WorldWideScience

Sample records for broadband microwave phase

  1. Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor.

    Science.gov (United States)

    Yang, J; Chan, E H W; Wang, X; Feng, X; Guan, B

    2015-05-04

    An all-optical photonic microwave phase shifter that can realize a continuous 360° phase shift over a wide frequency range is presented. It is based on the new concept of controlling the amplitude and phase of the two RF modulation sidebands via a Fourier-domain optical processor. The operating frequency range of the phase shifter is largely increased compared to the previously reported Fourier-domain optical processor based phase shifter that uses only one RF modulation sideband. This is due to the extension of the lower RF operating frequency by designing the amplitude and phase of one of the RF modulation sidebands while the other sideband is designed to realize the required RF signal phase shift. The two-sideband amplitude-and-phase-control based photonic microwave phase shifter has a simple structure as it only requires a single laser source, a phase modulator, a Fourier-domain optical processor and a single photodetector. Investigation on the bandwidth limitation problem in the conventional Fourier-domain optical processor based phase shifter is presented. Comparisons between the measured phase shifter output RF amplitude and phase responses with theory, which show excellent agreement, are also presented for the first time. Experimental results demonstrate the full -180° to + 180° phase shift with little RF signal amplitude variation of less than 3 dB and with a phase deviation of less than 4° over a 7.5 GHz to 26.5 GHz frequency range, and the phase shifter exhibits a long term stable performance.

  2. Linearization of broadband microwave amplifier

    Directory of Open Access Journals (Sweden)

    Đorić Aleksandra

    2014-01-01

    Full Text Available The linearization of broadband power amplifier for application in the frequency range 0.9-1.3 GHz is considered in this paper. The amplifier is designed for LDMOSFET characterized by the maximum output power 4W designing the broadband lumped element matching circuits and matching circuits in topologies that combines LC elements and transmission lines. The linearization of the amplifier is carried out by the second harmonics of the fundamental signals injected at the input and output of the amplifier transistor. The effects of linearization are considered for the case of two sinusoidal signals separated in frequency by different intervals up to 80 MHz ranging input power levels to saturation. [Projekat Ministarstva nauke Republike Srbije, br. TR-32052

  3. Ultra-broadband microwave metamaterial absorber

    Science.gov (United States)

    Ding, Fei; Cui, Yanxia; Ge, Xiaochen; Jin, Yi; He, Sailing

    2012-03-01

    A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-frequencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7 GHz, and the absorption is kept large when the incident angle is smaller than 60°. The experimental results agree well with the numerical simulation.

  4. Coding metasurface for broadband microwave scattering reduction with optical transparency.

    Science.gov (United States)

    Chen, Ke; Cui, Li; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-03-06

    Metasurfaces have promised great possibilities in full control of the electromagnetic wavefront by spatially manipulating the phase characteristics across the interface. Here, we report a scheme to realize broadband backward scattering reduction through diffusion-like microwave reflection by utilizing a flexible indium-tin-oxide (ITO)-based ultrathin coding metasurface (less than 0.1 wavelength thick) with high optical transparence. The diffusion-like scattering is caused by the destructive interference of the scattered far-field electromagnetic wave, which is further attributed to the randomly distributed reflection phases on the metasurface composed of pre-designed meta-atoms arranged with a computer-generated pseudorandom coding sequence. Both simulation and measurement on fabricated prototype sample have been carried out to validate its performance, demonstrating a polarization-independent broadband (nearly from 8 GHz to 15 GHz) 10 dB scattering reduction with good oblique performance. The excellent performances can also be preserved to conformal cases when the flexible metasurface is uniformly wrapped around a metallic cylinder. The proposed metasurface may create new opportunities to tailor the exotic microwave scattering features with simultaneously high transmittance in visible frequencies, which could provide crucial benefits in many practical uses, such as window and solar panel applications.

