficiency of the broadband pulsed fiber laser radiation as high as 68% has been demonstrated. PMID:23263092

  18. The Skill Complementarity of Broadband Internet

    OpenAIRE

    Akerman, Anders; Gaarder, Ingvil; Mogstad, Magne

    2013-01-01

    Does adoption of broadband internet in firms enhance labor productivity and increase wages? And is this technological change skill biased or factor neutral? We exploit rich Norwegian data with firm-level information on value added, factor inputs and broadband adoption to answer these questions. We estimate production functions where firms can change their technology by adopting broadband internet. A public program with limited funding rolled out broadband access points, and provides plausibly...

  19. Broadband Internet's Value for Rural America

    OpenAIRE

    Stenberg, Peter L.; Morehart, Mitchell J.; Vogel, Stephen J.; Cromartie, John; Breneman, Vincent E.; Brown, Dennis M.

    2009-01-01

    As broadband—or high-speed—Internet use has spread, Internet applications requiring high transmission speeds have become an integral part of the “Information Economy,” raising concerns about those who lack broadband access. This report analyzes (1) rural broadband use by consumers, the community-at-large, and businesses; (2) rural broadband availability; and (3) broadband’s social and economic effects on rural areas. It also summarizes results from an ERS-sponsored workshop on rural broadband...

  20. Imaging of microwave fields using ultracold atoms

    CERN Document Server

    Boehi, Pascal; Haensch, Theodor W; Treutlein, Philipp; 10.1063/1.3470591

    2010-01-01

    We report a technique that uses clouds of ultracold atoms as sensitive, tunable, and non-invasive probes for microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field. Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and it is possible to reconstruct the distribution of microwave magnetic field amplitudes and phases. While we demonstrate 2d imaging, an extension to 3d imaging is straightforward. We use the method to determine the microwave near-field distribution around a coplanar waveguide integrated on an atom chip.

  1. Achieving universal access to broadband

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    2009-01-01

    The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures to be...

  2. Broadband and chiral binary dielectric meta-holograms.

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-05-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices' compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics. PMID:27386518

  3. SMALL-SCALE MICROWAVE BURSTS IN LONG-DURATION SOLAR FLARES

    International Nuclear Information System (INIS)

    Solar small-scale microwave bursts (SMBs), including microwave dot, spike, and narrow-band type III bursts, are characterized by very short timescales, narrow frequency bandwidth, and very high brightness temperatures. Based on observations of the Chinese Solar Broadband Radio Spectrometer at Huairou with superhigh cadence and frequency resolution, this work presents an intensive investigation of SMBs in several flares that occurred in active region NOAA 10720 during 2005 January 14-21. Especially for long-duration flares, the SMBs occurred not only in the early rising and impulsive phase, but also in the flare decay phase and even after the end of the flare. These SMBs are strong bursts with inferred brightness temperatures of at least 8.18 × 1011-1.92 × 1013 K, very short lifetimes of 5-18 ms, relative frequency bandwidths of 0.7%-3.5%, and superhigh frequency drifting rates. Together with their obviously different polarizations from background emission (the quiet Sun, and the underlying flaring broadband continuum), such SMBs should be individual, independent strong coherent bursts related to some non-thermal energy release and the production of energetic particles in a small-scale source region. These facts show the existence of small-scale strong non-thermal energy releasing activities after the flare maxima, which is meaningful for predicting space weather. Physical analysis indicates that a plasma mechanism may be the most favorable candidate for the formation of SMBs. From the plasma mechanism, the velocities and kinetic energy of fast electrons can be deduced and the region of electron acceleration can also be tracked

  4. Microwave Filters

    OpenAIRE

    Zhou, Jiafeng

    2010-01-01

    The general theory of microwave filter design based on lumped-element circuit is described in this chapter. The lowpass prototype filters with Butterworth, Chebyshev and quasielliptic characteristics are synthesized, and the prototype filters are then transformed to bandpass filters by lowpass to bandpass frequency mapping. By using immitance inverters ( J - or K -inverters), the bandpass filters can be realized by the same type of resonators. One design example is given to verify the theory ...

  5. Broadband frequency conversion

    OpenAIRE

    Sanders, Nicolai Højer; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    We demonstrate a method for frequency conversion of broadly tunable or broad bandwidth light in a static, passive setup. Using simple optical components like lenses, mirrors and gratings and a BiBO crystal as the nonlinear material, we are able to frequency double a single-frequency, tunable, external cavity diode laser in the 1020-1090 nm range into the 510-545 nm range with almost equal efficiency for all wavelengths. Phase matching is obtained as follows; a diffraction grating is used to d...

  6. Effect of Microwave Processing on Aluminate Cement Clinkering

    Institute of Scientific and Technical Information of China (English)

    DONG Jianmiao; LONG Shizong

    2005-01-01

    When raw materials were preheated to 1000-1300 ℃ by electricity and microwave was inputted for 1 min 5 s-4 mins, then alunminate clinkers were obtained. The f-CaO contents,XRD patterns and lithofacies analysis show that the microwave processing accelerates the clinkering reaction,and Fe2O3 is contributed to the aluminate cement clinkering. The appearance of liquid phase in process of microwave heating increases the microwave absorbability of materials greatly.

  7. Chiral-field microwave antennas (Chiral microwave near fields for far-field radiation)

    CERN Document Server

    Kamenetskii, E O; Shavit, R

    2015-01-01

    In a single-element structure we obtain a radiation pattern with a squint due to chiral microwave near fields originated from a magnetostatic-mode ferrite disk. At the magnetostatic resonances, one has strong subwavelength localization of energy of microwave radiation. Magnetostatic oscillations in a thin ferrite disk are characterized by unique topological properties: the Poynting-vector vortices and the field helicity. The chiral-topology near fields allow obtaining unique phase structure distribution for far-field microwave radiation.

  8. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  9. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  10. Solar power satellite microwave transmission and reception

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.H.

    1980-12-01

    Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.

  11. Statistical dispersion relation for spatially broadband fields.

    Science.gov (United States)

    Shan, Mingguang; Nastasa, Viorel; Popescu, Gabriel

    2016-06-01

    The dispersion relation is fundamental to a physical phenomenon that develops in both space and time. This equation connects the spatial and temporal frequencies involved in the dynamic process through the material constants. Electromagnetic plane waves propagating in homogeneous media are bound by simple dispersion relation, which sets the magnitude of the spatial frequency, k, as being proportional to the temporal frequency, ω, with the proportionality constant dependent on the refractive index, n, and the speed of light in vacuum, c. Here we show that, for spatially broadband fields, an analog dispersion relation can be derived, except in this case the k-vector variance is connected with the temporal frequency through the statistics of the refractive index fluctuations in the medium. We discuss how this relationship can be used to retrieve information about refractive index distributions in biological tissues. This result is particularly significant in measurements of angular light scattering and quantitative phase imaging of biological structures. PMID:27244396

  12. Broadband Approximations for Doubly Curved Reflector Antenna

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2010-12-01

    Full Text Available The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth changes, sidelobe levels and aperture efficiencies are given for frequency changes approximately up to four times operating frequency. A comparison of approximated and measured patterns of doubly curved reflector antennas shows that the given approximation could be reliably used for analyses of pattern changes due to very broad frequency changes.

