WorldWideScience

Sample records for broadband microwave phase

  1. Broadband microwave photonic phase shifter based on polarisation rotation

    DEFF Research Database (Denmark)

    Xue, Weiqi; Öhman, Filip; Blaaberg, Søren;

    2008-01-01

    A broadband microwave photonic phase shifter is presented based on the polarisation properties of a Mach-Zehnder intensity modulator and nonlinear polarisation rotation in a semiconductor optical amplifier. The system can realise about 150deg phase shift in the frequency range from 50 MHz to 19 GHz....

  2. Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring.

    Science.gov (United States)

    Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi

    2016-08-01

    An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics. PMID:27472628

  3. Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers.......We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers....

  4. Broadband RF front-end using microwave photonics filter.

    Science.gov (United States)

    Wang, Jingjing; Chen, Minghua; Liang, Yunhua; Chen, Hongwei; Yang, Sigang; Xie, Shizhong

    2015-01-26

    We propose and demonstrate a novel RF front-end with broadened processing bandwidth, where a tunable microwave photonic filter based on optical frequency comb (OFC) is incorporated to accomplish simultaneous down-conversion and filtering. By designing additional phase shaping and time delay controlling, the frequency tunability of the system could be enhanced. More importantly, the beating interferences generated from broadband RF input could also be suppressed, which help to break the limitation on the processing bandwidth. In our experiments, a photonics RF receiver front-end for RF input with wide bandwidth of almost 20 GHz was realized using 10-GHz-space OFC, where the center frequency of the pass band signals could be tuned continuously. PMID:25835844

  5. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma

    Science.gov (United States)

    Gao, Ruilin; Yuan, Chengxun; Li, Hui; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Wu, Jian

    2016-08-01

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density ne, which varies from 1.2 × 1016 m-3 to 8.7 × 1016 m-3 under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure.

  6. The Quest for Ultimate Broadband High Power Microwaves

    CERN Document Server

    Podgorski, Andrew S

    2014-01-01

    Paper describes High Power Microwave research of combining GW peak power to achieve MV/m and GV/m radiated fields in 1 to 500 GHz band. To achieve such fields multiple independently triggered broadband GW sources, supplying power to multiple spatially distributed broadband radiators/antennas are used. Single TW array is used as an ultimate microwave weapon in 1 to 5 GHz range while multiple TW arrays provide GV/m radiating field at plasma frequencies in 300 GHz range leading to fusion power.

  7. High-sensitivity broadband microwave spectroscopy with small nonresonant coils

    Science.gov (United States)

    Mahdjour, H.; Clark, W. G.; Baberschke, K.

    1986-06-01

    The use of a small, nonresonant, coil of micron dimensions as the microwave magnetic field structure of a broadband electron-spin-resonance (ESR) spectrometer is described. The coil is driven by a broadband microwave generator which operates between 0.1 and 8.5 GHz. The samples may fill the coil to approximately 100 percent. It is shown that for small size samples this system offers higher sensitivity than a conventional cavity spectrometer. Because the system is broadband, either frequency scans or the conventional magnetic field scans can be used to traverse the resonance. Examples for DPPH and for the spin glass AgMn using this method are reported. Since the sample coil is small, it has many potential applications, such as insertion into the mixing chamber of dilution refrigerator or high-pressure cell, efficient use of power in ENDOR and other double resonance experiments, and rapid recovery from transients in pulsed ESR experiments.

  8. Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy.

    Science.gov (United States)

    Steber, Amanda L.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Plusquellic, D. F.; Lattanzi, V.; Spezzano, S.; McCarthy, M. C.

    2010-06-01

    Broadband microwave spectra often contain overlapping spectra from a large number of species in the sample mixture, whether in the study of conformational isomers, molecular complexes, reaction products from reactive molecular sources (e.g., electrical discharge), or analysis of chemical mixtures. In these experiments, the identification of individual spectra in the full spectrum through pattern recognition becomes difficult when there is a high density of transitions. Strategies for extracting individual spectra from broadband measurements are discussed. Two approaches for microwave-microwave double resonance spectroscopy have been evaluated. One uses a transition-by-transition screening in a narrowband cavity spectrometer to identify an unknown spectrum and has a time advantage from the increased sensitivity of cavity spectroscopy. The second double-resonance approach uses a broadband spectral editing approach that gives a multiplex advantage in the detection. Both of these experimental techniques are combined with computer-aided assignment algorithms to make the spectral assignment in a minimum of double-resonance observations. The performance of spectral analysis solely using computer-aided assignment is also evaluated. The potential for fully automated spectral decomposition of the broadband spectrum of a complex mixture will be described.

  9. Broadband phase-preserved optical elevator

    OpenAIRE

    Luo, Yuan; Han, Tiancheng; Zhang, Baile; Qiu, Cheng-Wei; Barbastathis, George

    2011-01-01

    Phase-preserved optical elevator is an optical device to lift up an entire plane virtually without distortion in light path or phase. Using transformation optics, we have predicted and observed the realization of such a broadband phase-preserved optical elevator, made of a natural homogeneous birefringent crystal without resorting to absorptive and narrowband metamaterials involving time-consuming nano-fabrication. In our demonstration, the optical elevator is designed to lift a sheet upwards...

  10. Adjustable, Broadband, Selective Excitation with Uniform Phase

    Science.gov (United States)

    Cano, Kristin E.; Smith, Mari A.; Shaka, A. J.

    2002-03-01

    An advance in the problem of achieving broadband, selective, and uniform-phase excitation in NMR spectroscopy of liquids is outlined. Broadband means that, neglecting relaxation, any frequency bandwidth may be excited even when the available radiofrequency (RF) field strength is strictly limited. Selective means that sharp transition edges can be created between pure-phase excitation and no excitation at all. Uniform phase means that, neglecting spin-spin coupling, all resonance lines have nearly the same phase. Conventional uniform-phase excitation pulses (e.g., E-BURP), mostly based on amplitude modulation of the RF field, are not broadband: they have an achievable bandwidth that is strictly limited by the peak power available. Other compensated pulses based on adiabatic half-passage, like BIR-4, are not selective. By contrast, inversion pulses based on adiabatic fast passage can be broadband (and selective) in the sense above. The advance outlined is a way to reformulate these frequency modulated (FM) pulses for excitation, rather than just inversion.

  11. Broadband Phase Spectroscopy over Turbulent Air Paths.

    Science.gov (United States)

    Giorgetta, Fabrizio R; Rieker, Gregory B; Baumann, Esther; Swann, William C; Sinclair, Laura C; Kofler, Jon; Coddington, Ian; Newbury, Nathan R

    2015-09-01

    Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70,000 comb teeth spanning 233  cm(-1) across hundreds of near-infrared rovibrational resonances of CO(2), CH(4), and H(2)O with submilliradian uncertainty, corresponding to a 10(-13) refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO(2). While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.

  12. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma.

    Science.gov (United States)

    Gao, Ruilin; Yuan, Chengxun; Li, Hui; Jia, Jieshu; Zhou, Zhong-Xiang; Wang, Ying; Wang, Xiaoou; Wu, Jian

    2016-08-01

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density ne, which varies from 1.2 × 10(16) m(-3) to 8.7 × 10(16) m(-3) under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure. PMID:27587122

  13. Conformational Analysis of Ibuprofen Using Broadband Microwave Spectroscopy

    Science.gov (United States)

    Zinn, Sabrina; Betz, Thomas; Schnell, Melanie

    2014-06-01

    The broadband rotational spectrum of ibuprofen ((RS)-2-(4-isobutylphenyl)-propanoic acid), a well-known drug, will be presented. As it is used to relieve pain, reduce fever, and inhibit inflammation, the knowledge of its biological activity is very interesting. Insights to the conformational flexibility of this drug might lead to a better understanding of the class of non-steroidal anti-inflammatory drugs that ibuprofen belongs to. The spectrum was recorded with our broadband chirped-pulse Fourier transform microwave spectrometer in the frequency range of 2.0 - 8.3 GHz. With the obtained results, we are able to identify several conformers of ibuprofen and to determine their rotational constants. Density functional theory calculations were performed and used to support the conformational assignments. Fragments of ibuprofen could be also identified in the spectrum, which can be explained by thermal decomposition during the heating process for vaporizing it. The analysis of this fragmentation process as a function of temperature might provide us with some interesting insights into its mechanism.

  14. Broadband dielectric microwave microscopy on micron length scales.

    Science.gov (United States)

    Tselev, Alexander; Anlage, Steven M; Ma, Zhengkun; Melngailis, John

    2007-04-01

    We demonstrate that a near-field microwave microscope based on a transmission line resonator allows imaging in a substantially wide range of frequencies, so that the microscope properties approach those of a spatially resolved impedance analyzer. In the case of an electric probe, the broadband imaging can be used in a direct fashion to separate contributions from capacitive and resistive properties of a sample at length scales on the order of one micron. Using a microwave near-field microscope based on a transmission line resonator we imaged the local dielectric properties of a focused ion beam milled structure on a high-dielectric-constant Ba(0.6)Sr(0.4)TiO(3) thin film in the frequency range from 1.3 to 17.4 GHz. The electrostatic approximation breaks down already at frequencies above approximately 10 GHz for the probe geometry used, and a full-wave analysis is necessary to obtain qualitative information from the images.

  15. Broadband phase-preserved optical elevator

    CERN Document Server

    Luo, Yuan; Zhang, Baile; Qiu, Cheng-Wei; Barbastathis, George

    2011-01-01

    Phase-preserved optical elevator is an optical device to lift up an entire plane virtually without distortion in light path or phase. Using transformation optics, we have predicted and observed the realization of such a broadband phase-preserved optical elevator, made of a natural homogeneous birefringent crystal without resorting to absorptive and narrowband metamaterials involving time-consuming nano-fabrication. In our demonstration, the optical elevator is designed to lift a sheet upwards, and the phase is verified to be preserved always. The camouflage capability is also demonstrated in the presence of adjacent objects of the same scale at will. The elevating device functions in different surrounding media over the wavelength range of 400-700 nm. Our work opens up prospects for studies of light trapping, solar energy, illusion optics, communication, and imaging.

  16. Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source.

    Science.gov (United States)

    Huang, Long; Chen, Dalei; Zhang, Fangzheng; Xiang, Peng; Zhang, Tingting; Wang, Peng; Lu, Linlin; Pu, Tao; Chen, Xiangfei

    2015-10-01

    In this paper, a novel microwave photonic filter (MPF) with multiple independently tunable passbands is proposed. A broadband optical source (BOS) is employed and split by a 1:N coupler into several branches. One branch is directed to a phase modulator which is modulated by a radio frequency signal and the other branches are delayed by optical delay lines (ODLs), respectively. All of these branches are combined by another 1:N coupler and sent to a dispersion compensation fiber which is used to introduce group delay dispersion to the optical signal. At a photodetector, each time-delayed broadband lightwave beating with the sidebands produced by the phase modulator forms a passband of the MPF. By tuning the delay of each broadband lightwave, the center frequency of the passband can be independently tuned. An MPF with two independently tunable passbands is experimentally demonstrated. The two passbands can be tuned from DC to 30 GHz with a 3-dB bandwidth of about 250 MHz. The stability and dynamic range of the MPF are also evaluated. By employing more branches delayed by ODLs, more passbands can be generated. PMID:26480071

  17. A broadband toolbox for scanning microwave microscopy transmission measurements

    Science.gov (United States)

    Lucibello, Andrea; Sardi, Giovanni Maria; Capoccia, Giovanni; Proietti, Emanuela; Marcelli, Romolo; Kasper, Manuel; Gramse, Georg; Kienberger, Ferry

    2016-05-01

    In this paper, we present in detail the design, both electromagnetic and mechanical, the fabrication, and the test of the first prototype of a Scanning Microwave Microscope (SMM) suitable for a two-port transmission measurement, recording, and processing the high frequency transmission scattering parameter S21 passing through the investigated sample. The S21 toolbox is composed by a microwave emitter, placed below the sample, which excites an electromagnetic wave passing through the sample under test, and is collected by the cantilever used as the detector, electrically matched for high frequency measurements. This prototype enhances the actual capability of the instrument for a sub-surface imaging at the nanoscale. Moreover, it allows the study of the electromagnetic properties of the material under test obtained through the measurement of the reflection (S11) and transmission (S21) parameters at the same time. The SMM operates between 1 GHz and 20 GHz, current limit for the microwave matching of the cantilever, and the high frequency signal is recorded by means of a two-port Vector Network Analyzer, using both contact and no-contact modes of operation, the latter, especially minded for a fully nondestructive and topography-free characterization. This tool is an upgrade of the already established setup for the reflection mode S11 measurement. Actually, the proposed setup is able to give richer information in terms of scattering parameters, including amplitude and phase measurements, by means of the two-port arrangement.

  18. Some Signal Processing Techniques for Use in Broadband Time Domain Microwave Spectroscopy

    Science.gov (United States)

    Cooke, S. A.

    2016-06-01

    At the present time, in the typical broadband, time domain microwave spectroscopy experiment each free induction decay (FID) collected is on the order of 10^6 data points in length with a sampling rate on the order of 10-12 seconds per point. Traditionally, the FID is processed using a fast Fourier transform algorithm (FFT) with the resulting power spectrum used in ensuing spectral analyses. For use with the FFT algorithm we have implemented some pre- and post-processing techniques to improve the signal quality. These techniques include the use of Lissajous plots to ensure phase stability in signal addition, novel windowing functions, and also automated broadband phase corrections which allow the absorption spectrum to be used as a more highly resolved version of the traditional power spectrum (see figure). We have also implemented alternatives to the FFT algorithm for time domain signal processing including Hankel singular valued decomposition, a maximum entropy method, and wavelet transformations. Although these techniques are unlikely to be used in place of a fast Fourier transform we will demonstrate how each of these techniques may be used to augment the traditional FFT algorithm in regards to spectral analysis.

  19. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy.

    Science.gov (United States)

    Park, G Barratt; Field, Robert W

    2016-05-28

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  20. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy

    Science.gov (United States)

    Park, G. Barratt; Field, Robert W.

    2016-05-01

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  1. Planar metamaterial-based beam-scanning broadband microwave antenna

    Energy Technology Data Exchange (ETDEWEB)

    Dhouibi, Abdallah [IEF, CNRS, UMR 8622, Univ. Paris-Sud, 91405 Orsay Cedex (France); Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de [IEF, CNRS, UMR 8622, Univ. Paris-Sud, 91405 Orsay Cedex (France); Univ. Paris-Ouest, 92410 Ville d' Avray (France)

    2014-05-21

    The broadband directive emission from the use of waveguided metamaterials is numerically and experimentally reported. The metamaterials, which are composed of non-resonant circular complementary closed ring structures printed on a dielectric substrate, are designed to obey the refractive index of a Luneburg lens. An arc array of planar radiating slot antennas placed at the periphery of the lens is used as wave launchers. A prototype of the lens associated with the feed structures has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, far-field radiation patterns have been measured. Furthermore, this metamaterial-based lens can be used to achieve beam-scanning with a coverage of up to 120 °. Far-field measurements agree qualitatively with calculated near-field distributions.

  2. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  3. Microwave photonic bandpass filter based on spectrumslicing and phase modulator

    Institute of Scientific and Technical Information of China (English)

    JIN Sheng-cai; ZHANG Ai-ling

    2011-01-01

    A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slicing a broadband source using a Mach-Zehnder interferometer (MZI) which results in a high MSR of 25 dB, The tunability of the filter is realized by an optical variable delay line (OVDL) in one arm of the MZI, which changes the wavelength spacing of the sliced broadband source and results in a tunable free spectrum range (FSR) of the filter. The central frequency of the bandpass filter is tunable from 10.7 GHz to 27 GHz by changing the wavelength spacing from 0.145 nm to 0.054 nm.

  4. Broadband Analysis of Microwave Structures by Enhanced Finite-Element Methods

    OpenAIRE

    Z. Raida; Motl, M.

    2005-01-01

    The paper deals with the broadband modeling of microwave structures by finite-element methods. The attention is turned to original enhancements of accuracy, efficiency and stability of finite-element codes. The partial improvements are based on novel approximations both in the spatial domain and in the time one, in the adoption of complex frequency hopping, fast frequency sweep and envelope finite-element techniques. In the paper, a possible hybridization of approaches is discussed. Proposed ...

  5. Coupled Lines Filters for Broadband Impedance Matching of Microwave Amplifiers

    Directory of Open Access Journals (Sweden)

    Mohammed Lahsaini

    2014-08-01

    Full Text Available In this paper we present a broadband matching technique for the design of low noise amplifiers. This technique is based on the use of coupled lines filters and quarter wave transformers for the adaptation and stabilization of these amplifiers, presenting the theory and the design process of these circuits. The type of transistors used for modeling this amplifier is the HEMT of Alpha Industries®. The results we found show that this amplifier is unconditionally stable with a satisfactory gain of about 20 dB and good impedance matching across the band of interest [10-12] GHz. The amplifier modeled in this work can be integrated in satellite receiving systems and radar systems.

  6. Broadband sum frequency generation via chirped quasi-phase-matching

    OpenAIRE

    Rangelov, A. A.; Vitanov, N. V.

    2011-01-01

    An efficient broadband sum frequency generation (SFG) technique using the two collinear optical parametric processes \\omega 3=\\omega 1+\\omega 2 and \\omega 4=\\omega 1+\\omega 3 is proposed. The technique uses chirped quasi-phase-matched gratings, which, in the undepleted pump approximation, make SFG analogous to adiabatic population transfer in three-state systems with crossing energies in quantum physics. If the local modulation period %for aperiodically poled quasi-phase-matching first makes ...

  7. AMiBA: Broadband Heterodyne Cosmic Microwave Background Interferometry

    Science.gov (United States)

    Chen, Ming-Tang; Li, Chao-Te; Hwang, Yuh-Jing; Jiang, Homin; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chiueh, Tzi-Dar; Chu, Tah-Hsiung; Han, Chih-Chiang; Huang, Yau-De; Kesteven, Michael; Kubo, Derek; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wang, Huei; Wilson, Warwick; Ho, Paul T. P.; Huang, Chih-Wei; Koch, Patrick; Liao, Yu-Wei; Lin, Kai-Yang; Liu, Guo-Chin; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Wu, Jiun-Huei Proty

    2009-04-01

    The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first results on the detection of galaxy clusters via the Sunyaev-Zel'dovich effect. The objectives required small reflectors in order to sample large-scale structures (20'), while interferometry provided modest resolutions (2'). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102 GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. Monolithic millimeter-wave integrated circuit technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operation since 2006, and we are in the process to expand the array from seven to 13 elements.

  8. Broadband microwave propagation in a novel large coaxial gridded hollow cathode helium plasma

    Science.gov (United States)

    Gao, Ruilin; Yuan, Chengxun; Liu, Sha; Yue, Feng; Jia, Jieshu; Zhou, Zhongxiang; Wu, Jian; Li, Hui

    2016-06-01

    The broadband microwave propagating characteristics of a novel, large volume, coaxial gridded hollow cathode helium plasma is reported in this paper. The basic plasma parameters were determined using an Impedans Ltd. Langmuir probe under a variety of conditions. The transmission attenuation was recorded by using Scattering Parameters (S-parameters) of a vector network analyzer with the frequency range from 2 GHz to 18 GHz and a propagation model was established using the Z transform finite-difference time-domain method for simulating the transmission of microwave. The effects of both the gas pressure and the input power on the electromagnetic wave propagation are analyzed. The results showed that the computational and experimental results of transmission attenuation were in good agreements. Moreover, the electron density ne and the effective collision rate ν c were found to play important roles in the propagation of microwave.

  9. Phase noise measurement of phase modulation microwave photonic links

    Science.gov (United States)

    Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie

    2015-10-01

    Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.

  10. Sensitivity Limits of Deep Average Broadband Microwave and Mm-Wave Spectra

    Science.gov (United States)

    Muckle, Matt T.; Zaleski, Daniel P.; Steber, Amanda; Harris, Brent; Pate, Brooks H.

    2012-06-01

    High-speed digitizers have enabled the field of broadband molecular rotational spectroscopy at microwave-to-THz frequencies. Improvements in data throughput from these digitizers makes it feasible to perform deep averages (often more than 1 million time-domain averages of the free induction decay) to increase the measurement sensitivity. The use of broadband signal detection introduces new issues that are key for determining the practical sensitivity limits of these spectrometers. The practical limit on spectrometer sensitivity is often set by the number of spurious signals that are generated by the molecular signals themselves. For example, in cases where the molecular signals are down converted prior to digitization, the spectral purity of the local oscillator is crucial with spurious frequencies introducing spectral images. It is also possible to generate new local oscillator frequencies within the broadband mixers typically used in the broadband down conversion. A second issue it the potential for a vast number of intermodulation (IM) spurious signals resulting from the beating of two strong molecular transitions. This beat frequency can subsequently modulate all other molecular signals adding sidebands to all transitions at the beat frequency of the transition pair. This talk will summarize our experience with the spurious signal levels coming from these effects and the strategies we have adopted to minimize spurious signals in spectra where high sensitivity is necessary.

  11. Phase 2 microwave concrete decontamination results

    International Nuclear Information System (INIS)

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm2/s and 4.9 cm3/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard

  12. Tunable microwave photonic notch filter based on sliced broadband optical source.

    Science.gov (United States)

    Yu, Yang; Li, Shangyuan; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun

    2015-09-21

    A microwave photonic filter is demonstrated with both tunable center frequency and bandwidth. This filter is switchable from all-pass, bandpass to notch filter, and the notch filter is a result of the subtraction of a bandpass filter from an all-pass filter based on a balanced photodetector. The all-pass filter is achieved based on a single wavelength radio over fiber link, and the bandpass one is acquired by using the spectrum-sliced broadband optical source. Theoretical analysis and experimental results show that both the center frequency and the bandwidth of the notch filter can be widely tuned. PMID:26406636

  13. Broadband Analysis of Microwave Structures by Enhanced Finite-Element Methods

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2005-12-01

    Full Text Available The paper deals with the broadband modeling of microwave structuresby finite-element methods. The attention is turned to originalenhancements of accuracy, efficiency and stability of finite-elementcodes. The partial improvements are based on novel approximations both in thespatial domain and in the time one, in the adoption of complexfrequency hopping, fast frequency sweep and envelope finite-elementtechniques. In the paper, a possible hybridization of approaches isdiscussed. Proposed finite-element schemes are applied to the analysis ofcanonical longitudinally homogeneous transmission lines in order todemonstrate their advantages.

  14. Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies

    Science.gov (United States)

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-09-01

    We propose to realize a broadband and wide-angle reflective polarization converter in microwave regions. The proposed converter can convert a linearly polarized (LP) wave to its cross-polarized wave at three resonant frequencies. It can also convert the LP wave to a circularly polarized wave at other two resonant frequencies. Furthermore, the proposed converter can achieve broad bandwidth with incident angle up to 45°. The simulated and measured results are in agreement in the entire frequency regions, and the bandwidth of polarization conversion over 75 % can be obtained from 7.6 to 15.5 GHz under normal incidence and from 7.8 to 13.0 GHz under incident angle of 45°. The surface current distributions of the proposed converter are discussed to analyze the physical mechanism. The converter tolerance to wide angle of incidence and the broad bandwidth could be useful in the range of applications in the microwave regions.

  15. In-situ Broadband Cryogenic Calibration for Two-port Superconducting Microwave Resonators

    CERN Document Server

    Yeh, Jen-Hao

    2012-01-01

    In this paper we introduce an improved microwave calibration method for use in a cryogenic environment, based on a traditional three-standard calibration, the Thru-Reflection-Line (TRL) calibration. The modified calibration method takes advantage of additional information from multiple measurements of an ensemble of realizations of a superconducting resonator, as a new pseudo-Open standard, to correct errors in the TRL calibration. We also demonstrate an experimental realization of this in-situ broadband cryogenic calibration system utilizing cryogenic switches. All calibration measurements are done in the same thermal cycle as the measurement of the resonator (requiring only an additional 20 minutes), thus avoiding 4 additional thermal cycles for traditional TRL calibration (which would require an additional 12 days). The experimental measurements on a wave chaotic microwave billiard verify that the new method significantly improves the measured scattering matrix of a high-quality-factor superconducting reso...

  16. In situ broadband cryogenic calibration for two-port superconducting microwave resonators.

    Science.gov (United States)

    Yeh, Jen-Hao; Anlage, Steven M

    2013-03-01

    We introduce an improved microwave calibration method for use in a cryogenic environment, based on a traditional three-standard calibration, the Thru-Reflect-Line (TRL) calibration. The modified calibration method takes advantage of additional information from multiple measurements of an ensemble of realizations of a superconducting resonator, as a new pseudo-Open standard, to correct errors in the TRL calibration. We also demonstrate an experimental realization of this in situ broadband cryogenic calibration system utilizing cryogenic switches. All calibration measurements are done in the same thermal cycle as the measurement of the resonator (requiring only an additional 20 min), thus avoiding 4 additional thermal cycles for traditional TRL calibration (which would require an additional 12 days). The experimental measurements on a wave-chaotic microwave billiard verify that the new method significantly improves the measured scattering matrix of a high-quality-factor superconducting resonator.

  17. Broadband sum frequency generation via chirped quasi-phase-matching

    CERN Document Server

    Rangelov, A A

    2011-01-01

    An efficient broadband sum frequency generation (SFG) technique using the two collinear optical parametric processes \\omega 3=\\omega 1+\\omega 2 and \\omega 4=\\omega 1+\\omega 3 is proposed. The technique uses chirped quasi-phase-matched gratings, which, in the undepleted pump approximation, make SFG analogous to adiabatic population transfer in three-state systems with crossing energies in quantum physics. If the local modulation period %for aperiodically poled quasi-phase-matching first makes the phase match occur for \\omega 3 and then for \\omega 4 SFG processes then the energy is converted adiabatically to the \\omega 4 field. Efficient SFG of the \\omega 4 field is also possible by the opposite direction of the local modulation sweep; then transient SFG of the \\omega 3 field is strongly reduced. Most of these features remain valid in the nonlinear regime of depleted pump.

  18. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    Science.gov (United States)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature

  19. Broadband superior electromagnetic absorption of a discrete-structure microwave coating

    Science.gov (United States)

    Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin

    2016-10-01

    A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.

  20. Broadband linearized analog intersatellite microwave photonic link using a polarization modulator in a Sagnac loop.

    Science.gov (United States)

    Zhu, Zihang; Li, Yongjun; Zhao, Shanghong; Li, Xuan; Qu, Kun; Ma, Jiajun

    2016-02-10

    A novel orthogonal polarization optical carrier suppression with carrier (OCS+C) modulation and a coherent balanced detection intersatellite microwave photonic link with improved signal-to-noise and distortion ratio (SNDR) is proposed. By bidirectional use of a polarization modulator in a Sagnac loop in conjunction with a polarization beam splitter and two polarization controllers, only the light wave along the clockwise direction is effectively modulated while the counterclockwise light wave is not modulated due to the velocity mismatch, which generates the orthogonal polarization OCS+C modulation signal to mitigate the third-order intermodulation distortion (IMD3) and the signal-amplifier spontaneous emission beating noise. By demultiplexing and adjusting the polarization of the orthogonal polarization OCS+C modulation signal, coherent balanced detection can be realized without a local oscillator signal in the receiver, which suppresses the second-order distortions. Thus, a broadband linearized intersatellite microwave photonic link with high SNDR is achieved. Simulation results show that the maximum SNDR of 36.2 dB can be obtained when the optimum modulation index is 0.26, which is 8 dB higher than our previously proposed intersatellite microwave photonic link with an optical preamplifier. PMID:26906370

  1. Experimental study of a high-current FEM with a broadband microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, G.G.; Bratman, V.L.; Ginzburg, N.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    One of the main features of FELs and FEMs is the possibility of fast and wideband tuning of the resonant frequency of active media, which can be provided by changing the particle energy. For a frequency adjustable FEM-oscillator, a broadband microwave system, which is simply combined with an electron-optical FEM system and consists of an oversized waveguide and reflectors based on the microwave beams multiplication effect has been proposed and studied successfully in {open_quotes}cold{close_quotes} measurements. Here, the operating ability of a cavity, that includes some key elements of the broadband microwave system, was tested in the presence of an electron beam. To provide large particle oscillation velocities in a moderate undulator field and the presence of a guide magnetic field, the FEM operating regime of double resonance was chosen. In this regime the cyclotron as well as undulator resonance conditions were satisfied. The FEM-oscillator was investigated experimentally on a high-current accelerator {open_quotes}Sinus-6{close_quotes} that forms an electron beam with particle energy 500keV and pulse duration 25ns. The aperture with a diameter 2.5mm at the center of the anode allows to pass through only the central fraction of the electron beam with a current about 100A and a small spread of longitudinal velocities of the particles. Operating transverse velocity was pumped into the electron beam in the pulse plane undulator of a 2.4cm period. The cavity with a frequency near 45GHz consists of a square waveguide and two reflectors. The broadband up-stream reflector based on the multiplication effect had the power reflectivity coefficient more than 90% in the frequency band 10% for the H{sup 10} wave of the square waveguide with the maximum about 100% at a frequency 45GHz. The down-stream narrow-band Bragg reflector had the power reflection coefficient approximately 80% in the frequency band of 4% near 45GHz for the operating mode.

  2. Broadband metasurface holograms: toward complete phase and amplitude engineering

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  3. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  4. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, D.; Shubert, V. A. [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); Giuliano, B. M. [Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid (Spain); Schnell, M., E-mail: melanie.schnell@mpsd.mpg.de [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg (Germany)

    2014-07-21

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules.

  5. Low-error and broadband microwave frequency measurement in a silicon chip

    CERN Document Server

    Pagani, Mattia; Zhang, Yanbing; Casas-Bedoya, Alvaro; Aalto, Timo; Harjanne, Mikko; Kapulainen, Markku; Eggleton, Benjamin J; Marpaung, David

    2015-01-01

    Instantaneous frequency measurement (IFM) of microwave signals is a fundamental functionality for applications ranging from electronic warfare to biomedical technology. Photonic techniques, and nonlinear optical interactions in particular, have the potential to broaden the frequency measurement range beyond the limits of electronic IFM systems. The key lies in efficiently harnessing optical mixing in an integrated nonlinear platform, with low losses. In this work, we exploit the low loss of a 35 cm long, thick silicon waveguide, to efficiently harness Kerr nonlinearity, and demonstrate the first on-chip four-wave mixing (FWM) based IFM system. We achieve a large 40 GHz measurement bandwidth and record-low measurement error. Finally, we discuss the future prospect of integrating the whole IFM system on a silicon chip to enable the first reconfigurable, broadband IFM receiver with low-latency.

  6. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    International Nuclear Information System (INIS)

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules

  7. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis.

    Science.gov (United States)

    Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-08-24

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response. PMID:26368182

  8. A linear coherent integrated receiver based on a broadband optical phase-locked loop

    Science.gov (United States)

    Ramaswamy, Anand

    Optical Phase-Locked Loops (OPLL) have diverse applications in future communication systems. They can be used in high sensitivity homodyne phase-shift keying receivers for phase noise reduction, provided sufficient loop bandwidth is maintained. Alternative phase-locked loop applications include coherent synchronization of laser arrays and frequency synthesis by offset locking. In this work, a broadband OPLL based coherent receiver is used for linear phase demodulation. Phase modulated (PM) analog optical links have the potential to outperform conventional direct detection links. However, their progress has been stymied by the lack of a linear phase demodulator. We describe how feedback can be used to suppress non-linearities arising from the phase demodulation process. The receiver concept is demonstrated at low frequencies and is found to improve the Spurious Free Dynamic Range (SFDR) of an experimental analog link by over 20dB. In order to extend the operation of the receiver to microwave frequencies, latencies arising from physical delays in the feedback path need to be dramatically reduced. To facilitate this, monolithic and hybrid versions of the receiver based on compact integration of InP photonic integrated circuits (PIC) with InP and SiGe electronic integrated circuits (EIC) have been developed at UCSB. In this work, we develop novel measurement techniques to characterize the linearity of the individual components of the PIC, namely, the semiconductor photodiodes and optical phase modulators. We then demonstrate the operation of the receiver in a high power analog link. The OPLL based receiver has a bandwidth of 1.5GHz. The link gain and shot-noise limited SFDR at 300MHz are -2dB and 125dB-Hz2/3, respectively. Further, optical sampling downconversion is demonstrated as a viable technique to increase the operating frequency of the receiver beyond the baseband range.

  9. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    Directory of Open Access Journals (Sweden)

    Phatcharee Phoempoon

    2014-01-01

    Full Text Available The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M was prepared from NH4VO3 and H2C2O4·2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties.

  10. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  11. A broadband microwave Corbino spectrometer at $^3$He temperatures and high magnetic fields

    CERN Document Server

    Liu, Wei; Armitage, N P

    2014-01-01

    We present the technical details of a broadband microwave spectrometer for measuring the complex conductance of thin films covering the range from 50 MHz up to 16 GHz in the temperature range 300 mK to 6 K and at applied magnetic fields up to 8 Tesla. We measure the complex reflection from a sample terminating a coaxial transmission line and calibrate the signals with three standards with known reflection coefficients. Thermal isolation of the heat load from the inner conductor is accomplished by including a section of NbTi superconducting cable (transition temperature around 8 $-$ 9 K) and hermetic seal glass bead adapters. This enables us to stabilize the base temperature of the sample stage at 300 mK. However, the inclusion of this superconducting cable complicates the calibration procedure. We document the effects of the superconducting cable on our calibration procedure and the effects of applied magnetic fields and how we control the temperature with great repeatability for each measurement. We have suc...

  12. A broadband reflective filter for applying dc biases to high-Q superconducting microwave cavities

    Science.gov (United States)

    Hao, Yu; Rouxinol, Francisco; Lahaye, Matt

    2015-03-01

    The integration of dc-bias circuitry into low-loss microwave cavities is an important technical issue for topics in many fields that include research with qubit- and cavity-coupled mechanical system, circuit QED and quantum dynamics of nonlinear systems. The applied potentials or currents serve a variety of functions such as maintaining the operating state of device or establishing tunable electrostatic interactions between devices (for example, in order to couple a nanomechanical resonator to a superconducting qubit to generate and detect quantum states of a mechanical resonator). Here we report a bias-circuit design that utilizes a broadband reflective filter to connect to a high-Q superconducting coplanar waveguide (CPW) cavity. Our design allows us to apply dc-voltages to the center trace of CPW, with negligible changes in loaded quality factors of the fundamental mode. Simulations and measurements of the filter demonstrate insertion loss greater than 20 dB in the range of 3 to 10 GHz. Transmission measurements of the voltage-biased CPW show that loaded quality factors exceeding 105 can be achieved for dc-voltages as high as V = +/- 20V for the cavity operated in the single photon regime. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  13. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice

    Science.gov (United States)

    Chen, Mingji; Pei, Yongmao; Fang, Daining

    2012-07-01

    Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5 g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below -10 dB over the frequency range of 4-18 GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.

  14. A magnetoelectric composite based microwave phase shifter

    Science.gov (United States)

    Bichurin, M. I.; Petrov, V. M.; Srinivasan, G.

    2008-03-01

    Magnetoelectric (ME) properties of ferrite-ferroelectric composites arise from their response to elastic and electromagnetic force fields. The unique combination of magnetic, electrical, and ME interactions opens up the possibility of electric field tunable ferromagnetic resonance (FMR) based devices [1]. Here we discuss an ME phase shifter operating in the FMR region at 9.3 GHz. A slot line on a yttrium iron garnet film bonded to lead zirconate titanate (PZT) provides a basis for the phase shifter. The circularly polarized microwave magnetic field of the slot line interacts with the ferrite and causes variation of phase velocity with the controlling magnetic and electric fields. Electrical tuning is realized with the application of a control voltage due to PZT. The estimated phase shift per unit length and unit voltage is to 20 deg/cm kV for a PZT thickness of 0.5 mm. 1 S. Shastry and G. Srinivasan, M.I. Bichurin, V.M. Petrov, A.S. Tatarenko. Phys. Rev. B, 70 064416 (2004). - supported by grants from the Office of Naval Research and the Russian Foundation for Basic Research.