  5. A novel ultrathin and broadband microwave metamaterial absorber

    Science.gov (United States)

    Wang, Bei-Yin; Liu, Shao-Bin; Bian, Bo-Rui; Mao, Zhi-Wen; Liu, Xiao-Chun; Ma, Ben; Chen, Lin

    2014-09-01

    In this paper, the design, simulation, fabrication, and measurement of an ultrathin and broadband microwave metamaterial absorber (MMA) based on a double-layer structure are presented. Compared with the prior work, our structure is simple and polarization insensitive. The broadband MMA presents good absorption above 90 % between 8.85 GHz and 14.17 GHz , with a full width at half maximum (FWHM) absorption bandwidth of 6.77 GHz and a relative FWHM absorption bandwidth of 57.3 % . Moreover, the structure has a thickness of 1.60 mm (only λ/20 at the lowest frequencies). The experimental results show excellent absorption rates which are in good correspondence with the simulated results. The broadband absorber is promising candidates as absorbing elements in scientific and technical applications because of its broadband absorption and polarization insensitive.

  6. Double-corrugated metamaterial surfaces for broadband microwave absorption

    Science.gov (United States)

    Pang, Yongqiang; Cheng, Haifeng; Zhou, Yongjiang; Wang, Jun

    2013-02-01

    Double-corrugated metamaterial surfaces are proposed to achieve broadband absorbers in the microwave region. The principal corrugation having a long period is made of hypo-corrugated metal structures filled with a dielectric medium. It is shown that the incident electromagnetic wave with a certain frequency can be strongly absorbed by the corrugation region where the height is about λ/4, with λ being the corresponding wavelength in the dielectric. Assembling various heights of corrugations together to form a graded corrugation surface can excite many distinct absorption modes and their overlapping with each other results in a broadband absorption. We experimentally demonstrate a broadband metamaterial absorber with more than 80% absorbance in the frequency range of 7.22-18.0 GHz which agrees well with the numerical simulation.

  7. Ultra-broadband microwave metamaterial absorber based on resistive sheets

    Science.gov (United States)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2017-01-01

    We investigate a broadband perfect absorber for microwave frequencies, with a wide incident angle, using resistive sheets, based on both simulation and experiment. The absorber uses periodically-arranged meta-atoms, consisting of snake-shape metallic patterns and metal planes separated by three resistive sheet layers between four dielectric layers. We demonstrate the mechanism of the broadband by impedance matching with free space, and the distribution of surface currents at specific frequencies. In simulation, the absorption was over 96% in 1.4-6.0 GHz. The corresponding experimental absorption band over 96% was 1.4-4.0 GHz, however, the absorption was lower than 96% in the 4.0-6.0 GHz range because of the rather irregular thickness of the resistive sheets. Furthermore, it works for wide incident angles and is relatively independent of polarization. The design is scalable to smaller sizes in the THz range. The results of this study show potential for real applications in prevention of microwave frequency exposure, with devices such as cell phones, monitors, and microwave equipment.

  8. Dendritic-metasurface-based flexible broadband microwave absorbers

    Science.gov (United States)

    Wang, Mei; Weng, Bin; Zhao, Jing; Zhao, Xiaopeng

    2017-06-01

    Based on the dendritic metasurface model, a type of flexible and lightweight microwave absorber (MA) comprising resistance film array with dendritic slot (RFADS), dielectric material, and metal plate is proposed. A broadband absorptivity of >80% is obtained both from simulation and experiment at frequency ranges of 3.0-9.2 and 3.2-9.00 GHz, respectively. And the thickness of MA is 5 mm, which is only 0.05λ _{low}, or 0.15λ _ {high}, where the λ _{low} and the λ _{high} are the beginning and the end of the working frequency. By combining this metasurface-based MA with the dendritic-resistance-film-based microwave metasurface absorber (MMA), we designed a broadband MMA. The simulations and experiments showed that this kind of MMA can absorb the radiation effectively at a wide frequency range 4.5-17.5 GHz. And the thickness of this combined MMA is 4 mm. All the structures showed their insensitivity to the incident angle (0°-40°) and the polarization of the incident wave because of their structural symmetry. In addition, the small thickness, low apparent density, and flexibility made those structures possess the advantages of being applied in microwave stealth and radar cross-section (RCS) reduction.