  13. Microwave kinoform for magnetic fusion

    International Nuclear Information System (INIS)

    A microwave kinoform that modifies both the phase and polarization of an incident wavefront has been designed. This kinoform for the TMX-U magnetic fusion experiment has been fabricated and tested. The design procedure, method of fabrication, and experimental test results are discussed

  14. Pretreatment in a high-pressure microwave processor for MIB-1 immunostaining of cytological smears and paraffin tissue sections to visualize the various phases of the mitotic cycle

    NARCIS (Netherlands)

    Suurmeijer, AJH; Boon, ME

    1999-01-01

    In many pathology laboratories, both microwave ovens and pressure cookers are used for pretreatment of cytologic smears and paraffin sections to allow MIB-1 staining. For both methods there are two problems. First, the results cannot be used for quantitation because standardization is impossible. Se

  15. Theory and design of broadband matching networks applied electricity and electronics

    CERN Document Server

    Chen, Wai-Kai

    1976-01-01

    Theory and Design of Broadband Matching Networks centers on the network theory and its applications to the design of broadband matching networks and amplifiers. Organized into five chapters, this book begins with a description of the foundation of network theory. Chapter 2 gives a fairly complete exposition of the scattering matrix associated with an n-port network. Chapter 3 considers the approximation problem along with a discussion of the approximating functions. Chapter 4 explains the Youla's theory of broadband matching by illustrating every phase of the theory with fully worked out examp

  16. Microwave Magnetoelectric Devices

    OpenAIRE

    Tatarenko, A. S.; Bichurin, M. I.

    2012-01-01

    Tunable microwave magnetoelectric devices based on layered ferrite-ferroelectric structures are described. The theory and experiment for attenuator, band-pass filter and phase shifter are presented. Tunability of the ME devices characteristics can be executed by application of an electric field. This electric tuning is relatively fast and is not power-consuming. The attenuator insertion losses vary from 26 dB to 2 dB at frequency 7251 MHz. The tuning range of 25 MHz of band-pass filter at fre...

  17. Broadband SHF Direction-Finder

    Directory of Open Access Journals (Sweden)

    S. Radionov

    2008-06-01

    Full Text Available The original design of the compact broadband direction-finder is presented in this paper. The cylindrical monopole antenna serves as a primary source of the reflector- type antenna. "Zero-amplitude" technique is used for bearing the SHF sources. The model experiments with the proposed direction-finder prototype in the frequency band 6 GHz - 11 GHz have been carried out.

  18. Broadband Loaded Cylindrical Monopole Antenna

    OpenAIRE

    Boucher, Solene; Sharaiha, Ala; Potier, Patrick

    2013-01-01

    Ahstract-A broadband printed monopole antenna based on the variation of the conductivity along its length is proposed .. The result indicates that a non-monotonous repartition provides interesting performances in terms of impedance bandwidth but also concerning antenna gain. The achievement of the method is demonstrated through its application, using the carbon fibers to perform this conductivity variation. Monopole antenna presents a large impedance bandwidth of 123% with an interesting gain...

  19. Radiative cooling and broadband phenomenon in low-frequency waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial -plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves. Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period, and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabatic heating. when the intensity of diabatic heating is moderate and appropriate, it is conductive to the development and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.

  20. Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-12-01

    Full Text Available Dispersive Fourier transformation (DFT maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well.

  1. Coherent conversion between optical and microwave photons in Rydberg gases

    CERN Document Server

    Kiffner, Martin; Kaczmarek, Krzysztof T; Jaksch, Dieter; Nunn, Joshua

    2016-01-01

    Quantum information encoded in optical photons can be transmitted over long distances with very high information density, and suffers from negligible thermal noise at room temperature. On the other hand, microwave photons at cryogenic temperatures can be confined in high quality resonators and strongly coupled to solid-state qubits, providing a quantum bus to connect qubits and a route to deterministic photonic non-linearities. The coherent interconversion of microwave and optical photons has therefore recently emerged as a highly desirable capability that would enable freely-scalable networks of optically-linked qubits, or large-scale photonic information processing with multi-photon interactions mediated by microwaves. Here, we propose a route to efficient and coherent microwave-optical conversion based on frequency mixing in Rydberg atoms. The interaction requires no microfabricated components or cavities, and is tunable, broadband, and both spatially and spectrally multimode.

  2. A Novel, Free-Space Broadband Dielectric Measurement Technique

    OpenAIRE

    Liu, YaQiang

    2014-01-01

    Frequently, when free-space electromagnetic waves pass through a material, there will be some form of interaction between the wave and the material. Measuring this change forms the basis of free-space, dielectric material measurement, where the variations will be attenuation and a phase change relative to the wave when the material was not present and are typically recorded over a broadband range of frequencies. In this work a new technique is presented to accurately perform free-space bro...

  3. Design of a Broadband Inverted Conical Quadrifilar Helix Antenna

    OpenAIRE

    Jingyan Mo; Wei Liu; Weidong Fang; Haigao Xue; Zhongchao Lin

    2016-01-01

    This paper introduces the design of a broadband inverted conical circularly polarized quadrifilar helix antenna (QHA). The antenna has many good characteristics, including wide beam and broad bandwidth, which are achieved by utilizing inverted conical geometry and adjusting the dimensions of the inverted conical support. The antenna is fed by a wideband network to provide 90° phase difference between the four arms with constant amplitude. The antenna impedance and axial ratio bandwidth values...

  4. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    OpenAIRE

    Varma, R. M.; Ball, S. M.; Brauers, T.; H.-P. Dorn; U. Heitmann; Jones, R L; U. Platt; D. Pöhler; A. A. Ruth; Shillings, A. J. L.; J. Thieser; A. Wahner; D. S. Venables

    2013-01-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three s...

  5. Cryogenic microstripline-on-Kapton microwave interconnects

    CERN Document Server

    Harris, A I; Lau, J M; Church, S E; Samoska, L A; Cleary, K

    2012-01-01

    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and cross-talk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.