  15. Recent Breakthroughs in Microwave Photonics

    OpenAIRE

    Gasulla Mestre, Ivana; Lloret Soler, Juan Antonio; Sancho Durá, Juan; Sales Maicas, Salvador; Capmany Francoy, José

    2011-01-01

    We present a brief review of recent accomplishments in the field of Microwave Photonics (MWP). Recent research across a broad range of MWP applications is summarized, including photonic generation of microwave, millimeter, and Terahertz waves; broadband optical beamforming for phased array antennas; tunable, reconfigurable, and adaptive microwave photonic filtering, as well as the application of slow and fast light effects to the implementation of tunable microwave phase shifting and true tim...

  16. Microwave photonics: Harnessing slow light

    OpenAIRE

    Capmany J.; Gasulla I.; Sales S.

    2011-01-01

    Slow-light techniques originally conceived for buffering high-speed digital optical signals now look set to play an important role in providing broadband phase and true time delays for microwave signals.

  17. Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators

    Science.gov (United States)

    Ehteshami, Nasrin; Zhang, Weifeng; Yao, Jianping

    2016-08-01

    A broadband optically tunable microwave phase shifter with a tunable phase shift covering the entire 360° range using three cascaded silicon-on-insulator (SOI) microring resonators (MRRs) that are optically pumped is proposed and experimentally demonstrated. The phase tuning is implemented based on the thermal nonlinear effect in the MRRs. By optically pumping the MRRs, the stored light in the MRRs is absorbed due to two photon absorption (TPA) to generate free carriers, which result in free carrier absorption (FCA). The FCA effect would lead to the heating of the MRRs and cause a redshift in the phase response, which is used to implement a microwave phase shifter with a tunable phase shift. The device is designated and fabricated on an SOI platform, which is experimentally evaluated. The experimental results show that by optically pumping the MRRs, a broadband microwave photonic phase shifter with a bandwidth of 7 GHz from 16 to 23 GHz with a tunable phase shift covering the entire 360° phase shift range is achieved.

  18. Semi-automated microwave assisted solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  19. Microwave pulse phase encoding using a photonic microwave delay-line filter.

    Science.gov (United States)

    Dai, Yitang; Yao, Jianping

    2007-12-15

    A novel technique to perform microwave pulse phase encoding using an incoherent photonic microwave delay-line filter is proposed and experimentally demonstrated. Being different from a regular microwave delay-line filter, in which the time-delay differences are identical between any adjacent taps, the proposed filter has nonidentical time-delay differences. A phase-encoded microwave pulse with the required code pattern is generated by properly adjusting the time-delay differences. The chip number of a generated phase code is determined by the number of the filter taps, and the phase shift of each chip is determined by the corresponding time-delay difference. The proposed technique is verified by experiments. The generation of binary and quaternary phase-coded pulses is experimentally demonstrated. PMID:18087517

  20. Experimental validation of the use of Kramers-Kronig relations to eliminate the phase sheet ambiguity in broadband phase spectroscopy.

    Science.gov (United States)

    Trousil, R L; Waters, K R; Miller, J G

    2001-05-01

    The technique of broadband phase spectroscopy proposed in 1978 by Sachse and Pao [J. Appl. Phys. 49, 4320-4327 (1978)] determines the phase velocity as a function of frequency from the Fourier transforms of a received reference and through-sample signal. Although quite successful, this approach can be influenced by an ambiguity in the phase velocity calculation which stems from the boundedness of the inverse tangent operation used to calculate phase. Several empirical approaches to resolve the phase ambiguity have been reported. An alternative approach that has not previously been considered appeals to the causal nature of the measurements. This article experimentally validates a method which uses the causally consistent Kramers-Kronig relations to eliminate the ambiguity in phase spectroscopy-derived phase velocity calculations. Broadband pulse and narrow-band tone burst measurements were performed on three gelatin-based phantoms containing different concentrations of graphite particles (0%, 10%, and 20% by volume). The phantoms were constructed to have attenuation coefficients which vary approximately linear-with-frequency, a dependence exhibited by many soft tissues. The narrow-band phase velocity measurements do not suffer from a phase ambiguity, and thus they serve as a "gold standard" against which the broadband phase velocity measurements are compared. The experimental results illustrate that using the Kramers-Kronig dispersion relations in conjunction with phase spectroscopy-derived phase velocity measurements is an effective means by which to resolve the phase sheet ambiguity in broadband phase spectroscopy.

  1. 3D printed broadband transformation optics based all-dielectric microwave lenses

    Science.gov (United States)

    Yi, Jianjia; Nawaz Burokur, Shah; Piau, Gérard-Pascal; de Lustrac, André

    2016-04-01

    Quasi-conformal transformation optics is applied to design electromagnetic devices for focusing and collimating applications at microwave frequencies. Two devices are studied and conceived by solving Laplace’s equation that describes the deformation of a medium in a space transformation. As validation examples, material parameters of two different lenses are derived from the analytical solutions of Laplace’s equation. The first lens is applied to produce an overall directive in-phase emission from an array of sources conformed on a cylindrical structure. The second lens allows deflecting a directive beam to an off-normal direction. Full-wave simulations are performed to verify the functionality of the calculated lenses. Prototypes presenting a graded refractive index are fabricated through three-dimensional polyjet printing using solely dielectric materials. Experimental measurements carried out show very good agreement with numerical simulations, thereby validating the proposed lenses. Such easily realizable designs open the way to low-cost all-dielectric microwave lenses for beam forming and collimation.

  2. Broadband dielectric characterization of aqueous saline solutions by an interferometer-based microwave microscope

    Science.gov (United States)

    Gu, Sijia; Lin, Tianjun; Lasri, Tuami

    2016-06-01

    The complex dielectric permittivity of aqueous saline solutions has been determined in the frequency range [2-18 GHz] with a home-made near-field microwave microscope. The instrument is built on a vector network analyzer, a matching network, and an evanescent microwave probe. The interferometer-based matching network enables highly reproducible, sensitive, and accurate measurements on the entire frequency band of operation. NaCl solutions concentrations ranging from 0 to 160 mg/ml are investigated at 25 °C. A maximum measurement sensitivity for NaCl concentrations is found to be equal to 2.3 dB/(mg/ml) and 7.7°/(mg/ml) for magnitude and phase-shift, respectively. To translate the measurement data (S parameters) to the corresponding complex permittivities, an inversion procedure based on a simple calibration model is applied. The resulting complex permittivities are found to be in a very good agreement with those calculated by Cole-Cole model.

  3. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian

    2013-06-21

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    CERN Document Server

    Meszarosova, Hana; Kashapova, Larisa; Gomory, Peter; Tokhchukova, Susanna; Myshyakov, Ivan

    2016-01-01

    We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz/s. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal l...

  5. Broadband Chirped-Pulse Fourier-Transform Microwave Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers

    Science.gov (United States)

    Steber, Amanda L.; Obenchain, Daniel A.; Peebles, Rebecca A.; Peebles, Sean A.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Guirgis, Gamil A.

    2009-06-01

    The rotational spectrum of diethylsilane has been assigned using broadband chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy. Previously, Fourier-transform microwave rotational spectra were observed using a Balle-Flygare type instrument for the ^{28}Si isotopologues of the gauche-gauche, trans-gauche, and trans-trans conformers. In the present study, a broadband microwave spectrum was obtained at the University of Virginia, taking advantage of the ability to perform deep signal averaging to increase the measurement sensitivity. To obtain a full structural determination of the conformers of this molecule, spectra for the ^{29}Si, ^{30}Si, and single ^{13}C substitutions for the gauche-gauche, the trans-gauche, and the trans-trans species were assigned. Substitution (r_s) structures and inertial fit (r_0) structures were determined and a comparison between the experimental and ab initio structures will be presented. For the ^{28}Si isotopologues, the percent differences between the experimental and ab initio rotational constants are less than 1.5% for the trans-trans and trans-gauche and are between 2.0 and 5.0% for the gauche-gauche conformer. The structural parameters will be compared between this molecule, diethylgermane and other silicon containing molecules and the relative abundances of the three conformers will be discussed. S.A. Peebles, M.M. Serafin, R.A. Peebles, G.A. Guirgis, and H.D. Stidham J. Phys. Chem. A, (2009), DOI: 10.1021/jp811049n.

  6. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter.

    Science.gov (United States)

    Zhang, Yamei; Pan, Shilong

    2013-03-01

    A scheme for the generation of phase-coded microwave signals using an electrically tunable photonic microwave phase shifter is proposed and demonstrated. The photonic phase shifter is based on a single-sideband polarization modulator (PolM), and the tuning of the phase shifter is implemented by a second PolM. By introducing an RF signal to the first PolM and an electrical coding signal to the second PolM, a phase-coded microwave signal with binary phase codes or polyphase codes is achieved. An experiment is performed. The simple and flexible operation, high coding rate, large frequency range, excellent transmission performance, and high stability of the system is confirmed. PMID:23455292

  7. Integrated microwave photonics for phase modulated systems

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    For the last 25 years, microwave photonic (MWP) systems and links have relied almost exclusively on discrete optoelectronic devices, standard optical fibers and fiber-based components. With this concept, various functionalities like RF signal generation, distribution, processing and analysis have be

  8. Ring resonator-based broadband photonic beam former for phased array antennas

    NARCIS (Netherlands)

    Zhuang, Leimeng

    2010-01-01

    This thesis presents the principles and a demonstration of optical ring resonator (ORR)-based broadband photonic beam former for phased array antennas. In Chapter 1 an introduction of RF photonics is given. The SMART and BPB projects are summarized, which are aimed for the development of ORR-based b

  9. Spatio-spectral phase-matching in broadband soliton mode-locked lasers

    OpenAIRE

    Chia, Shih-Hsuan; Chen, Li-Jin; Kaertner, Franz

    2013-01-01

    A spatio-spectral phase-matching theory is introduced. It is used to improve broadband modelocking of a Ti:sapphire laser with a tunable enhancement of >15dB at long wavelengths while maintaining a good beam profile.

  10. Broadband Microwave Wireless Power Transfer for Weak-Signal and Multipath Environments

    Science.gov (United States)

    Barton, Richard J.

    2014-01-01

    In this paper, we study the potential benefits of using relatively broadband wireless power transmission WPT strategies in both weak-signal and multipath environments where traditional narrowband strategies can be very inefficient. The paper is primarily a theoretical and analytical treatment of the problem that attempts to derive results that are widely applicable to many different WPT applications, including space solar power SSP.

  11. Tunable all-optical single-bandpass photonic microwave filter based on spectrally sliced broad optical source and phase modulation.

    Science.gov (United States)

    Chen, Ming; Pan, Wei; Zou, Xihua; Luo, Bin; Yan, Lianshan; Liu, Xinkai

    2013-01-10

    A tunable all-optical single-bandpass photonic microwave filter (PMF) based on spectrally sliced broadband optical source and phase modulation is proposed and experimentally demonstrated. A broadband optical source and a Mach-Zehnder interferometer (MZI) are used to generate continuous optical spectral samples, which are employed to form a finite impulse response filter with a single-bandpass response with the help of a single-mode fiber. A phase modulator is then adopted to eliminate the baseband components in the filtering response. The center frequency of the PMF can be tuned by changing the free spectral range of the MZI. An experiment is performed, and the results demonstrate that the proposed PMF has a single-bandpass without baseband components and a tuning range of 5-15 GHz. PMID:23314649

  12. Broadband metasurface for independent control of reflected amplitude and phase

    OpenAIRE

    Sheng Li Jia; Xiang Wan; Pei Su; Yong Jiu Zhao; Tie Jun Cui

    2016-01-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with pola...

  13. Broadband nanoelectromechanical phase shifting of light on a chip

    OpenAIRE

    Poot, Menno; Tang, Hong X.

    2013-01-01

    We demonstrate an optomechanical phase shifter. By electrostatically deflecting the nanofabricated mechanical structure, the effective index of a nearby waveguide is changed and the resulting phase shift is measured using an integrated Mach-Zehnder interferometer. Comparing to thermo-optical phase shifters, our device does not consume power in static operation and also it can operate over large frequency, wavelength, and power ranges. Operation in the MHz range and sub-$\\mu$s pulses are demon...

  14. Magnetic Tunnel Junction-Based On-Chip Microwave Phase and Spectrum Analyzer

    Science.gov (United States)

    Fan, Xin; Chen, Yunpeng; Xie, Yunsong; Kolodzey, James; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2014-01-01

    A magnetic tunnel junction (MTJ)-based microwave detector is proposed and investigated. When the MTJ is excited by microwave magnetic fields, the relative angle between the free layer and pinned layer alternates, giving rise to an average resistance change. By measuring the average resistance change, the MTJ can be utilized as a microwave power sensor. Due to the nature of ferromagnetic resonance, the frequency of an incident microwave is directly determined. In addition, by integrating a mixer circuit, the MTJ-based microwave detector can also determine the relative phase between two microwave signals. Thus, the MTJbased microwave detector can be used as an on-chip microwave phase and spectrum analyzer.

  15. Phase-compensated metasurface for a conformal microwave antenna

    OpenAIRE

    Germain, Dylan; Seetharamdoo, Divitha; Burokur, Shah Nawaz; De Lustrac, André

    2013-01-01

    The in-phase radiation from a conformal metamaterial surface is numerically and experimentally reported. The LC-resonant metasurface is composed of a simultaneously capacitive and an inductive grid constituted by copper strips printed on both sides of a dielectric board. The metasurface is designed to fit a curved surface by modifying its local phase. The latter phase-compensated metasurface is used as a reflector in a conformal Fabry-Pérot resonant cavity designed to operate at microwave fre...

  16. Broadband metasurface for independent control of reflected amplitude and phase

    Science.gov (United States)

    Jia, Sheng Li; Wan, Xiang; Su, Pei; Zhao, Yong Jiu; Cui, Tie Jun

    2016-04-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with polarization orthogonal to the incident waves. The simulated and measured results of the presented metasurfaces show very good agreements. The proposed method has potential applications in engineering high-efficiency holography and complex electromagnetic and optical patterns.

  17. Broadband metasurface for independent control of reflected amplitude and phase

    Directory of Open Access Journals (Sweden)

    Sheng Li Jia

    2016-04-01

    Full Text Available We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with polarization orthogonal to the incident waves. The simulated and measured results of the presented metasurfaces show very good agreements. The proposed method has potential applications in engineering high-efficiency holography and complex electromagnetic and optical patterns.

  18. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.;

    1990-01-01

    Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...

  19. Performance characterization of a broadband vector Apodizing Phase Plate coronagraph

    CERN Document Server

    Otten, G P P L; Kenworthy, M A; Miskiewicz, M N; Escuti, M J

    2014-01-01

    One of the main challenges for the direct imaging of planets around nearby stars is the suppression of the diffracted halo from the primary star. Coronagraphs are angular filters that suppress this diffracted halo. The Apodizing Phase Plate coronagraph modifies the pupil-plane phase with an anti-symmetric pattern to suppress diffraction over a 180 degree region from 2 to 7 {\\lambda}/D and achieves a mean raw contrast of 10^-4 in this area, independent of the tip-tilt stability of the system. Current APP coronagraphs implemented using classical phase techniques are limited in bandwidth and suppression region geometry (i.e. only on 1 side of the star). In this paper, we show the vector-APP (vAPP) whose phase pattern is implemented by the orientation of patterned liquid crystals. Beam-splitting according to circular polarization states produces two, complementary PSFs with dark holes on either side. We have developed a prototype vAPP that consists of a stack of 3 twisting liquid crystal layers with a bandwidth o...

  20. Phase Noise of Optically Generated Microwave Using Sideband Injection Locking

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin; SUN Chang-Zheng; SONG Yu; XIONG Bing; LUO Yi

    2008-01-01

    Optically generated 20-GHz microwave carriers with phase noise lower than -75 dBc/Hz at 10 kHz offset and lower than -90 dBc/Hz at 100 kHz offset are obtained using single- and double-sideband injection locking. Within the locking range, the effect of sideband injection locking can be regarded as narrow-band amplification of the modulation sidebands. Increasing the current of slave laser will increase the power of beat signal and reduce the phase noise to a certain extent. Double-sideband injection locking can increase the power of the generated microwave carrier while keeping the phase noise at a low level. It is also revealed that partially destruction of coherence between the two beating lights in the course of sideband injection locking would impair the phase noise performance.

  1. Microwave synthesis of phase-pure, fine silicon carbide powder

    International Nuclear Information System (INIS)

    Fine, monophasic silicon carbide powder has been synthesized by direct solid-state reaction of its constituents namely silicon and carbon in a 2.45 GHz microwave field. Optimum parameters for the silicon carbide phase formation have been determined by varying reaction time and reaction temperature. The powders have been characterized for their particle size, surface area, phase composition (X-ray diffraction) and morphology (scanning electron microscope). Formation of phase-pure silicon carbide can be achieved at 1300 deg. C in less than 5 min of microwave exposure, resulting in sub-micron-sized particles. The free energy values for Si + C → SiC reaction were calculated for different temperatures and by comparing them with the experimental results, it was determined that phase-pure silicon carbide can be achieved at around 1135 deg. C

  2. Broadband quasi-phase-matched second-harmonic generation in MgO: LiNbO3 waveguide

    Institute of Scientific and Technical Information of China (English)

    LIU Gui-hua; GUO Hai-run; FU Xing-hu; ZENG Xiang-long

    2011-01-01

    The quasi-phase-matched (QPM) condition of broadband second harmonic generation (SHG) in Ti-diffused MgO:LiNbOwaveguide is theoretically simulated. The results show that the center wavelength of broadband SHG dependent on the waveguide width is around 1550 nm and the bandwidth is 50 nm.

  3. Microwave photonic phase shifter based on tunable silicon-on-insulator microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi;

    2010-01-01

    We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained.......We demonstrate a microwave photonic phase shifter based on an electrically tunable silicon-on-insulator microring resonator. A continuously tunable phase shift of up to 315° at a microwave frequency of 15GHz is obtained....

  4. Data Acquisition and Control System for Broad-band Microwave Reflectometry on EAST

    CERN Document Server

    Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yuming; Han, Xiang; Qu, Hao; Gao, Xiang

    2014-01-01

    Microwave reflectometry is a non-intrusive plasma diagnostic tool which is widely applied in many fusion devices. In 2014, the microwave reflectometry on Experimental Advanced Superconducting Tokamak (EAST) had been upgraded to measure plasma density profile and fluctuation, which covered the frequency range of Q-band (32-56 GHz), V-band (47-76 GHz) and W-band (71-110 GHz). This paper presented a dedicated data acquisition and control system (DAQC) to meet the measurement requirements of high accuracy and temporal resolution. The DAQC consisted of two control modules, which integrated arbitrary waveform generation block (AWG) and trigger processing block (TP), and two data acquisition modules (DAQ) that was implemented base on the PXIe platform from National Instruments (NI). All the performance parameters had satisfied the requirements of reflectometry. The actual performance will be further examined in the experiments of EAST in 2014.

  5. Phased Array Technology with Phase and Amplitude Controlled Magnetron for Microwave Power Transmission

    Science.gov (United States)

    Shinohara, N.; Matsumoto, H.

    2004-12-01

    We need a microwave power transmitter with light weight and high DC-RF conversion efficiency for an economical SSPS (Space Solar Power System). We need a several g/W for a microwave power transmission (MPT) system with a phased array with 0.0001 degree of beam control accuracy (=tan-1 (100m/36,000km)) and over 80 % of DC-RF conversion efficiency when the weight of the 1GW-class SPS is below a several thousand ton - a several tens of thousand ton. We focus a microwave tube, especially magnetron by economical reason and by the amount of mass-production because it is commonly used for microwave oven in the world. At first, we have developed a phase controlled magnetron (PCM) with different technologies from what Dr. Brown developed. Next we have developed a phase and amplitude controlled magnetron (PACM). For the PACM, we add a feedback to magnetic field of the PCM with an external coil to control and stabilize amplitude of the microwave. We succeed to develop the PACM with below 10-6 of frequency stability and within 1 degree of an error in phase and within 1% of amplitude. We can control a phase and amplitude of the PACM and we have developed a phased array the PCMs. With the PCM technology, we have developed a small light weight MPT transmitter COMET (Compact Microwave Energy Transmitter) with consideration of heat radiation for space use and with consideration of mobility to space.

  6. Microwave link phase compensation for longitudinal stochastic cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Mernick, K.; Blaskiewicz, M.; Brennan, J.M.; Johnson, B.; Severino, F.

    2010-05-02

    A new microwave link has been developed for the longitudinal stochastic cooling system, replacing the fiberoptic link used for the transmission of the beam signal from the pickup to the kicker. This new link reduces the pickup to kicker delay from 2/3 of a turn to 1/6 of a turn, which greatly improves the phase margin of the system and allows operation at higher frequencies. The microwave link also introduces phase modulation on the transmitted signal due to variations in the local oscillators and time of flight. A phase locked loop tracks a pilot tone generated at a frequency outside the bandwidth of the cooling system. Information from the PLL is used to calculate real-time corrections to the cooling system at a 10 kHz rate. The design of the pilot tone system is discussed and results from commissioning are described.

  7. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    OpenAIRE

    Yin Zhang; Lanju Liang; Jing Yang; Yijun Feng; Bo Zhu; Junming Zhao; Tian Jiang; Biaobing Jin; Weiwei Liu

    2016-01-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patche...

  8. Efficient broadband sum and difference frequency generation with a single chirped quasi-phase-matching crystal

    OpenAIRE

    Rangelov, Andon A.

    2012-01-01

    We propose an efficient broadband frequency generation technique for two collinear optical parametric processes $\\omega_3=\\omega_1+\\omega_2$ and $\\omega_4=\\omega_1-\\omega_2$. It exploits chirped quasi-phase-matched gratings, which in the undepleted pump approximation regime perform population transfer that is analogous to adiabatic population transfer in a three-state ``vee'' quantum system. The energy of the input fields is transferred adiabatically either into $\\omega_3$ or $\\omega_4$ field...

  9. Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Du, Xiao-Wen

    2016-06-01

    Acoustic metasurface (AMS) is a good candidate to manipulate acoustic waves due to special acoustic performs that cannot be realized by traditional materials. In this paper, we design the AMS by using circular-holed cubic arrays. The advantages of our AMS are easy assemble, subwavelength thickness, and low energy loss for manipulating acoustic waves. According to the generalized Snell's law, acoustic waves can be manipulated arbitrarily by using AMS with different phase gradients. By selecting suitable hole diameter of circular-holed cube (CHC), some interesting phenomena are demonstrated by our simulations based on finite element method, such as the conversion of incoming waves into surface waves, anomalous reflections (including negative reflection), acoustic focusing lens, and acoustic carpet cloak. Our results can provide a simple approach to design AMSes and use them in wavefront manipulation and manufacturing of acoustic devices.

  10. Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Wang

    2016-06-01

    Full Text Available Acoustic metasurface (AMS is a good candidate to manipulate acoustic waves due to special acoustic performs that cannot be realized by traditional materials. In this paper, we design the AMS by using circular-holed cubic arrays. The advantages of our AMS are easy assemble, subwavelength thickness, and low energy loss for manipulating acoustic waves. According to the generalized Snell’s law, acoustic waves can be manipulated arbitrarily by using AMS with different phase gradients. By selecting suitable hole diameter of circular-holed cube (CHC, some interesting phenomena are demonstrated by our simulations based on finite element method, such as the conversion of incoming waves into surface waves, anomalous reflections (including negative reflection, acoustic focusing lens, and acoustic carpet cloak. Our results can provide a simple approach to design AMSes and use them in wavefront manipulation and manufacturing of acoustic devices.

  11. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks. PMID:20941075

  12. Broadband Microwave Filters Based on Open Split Ring Resonators (OSRRs) and Open Complementary Split Ring Resonators (OCSRRs): Improved Models and Design Optimization

    OpenAIRE

    J. Bonache; Duran-Sindreu, M.; Velez, P; Martin, F.

    2011-01-01

    The paper is focused on the design of broadband bandpass filters at microwave frequencies. The proposed filters are based on a combination of open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs) loaded in a host transmission line. Since these resonators (OSRRs and OCSRRs) are electrically small, the resulting filters are compact. As compared to previous papers by the authors on this topic, the main aim and originality of the present paper is to demonstrate ...

  13. Phase-compensated metasurface for a conformal microwave antenna

    Science.gov (United States)

    Germain, Dylan; Seetharamdoo, Divitha; Nawaz Burokur, Shah; de Lustrac, André

    2013-09-01

    The in-phase radiation from a conformal metamaterial surface is numerically and experimentally reported. The LC-resonant metasurface is composed of a simultaneously capacitive and an inductive grid constituted by copper strips printed on both sides of a dielectric board. The metasurface is designed to fit a curved surface by modifying its local phase. The latter phase-compensated metasurface is used as a reflector in a conformal Fabry-Pérot resonant cavity designed to operate at microwave frequencies. Far-field measurements performed on a fabricated prototype allow showing the good performances of such a phase-compensated metasurface in restoring in-phase emissions from the conformal surface and producing a directive emission in the desired direction.

  14. Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform.

    Science.gov (United States)

    Liu, Yuexin; Lee, Young Jong; Cicerone, Marcus T

    2009-05-01

    We describe a closed-form approach for performing a Kramers-Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra.

  15. Total synthesis of human urotension-Ⅱ by microwave-assisted solid phase method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Human urotension-Ⅱ was synthesized efficiently on Wang resin under microwave irradiation using Fmoc/tBu orthogonal protection strategy. Disulphide bridge was formed on solid phase with the irradiation of microwave, then the whole peptide was cleaved from the resin. The purity of crude peptide cyclized under microwave irradiation was higher than that under room temperature.

  16. Advances in Low-Frequency 3-color Broadband Coherent Raman Spectroscopy of Condensed Phase Samples

    Science.gov (United States)

    Ujj, Laszlo

    2016-05-01

    Low-frequency dispersive spontaneous Raman spectroscopy is a very useful method to measure phonon frequencies in crystals or characterize collective vibrational motions of macromolecules. The coherent version of the method has not been fully explored yet. It is shown here that the 3-color Broadband Coherent Raman scattering can be a very powerful extension to not only gas phase but condensed phase low frequency (5-500 cm-1) vibrational measurements with large frequency separation between the narrowband and broadband radiation generating the signal. The spectral measurements presented here used volumetric Brag filters for the first time to record coherent Raman spectra. Specific spectral analysis using model independent methods to derive the vibrational information is also presented. The technic can be extended to measure electronic resonance enhanced spectra by tuning only the frequency of the narrowband laser close to the electronic transition frequencies. This makes the method suitable for coherent Raman microscopy. The polarization properties of the signal is also explained and experimentally verified. Financial support from the College of Sciences and Engineering of UWF is acknowledged.

  17. Broadband impedance-matched near-zero-index metamaterials for a wide scanning phased array antenna design

    International Nuclear Information System (INIS)

    We present broadband near-zero-index metamaterials composed of dielectric resonators and metallic rods, whose permittivity ε and permeability μ are near-zero simultaneously. It is notable that the values of permittivity ε are equal to those of permeability μ over a broadband frequency range of 8.45 GHz to 10.5 GHz, indicating the impedances of the proposed near-zero-index metamaterials match vacuum in this broadband. The broadband near-zero-index metamaterials for manipulating radiation sources are analyzed. We also demonstrate numerically that such near-zero-index metamaterials can offer a unique grating condition in a phased array antenna, with the beam scanning angle range beyond the critical angle limit of the grating lobe. (paper)

  18. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu;

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  19. Frequency/phase agile microwave circuits on ferroelectric films

    Science.gov (United States)

    Romanofsky, Robert Raymond

    This work describes novel microwave circuits that can be tuned in either frequency or phase through the use of nonlinear dielectrics, specifically thin ferroelectric films. These frequency and phase agile circuits in many cases provide a new capability or offer the potential for lower cost alternatives in satellite and terrestrial communications and sensor applications. A brief introduction to nonlinear dielectrics and a summary of some of the special challenges confronting the practical insertion of ferroelectric technology into commercial systems is provided. A theoretical solution for the propagation characteristics of the multi-layer structures, with emphasis on a new type of phase shifter based on coupled microstrip, lines, is developed. The quasi-TEM analysis is based on a variational solution for line capacitance and an extension of coupled transmission line theory. It is shown that the theoretical model is applicable to a broad class of multi-layer transmission lines. The critical role that ferroelectric film thickness plays in loss and phase-shift is closely examined. Experimental data for both thin film BaxSr1-xTiO 3 phase shifters near room temperature and SMO3 phase shifters at cryogenic temperatures on MgO and LaAlO3 substrates is included. Some of these devices demonstrated an insertion loss of less than 5 dB at Ku-band with continuously variable phase shift in excess of 360 degrees. The performance of these devices is superior to the state-of-the-art semiconductor counterparts. Frequency and phase agile antenna prototypes including a microstrip patch that can operate at multiple microwave frequency bands and a new type of phased array antenna concept called the ferroelectric reflectarray are introduced. Modeled data for tunable microstrip patch antennas is presented for various ferroelectric film thickness. A prototype linear phased array, with a conventional beam-forming manifold, and an electronic controller is described. This is the first

  20. Efficient broadband sum and difference frequency generation with a single chirped quasi-phase-matching crystal

    CERN Document Server

    Rangelov, Andon A

    2012-01-01

    We propose an efficient broadband frequency generation technique for two collinear optical parametric processes $\\omega_3=\\omega_1+\\omega_2$ and $\\omega_4=\\omega_1-\\omega_2$. It exploits chirped quasi-phase-matched gratings, which in the undepleted pump approximation regime perform population transfer that is analogous to adiabatic population transfer in a three-state ``vee'' quantum system. The energy of the input fields is transferred adiabatically either into $\\omega_3$ or $\\omega_4$ field, depending on which of the two phase matchings occurs first by the local modulation period in the crystal. One can switch the output between $\\omega_3$ and $\\omega_4$ by inverting the direction of the local modulation sweep, which corresponds to a rotation of the crystal by angle $\\pi$

  1. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  2. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Wang, Fang

    2016-07-01

    Narrow bandwidth and bulky configuration are the main obstacles for the realization and application of invisible cloaks. In this paper, we present an effective method to achieve broadband and thin acoustic cloak by using an acoustic metasurface (AMS). In order to realize this cloak, we use slitted unit cells to design the AMS due to the advantage of less energy loss, broad operation bandwidth, and subwavelength thickness. According to the hyperboloidal phase profile along the AMS, the incident plane waves can be focused at a designed focal spot by the flat lens. Furthermore, broadband acoustic cloak is obtained by combining two identical flat lenses. The incident plane waves are focused at the center point in between of the two lenses by passing through one lens, and then recovered by passing through the other one. However, they cannot reach the cloaked regions in between of the two lenses. The simulation results can verify the non-detectability effect of the acoustic cloak. Our study results provide an available and simple approach to experimentally achieve the acoustic cloak, which can be used in acoustic non-detectability for large objects.

  3. Phase-Dependent Electron-Ion Recombination in a Microwave Field

    International Nuclear Information System (INIS)

    Using picosecond laser photoionization of Li in a microwave field we have observed phase-dependent recombination of the photoelectrons with their parent Li+ ions. Recombination occurs at phases of the microwave field such that energy is removed from the photoelectron in the first microwave cycle after excitation, and there are two maxima in the recombination in each microwave cycle. These observations are consistent with observations made using an attosecond pulse train phase locked to an infrared pulse and with the ''simpleman's'' model, modified to account for the fact that the photoelectrons are produced in a Coulomb potential.

  4. Tunable microwave phase shifter based on silicon-on-insulator microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi;

    2010-01-01

    We demonstrate microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators (MRRs). MRRs with different quality factors are fabricated and tested. A continuously tunable phase shift of up to 336 at a microwave frequency of 40 GHz is obtained using a high...

  5. Application of Novel Printed Dipole Antenna to Design Broadband Planar Phased Array

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2014-01-01

    Full Text Available A broadband planar phased array consisting of 22 linear printed dipole antennas (PDA is presented in this paper. The element is designed by a coax probe feeding mechanism with a ground plate configuration. The PDA with two arms placed on both sides of a substrate is realized. The inner conductor of the coaxial cable is connected to the PDA’s upper arm, and the outer conductor is connected to the PDA’s lower arm, so it eliminates the balun. The impedance bandwidth of the PDA array can be improved by increasing mutual coupling effect between the adjacent array elements. A dielectric layer, which is integrated on the surface of the antenna, is designed and fabricated to improve the impedance bandwidth and to shield the array. The measured results indicate the active VSWR is less than 3 over the frequency range of 4–20 GHz.

  6. Compact and stable temporally magnified tomography using a phase-locked broadband source.

    Science.gov (United States)

    Li, Bowen; Wei, Xiaoming; Tan, Sisi; Kang, Jiqiang; Wong, Kenneth K Y

    2016-04-01

    The temporally magnified tomography system is further improved in terms of resolution and imaging stability. We simplify the system configuration and improve the axial resolution simultaneously by utilizing a stabilized all-fiber broadband source. The highly stable spectrum of the source assisted by a phase-locked loop guarantees an improved imaging quality. In addition, the impact of the repetition-rate fluctuation of the source to the system stability is analyzed, which also applies to other temporal imaging systems. Achieving a 90-μm in-air resolution at 89-MHz A-scan rate and improved stability, we are taking one major step toward the practical application of this new optical tomographic modality. PMID:27192287

  7. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip;

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  8. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen

    2013-09-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  9. Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase

    Directory of Open Access Journals (Sweden)

    Alessandra Basso

    2009-01-01

    Full Text Available Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads' integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used.

  10. A novel phase noise measurement of phase modulation microwave photonic links

    Science.gov (United States)

    Ye, Quanyi; Gao, Yingjie; Yang, Chun

    2016-07-01

    Microwave photonic links can provide many advantages over traditional coaxial due to its low loss, small size, lightweight, large bandwidth and immunity to external interference. In this paper, a novel phase noise measurement system is built, since the input signal and the power supply noise can be effectively cancelled by a two-arm configuration without the phase locking. Using this approach, the phase noise performance of the 10-GHz phase modulation photonic link has been measured for the first time, evaluated the values of -124 dBc/Hz at 1 kHz offset and -132 dBc/Hz at 10 kHz offset is obtained. Theoretical analysis on the phase noise measurement system calibration is also discussed.

  11. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  12. Microwave heating in solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg; Shelton, Anne Pernille Tofteng; Malik, Leila;

    2012-01-01

    synthesis, precise microwave irradiation to heat the reaction mixture during coupling and N(a)-deprotection has become increasingly popular. It has often provided dramatic reductions in synthesis times, accompanied by an increase in the crude peptide purity. Microwave heating has been proven especially...... relevant for sequences which might form ß-sheet type structures and for sterically difficult couplings. The beneficial effect of microwave heating appears so far to be due to the precise nature of this type of heating, rather than a peptide-specific microwave effect. However, microwave heating...... in microwave heating for peptide synthesis, with a focus on systematic studies and general protocols, as well as important applications. The assembly of ß-peptides, peptoids and pseudopeptides are also evaluated in this critical review (254 references)....

  13. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  14. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose;

    2010-01-01

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population oscillat......In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population...... oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations...

  15. Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter.