  9. Wave propagation in reconfigurable broadband gain metamaterials at microwave frequencies

    Science.gov (United States)

    Fan, Yifeng; Nagarkoti, Deepak S.; Rajab, Khalid Z.; Hao, Yang; Zhang, Hao Chi; Cui, Tie Jun

    2016-05-01

    The wave dispersion characteristics for loop array-based metamaterials were analyzed, based on the general transmission line model of a one-dimensional host medium interacting with a chain of coupled loops. By relating the wave propagation constant and the effective parameters of the coupled host medium, we showed that an active medium embedded with non-Foster loaded loop array can be designed to exhibit broadband negative material parameters with positive gain. Accounting for all interactions, the stability of the active medium was investigated, further yielding necessary design specifications for the non-Foster loads. Subsequently, an experimental demonstration was provided to verify the theoretical analysis, showing that stable reconfigurable broadband gain metamaterials at microwave frequencies can be obtained with proper negative impedance converter design.

  10. Broadband architecture for galvanically accessible superconducting microwave resonators

    Science.gov (United States)

    Bosman, Sal J.; Singh, Vibhor; Bruno, Alessandro; Steele, Gary A.

    2015-11-01

    In many hybrid quantum systems, a superconducting circuit is required, which combines DC-control with a coplanar waveguide (CPW) microwave resonator. The strategy thus far for applying a DC voltage or current bias to microwave resonators has been to apply the bias through a symmetry point in such a way that it appears as an open circuit for certain frequencies. Here, we introduce a microwave coupler for superconducting CPW cavities in the form of a large shunt capacitance to ground. Such a coupler acts as a broadband mirror for microwaves while providing galvanic connection to the center conductor of the resonator. We demonstrate this approach with a two-port λ/4-transmission resonator with linewidths in the MHz regime ( Q ˜103 ) that shows no spurious resonances and apply a voltage bias up to 80 V without affecting the quality factor of the resonator. This resonator coupling architecture, which is simple to engineer, fabricate, and analyse, could have many potential applications in experiments involving superconducting hybrid circuits.

  11. Fast and precise data acquisition for broadband microwave tomography systems

    Science.gov (United States)

    Mallach, Malte; Musch, Thomas

    2017-09-01

    Microwave imaging (MWI) is a noninvasive diagnosis method, which has been investigated for a wide range of applications. MWI techniques include radar-based approaches as well as microwave tomography (MWT). One major challenge designing broadband MWI systems is the development of a data acquisition unit that allows for fast broadband scattering parameter measurements with a high measurement precision and a high dynamic range (DR), at reasonable cost. The cost-performance criteria cannot readily be achieved using commercial, continuous wave (CW) vector network analyzers (VNA) or pulse-based systems. Therefore, in this paper we propose a data acquisition unit, based on the well-known method of frequency modulated continuous wave (FMCW) network analysis. It offers fast scattering parameter measurements without compromising the measurement precision and the DR, and is particularly advantageous for MWI systems requiring a high number of frequency samples. A 2-port metadyne prototype electronics with low hardware complexity was developed, which allows very fast, precise, and accurate reflection and transmission measurements in the frequency range from 0.5 GHz to 5.5 GHz. To the best of the authors’ knowledge, a system with combined performance in terms of bandwidth, sweep time (1 ms), DR (80 dB) and maximum signal-to-noise-and-spurious ratio (65 dB) has not previously been reported. The design, the calibration, and the characterization of the prototype electronics are described in detail, and the measurement results are compared to those obtained with commercial high-end CW VNA. The advantages and limitations of the metadyne FMCW technique compared to the heterodyne CW technique are discussed. The applicability of the prototype electronics and the described calibration technique for microwave imaging has been demonstrated based on measurements using an 8-port MWT sensor and a switching matrix.