  6. Monitoring of PAHs in air by collection on XAD-2 adsorbent then microwave-assisted thermal desorption coupled with headspace solid-phase microextraction and gas chromatography with mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ming-Chi; Chang, Wan-Ting [Central Taiwan University of Science and Technology, Department of Food Science, Taichung (Taiwan); Jen, Jen-Fon [National Chung-Hsing University, Department of Chemistry, Taichung (Taiwan)

    2007-02-15

    Microwave-assisted thermal desorption (MAD) coupled to headspace solid-phase microextraction (HS-SPME) has been studied for in-situ, one-step, sample preparation for PAHs collected on XAD-2 adsorbent, before gas chromatography with mass spectrometric detection. The PAHs on XAD-2 were desorbed into the extraction solution, evaporated into the headspace by use of microwave irradiation, and absorbed directly on a solid-phase microextraction fiber in the headspace. After desorption from the SPME fiber in the hot GC injection port, PAHs were analyzed by GC-MS. Conditions affecting extraction efficiency, for example extraction solution, addition of salt, stirring speed, SPME fiber coating, sampling temperature, microwave power and irradiation time, and desorption conditions were investigated. Experimental results indicated that extraction of 275 mg XAD-2, containing 10-200 ng PAHs, with 10-mL ethylene glycol-1 mol L{sup -1} NaCl solution, 7:3, by irradiation with 120 W for 40 min (the same as the extraction time), and collection with a PDMS-DVB fiber at 35 C, resulted in the best extraction efficiency. Recovery was more than 80% and RSD was less than 14%. Optimum desorption was achieved by heating at 290 C for 5 min. Detection limits varied from 0.02 to 1.0 ng for different PAHs. A real sample was obtained by using XAD-2 to collect smoke from indoor burning of joss sticks. The amounts of PAHs measured varied from 0.795 to 2.53 ng. The method is a simple and rapid procedure for determination of PAHs on XAD-2 absorbent, and is free from toxic organic solvents. (orig.)

  7. Microwave Sterilization and Depyrogenation System

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  8. Trace determination of antibacterial pharmaceuticals in fishes by microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction followed by ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Huang, Peiting; Zhao, Pan; Dai, Xinpeng; Hou, Xiaohong; Zhao, Longshan; Liang, Ning

    2016-02-01

    A novel pretreatment method involving microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction (MAE-SPP-DLLME) followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established for the simultaneous determination of six antibacterial pharmaceuticals including metronidazole, tinidazole, chloramphenicol, thiamphenicol, malachite green and crystal violet. The conditions of MAE were optimized using an orthogonal design and the optimal conditions were found to be 8mL for acetonitrile, 50°C for 5min. Then, neutral alumina column was employed in the solid-phase purification. Finally, the critical parameters affecting DLLME, including selection of extraction and dispersive solvent, adjustment of pH, salt concentration, extraction time, were investigated by single factor study. Under optimum conditions, good linearities (r>0.9991) and satisfied recoveries (Recoveries>87.0%, relative standard deviation (RSD)method compared with microwave assisted extraction followed by purification. The established method was sensitive, rapid, accurate and employable to simultaneously determine target analytes in farmed fish, river fish and marine fish. PMID:26773891

  9. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  10. Analysis of the Proposed Ghana Broadband Strategy

    DEFF Research Database (Denmark)

    Williams, Idongesit; Botwe, Yvonne

    This project studied the Ghana Broadband Strategy with the aim of evaluating the recommendations in the strategy side by side the broadband development in Ghana. The researchers conducted interviews both officially and unofficially with ICT stakeholders, made observations, studied Government...... intervention policies recommended in the Ghana broadband policy is used to evaluate the broadband market to find out whether the strategy consolidates with the Strengths and opportunities of the market and whether it corrects the anomalies that necessitate the weaknesses and threats to the market....... The strategy did address some threats and weaknesses of the broadband market. It also consolidated on some strengths and opportunities of the broadband market. The researchers also discovered that a market can actually grow without a policy. But a market will grow faster if a well implemented policy is guiding...

  11. Metamaterial-based perfect absorber: polarization insensitivity and broadband

    International Nuclear Information System (INIS)

    We report the design and simulation of a microwave metamaterials-based perfect absorber using a simple and highly symmetric structure. The basic structure consists of three functional layers: the middle is a dielectric, the back is a metallic plane and the front is a ring of metal. The influence of structural parameters on the absorbance and absorption frequency were investigated. The results show an exceptional absorption performance of near unity around 16 GHz. In addition, the absorption is insensitive to the polarization of the incident beam due to the highly symmetric structure. Finally, four and nine rings with different sizes are arranged appropriately in a unit cell in order to construct a broadband absorber. A polarization-insensitive absorbance of above 90% is achieved over a bandwidth of 15%. (papers)

  12. Photonics for microwave systems and ultra-wideband signal processing

    Science.gov (United States)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  13. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  14. Observation of broadband unidirectional transmission by fusing the one-way edge states of gyromagnetic photonic crystals.

    Science.gov (United States)

    Li, Zhen; Wu, Rui-xin; Li, Qing-Bo; Lin, Zhi-fang; Poo, Yin; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-04-20

    We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission. PMID:25969002

  15. The economic impact of broadband deployment in Kentucky

    OpenAIRE

    David Shideler; Narine Badasyan; Laura Taylor

    2007-01-01

    Significant resources are being invested by government and the private sector in broadband infrastructure to increase broadband deployment and use. With a unique dataset of broadband availability (sorted by county), the authors assess whether broadband infrastructure has affected the industrial competitiveness of Kentucky counties. Their results suggest that broadband availability increases employment growth in some industries but not others.

  16. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  17. Broadband b: scaling law of P-wave broadband radiated energy

    OpenAIRE

    Wu, Zhongliang; Kim, So G.; Gao, Yuan

    1995-01-01

    We analyzed the NEIC broadband radiated energy catalogue and found that the scaling law of earthquake energy deduced from Gutenegberg-Richter’s law is not valid in a quantitative sense. The analysis of broadband radiated energy, however, also shows a scaling law, which may be represented by a broadband b value.

  18. Understanding broadband over power line

    CERN Document Server

    Held, Gilbert

    2006-01-01

    Understanding Broadband over Power Line explores all aspects of the emerging technology that enables electric utilities to provide support for high-speed data communications via their power infrastructure. This book examines the two methods used to connect consumers and businesses to the Internet through the utility infrastructure: the existing electrical wiring of a home or office; and a wireless local area network (WLAN) access point.Written in a practical style that can be understood by network engineers and non-technologists alike, this volume offers tutorials on electric utility infrastru

  19. Broadband tuning of optomechanical cavities

    Science.gov (United States)

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2011-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  20. Broadband Tuning of Optomechanical Cavities

    OpenAIRE

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2010-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from ...