    Science.gov (United States)

    Li, Wei; Sun, Wen Hui; Wang, Wen Ting; Wang, Li Xian; Liu, Jian Guo; Zhu, Ning Hua

    2014-03-10

    We propose and demonstrate a photonic-assisted wideband 360° microwave phase shifter based on a conventional dual-drive Mach-Zehnder modulator (DMZM) and an optical bandpass filter (OBPF). The two arms of the DMZM are driven by the fundamental microwave signal to be phase shifted and its frequency doubled component, respectively. The OBPF followed after the DMZM is used to remove the optical carrier and the sidebands at either side of the optical carrier. As a result, only two sidebands corresponding to the fundamental microwave signal and its frequency doubled component, respectively, are left. Moreover, the phase shift between the two sidebands can be continuously tunable by adjusting the bias voltage of the DMZM. This phase shift is mapped to the fundamental microwave signal which is recovered by beating the two sidebands in a photodetector (PD). The proposed approach is theoretically analyzed and experimentally verified. PMID:24663892

  16. Coupling of microwave magnetic dynamics in thin ferromagnetic films to stripline transducers in the geometry of the broadband stripline ferromagnetic resonance

    International Nuclear Information System (INIS)

    We constructed a quasi-analytical self-consistent model of the stripline-based broadband ferromagnetic resonance (FMR) measurements of ferromagnetic films. Exchange-free description of magnetization dynamics in the films allowed us to obtain simple analytical expressions. They enable quick and efficient numerical simulations of the dynamics. With this model, we studied the contribution of radiation losses to the ferromagnetic resonance linewidth, as measured with the stripline FMR. We found that for films with large conductivity of metals the radiation losses are significantly smaller than for magneto-insulating films. Excitation of microwave eddy currents in these materials contributes to the total microwave impedance of the system. This leads to impedance mismatch with the film environment resulting in decoupling of the film from the environment and, ultimately, to smaller radiation losses. We also show that the radiation losses drop with an increase in the stripline width and when the sample is lifted up from the stripline surface. Hence, in order to eliminate this measurement artefact, one needs to use wide striplines and introduce a spacer between the film and the sample surface. The radiation losses contribution is larger for thicker films

  17. Coupling of microwave magnetic dynamics in thin ferromagnetic films to stripline transducers in the geometry of the broadband stripline ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics, The University of Western Australia, Crawley 6009 (Australia)

    2016-01-07

    We constructed a quasi-analytical self-consistent model of the stripline-based broadband ferromagnetic resonance (FMR) measurements of ferromagnetic films. Exchange-free description of magnetization dynamics in the films allowed us to obtain simple analytical expressions. They enable quick and efficient numerical simulations of the dynamics. With this model, we studied the contribution of radiation losses to the ferromagnetic resonance linewidth, as measured with the stripline FMR. We found that for films with large conductivity of metals the radiation losses are significantly smaller than for magneto-insulating films. Excitation of microwave eddy currents in these materials contributes to the total microwave impedance of the system. This leads to impedance mismatch with the film environment resulting in decoupling of the film from the environment and, ultimately, to smaller radiation losses. We also show that the radiation losses drop with an increase in the stripline width and when the sample is lifted up from the stripline surface. Hence, in order to eliminate this measurement artefact, one needs to use wide striplines and introduce a spacer between the film and the sample surface. The radiation losses contribution is larger for thicker films.

  18. Research of low-frequency model of a low noise microwave frequency (phase) detector

    OpenAIRE

    Ri, Bak Son; Solodkov, O. V.

    2009-01-01

    The analysis of a low frequency model of an original microwave frequency (phase) detector with amplitude modulator, shift generator and subtracting unit is performed and the results of experimental research are presented. This research leads to a conclusion on the possibility of suppressing the most intensive phase noise at the output of the considered frequency (phase) detector.

  19. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi;

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator...

  20. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.;

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitte...

  1. Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    CERN Document Server

    Didier, A; Grop, S; Dubois, B; Bigler, E; Rubiola, E; Lacroûte, C; Kersalé, Y

    2015-01-01

    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $\\mathcal{L}(f)=-104 \\ \\mathrm{dBc}/\\mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained with such "microwave photonics" laboratory experiments \\cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise microwave signals will now be available in laboratories outside the frequency metrology field, opening up new possibilities in various domains.

  2. Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps.

    Science.gov (United States)

    Song, Minhyup; Torres-Company, Victor; Wu, Rui; Metcalf, Andrew J; Weiner, Andrew M

    2014-03-24

    Microwave photonic filters with arbitrary phase response can be achieved by merging high-repetition-rate electro-optic frequency comb technology with line-by-line pulse shaping. When arranged in an interferometric configuration, the filter features a number of programmable complex-coefficient taps equal to the number of available comb lines. In this work, we use an ultrabroadband comb generator resulting in a microwave photonic phase filter with >100 complex-coefficient taps. We demonstrate the potential of this filter by performing programmable chirp control of ultrawideband waveforms that extend over long (>10 ns) temporal apertures. This work opens new possibilities for compensating realistic linear distortion impairments on ultrabroadband wireless signals spanning over dozens of nanosecond temporal apertures. PMID:24663981

  3. Investigation of the Seismic Nucleation Phase of Large Earthquakes Using Broadband Teleseismic Data

    Science.gov (United States)

    Burkhart, Eryn Therese

    The dynamic motion of an earthquake begins abruptly, but is often initiated by a short interval of weak motion called the seismic nucleation phase (SNP). Ellsworth and Beroza [1995, 1996] concluded that the SNP was detectable in near-source records of 48 earthquakes with moment magnitude (Mw), ranging from 1.1 to 8.1. They found that the SNP accounted for approximately 0.5% of the total moment and 1/6 of the duration of the earthquake. Ji et al [2010] investigated the SNP of 19 earthquakes with Mw greater than 8.0 using teleseismic broadband data. This study concluded that roughly half of the earthquakes had detectable SNPs, inconsistent with the findings of Ellsworth and Beroza [1995]. Here 69 earthquakes of Mw 7.5-8.0 from 1994 to 2011 are further examined. The SNP is clearly detectable using teleseismic data in 32 events, with 35 events showing no nucleation phase, and 2 events had insufficient data to perform stacking, consistent with the previous analysis. Our study also reveals that the percentage of the SNP events is correlated with the focal mechanism and hypocenter depths. Strike-slip earthquakes are more likely to exhibit a clear SNP than normal or thrust earthquakes. Eleven of 14 strike-slip earthquakes (78.6%) have detectable NSPs. In contrast, only 16 of 40 (40%) thrust earthquakes have detectable SNPs. This percentage also became smaller for deep events (33% for events with hypocenter depth>250 km). To understand why certain thrust earthquakes have a visible SNP, we examined the sediment thickness, age, and angle of the subducting plate of all thrust earthquakes in the study. We found that thrust events with shallow (600 m) on the subducting plate tend to have clear SNPs. If the SNP can be better understood in the future, it may help seismologists better understand the rupture dynamics of large earthquakes. Potential applications of this work could attempt to predict the magnitude of an earthquake seconds before it begins by measuring the SNP, vastly

  4. Magnetic field modulated microwave spectroscopy across phase transitions and the search for new superconductors.

    Science.gov (United States)

    Ramírez, Juan Gabriel; Basaran, Ali C; de la Venta, J; Pereiro, Juan; Schuller, Ivan K

    2014-09-01

    This article introduces magnetic field modulated microwave spectroscopy (MFMMS) as a unique and high-sensitivity technique for use in the search for new superconductors. MFMMS measures reflected microwave power as a function of temperature. The modulation induced by the external ac magnetic field enables the use of phase locked detection with the consequent sensitivity enhancement. The MFMMS signal across several prototypical structural, magnetic, and electronic transitions is investigated. A literature review on microwave absorption across superconducting transitions is included. We show that MFMMS can be used to detect superconducting transitions selectively with very high sensitivity. PMID:25222051

  5. Spectral phase transfer from near IR to deep UV by broadband phase-matched four-wave mixing in an argon-filled hollow core waveguide

    Science.gov (United States)

    Siqueira, J. P.; Mendonça, C. R.; Zilio, S. C.; Misoguti, L.

    2016-10-01

    We report on the implementation of a spectral phase transfer scheme from near IR to deep UV, in which the frequency conversion step is based on the broadband phase-matched four-wave mixing in a gas-filled hollow core waveguide. Micro joule level femtosecond pulses at 260 nm were generated by nonlinear mixing of a Ti:sapphire laser and its second-harmonic. The transfer of a π-step phase in a controllable manner was proposed and confirmed by a modulation observed in the generated deep UV femtosecond pulse spectrum due to an interference process. Numerical simulations confirmed our results.

  6. A wideband photonic microwave phase shifter using polarization-dependent intensity modulation

    Science.gov (United States)

    Wang, Weiyu; Sun, Wenhui; Wang, Wenting; Tong, Youwan; Zheng, Jianyu; Yuan, Haiqing; Wang, Xin; Bai, Jinhua; Yu, Lijuan; Liu, Jianguo; Zhu, Ninghua

    2015-12-01

    We present a tunable and wideband microwave photonic phase shifter based on polarization-dependence of the LiNbO3 Mach-Zehender modulator (MZM). In the proposed device, an orthogonal single sideband modulation is implemented by using a MZM and an optical band-pass filter. With the polarizer to synthesize the polarization orthogonal optical carrier and sideband, the phase of the optical microwave signal output from the polarizer can be tuned from 0 to 360° by simply adjusting the polarization direction of the lights whereas the amplitude keeps constant. A full range tunable phase shifting in the frequency range of 10-35 GHz is achieved.

  7. Broadband conformal phased array with optical beam forming for airborne satellite communication

    NARCIS (Netherlands)

    Schippers, H.; Verpoorte, J.; Jorna, P.; Hulzinga, A.; Meijerink, A.; Roeloffzen, C.G.H.; Zhuang, L.; Marpaung, D.A.I.; Etten, van W.; Heideman, R.G.; Leinse, A.; Borreman, A.; Hoekman, M.; Wintels, M.

    2008-01-01

    For enhanced communication on board an aircraft, novel antenna systems with broadband satellite based capabilities are required. The technology will enhance airline operations by providing in-flight connectivity for flight crew information and will bring live TV and high speed Internet connectivity

  8. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    Science.gov (United States)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  9. Broadband Response of Second Harmonic Generation in a Two-Dimensional Quasi-Random Quasi-Phase-Matching Structure

    International Nuclear Information System (INIS)

    The broadband response of second harmonic generation (SHG) is experimentally observed in a two-dimensional (2D) quasi-random quasi-phase-matching (QPM) structure. A nonlinear conversion efficiency of more than 50% is obtained. Due to the line-type distribution of the reciprocal vector, the second harmonic wave (SHW) covering a broad frequency band is efficiently radiated in the shape of one single spot or three spots instead of a stripe. This is believed to be favorable for its practical application and paves the way for the use of ultrahigh-bandwidth light sources and devices in modern optical technologies. (fundamental areas of phenomenology(including applications))

  10. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten;

    2006-01-01

    Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a fl....... Analysis techniques and novel feedback schemes show improvement to the traditional circuit design. Subharmonic mixer measurements at 50 GHz RF signal agree very well with simulations, which manifests the broadband operating properties of these circuits.......Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat...... conversion gain with a 3 dB bandwidth of 10 GHz for SiGe and in excess of 20 GHz for GaAs processes. The concurrent LO-IF isolation is better than -25 dB, without including the improvement due to the combiner circuit. The converter circuits exhibit similar instantaneous bandwidth at IF and RF ports of ≫ 7...

  11. Photonic microwave quadrature filter with low phase imbalance and high signal-to-noise ratio performance.

    Science.gov (United States)

    Cao, Yuan; Chan, Erwin H W; Wang, Xudong; Feng, Xinhuan; Guan, Bai-ou

    2015-10-15

    A photonic microwave quadrature filter is presented. It has a very simple structure, very low phase imbalance, and high signal-to-noise ratio performance. Experimental results are presented that demonstrate a photonic microwave quadrature filter with a 3 dB operating frequency range of 10.5-26.5 GHz, an amplitude and phase imbalance of less than ±0.3  dB and ±0.15°, and a signal-to-noise ratio of more than 121 dB in a 1 Hz noise bandwidth. PMID:26469589

  12. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  13. Influence of microwave heating on liquid-liquid phase inversion and temperature rates for immiscible mixtures.

    Science.gov (United States)

    Kennedy, Alvin; Tadesse, Solomon; Nunes, Janine; Reznik, Aron

    2011-01-01

    Time dependencies of component temperatures for mixtures of immiscible liquids during microwave heating were studied for acetonitrile-cyclohexane and water-toluene. For the first time, we report microwave induced liquid-liquid phase inversion for acetonitrile-cyclohexane mixture: acetonitrile layer was initially at the bottom of the mixture, after 10 sec of microwave heating its density decreased and it inverted to the top of the mixture for the remainder of the microwave heating. This phase inversion could not be achieved by conventional radiant heating. The maximum rate of temperature growth for the polar component of the mixtures was 2 - 5 times larger than for the non-polar component. This suggests that microwave energy is absorbed by polar liquids (water or acetonitrile) and heat is transferred into the non-polar liquid (toluene or cyclohexane) in the mixture by conduction (in case of cyclohexane) or conduction and convection (in case of toluene). Comparison between experimental data and semi-empirical mathematical models, proposed in [Kennedy et at., 2009] showed good correlation. Average relative error between theoretical and experimental results did not exceed 7%. These results can be used to model the temperature kinetics of components for other multiphase mixtures.

  14. Low-frequency model of the microwave frequency (phase) detector with amplitude modulator and shift oscillator

    OpenAIRE

    Ri, Bak Son; Solodkov, O. V.; Chizhikova, E. V.

    2009-01-01

    A low-frequency model of the microwave frequency (phase) detector with amplitude modulator and shift generator has been studied theoretically and experimentally. The results of experiment indicate that such FM (PM) detector can be also used in the HF band of radio frequencies.

  15. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Ewald; Boccia, Marcello Massimo; Nielsen, John;

    2014-01-01

    A facile and expedient route to the synthesis of arylopeptoid oligomers (N-alkylated aminomethyl benz-amides) using semi-automated microwave-assisted solid-phase synthesis is presented. The synthesis was optimized for the incorporation of side chains derived from sterically hindered or unreactive...

  16. Microwave-assisted solid-phase Ugi four-component condensations

    DEFF Research Database (Denmark)

    Nielsen, John

    1999-01-01

    An 18-member library was constructed from 2 isocyanides, 3 aldehydes and 3 carboxylic acids via microwave-assisted solid-phase Ugi reactions on TentaGel S RAM. Products of high purity were obtained in moderate to excellent yields after reaction times of 5 minutes or less (irradiation at 60W). (C)...

  17. Phase-sensitive microwave optical double resonance in an N system

    Science.gov (United States)

    Preethi, T. M.; Manukumara, M.; Asha, K.; Vijay, J.; Roshi, D. A.; Narayanan, A.

    2011-08-01

    An experimental investigation of a Microwave Optical Double Resonance (MODR) phenomenon is carried out in a four level N system of 85Rb atoms, at room temperature. This N system consists of a closed three level Λ subsystem irradiated with two optical fields and one microwave field. The MODR response is investigated in a separate probe field which drives a resonant transition from one of the ground states of the Λ system to a fourth level. We find that, under two-photon resonance condition for the optical fields, the MODR becomes a function of the relative phase between the beat frequency envelop of the optical fields and the microwave field. The variation in MODR is shown to be correlated with the phase-sensitive variation of the EIT phenomenon seen in such microwave-connected closed Λ systems. We envisage that this phase-sensitive variation in the MODR, can be utilized for a phase-sensitive manipulation of non-linear optical phenomena in N systems.

  18. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x1

  19. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Paveliev, D.G.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.; Klein, B.; Hesler, J.L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal–metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x1

  20. Filter-less frequency-doubling microwave signal generator with tunable phase shift

    Science.gov (United States)

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin

    2016-07-01

    A prototype for frequency-doubling microwave signal generator with tunable phase shift based on a filter-less architecture is proposed and analyzed. In the proposal, one dual parallel polarization modulator is used as the key component to generate two ±1st order sidebands along the orthogonal polarization directions with suppressed carrier. Then the polarization states of the two sidebands are aligned with the principal axes of an electro-optical phase modulator (EOPM). Tunable phase shift is implemented by controlling the direct current voltage applied to the EOPM. Without using any filters or wavelength-dependent components, the system possesses good frequency tunability and it can be applied to multi-wavelength operation. Taking advantage of the ability of frequency multiplication, the frequency tuning range can be wider than the operation bandwidth of the modulator. By theoretical analyses and simulated verifications, a frequency-doubling microwave signal ranging from 22 to 40 GHz with full range phase shift is achieved.

  1. Frequency and Phase Noise in Non-Linear Microwave Oscillator Circuits

    CERN Document Server

    Tannous, C

    2003-01-01

    We have developed a new methodology and a time-domain software package for the estimation of the oscillation frequency and the phase noise spectrum of non-linear noisy microwave circuits based on the direct integration of the system of stochastic differential equations representing the circuit. Our theoretical evaluations can be used in order to make detailed comparisons with the experimental measurements of phase noise spectra in selected oscillating circuits.

  2. Phase and Amplitude Responses of Narrow-Band Optical Filter Measured by Microwave Network Analyzer

    OpenAIRE

    Wang, Hsi-Cheng; Ho, Keang-Po

    2006-01-01

    The phase and amplitude responses of a narrow-band optical filter are measured simultaneously using a microwave network analyzer. The measurement is based on an interferometric arrangement to split light into two paths and then combine them. In one of the two paths, a Mach-Zehnder modulator generates two tones without carrier and the narrow-band optical filter just passes through one of the tones. The temperature and environmental variations are removed by separated phase and amplitude averag...

  3. Field-dependent superradiant quantum phase transition of molecular magnets in microwave cavities

    Science.gov (United States)

    Stepanenko, Dimitrije; Trif, Mircea; Tsyplyatyev, Oleksandr; Loss, Daniel

    2016-09-01

    We study a superradiant quantum phase transition in the model of triangular molecular magnets coupled to the electric component of a microwave cavity field. The transition occurs when the coupling strength exceeds a critical value, d c, which, in sharp contrast to the standard two-level emitters, can be tuned by an external magnetic field. In addition to emitted radiation, the molecules develop an in-plane electric dipole moment at the transition. We estimate that the transition can be detected in state-of-the-art microwave cavities if their electric field couples to a crystal containing a sufficient number of oriented molecules.

  4. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system

    Science.gov (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan

    2010-10-01

    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  5. Phase analysis of the cosmic microwave background from an incomplete sky coverage

    CERN Document Server

    Chiang, Lung-Yih

    2007-01-01

    Phases of the spherical harmonic analysis of full-sky cosmic microwave background (CMB) temperature data contain useful information complementary to the ubiquitous angular power spectrum. In this letter we present a new method of phase analysis on incomplete sky maps. They are the Fourier phases of equal-latitude pixel rings of the map, which are related to the mean angle of the trigonometric moments from the full-sky phases. They have an advantage for probing regions of interest without tapping polluted Galactic plane area, and can localize non-Gaussian features and departure from statistical isotropy in the CMB.

  6. Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed

    CERN Document Server

    Delorme, J R; Galicher, R; Dohlen, K; Baudoz, P; Caillat, A; Rousset, G; Soummer, R; Dupuis, O

    2016-01-01

    Specific high contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable the direct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light. Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory. First, we recall the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components and the quality-control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared wi...

  7. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    OpenAIRE

    Ke Chen; Zhongjie Yang; Yijun Feng; Bo Zhu; Junming Zhao; Tian Jiang

    2015-01-01

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase ch...

  8. Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light

    International Nuclear Information System (INIS)

    Graphical abstract: Organic shape-stabilized solar thermal energy storage materials (OCSPCMs) with broadband harvesting for visible light were obtained by crosslinking and color matching, which provided a new platform for improving the efficiency of solar radiation utilization. - Highlights: • Novel phase change materials (OCSPCMs) were obtained by crosslinking and color matching. • The η of the OCSPCM was higher than 0.74 (visible light from 400 nm to 700 nm). • The phase change latent heats of the OCSPCMs were more than 120 J/g. • The OCSPCM has excellent form-stable effect during phase change process. - Abstract: Broadband visible sunlight usage and shape-stabilized effect were achieved using organic, cross-linking, and shape-stabilized phase-changed materials (OCSPCMs) with broadband visible light absorption, which were obtained by cross-linking reticulation and color matching (yellow, red, and blue) according to solar irradiation energy density. The obtained OCSPCMs exhibited excellent form-stable phase-change energy storage and broadband visible light-harvesting. Under broadband irradiation (from 400 nm to 700 nm), the light-to-heat conversion and the thermal energy storage efficiency (η > 0.74) of the OCSPCMs were significantly improved upon solar irradiation by color matching compared with those of OCSPCMs with single-band selective absorption of visible light (yellow, red, or blue). Differential scanning calorimetric results indicated that the phase change temperatures and latent heats of OCSPCMs ranged from 32.6 °C to 60.2 °C and from 120.1 J/g to 132.7 J/g, respectively. The novel materials show a reversible (more than 200 cycles) phase transition via ON/OFF switching of visible light irradiation

  9. Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference

    Science.gov (United States)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.

  10. Fast Microwave-Induced Thermoacoustic Tomography Based on Multi-Element Phase-Controlled Focus Technique

    Institute of Scientific and Technical Information of China (English)

    ZENG Lü-Ming; XING Da; GU Huai-Min; YANG Di-Wu; YANG Si-Hua; XIANG Liang-Zhong

    2006-01-01

    @@ We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 μs and an incident energy density of 0.45 m J/cm2, and the microwave energy is delivered by a rectangular waveguide with a cross section of (80.01 ± 0.02) × 10-4 m2. Compared to single transducer collection, the system with the multi-element linear transducer array can eliminate the mechanical rotation of the transducer, hence can effectively reduce the image blurring and improve the image resolution. Using a phase-controlled focus technique to collect thermoacoustic signals, the data need not be averaged because of a high signal-to-noise ratio, resulting in a total data acquisition time of less than 5s. The system thus provides a rapid and reliable approach to thermoacoustic imaging, which can potentially be developed as a powerful diagnostic tool for early-stage breast caners.

  11. Broad-band multisection electrooptic modulators

    Science.gov (United States)

    Lax, Benjamin; Marino, Richard M.; Eng, Richard S.

    1988-10-01

    A general solution has been derived for expressing the conversion of power from a base frequency to a modulation sideband using a multisection electrooptic modulator. The objective is to obtain broadband frequency modulation of a laser by the use of multiple collinear electrooptic crystals with microwave power levels well below the breakdown threshold. It is found that segmented structures lead to greater bandwidths, which increase with the number of modulator sections. This is achieved by adjusting the phases of microwaves between sections to maximize the single-sideband conversion efficiency. It is shown that a 10.6-micron CO2 laser modulator with six geometrically identical CdTe sections can potentially achieve a 3-dB bandwidth of nearly 6 GHz using a 10-kW traveling-wave tube operating at 16-GHz center frequency.

  12. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  13. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke; Yang, Zhongjie; Feng, Yijun, E-mail: yjfeng@nju.edu.cn; Zhu, Bo; Zhao, Junming; Jiang, Tian [Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China)

    2015-06-15

    Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  14. Properties, Phases and Microstructure of Microwave Sintered W-20Cu Composites from Spray Pyrolysiscontinuous Reduction Processed Powders

    Institute of Scientific and Technical Information of China (English)

    TAO Jianqing; SHI Xiaoliang

    2012-01-01

    The effects of microwave sintering on the properties,phases and microstructure of W-20Cu alloy,using composite powder fabricated by spray pyrolysis-continuous reduction technology,were investigated.Compared with the conventional hot-press sintering,microwave sintering to W-20Cu composites could be achieved with lower sintering temperature and shorter sintering time.Furthermore,microwave sintered W-Cu composites with high densification,homogenous microstructure and excellent properties were obtained.Microwave sintering could also result in finer microstructures.

  15. Frequency comb-based microwave transfer over fiber with $7 \\times 10^{-19}$ instability using fiber-loop optical-microwave phase detectors

    CERN Document Server

    Jung, Kwangyun; Kang, Jinho; Hunziker, Stephan; Min, Chang-Ki; Kim, Jungwon

    2013-01-01

    We demonstrate a remote microwave/radio-frequency (RF) transfer technique based on the stabilization of a fiber link using a fiber-loop optical-microwave phase detector (FLOM-PD). This method compensates for the excess phase fluctuations introduced in fiber transfer by direct phase comparison between the optical pulse train reflected from the remote site and the local microwave/RF signal using the FLOM-PD. This enables sub-fs resolution and long-term stable link stabilization while having wide timing detection range and less demand in fiber dispersion compensation. The demonstrated relative frequency instability between 2.856-GHz RF oscillators separated by a 2.3-km fiber link is $7.6 \\times 10^{-18}$ and $6.5 \\times 10^{-19}$ at 1000 s and 82500 s averaging time, respectively.

  16. Large Microwave Birefringence Liquid-Crystal Characterization for Phase-Shifter Applications

    Science.gov (United States)

    Dubois, Frédéric; Krasinski, Freddy; Splingart, Bertrand; Tentillier, Nicolas; Legrand, Christian; Spadlo, Anna; Dabrowski, Roman

    2008-05-01

    This work is concerned with the improvement of a microwave liquid-crystal phase shifter using a large birefringence nematic liquid crystal. This material is a eutectic mixture of isothiocyanatotolane molecules. Microwave dielectric properties are reported and compared to the data obtained with the 5CB cyanobiphenyl material in the 26-40 GHz frequency range using a rectangular waveguide. The phase-shifter design consists of a central cavity, where a liquid crystal is inserted, and two coplanar strip lines accesses. Its dimensions were calculated by electromagnetic simulation, using measured dielectric permittivities of the liquid crystal. The measurements were performed with a commercial Wiltron 3680 K probe test fixture. Phase-shift variations with and without bias voltage versus frequency are presented. As expected, the large-birefringence nematic liquid crystal exhibits a higher microwave dielectric anisotropy (Δɛ' = 1.06 against 0.34) and the tunability of the phase shifter strongly increases (1.8 deg·cm-1·GHz-1 against 0.8 deg·cm-1·GHz-1).

  17. Microwave-Assisted Solid Phase Organic Synthesis.Application to Indole Library Construction

    Institute of Scientific and Technical Information of China (English)

    DAI Wei-Min; SUN Li-Ping; GUO Dian-Shun; HUANG Xiang-Hong

    2004-01-01

    Microwave-assisted organic synthesis (MAOS) has attained increasing popularity due to recent advancement in the instrumentation of microwave technology. Now, MAOS can be performed under controlled temperature and pressure to yield reproducible results. For combinatorial chemistry,the dramatically increased reaction rate under microwave irradiation at high temperature provides an ideal solution to those sluggish reactions, in particular the combinatorial reactions carried out on solid supports. In this presentation, we describe our results on microwave-assisted solid-phase organic synthesis (MASPOS) applied to the construction of indole libraries such as 5. Compounds 4 were synthesized on the Rink amide resins using IRORI MicroKanTM reactors encoded with a radio-frequency (Rf) tag. The resin-bound terminal alkynes 2, prepared via the amide bond, were cross-coupled with the nitroaryl triflate under the conditions adopted from the solution reactions developed by us1,2. The nitro group of 3 was then reduced and sulfonylated to give 4. Ring closure reactions within 4 with Cu(OAc)2 were examined initially in refluxing DCE for 24 h, but no indole product was detected after cleavage from the resin. Therefore, the same reactions were carried out under microwave irradiation at 200 ℃ for 10 min on a Personal Chemistry Emrys Creator, the desired indoles 5 were obtained in 60-95% overall yields calculated from 1 and in >90% purities in most cases3. It is necessary to mention that the IRORI microreactors cannot tolerate the high temperature and the resin-bound 4 must be transferred to the reaction vials for the microwave-assisted ring closure reactions. A traceless synthesis of an indole library via MASPOS will be discussed as well.4

  18. Direct observation of mesoscopic phase separation in KxFeySe2 by scanning microwave microscopy

    Science.gov (United States)

    Maeda, Atsutaka; Takahashi, Hideyuki; Imai, Yoshinori

    2015-03-01

    KxFeySe2 is isostructural to 122-FeAs compounds. However, its electronic structure is unique among Fe-based superconductors in the sense that hole Fermi pocket is absent at the center of the Brillouin zone. Therefore, it is important to study this compounds in terms of the mechanism of superconductivity since some pairing (for example, s +/- -wave) needs the interaction between hole and electron Fermi pockets. However, the phase separation in this material makes studies using conventional macroscopic measurement techniques very difficult. Scanning near-field microwave microscope (SMM), which can measure local electric property of inhomogeneous conducting samples, should be a powerful tool. Recently we developed the combined instrument of STM and SMM with high sensitivity, and investigated the local electric property of KxFeySe2 (x = 0.8, y = 1.6 ~2, Tc = 31 K) using this scanning tunneling/microwave microscope. The characteristic pattern of mesoscopic phase separation of the metallic and the semiconducting phase was observed. From the comparison with previously reported SEM/EDS result we identified the metallic phase and the semiconducting phase as the minor Fe-rich phase and the major K2Fe4Se5 phase, respectively.

  19. Phase space structures and ionization dynamics of hydrogen atom in elliptically polarized microwaves

    OpenAIRE

    Shchekinova, Elena; Chandre, Cristel; Uzer, Turgay

    2006-01-01

    International audience The multiphoton ionization of hydrogen atoms in a strong elliptically polarized microwave field exhibits complex features that are not observed for ionization in circular and linear polarized fields. Experimental data reveal high sensitivity of ionization dynamics to the small changes of the field polarization. The multidimensional nature of the problem makes widely used diagnostics of dynamics, such as Poincaré surfaces of section, impractical. We analyze the phase ...

  20. Gain-assisted superluminal microwave pulse propagation via four-wave mixing in superconducting phase quantum circuits

    CERN Document Server

    Sabegh, Z Amini; Maleki, M A; Mahmoudi, M

    2015-01-01

    We study the propagation and amplification of a microwave field in a four-level cascade quantum system which is realized in a superconducting phase quantum circuit. It is shown that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in this system. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.

  1. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi;

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascad...

  2. Ultrahigh-frequency microwave phase shifts mediated by ultrafast dynamics in quantum-dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2010-01-01

    We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers....

  3. Mode and phase locking of a cavity vircator by injected microwave power from a relativistic magnetron

    International Nuclear Information System (INIS)

    The authors report results of experimental research which demonstrates the influence of externally injected microwave power on the behavior of a cavity vircator oscillator. The injected signal is provided by a relativistic magnetron. The virtual cathode oscillator can be primed to start at the magnetron frequency if the injected signal prefills the vircator cavity, or the vircator frequency can be pulled to the magnetron frequency if the injected signal arrives in the cavity after the vircator starts emitting. In either case the vircator is rapidly frequency locked to the injected signal. They are exploring a high injected power regime, the ratio of the oscillating vircator and the driving magnetron electric field amplitude (in the cavity) is nearly unity. Recently, the authors demonstrated that resonant cavities which enclose the virtual cathode reduce the vircator bandwidth and enhance its efficiency. They successfully demonstrated the phase-locking of two identical well-coupled, high power magnetrons. By combining the expertise gained from these two experiments they demonstrate the feasibility of phase control of an array of high power oscillators by connection to a single driving master oscillator. Time resolved measurements of the frequency and phase difference between the two microwave sources are presented and compared to theory. Details of both the injected and radiated microwave pulses and intracacies of the tuning procedures are discussed

  4. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Science.gov (United States)

    Suryani, Puput Eka; Purnama, Herry; Susanto, Heru

    2015-12-01

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  5. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    International Nuclear Information System (INIS)

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance

  6. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  7. Analysis of an effective optical filtering technique to enhance microwave phase shifts based on slow and fast light effects

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Xue, Weiqi;

    2008-01-01

    We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects.......We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects....

  8. Microwave Oscillator Phase Noise Requirement for TD-SCDMA Wireless Communication Systems

    Institute of Scientific and Technical Information of China (English)

    Song-Bai HE; Xiao-Huan Yan; Jing-Fu Bao

    2007-01-01

    In time division synchronous code division multiple access (TD-SCDMA) wireless communication systems, QPSK or 8PSK has been employed to support high data rate services and high efficiency in available bandwidth. The performance of such systems is affected by the phase noise of the microwave local oscillator. The phase noise model of synthesizer and the RF transceiver model for the phase noise effect are proposed for applications of TD-SCDMA systems. The relationship between the power spectral density (PSD) and root mean square (RMS) phase error is given. Then, the error vector magnitude (EVM) performance is analytically evaluated by using the single side band (SSB) phase noise. Theoretical results show agreement with those obtained by measurement data and therefore can be used to derive the TD-SCDMA system performance.

  9. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  10. Broadband terahertz spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wenhui Fan

    2011-01-01

    1.Introduction Spanning the frequency range between the infrared (IR) radiation and microwaves,terahertz (THz) waves are,also known as T-rays,T-lux,or simply called THz,assigned to cover the electromagnetic spectrum typically from 100 GHz (1011 Hz) to 10 THz (1013 Hz),namely,from 3 mm to 30 μm in wavelength,although slightly different definitions have been quoted by different authors.For a very long time,THz region is an almost unexplored field due to its rather unique location in the electromagnetic spectrum.Well-known techniques in optical or microwave region can not be directly employed in the THz range because optical wavelengths are too short and microwave wavelengths are too long compared to THz wavelengths.%An overview of the major techniques to generate and detect THz radiation so far, especially the major approaches to generate and detect coherent ultra-short THz pulses using ultra-short pulsed laser, has been presented. And also, this paper, in particularly, focuses on broadband THz spectroscopy and addresses on a number of issues relevant to generation and detection of broadband pulsed THz radiation as well as broadband time-domain THz spectroscopy (THz-TDS) with the help of ultra-short pulsed laser. The time-domain waveforms of coherent ultra-short THz pulses from photoconductive antenna excited by femtosecond laser with different pulse durations and their corresponding Fourier-transformed spectra have been obtained via the numerical simulation of ultrafast dynamics between femtosecond laser pulse and photoconductive material. The origins of fringes modulated on the top of broadband amplitude spectrum, which is measured by electric-optic detector based on thin nonlinear crystal and extracted by fast Fourier transformation, have been analyzed and the major solutions to get rid of these fringes are discussed.

  11. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter.

    Science.gov (United States)

    Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P

    2015-01-01

    A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz. PMID:25531605

  12. Electromagnetic properties of high-carbon ferrochrome powders decarburized in solid phase by microwave heating

    International Nuclear Information System (INIS)

    Highlights: • High-carbon ferrochrome powders present diamagnetism. • We study the effect of temperature and time on electromagnetic properties. • The relative permittivity and permeability exhibit an opposite change trend. • The absorption peak shifts to lower frequency with the increasing temperature. - Abstract: During solid-phase decarburization, the changes of the electromagnetic properties can reflect the variation degree of material components. High-carbon ferrochrome powders (HCFCP) with addition of CaCO3 were decarburized in solid phase by microwave heating and the electromagnetic properties of the decarburized materials were investigated. With increasing in heating temperature from 1173 to 1473 K, the relative permittivity of the decarburized materials increases initially and then decreases, whereas the relative permeability exhibits an opposite change trend. As holding time ranges from 40 to 60 min at 1273 K, the relative permittivity and dielectric loss factor tend to decrease while the relative permeability and magnetic loss factor tend to increase, corresponding to the maximum mean velocity of decarburization. In microwave fields, electromagnetic properties of the decarburized materials principally vary with carbon content, C-vacancies and crystal structure, and their changes in turn affect the interaction of microwaves with the decarburized materials

  13. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials

    CERN Document Server

    Rudé, Miquel; Cetin, Arif E; Miller, Timothy A; Carrilero, Albert; Wall, Simon; de Abajo, F Javier García; Altug, Hatice; Pruneri, Valerio

    2015-01-01

    The phenomenon of extraordinary optical transmission {EOT} through arrays of nanoholes patterned in a metallic film has emerged as a promising tool for a wide range of applications, including photovoltaics, nonlinear optics, and sensing. Designs and methods enabling the dynamic tuning of the optical resonances of these structures are essential to build efficient optical devices, including modulators, switches, filters, and biosensors. However, the efficient combination of EOT and dynamic tuning remains a challenge, mainly because of the lack of materials that can induce modulation over a broad spectral range at high speeds. Here, we demonstrate tuneable resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - through the combination of phase change materials {PCMs}, which exhibit dramatic variations in optical properties upon transitions between amorphous and crystalline phases, with properly designed subwavelength nanohole metallic arrays. We further find throu...