  12. Broadband phased-arrays antennas

    Science.gov (United States)

    Mansky, L.

    1984-09-01

    The actual jamming-to-signal ratio achieved in an electronic countermeasures (ECM) system depends on the effective radiated power (ERP) directed toward the radar by the ECM system. The required ERP may be obtained in a phase-steered array using a variety of transmit-subsystem hardware configurations. Here, tradeoff criteria to aid in the selection of an optimal architecture are discussed. Such selection is based on minimizing the array size, backscattering cross selection, and overall system complexity. Functional elements of typical phased arrays and their principal components are descried.

  13. Broadband metamaterial for optical transparency and microwave absorption

    Science.gov (United States)

    Zhang, Cheng; Cheng, Qiang; Yang, Jin; Zhao, Jie; Cui, Tie Jun

    2017-04-01

    We present a metamaterial for simultaneous optical transparency and microwave absorption in broadband, which can be used as an optically transparent radar-wave absorber. The proposed metamaterial absorber is made of windmill-shaped elements with the reflection spectra featured by three absorption bands. By properly tailoring the resonances of the structure, we achieve the optimized metamaterial absorptivity that is greater than 90% from 8.3 to 17.4 GHz. In the meantime, excellent optical transmittance is achieved by use of the indium tin oxide (ITO) film with moderate surface resistance, implying that the optical properties of the metamaterial are hardly affected by the periodic meta-atoms. Both numerical simulations and experimental results demonstrate the good performance of the proposed metamaterial, thereby enabling a wide range of applications such as ultrathin detectors and photovoltaic solar cells in the future.

  14. Broadband ultrathin low-profile metamaterial microwave absorber

    Science.gov (United States)

    Sood, Deepak; Tripathi, Chandra Charu

    2016-04-01

    In this paper, a single-layer broadband low-profile ultrathin metamaterial microwave absorber is proposed for wide angle of incidence. The proposed absorber provides triple-band absorption under normal incidence of electromagnetic wave with two peaks lying in X-band and one in Ku-band. The unit cell is designed by using parametric optimization in such a way that the three peaks merge together to give broadband absorption. The absorber exhibits full width at half maxima bandwidth (FWHM) of 7.75 GHz from 7.55 to 15.30 GHz for wide angle of incidence up to 60° for both TE and TM polarizations. The mechanism of absorption of the absorber has been analyzed by field and surface current distributions. The proposed absorber has been fabricated and experimentally tested for different angles of incidence and polarization of the incident wave. The absorber is low profile with unit cell dimension of the order of 0.168 λ 0, and it is ultrathin with a thickness of ~ λ 0/17 at the center frequency of 11.43 GHz corresponding to the FWHM absorption bandwidth. This proposed absorber can be used for many potential applications such as stealth technology, cloaking and in antenna systems.

  15. Tunable and Broadband Differential Phase Sections in Terahertz Frequency Range

    Science.gov (United States)

    Kosiak, O. S.; Bezborodov, V. I.; Kuleshov, Ye. M.; Nesterov, P. K.

    2016-12-01

    Purpose: Studying the quasioptical tunable and broadband differential phase section (DPS) consisting of several birefringent elements (BE) on the basis of form birefringence effect. Design/methodology/approach: Using the polarization scattering matrix method, the impact of the mutual rotation axis of anisotropy of several BE by the amount of phase shift and the position of the plane of anisotropy of resulting DPS is considered. Findings: The DPS tunable in a wide range are shown to be possibly implemented in the case of quarter- wave DPS of two, and in the case of half-wave DPS of three, identical non-tunable BE. The analysis has shown to the possibility of creating a broadband quarter-wave and half-wave DPS. Conclusions: Experimental research has confirmed the possibility of constructing a tunable and broadband DPS. On this basis, tunable and broadband polarization converters, rotators of polarization plane, polarization phase shifters and frequency shifters in the terahertz frequency range can be created.