  1. Broadband Tuning of Optomechanical Cavities

    CERN Document Server

    Wiederhecker, Gustavo S; Lee, Sunwoo; Lipson, Michal

    2010-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  2. Achieving Universal Access to Broadband

    Directory of Open Access Journals (Sweden)

    Morten FALCH

    2009-01-01

    Full Text Available The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures to be applied. The paper concludes that other policy measure than the classical universal service obligation are in play, and discusses various policy measures taking the Lisbon process as a point of departure. Available policy measures listed in the paper include, universal service obligation, harmonization, demand stimulation, public support for extending the infrastructure, public private partnerships (PPP, and others.

  3. Distortion mechanisms in varactor diode-tuned microwave filters

    OpenAIRE

    Carey-Smith, BE; Warr, PA

    2006-01-01

    This paper examines the broadband distortion behavior in flexible filters employing varactor-diode tuning elements. Series- and parallel-resonant varactor-loaded transmission-lines, both commonly used in bandpass and bandstop microwave filters, are analyzed. Nonlinear Volterra-series analysis is employed to determine the second- and third-order distortion ratios dependent on the frequencies of the incident signals. It is shown that in a bandpass filter (employing parallel tuned resonators), m...

  4. Integration of broadband direct-conversion quadrature modulators

    OpenAIRE

    Tiiliharju, Esa

    2006-01-01

    To increase spectral efficiency, transmitters usually send only one of the information carrying sidebands centered around a single radio-frequency carrier. The close-lying mirror, or image, sideband will be eliminated either by the filtering method or by the phasing method. Since filter Q-values rise in direct relation to the transmitted frequencies, the filtering method is generally not feasible for integrated microwave transmitters. A quadrature modulator realizes the phasing method by comb...

  5. Broadband Wireline Provider Service Summary; BBRI_wirelineSum12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of broadband Internet access in Rhode Island via all wireline technologies assessed by Broadband Rhode Island. Broadband...

  6. Broadband detuned Sagnac interferometer for future generation gravitational wave astronomy

    CERN Document Server

    Voronchev, N V; Danilishin, S L

    2015-01-01

    Broadband suppression of quantum noise below the Standard Quantum Limit (SQL) becomes a top-priority problem for the future generation of large-scale terrestrial detectors of gravitational waves, as the interferometers of the Advanced LIGO project, predesigned to be quantum-noise-limited in the almost entire detection band, are phased in. To this end, among various proposed methods of quantum noise suppression or signal amplification, the most elaborate approach implies a so-called *xylophone* configuration of two Michelson interferometers, each optimised for its own frequency band, with a combined broadband sensitivity well below the SQL. Albeit ingenious, it is a rather costly solution. We demonstrate that changing the optical scheme to a Sagnac interferometer with weak detuned signal recycling and frequency dependent input squeezing can do almost as good a job, as the xylophone for significantly lower spend. We also show that the Sagnac interferometer is more robust to optical loss in filter cavity, used f...

  7. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  8. Systems analysis for DSN microwave antenna holography

    Science.gov (United States)

    Rochblatt, D. J.

    1989-01-01

    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models.

  9. 78 FR 32165 - Broadband Over Power Lines

    Science.gov (United States)

    2013-05-29

    ... has potential applications for broadband and Smart Grid uses--while protecting incumbent radio... providing for Access BPL technology--which has potential applications for broadband and Smart Grid uses... study on In-House BPL in our consideration of Access BPL interference potential. However, that...

  10. 76 FR 71892 - Broadband Over Power Lines

    Science.gov (United States)

    2011-11-21

    ... BPL technology that has potential applications for broadband and Smart Grid while protecting incumbent... providing for Access BPL technology that has potential applications for broadband and Smart Grid while... used by manufacturers of HomePlug In-House BPL equipment, it is more stringent than is necessary...

  11. 一种宽频宽角圆极化一维相扫天线阵%A broadband wide angle circularly polarized one-dimensional phase scanning antenna array

    Institute of Scientific and Technical Information of China (English)

    陈谦; 李磊; 张小林

    2014-01-01

    基于改进型Vivaldi天线单元,采用4单元十字交叉组合构成圆极化天线,并通过增加耦合金属立柱改善天线轴比,设计了一种超宽频宽角覆盖圆极化直线阵。该天线在1.25-4.1 GHz频段电压驻波比(VSWR)小于2,在1.6-3.6 GHz频段轴比小于3 dB,在垂直扫描方向具备宽角覆盖能力,具备较高的工程应用价值。%Based on improved Vivaldi antenna unit, using four crossed units constitutes a circularly polarized antenna, further improving axial ratio (AR) by adding the coupling metal columns, an ultra-broadband wide-angle circularly polarized linear an-tenna array is designed. The voltage standing wave ratio (VSWR) of the antenna is less than 2 at the frequency range of 1.25 to 4.1 GHz. Meanwhile, the AR is less than 3 dB at the frequency range of 1.6 to 3.6 GHz. This antenna has very wide angle cover-age ability, and has high engineering value.

  12. Development of microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for quantification of camphor and borneol in Flos Chrysanthemi Indici

    International Nuclear Information System (INIS)

    In the work, microwave-assisted extraction (MAE) followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was developed for quantitative analysis of the bioactive components of camphor and borneol in a traditional Chinese medicines (TCM) of Flos Chrysanthemi Indici. After systematical investigation, the optimal experimental parameters microwave power (400 W), irradiation time (4 min), fiber coating (PDMS/DVB fiber), extraction temperature (40 deg. C), extraction time (20 min), stirring rate (1100 rpm), and salt effect (no salt added) were investigated. The optimized method provided satisfactory precision (RSD values less than 12%), good recovery (from 86% to 94%), and good linearity (R 2 > 0.999). The proposed method was applied to quantitative analysis of camphor and borneol in Flos Chrysanthemi Indici samples from 11 different growing areas. To demonstrate the method feasibility, steam distillation was also used to analyze camphor and borneol in Flos Chrysanthemi Indici samples from these different growing areas. The very close results were obtained by the two methods. It has been shown that the proposed ME-HS-SPME-GC-MS is a simple, rapid, solvent-free and reliable method for quantitative analysis of camphor and borneol in TCM, and a potential tool for quality assessment of Flos Chrysanthemi Indici

  13. Development of microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for quantification of camphor and borneol in Flos Chrysanthemi Indici

    Energy Technology Data Exchange (ETDEWEB)