  14. Microwave hemorrhagic stroke detector

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  15. Microwave hemorrhagic stroke detector

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  16. Reflection and phase of left-handed metamaterials at microwave frequencies

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qian; ZHAO Xiaopeng; KANG Lei; ZHENG Qing

    2005-01-01

    We experimentally investigated the reflection and phase of the left-handed metamaterials (LHMs) in a rectangular waveguide for the normally incident microwave. The samples are constructed by periodically arraying the copper split ring resonators (SRRs) and wires. It is found that for the LHMs with one-layered SRRs, a reflection peak with a depth of -3.3 dB (i.e. with the reflectivity of 47%) occurs in the left-handed range. The dependence of reflection phase on the frequency is different from that of the transmission phase, and the reflection phase has an inflexion at the reflection peaks. For the LHMs with three-layered SRRs, the depth of reflection peak increases with the row number, i.e. reflection is weakened, and the reflection peak has a shift with respect to the left-handed transmission peak. It is thought that the interaction between different layers of SRRs is the reason of the shift.

  17. On the sensitivity of broadband regional seismic phases to multi-dimensional earth structure: implications for phase identification

    International Nuclear Information System (INIS)

    We have developed and are utilizing state-of-the-art, elastic wave propagation modeling capabilities to understand the physical basis of regional wave propagation phenomena. Understanding the physical basis of these phenomena is essential for developing transportable seismic identification techniques and for predicting the behavior of regional phases in relatively aseismic regions. Based on modeling of data in the vicinity of the Eastern Mediterranean, we find that regional phases (body waves, guided waves, and surface waves) are very sensitive to the existence of deep sedimentary basins. Crustal thinning also affects the regional body and guided waves but to a much lesser degree

  18. Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD testbed

    Science.gov (United States)

    Delorme, J. R.; N'Diaye, M.; Galicher, R.; Dohlen, K.; Baudoz, P.; Caillat, A.; Rousset, G.; Soummer, R.; Dupuis, O.

    2016-08-01

    Context. Specific high-contrast imaging instruments are mandatory to characterize circumstellar disks and exoplanets around nearby stars. Coronagraphs are commonly used in these facilities to reject the diffracted light of an observed star and enable direct imaging and spectroscopy of its circumstellar environment. One important property of the coronagraph is to be able to work in broadband light. Aims: Among several proposed coronagraphs, the dual-zone phase mask coronagraph is a promising solution for starlight rejection in broadband light. In this paper, we perform the first validation of this concept in laboratory. Methods: First, we consider the principle of the dual-zone phase mask coronagraph. Then, we describe the high-contrast imaging THD testbed, the manufacturing of the components, and the quality control procedures. Finally, we study the sensitivity of our coronagraph to low-order aberrations (inner working angle and defocus) and estimate its contrast performance. Our experimental broadband light results are compared with numerical simulations to check agreement with the performance predictions. Results: With the manufactured prototype and using a dark hole technique based on the self-coherent camera, we obtain contrast levels down to 2 × 10-8 between 5 and 17λ0/D in monochromatic light (640 nm). We also reach contrast levels of 4 × 10-8 between 7 and 17λ0/D in broadband (λ0 = 675 nm, Δλ = 250 and Δλ/λ0 = 40%), which demonstrates the excellent chromatic performance of the dual-zone phase mask coronagraph. Conclusions: The performance reached by the dual-zone phase mask coronagraph is promising for future high-contrast imaging instruments that aim to detect and spectrally characterize old or light gaseous planets.

  19. Microwave photonic link with improved phase noise using a balanced detection scheme

    Science.gov (United States)

    Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan

    2016-07-01

    A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.

  20. Coherent Optical Generation of a 6 GHz Microwave Signal with Directly Phase Locked Semiconductor DFB Lasers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene;

    1992-01-01

    Experimental results of a wideband heterodyne second order optical phase locked loop with 1.5 ¿m semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...... of a microwave reference source close to carrier with a noise level of ¿125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 seconds...

  1. Wireless Power Transfer to a Microaerial Vehicle with a Microwave Active Phased Array

    Directory of Open Access Journals (Sweden)

    Shotaro Nako

    2014-01-01

    Full Text Available A wireless power transfer system using a microwave active phased array was developed. In the system, power is transferred to a circling microaerial vehicle (MAV by a microwave beam of 5.8 GHz, which is formed and directed to the MAV using an active phased array antenna. The MAV is expected to support observation of areas that humans cannot reach. The power beam is formed by the phased array with eight antenna elements. Input power is about 5.6 W. The peak power density at 1,500 mm altitude was 2.63 mW/cm2. The power is sent to a circling MAV. Therefore, the transfer beam should be polarized circularly to achieve a constant power supply independent of its yaw angle. To minimize the polarization loss, a sequentially routed antenna (SRA was applied to the transmitter antenna. Results show that the axial ratio of 0.440 dB was accomplished and that power fluctuation was kept below 1%.

  2. Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dembowski, C.; Dietz, B.; Graef, H.D.; Heine, A.; Leyvraz, F.; Miski-Oglu, M.; Richter, A.; Seligman, T.H.

    2002-11-01

    The spectral properties of a two-dimensional microwave billiard showing threefold symmetry have been studied with a new experimental technique. This method is based on the behavior of the eigenmodes under variation of a phase shift between two input channels, which strongly depends on the symmetries of the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been identified by a simple and purely experimental method. This set clearly shows Gaussian unitary ensemble statistics, although the system is time-reversal invariant. (orig.)

  3. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links

    NARCIS (Netherlands)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; Dijk, van Paulus; Roeloffzen, Chris

    2013-01-01

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero

  4. A 2-10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators

    OpenAIRE

    Bruun, Marlene; Gliese, Ulrik Bo; Petersen, Anders Kongstad; Nielsen, Torben Nørskov; Stubkjær, Kristian

    1994-01-01

    Optical transmission of microwave signals becomes increasingly important. Techniques using beat between optical carriers of semiconductor lasers are promising if efficient optical phase locked loops are realized. A highly efficient GaAs MMIC optoelectronic phase detector for a 2-10 GHz OPLL is reported

  5. A 2-10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators

    DEFF Research Database (Denmark)

    Bruun, Marlene; Gliese, Ulrik Bo; Petersen, Anders Kongstad;

    1994-01-01

    Optical transmission of microwave signals becomes increasingly important. Techniques using beat between optical carriers of semiconductor lasers are promising if efficient optical phase locked loops are realized. A highly efficient GaAs MMIC optoelectronic phase detector for a 2-10 GHz OPLL...

  6. Microwave-assisted headspace solid-phase microextraction for the analysis of bioemissions from Eucalyptus citriodora leaves.

    Science.gov (United States)

    Xiong, Guohua; Goodridge, Carolyn; Wang, Limei; Chen, Yong; Pawliszyn, Janusz

    2003-12-31

    Microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) was developed as a simple and effective method for fast sampling of volatile organic compounds (VOCs) from Eucalyptus citriodora Hook (E. citriodora) leaves. During microwave heating, a simple shielding device made of aluminum foil was used to protect the SPME fiber from microwave irradiation while allowing the sample to be heated. A room temperature water bath was also used to allow microwave heating to be conducted in a more controlled manner. The inner heating caused by microwave irradiation dramatically accelerated the emission of VOCs from the sample, but no marked change in headspace temperature in the sample vial was found. Under optimum conditions, the extraction efficiencies obtained with microwave heating were much higher than those obtained without microwave heating for all fibers used, namely, 7-microm polydimethylsiloxane (PDMS), 100-microm polydimethylsiloxane (PDMS), 65-microm polydimethylsiloxane/divinylbenzene (PDMS/DVB), and 75-microm carboxen/polydimethylsiloxane (CAR/PDMS). The improvement of extraction efficiency using MA-HS-SPME allowed more VOC events to be detected, with more balanced extraction of VOCs of lower and higher molecular masses. Moreover, a good linear relationship was found between sample size and GC-FID response (total peak area of VOCs), indicating the usefulness of MA-HS-SPME for quantitative analysis of individual volatile compounds in E. citriodora leaves. PMID:14690362

  7. Solid-phase microextraction and gas chromatography-mass spectrometry of volatile compounds from avocado puree after microwave processing.

    Science.gov (United States)

    López, Mercedes G; Guzmán, G R; Dorantes, A L

    2004-05-14

    Microwave processing offers an alternative to blanch fruits and vegetables, since the application of high temperature and short time often results in minimum damage. An experimental design was used to investigate the effect of microwave time, pH, and avocado leaves (independent variables) on avocado flavor (response) using solid-phase microextraction (SPME)-GC-MS. Among the fully characterized flavor volatiles, 19 compounds were derived from lipid oxidation and only 4 from the avocado leaves. The main components derived from lipids were aldehydes, ketones and alcohols. Terpenoids, estragole, and 2-hexenal [E] were volatiles derived from avocado leaves. When leaves were added to fresh and microwaved avocado terpenoids and 2-hexenal [E]/hexanal ratio increased, this behavior was considered to have a positive effect on the sensorial quality of the product. From the statistical analysis of the experimental design, it was possible to determinate that the most important factors influencing the abundance of flavor compounds derived from lipids were microwave time and pH. Maximum values of these compounds were detected at high levels of microwave time and low values of pH. On the other hand, response surface of terpenoids and estragole showed an increment when microwave time and avocado leaf was increased. The region of optimum response was 30 s microwave time, pH 5.5, and 1% of avocado leaf. PMID:15139417

  8. Importance of phase unwrapping for the reconstruction of microwave tomographic images.

    Science.gov (United States)

    Grzegorczyk, Tomasz M; Meaney, Paul M; Jeon, Soon Ik; Geimer, Shireen D; Paulsen, Keith D

    2011-01-01

    Microwave image reconstruction is typically based on a regularized least-square minimization of either the complex-valued field difference between recorded and modeled data or the logarithmic transformation of these field differences. Prior work has shown anecdotally that the latter outperforms the former in limited surveys of simulated and experimental phantom results. In this paper, we provide a theoretical explanation of these empirical findings by developing closed form solutions for the field and the inverted electromagnetic property parameters in one dimension which reveal the dependency of the estimated permittivity and conductivity on the absolute (unwrapped) phase of the measured signal at the receivers relative to the source transmission. The analysis predicts the poor performance of complex-valued field minimization as target size and/or frequency and electromagnetic contrast increase. Such poor performance is avoided by logarithmic transformation and preservation of absolute measured signal phase. Two-dimensional experiments based on both synthetic and clinical data are used to confirm these findings. Robustness of the logarithmic transformation to variation in the initial guess of the reconstructed target properties is also shown. The results are generalizable to three dimensions and indicate that the minimization form with logarithmic transformation offers image reconstruction performance characteristics that are much more desirable for medial microwave imaging applications relative to minimizing differences in complex-valued field quantities. PMID:21339877

  9. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    OpenAIRE

    Yanqin Wang; Mingbo Pu; Zuojun Zhang; Xiong Li; Xiaoliang Ma; Zeyu Zhao; Xiangang Luo

    2015-01-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated b...

  10. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    Science.gov (United States)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  11. Phase-space structures and ionization dynamics of the hydrogen atom in elliptically polarized microwaves

    Science.gov (United States)

    Shchekinova, E.; Chandre, C.; Uzer, T.

    2006-10-01

    The multiphoton ionization of hydrogen atoms in a strong elliptically polarized microwave field exhibits complex features that are not observed for ionization in circular and linear polarized fields. Experimental data reveal high sensitivity of ionization dynamics to the small changes of the field polarization. The multidimensional nature of the problem makes widely used diagnostics of dynamics, such as Poincaré surfaces of section, impractical. We analyze the phase-space dynamics using the finite time stability analysis rendered by the fast Lyapunov indicators technique. The concept of zero-velocity surface is used to initialize the calculations and visualize the dynamics. Our analysis provides stability maps calculated for the initial energy at the maximum and below the saddle of the zero-velocity surface. We estimate qualitatively the dependence of ionization thresholds on the parameters of the applied field, such as polarization and scaled amplitude.

  12. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    Science.gov (United States)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  13. Broadband anomalous reflection based on gradient low-Q meta-surface

    Directory of Open Access Journals (Sweden)

    Mingbo Pu

    2013-05-01

    Full Text Available Gradient–index metamaterial is crucial in the spatial manipulation of electromagnetic wave. Here we present an efficient approach to extend the bandwidth of phase modulation by utilizing the broadband characteristic of low-quality (Q meta-surface in the reflection mode. The dispersion of the meta-surface is engineered to compensate the phase difference induced by frequency change. Meanwhile, a thin gradient index cover layer is added on the top of meta-surface to extend the phase modulation range to cover the entire [0, 360°]. As a proof of concept, anomalous nearly perfect reflection with relative bandwidth near 40% is demonstrated in the microwave regime.

  14. Optimization of aqueous enzymatic oil extraction from kernel of oil palm (elaeis guineensis) using three phase partitioning and microwave

    International Nuclear Information System (INIS)

    The use of microwave irradiation as a pretreatment before aqueous enzymatic oil extraction from oil palm kernel was found to be useful. The microwave irradiation for 10 min -assisted extraction was found to be a simpler and more effective alternative to the solvent extraction methods for the productions of palm kernel oil. Further enhancement was achieved when the microwave irradiated slurries were treated with a commercial enzyme preparation of proteases, followed by three phase partitioning. This resulted in 93% (w/w) oil yields form the palm kernel. The efficiency of the present technique is comparable to solvent extraction with an added advantage of being less time consuming and using t-butanol which is a safer solvent as compared to n-hexane used in conventional oil extraction process. The technique also tries to reduce the amount of enzyme used and hence reduces the overall cost. (author)

  15. Morphology and phase evolution in microwave synthesized Al/FeO4 system.

    Science.gov (United States)

    Chuan, Lee Chang; Yoshikawaa, Noboru; Taniguchia, Shoji

    2011-01-01

    Thermite reaction between Al/Fe3O4 raised by microwave (MW) heating under N2 atmosphere has been investigated, and compared with that by the electric furnace. In addition to the stoichiometric ratio for the production of metallic iron and alumina, mixture with slightly Lower in Al content is also studied. As thermite reaction is highly exothermic, melting of reaction product and destruction of microstructure may occur, which corresponds to the enthalpy and adiabatic temperature of the reaction. Hence, to avoid this problem, reaction coupled with a smaller driving force by controlling the MW ignition condition at low temperature exotherm has been investigated. The phase and microstructure evolution during the reaction were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Thermogram of the DTA analysis, irrespective of their mole ratio, recorded two exothermic peaks, one at - 1310 degrees C and another one at - 1370 degrees C. When heated by microwave at 955 degrees C, the main products were identified as Al, FeO and Fe, minor amount of Fe3O4 and some Fe and alumina were detected. When heating to 1155 degrees C, Al and Fe3O4 peaks disappeared, formation of Fe-Al alloy was observed. For sample heated at 1265 degrees C, a porous body was obtained. Micron sized metal particles with complex morphology, irregular in size and shapes were formed, uniformly distributed within the spinel hercynite and/or alumina matrix. In contrast, conventional heating produced no porous products. Formation of alumina is also observed around the metal particles. Controlling of the reaction progress was possible while heating the sample by MW around the low temperature exotherm region, whereas the combustion wave could not be self-propagated. PMID:24427878

  16. Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation

    International Nuclear Information System (INIS)

    Highlights: ► A promising and environmentally friendly chemical recycling route of polycarbonate. ► Implementation of a phase transfer catalyst facilitates the alkaline hydrolysis. ► Microwave irradiation is used to achieve relatively mild experimental conditions. ► Surface erosion seems to be the dominant degradation mechanism. ► The method also seems promising for the treatment of wastes based on PC (e.g., CDs). - Abstract: The various and widespread uses of polycarbonate (PC) polymers require a meaningful and environmentally friendly disposal method. In this study, depolymerisation of polycarbonate with water in a microwave reactor is suggested as a recycling method. Hydrolysis was investigated in an alkaline (NaOH) solution using a phase-transfer catalyst. All of the experiments were carried out in a sealed microwave reactor, in which the reaction pressure, temperature and microwave power were continuously controlled and recorded. In the hydrolysis products, bisphenol-A monomer was obtained and identified by FTIR measurements. PC degradation higher than 80% can be obtained at 160 °C after a microwave irradiation time of either 40 min or 10 min using either a 5 or 10% (w/v) NaOH solution, respectively. GPC, TGA and DSC measurements of the PC residues revealed that surface erosion is the degradation mechanism. First-order reaction kinetics were estimated by implementing a simple kinetic model. Finally, greater than 85% degradation was achieved when waste CDs were treated with the same method. The results confirm the importance of the microwave power technique as a promising recycling method for PC-based waste plastics, resulting in monomer recovery in addition to substantial energy savings.

  17. Phase composition and morphology of nanoparticles of yttrium orthophosphates synthesized by microwave-hydrothermal treatment: The influence of synthetic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vanetsev, A.S., E-mail: alexander.vanetsev@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Samsonova, E.V. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Gaitko, O.M. [Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119991 (Russian Federation); Keevend, K. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Popov, A.V. [Prokhorov General Physics Institute RAS, Vavilov St. 38, Moscow 119991 (Russian Federation); Mäeorg, U. [Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411 (Estonia); Mändar, H.; Sildos, I. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Orlovskii, Yu.V. [Institute of Physics, University of Tartu, Ravila 14c, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov St. 38, Moscow 119991 (Russian Federation)

    2015-08-05

    Highlights: • We synthesized YPO{sub 4} and YPO{sub 4}⋅0.8H{sub 2}O nanoparticles by microwave-hydrothermal treatment. • We studied “conditions–composition–properties” relations for this synthetic path. • We revealed the mechanism of stabilization of YPO{sub 4}⋅0.8H{sub 2}O phase at high temperatures. - Abstract: Herein we report the study of the influence of synthesis conditions during the microwave-hydrothermal crystallization of freshly precipitated gels on the phase composition and morphology of the rare-earth doped yttrium orthophosphates nanoparticles. We characterize the nanoparticles of YPO{sub 4} and YPO{sub 4}⋅0.8H{sub 2}O using X-ray diffraction analysis, TEM, and FT-IR spectroscopy. Furthermore, we argue that for the given phase the degree of crystallinity and thus the sample morphology depend strongly on the synthesis conditions. We establish that the hexagonal hydrate phase can be obtained by means of microwave-hydrothermal method if one uses phosphate anion excess or adjusts pH of the reaction mixture. Also we show that the metastable hydrate phase is most likely stabilized by hydroxyl groups at elevated temperatures.

  18. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  19. An ultra-broadband frequency-domain terahertz measurement system based on frequency conversion via DAST crystal with an optimized phase-matching condition

    International Nuclear Information System (INIS)

    By applying the frequency conversion technique to 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal, a monochromatic terahertz (THz) measurement system, including both generation and detection, has been developed over quite a broad frequency band, from 1.85 to 30 THz. In the case of frequency upconversion detection of THz waves, for the first time, we used gratings instead of filters to tackle the tough phase-matching conditions for broadband operations. By synchronizing the rotation of two gratings to extract the frequency upconverted signal, the infrared (IR) pumping beam can be tuned freely over 300 nm with decent diffraction efficiency and sufficient isolation between the weak frequency upconversion signal and the strong IR pumping beam to be realized. Such a large tuning range has overcome the limit of commercial filters with a fixed passband, while such a high optical density value has been beyond the limit of commercial tunable filters. Consequently, the proposed frequency domain system gives the largest THz frequency band. Unlike THz time-domain spectroscopy systems in which a fs laser is applied and broadband THz pulses are applied, our system works based on a ns laser and it can function at a single THz frequency with random frequency access ability from pulse to pulse. (letter)

  20. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  1. CoxNi100-x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption

    Science.gov (United States)

    Wang, H.; Dai, Y. Y.; Geng, D. Y.; Ma, S.; Li, D.; An, J.; He, J.; Liu, W.; Zhang, Z. D.

    2015-10-01

    We report a one-step approach for preparing dispersive CoxNi100-x nanoparticles completely encapsulated by curved graphite layers. The nanoparticles were prepared by evaporating Co-Ni alloys and the shell of graphite layers was formed by in situ metal-catalytic growth on the surface of nanoparticles whose layer number was controlled by tuning the Co content of the alloys. By modulating the composition of the magnetic core and the layer number of the shell, the magnetic and dielectric properties of these core/shell structures are simultaneously optimized and their permeability and permittivity were improved to obtain the enhanced electromagnetic match. As a result, the bandwidth of reflection loss (RL) exceeding -20 dB (99% absorption) of the nanocapsules is 9.6 GHz for S1, 12.8 GHz for S2, 13.5 GHz for S3 and 14.2 GHz for S4. The optimal RL value reaches -53 dB at 13.2 GHz for an absorber thickness of 2.55 mm. An optimized impedance match by controlling the growth of the core and shell is responsible for this extraordinary microwave absorption.We report a one-step approach for preparing dispersive CoxNi100-x nanoparticles completely encapsulated by curved graphite layers. The nanoparticles were prepared by evaporating Co-Ni alloys and the shell of graphite layers was formed by in situ metal-catalytic growth on the surface of nanoparticles whose layer number was controlled by tuning the Co content of the alloys. By modulating the composition of the magnetic core and the layer number of the shell, the magnetic and dielectric properties of these core/shell structures are simultaneously optimized and their permeability and permittivity were improved to obtain the enhanced electromagnetic match. As a result, the bandwidth of reflection loss (RL) exceeding -20 dB (99% absorption) of the nanocapsules is 9.6 GHz for S1, 12.8 GHz for S2, 13.5 GHz for S3 and 14.2 GHz for S4. The optimal RL value reaches -53 dB at 13.2 GHz for an absorber thickness of 2.55 mm. An optimized

  2. A 3 to 6 GHz microwave/photonic transceiver for phased-array interconnects

    Science.gov (United States)

    Ackerman, Edward; Wanuga, Stephen; Candela, Karen; Scotti, Ronald E.; MacDonald, V. W.; Gates, John V.

    1992-04-01

    The general design and operation of a microwave/photonic transceiver operating in the range 3-6 GHz are presented. The transceiver consists of drop-in submodules with optical fiber pigtails mounted on a brass carrier measuring less than 1 x 1 x 0.1 inch along with MMIC amplifiers and an alumina motherboard. Minimum 3 to 6 GHz return losses of 6 dB have been measured for both the microwave input and the microwave output of the module; the insertion loss is between 19 and 20 dB at most frequencies in the 3-6 GHz band.

  3. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-01

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators. PMID:24216825

  4. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most suc....... Many countries have provided active support for stimulating diffusion of broadband and national variants of this type of policies in different countries are important for an explanation of national differences in adoption of broadband....

  5. Effects of Optical-density and Phase Dispersion of an Imperfect Band-limited Occulting Mask on the Broadband Performance of a TPF Coronagraph

    Science.gov (United States)

    Sidiek, Erkin; Balasubramanian, Kunjithapatham

    2007-01-01

    Practical image-plane occulting masks required by high-contrast imaging systems such as the TPF-Coronagraph introduce phase errors into the transmitting beam., or, equivalently, diffracts the residual starlight into the area of the final image plane used for detecting exo-planets. Our group at JPL has recently proposed spatially Profiled metal masks that can be designed to have zero parasitic phase at the center wavelength of the incoming broadband light with small amounts of' 00 and phase dispersions at other wavelengths. Work is currently underway to design. fabricate and characterize such image-plane masks. In order to gain some understanding on the behaviors of these new imperfect band-limited occulting masks and clarify how such masks utilizing different metals or alloys compare with each other, we carried out some modeling and simulations on the contrast performance of the high-contrast imaging testbed (HCIT) at .JPL. In this paper we describe the details of our simulations and present our results.

  6. A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation

    NARCIS (Netherlands)

    MacDonald, Michael A.; Schaefers, Franz; Pohl, R.; Poole, Ian B.; Gaupp, Andreas; Quinn, Frances M.

    2008-01-01

    A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the fu

  7. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  8. Nonlinear 3-D Microwave Imaging for Breast-Cancer Screening: Log, Phase, and Log-Phase Formulation

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob;

    2011-01-01

    The imaging algorithm used in the 3-D microwave imaging system for breast cancer screening, currently being developed at the Technical University of Denmark, is based on an iterative Newton-type algorithm. In this algorithm, the distribution of the electromagnetic constitutive parameters is updat...

  9. Dynamic measurement of bulk modulus of dielectric materials using a microwave phase shift technique

    Science.gov (United States)

    Barker, B. J.; Strand, L. D.

    1972-01-01

    A microwave Doppler shift technique was developed for measuring the dynamic bulk modulus of dielectric materials such as solid propellants. The system has a demonstrated time resolution on the order of milliseconds and a theoretical spatial resolution of a few microns. Accuracy of the technique is dependent on an accurate knowledge of the wavelength of the microwave in the sample being tested. Such measurement techniques are discussed. Preliminary tests with two solid propellants, one non-aluminized and one containing 16% aluminum, yielded reasonable, reproducible results. It was concluded that with refinements the technique holds promise as a practical means for obtaining accurate dynamic bulk modulus data over a variety of transient conditions.

  10. Phase Shift of a Coplanar Waveguide by Bias Voltage on Thick Lead Zirconate Titanate Film at Microwave Frequency

    Science.gov (United States)

    Shibata, Kouji; Iijima, Takashi; Masuda, Yoichiro

    2008-09-01

    A coplanar waveguide was fabricated by depositing a 1-µm-thick Au film on a multilayer dielectric, consisting of a 2-µm-thick lead zirconate titanate (PZT) film over an Al2O3 substrate, through etching. Following this, the reflection constant, transmission constant, and phase variation were measured for this transmission line as bias voltage was varied from 30 to 50 V. As a result, it was confirmed that the phase variation becomes about 15° at a 50 V bias at a frequency of 10 GHz. We then confirmed the basic input-output characteristics of this type of structure in the microwave band. Finally, the relative permittivity of a PZT thick film as a coplanar waveguide was estimated using the measurement results of relative permittivity according to the split cavity resonator method, and phase variation under the condition in which a bias voltage was applied.

  11. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene;

    1992-01-01

    Experimental results of a wideband heterodyne second-order optical phase-locked loop with 1.5-μm semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz, and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...... of a microwave reference source close to carrier with a noise level of -125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 s and an acquisition...

  12. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled. PMID:19333263

  13. A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation

    OpenAIRE

    MacDonald, Michael A.; Schaefers, Franz; Pohl, R.; Poole, Ian B.; Gaupp, Andreas; Quinn, Frances M.

    2008-01-01

    A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the full polarization vector at soft x-ray energies above 600 eV, which was not possible before due to the lack of suitable optical elements. Thus, quantitative polarimetry is now possible at the 2p edge...

  14. Tunable Dielectric Materials and Devices for Broadband Wireless Communications

    Science.gov (United States)

    Mueller, Carl H.; Miranda, Felix A.; Dayton, James A. (Technical Monitor)

    1998-01-01

    Wireless and satellite communications are a rapidly growing industries which are slated for explosive growth into emerging countries as well as countries with advanced economies. The dominant trend in wireless communication systems is towards broadband applications such as multimedia file transfer, video transmission and Internet access. These applications require much higher data transmission rates than those currently used for voice transmission applications. To achieve these higher data rates, substantially larger bandwidths and higher carrier frequencies are required. A key roadblock to implementing these systems at K-band (18-26.5 GHz) and Ka-band (26.5-40 GHz) is the need to develop hardware which meets the requirements for high data rate transmission in a cost effective manner. In this chapter, we report on the status of tunable dielectric thin films for devices, such as resonators, filters, phased array antennas, and tunable oscillators, which utilize nonlinear tuning in the control elements. Paraelectric materials such as Barium Strontium Titanate ((Ba, Sr)TiO3) have dielectric constants which can be tuned by varying the magnitude of the electric field across the material. Therefore, these materials can be used to control the frequency and/or phase response of various devices such as electronically steerable phased array antennas, oscillators, and filters. Currently, tunable dielectric devices are being developed for applications which require high tunability, low loss, and good RF power-handling capabilities at microwave and millimeter-wave frequencies. These properties are strongly impacted by film microstructure and device design, and considerable developmental work is still required. However, in the last several years enormous progress has occurred in this field, validating the potential of tunable dielectric technology for broadband wireless communication applications. In this chapter we summarize how film processing techniques, microwave test

  15. Idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter.

    Science.gov (United States)

    Zou, Dan; Zheng, Xiaoping; Li, Shangyuan; Zhang, Hanyi; Zhou, Bingkun

    2014-07-01

    A novel structure consisting of an idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter is presented, which is comprised of a spectrum-sliced broadband optical source, a dual-parallel Mach-Zehnder modulator (DPMZM), and a spatial light amplitude and phase processor (SLAPP). By adjusting the optical phase shift in the DPMZM, the dispersion-induced mixing power fading can be eliminated. By applying a phase processor with the SLAPP, the distortion of the mixing filter brought upon by third-order dispersion is also compensated. Experiments are performed and show that the up/down-conversion signal has a clean spectrum and the mixing filter can be tuned from 12 to 20 GHz without any change to the passband shape. The out-of-band suppression ratio of the mixing filter is more than 40 dB, and the 3 dB bandwidth is 140 MHz. PMID:24978780

  16. Determination of X-Ray Diffraction on the Phase Transformation of Microwave-Assisted Titanate Nanotubes during Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Ou

    2010-01-01

    Full Text Available Based on the determination of X-ray powder diffraction, this study aims to investigate the thermal effect on the phase transformation of microwave-assisted titanate nanotubes (MTNTs. The phase transformation is highly dependent on the intercalating amount of Na(I within MTNTs and on the heating atmosphere. In other words, the presence of Na(I favors the transformation of TNTs phase into Na2Ti6O13 whereas anatase phase selectively formed in the case of MTNTs with less Na(I amount. Furthermore, H2 versus O2 is able to form anatase phase and establish a newly transformation pathway. The photocatalytic ability of the calcined MTNTs was also evaluated based on the observed rate constant of trichloroethylene degradation. In addition to anatase phase, the newly phase including Na2Ti6O13 and Ti2O3 with calcined MTNTs is able to photocatalyze trichloroethylene. MTNTs calcined with the presence of H2 also exhibit a superior photocatalytic performance to P25 TiO2.

  17. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    Science.gov (United States)

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-12-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc.

  18. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    Science.gov (United States)

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-01-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc. PMID:26635228

  19. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    Science.gov (United States)

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  20. Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics

    OpenAIRE

    Nguimdo, Romain Modeste; Lavrov, R.; Colet, Pere; Jacquot, M.; Chembo Kouomou, Yanne; Larger, Laurent

    2010-01-01

    We investigate theoretically and experimentally the detrimental e ect of ber dispersion on the synchroniza- tion of an optoelectronic phase chaos cryptosystem. We evaluate the root-mean square synchronization error and the cancellation spectra between the emitter and the re- ceiver in order to characterize the quality of the optical ber communication link. These two indicators explicitly show in temporal and spectral domain how ber dispersion does negatively a ect t...

  1. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    Science.gov (United States)

    Yuan, J. H.; Sang, X. Z.; Wu, Q.; Yu, C. X.; Zhou, G. Y.; Shen, X. W.; Wang, K. R.; Yan, B. B.; Teng, Y. L.; Xia, C. M.; Han, Y.; Li, S. G.; Farrell, G.; Hou, L. T.

    2013-08-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1-3, the conversion efficiency ηuv-v of 11% and bandwidth Buv-v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV-visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV-visible resonant Raman scattering.

  2. Microwave-assisted phase-transfer catalysis for the rapid one-pot methylation and gas chromatographic determination of phenolics.

    Science.gov (United States)

    Fiamegos, Yiannis C; Karatapanis, Andreas; Stalikas, Constantine D

    2010-01-29

    Microwave-assisted phase-transfer catalysis (PTC) is reported for the first time, for the one-step extraction-derivatization-preconcentration and gas chromatographic determination of twenty phenols and ten phenolic acids. The well established phase-transfer catalytic methylation is largely accelerated when heating is replaced with the "greener" microwave irradiation. The overall procedure was thoroughly optimized and the analytes were determined by GC/MS. The method presented adequate analytical characteristics being more sensitive in analyzing phenols than phenolic acids. The limits of detection without any additional preconcentration steps (e.g. solvent evaporation) were adequate and ranged from 0.4 to 15.8ng/mL while limits of quantitation were between 1.2 and 33.3ng/mL. The method was applied to the determination of phenols, in spiked environmental samples and phenolic acids in aqueous infusions of commercially available pharmaceutical dry plants. The recoveries of fortified composite lake water samples and Mentha spicata aqueous infusions ranged from 89.3% to 117.3% for phenols and 93.3% to 115.2% for phenolic acids. PMID:20022019

  3. NbSi nanowire quantum phase-slip circuits: dc supercurrent blockade, microwave measurements, and thermal analysis

    Science.gov (United States)

    Webster, C. H.; Fenton, J. C.; Hongisto, T. T.; Giblin, S. P.; Zorin, A. B.; Warburton, P. A.

    2013-04-01

    We present a detailed report of microwave irradiation of ultranarrow superconducting nanowires. In our nanofabricated circuits containing a superconducting NbSi nanowire, a dc blockade of current flow was observed at low temperatures below a critical voltage Vc, a strong indicator of the existence of quantum phase-slip (QPS) in the nanowire. We describe the results of applying microwaves to these samples, using a range of frequencies and both continuous-wave and pulsed drive, in order to search for dual Shapiro steps which would constitute an unambiguous demonstration of quantum phase-slip. We observed no steps, and our subsequent thermal analysis suggests that the electron temperature in the series CrO resistors was significantly elevated above the substrate temperature, resulting in sufficient Johnson noise to wash out the steps. To understand the system and inform future work, we have constructed a numerical model of the dynamics of the circuit for dc and ac bias (both continuous-wave and pulsed drive signals) in the presence of Johnson noise. Using this model, we outline important design considerations for device and measurement parameters which should be used in any future experiment to enable the observation of dual Shapiro steps at experimentally accessible temperatures and, thus, lead to the development of a QPS-based quantum current standard.

  4. Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices

    Science.gov (United States)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  5. Solid state SPS microwave generation and transmission study. Volume 1: Phase 2

    Science.gov (United States)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  6. Importance of phase unwrapping for the reconstruction of microwave tomographic images

    OpenAIRE

    Grzegorczyk, Tomasz M.; Meaney, Paul M.; Jeon, Soon Ik; Geimer, Shireen D.; Paulsen, Keith D.

    2011-01-01

    Microwave image reconstruction is typically based on a regularized least-square minimization of either the complex-valued field difference between recorded and modeled data or the logarithmic transformation of these field differences. Prior work has shown anecdotally that the latter outperforms the former in limited surveys of simulated and experimental phantom results. In this paper, we provide a theoretical explanation of these empirical findings by developing closed form solutions for the ...

  7. Gas-Phase Structures of Linalool and Coumarin Studied by Microwave Spectroscopy

    Science.gov (United States)

    Nguyen, H. V. L.; Stahl, W.; Grabow, J.-U.

    2013-06-01

    The microwave spectra of two natural substances, linalool and coumarin, were recorded in the microwave range from 9 to 16 GHz and 8.5 to 10.5 GHz, respectively.Linalool is an acyclic monoterpene and the main component of lavender oil. It has a structure with many possible conformations. The geometry of the lowest energy conformer has been determined by a combination of microwave spectroscopy and quantum chemical calculations. Surprisingly, a globular rather than a prolate shape was found. This structure is probably stabilized by a π interaction between two double bonds which are arranged in two stacked layers of atoms within the molecule. A-E splittings due to the internal rotation of one methyl group could be resolved and the barrier to internal rotation was determined to be 400.20(64) cm^{-1}. The standard deviation of the fit was close to experimental accuracy. For an identification of the observed conformer not only the rotational constants but also the internal rotation parameters of one of the methyl groups were needed. Coumarin is a widely used flavor in perfumery as sweet woodruff scent. The aromatic structure allows solely for one planar conformer, which was found under molecular beam conditions and compared to other molecules with similar structures. Here, the rotational spectrum could be described by a set of parameters including the rotational constants and the centrifugal distortion constants using a semi-rigid molecule Hamiltonian. Furthermore, the rotational transitions of all nine ^{13}C isotopologues were measured in natural abundance. As a consequence, the microwave structure of coumarin could be almost completely determined.

  8. Lifshitz and excited-state quantum phase transitions in microwave Dirac billiards

    OpenAIRE

    Dietz, B.; Miski-Oglu, M.; N. Pietralla; Richter, A; von Smekal, L.; Wambach, J.; Iachello, F.

    2013-01-01

    We present experimental results for the density of states (DOS) of a superconducting microwave Dirac billiard which serves as an idealized model for the electronic properties of graphene. The DOS exhibits two sharp peaks which evolve into van Hove singularities with increasing system size. They divide the band structure into regions governed by the \\emph{relativistic} Dirac equation and by the \\emph{non-relativistic} Schr\\"odinger equation, respectively. We demonstrate that in the thermodynam...

  9. Luminescence enhancement in nanocrystalline Eu2O3 nanorods - Microwave hydrothermal crystallization and thermal degradation of cubic phase

    Science.gov (United States)

    Kaszewski, Jarosław; Witkowski, Bartłomiej S.; Wachnicki, Łukasz; Przybylińska, Hanka; Kozankiewicz, Bolesław; Mijowska, Ewa; Godlewski, Marek

    2016-09-01

    Thermally induced crystallization of cubic Eu2O3 obtained with the microwave hydrothermal method has been investigated. The starting material crystallized in the form of needle-shaped agglomerates of nanocrystalline hexagonal Eu(OH)3. Thermal treatment up to 800 °C induced the crystallization of cubic Eu2O3, after further calcination at 1200 °C in the air a monoclinic phase appeared. The phase transformation caused abnormal reduction of Eu3+ ions, related to the oxygen vacancy creation during sintering of the oxide crystallites. The crystallization process of cubic Eu2O3 occurred within the agglomerates without change of their shapes. The cubic form exhibited bright emission of Eu3+ related luminescence with intensity increasing with the size of crystallites.

  10. Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures

    International Nuclear Information System (INIS)

    α-MnO2 nanowires and β-MnO2 nanorods with high crystallinity were obtained successfully by a hydrothermal method at 160 deg. C for different reaction times. As-synthesized samples were analyzed by X-ray diffraction (XRD) spectra, scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), and high-resolution TEM (HRTEM). The results show that the samples changed from α-MnO2 nanowires with diameters about 50 nm and lengths 2-4 μm to β-MnO2 microrods with diameters 2-5 μm and lengths 5-10 μm under the reaction time prolonged from 2 to 48 h. The dielectric properties and microwave absorbing properties of the as-prepared samples were examined in the frequency range of 2-12 GHz. The samples under the reaction time 2 and 24 h exhibited the most dielectric loss tangent values and microwave absorption performances. The effective absorption bandwidth which is lower than -10 dB is 3.2 and 1.4 GHz, respectively. The results show that the morphology is important to the microwave absorption characteristics of manganese dioxide. It is also found that MnO2 is a kind of materials with both dielectric and diamagnetic loss, and the dielectric loss results from space charge polarization, which plays the dominant role in the total loss.

  11. Broadband Phonon Scattering in PbTe-based Materials Driven Near the Peierls Phase Transition by Strain or Alloying

    Science.gov (United States)

    Savic, Ivana; Murphy, Ronan; Murray, Eamonn; Fahy, Stephen

    Efficient thermoelectric energy conversion is highly desirable as 60% of the consumed energy is wasted as heat. Low lattice thermal conductivity is one of the key factors leading to high thermoelectric efficiency of a material. However, the major obstacle in the design of such materials is the difficulty in efficiently scattering phonons across the frequency spectrum. Using first principles calculations, we predict that driving PbTe materials close to a Peierls-like phase transition could be a powerful strategy to solve this problem. We illustrate this concept by applying tensile [001] strain to PbTe and its alloys with another rock-salt IV-VI material, PbSe; and by alloying PbTe with a IV-VI Peierls-distorted material, GeTe. This induces extremely soft optical modes, which increase acoustic-optical phonon coupling and decrease phonon lifetimes at all frequencies. We show that PbTe, Pb(Se,Te) and (Pb,Ge)Te alloys driven near the phase transition in the described manner could have the lattice thermal conductivity considerably lower than that of PbTe. The proposed concept may open new opportunities for the development of more efficient thermoelectric materials. This work was supported by Science Foundation Ireland and the Marie-Curie Action COFUND under Starting Investigator Research Grant 11/SIRG/E2113.

  12. A Tutorial on Microwave Photonic Filters

    Science.gov (United States)

    Capmany, José; Ortega, Beatriz; Pastor, Daniel

    2006-01-01

    Microwave photonic filters are photonic subsystems designed with the aim of carrying equivalent tasks to those of an ordinary microwave filter within a radio frequency (RF) system or link, bringing supplementary advantages inherent to photonics such as low loss, high bandwidth, immunity to electromagnetic interference (EMI), tunability, and reconfigurability. There is an increasing interest in this subject since, on one hand, emerging broadband wireless access networks and standards spanning from universal mobile telecommunications system (UMTS) to fixed access picocellular networks and including wireless local area network (WLAN), World Interoperability for Microwave Access, Inc. (WIMAX), local multipoint distribution service (LMDS), etc., require an increase in capacity by reducing the coverage area. An enabling technology to obtain this objective is based on radio-over-fiber (RoF) systems where signal processing is carried at a central office to where signals are carried from inexpensive remote antenna units (RAUs). On the other hand, microwave photonic filters can find applications in specialized fields such as radar and photonic beamsteering of phased-arrayed antennas, where dynamical reconfiguration is an added value. This paper provides a tutorial introduction of this subject to the reader not working directly in the field but interested in getting an overall introduction of the subject and also to the researcher wishing to get a comprehensive background before working on the subject.

  13. Resonant Phase Escape from the First Resistive State of Bi2Sr2CaCu2Oy Intrinsic Josephson Junctions under Strong Microwave Irradiation

    Science.gov (United States)

    Takahashi, Yusaku; Kakehi, Daiki; Takekoshi, Shuho; Ishikawa, Kazuki; Ayukawa, Shin-ya; Kitano, Haruhisa

    2016-07-01

    We report a study of the phase escape in Bi2Sr2CaCu2Oy intrinsic Josephson junctions under the strong microwave irradiation, focusing on the switch from the first resistive state (2nd SW). The resonant double-peak structure is clearly observed in the switching current distributions below 10 K and is successfully explained by a quantum-mechanical model on the quantum phase escape under the strong microwave field. These results provide the first evidence for the formation of the energy level quantization for the 2nd SW, supporting that the macroscopic quantum tunneling for the 2nd SW survives up to ˜10 K.

  14. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.

    Science.gov (United States)

    Zhang, Wei; Xu, Zhenyu; Lours, Michel; Boudot, Rodolphe; Kersalé, Yann; Luiten, Andre N; Le Coq, Yann; Santarelli, Giorgio

    2011-05-01

    We report what we believe to be the lowest phase noise optical-to-microwave frequency division using fiber-based femtosecond optical frequency combs: a residual phase noise of -120 dBc/Hz at 1 Hz offset from an 11.55 GHz carrier frequency. Furthermore, we report a detailed investigation into the fundamental noise sources which affect the division process itself. Two frequency combs with quasi-identical configurations are referenced to a common ultrastable cavity laser source. To identify each of the limiting effects, we implement an ultra-low noise carrier-suppression measurement system, which avoids the detection and amplification noise of more conventional techniques. This technique suppresses these unwanted sources of noise to very low levels. In the Fourier frequency range of ∼200 Hz to 100 kHz, a feed-forward technique based on a voltage-controlled phase shifter delivers a further noise reduction of 10 dB. For lower Fourier frequencies, optical power stabilization is implemented to reduce the relative intensity noise which causes unwanted phase noise through power-to-phase conversion in the detector. We implement and compare two possible control schemes based on an acousto-optical modulator and comb pump current. We also present wideband measurements of the relative intensity noise of the fiber comb. PMID:21622045

  15. Accelerated Sparse Microwave Imaging Phase Error Compensation Algorithm Based on Combination of SAR Raw Data Simulator and Map-drift Autofocus Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Zhe

    2016-02-01

    Full Text Available Sparse microwave imaging is new concept, theory and methodology of microwave imaging, which introduces the sparse signal processing theory to microwave imaging and combines them together to overcome the paradox of increasing system complexity and imaging performance of current Synthetic Aperture Radar (SAR systems. Traditional airborne SAR systems are facing a phase error problem in the echo which is caused by the non-ideal motion of the aircraft. This phase error could be compensated by autofocus algorithms. But in the sparse microwave imaging, such autofocus algorithm are no longer valid because traditional signal processing based on matched filtering has been replaced with sparse reconstruction. Current autofocus algorithms under sparse constraints are usually based on a two-step iteration, which convergences slowly and costs plenty of computation. In this paper, we introduce the Map-Drift (MD autofocus algorithm to the accelerated sparse microwave imaging algorithm based on SAR raw data simulator, and propose the novel “MD-SAR raw data simulator autofocus algorithm”. This algorithm keeps the advantages of both accelerated imaging algorithm and MD algorithm, including the fast convergence and accurate compensation of two-order phase error in echo. Compared with current algorithms based on two-step iteration, the propose method convergences fast and effectively.

  16. A Performance Study of Wireless Broadband Access (WiMAX)

    OpenAIRE

    Maan A. S. Al-Adwany

    2011-01-01

    WiMAX (worldwide interoperability for microwave access) is one of the wireless broadband access technologies which supplies broadband services to clients, but it surpasses other technologies by its coverage area, where one base station can cover a small city. In this paper, WiMAX technology is studied by exploring its basic concepts, applications, and advantages / disadvantages. Also a MATLAB simulator is used to verify the operation of the WiMAX system under various chan...

  17. Broadband high efficiency active integrated antenna

    OpenAIRE

    Qin, Yi

    2007-01-01

    Active integrated antenna (MA) is a very popular topic of research during recent decades. This is mostly due to its advantages, such as compact size, multiple functions and low cost, etc. The MA system can be regarded as an active microwave circuit which the output or input port is free space instead of a conventional 50-ohm interface. The major drawbacks of the conventional MA include narrow bandwidth, low efficiency, etc. An experimental investigation on broadband slot-coupled antenna is ca...

  18. Constructing a 3D Crustal Model Across the Entire Contiguous US Using Broadband Rayleigh Wave Phase Velocity and Ellipticity Measurements

    Science.gov (United States)

    Lin, F. C.; Schmandt, B.

    2015-12-01

    Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear

  19. Effect of short milling time and microwave heating on phase evolution, microstructure and mechanical properties of alumina-mullite-zirconia composites

    Energy Technology Data Exchange (ETDEWEB)

    Majidian, Hudsa; Nikzad, Leila; Eslami-Shahed, Hossein; Ebadzadeh, Touradj [Materials and Energy Research Center, Alborz (Iran, Islamic Republic of). Ceramic Dept.

    2015-12-15

    Alumina-mullite-zirconia composites were prepared using alumina and zircon powders pressed uniaxially at 250 MPa and sintered in a microwave furnace held at 1 550 C for 90 min. The effects of short milling and sintering time on the density, phase evaluation and mechanical strength of the sintered composites were analyzed and compared with composites sintered in a conventional furnace. The goal was to decrease sintering time and temperature over that for conventional heating. The results showed that, although the densities were similar for both methods, the hardness, mechanical strength and fraction of the tetragonal zirconia phase of the microwave-sintered composites were much higher. The milling time yielded better densification and higher mechanical properties. It was found that the shorter sintering time in a microwave furnace requires longer milling time of the powders to obtain the same composite properties.

  20. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  1. A novel structure for a broadband left-handed metamaterial

    Institute of Scientific and Technical Information of China (English)

    Xiong Han; Hong Jing-Song; Jin Da-Lin; Zhang Zhi-Min

    2012-01-01

    A low absorptivity broadband negative refractive index metamaterial with a multi-gap split-ring and metallic cross (MSMC) structure is proposed and investigated numerically and experimentally in the microwave frequency range.The effective media parameters were retrieved from the numerical and experimental results,which clearly show that there exists a very wide frequency band where the permittivity and permeability are negative.The influence of the structure parameters on the magnetic response and the cut-off frequency of the negative permittivity are studied in detail.This metamaterial would have potential application in designing broadband microwave devices.

  2. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    International Nuclear Information System (INIS)

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe3O4 nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis

  3. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); Bondioli, Federica [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Manfredini, Tiziano [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Gualtieri, Alessandro [Department of Chemical and Geological Science, University of Modena and Reggio Emilia, Via S. Eufemia 19, 41121 Modena Italy (Italy)

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  4. Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation

    CERN Document Server

    Zhang, W; Lours, M; Seidelin, S; Santarelli, G; Coq, Y Le

    2011-01-01

    When a photo-diode is illuminated by a pulse train from a femtosecond laser, it generates microwaves components at the harmonics of the repetition rate within its bandwidth. The phase of these components (relative to the optical pulse train) is known to be dependent on the optical energy per pulse. We present an experimental study of this dependence in InGaAs pin photo-diodes illuminated with ultra-short pulses generated by an Erbium-doped fiber based femtosecond laser. The energy to phase dependence is measured over a large range of impinging pulse energies near and above saturation for two typical detectors, commonly used in optical frequency metrology with femtosecond laser based optical frequency combs. When scanning the optical pulse energy, the coefficient which relates phase variations to energy variations is found to alternate between positive and negative values, with many (for high harmonics of the repetition rate) vanishing points. By operating the system near one of these vanishing points, the typ...

  5. Phase and Microstructure Evaluation and Microwave Dielectric Properties of Mg1- x Ni x SiO3 Ceramics

    Science.gov (United States)

    Ullah, Atta; Liu, Hanxing; Hao, Hua; Iqbal, Javed; Yao, Zhonghua; Cao, Minghe; Xu, Qi

    2016-10-01

    The ceramics were prepared using the solid-state reaction method and their phase, microstructure and microwave dielectric properties were investigated. A single-phase clinoenstatite system with monoclinic structure (space group P21/c) was confirmed through x-ray diffraction (XRD) analysis for the compositions with x ≤ 0.1. The compositions with x ≥ 0.15 contain SiO2 and (Mg1- x Ni x )2SiO4 phases only as confirmed from the XRD data of their sintered samples. The unit cell volume was decreased while the theoretical density was increased with increase in x from 0 to 0.1. A decrease in dielectric constant ( ɛ r) while an increase in unloaded quality factor multiplying the resonant frequency ( Q u f o) and temperature coefficient of resonant frequency ( τ f) was observed with increase in Ni content from 0 to x = 0.1. In the present study, ɛ r ˜ 6.10, Q u f o ˜ 118,702 GHz and τ f ˜ -10 ppm/°C was achieved for the composition with x = 0.1 sintered at 1425°C for 9 h. The material is a good candidate for millimeter wave applications.

  6. Phase-controlled synthesis of Cu{sub 2}ZnSnS{sub 4} powders via the microwave-assisted solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hsung; Das, Subrata; Yang, Che-Yuan; Sung, Jen-Cheng; Lu, Chung-Hsin, E-mail: chlu@ntu.edu.tw

    2015-05-25

    Highlights: • Cu{sub 2}ZnSnS{sub 4} powders were prepared via the microwave-assisted solvothermal route. • Kesterite and wurtzite phase were formed via adjusting the amount of ethylenediamine. • Cu{sub 2}S was reacted with constituent ions and hydrogen sulfide ions to form Cu{sub 2}ZnSnS{sub 4}. • Single-phased kesterite and wurtzite Cu{sub 2}ZnSnS{sub 4} powders were derived in this study. - Abstract: Cu{sub 2}ZnSnS{sub 4} was successfully prepared via the microwave-assisted solvothermal route at the reaction temperature as low as 180 °C. In comparison with the conventional solution process for preparing Cu{sub 2}ZnSnS{sub 4} powders, the reaction time was significantly reduced to 1 h, and the preparation procedures were simplified with the incorporation of microwave irradiation technique. The mobility of ions and dipoles are suggested to have been accelerated via the microwave, thereby enhancing the reaction rates. Kesterite and wurtzite Cu{sub 2}ZnSnS{sub 4} powders were formed via adjusting the volume fraction of ethylenediamine in the microwave-solvothermal process. The amount of ethylenediamine affected the morphology of the derived powders due to the selective passivation of ethylenediamine on Cu{sub 2}ZnSnS{sub 4}. The microscopic analysis revealed that the samples prepared with high ethylenediamine concentrations had large particle sizes. The enhanced grain size reduced the surface recombination and increased the photoluminescence intensity of Cu{sub 2}ZnSnS{sub 4} particles. During the microwave-assisted solvothermal process, Cu{sub 2}S was formed first and reacted with the constituent ions and hydrogen sulfide ions to form Cu{sub 2}ZnSnS{sub 4} powders.

  7. Large microwave phase shift and small distortion in an integrated waveguide device

    DEFF Research Database (Denmark)

    Öhman, Filip; Sales, Salvador; Chen, Yaohui;

    2007-01-01

    We have obtained a tunable phase shift of 150 degrees in an integrated semiconductor waveguide by optimizing the interplay of fast and slow light effects. Furthermore, the distortions imposed by device nonlinearities have been quantified....

  8. Microwave-Assisted Extraction Followed by Solid-Phase Extraction for the Chromatographic Analysis of Alkaloids in Stephania cepharantha.

    Science.gov (United States)

    Liu, Ying; Xie, Daotao; Kang, Yun; Wang, Yaqin; Yang, Ping; Guo, Jixian; Huang, Jianming

    2016-04-01

    A procedure involving microwave-assisted extraction (MAE) followed by solid-phase extraction (SPE) was established for the extraction and purification of three bisbenzylisoquinoline alkaloids from Stephania cepharantha, and a reversed-phase high-performance liquid chromatography (HPLC) method was developed for the quantification of the target alkaloids. Chromatographic separation was achieved on a Phenomenex Luna Phenyl-Hexyl column. Prior to the HPLC analysis, the alkaloids were rapidly extracted by an optimized MAE process using 0.01 mol/L hydrochloric acid as the solvent. The MAE extract was subsequently purified by SPE using a cation-exchange polymeric cartridge. The MAE-SPE procedure extracted the three alkaloids with satisfactory recoveries ranging from 100.44 to 102.12%. In comparison with the MAE, Soxhlet and ultrasonic-assisted extractions, the proposed MAE-SPE method showed satisfactory cleanup efficiency. Thus, the validated MAE-SPE-HPLC method is specific, accurate and applicable to the determination of alkaloids in S. cepharantha.

  9. A microwave photonic generator of chaotic and noise signals

    Science.gov (United States)

    Ustinov, A. B.; Kondrashov, A. V.; Kalinikos, B. A.

    2016-04-01

    The transition to chaos in a microwave photonic generator has been experimentally studied for the first time, and the generated broadband chaotic microwave signal has been analyzed. The generator represented a ring circuit with the microwave tract containing a low-pass filter and a microwave amplifier. The optical tract comprised a fiber delay line. The possibility of generating chaotic oscillations with uniform spectral power density in a 3-8 GHz range is demonstrated.

  10. A substrate-modified CPW-based linear microwave phase shifter

    Science.gov (United States)

    Kulandhaisamy, Indhumathi; Kumar, Shrivastav Arun; Kanagasabai, Malathi

    2015-10-01

    A novel method for achieving linear phase shift is proposed over the frequency range of 2 - 6 GHz. Dielectric characterization of FR4 substrate interfaced with air as well as water produces the phase shift. The substrate property is modified by introducing a plain rectangular packet and W-shaped packet within the FR4 substrate. The overall dimension of the proposed structure is 30 × 60 mm2. Across the entire proposed frequency range, the reflection coefficient is less than -10 dB. The proposed coplanar waveguide with water- and air-stacked FR4 substrate is simulated, fabricated, and measured for its linear phase shifting characteristics analyzed in ISM 2.45, 3.3, and 5.8 GHz bands. The analysis over the entire band depicts that the differential shift in phase is directly proportional to the effective dielectric constant of the material used. The design will be more useful in automotive anti-collision radars in military, cellular base stations, and satellite communications.

  11. Sideband generation technique for optical phase locking for coherent optical/microwave applications

    Science.gov (United States)

    Vallestero, Neil John

    2000-12-01

    The goal of this research is to build a prototype frequency agile optical millimeter wave generator. The generator output consists of a pair of optical signals on the slow axis of a polarization maintaining optical fiber. The signals then produce a low phase noise electrical modulation when interfered on the active area of a photodiode. One advantage of our approach is that it does not require high speed electronics-unlike the optical phase lock loop approach, which requires signal processing at the millimeter wave frequency. Specifically, we use an optical sideband filtering technique, in which two lines of a comb spectrum are selected and interfered to produce a radio-frequency optical power modulation. The comb spectrum is generated using a phase modulator, and fiber Bragg grating optical filters are used to block all but the two desired sidebands. This technique can meet the mm-wave generator specifications without the need to develop wideband frequency or phase locking loops, reducing risk and the generator cost.

  12. Three-dimensional microwave imaging for breast-cancer detection using the log-phase formulation

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Meincke, Peter; Kim, Oleksiy S.

    2007-01-01

    The log-phase formulation is applied for the reconstruction of images from a simulation of a three-dimensional imaging system. By using this formulation, a clear improvement in the quality of the reconstructed images is achieved compared to the case in which the usual complex phasor notation is e...

  13. Enhancement of the low-frequency response of a reflective semiconductor optical amplifier slow light-based microwave phase shifter by forced coherent population oscillations

    Science.gov (United States)

    Meehan, Aidan; Connelly, Michael J.

    2014-05-01

    The enhancement of the low frequency gain response of a microwave phase shifter based on slow light in a bulk reflective semiconductor optical amplifier (RSOA), by using forced coherent population oscillations (FCPO), is experimentally demonstrated. FCPO is achieved by simultaneously modulating the input optical power and bias current. The beat signal gain improvement ranges from 45 to 0 dB over a frequency range of 0.5 to 2.5 GHz, thereby improving the noise performance of the phase shifter. Tunable phase shifts of up to 40º are possible over this frequency range.

  14. Broadband Telecommunications Benchmarking Study

    OpenAIRE

    2004-01-01

    This report assesses Ireland's competitiveness relative to 21 countries, with particular focus on the broadband telecommunications requirements of the enterprise sector. The report outlines strengths and weaknesses that currently exist and progress that has already been made. It also makes a series of recommendations to further promote the development of the broadband market in Ireland.

  15. The Broadband Buzz.

    Science.gov (United States)

    Buchanan, Bruce

    2003-01-01

    "Broadband," the term for a variety of high-speed Internet options, opens up many opportunities for online classroom learning. Challenges for school districts include keeping the network running, training teachers, and paying for it. A sidebar lists broadband resources. (MLF)

  16. Microwave field-efffect transistors theory, design, and application

    CERN Document Server

    Pengelly, Raymond

    1994-01-01

    This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.

  17. Microwave detection of the primary ozonide of ethylene in the gas phase

    Science.gov (United States)

    Zozom, J.; Gillies, C. W.; Suenram, R. D.; Lovas, F. J.

    1987-09-01

    The primary ozonide of ethylene ? has been observed and studied in the gas phase for the first time. A specially designed low-temperature absorption cell was employed in which the primary ozonide was prepared in situ by the low-temperature reaction of ozone with ethylene. An assignment of the rotational spectrum and electric dipole moment measurements have established the oxygen envelope conformation (C s symmetry) to the lowest-energy form for this elusive chemical species.

  18. Generation of triangular waveforms based on a microwave photonic filter with negative coefficient.

    Science.gov (United States)

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Wei Yu; Zhu, Ning Hua

    2014-06-16

    We report a novel approach to generating full-duty-cycle triangular waveforms based on a microwave photonic filter (MPF) with negative coefficient. It is known that the Fourier series expansion of a triangular waveform has only odd-order harmonics. In this work, the undesired even-order harmonics are suppressed by the MPF that has a periodic transmission response. A triangular waveform at fundamental frequency can be generated by setting the bias of a Mach-Zehnder modulator (MZM) at quadrature point. However, it is found that a broadband 90° microwave phase shifter has to be used after photodetection to adjust the phases of odd-order harmonics. Alternatively, a frequency doubling triangular waveform can be generated by setting the bias of the MZM at maximum or minimum transmission point. This approach is more promising because the broadband microwave phase shifter is no longer required in this case but it is more power consuming. The proposed approach is theoretically analyzed and experimentally verified. PMID:24977593

  19. High-power Microwave Pulse Compression of Klystrons by Phase-Modulation of High-Q Storage Cavities

    CERN Document Server

    Bossart, Rudolf; Mourier, J; Syratchev, I V; Tanner, L

    2004-01-01

    At the CERN linear electron accelerators LIL and CTF, the peak RF power from the 3GHz-klystrons was doubled by means of LIPS microwave pulse compressors. To produce constant RF power from the cavity-based pulse compressors, the klystrons were driven by a fast RF-phase modulation program. For the CLIC Test Facility CTF3, a new type of a Barrel Open Cavity (BOC) with a high quality factor Q0 has been developed. Contrary to LIPS with two resonant cavities, BOC operates with a single cavity supporting two orthogonal resonant modes TM 10,1,1 in the same cavity. For both LIPS and BOC storage cavities, it is important that the RF power reflected back to the klystron is minimal. This implies that the resonant frequencies, Q-factors and coupling factors of the two resonant modes of a pulse compressor are closely matched, and that the resonant frequencies are accurate to within a few KHz. The effects of small differences between the two orthogonal modes of the BOC cavity have been investigated. The dynamic pulse respon...

  20. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Science.gov (United States)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  1. Microwave Oscillator with Phase Noise Reduction Using Nanoscale Technology for Wireless Systems

    OpenAIRE

    Aqeeli, Mohammed Ali M

    2015-01-01

    This thesis introduces, for the first time, a novel 4-bit, metal-oxide-metal (MOM) digital capacitor switching array (MOMDCSA) which has been implemented into a wideband CMOS voltage controlled oscillator (VCO) for 5 GHz WiMAX/WLAN applications. The proposed MOMDCSA is added both in series and parallel to nMOS varactors. For further gain linearity, a wider tuning range and minor phase noise variations, this varactor bank is connected in parallel to four nMOS varactor pairs, each of which is b...

  2. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    Science.gov (United States)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  3. Phase-coherent microwave-to-optical link with a self-referenced microcomb

    Science.gov (United States)

    Del'Haye, Pascal; Coillet, Aurélien; Fortier, Tara; Beha, Katja; Cole, Daniel C.; Yang, Ki Youl; Lee, Hansuek; Vahala, Kerry J.; Papp, Scott B.; Diddams, Scott A.

    2016-08-01

    Precise measurements of the frequencies of light waves have become common with mode-locked laser frequency combs. Despite their huge success, optical frequency combs currently remain bulky and expensive laboratory devices. Integrated photonic microresonators are promising candidates for comb generators in out-of-the-lab applications, with the potential for reductions in cost, power consumption and size. Such advances will significantly impact fields ranging from spectroscopy and trace gas sensing to astronomy, communications and atomic time-keeping. Yet, in spite of the remarkable progress shown over recent years, microresonator frequency combs (‘microcombs’) have been without the key function of direct f-2f self-referencing, which enables precise determination of the absolute frequency of each comb line. Here, we realize this missing element using a 16.4 GHz microcomb that is coherently broadened to an octave-spanning spectrum and subsequently fully phase-stabilized to an atomic clock. We show phase-coherent control of the comb and demonstrate its low-noise operation.

  4. Rapid microwave-assisted sol-gel preparation of Pd-substituted LnFeO3 (Ln = Y, La): phase formation and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Misch, Lauren M.; Birkel, Alexander; Figg, C. Adrian; Fors, Brett P.; Hawker, Craig J.; Stucky, Galen D.; Seshadri, Ram [UCSB

    2014-02-13

    We present a rapid microwave-assisted sol–gel approach to Pd-substituted LnFeO3 (Ln = Y, La) for applications in C–C coupling reactions. These materials could be prepared in household microwave ovens in less than 15 minutes of reaction time with the final materials displaying well-defined structure and morphology. Phase evolution was studied using time-dependent microwave heatings and then compared with the results obtained from thermogravimetric analyses. Materials were confirmed to be phase pure by laboratory and synchrotron X-ray diffraction. Substituted Pd is ionic as shown by the binding energy shift from X-ray photoelectron spectroscopy. The short heating periods required for phase purity allow these materials less time for sintering as compared to conventional solid state preparation methods, making relatively high surface areas achievable. These materials have been successfully used as catalyst precursor materials for C–C coupling reactions in which the active species is Pd0. Pd-substituted LnFeO3 (Ln = Y, La) provides Pd0 in solution which can be complexed by the ligand SPhos, allowing for aryl chloride coupling.

  5. Rapid microwave-assisted sol-gel preparation of Pd-substituted LnFeO3 (Ln = Y, La): phase formation and catalytic activity.

    Science.gov (United States)

    Misch, Lauren M; Birkel, Alexander; Figg, C Adrian; Fors, Brett P; Hawker, Craig J; Stucky, Galen D; Seshadri, Ram

    2014-02-01

    We present a rapid microwave-assisted sol-gel approach to Pd-substituted LnFeO3 (Ln = Y, La) for applications in C-C coupling reactions. These materials could be prepared in household microwave ovens in less than 15 minutes of reaction time with the final materials displaying well-defined structure and morphology. Phase evolution was studied using time-dependent microwave heatings and then compared with the results obtained from thermogravimetric analyses. Materials were confirmed to be phase pure by laboratory and synchrotron X-ray diffraction. Substituted Pd is ionic as shown by the binding energy shift from X-ray photoelectron spectroscopy. The short heating periods required for phase purity allow these materials less time for sintering as compared to conventional solid state preparation methods, making relatively high surface areas achievable. These materials have been successfully used as catalyst precursor materials for C-C coupling reactions in which the active species is Pd(0). Pd-substituted LnFeO3 (Ln = Y, La) provides Pd(0) in solution which can be complexed by the ligand SPhos, allowing for aryl chloride coupling. PMID:24280775

  6. Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the analysis of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Navarro, P; Cortazar, E; Bartolomé, L; Deusto, M; Raposo, J C; Zuloaga, O; Arana, G; Etxebarria, N

    2006-09-22

    The feasibility of different clean-up procedures was studied for the determination of polycyclic aromatic hydrocarbons (PAHs) in biota samples such as oysters, mussels and fish liver. In this sense, once the samples were extracted--essentially with acetone and in a microwave system--and before they could be analysed by gas chromatography-mass spectrometry (GC-MS), three different approaches were studied for the clean-up step: solid phase extraction (SPE), microwave-assisted saponification (MAS) and gel permeation chromatography (GPC). The main aim of this work was to maximise the recoveries of PAHs and to minimise the presence of interfering compounds in the last extract. In the case of SPE, Florisil cartridges of 1, 2 and 5 g, and silica cartridges of 5 g were studied. In that case, and with oysters and mussels, microwave-assisted extraction and 5 g Florisil cartridges provided good results. In addition, the concentrations obtained for Standard Reference Material (SRM) NIST 2977 (mussel tissue) were in good agreement with the certified values. In the case of microwave-assisted saponification, the extracts were not as clean as those obtained with 5 g Florisil and this fact lead to overestimate the concentration of the heaviest PAHs. Finally, the cleanest extracts were obtained by GPC. The method was successfully applied to mussels, oysters and hake liver, and the results obtained for NIST 2977 (mussel tissue) were within the confidence interval of the certified reference material for most of the certified analytes.

  7. Broadband adoption by SMES

    OpenAIRE

    Oni, Oluwasola

    2007-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Because the benefits of broadband for businesses have been widely publicized, the UK government has tried to ensure that there is a wide and fast take-up of the technology. Initial figures showed that broadband adoption by SMEs was particularly slow and there has been little research on the use of broadband by businesses, particularly SMEs. An in-depth study into the roles and activities of t...

  8. Microwave spectroscopy of biomolecular building blocks.

    Science.gov (United States)

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment. PMID:25721775

  9. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  10. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    Science.gov (United States)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-01-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs. PMID:27481661

  11. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    Science.gov (United States)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  12. Microwave and RF Applications for Micro-resonator based Frequency Combs

    CERN Document Server

    Nguyen, Thach G; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contr...

  13. 76 FR 32901 - The Provision of Fixed and Mobile Broadband Access, Educational and Other Advanced Services in...

    Science.gov (United States)

    2011-06-07

    ... broadband service using the Worldwide Interoperability for Microwave Access (WiMAX) version 802.16e standard. WiMAX is a wireless broadband access technology based on the Institute of Electrical and Electronics... subscriber station and base station with a typical cell radius of 3 to 10 kilometers. WiMAX can support...

  14. Frequency-agile microwave components using ferroelectric materials

    Science.gov (United States)

    Colom-Ustariz, Jose G.; Rodriguez-Solis, Rafael; Velez, Salmir; Rodriguez-Acosta, Snaider

    2003-04-01

    The non-linear electric field dependence of ferroelectric thin films can be used to design frequency and phase agile components. Tunable components have traditionally been developed using mechanically tuned resonant structures, ferrite components, or semiconductor-based voltage controlled electronics, but they are limited by their frequency performance, high cost, hgih losses, and integration into larger systems. In contrast, the ferroelectric-based tunable microwave component can easily be integrated into conventional microstrip circuits and attributes such as small size, light weight, and low-loss make these components attractive for broadband and multi-frequency applications. Components that are essential elements in the design of a microwave sensor can be fabricated with ferroelectric materials to achieve tunability over a broad frequency range. It has been reported that with a thin ferroelectric film placed between the top conductor layer and the dielectric material of a microstrip structure, and the proper DC bias scheme, tunable components above the Ku band can be fabricated. Components such as phase shifters, coupled line filters, and Lange couplers have been reported in the literature using this technique. In this wokr, simulated results from a full wave electromagnetic simulator are obtained to show the tunability of a matching netowrk typically used in the design of microwave amplifiers and antennas. In addition, simulated results of a multilayer Lange coupler, and a patch antenna are also presented. The results show that typical microstrip structures can be easily modified to provide frequency agile capabilities.

  15. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  16. Optical frequency comb technology for ultra-broadband radio-frequency photonics

    CERN Document Server

    Torres-Company, Victor

    2014-01-01

    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.