    Deng Chunhui [Department of Chemistry, Fudan University, Shanghai 200433 (China); Mao Yu [Department of Basic Medical Sciences, Second Military Medicinal University, Shanghai 200433 (China); Yao Ning [Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhang Xiangmin [Department of Chemistry, Fudan University, Shanghai 200433 (China)]. E-mail: xmzhang@fudan.edu.cn

    2006-08-04

    In the work, microwave-assisted extraction (MAE) followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was developed for quantitative analysis of the bioactive components of camphor and borneol in a traditional Chinese medicines (TCM) of Flos Chrysanthemi Indici. After systematical investigation, the optimal experimental parameters microwave power (400 W), irradiation time (4 min), fiber coating (PDMS/DVB fiber), extraction temperature (40 deg. C), extraction time (20 min), stirring rate (1100 rpm), and salt effect (no salt added) were investigated. The optimized method provided satisfactory precision (RSD values less than 12%), good recovery (from 86% to 94%), and good linearity (R {sup 2} > 0.999). The proposed method was applied to quantitative analysis of camphor and borneol in Flos Chrysanthemi Indici samples from 11 different growing areas. To demonstrate the method feasibility, steam distillation was also used to analyze camphor and borneol in Flos Chrysanthemi Indici samples from these different growing areas. The very close results were obtained by the two methods. It has been shown that the proposed ME-HS-SPME-GC-MS is a simple, rapid, solvent-free and reliable method for quantitative analysis of camphor and borneol in TCM, and a potential tool for quality assessment of Flos Chrysanthemi Indici.

  14. Eu2+-doped M2SiO4 (M = Ca, Ba) phosphors prepared by a rapid microwave-assisted sol-gel method: Phase formation and optical properties

    Science.gov (United States)

    Birkel, Alexander; DeCino, Nicholas A.; George, Nathan C.; Hazelton, Katherine A.; Hong, Byung-Chul; Seshadri, Ram

    2013-05-01

    We present a rapid microwave-assisted approach for the preparation of Eu2+-doped orthosilicate phosphors. The preparation method relies on a citrate based sol-gel reaction with subsequent combustion in a domestic microwave oven, in contrast to more conventional solid-state methods. This sol-gel pathway yields phase pure, high quality orthosilicates, in less than 25 min of final heating time. In addition, superior morphology control is achieved employing the sol-gel method compared to solid-state preparations. In order to understand the formation process of the final products, thermogravimetric analyses and temperature-dependent X-ray diffraction data were acquired and compared to the conventional solid-state preparation. The morphology and elemental composition of the obtained luminescent materials were investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The optical properties were elucidated by measuring room-temperature emission and excitation spectra, and the application and efficiency of the obtained phosphors in LED devices was studied.

  15. Customer Churn Prediction for Broadband Internet Services

    Science.gov (United States)

    Huang, B. Q.; Kechadi, M.-T.; Buckley, B.

    Although churn prediction has been an area of research in the voice branch of telecommunications services, more focused studies on the huge growth area of Broadband Internet services are limited. Therefore, this paper presents a new set of features for broadband Internet customer churn prediction, based on Henley segments, the broadband usage, dial types, the spend of dial-up, line-information, bill and payment information, account information. Then the four prediction techniques (Logistic Regressions, Decision Trees, Multilayer Perceptron Neural Networks and Support Vector Machines) are applied in customer churn, based on the new features. Finally, the evaluation of new features and a comparative analysis of the predictors are made for broadband customer churn prediction. The experimental results show that the new features with these four modelling techniques are efficient for customer churn prediction in the broadband service field.

  16. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  17. Microwave Magnetochiral Dichroism in the Chiral-Lattice Magnet Cu_{2}OSeO_{3}.

    Science.gov (United States)

    Okamura, Y; Kagawa, F; Seki, S; Kubota, M; Kawasaki, M; Tokura, Y

    2015-05-15

    Through broadband microwave spectroscopy in Faraday geometry, we observe distinct absorption spectra accompanying magnetoelectric (ME) resonance for oppositely propagating microwaves, i.e., directional dichroism, in the multiferroic chiral-lattice magnet Cu_{2}OSeO_{3}. The magnitude of the directional dichroism critically depends on the magnetic-field direction. Such behavior is well accounted for by considering the relative direction of the oscillating electric polarizations induced via the ME effect with respect to microwave electric fields. Directional dichroism in a system with an arbitrary form of ME coupling can be also discussed in the same manner. PMID:26024193

  18. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    Science.gov (United States)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-07-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π-type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm3, which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band.

  19. Broadband cloaking for flexural waves

    CERN Document Server

    Zareei, Ahmad

    2016-01-01

    The governing equation for elastic waves in flexural plates is not form invariant, and hence designing a cloak for such waves faces a major challenge. Here, we present the design of a perfect broadband cloak for flexural waves through the use of a nonlinear transformation, and by matching term-by-term the original and transformed equations. For a readily achievable flexural cloak in a physical setting, we further present an approximate adoption of our perfect cloak under more restrictive physical constraints. Through direct simulation of the governing equations, we show that this cloak, as well, maintains a consistently high cloaking efficiency over a broad range of frequencies. The methodology developed here may be used for steering waves and designing cloaks in other physical systems with non form-invariant governing equations.

  20. Interpreting Flux from Broadband Photometry

    CERN Document Server

    Brown, Peter J; Roming, Peter W A; Siegel, Michael

    2016-01-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broad-band photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by comparing in the natural units of the observations. We recommend that integrated flux measurements be made using a spectrum or spectral energy distribution whic...

  1. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  2. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Qu, Shaobo

    2015-06-01

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68-26.08 GHz with reflection below -10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  -  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology.

  3. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    International Nuclear Information System (INIS)

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68–26.08 GHz with reflection below −10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  −  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology. (paper)

  4. Computer Aided Design and Analysis of a 2-4 GHz Broadband Balanced Microstrip Amplifier

    Directory of Open Access Journals (Sweden)

    S. H. Ibrahim

    2012-07-01

    Full Text Available In this paper, a computer-aided design and analysis of a 2-4 GHz broadband balanced microstrip amplifier using a full computer simulation program developed by the author and others is presented. A short and efficient CAD procedure for broadband amplifier design is introduced. The first step is to design an initial narrow-band high gain microstrip amplifier at 3-GHz central frequency. The second step is to optimize the initial lengths and widths of the input and output microstrip-matching circuits to get the broadband amplifier over the range 2-4 GHz. The analysis of both narrow and broadband amplifiers is investigated. In addition, with the design and analysis of a low-pass microstrip filter, the paper introduces the design and analysis of a Lange coupler. The final AC schematic diagram of the designed amplifier with the lengths and widths of microstrip lines is presented.Key Words: Computer-Aided Design and Analysis, Microstrip Amplifier, Microwave Amplifier.