  17. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  18. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    Science.gov (United States)

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system. PMID:26699033

  19. BCT phase formation in synthesis via microwave assisted hydrothermal method; Limite da concentracao de Ca na formacao da fase BCT em sintese via metodo hidrotermico assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Barra, B.C.; Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Lanzi, C.A.C. [Universidade Estadual Paulista Julio de Mesquita Filho (FCT/DFQB/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencia e Tecnologia. Dept. de Fisica, Quimica e Biologia; Longo, E. [Universidade Estadual Paulista Julio de Mesquita Filho (IQ/UNESP/), Araraquara, SP (Brazil); Instituto Nacional de Ciencias e Tecnologia de Materiais em Nanotecnologia (INCTMN), Araraquara, SP (Brazil)

    2012-07-01

    In previous work, samples of barium and calcium titanate (Ba1-xCaxTiO3 (BCT x = 0- 1) were prepared using the microwave assisted hydrothermal method in conditions of relatively short time and temperature. To the sample with 75wt% of Ca no BCT phase was formed but the photoluminescent emission was improved. In the present study, these titanates were synthesized by the same method with other concentrations of Ca, Ba1-xCaxTiO3 (x = 0, 0.20, 0.40, 0. 60, 0.80 and 1) to evaluate the limit of BCT phase formation. Results of X-ray diffraction showed that the phase BCT is formed between zero and 50wt%-Ca, in Ba substitution. Above this concentration, was observed only the formation of carbonates, and to x = 1 there was carbonate formation together with CaTiO3. These results were confirmed by micro Raman spectroscopy. (author)

  20. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    Science.gov (United States)

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field. PMID:20411021

  1. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver

    CERN Document Server

    Portuondo-Campa, Erwin; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-01-01

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the current phase-noise limitations in the system.

  2. Direct UV-written broadband directional broadband planar waveguide couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation.......We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  3. Understanding the structure and dynamic of odorants in the gas phase using a combination of microwave spectroscopy and quantum chemical calculations

    Science.gov (United States)

    Mouhib, Halima

    2014-07-01

    This tutorial is an introduction for PhD students and researchers who intend to start their future work in the field of microwave spectroscopy to investigate structural and dynamical aspects of isolated molecular systems in the gas phase. Although the presented case studies are related to odorants, i.e., volatile molecules that possess a noticeable scent, the background and applications of the method can be transferred to any other resembling molecular system. In the early days, microwave spectroscopy was mainly related to the structure determination of very small systems such as OCS or ammonia, where the bond lengths could be determined with high accuracy by measuring the different isotopic species of the molecules. Nowadays, the method is far more advanced and is also used to tackle various fundamental molecular problems in different fields such as physical chemistry and molecular physics. Interesting questions that can be investigated concern, e.g., the molecular structure, i.e., the different conformations, not only of the isolated molecule but also of van der Waals complexes with water, noble gases or other molecules. The dynamical and intra- or intermolecular effects can be straightforwardly observed without the influence of the environment as in the condensed phase. This evolution was only achieved by using quantum chemical methods as a complementary tool to elude the necessity of isotopologues for structure determination, which cannot be realized for large systems (>5 atoms). The combination of microwave spectroscopy and quantum chemical calculations is the method of choice when it comes to sampling the conformational space of molecules. This is particularly the case when small energy differences make it difficult to determine the conformers of the lowest energy using computational methods alone. Although quantum chemical calculations are important for the validation of microwave spectra, the focus of the tutorial is set on the experimental part of the

  4. A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts

    Institute of Scientific and Technical Information of China (English)

    Qi-Jun Fu; Yi-Hua Yan; Yu-Ying Liu; Min Wang; Shu-Juan Wang

    2004-01-01

    The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS)superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations(tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave "patches", unlike those reported previously, were observed with very short durations (about 300 ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths(about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.

  5. Highly Reflecting, Broadband Deformable Membrane Mirror for Wavefront Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will develop a highly reflecting, broadband, radiation resistant, low-stress and lightweight, membrane integrated into an...

  6. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume IV. Microwave system. Preliminary design report

    International Nuclear Information System (INIS)

    The EBT-P Microwave System provides microwaves for electron cyclotron resonance heating (ECRH) to both stabilize and heat the EBT-P plasma. A 28 gigahertz (GHz) system is required to form the hot electron annulus plasma that provides MHD stabilization to the core plasma. A 60 GHz system is required to heat the core plasma and will provide some second harmonic heating of the hot electron annulus. The principal microwave system elements and their design characteristics are summarized. The microwave system includes 200 kilowatt (kW) gyrotrons at 60 GHz for core heating and 200 kW gyrotrons at 28 GHz for annulus heating. The basic operating complement will be six (6) 60 GHz tubes and two (2) 28 GHz tubes. PACE (Plant and Capital Equipment) procurement will include four (4) 60 GHz gyrotrons with two (2) GHz tubes procured under operations and the two (2) 28 GHz tubes will be provided, with mounts, from the EBT-S program. Each tube is rigidly mounted on an oil filled tank assembly which provides electrical isolation and cooling. All tubes and mounts will be located in the lower level of the torus enclosure. An extensive demineralized water flow system is required to provide gyrotron cooling

  7. Stable microwave generation in a dual-phase-shifted $Al_2O_3:Yb^{3+}$ distributed-feedback waveguide laser

    NARCIS (Netherlands)

    Bernhardi, E.H.; Wolferen, van H.A.G.M.; Wörhoff, K.; Ridder, de R.M.; Pollnau, M.

    2012-01-01

    A dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminum oxide was used to create a microwave beat signal at ~15 GHz, with a frequency stability of ±2.5 MHz and a power stability of ±0.35 dB.

  8. Microwave Radiometer for Aviation Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SBIR Phase I Project proposes a new passive microwave airborne sensor for in flight icing hazard detection, Microwave Radiometer for Aviation Safety. A feasibility...

  9. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  10. Broadband bow-tie antenna with tapered balun

    OpenAIRE

    Jaafar, Hussein Mohammed

    2014-01-01

    ABSTRACT: In microwave applications spectrum Industrial, Scientific and Medical (ISM) band, especially in wireless communication systems applications such as GSM, 3G, Wi-Fi and Wi-MAX applications, high antenna characteristics such as high gain and wide bandwidth are required. In this thesis, a broadband Bow Tie Antenna (BTA) with high performance characteristics has been designed, to cover the wireless application requirements. One of the fundamental problems of the transmission line in the ...

  11. Magnetically tunable broadband transmission through a single small aperture

    OpenAIRE

    Ke Bi; Wenjun Liu; Yunsheng Guo; Guoyan Dong; Ming Lei

    2015-01-01

    Extraordinary transmission through a small aperture is of great interest. However, it faces a limitation that most of approaches can not realize the tunable transmission property, which is not benefit for the miniaturization of the microwave system. Here, we demonstrate a magnetically tunable broadband transmission through a small aperture. By placing two ferrite rods symmetrically on both sides of a single small aperture, the strongly localized electromagnetic fields are effectively coupled ...

  12. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    Science.gov (United States)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  13. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe(3+) detection and cellular bioimaging.

    Science.gov (United States)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-30

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe(3+) with the limit of detection of 10(-5) M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging. PMID:27573680

  14. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    Science.gov (United States)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  15. Microwave Photonics

    OpenAIRE

    A J Seeds; Liu, C. P.; Ismail, T; Fice, M. J.; Pozzi, F.; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  16. Express and low-cost microwave synthesis of the ternary Chevrel phase Cu2Mo6S8 for application in rechargeable magnesium batteries

    Science.gov (United States)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo; Monconduit, Laure; Berthelot, Romain

    2016-10-01

    The ternary Chevrel phase Cu2Mo6S8 was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu2Mo6S8 could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo6S8 was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperature solid-state routes.

  17. Statistics and Classification of the Microwave Zebra Patterns Associated with Solar Flares

    CERN Document Server

    Tan, Baolin; Zhang, Yin; Meszarosova, H; Karlicky, M

    2013-01-01

    The microwave zebra pattern (ZP) is the most interesting, intriguing, and complex spectral structure frequently observed in solar flares. A comprehensive statistical study will certainly help us to understand the formation mechanism, which is not exactly clear now. This work presents a comprehensive statistical analysis on a big sample with 202 ZP events collected from observations at the Chinese Solar Broadband Radio Spectrometer at Huairou and the Ondrejov Radiospectrograph in Czech Republic at frequencies of 1.00 - 7.60 GHz during 2000 - 2013. After investigating the parameter properties of ZPs, such as the occurrence in flare phase, frequency range, polarization degree, duration, etc., we find that the variation of zebra stripe frequency separation with respect to frequency is the best indicator for a physical classification of ZPs. Microwave ZPs can be classified into 3 types: equidistant ZP, variable-distant ZP, and growing-distant ZP, possibly corresponding to mechanisms of Bernstein wave model, whistl...

  18. Weak-limit quasiparticle scattering via microwave spectroscopy of a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W.N.; Turner, P.J.; Harris, R.; Kamal, Saeid; Broun, D.M.; Mullins, G.K.; Liang, Ruixing; Bonn, D.A

    2004-08-01

    Recent progress in the measurement and interpretation of the low temperature microwave electrodynamics of YBa{sub 2}Cu{sub 3}O{sub 6+x} is reviewed. Using a broadband bolometric technique, we have been able to measure the microwave conductivity of YBa{sub 2}Cu{sub 3}O{sub 6.50} and YBa{sub 2}Cu{sub 3}O{sub 6.99} from 0.6 to 21 GHz. For the first time, the cusp-shaped conductivity spectra characteristic of weak-impurity scattering in a d-wave superconductor have been observed. Surprisingly, weak-limit scattering is seen from 1 to over 7 K in the underdoped sample, but develops in the fully oxygen-doped sample only below about 2.5 K. Preliminary ideas to explain this difference in terms of intermediate scattering phase shifts are presented.

  19. Resonant Phase Matching of Josephson Junction Traveling Wave Parametric Amplifiers

    Science.gov (United States)

    O'Brien, Kevin; Macklin, Chris; Siddiqi, Irfan; Zhang, Xiang

    2014-10-01

    We propose a technique to overcome phase mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nanomechanical elements, as well as traditional astronomical detectors.

  20. Design of HMC703-based broadband frequency synthesizer with low phase noise and low spurious%基于HMC703的宽带低相噪低杂散频率合成器设计

    Institute of Scientific and Technical Information of China (English)

    张兰; 刘玉宝; 吴国乔; 赵伟; 张燕

    2014-01-01

    The software and hardware design scheme of 400 MHz to 1 000 MHz broadband frequency synthesizer with low phase noise and low spurious based on HMC703 is introduced. The software simulation curve and the actual curve of the phase noise are provided. The debugging experiment result demonstrates that the design has achieved the expected technology index. Some software control code are also given,which has guiding significance to PLL chip users.%主要介绍了基于HMC703锁相环芯片的400~1000 MHz宽带低相噪低杂散频率合成器的软硬件设计方案,给出了相位噪声软件仿真曲线和实际测试得到的曲线,调试实验结果表明,该设计较好地达到了预期指标要求,还给出了部分软件控制代码,对于使用该芯片的用户起到一定的指导意义。

  1. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-01

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  2. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-19

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  3. O uso do forno de microondas na síntese orgânica em fase sólida The use of microwave ovens in solid-phase organic synthesis

    Directory of Open Access Journals (Sweden)

    Cedric Stephan Graebin

    2005-02-01

    Full Text Available Solid-phase organic synthesis (SPOS has been considered the main strategy for the construction of combinatorial libraries, because its simplicity leads to faster synthetic procedures. In addition to that, a series of reports in the specialized literature show great advantages in the use of microwave activation, when compared to classical heating, for instance: shorter reaction times, in some cases from several hours to a few minutes, increase of selectivity and product yields, energy economy and reduction and/or elimination of solvent. This review describes the use of microwave ovens/reactors in solid phase organic synthesis, describing the advantages, equipment and reactions using both techniques.

  4. 1.2~1.4GHz 300W Broadband Silicon Microwave Pulsed High Power Transistors%1.2~1.4GHz300W宽带硅微波脉冲大功率管

    Institute of Scientific and Technical Information of China (English)

    王因生; 丁晓明; 蒋幼泉; 傅义珠; 王佃利; 王志楠; 盛国兴; 严德圣

    2012-01-01

    介绍了L波段宽带硅微波脉冲300W大功率晶体管研制结果.该器件采用微波功率管环台面集电极结终端结构、非线性镇流电阻和热稳定等新工艺技术,在1.2~1.4 GHz频带内,脉宽150μs,占空比10%和40V工作电压下,全带内脉冲输出功率大于300W,功率增益大于8.75 dB,效率大于55%.%Using the novel technologies such as so-called mesa junction termination structure with one guard ring 、un-linear blasting resistor of microwave power transistor and heat stability, the L-band silicon pulsed power transistor has been developed. The results show that the pulsed output power is over 300 W,the power gain is more than 8. 75 dB and the collector efficiency is more than 55% covering the frequency from 1. 2~1- 4 GHz under the conditions of 40 V supply voltage,150 μs pulse width and 10% duty cycle.

  5. Ultra-Broadband Coherent Supercontinuum Frequency Comb

    CERN Document Server

    Ruehl, Axel; Cossel, Kevin C; Chen, Lisheng; McKay, Hugh; Thomas, Brian; Benko, Craig; Dong, Liang; Dudley, John M; Fermann, Martin E; Hartl, Ingmar; Ye, Jun

    2011-01-01

    We present detailed studies of the coherence properties of an ultra-broadband super-continuum, enabled by a new approach involving continuous wave laser sources to independently probe both the amplitude and phase noise quadratures across the entire spectrum. The continuum coherently spans more than 1.5 octaves, supporting Hz-level comparison of ultrastable lasers at 698 nm and 1.54 {\\mu}m. We present the first numerical simulation of the accumulated comb coherence in the limit of many pulses, in contrast to the single-pulse level, with systematic experimental verification. The experiment and numerical simulations reveal the presence of quantum-seeded broadband amplitude noise without phase coherence degradation, including the discovery of a dependence of the super-continuum coherence on the fiber fractional Raman gain.

  6. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  7. Broadband Approximations for Doubly Curved Reflector Antenna

    OpenAIRE

    V. Schejbal; J. Pidanic

    2010-01-01

    The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn) producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth ...

  8. Phase Transition and Microwave Dielectric Properties of Low-Temperature Sintered BiCu2VO6 Ceramic and its Chemical Compatibility with Silver

    Science.gov (United States)

    Li, Chunchun; Xiang, Huaicheng; Fang, Liang

    2016-01-01

    In this work, a low-firing microwave dielectric ceramic BiCu2VO6 with monoclinic structure was prepared through a solid state reaction method. Dense ceramic could be obtained when sintered at 740°C with a relative density about 96.7%. A diffusive phase transition was observed from the temperature dependence of the relative permittivity and loss tangent. The best sintered sample at 740°C exhibited the optimum microwave dielectric properties with a relative permittivity ~22.7, a quality factor ~11,960 GHz (at 11.0 GHz), and a temperature coefficient of resonant frequency of -17.2 ppm/°C. From the x-ray diffraction, backscattered electron imaging results of the cofired sample with 20 wt.% silver, the BiCu2VO6 ceramic was found not to react with Ag at 740°C. It might be promising for the low-temperature cofired ceramics and dielectric resonator applications.

  9. Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux

    Institute of Scientific and Technical Information of China (English)

    YANG Qing-Hui; ZHNAG Huai-Wu; WEN Qi-Ye; LIU Ying-Li; Ihor M. Syvorotka; Ihor I. Syvorotka

    2009-01-01

    @@ Lu2.1Bi0.9Fe5O12 (LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on gadolinium gallium garnet (GGG) substrates from lead-free flux. Three-inch single crystal garnet films with (444) orientation and good surface are successfully fabricated. The lattice mismatch to the GGG(111) substrate is as small as 0.08%. The ferromagnetic resonance (FMR) linewidth of the film is 2△H = 2.8-5.1 Oe, the Faraday rotation is 1.64 deg/μm at 633nm at room temperature and the optical absorption coefficient of the film is 600 cm-1 in visible range and about 100-170cm-1 when the wavelength is larger than 800nm. The epitaxy film possesses dominating in-plane magnetization with a saturation magnetization of about 1562G. These superior optical, magnetic-optical (MO) and microwave properties of our garnet films have potential applications in both MO and microwave devices.

  10. Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux

    International Nuclear Information System (INIS)

    Lu2.1 Bi0.9Fe5 O12 (LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on gadolinium gallium garnet (GGG) substrates from lead-free flux. Three-inch single crystal garnet films with (444) orientation and good surface are successfully fabricated. The lattice mismatch to the GGG(111) substrate is as small as 0.08%. The ferromagnetic resonance (FMR) linewidth of the film is 2ΔH = 2.8–5.1 Oe, the Faraday rotation is 1.64 deg/μm at 633 nm at room temperature and the optical absorption coefficient of the film is 600 cm−1 in visible range and about 100–170 cm−1 when the wavelength is larger than 800 nm. The epitaxy film possesses dominating in-plane magnetization with a saturation magnetization of about 1562G. These superior optical, magnetic-optical (MO) and microwave properties of our garnet films have potential applications in both MO and microwave devices

  11. One-step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature

    International Nuclear Information System (INIS)

    In this paper, we presented a seed-mediated approach for rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature in 1 h. In the synthesis, CdSe seeds were first formed by the reaction of NaHSe and Cd2+, and then alloyed quantum dots (CdSe-CdS) were rapidly produced by releasing of sulfide ions from 3-mercaptopropionic acid as sulfide source with microwave irradiation. The alloyed quantum dots synthesized had good optical properties, the quantum yield was up to 25%, and the full width at half maximum of the emission spectrum peak was about 28 nm. The as-prepared alloyed CdSe-CdS QDs were characterized by XRD, XPS and ICP-AES in order to explore the structure and component of the alloyed nanocrystals and the reaction mechanism. We speculate that the alloyed CdSe-CdS quantum dots may exist a gradient internal structure according to our preliminary results

  12. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Data.gov (United States)

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  13. A compact broadband nonsynchronous noncommensurate impedance transformer

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the tradit......Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison...... to the traditional tapered line transformers. This flexibility of the broadband nonsynchronous noncommensurate impedance transformers is experimentally demonstrated in this article allowing the length reduction by almost three times. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1832–1835, 2012; View...

  14. Ultra-low-phase-noise cryocooled microwave dielectric-sapphire-resonator oscillators with frequency instability below 1 x 10^-16

    CERN Document Server

    Hartnett, John G; Lu, Chuan

    2012-01-01

    Two nominally identical ultra-stable cryogenic microwave oscillators are compared. Each incorporates a dielectric-sapphire resonator cooled to near 6 K in an ultra-low vibration cryostat using a low-vibration pulse-tube cryocooler. The phase noise for a single oscillator is measured at -105 dBc/Hz at 1 Hz offset on the 11.2 GHz carrier. The oscillator fractional frequency stability is characterized in terms of Allan deviation by 5.3 x 10^-16 tau^-1/2 + 9 x 10^-17 for integration times 0.1 s < tau < 100 s and is limited by a flicker frequency noise floor below 1 x 10^-16.

  15. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface%基于交叉极化旋转相位梯度超表面的宽带异常反射

    Institute of Scientific and Technical Information of China (English)

    范亚; 屈绍波; 王甲富; 张介秋; 冯明德; 张安学

    2015-01-01

    -polarization for linearly-polarized waves within a broadband of 12.2 GHz (from 7.9-20.1 GHz) with more than 99% cross-polarized reflectance. On the premise of high effciency, reflective phase can be regulated by changing geometrical parameter of double-circular metallic structure. Then a broadband one-dimensional dispersive phase gradient metasurface comprised of six unit cells periodically arrayed above substrate is designed and fabricated. The PGM can perfectly achieve anomalous reflection. Measured result about its specular reflectivity is in good agreement with simulated result. Moreover, the measurement results of E-field distribution and anomalous reflective angle nearly accord with simulation results. Anomalous reflective angle is precisely predicted based on the generalized Snell's law. Both simulation and experiment verify that the PGM can make incident waves effciently coupled as surface waves from 8.9-10 GHz and anomalously reflected in a range from 10 GHz to 18.1 GHz.

  16. Broadband frequency conversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter;

    We present a simple, passive and static setup for broadband frequency conversion. By using simple optical components like lenses, mirrors and gratings, we obtain the spectral angular dispersion to match the second harmonic generation phasematching angles in a nonlinear BiBO crystal. We are able to...... frequency double a single-frequency diode laser, tunable in the 1020-1090 nm range, with almost equal efficiency for all wavelengths. In the experimental setup, the width of the phasematch was increased with a factor of 50. The method can easily be extended to other wavelength ranges and nonlinear crystals...

  17. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  18. Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Manan Abdul

    2015-03-01

    Full Text Available Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.

  19. Nanocrystalline TiO2 preparation by microwave route and nature of anatase–rutile phase transition in nano TiO2

    Indian Academy of Sciences (India)

    G M Neelgund; S A Shivashankar; B K Chethana; P P Sahoo; K J Rao

    2011-10-01

    Nanopowders of TiO2 has been prepared using a microwave irradiation-assisted route, starting from a metalorganic precursor, bis(ethyl-3-oxo-butanoato)oxotitanium (IV), [TiO(etob)2]2. Polyvinylpyrrolidone (PVP) was used as a capping agent. The as-prepared amorphous powders crystallize into anatase phase, when calcined. At higher calcination temperature, the rutile phase is observed to form in increasing quantities as the calcination temperature is raised. The structural and physicochemical properties were measured using XRD, FT–IR, SEM, TEM and thermal analyses. The mechanisms of formation of nano-TiO2 from the metal–organic precursor and the irreversible phase transformation of nano TiO2 from anatase to rutile structure at higher temperatures have been discussed. It is suggested that a unique step of initiation of transformation takes place in Ti1/2O layers in anatase which propagates. This mechanism rationalizes several key observations associated with the anatase–rutile transformation.

  20. Broadband pendulum energy harvester

    Science.gov (United States)

    Liang, Changwei; Wu, You; Zuo, Lei

    2016-09-01

    A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.

  1. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd;

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber...

  2. Wide-field broadband radio imaging with phased array feeds: a pilot multi-epoch continuum survey with ASKAP-BETA

    CERN Document Server

    Heywood, I; Marvil, J; Allison, J R; Ball, L; Bell, M E; Bock, D C -J; Brothers, M; Bunton, J D; Chippendale, A P; Cooray, F; Cornwell, T J; DeBoer, D; Edwards, P; Gough, R; Gupta, N; Harvey-Smith, L; Hay, S; Hotan, A W; Indermuehle, B; Jacka, C; Jackson, C A; Johnston, S; Kimball, A E; Koribalski, B S; Lenc, E; Macleod, A; McClure-Griffiths, N; McConnell, D; Mirtschin, P; Murphy, T; Neuhold, S; Norris, R P; Pearce, S; Popping, A; Qiao, R Y; Reynolds, J E; Sadler, E M; Sault, R J; Schinckel, A E T; Serra, P; Shimwell, T W; Stevens, J; Tuthill, J; Tzioumis, A; Voronkov, M A; Westmeier, T; Whiting, M T

    2016-01-01

    The Boolardy Engineering Test Array is a 6 x 12 m dish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAP's phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within a 30 square degree field of view. By cycling the array through 12 interleaved pointing positions and using 9 digitally formed beams we effectively mimic a traditional 1 hour x 108 pointing survey, covering 150 square degrees over 711 - 1015 MHz in 12 hours of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1-sigma thermal noise level of 375 micro-Jy per beam, although the effective noise is a factor 3 higher due to residual sidelobe confusion...

  3. Broadband second harmonic generation in whispering gallery mode resonators

    OpenAIRE

    Lin, Guoping; Fürst, Josef U.; Strekalov, Dmitry V.; Yu, Nan

    2013-01-01

    Optical frequency conversion processes in nonlinear materials are limited in wavelength by the accessible phase matching and the required high pump powers. In this letter, we report a novel broadband phase matching (PM) technique in high quality factor (Q) whispering gallery mode (WGM) resonators made of birefringent crystalline materials. This technique relies on two interacting WGMs, one with constant and the other with spatially oscillating phase velocity. Thus, phase matching occurs cycli...

  4. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    over the poles. The system consists of a constellation of 4 geostationary satellites covering the earth and delivering its signals to the aircraft at S band (2.52 -2.67 GHz). The S-band spectrum is ideal for this application since it is allocated on a primary basis by the ITU for global broadcast service. The AirTV service is expected to begin in 2004 and should be unencumbered by adjacent satellite interference due to near completion of the ITU coordination process. Each satellite will deliver four 20 Mbps QPSK data streams consisting of multiplexed compressed digital video channels and IP data over the full global beam coverage. The 80 Mbps capacity of each satellite will provide approximately 60 video channels while still allocating 40 Mbits to data services. The combined constellation capacity of 320 Mbits will significantly exceed the capacity of any similar existing or currently planned global satellite system. In addition, the simplicity of the 4-satellite approach is the most cost effective means to deliver high bandwidth globally. Return links, which are required for internet service, will be provided through the existing Inmarsat Aero-H system already onboard virtually all long haul aircraft and will provide return data rates from the aircraft as high as 432 kbps. integrated receiver/decoder (IRD) assembly. The phased array antenna, a key technology element, is being developed by AirTV's strategic partner, CMC Electronics. This antenna is a scaled version of CMC's Inmarsat Aero H antenna and is capable of scanning to 5 degrees above the horizon. Wide angle scanning up to 85 degrees from zenith is necessary for aircraft traversing the northernmost latitudes on transoceanic routes. AirTV has designed both the satellite coverage and aircraft antenna performance to ensure that high signal quality is maintained along all non-polar airline routes. AirTV will be the future of aeronautical broadband delivery. It has been designed specifically for global services and

  5. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    over the poles. The system consists of a constellation of 4 geostationary satellites covering the earth and delivering its signals to the aircraft at S band (2.52 -2.67 GHz). The S-band spectrum is ideal for this application since it is allocated on a primary basis by the ITU for global broadcast service. The AirTV service is expected to begin in 2004 and should be unencumbered by adjacent satellite interference due to near completion of the ITU coordination process. Each satellite will deliver four 20 Mbps QPSK data streams consisting of multiplexed compressed digital video channels and IP data over the full global beam coverage. The 80 Mbps capacity of each satellite will provide approximately 60 video channels while still allocating 40 Mbits to data services. The combined constellation capacity of 320 Mbits will significantly exceed the capacity of any similar existing or currently planned global satellite system. In addition, the simplicity of the 4-satellite approach is the most cost effective means to deliver high bandwidth globally. Return links, which are required for internet service, will be provided through the existing Inmarsat Aero-H system already onboard virtually all long haul aircraft and will provide return data rates from the aircraft as high as 432 kbps. integrated receiver/decoder (IRD) assembly. The phased array antenna, a key technology element, is being developed by AirTV's strategic partner, CMC Electronics. This antenna is a scaled version of CMC's Inmarsat Aero H antenna and is capable of scanning to 5 degrees above the horizon. Wide angle scanning up to 85 degrees from zenith is necessary for aircraft traversing the northernmost latitudes on transoceanic routes. AirTV has designed both the satellite coverage and aircraft antenna performance to ensure that high signal quality is maintained along all non-polar airline routes. AirTV will be the future of aeronautical broadband delivery. It has been designed specifically for global services and

  6. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    International Nuclear Information System (INIS)

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10−14 for the Cs cell clock and 2 × 10−14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10−15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards

  7. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  8. Microwave-assisted solid-phase peptide synthesis of the 60-110 domain of human pleiotrophin on 2-chlorotrityl resin.

    Science.gov (United States)

    Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore

    2011-05-01

    A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond. PMID:20872260

  9. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  10. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  11. Metasurface Broadband Solar Absorber.

    Science.gov (United States)

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  12. Bragg-Berry mirrors: reflective broadband q-plates.

    Science.gov (United States)

    Rafayelyan, Mushegh; Brasselet, Etienne

    2016-09-01

    We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and, consequently, foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies. PMID:27607950

  13. Bragg-Berry mirrors: reflective broadband q-plates

    CERN Document Server

    Rafayelyan, Mushegh

    2016-01-01

    We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and consequently foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies.

  14. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  15. A Performance Study of Wireless Broadband Access (WiMAX

    Directory of Open Access Journals (Sweden)

    Maan A. S. Al-Adwany

    2011-12-01

    Full Text Available WiMAX (worldwide interoperability for microwave access is one of the wireless broadband access technologies which supplies broadband services to clients, but it surpasses other technologies by its coverage area, where one base station can cover a small city. In this paper, WiMAX technology is studied by exploring its basic concepts, applications, and advantages / disadvantages. Also a MATLAB simulator is used to verify the operation of the WiMAX system under various channel impairments and for variety of modulation schemes. From the simulation results, we found that WiMAX system works well in both AWGN and multipath fading channels, but under certain constraints that are addressed in this paper.

  16. Design-oriented analytic model of phase and frequency modulated optical links

    Science.gov (United States)

    Monsurrò, Pietro; Saitto, Antonio; Tommasino, Pasquale; Trifiletti, Alessandro; Vannucci, Antonello; Cimmino, Rosario F.

    2016-07-01

    An analytic design-oriented model of phase and frequency modulated microwave optical links has been developed. The models are suitable for design of broadband high dynamic range optical links for antenna remoting and optical beamforming, where noise and linearity of the subsystems are a concern Digital filter design techniques have been applied to the design of optical filters working as frequency discriminator, that are the bottleneck in terms of linearity for these systems. The models of frequency modulated, phase modulated, and coherent I/Q link have been used to compare performance of the different architectures in terms of linearity and SFDR.

  17. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  18. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  19. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  20. Quasi-periodic wiggles of microwave zebra structures in a solar flare

    CERN Document Server

    Yu, Sijie; Selzer, L A; Tan, Baolin; Yan, Yihua

    2013-01-01

    Quasi-periodic wiggles of microwave zebra pattern structures with period range from about 0.5 s to 1.5 s are found in a X-class solar flare on 2006 December 13 at the 2.6-3.8 GHz with the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou). Periodogram and correlation analysis show that the wiggles have two-three significant periodicities and almost in phase between stripes at different frequency. The Alfven speed estimated from the zebra pattern structures is about 700 Km/s. We obtain the spatial size of the waveguiding plasma structure to be about 1 Mm with the detected period of about 1 s. It suggests the ZP wiggles can be associated with the fast mag- netoacoustic oscillations in the flaring active region. The lack of a significant phase shift between wiggles of different stripes suggests that the ZP wiggles are caused by a standing sausage oscillation.

  1. Cumulative-Phase-Alteration of Galactic-Light Passing Through the Cosmic-Microwave-Background: A New Mechanism for Some Observed Spectral-Shifts

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-07-01

    Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.

  2. Microwavable thermal energy storage material

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  3. Microwavable thermal energy storage material

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  4. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose;

    2009-01-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combin...

  5. High Accuracy Microwave Frequency Measurement Based on Single-Drive Dual-Parallel Mach-Zehnder Modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan;

    2011-01-01

    A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method.......A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method....

  6. Microwave Ovens

    Science.gov (United States)

    ... Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More ... Exporting Electronic Products More in Home, Business, and Entertainment Products Cell Phones Health Issues Reducing Exposure: Hands-free ...

  7. Optical generation of microwave signals with a dual-phase-shifted Al2O3:Yb3+ distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, E.H.; Khan, M.R.H.; Roeloffzen, C.G.H.; Wolferen, van H.A.G.M.; Wörhoff, K.; Ridder, de R.M.; Pollnau, M.

    2012-01-01

    We demonstrate the optical generation of stable microwave signals from a dual-wavelength distributed-feedback waveguide laser in ytterbium-doped alumina. The microwave beat signal was produced at ~15 GHz with a frequency stability of ±2.5 MHz.

  8. Predictions from the van der Pol equation applied to high power microwave phase-locking experiments at Physics International

    International Nuclear Information System (INIS)

    In this paper, the van der Pol equation is evaluated as a model for an experiment in which a high power cavity vircator ws driven by a relativistic magnetron. It is shown that Adler's inequality gives a necessary but not sufficient condition to achieve phase locking between the driving magnetron and the driven vircator oscillations. The amplitude of the entrained oscillations is found as a function of the injected magnetron power, the initial frequency detuning and other system parameters. The stability of these oscillations is examined. Not all entrained states are stable. Boundaries between stable and unstable states are given. It is also shown that the driven oscillator can operate as a beat wave source. Predictions are compared to measurements to validate the model. A similar analysis is extended to two coupled van der Pol equations which model the Pl, phase-locked relativistic magnetron experiments

  9. Broadband Advanced Spectral System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  10. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    Science.gov (United States)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  11. Electron spin resonance insight into broadband absorption of the Cu3Bi(SeO32O2Br metamagnet

    Directory of Open Access Journals (Sweden)

    A. Zorko

    2016-05-01

    Full Text Available Metamagnets, which exhibit a transition from a low-magnetization to a high-magnetization state induced by the applied magnetic field, have recently been highlighted as promising materials for controllable broadband absorption. Here we show results of a multifrequency electron spin resonance (ESR investigation of the Cu3Bi(SeO32O2Br planar metamagnet on the kagome lattice. Its mixed antiferromagnetic/ferromagnetic phase is stabilized in a finite range of applied fields around 0.8 T at low temperatures and is characterized by enhanced microwave absorption. The absorption signal is non-resonant and its boundaries correspond to two critical fields that determine the mixed phase. With decreasing temperature these increase like the sublattice magnetization of the antiferromagnetic phase and show no frequency dependence between 100 and 480 GHz. On the contrary, we find that the critical fields depend on the magnetic-field sweeping direction. In particular, the higher critical field, which corresponds to the transition from the mixed to the ferromagnetic phase, shows a pronounced hysteresis effect, while such a hysteresis is absent for the lower critical field. The observed hysteresis is enhanced at lower temperatures, which suggests that thermal fluctuations play an important role in destabilizing the highly absorbing mixed phase.

  12. Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of N,N'-disubstituted thioureas derived from 3-chlorobenzoic acid.

    Science.gov (United States)

    Rauf, Muhammad Khawar; Zaib, Sumera; Talib, Ammara; Ebihara, Masahiro; Badshah, Amin; Bolte, Michael; Iqbal, Jamshed

    2016-09-15

    A facile and robust microwave-assisted solution phase parallel synthesis protocol was exercised for the development of a 38-member library of N,N'-disubstituted thiourea analogues (1-38) by using an identical set of conditions. The reaction time for synthesis of N,N'-disubstituted thiourea analogues was drastically reduced from a reported duration of 8-12h for conventional methods to only 1.5-2.0min. All the derivatives (1-38) were characterized by physico-analytical techniques such as elemental analysis in combination with FT-IR, (1)H, (13)C NMR and by single crystal XRD analysis have also been performed. These compounds were screened for their in vitro urease inhibition activities. Majority of compounds exhibited potent urease inhibition activities, however, the most significant activity was found for 16, with an IC50 value of 1.23±0.1μM. Furthermore, the synthesized compounds were screened for their cytotoxic potential against lungs cancer cell lines. Cell culture studies demonstrated significant toxicity of the compounds on the cell lines, and the levels of toxicity were altered in the presence of various side groups. The molecular docking studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the urease enzymes. These compounds have a great potential and significance for further investigations. PMID:27480030

  13. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion.

    Science.gov (United States)

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2015-04-01

    We report an analytical methodology for the quantification of common arsenic species in rice and rice cereal using capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICPMS). An enzyme (i.e., α-amylase)-assisted water-phase microwave extraction procedure was used to extract four common arsenic species, including dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenite [As(III)], and arsenate [As(V)] from the rice matrices. The addition of the enzyme α-amylase during the extraction process was necessary to reduce the sample viscosity, which subsequently increased the injection volume and enhanced the signal response. o-Arsanilic acid (o-ASA) was added to the sample solution as a mobility marker and internal standard. The obtained repeatability [i.e., relative standard deviation (RSD %)] of the four arsenic analytes of interest was less than 1.23% for elution time and 2.91% for peak area. The detection limits were determined to be 0.15-0.27 ng g(-1). Rice standard reference materials SRM 1568b and CRM 7503-a were used to validate this method. The quantitative concentrations of each organic arsenic and summed inorganic arsenic were found within 5% difference of the certified values of the two reference materials.

  14. Nanoscale broadband transmission lines for spin qubit control

    Science.gov (United States)

    Dehollain, J. P.; Pla, J. J.; Siew, E.; Tan, K. Y.; Dzurak, A. S.; Morello, A.

    2013-01-01

    The intense interest in spin-based quantum information processing has caused an increasing overlap between the two traditionally distinct disciplines of magnetic resonance and nanotechnology. In this work we discuss rigorous design guidelines to integrate microwave circuits with charge-sensitive nanostructures, and describe how to simulate such structures accurately and efficiently. We present a new design for an on-chip, broadband, nanoscale microwave line that optimizes the magnetic field used to drive a spin-based quantum bit (or qubit) while minimizing the disturbance to a nearby charge sensor. This new structure was successfully employed in a single-spin qubit experiment, and shows that the simulations accurately predict the magnetic field values even at frequencies as high as 30 GHz.

  15. Heterogeneous broadband network

    Science.gov (United States)

    Dittmann, Lars

    1995-11-01

    Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.

  16. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization.

    Science.gov (United States)

    Sidabras, Jason W; Strangeway, Robert A; Mett, Richard R; Anderson, James R; Mainali, Laxman; Hyde, James S

    2016-03-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  17. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization.

    Science.gov (United States)

    Sidabras, Jason W; Strangeway, Robert A; Mett, Richard R; Anderson, James R; Mainali, Laxman; Hyde, James S

    2016-03-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  18. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization

    Science.gov (United States)

    Sidabras, Jason W.; Strangeway, Robert A.; Mett, Richard R.; Anderson, James R.; Mainali, Laxman; Hyde, James S.

    2016-03-01

    Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-optic techniques by minimal coupling to higher-order modes. Only the TE10 mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in

  19. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers

    International Nuclear Information System (INIS)

    The effect of gamma radiation on electrical characteristics of cryogenically cooled broad-band low-noise microwave preamplifiers has been preliminarily evaluated. The change in the gain and noise figure of a 1-2 GHz preamplifier using GaAs microwave transistors was determined at gamma doses between 105 rad to 5 /times/ 108 rad. The gain and noise figure was measured at ambient temperatures of 300 K and 80 K. 8 refs., 2 figs

  20. Studies on the switching speed effect of the phase shift keying in SLED for generating high power microwave

    OpenAIRE

    Zhengfeng, Xiong; Cheng, Cheng; Jian, Yu; Huaibi, Chen; Hui, Ning

    2015-01-01

    SLAC energy doubler (SLED) type radio-frequency pulse compressors are widely used in large-scale particle accelerators for converting long-duration moderate-power input pulse into short-duration high-power output pulse. The phase shift keying (PSK) is one of the key components in SLED pulse compression systems. Performance of the PSK will influence the output characteristics of SLED, such as rise-time of the output pulse, the maximal peak power gain, and the energy efficiency. In this paper, ...

  1. Design of broadband transmission quarter-wave plates for polarization control of isolated attosecond pulses

    International Nuclear Information System (INIS)

    Using a standard Levenberg–Marquardt algorithm, broadband quarter-wave plates (QWPs) with bandwidth from 3 to 18 eV in the extreme ultraviolet (EUV) region were designed using aperiodic Mo/Si multilayers. By analyzing the design results of the Mo/Si multiayers with different bilayer numbers, we found that a Mo/Si multilayer with more bilayers can achieve broader phase control, but suffers from lower total throughput and a degree of circular polarization. In addition, the pulse broadenings caused by the group delay dispersions of the designed broadband QWPs were studied, and their layer distributions were investigated. The oscillating distribution of bilayer thickness in optimized multilayers was observed, which is considered to be the reason for forming the broadband phase control. Such broadband QWPs can be applied to generate a circularly polarized broadband EUV source, such as isolated attosecond pulse, directly from a linearly polarized source. (paper)

  2. Architectures for ku-band broadband airborne satellite communication antennas

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Jorna, Pieter; Roeloffzen, Chris G.H.; Marpaung, David A.I.; Baggen, Rens; Sanadgol, Bahram

    2010-01-01

    This paper describes different architectures for a broadband antenna for satellite communication on aircraft. The antenna is a steerable (conformal) phased array antenna in Ku-band (receive-only). First the requirements for such a system are addressed. Subsequently a number of potential architecture

  3. Rapidly converging multichannel controllers for broadband noise and vibrations

    NARCIS (Netherlands)

    Berkhoff, A.P.

    2010-01-01

    Applications are given of a preconditioned adaptive algorithm for broadband multichannel active noise control. Based on state-space descriptions of the relevant transfer functions, the algorithm uses the inverse of the minimum-phase part of the secondary path in order to improve the speed of converg

  4. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  5. Microwave sintering of sol–gel composite films using a domestic microwave oven

    Science.gov (United States)

    Kobayashi, Makiko; Matsumoto, Makoto

    2016-07-01

    Feasibility study of sol–gel composite microwave sintering using a domestic microwave oven was carried out. Two kinds of lead zirconate titanate (PZT) powders were mixed with PZT sol–gel solution and the mixture was sprayed onto 3-mm-thick titanium substrate. The films were sintered by 700 W domestic oven for 10 min. Ultrasonic measurement was carried out in pulse–echo mode and clear multiple echoes were confirmed. It would be suitable method to fabricate high frequency broadband focused ultrasonic transducers. Further research is required to improve sintering degree.

  6. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  7. Synchrony in broadband fluctuation and the 2008 financial crisis.

    Directory of Open Access Journals (Sweden)

    Der Chyan Lin

    Full Text Available We propose phase-like characteristics in scale-free broadband processes and consider fluctuation synchrony based on the temporal signature of significant amplitude fluctuation. Using wavelet transform, successful captures of similar fluctuation pattern between such broadband processes are demonstrated. The application to the financial data leading to the 2008 financial crisis reveals the transition towards a qualitatively different dynamical regime with many equity price in fluctuation synchrony. Further analysis suggests an underlying scale free "price fluctuation network" with large clustering coefficient.

  8. Broadband Neutron Interferometer

    CERN Document Server

    Pushin, Dmitry A; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G; Huber, Michael G; Jacobson, David; LaManna, Jacob; Parker, Joseph D; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization of the full neutron flux for precise measurements of potential gradients, and expands neutron phase-contrast imaging techniques to more intense polycromatic neutron beams.

  9. Microwave-assisted Solid-phase Synthesis, Biological Evaluation and Molecular Docking of Angiotensin I-converting Enzyme Inhibitors

    Institute of Scientific and Technical Information of China (English)

    SUN Yang; HUANG Da-wei; LI Xiao-hui; HU Jian-en; XIU Zhi-long

    2012-01-01

    Short peptides based on the tripeptides,Leu-Arg-Pro and Leu-Lys-Pro,were synthesized by microwaveassisted solid-phase synthesis method,in order to make a search for potential inhibitors for angiotensin (I)-converting enzyme(ACE) with minimum side effects in the treatment of hypertension.One peptide with the sequence Leu-Arg-Pro-Phe-Phe shows the strongest inhibition towards ACE with an IC50 value of 0.26 μmol/L in vitro.The study of structure-activity relationship shows that the introduction of a bulky group into the N-terminal of this series of inhibitors may enlarge steric hindrance,resulting in the poor inhibitory activity towards ACE.The inhibitory activity decreased in turn when L-Pro,D-Pro or Ac6c was at the C-terminal respectively.The binding interaction between each of these inhibitors and testicular ACE(tACE) was performed by molecular docking.The results suggest that Leu-Arg-Pro-Phe-Phe mainly occupied the St subsite of tACE,and made contact with tACE via seven H-bonds.It appeared that the site on the peptide that bound with tACE was influenced by the configuration of the amino acid,L- or D-form,at the C-terminal of the peptide.

  10. Broadband second harmonic generation in whispering gallery mode resonators

    CERN Document Server

    Lin, Guoping; Strekalov, Dmitry V; Yu, Nan

    2013-01-01

    Optical frequency conversion processes in nonlinear materials are limited in wavelength by the accessible phase matching and the required high pump powers. In this letter, we report a novel broadband phase matching (PM) technique in high quality factor (Q) whispering gallery mode (WGM) resonators made of birefringent crystalline materials. This technique relies on two interacting WGMs, one with constant and the other with spatially oscillating phase velocity. Thus, phase matching occurs cyclically. The technique can be implemented with a WGM resonator with its disk plane parallel to the optic axis of the crystal. With a single beta barium borate (BBO) resonator in that configuration, we experimentally demonstrated efficient second harmonic generation (SHG) to harmonic wavelengths from 780 nm in the near infrared to 317 nm in the ultraviolet (UV). The observed SHG conversion efficiency is as high as 4.6% (mW)-1. This broadband PM technique opens a new way for nonlinear optics applications in WGM resonators. Th...

  11. Broadband Neutron Interferometer

    OpenAIRE

    Pushin, Dmitry A.; Sarenac, Dusan; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G.; Huber, Michael G.; Jacobson, David; LaManna, Jacob; Parker, Joseph D.; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization...

  12. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm.

  13. Microwave and RF applications for micro-resonator based frequency combs

    Science.gov (United States)

    Nguyen, Thach G.; Shoeiby, Mehrdad; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2016-02-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  14. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    Science.gov (United States)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2015-07-01

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  15. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jianjia [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Université Paris-Ouest, 92410 Ville d' Avray (France); Piau, Gérard-Pascal [AIRBUS Group Innovations, 92150 Suresnes (France)

    2015-07-13

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  16. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  17. Broadband illumination of superconducting pair breaking photon detectors

    Science.gov (United States)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  18. A NOVEL QOS SCHEDULING FOR WIRELESS BROADBAND NETWORKS

    Directory of Open Access Journals (Sweden)

    D. David Neels Pon Kumar

    2010-09-01

    Full Text Available During the last few years, users all over the world have become more and more familiar to the availability of broadband access. When users want broadband Internet service, they are generally restricted to a DSL (Digital Subscribers Line, or cable-modem-based connection. Proponents are advocating worldwide interoperability for microwave access (WiMAX, a technology based on an evolving standard for point-to multipoint wireless networking. Scheduling algorithms that support Quality of Service (QoS differentiation and guarantees for wireless data networks are crucial to the deployment of broadband wireless networks. The performance affecting parameters like fairness, bandwidth allocation, throughput, latency are studied and found out that none of the conventional algorithms perform effectively for both fairness and bandwidth allocation simultaneously. Hence it is absolutely essential for an efficient scheduling algorithm with a better trade off for these two parameters. So we are proposing a novel Scheduling Algorithm using Fuzzy logic and Artificial neural networks that addresses these aspects simultaneously. The initial results show that a fair amount of fairness is attained while keeping the priority intact. Results also show that maximum channel utilization is achieved with a negligible increment in processing time.

  19. Ultra-Broadband Acoustic Metasurface for Manipulating the Reflected Waves

    OpenAIRE

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2014-01-01

    We have designed and experimentally realized an ultra-broadband acoustic metasurface (UBAM) capable of going beyond the intrinsic limitation of bandwidth in existing designs of optical/acoustical metasurfaces. Both the numerical and experimental results demonstrate that the UBAM made of subwavelength gratings can manipulate the reflected phase-front within a bandwidth larger than 2 octaves. A simple physical model based on the phased array theory is developed for interpreting this extraordina...

  20. Photonic Generation of Phase-Coded Microwave Signal with Large Frequency Tunability%光生频率大范围可调的相位编码微波信号

    Institute of Scientific and Technical Information of China (English)

    刘双; 钱祖平; 王荣; 蒲涛

    2013-01-01

    提出并验证了一种光生相位编码微波信号的方法,其主要原理是对编码的相干光边带进行差拍,从而得到高频率、高编码数率、低噪声的相位编码微波信号.该方法简单易行,利于集成,能适应不同的编码速率,产生的微波信号频率大范围可调,能解决电子电路方法中遇到的“电子瓶颈”问题.介绍了所提方法的原理,并进行了理论推导,在系统分析中加入了对调制器驱动信号相位噪声的分析,使得系统建模更加科学完善;实验设计制作了所需的光纤光栅带阻滤波器,产生了20 GHz和25 GHz的相位编码微波信号,实验结果与理论值几乎吻合,证明了所提方法提高脉冲压缩比的能力.%A photonic approach to generating a phase-coded microwave signal is proposed and demonstrated. The main principle is to beat the encoded coherent optical sideband to obtain high-frequency, high-coding rate, low-noise encoded microwave signals. The proposed technique, which is simple and conducive to integration, can adapt to different coding rates, generate phase-coded microwave signals with tunable frequency, and solve the bottleneck problem of traditional electronic approaches. The principle is discussed in detail. Mathematical models are developed to consider perturbation on the generated coded signal caused by the phase fluctuations of the microwave driving signal and the optical carrier. The required fiber Bragg grating notch filter is fabricated, and 20 GHz and 25 GHz phase-coded microwave signals are experimentally generated, respectively. The experimental results agree well with theoretical values, and it is proved that the proposed method improves the pulse compression capability.

  1. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  2. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.

    1995-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances.

  3. Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal.

    Science.gov (United States)

    Regelskis, K; Želudevičius, J; Gavrilin, N; Račiukaitis, G

    2012-12-17

    We demonstrate an efficient technique for the second harmonic generation (SHG) of the broadband radiation based on the temperature gradient along a nonlinear crystal. The characteristics of Type I non-critical phase-matched SHG of broadband radiation in the LiB(3)O(5) (LBO) crystal with the temperature gradient imposed along the crystal were investigated both numerically and experimentally. The frequency doubling efficiency of the broadband pulsed fiber laser radiation as high as 68% has been demonstrated. PMID:23263092

  4. An electromagnetically induced grating by microwave modulation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik, E-mail: kisik@inha.ac.k [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of)

    2010-08-28

    We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of {sup 87}Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field. (fast track communication)

  5. Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites

    Science.gov (United States)

    Xu, Danyun; Zhu, Yuanzhi; Liu, Jiapeng; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2016-09-01

    Exfoliated molybdenum disulfide (MoS2) has unique 2H phase and semiconductor properties and potential applications across a wide range of fields. However, the chemically exfoliated MoS2 nanosheets from Li x MoS2 have a 1T phase, and searching for a fast route to get processable 2H-MoS2 nanosheets and its nanocomposites is still an urgent task. This study reports on a simple, fast and efficient microwave strategy to achieve the 1T to 2H phase conversion of MoS2 and the successful preparation of processable 2H-MoS2 nanosheets and their nanocomposites. The method here may be easily changed to achieve the phase change of other exfoliated TMDs.

  6. Broadband and chiral binary dielectric meta-holograms

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-01-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices’ compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics. PMID:27386518

  7. Broadband and chiral binary dielectric meta-holograms.

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-05-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices' compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics. PMID:27386518

  8. Broadband/Wideband Magnetoelectric Response

    Directory of Open Access Journals (Sweden)

    Chee-Sung Park

    2012-01-01

    Full Text Available A broadband/wideband magnetoelectric (ME composite offers new opportunities for sensing wide ranges of both DC and AC magnetic fields. The broadband/wideband behavior is characterized by flat ME response over a given AC frequency range and DC magnetic bias. The structure proposed in this study operates in the longitudinal-transversal (L-T mode. In this paper, we provide information on (i how to design broadband/wideband ME sensors and (ii how to control the magnitude of ME response over a desired frequency and DC bias regime. A systematic study was conducted to identify the factors affecting the broadband/wideband behavior by developing experimental models and validating them against the predictions made through finite element modeling. A working prototype of the sensor with flat bands for both DC and AC magnetic field conditions was successfully obtained. These results are quite promising for practical applications such as current probe, low-frequency magnetic field sensing, and ME energy harvester.

  9. Effect of Microwave Processing on Aluminate Cement Clinkering

    Institute of Scientific and Technical Information of China (English)

    DONG Jianmiao; LONG Shizong

    2005-01-01

    When raw materials were preheated to 1000-1300 ℃ by electricity and microwave was inputted for 1 min 5 s-4 mins, then alunminate clinkers were obtained. The f-CaO contents,XRD patterns and lithofacies analysis show that the microwave processing accelerates the clinkering reaction,and Fe2O3 is contributed to the aluminate cement clinkering. The appearance of liquid phase in process of microwave heating increases the microwave absorbability of materials greatly.

  10. 基于注入半导体激光器的微波副载波相位调制信号产生%Generation of microwave subcarrier phase modulation signal based on optical injection into a semiconductor laser

    Institute of Scientific and Technical Information of China (English)

    吴波; 于晋龙; 王文睿; 韩丙辰; 郭精忠; 罗俊; 王菊; 张晓媛; 刘毅; 杨恩泽

    2012-01-01

    光载无线技术是解决终端超宽带无线通信的重要方法,光信号与微波/毫米波信号的融合处理技术在光-无线的数据格式转换中至关重要.提出了一种基于相位调制信号光注入Fabry-Perot型半导体激光器实现微波副载波相位调制信号产生的方法.光学注入半导体激光器的输出光场会产生一周期(P1)振荡效应,P1振荡产生的边带实现了相位调制信号光的调制分量的放大,被放大的调制分量与注入光载波在激光器腔内拍频形成微波副载波.注入光相位的变化导致新产生的微波副载波相位变化,实现了注入信号光相位信息转化为微波副载波相位信息.本系统完成1.3 Gb/s,2.7 Gb/s,2 Gb/s光相位调制信号到微波副载波相位调制信号的转换,并测量了微波的单边带相位噪声.通过光电转换和电域混频将还原出的光基带信号与原信号进行逻辑对比,证明了数据信息转换的正确性.%Radio-over-fiber technology has become an important solution for ultra wide band wireless communication, and the convergence of signal processing between optics and microwave/millimeter wave is more crucial. In this paper, microwave subcarrier phase modu- lation signal generation based on optical injection into a semiconductor Fabry-Perot laser is proposed. According to the period-one(P 1) oscillation effect of laser output optical field, one modulation component of the optical phase modulation signal is amplified by side- band of P1 oscillation. The amplified component beats with injection optical carder to generate microwave subcarrier. The phase shifts lead to the phase shift of subcarrier, thus the phase information is converted into phase information about microwave subcarrier. The optical phase-shift-keying signals at 1.3 Gb/s, 2.7 Gb/s, 2 Gb/s are converted into microwave subcarrier phase modulation signal, and the single sideband phase noise is measured. By logically comparing the

  11. Ferrite microwave electronics Citations from the NTIS data base

    Science.gov (United States)

    Reed, W. E.

    1980-07-01

    Research reports on single crystals, thin films, dielectrics, semiconductor devices, integrated circuits, phase shifters, and waveguide components are cited. Studies on the microwave properties of ferrites are included.

  12. Microwave Filters

    OpenAIRE

    Zhou, Jiafeng

    2010-01-01

    The general theory of microwave filter design based on lumped-element circuit is described in this chapter. The lowpass prototype filters with Butterworth, Chebyshev and quasielliptic characteristics are synthesized, and the prototype filters are then transformed to bandpass filters by lowpass to bandpass frequency mapping. By using immitance inverters ( J - or K -inverters), the bandpass filters can be realized by the same type of resonators. One design example is given to verify the theory ...

  13. Broadband frequency conversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin;

    that ensures phase matching over a broad spectral range in the BBO crystal. Since the tuning mechanism relies on all-passive components with extremely short response times the proposed method is well suited for short pulse, broad bandwidth laser sources like mode-locked lasers or super-continuum sources......We demonstrate a method for frequency conversion of broadly tunable or broad bandwidth light in a static, passive setup. Using simple optical components like lenses, mirrors and gratings and a BiBO crystal as the nonlinear material, we are able to frequency double a single-frequency, tunable...

  14. Broadband frequency conversion

    OpenAIRE

    Sanders, Nicolai Højer; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    We demonstrate a method for frequency conversion of broadly tunable or broad bandwidth light in a static, passive setup. Using simple optical components like lenses, mirrors and gratings and a BiBO crystal as the nonlinear material, we are able to frequency double a single-frequency, tunable, external cavity diode laser in the 1020-1090 nm range into the 510-545 nm range with almost equal efficiency for all wavelengths. Phase matching is obtained as follows; a diffraction grating is used to d...

  15. Solar power satellite microwave transmission and reception

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, R.H.

    1980-12-01

    Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.

  16. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  17. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  18. Broadband Approximations for Doubly Curved Reflector Antenna

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2010-12-01

    Full Text Available The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth changes, sidelobe levels and aperture efficiencies are given for frequency changes approximately up to four times operating frequency. A comparison of approximated and measured patterns of doubly curved reflector antennas shows that the given approximation could be reliably used for analyses of pattern changes due to very broad frequency changes.

  19. Statistical dispersion relation for spatially broadband fields.

    Science.gov (United States)

    Shan, Mingguang; Nastasa, Viorel; Popescu, Gabriel

    2016-06-01

    The dispersion relation is fundamental to a physical phenomenon that develops in both space and time. This equation connects the spatial and temporal frequencies involved in the dynamic process through the material constants. Electromagnetic plane waves propagating in homogeneous media are bound by simple dispersion relation, which sets the magnitude of the spatial frequency, k, as being proportional to the temporal frequency, ω, with the proportionality constant dependent on the refractive index, n, and the speed of light in vacuum, c. Here we show that, for spatially broadband fields, an analog dispersion relation can be derived, except in this case the k-vector variance is connected with the temporal frequency through the statistics of the refractive index fluctuations in the medium. We discuss how this relationship can be used to retrieve information about refractive index distributions in biological tissues. This result is particularly significant in measurements of angular light scattering and quantitative phase imaging of biological structures. PMID:27244396

  20. Pretreatment in a high-pressure microwave processor for MIB-1 immunostaining of cytological smears and paraffin tissue sections to visualize the various phases of the mitotic cycle

    NARCIS (Netherlands)

    Suurmeijer, AJH; Boon, ME

    1999-01-01

    In many pathology laboratories, both microwave ovens and pressure cookers are used for pretreatment of cytologic smears and paraffin sections to allow MIB-1 staining. For both methods there are two problems. First, the results cannot be used for quantitation because standardization is impossible. Se

  1. Radiative cooling and broadband phenomenon in low-frequency waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial -plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves. Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period, and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabatic heating. when the intensity of diabatic heating is moderate and appropriate, it is conductive to the development and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.

  2. Microwave Magnetoelectric Devices

    OpenAIRE

    Tatarenko, A. S.; Bichurin, M. I.

    2012-01-01

    Tunable microwave magnetoelectric devices based on layered ferrite-ferroelectric structures are described. The theory and experiment for attenuator, band-pass filter and phase shifter are presented. Tunability of the ME devices characteristics can be executed by application of an electric field. This electric tuning is relatively fast and is not power-consuming. The attenuator insertion losses vary from 26 dB to 2 dB at frequency 7251 MHz. The tuning range of 25 MHz of band-pass filter at fre...

  3. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  4. Broadband SHF Direction-Finder

    Directory of Open Access Journals (Sweden)

    S. Radionov

    2008-06-01

    Full Text Available The original design of the compact broadband direction-finder is presented in this paper. The cylindrical monopole antenna serves as a primary source of the reflector- type antenna. "Zero-amplitude" technique is used for bearing the SHF sources. The model experiments with the proposed direction-finder prototype in the frequency band 6 GHz - 11 GHz have been carried out.

  5. Broadband Loaded Cylindrical Monopole Antenna

    OpenAIRE

    Boucher, Solene; Sharaiha, Ala; Potier, Patrick

    2013-01-01

    Ahstract-A broadband printed monopole antenna based on the variation of the conductivity along its length is proposed .. The result indicates that a non-monotonous repartition provides interesting performances in terms of impedance bandwidth but also concerning antenna gain. The achievement of the method is demonstrated through its application, using the carbon fibers to perform this conductivity variation. Monopole antenna presents a large impedance bandwidth of 123% with an interesting gain...

  6. Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-12-01

    Full Text Available Dispersive Fourier transformation (DFT maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well.

  7. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    OpenAIRE

    Varma, R. M.; Ball, S. M.; Brauers, T.; H.-P. Dorn; U. Heitmann; Jones, R L; U. Platt; D. Pöhler; A. A. Ruth; Shillings, A. J. L.; J. Thieser; A. Wahner; D. S. Venables

    2013-01-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three s...

  8. A Novel, Free-Space Broadband Dielectric Measurement Technique

    OpenAIRE

    Liu, Yaqiang

    2014-01-01

    Frequently, when free-space electromagnetic waves pass through a material, there will be some form of interaction between the wave and the material. Measuring this change forms the basis of free-space, dielectric material measurement, where the variations will be attenuation and a phase change relative to the wave when the material was not present and are typically recorded over a broadband range of frequencies. In this work a new technique is presented to accurately perform free-space bro...

  9. Design of a Broadband Inverted Conical Quadrifilar Helix Antenna

    OpenAIRE

    Jingyan Mo; Wei Liu; Weidong Fang; Haigao Xue; Zhongchao Lin

    2016-01-01

    This paper introduces the design of a broadband inverted conical circularly polarized quadrifilar helix antenna (QHA). The antenna has many good characteristics, including wide beam and broad bandwidth, which are achieved by utilizing inverted conical geometry and adjusting the dimensions of the inverted conical support. The antenna is fed by a wideband network to provide 90° phase difference between the four arms with constant amplitude. The antenna impedance and axial ratio bandwidth values...

  10. Cryogenic microstripline-on-Kapton microwave interconnects

    CERN Document Server

    Harris, A I; Lau, J M; Church, S E; Samoska, L A; Cleary, K

    2012-01-01

    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and cross-talk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.

  11. Trace determination of antibacterial pharmaceuticals in fishes by microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction followed by ultra-high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Huang, Peiting; Zhao, Pan; Dai, Xinpeng; Hou, Xiaohong; Zhao, Longshan; Liang, Ning

    2016-02-01

    A novel pretreatment method involving microwave-assisted extraction and solid-phase purification combined with dispersive liquid-liquid microextraction (MAE-SPP-DLLME) followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was established for the simultaneous determination of six antibacterial pharmaceuticals including metronidazole, tinidazole, chloramphenicol, thiamphenicol, malachite green and crystal violet. The conditions of MAE were optimized using an orthogonal design and the optimal conditions were found to be 8mL for acetonitrile, 50°C for 5min. Then, neutral alumina column was employed in the solid-phase purification. Finally, the critical parameters affecting DLLME, including selection of extraction and dispersive solvent, adjustment of pH, salt concentration, extraction time, were investigated by single factor study. Under optimum conditions, good linearities (r>0.9991) and satisfied recoveries (Recoveries>87.0%, relative standard deviation (RSD)<6.3%) were observed for all of the target analytes. The limits of detection and quantification were 4.54-101.3pgkg(-1) and 18.02-349.1pgkg(-1), respectively. Intra-day and inter-day RSDs were all lower than 3.6%. An obvious reduction in matrix effect was observed by this method compared with microwave assisted extraction followed by purification. The established method was sensitive, rapid, accurate and employable to simultaneously determine target analytes in farmed fish, river fish and marine fish.

  12. Microwave Sterilization and Depyrogenation System

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  13. Photonics for microwave systems and ultra-wideband signal processing

    Science.gov (United States)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  14. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  15. Analysis of the Proposed Ghana Broadband Strategy

    DEFF Research Database (Denmark)

    Williams, Idongesit; Botwe, Yvonne

    This project studied the Ghana Broadband Strategy with the aim of evaluating the recommendations in the strategy side by side the broadband development in Ghana. The researchers conducted interviews both officially and unofficially with ICT stakeholders, made observations, studied Government...... intervention policies recommended in the Ghana broadband policy is used to evaluate the broadband market to find out whether the strategy consolidates with the Strengths and opportunities of the market and whether it corrects the anomalies that necessitate the weaknesses and threats to the market....... The strategy did address some threats and weaknesses of the broadband market. It also consolidated on some strengths and opportunities of the broadband market. The researchers also discovered that a market can actually grow without a policy. But a market will grow faster if a well implemented policy is guiding...

  16. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  17. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  18. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  19. Distortion mechanisms in varactor diode-tuned microwave filters

    OpenAIRE

    Carey-Smith, BE; Warr, PA

    2006-01-01

    This paper examines the broadband distortion behavior in flexible filters employing varactor-diode tuning elements. Series- and parallel-resonant varactor-loaded transmission-lines, both commonly used in bandpass and bandstop microwave filters, are analyzed. Nonlinear Volterra-series analysis is employed to determine the second- and third-order distortion ratios dependent on the frequencies of the incident signals. It is shown that in a bandpass filter (employing parallel tuned resonators), m...

  20. Microwave Magnetoelectric Devices

    Directory of Open Access Journals (Sweden)

    A. S. Tatarenko

    2012-01-01

    Full Text Available Tunable microwave magnetoelectric devices based on layered ferrite-ferroelectric structures are described. The theory and experiment for attenuator, band-pass filter and phase shifter are presented. Tunability of the ME devices characteristics can be executed by application of an electric field. This electric tuning is relatively fast and is not power-consuming. The attenuator insertion losses vary from 26 dB to 2 dB at frequency 7251 MHz. The tuning range of 25 MHz of band-pass filter at frequency 7360 MHz was obtained. A maximum phase shift of 30–40 degree at the frequency region 6–9 GHz was obtained.

  1. Achieving Universal Access to Broadband

    Directory of Open Access Journals (Sweden)

    Morten FALCH

    2009-01-01

    Full Text Available The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures to be applied. The paper concludes that other policy measure than the classical universal service obligation are in play, and discusses various policy measures taking the Lisbon process as a point of departure. Available policy measures listed in the paper include, universal service obligation, harmonization, demand stimulation, public support for extending the infrastructure, public private partnerships (PPP, and others.

  2. Broadband Tuning of Optomechanical Cavities

    CERN Document Server

    Wiederhecker, Gustavo S; Lee, Sunwoo; Lipson, Michal

    2010-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  3. Understanding broadband over power line

    CERN Document Server

    Held, Gilbert

    2006-01-01

    Understanding Broadband over Power Line explores all aspects of the emerging technology that enables electric utilities to provide support for high-speed data communications via their power infrastructure. This book examines the two methods used to connect consumers and businesses to the Internet through the utility infrastructure: the existing electrical wiring of a home or office; and a wireless local area network (WLAN) access point.Written in a practical style that can be understood by network engineers and non-technologists alike, this volume offers tutorials on electric utility infrastru

  4. Integration of broadband direct-conversion quadrature modulators

    OpenAIRE

    Tiiliharju, Esa

    2006-01-01

    To increase spectral efficiency, transmitters usually send only one of the information carrying sidebands centered around a single radio-frequency carrier. The close-lying mirror, or image, sideband will be eliminated either by the filtering method or by the phasing method. Since filter Q-values rise in direct relation to the transmitted frequencies, the filtering method is generally not feasible for integrated microwave transmitters. A quadrature modulator realizes the phasing method by comb...

  5. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  6. Broadband Wireline Provider Service Summary; BBRI_wirelineSum12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of broadband Internet access in Rhode Island via all wireline technologies assessed by Broadband Rhode Island. Broadband...

  7. Broadband detuned Sagnac interferometer for future generation gravitational wave astronomy

    CERN Document Server

    Voronchev, N V; Danilishin, S L

    2015-01-01

    Broadband suppression of quantum noise below the Standard Quantum Limit (SQL) becomes a top-priority problem for the future generation of large-scale terrestrial detectors of gravitational waves, as the interferometers of the Advanced LIGO project, predesigned to be quantum-noise-limited in the almost entire detection band, are phased in. To this end, among various proposed methods of quantum noise suppression or signal amplification, the most elaborate approach implies a so-called *xylophone* configuration of two Michelson interferometers, each optimised for its own frequency band, with a combined broadband sensitivity well below the SQL. Albeit ingenious, it is a rather costly solution. We demonstrate that changing the optical scheme to a Sagnac interferometer with weak detuned signal recycling and frequency dependent input squeezing can do almost as good a job, as the xylophone for significantly lower spend. We also show that the Sagnac interferometer is more robust to optical loss in filter cavity, used f...

  8. Broadband radiometry for photodynamic therapy

    Science.gov (United States)

    Folgosi-Correa, M. S.; Caly, J. P.; Nogueira, G. E. C.

    2010-04-01

    The effective irradiance is a useful measure to compare performances of different broadband light sources and to more precisely predict the outcome of a topical photodynamic therapy. The effective irradiance (or effective fluence rate) and the exposition time of the optical radiation usually determine the light dose. The effective irradiance (Eeff) takes into account the spectral irradiance of the source as well as the action spectrum, where the wavelength dependence of both optical diffusion through tissue and photosensitizer are considered. In practice there are no standard action spectra for the currently used photosensitizers. As a consequence, measured values of effective irradiance using different action spectra can not be compared. In order to solve this problem, the basis of the calibration theory developed for the broadband ultraviolet radiometry can be applied, where an experimental radiometer is compared with a standard radiometer. Here is presented a simple set of linear relations in the form Eeff = k . E, where E is the source irradiance and k a real positive value, here denoted as a characteristic of the radiometer, as valuable tools for correction of effective irradiances measured according to different action spectra. As a result, for two effective radiometers with different characteristics k1 and k2, measured values are Eeff and Qeff respectively, and it is easily shown that the value Eeff = Qeff • k1/k2 .

  9. Eu2+-doped M2SiO4 (M = Ca, Ba) phosphors prepared by a rapid microwave-assisted sol-gel method: Phase formation and optical properties

    Science.gov (United States)

    Birkel, Alexander; DeCino, Nicholas A.; George, Nathan C.; Hazelton, Katherine A.; Hong, Byung-Chul; Seshadri, Ram

    2013-05-01

    We present a rapid microwave-assisted approach for the preparation of Eu2+-doped orthosilicate phosphors. The preparation method relies on a citrate based sol-gel reaction with subsequent combustion in a domestic microwave oven, in contrast to more conventional solid-state methods. This sol-gel pathway yields phase pure, high quality orthosilicates, in less than 25 min of final heating time. In addition, superior morphology control is achieved employing the sol-gel method compared to solid-state preparations. In order to understand the formation process of the final products, thermogravimetric analyses and temperature-dependent X-ray diffraction data were acquired and compared to the conventional solid-state preparation. The morphology and elemental composition of the obtained luminescent materials were investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The optical properties were elucidated by measuring room-temperature emission and excitation spectra, and the application and efficiency of the obtained phosphors in LED devices was studied.

  10. Development of microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for quantification of camphor and borneol in Flos Chrysanthemi Indici

    Energy Technology Data Exchange (ETDEWEB)

    Deng Chunhui [Department of Chemistry, Fudan University, Shanghai 200433 (China); Mao Yu [Department of Basic Medical Sciences, Second Military Medicinal University, Shanghai 200433 (China); Yao Ning [Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhang Xiangmin [Department of Chemistry, Fudan University, Shanghai 200433 (China)]. E-mail: xmzhang@fudan.edu.cn

    2006-08-04

    In the work, microwave-assisted extraction (MAE) followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was developed for quantitative analysis of the bioactive components of camphor and borneol in a traditional Chinese medicines (TCM) of Flos Chrysanthemi Indici. After systematical investigation, the optimal experimental parameters microwave power (400 W), irradiation time (4 min), fiber coating (PDMS/DVB fiber), extraction temperature (40 deg. C), extraction time (20 min), stirring rate (1100 rpm), and salt effect (no salt added) were investigated. The optimized method provided satisfactory precision (RSD values less than 12%), good recovery (from 86% to 94%), and good linearity (R {sup 2} > 0.999). The proposed method was applied to quantitative analysis of camphor and borneol in Flos Chrysanthemi Indici samples from 11 different growing areas. To demonstrate the method feasibility, steam distillation was also used to analyze camphor and borneol in Flos Chrysanthemi Indici samples from these different growing areas. The very close results were obtained by the two methods. It has been shown that the proposed ME-HS-SPME-GC-MS is a simple, rapid, solvent-free and reliable method for quantitative analysis of camphor and borneol in TCM, and a potential tool for quality assessment of Flos Chrysanthemi Indici.