  5. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  6. 微波辅助固相合成法制备查尔酮类的工艺研究%Study on the Preparation Technology of Microwave Assisted Solid Phase Synthesis of Chalcones

    Institute of Scientific and Technical Information of China (English)

    赵岩; 马尔霍夫・木合布力; 伊克山・亚力坤; 木合布力・阿布力孜; 哈丽玛・斯拉木江; 麦热哈巴・依明

    2016-01-01

    Methoxy-chalcone compounds were prepared by tree different methods, so as to improve the preparation technology.Acid catalyzed high temperature method, hydroxyl radical protecting method and microwave assisted solid phase method were used for aldolization reaction, respectively, the reaction type and the optimal reaction conditions were screened using the reaction yield as standard.Results showed that the reaction yield of the target compound obtained by tree different methods were 8.9%, 9.27% and 57.60%, respectively, the optimal microwave irradiation conditions were as follows: power of 150 W, reaction time of 100 s, temperature of 80 ℃.The microwave assisted solid phase synthesis could be one of the effective method for the preparation of methoxy-chalcone compounds with the advantages of pollution-free, easy operation, low cost, high yields and short reaction time.%三种不同方法合成甲氧查尔酮类化合物,筛选和优化合成工艺。采用酸催化高温法、羟基保护法和微波辅助碱催化法进行羟醛缩合反应,制备目标化合物,并以反应产率为指标筛选合成方法,优化反应条件。结果表明:用三种方法所得到的目标化合物产率分别为8.9%、9.27%和57.60%。微波辅助碱催化反应的最佳条件:设定微波功率150 W、反应时间100 s,温度80℃。微波辅助碱催化方法具有产率高、反应时间短、节能和环保等特点、是绿色合成甲氧查尔酮类化合物的有效方法之一。

  7. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    OpenAIRE

    Zong, B. F.; Wang, G. M.; Zeng, H Y; Wang, Y.W.; Wang, D

    2016-01-01

    In this paper, a broadband circularly polarized (CP) microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL) based sequential rotation (SR) feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a ...

  8. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  9. Broadband 10-300 GHz stimulus-response sensing for chemical and biological entities

    International Nuclear Information System (INIS)

    By illuminating the sample with a broadband 10-300 GHz stimulus and coherently detecting the response, we obtain reflection and transmission spectra of common powdered substances, and compare them as a starting point for distinguishing concealed threats in envelopes and on personnel. Because these samples are irregular and their dielectric properties cannot be modulated, however, the spectral information we obtain is largely qualitative. To show how to gain quantitative information on biological species at micro- and millimetre-wave frequencies, we introduce thermal modulation of a globular protein in solution, and show that changes in single-wavelength microwave reflections coincide with accepted visible absorption spectra, pointing the way towards gaining quantitative chemical and biological spectra from broadband terahertz systems

  10. Aqueous microwave-assisted solid-phase peptide synthesis using fmoc strategy. II. Racemization studies and water based synthesis of cysteine-containing peptides.

    Science.gov (United States)

    Hojo, Keiko; Shinozaki, Natsuki; Hara, Asaki; Onishi, Mare; Fukumori, Yoshinobu; Ichikawa, Hideki

    2013-10-01

    We have developed a microwave (MW)-assisted peptide synthesis using Fmoc-amino acid nanoparticles in water previously. It is an organic solvent-free, environmentally friendly method for peptide synthesis. In this study, we have investigated the racemization of cysteine during an aqueous based coupling reaction with MW irradiation. Under our MW-assisted protocol using WSCI and DMTMM, the coupling reaction can be performed with low levels of racemization of cysteine. We also demonstrated the synthesis of the nonapeptide oxytocin analogue, Cys(Acm)-Tyr-Ile-Gln-Asn- Cys(Acm)-Pro-Leu-Gly-NH2 using our water based MW-assisted protocol with Fmoc-amino acid nanoparticles. PMID:23517723

  11. Continuous-flow determination of aqueous sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry with gas-phase sample introduction

    Science.gov (United States)

    Nakahara, Taketoshi; Mori, Toshio; Morimoto, Satoru; Ishikawa, Hiroshi

    1995-06-01

    A simple continuous-flow generation of volatile hydrogen sulfide and sulfur dioxide by acidification of aqueous sulfide and sulfite ions, respectively, is described for the determination of low concentrations of sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry (MIP-AES) in the normal ultraviolet (UV) and vacuum ultraviolet (VUV) regions of the spectrum. For measuring spectral lines in the VUV region, the monochromator and the enclosed external optical path between the MIP source and the entrance slit of the monochromator have both been purged with nitrogen to minimize oxygen absorption below 190 nm. Sulfur atomic emission lines at 180.73, 182.04 and 217.05 nm have been selected as the analytical lines. Of the various acids examined, 1.0 M hydrochloric acid is the most favorable for both the generation of hydrogen sulfide from sulfide ions and sulfur dioxide from sulfite ions. Either generated hydrogen sulfide or sulfur dioxide is separated from the solution in a simple gas-liquid separator and swept into the helium stream of a microwave-induced plasma for analysis. The best attainable detection limits (3 σ criterion) for sulfur at 180.73 nm were 0.13 and 1.28 ng ml -1 for the generation of hydrogen sulfide and sulfur dioxide, respectively, with the corresponding background equivalent concentrations of 20.9 and 62.2 ng ml -1 in sulfur concentration. The typical analytical working graphs obtained under the optimized experimental conditions were rectilinear over approximately four orders of magnitude in sulfur concentration. The present method has been successfully applied to the recovery test of the sulfide spiked to waste water samples and to the determination of sulfite in some samples of commercially available wine.

  12. Operational features and microwave characteristics of the Vircator II experiment

    International Nuclear Information System (INIS)

    The Vircator II oscillating virtual-cathode microwave source operates with diode voltages between 600 and 800 kV and diode current between 50 and 120 kA. Maximal microwave output power between 200 and 500 MW is achieved when the diode aspect ratio, cathode surface, charge voltage, and extraction coupling are arranged to simultaneously 1) maximize diode voltage, 2) satisfy magnetic insulation criteria, 3) avoid nonuniform or unstable electron emission, and 4) optimize microwave transmission from the virtual cathode to the launching antenna. Broad-band radiation between 0.4 and 5.5 GHz is generated. The central frequency follows the beam plasma frequency. It is tuned by varying the current density with anode-cathode (A-K) gap adjustments

  13. Operational features and microwave characteristics of the Vircator II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.; Fittinghoff, O.; Benford, J.; Sze, H.; Woo, W.

    1988-04-01

    The Vircator II oscillating virtual-cathode microwave source operates with diode voltages between 600 and 800 kV and diode current between 50 and 120 kA. Maximal microwave output power between 200 and 500 MW is achieved when the diode aspect ratio, cathode surface, charge voltage, and extraction coupling are arranged to simultaneously 1) maximize diode voltage, 2) satisfy magnetic insulation criteria, 3) avoid nonuniform or unstable electron emission, and 4) optimize microwave transmission from the virtual cathode to the launching antenna. Broad-band radiation between 0.4 and 5.5 GHz is generated. The central frequency follows the beam plasma frequency. It is tuned by varying the current density with anode-cathode (A-K) gap adjustments.

  14. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  15. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    Science.gov (United States)

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  16. Structures, phase transitions and microwave dielectric properties of the 6H perovskites Ba3BSb2O9, B=Mg, Ca, Sr, Ba

    International Nuclear Information System (INIS)

    We present a complete temperature-composition phase diagram for Ba3BSb2O9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P63/mmc to monoclinic C2/c to triclinic P1-bar. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation. - Graphical abstract: Thermodynamic phase diagram for Ba3BSb2O9, B=Mg, Ca, and Sr, as a function of temperature T and effective ionic radius (IR) of the B2+ cation

  17. A novel microwave synthesis of calcium hydroxyapatite. Optimisation and investigation of a microwave assisted reaction route

    International Nuclear Information System (INIS)

    Hydroxyapatite is a bioactive calcium phosphate used in non-load bearing applications, such as space-filling in maxillofacial reconstruction. As a coating, hydroxyapatite is used on load-bearing orthopaedic metal prostheses to improve fixation and/or biocompatibility. Conventional synthesis processes for the production of hydroxyapatite are time-consuming and labour-intensive. Microwave irradiation was investigated as a means to enhance the synthesis reaction using calcium hydroxide (Ca(OH)2) and orthophosphoric acid (H3PO4) as reactants. An initial set of reactions indicated the feasibility of the microwave synthesis route. Optimisation reactions were then performed followed by investigation sets of reactions. Parameters such as microwave power, irradiation time, and reactant concentrations were varied. Using 0.5M Ca(OH)2 and 0.3M H3PO4, a phase-pure hydroxyapatite powder with a stoichiometric molar Ca/P ratio of 1.67 was produced in 60 seconds at 450W and 2.45GHz. The microwave synthesis reaction only reached completion when conducted at moderate temperatures (20-30 deg C). At approximately 5 deg C and at temperatures in excess of 45 deg C, the microwave reaction did not reach completion. A preliminary kinetic study of the microwave reaction revealed a 3 to 4-fold increase in the activation energy of the microwave reaction compared to a non-microwave equivalent. The Arrhenius pro-exponential factor was half that of the non-microwave reaction. The kinetic data suggests two energetically different pathways for the reaction between Ca(OH)2 and H3PO4. A fast high-energy pathway is powered by microwave irradiation, while a slow low-energy pathway prevails under conventional synthesis conditions. Microwave synthesis has potential for scaling-up to commercial amounts of hydroxyapatite powder production. Control over the product powder morphology may be achieved with further optimisation. (author)

  18. The impact of broadband in schools: Summary report

    OpenAIRE

    Underwood, Jean; Ault, Alison; Banyard, Phil; Bird, Karen; Dillon, Gayle; Hayes, Mary; Selwood, Ian; Somekh, Bridget; Twining, Peter

    2005-01-01

    Summary of the report, which reviews evidence for the impact of broadband in English schools, exploring; variations in provision in level of broadband connectivity. Links between the level of broadband activity and nationally accessible performance data; aspects of broadband connectivity and the school environment that contribute to better outcomes for pupils and teachers; academic and motivational benefits associated with educational uses of this technology.

  19. 47 CFR 27.1305 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network....

  20. 47 CFR 90.1405 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network....

  1. Microwave synthesizer using an on-chip Brillouin oscillator

    OpenAIRE

    Li, Jiang; Lee, Hansuek; Vahala, Kerry J.

    2013-01-01

    Low-phase-noise microwave oscillators are important to a wide range of subjects, including communications, radar and metrology. Photonic-based microwave-wave sources now provide record, close-to-carrier phase-noise performance, and compact sources using microcavities are available commercially. Photonics-based solutions address a challenging scaling problem in electronics, increasing attenuation with frequency. A second scaling challenge, however, is to maintain low phase noise...

  2. Self-referenced ultra-broadband transient terahertz spectroscopy using air-photonics.

    Science.gov (United States)

    D'Angelo, F; Němec, H; Parekh, S H; Kužel, P; Bonn, M; Turchinovich, D

    2016-05-01

    Terahertz (THz) air-photonics employs nonlinear interactions of ultrashort laser pulses in air to generate and detect THz pulses. As air is virtually non-dispersive, the optical-THz phase matching condition is automatically met, thus permitting the generation and detection of ultra-broadband THz pulses covering the entire THz spectral range without any gaps. Air-photonics naturally offers unique opportunities for ultra-broadband transient THz spectroscopy, yet many critical challenges inherent to this technique must first be resolved. Here, we present explicit guidelines for ultra-broadband transient THz spectroscopy with air-photonics, including a novel method for self-referenced signal acquisition minimizing the phase error, and the numerically-accurate approach to the transient reflectance data analysis. PMID:27137624

  3. Tunable true-time delay of a microwave photonic signal realized by cross gain modulation in a semiconductor waveguide

    DEFF Research Database (Denmark)

    Xue, Weiqi; Mørk, Jesper

    2011-01-01

    We experimentally demonstrate the realization of a tunable true-time delay for microwave signals by exploiting cross gain modulation among counter-propagating optical beams in a semiconductor optical amplifier. Broadband operation from ∼5 to ∼35 GHz is observed. The physical effect originates from...... magnitude of the true-time delay and the microwave bandwidth is discussed. © 2011 American Institute of Physics....

  4. Simple Broadband Circular Polarizer in Oversized Waveguide

    Science.gov (United States)

    Stange, Torsten

    2016-02-01

    In this paper, a possibility is shown to realize a simple waveguide polarizer producing nearly the same circular polarization over a broad frequency range up to an octave. It is based upon the combination of two smoothly squeezed oversized waveguides with different diameters. The principle is similar to an achromatic lens in optics, where two counteracting lenses with differently sloped wavelength dependencies of the refractive index are combined to compensate the dispersion in the desired wavelength range. Consequently, two different wavelengths of light are brought into focus at the same plane. A waveguide for the transmission of microwaves has a similar frequency dependence of the refractive index resulting in a frequency-dependent phase shift between two propagating waves polarized along the symmetry axes of a waveguide with an elliptical cross section. For this reason, an incident wave with a linear polarization between the axes of symmetry can be only converted into a circularly polarized wave over a limited frequency range. However, the diameter and the shape along two counteracting squeezed waveguides can be adjusted in such a way that the frequency dependence of the resultant phase shift is finally canceled out.