  11. 一种宽频宽角圆极化一维相扫天线阵%A broadband wide angle circularly polarized one-dimensional phase scanning antenna array

    Institute of Scientific and Technical Information of China (English)

    陈谦; 李磊; 张小林

    2014-01-01

    基于改进型Vivaldi天线单元,采用4单元十字交叉组合构成圆极化天线,并通过增加耦合金属立柱改善天线轴比,设计了一种超宽频宽角覆盖圆极化直线阵。该天线在1.25-4.1 GHz频段电压驻波比(VSWR)小于2,在1.6-3.6 GHz频段轴比小于3 dB,在垂直扫描方向具备宽角覆盖能力,具备较高的工程应用价值。%Based on improved Vivaldi antenna unit, using four crossed units constitutes a circularly polarized antenna, further improving axial ratio (AR) by adding the coupling metal columns, an ultra-broadband wide-angle circularly polarized linear an-tenna array is designed. The voltage standing wave ratio (VSWR) of the antenna is less than 2 at the frequency range of 1.25 to 4.1 GHz. Meanwhile, the AR is less than 3 dB at the frequency range of 1.6 to 3.6 GHz. This antenna has very wide angle cover-age ability, and has high engineering value.

  12. Broadband Cooperative Spectrum Sensing Based on Distributed Modulated Wideband Converter

    Directory of Open Access Journals (Sweden)

    Ziyong Xu

    2016-09-01

    Full Text Available The modulated wideband converter (MWC is a kind of sub-Nyquist sampling system which is developed from compressed sensing theory. It accomplishes highly accurate broadband sparse signal recovery by multichannel sub-Nyquist sampling sequences. However, when the number of sparse sub-bands becomes large, the amount of sampling channels increases proportionally. Besides, it is very hard to adjust the number of sampling channels when the sparsity changes, because its undersampling board is designed by a given sparsity. Such hardware cost and inconvenience are unacceptable in practical applications. This paper proposes a distributed modulated wideband converter (DMWC scheme innovatively, which regards one sensor node as one sampling channel and combines MWC technology with a broadband cooperative spectrum sensing network perfectly. Being different from the MWC scheme, DMWC takes phase shift and transmission loss into account in the input terminal, which are unavoidable in practical application. Our scheme is not only able to recover the support of broadband sparse signals quickly and accurately, but also reduces the hardware cost of the single node drastically. Theoretical analysis and numerical simulations show that phase shift has no influence on the recovery of frequency support, but transmission loss degrades the recovery performance to a different extent. Nevertheless, we can increase the amount of cooperative nodes and select satisfactory nodes by a different transmission distance to improve the recovery performance. Furthermore, we can adjust the amount of cooperative nodes flexibly when the sparsity changes. It indicates DMWC is extremely effective in the broadband cooperative spectrum sensing network.

  13. 75 FR 10464 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-03-08

    ... National Telecommunications and Information Administration RIN 0660-ZA28 Broadband Technology Opportunities... Technology Opportunities Program (BTOP) is extended until 5:00 p.m. Eastern Daylight Time (EDT) on March 26... Sustainable Broadband Adoption (SBA) projects. DATES: All applications for funding CCI projects must...

  14. Service Differentiation in Residential Broadband Networks

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias

    2004-01-01

    As broadband gains widespread adoption with residential users, revenue generating voice- and video-services have not yet taken off. This slow uptake is often attributed to lack of Quality of Service management in residential broadband networks. To resolve this and induce service variety, network...

  15. Fiber-Optic Discriminator Stabilizes Microwave Oscillator

    Science.gov (United States)

    Logan, Ronald T., Jr.

    1993-01-01

    New fiber-optic delay line discriminator enables stabilization of oscillators directly at microwave output frequency, eliminating need for frequency multiplication. Discriminator is wide-band device, capable of stabilizing outputs of frequency-agile microwave sources over multigigahertz tuning ranges. Use of advanced fiber-optic delay line with wider bandwidth and low noise predicted to yield corresponding improvements in phase-noise performance.

  16. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  17. Customer Churn Prediction for Broadband Internet Services

    Science.gov (United States)

    Huang, B. Q.; Kechadi, M.-T.; Buckley, B.

    Although churn prediction has been an area of research in the voice branch of telecommunications services, more focused studies on the huge growth area of Broadband Internet services are limited. Therefore, this paper presents a new set of features for broadband Internet customer churn prediction, based on Henley segments, the broadband usage, dial types, the spend of dial-up, line-information, bill and payment information, account information. Then the four prediction techniques (Logistic Regressions, Decision Trees, Multilayer Perceptron Neural Networks and Support Vector Machines) are applied in customer churn, based on the new features. Finally, the evaluation of new features and a comparative analysis of the predictors are made for broadband customer churn prediction. The experimental results show that the new features with these four modelling techniques are efficient for customer churn prediction in the broadband service field.

  18. Microwave Magnetochiral Dichroism in the Chiral-Lattice Magnet Cu_{2}OSeO_{3}.

    Science.gov (United States)

    Okamura, Y; Kagawa, F; Seki, S; Kubota, M; Kawasaki, M; Tokura, Y

    2015-05-15

    Through broadband microwave spectroscopy in Faraday geometry, we observe distinct absorption spectra accompanying magnetoelectric (ME) resonance for oppositely propagating microwaves, i.e., directional dichroism, in the multiferroic chiral-lattice magnet Cu_{2}OSeO_{3}. The magnitude of the directional dichroism critically depends on the magnetic-field direction. Such behavior is well accounted for by considering the relative direction of the oscillating electric polarizations induced via the ME effect with respect to microwave electric fields. Directional dichroism in a system with an arbitrary form of ME coupling can be also discussed in the same manner. PMID:26024193

  19. Microwave Frequency Discriminator With Sapphire Resonator

    Science.gov (United States)

    Santiago, David G.; Dick, G. John

    1994-01-01

    Cooled sapphire resonator provides ultralow phase noise. Apparatus comprises microwave oscillator operating at nominal frequency of about 8.1 GHz, plus frequency-discriminator circuit measuring phase fluctuations of oscillator output. One outstanding feature of frequency discriminator is sapphire resonator serving as phase reference. Sapphire resonator is dielectric ring resonator operating in "whispering-gallery" mode. Functions at room temperature, but for better performance, typically cooled to operating temperature of about 80 K. Similar resonator described in "Sapphire Ring Resonator for Microwave Oscillator" (NPO-18082).

  20. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    Science.gov (United States)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-07-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π-type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm3, which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10-70 dB attenuation at 10 dB intervals from 0.1-20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band.

  1. Computer Aided Design and Analysis of a 2-4 GHz Broadband Balanced Microstrip Amplifier

    Directory of Open Access Journals (Sweden)

    S. H. Ibrahim

    2012-07-01

    Full Text Available In this paper, a computer-aided design and analysis of a 2-4 GHz broadband balanced microstrip amplifier using a full computer simulation program developed by the author and others is presented. A short and efficient CAD procedure for broadband amplifier design is introduced. The first step is to design an initial narrow-band high gain microstrip amplifier at 3-GHz central frequency. The second step is to optimize the initial lengths and widths of the input and output microstrip-matching circuits to get the broadband amplifier over the range 2-4 GHz. The analysis of both narrow and broadband amplifiers is investigated. In addition, with the design and analysis of a low-pass microstrip filter, the paper introduces the design and analysis of a Lange coupler. The final AC schematic diagram of the designed amplifier with the lengths and widths of microstrip lines is presented.Key Words: Computer-Aided Design and Analysis, Microstrip Amplifier, Microwave Amplifier.

  2. 微波辅助固相合成法制备查尔酮类的工艺研究%Study on the Preparation Technology of Microwave Assisted Solid Phase Synthesis of Chalcones

    Institute of Scientific and Technical Information of China (English)

    赵岩; 马尔霍夫・木合布力; 伊克山・亚力坤; 木合布力・阿布力孜; 哈丽玛・斯拉木江; 麦热哈巴・依明

    2016-01-01

    Methoxy-chalcone compounds were prepared by tree different methods, so as to improve the preparation technology.Acid catalyzed high temperature method, hydroxyl radical protecting method and microwave assisted solid phase method were used for aldolization reaction, respectively, the reaction type and the optimal reaction conditions were screened using the reaction yield as standard.Results showed that the reaction yield of the target compound obtained by tree different methods were 8.9%, 9.27% and 57.60%, respectively, the optimal microwave irradiation conditions were as follows: power of 150 W, reaction time of 100 s, temperature of 80 ℃.The microwave assisted solid phase synthesis could be one of the effective method for the preparation of methoxy-chalcone compounds with the advantages of pollution-free, easy operation, low cost, high yields and short reaction time.%三种不同方法合成甲氧查尔酮类化合物,筛选和优化合成工艺。采用酸催化高温法、羟基保护法和微波辅助碱催化法进行羟醛缩合反应,制备目标化合物,并以反应产率为指标筛选合成方法,优化反应条件。结果表明:用三种方法所得到的目标化合物产率分别为8.9%、9.27%和57.60%。微波辅助碱催化反应的最佳条件:设定微波功率150 W、反应时间100 s,温度80℃。微波辅助碱催化方法具有产率高、反应时间短、节能和环保等特点、是绿色合成甲氧查尔酮类化合物的有效方法之一。

  3. Interpreting Flux from Broadband Photometry

    CERN Document Server

    Brown, Peter J; Roming, Peter W A; Siegel, Michael

    2016-01-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broad-band photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by comparing in the natural units of the observations. We recommend that integrated flux measurements be made using a spectrum or spectral energy distribution whic...

  4. Broadband cloaking for flexural waves

    CERN Document Server

    Zareei, Ahmad

    2016-01-01

    The governing equation for elastic waves in flexural plates is not form invariant, and hence designing a cloak for such waves faces a major challenge. Here, we present the design of a perfect broadband cloak for flexural waves through the use of a nonlinear transformation, and by matching term-by-term the original and transformed equations. For a readily achievable flexural cloak in a physical setting, we further present an approximate adoption of our perfect cloak under more restrictive physical constraints. Through direct simulation of the governing equations, we show that this cloak, as well, maintains a consistently high cloaking efficiency over a broad range of frequencies. The methodology developed here may be used for steering waves and designing cloaks in other physical systems with non form-invariant governing equations.

  5. Tuchola County Broadband Network (TCBN)

    DEFF Research Database (Denmark)

    Zabludowski, Antoni; Dubalski, B.; Zabludowski, Lukasz;

    2012-01-01

    In the paper the designing project (plan) of Tuchola City broadband IP optical network has been presented. The extended version of network plan constitute technical part of network Feasibility Study, that it is expected to be implemented in Tuchola and be financed from European Regional Development...... Funds. The network plan presented in the paper contains both topological structure of fiber optic network as well as the active equipment for the network. In the project described in the paper it has been suggested to use Modular Cable System - MCS for passive infrastructure and Metro Ethernet...... technology for active equipment. The presented solution provides low cost of construction (CAPEX), ease of implementation of the network and low operating cost (OPEX). Moreover the parameters of installed Metro Ethernet switches in the network guarantee the scalability of the network for at least 10 years....

  6. SCRLH-TL Based Sequential Rotation Feed Network for Broadband Circularly Polarized Antenna Array

    OpenAIRE

    Zong, B. F.; Wang, G. M.; Zeng, H Y; Wang, Y.W.; Wang, D

    2016-01-01

    In this paper, a broadband circularly polarized (CP) microstrip antenna array using composite right/left-handed transmission line (SCRLH-TL) based sequential rotation (SR) feed network is presented. The characteristics of a SCRLH-TL are initially investigated. Then, a broadband and low insertion loss 45º phase shifter is designed using the SCRLH-TL and the phase shifter is employed in constructing a SR feed network for CP antenna array. To validate the design method of the SR feed network, a ...

  7. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  8. Aqueous microwave-assisted solid-phase peptide synthesis using fmoc strategy. II. Racemization studies and water based synthesis of cysteine-containing peptides.

    Science.gov (United States)

    Hojo, Keiko; Shinozaki, Natsuki; Hara, Asaki; Onishi, Mare; Fukumori, Yoshinobu; Ichikawa, Hideki

    2013-10-01

    We have developed a microwave (MW)-assisted peptide synthesis using Fmoc-amino acid nanoparticles in water previously. It is an organic solvent-free, environmentally friendly method for peptide synthesis. In this study, we have investigated the racemization of cysteine during an aqueous based coupling reaction with MW irradiation. Under our MW-assisted protocol using WSCI and DMTMM, the coupling reaction can be performed with low levels of racemization of cysteine. We also demonstrated the synthesis of the nonapeptide oxytocin analogue, Cys(Acm)-Tyr-Ile-Gln-Asn- Cys(Acm)-Pro-Leu-Gly-NH2 using our water based MW-assisted protocol with Fmoc-amino acid nanoparticles. PMID:23517723

  9. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  10. Observations of Microwave Continuum Emission from Air Shower Plasmas

    CERN Document Server

    Gorham, P W; Varner, G S; Beatty, J J; Connolly, A; Chen, P; Conde, M E; Gai, W; Hast, C; Hebert, C L; Miki, C; Konecny, R; Kowalski, J; Ng, J; Power, J G; Reil, K; Saltzberg, D; Stokes, B T; Walz, D

    2007-01-01

    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, cou...

  11. Operational features and microwave characteristics of the Vircator II experiment

    International Nuclear Information System (INIS)

    The Vircator II oscillating virtual-cathode microwave source operates with diode voltages between 600 and 800 kV and diode current between 50 and 120 kA. Maximal microwave output power between 200 and 500 MW is achieved when the diode aspect ratio, cathode surface, charge voltage, and extraction coupling are arranged to simultaneously 1) maximize diode voltage, 2) satisfy magnetic insulation criteria, 3) avoid nonuniform or unstable electron emission, and 4) optimize microwave transmission from the virtual cathode to the launching antenna. Broad-band radiation between 0.4 and 5.5 GHz is generated. The central frequency follows the beam plasma frequency. It is tuned by varying the current density with anode-cathode (A-K) gap adjustments

  12. Operational features and microwave characteristics of the Vircator II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.; Fittinghoff, O.; Benford, J.; Sze, H.; Woo, W.

    1988-04-01

    The Vircator II oscillating virtual-cathode microwave source operates with diode voltages between 600 and 800 kV and diode current between 50 and 120 kA. Maximal microwave output power between 200 and 500 MW is achieved when the diode aspect ratio, cathode surface, charge voltage, and extraction coupling are arranged to simultaneously 1) maximize diode voltage, 2) satisfy magnetic insulation criteria, 3) avoid nonuniform or unstable electron emission, and 4) optimize microwave transmission from the virtual cathode to the launching antenna. Broad-band radiation between 0.4 and 5.5 GHz is generated. The central frequency follows the beam plasma frequency. It is tuned by varying the current density with anode-cathode (A-K) gap adjustments.

  13. Microwave Radiometer (MWR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  14. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    Science.gov (United States)

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  15. Microwave combustion and sintering without isostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber.

  16. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  17. Designing broadband plasmonic nanoantennas for ultrasensing

    Science.gov (United States)

    Yi, Zhenhuan; Wang, Kai; Voronine, Dmitri V.; Traverso, Andrew; Sokolov, Alexei

    2011-03-01

    Various designs of broadband plasmonic nanoantennas made of gold and silver nanospheres are considered and optimized for ultrasensitive spectroscopic applications. The simulated nanostructures show a broadband optical response which may be tuned by varying the size, position and composition of nanospheres. Near-field enhancement in nanoantenna hot spots is analyzed and compared with previous literature results in the case of a fractal plasmonic nanolens. Broadband plasmonic nanoantennas may allow detecting ultrasmall concentrations of toxic materials and may be used for decoding DNA and for ultrafast nanophotonics applications.

  18. Analyzing Broadband Divide in the Farming Sector

    DEFF Research Database (Denmark)

    Jensen, Michael; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2013-01-01

    Agriculture industry has been evolving for centuries. Currently, the technological development of Internet oriented farming tools allows to increase the productivity and efficiency of this sector. Many of the already available tools and applications require high bandwidth in both directions...... difference between the broadband availability for farms and the rest of the households/buildings the country. This divide may be slowing down the potential technological development of the farming industry, in order to keep their competitiveness in the market. Therefore, broadband development in rural areas...... could be one of the points to focus in a near future broadband access plans....

  19. Self-referenced ultra-broadband transient terahertz spectroscopy using air-photonics.

    Science.gov (United States)

    D'Angelo, F; Němec, H; Parekh, S H; Kužel, P; Bonn, M; Turchinovich, D

    2016-05-01

    Terahertz (THz) air-photonics employs nonlinear interactions of ultrashort laser pulses in air to generate and detect THz pulses. As air is virtually non-dispersive, the optical-THz phase matching condition is automatically met, thus permitting the generation and detection of ultra-broadband THz pulses covering the entire THz spectral range without any gaps. Air-photonics naturally offers unique opportunities for ultra-broadband transient THz spectroscopy, yet many critical challenges inherent to this technique must first be resolved. Here, we present explicit guidelines for ultra-broadband transient THz spectroscopy with air-photonics, including a novel method for self-referenced signal acquisition minimizing the phase error, and the numerically-accurate approach to the transient reflectance data analysis. PMID:27137624

  20. 47 CFR 90.1405 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network....

  1. Broadband anomalous reflection based on gradient low-Q meta-surface

    OpenAIRE

    Mingbo Pu; Po Chen; Changtao Wang; Yanqin Wang; Zeyu Zhao; Chenggang Hu; Cheng Huang; Xiangang Luo

    2013-01-01

    Gradient–index metamaterial is crucial in the spatial manipulation of electromagnetic wave. Here we present an efficient approach to extend the bandwidth of phase modulation by utilizing the broadband characteristic of low-quality (Q) meta-surface in the reflection mode. The dispersion of the meta-surface is engineered to compensate the phase difference induced by frequency change. Meanwhile, a thin gradient index cover layer is added on the top of meta-surface to extend the phase modulation ...

  2. High brightness microwave lamp

    Science.gov (United States)

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  3. Simple Broadband Circular Polarizer in Oversized Waveguide

    Science.gov (United States)

    Stange, Torsten

    2016-02-01

    In this paper, a possibility is shown to realize a simple waveguide polarizer producing nearly the same circular polarization over a broad frequency range up to an octave. It is based upon the combination of two smoothly squeezed oversized waveguides with different diameters. The principle is similar to an achromatic lens in optics, where two counteracting lenses with differently sloped wavelength dependencies of the refractive index are combined to compensate the dispersion in the desired wavelength range. Consequently, two different wavelengths of light are brought into focus at the same plane. A waveguide for the transmission of microwaves has a similar frequency dependence of the refractive index resulting in a frequency-dependent phase shift between two propagating waves polarized along the symmetry axes of a waveguide with an elliptical cross section. For this reason, an incident wave with a linear polarization between the axes of symmetry can be only converted into a circularly polarized wave over a limited frequency range. However, the diameter and the shape along two counteracting squeezed waveguides can be adjusted in such a way that the frequency dependence of the resultant phase shift is finally canceled out.

  4. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Science.gov (United States)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-11-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  5. Improved Interference Suppression Algorithm Against Broadband BPSK Interference

    Institute of Scientific and Technical Information of China (English)

    AN Jian-ping; XIA Cai-jie; WANG Ai-hua

    2008-01-01

    An improved polar exciser (IMPE) interference suppression method against broadband constant envelope binary phase shift keying (BPSK) interference is proposed. The disadvantage of traditional polar exciser (PE) is the performance degradation when the power of interference is low, i.e., the threshold effect. The proposed improved PE (IMPE) algorithm can overcome the threshold effect of PE by introducing compression gain (CG) metric, which forces PE suppressor active only at larger jammer-to-signal ratio (JSR) and switch to matched filter (MF) at lower JSR. Theoretical analysis and numerical simulations show the exactness of CG as a switching metric and the validity of the IMPE algorithm.

  6. Design of a Broadband Inverted Conical Quadrifilar Helix Antenna

    Directory of Open Access Journals (Sweden)

    Jingyan Mo

    2016-01-01

    Full Text Available This paper introduces the design of a broadband inverted conical circularly polarized quadrifilar helix antenna (QHA. The antenna has many good characteristics, including wide beam and broad bandwidth, which are achieved by utilizing inverted conical geometry and adjusting the dimensions of the inverted conical support. The antenna is fed by a wideband network to provide 90° phase difference between the four arms with constant amplitude. The antenna impedance and axial ratio bandwidth values are more than 39% and 31.5%, respectively. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.

  7. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Wei, Qi, E-mail: weiqi@nju.edu.cn; Cheng, Ying [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Xu, Zheng [School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Liu, Xiaojun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  8. Nanophotonic Design for Broadband Light Management

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Emily; Callahan, Dennis; Horowitz, Kelsey; Pala, Ragip; Atwater, Harry

    2014-10-13

    We describe nanophotonic design approaches for broadband light management including i) crossed-trapezoidal Si structures ii) Si photonic crystal superlattices, and iii) tapered and inhomogeneous diameter III-V/Si nanowire arrays.

  9. Wireless Broadband Access and Accounting Schemes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.

  10. Evaluation of arctic broadband surface radiation measurements

    OpenAIRE

    Matsui, N.; C. N. Long; J. Augustine; Halliwell, D.; T. Uttal; Longenecker, D.; O. Nievergall; Wendell, J.; Albee, R.

    2011-01-01

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are...

  11. Multi-Mode Broadband Patch Antenna

    Science.gov (United States)

    Romanofsky, Robert R. (Inventor)

    2001-01-01

    A multi-mode broad band patch antenna is provided that allows for the same aperture to be used at independent frequencies such as reception at 19 GHz and transmission at 29 GHz. Furthermore, the multi-mode broadband patch antenna provides a ferroelectric film that allows for tuning capability of the multi-mode broadband patch antenna over a relatively large tuning range. The alternative use of a semiconductor substrate permits reduced control voltages since the semiconductor functions as a counter electrode.

  12. Broadband circularly polarized antennas for UHF SATCOM

    OpenAIRE

    Tekin, İbrahim; Tekin, Ibrahim; Manzhura, Oksana; Niver, Edip

    2011-01-01

    Novel circularly polarized (CP) antenna configurations derived from Moxon type antenna (bent dipole element over a ground plane) for broadband VHF SATCOM applications. A sequence of topologies starting from a single vertical element to two vertical elements of the Moxon arms, then widened strip arm elements were studied. Further, arms were widened to bow tie structures with bents at 900.for achieving broadband operation. Bow tie elements were further split and optimized at a certain angle to...

  13. Broadband mode conversion via gradient index metamaterials.

    Science.gov (United States)

    Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang

    2016-04-21

    We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide.

  14. Microwave Regenerable Air Purification Device

    Science.gov (United States)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  15. A re-look at critical factors influencing single-phase formation of Ba2Ti9O20 microwave dielectrics

    Indian Academy of Sciences (India)

    Unnikrishnan Gopinath; Dhanya Chandran; Seema Ansari; Bindu Krishnan; Rani Panicker; Raghu Natarajan

    2007-08-01

    The present study focuses on critical factors limiting single-phase formation of Ba2Ti9O20 (2 : 9). Apart from 2 : 9, other polytitanates that are richer in Ti or Ba could also be prepared as single-phase material without any stabilizing agent through chemical co-precipitation. 2 : 9 is found to be a stoichiometric compound and even 0.5% excess Ti or Ba leads to multiphase formation. Single-phase 2 : 9 could be achieved even through solid-state route without the addition of stabilizing agents using high purity raw materials. The present results do not agree with existing hypotheses viz. diffusion, high surface and nucleation energy, potential barrier, non-stoichiometry etc as critical factors limiting formation of 2 : 9 as single-phase material.

  16. Theoretical Calculation of a Composite Pulse with 8-Step Phase Cycling for2H Broadband Excitation by Average Hamiltonian Theory%组合脉冲宽带激发2H-平均哈密顿理论计算研究

    Institute of Scientific and Technical Information of China (English)

    沈明; ROOPCHAND Rabia; MANANGA Eugene S; 慕松柏; 陈群; BOUTIS Gregory S; 胡炳文

    2015-01-01

    四级核回波实验通常需要射频脉冲能够激发谱宽超过100 kHz的信号。在最近的研究中,作者发现组合脉冲COM-II (901809013545)能够在氘核的四级核回波实验中实现宽带激发。此外,作者还结合了八步相位循环的方法,有效消除了由有限脉宽效应造成的谱图扭曲现象。利用了平均哈密顿原理,对该方法进行了理论计算研究。作者采用了自旋为1的矩阵算符,通过计算解释了八步相位循环能够消除谱图扭曲的原因。%Quadrupolar echo NMR spectroscopy of solids often requires RF pulse excitation that covers spectral widths exceeding 100 kHz. In a recent work we found out that a composite pulse COM-II(901809013545),provided robust broadband excitation for deuterium quadrupolar echo spectroscopy. Moreover, when combined with an 8-step phase cycle, spectral distortions arising from finite pulse widths were greatly suppressed. In this paper we report on a theoretical analysis of COM-II with 8-step phase cycle by average Hamiltonian theory. This treatment is combined with the fictitious spin-1 operator formalism, and the mechanism of the 8-step phase cycling that minimizes the spectral distortions is discussed.

  17. UHB Engine Fan Broadband Noise Reduction Study

    Science.gov (United States)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-01-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  18. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  19. Interpreting Flux from Broadband Photometry

    Science.gov (United States)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.; Siegel, Michael

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.

  20. Ultra-broadband photonic internet

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  1. A broadband multifocal metalens in the terahertz frequency range

    Science.gov (United States)

    Hashemi, Mahdieh; Moazami, Amin; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.

    2016-07-01

    Metasurfaces, the 2D form of metamaterials with their ability in phase, amplitude and polarization manipulation are widely used in designing optical devices. Efforts to find proper photonic components in the terahertz (THz) range of frequency lead us to adopt metasurfaces as their constituent elements. Here, we conceived a broadband THz lens with an adjustable number and arrangement of focal points. To have a full control over the lens functionality, we used a metasurface with the capability of simultaneously modulating the amplitude and phase of the incident wave. C-shaped ring resonators (CSRRs) with different geometry and orientation capable of simultaneously manipulating phase and amplitude of the scattered fields, are proper choice to design the lens. We show that the introduced lens in a one-dimensional layout has a wide range of working frequencies within the THz spectrum, which can be used in a plethora of applications.

  2. Broadband behavior of transmission volume holographic optical elements for solar concentration.

    Science.gov (United States)

    Bañares-Palacios, Paula; Álvarez-Álvarez, Samuel; Marín-Sáez, Julia; Collados, María-Victoria; Chemisana, Daniel; Atencia, Jesús

    2015-06-01

    A ray tracing algorithm is developed to analyze the energy performance of transmission and phase volume holographic lenses that operate with broadband illumination. The agreement between the experimental data and the theoretical treatment has been tested. The model has been applied to analyze the optimum recording geometry for solar concentration applications.

  3. From type II upconversion to SPDC: a path to broadband polarization entanglement in poled fibers

    OpenAIRE

    Zhu, E.Y.; Helt, L. G.; Liscidini, M.; Qian, L; Sipe, J. E.; Canagasabey, A.; Corbari, C.; Ibsen, M; Kazansky, P. G.

    2009-01-01

    We report type II sum-frequency and second-harmonic generation in a 24-cm-long periodically-poled silica fiber. Quasi-phase matching is achieved for orthogonally-polarized signal and idler over 1520-1575 nm, demonstrating the path to in-fiber broadband polarization-entangled photon pair generation.

  4. QUASI-PERIODIC WIGGLES OF MICROWAVE ZEBRA STRUCTURES IN A SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sijie; Tan, Baolin; Yan, Yihua [Key Laboratory of Solar Activity, National Astronomical Observatories Chinese Academy of Sciences, Beijing 100012 (China); Nakariakov, V. M.; Selzer, L. A., E-mail: sjyu@nao.cas.cn [Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2013-11-10

    Quasi-periodic wiggles of microwave zebra pattern (ZP) structures with periods ranging from about 0.5 s to 1.5 s are found in an X-class solar flare on 2006 December 13 at the 2.6-3.8 GHz with the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou). Periodogram and correlation analysis show that the wiggles have two to three significant periodicities and are almost in phase between stripes at different frequencies. The Alfvén speed estimated from the ZP structures is about 700 km s{sup –1}. We find the spatial size of the wave-guiding plasma structure to be about 1 Mm with a detected period of about 1 s. This suggests that the ZP wiggles can be associated with the fast magnetoacoustic oscillations in the flaring active region. The lack of a significant phase shift between wiggles of different stripes suggests that the ZP wiggles are caused by a standing sausage oscillation.

  5. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  6. 基于布里渊载波相移的宽带可调谐二倍频微波信号生成*%Widely tunable frequency-doubling microwaves generated using Brillouin-assisted carrier phase shift

    Institute of Scientific and Technical Information of China (English)

    郑狄; 潘炜; 闫连山; 罗斌; 邹喜华; 刘新开; 易安林

    2014-01-01

    本文提出并实验验证了一种基于光纤中受激布里渊散射效应的光子二倍频微波信号生成技术。利用布里渊增益谱内的强色散特性,对光强度调制器产生的双边带调制信号的载波进行π/2相移,可实现载波与±1阶边带拍频仅生成二倍频微波信号。由于光纤中受激布里渊散射的窄带特性以及仅对双边带调制信号的载波进行相移,不影响调制信号两个边带的幅值和相位,因而生成的二倍频微波信号可实现宽带调谐,调谐范围仅受其他光器件的工作带宽限制。此外,信号光和产生受激布里渊散射的抽运光均来自同一光源,因而不受波长漂移的影响,系统具良好的稳定性。%An optically tunable frequency-doubling microwave generation technique based on stimulated Brillouin scattering (SBS) in optical fibers is proposed and experimentally demonstrated. Due to the strong dispersion characteristics in SBS, when a π/2 phase shift is imposed on the optical carrier of an amplitude-modulated signal by SBS, only a frequency-doubling microwave signal from the beating between the optical carrier and the ±1st sidebands is generated. Due to the inherent narrowband character of SBS and the phase shift being only imported on to the optical carrier while the sidebands are kept unchanged, the frequency-doubling with large frequency tunability is realized, the operational bandwidth is just limited by other optical device deployed. In addition, all the required optical signals and pumps can be generated from the same laser source, the influence from the wavelength drifting is eliminated, so the stability of the system is established.

  7. Combination microwave ovens: an innovative design strategy.

    Science.gov (United States)

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance. PMID:24432587

  8. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies

    Science.gov (United States)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.

    2011-06-01

    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  9. Nonlinear Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Eggleton, Benjamin J.

    2013-01-01

    Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we discuss the potential of on-chip nonlinear processing towards the creation of robust and multifunctional microwave photonic (MWP) processors. We also highlight key recent results in the field, inclu...

  10. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe2O3 and P2O5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe3+) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  11. Recent advancement of slow light in microwave photonics applications

    OpenAIRE

    Chin, Sanghoon; Thévenaz, Luc

    2010-01-01

    A complete realization of an optically tunable true time delay, generated through the combination of a photonic RF phase shifter and a Brillouin slow light element is presented. Illustration through a dynamic microwave photonic filter is demonstrated.

  12. Group III-Nitride LNAs for Microwave Radiometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This phase I proposal addresses the need for microwave and millimeter wave Low Noise Amplifiers (LNAs) for remote sensing applications of the earth's atmosphere. In...

  13. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  14. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  15. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  16. A Survey of Advanced Microwave Frequency Measurement Techniques

    Directory of Open Access Journals (Sweden)

    Anand Swaroop Khare

    2012-06-01

    Full Text Available Microwaves are radio waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. The science of photonics includes the generation, emission, modulation, signal processing, switching, transmission, amplification, detection and sensing of light. Microwave photonics has been introduced for achieving ultra broadband signal processing. Instantaneous Frequency Measurement (IFM receivers play an important role in electronic warfare. Technologies used for signal processing, include conventional direct Radio Frequency (RF techniques, digital techniques, intermediate frequency (IF techniques and photonic techniques. Direct RF techniques suffer an increased loss, high dispersion, and unwanted radiation problems in high frequencies. The systems that use traditional RF techniques can be bulky and often lack the agility required to perform advanced signal processing in rapidly changing environments. In this paper we discussed a survey of Microwave Frequency Measurement Techniques. The microwaves techniques are categorized based upon different approaches. This paper provides the major advancement in the Microwave Frequency MeasurementTechniques research; using these approaches the features and categories in the surveyed existing work.

  17. Broadband antenna with frequency scanning

    Directory of Open Access Journals (Sweden)

    A. A. Shekaturin

    2014-06-01

    Full Text Available Relevance of this study. The main advantage of frequency scanning is simplicity of implementation. At this point, multifunctional usage of microwave modules is an urgent task, as well as their maximum simpler and cheaper. Antenna design and operation. The study is aimed at providing electric antenna with frequency scanning. It was based on the log-periodic antenna due to its wideband and negotiation capability over the entire operating frequency range. For this distribution line is bent in an arc of a circle in a plane blade while vibrators are arranged along the radius. Computer modeling of antennas with frequency scanning. Modeled with a non-mechanical motion antenna beam emitters representing system for receiving a radio frequency signal on mobile objects calculated for 1.8 GHz ... 4.2 GHz. The simulation was performed in a software environment for numerical modeling of electromagnetic «Feko 5.5». Analysis of the interaction of radiation is based on the method of moments. Findings. The result of this work is to propose a new design of the antenna with a frequency scanning method as agreed in a wide frequency range. In the studied technical solution provided by the rotation of NAM in the frequency range, and the matching of the antenna to the feed line is maintained. Application of this type of antennas on the proposed technical solution in communication systems will improve the communication reliability by maintaining coordination in the frequency range

  18. Artificial color perception using microwaves

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving colors using microwaves.

  19. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy

    Science.gov (United States)

    Crabtree, Kyle N.; Martin-Drumel, Marie-Aline; Brown, Gordon G.; Gaster, Sydney A.; Hall, Taylor M.; McCarthy, Michael C.

    2016-03-01

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.

  20. 基于单通带微波光子滤波的多倍频微波信号产生%Frequency Multiplied Microwave Signal Generation Based on Single Passband Microwave Photonic Filtering

    Institute of Scientific and Technical Information of China (English)

    朱海玲; 潘炜; 陈吉欣; 鄢勃

    2013-01-01

    An approach to generate a microwave signal with multiplication frequency is studied and verified theoretically and experimentally. Based on big signal phase modulation and the dispersion of a single-mode fiber, the high order of microwave harmonic signal is generated. A tunable single passband microwave photonic filter is used to select a specific harmonic signal by tuning the sliced space of broadband optical source. Based on the theoretic analysis, an experimental system is established, and the harmonic signals at 10 GHz and 15 GHz are produced by applying a low-frequency signal at 5 GHz. It can be seen the 10 dB bandwidth of the signal is a few tens hertz, and the power fluctuation is 1 dB~2 dB.%理论分析和实验验证了一种多倍频微波信号的光学产生方法.基于大信号相位调制和单模光纤的色散效应产生多个多倍频谐波,通过引入一个中心频率连续可调的单通带微波光子滤波器,实现了对单个倍频微波信号的提取.调节宽带光源的谱分割间隔可实现倍频微波信号调谐输出.在理论分析的基础上搭建了实验系统,利用5 GHz低频驱动信号得到了10 GHz和15 GHz的微波信号,其10 dB线宽为几十赫兹,功率波动为1 dB~2 dB.