  5. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    Science.gov (United States)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  6. Broadband Adoption And Use In America

    Data.gov (United States)

    Federal Communications Commission — On February 23, 2010, the FCC published the results of its first Broadband Consumer Survey. This national survey of 5,005 adult Americans focused on non-adopters...

  7. 75 FR 6627 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-02-10

    ..., Washington, DC 20230; Help Desk e-mail: BroadbandUSA@usda.gov , Help Desk telephone: 1-877-508- 8364.../ . SUPPLEMENTARY INFORMATION: On January 22, 2010, NTIA published a Notice of Funds Availability (NOFA) (75 FR...

  8. Broadband V-band angular transition

    OpenAIRE

    Shcherbyna, Olga A.; Yashchyshyn, Yevhen

    2016-01-01

    A model of broadband V-band transition from a rectangular air-filled waveguide to substrate integrated waveguide has been proposed. Theoretical principles used for constructing the model of transition are also presented.

  9. Nanophotonic Design for Broadband Light Management

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Emily; Callahan, Dennis; Horowitz, Kelsey; Pala, Ragip; Atwater, Harry

    2014-10-13

    We describe nanophotonic design approaches for broadband light management including i) crossed-trapezoidal Si structures ii) Si photonic crystal superlattices, and iii) tapered and inhomogeneous diameter III-V/Si nanowire arrays.

  10. Wireless Broadband Access and Accounting Schemes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.

  11. Broadband anomalous reflection based on gradient low-Q meta-surface

    OpenAIRE

    Mingbo Pu; Po Chen; Changtao Wang; Yanqin Wang; Zeyu Zhao; Chenggang Hu; Cheng Huang; Xiangang Luo

    2013-01-01

    Gradient–index metamaterial is crucial in the spatial manipulation of electromagnetic wave. Here we present an efficient approach to extend the bandwidth of phase modulation by utilizing the broadband characteristic of low-quality (Q) meta-surface in the reflection mode. The dispersion of the meta-surface is engineered to compensate the phase difference induced by frequency change. Meanwhile, a thin gradient index cover layer is added on the top of meta-surface to extend the phase modulation ...

  12. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Science.gov (United States)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-11-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  13. Improved Interference Suppression Algorithm Against Broadband BPSK Interference

    Institute of Scientific and Technical Information of China (English)

    AN Jian-ping; XIA Cai-jie; WANG Ai-hua

    2008-01-01

    An improved polar exciser (IMPE) interference suppression method against broadband constant envelope binary phase shift keying (BPSK) interference is proposed. The disadvantage of traditional polar exciser (PE) is the performance degradation when the power of interference is low, i.e., the threshold effect. The proposed improved PE (IMPE) algorithm can overcome the threshold effect of PE by introducing compression gain (CG) metric, which forces PE suppressor active only at larger jammer-to-signal ratio (JSR) and switch to matched filter (MF) at lower JSR. Theoretical analysis and numerical simulations show the exactness of CG as a switching metric and the validity of the IMPE algorithm.

  14. Design of a Broadband Inverted Conical Quadrifilar Helix Antenna

    Directory of Open Access Journals (Sweden)

    Jingyan Mo

    2016-01-01

    Full Text Available This paper introduces the design of a broadband inverted conical circularly polarized quadrifilar helix antenna (QHA. The antenna has many good characteristics, including wide beam and broad bandwidth, which are achieved by utilizing inverted conical geometry and adjusting the dimensions of the inverted conical support. The antenna is fed by a wideband network to provide 90° phase difference between the four arms with constant amplitude. The antenna impedance and axial ratio bandwidth values are more than 39% and 31.5%, respectively. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.

  15. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    International Nuclear Information System (INIS)

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing

  16. Design and demonstration of broadband thin planar diffractive acoustic lenses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenqi; Xie, Yangbo; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A., E-mail: cummer@ee.duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2014-09-08

    We present here two diffractive acoustic lenses with subwavelength thickness, planar profile, and broad operation bandwidth. Tapered labyrinthine unit cells with their inherently broadband effective material properties are exploited in our design. Both the measured and the simulated results are showcased to demonstrate the lensing effect over more than 40% of the central frequency. The focusing of a propagating Gaussian modulated sinusoidal pulse is also demonstrated. This work paves the way for designing diffractive acoustic lenses and more generalized phase engineering diffractive elements with labyrinthine acoustic metamaterials.

  17. Design and demonstration of broadband thin planar diffractive acoustic lenses

    International Nuclear Information System (INIS)

    We present here two diffractive acoustic lenses with subwavelength thickness, planar profile, and broad operation bandwidth. Tapered labyrinthine unit cells with their inherently broadband effective material properties are exploited in our design. Both the measured and the simulated results are showcased to demonstrate the lensing effect over more than 40% of the central frequency. The focusing of a propagating Gaussian modulated sinusoidal pulse is also demonstrated. This work paves the way for designing diffractive acoustic lenses and more generalized phase engineering diffractive elements with labyrinthine acoustic metamaterials.

  18. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Wei, Qi, E-mail: weiqi@nju.edu.cn; Cheng, Ying [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Xu, Zheng [School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Liu, Xiaojun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  19. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn(ii) as `anatase phase purifier'

    Science.gov (United States)

    Ullattil, Sanjay Gopal; Periyat, Pradeepan

    2015-11-01

    Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination.Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination. Electronic supplementary information (ESI) available: Photographs of YAT-150 and BAT-150, wide range XPS and SEM images, EDX and UV-Visible absorption spectra of the degradation of methylene blue using as synthesized samples and Degussa-P25 are included. See DOI: 10.1039/c5nr05975e

  20. Household Demand for Broadband Internet Service

    OpenAIRE

    Gregory Rosston; Scott Savage; Donald Waldman

    2010-01-01

    As part of the Federal Communications Commission (“FCC”) National Broadband Report to Congress, we have been asked to conduct a survey to help determine consumer valuations of different aspects of broadband Internet service. Our empirical results show that reliability and speed are important characteristics of Internet service. The representative household is willing to pay about $20 per month for more reliable service and $45-48 for an increase in speed. Willingness-to-pay for speed increase...