  16. [Design of broadband power divider in microwave hyperthermia system].

    Science.gov (United States)

    Sun, Bing; Jiang, Guotai; Lu, Xiaofeng; Cao, Yi

    2010-10-01

    In clinical application of microwave hyperthermia, multi-applicators are often simultaneously required to irradiate the tumor because of its large volume or its deep location. Power divider separates the input microwave energy into equal, or unequal, energy to each applicator. In this paper, the design procedure for the three-section transmission-line transformer based one-to-two equal-split Wilkinson power divider is introduced. By impedance analysis on equivalent scheme, the design parameter of power divider is provided, and by simulation and optimization on Ansoft HFSS, a microstrip structure Wilkinson power divider operating frequency 2. 45 GHz is given. Measurement test results from network analyzer show that it has 25% bandwidth and good isolation in output with this structure. Besides, it is characterized by small size and easy processing. This power divider suits microwave hyperthermia.

  17. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  18. Broadband multi-resonant strong field coherence breaking as a tool for single isomer microwave spectroscopy

    Science.gov (United States)

    Hernandez-Castillo, A. O.; Abeysekera, Chamara; Hays, Brian M.; Zwier, Timothy S.

    2016-09-01

    Using standard hardware available in chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy, an experimental method is introduced to selectively extract from the microwave spectrum of an otherwise complicated multicomponent mixture a set of transitions due to a single component, thereby speeding spectral assignment. The method operates the broadband chirped-pulse used to excite the sample in the strong-field limit through a combination of high power and control of the sweep rate. A procedure is introduced that leads to selection of three transition frequencies that can be incorporated as a set of resonant sequential single-frequency microwave pulses that follow broadband chirped-pulse excitation, resulting in a reduction in the coherent signal from a set of transitions ascribable to the component of interest. The difference in the CP-FTMW spectrum with and without this set of multi-resonant single-frequency pulses produces a set of transitions that can confidently be assigned to a single component of the mixture, aiding the analysis of its spectrum. The scheme is applied to (i) selectively extract the spectrum of one of five singly 13C-subsituted isotopologues of benzonitrile in natural abundance, (ii) obtain the microwave spectra of the two structural isomers (E)- and (Z)-phenylvinylnitrile, and (iii) obtain conformer-specific microwave spectra of methylbutyrate.

  19. Broadband Absorber for the Microwave Region Using Ball-Milled Graphite Gratings

    Science.gov (United States)

    Chen, Xiqiao; Zhang, Zilong; Wang, Zilin; Wang, Shuai; Heng, Liuyang; Zou, Yanhong

    2017-10-01

    A broadband absorber for the microwave region based on a dielectric structure with ball-milled graphite gratings has been proposed. In this absorber, electromagnetic waves in the frequency range of 5.4 to 18 GHz are absorbed efficiently with more than 90% absorptivity. The ball-milled graphite with high a imaginary part of its permittivity used in this work can exhibit dielectric loss to some extent, while there is almost no magnetic loss owing to its low permeability. By comparing the electric field of a single absorbing layer and our grating structure, we found that a λ/4 resonance mode with a narrowband property is excited in the single-layer structure, while the cavity-mode resonance and the edge diffraction effects are the main reasons for the broadband absorption of our designed grating structure. This result provides a guideline for microwave-absorbing materials to greatly extend their bandwidth using a simple structure.

  20. Tracing the phase of focused broadband laser pulses

    Science.gov (United States)

    Hoff, Dominik; Krüger, Michael; Maisenbacher, Lothar; Sayler, A. M.; Paulus, Gerhard G.; Hommelhoff, Peter

    2017-10-01

    Precise knowledge of the behaviour of the phase of light in a focused beam is fundamental to understanding and controlling laser-driven processes. More than a hundred years ago, an axial phase anomaly for focused monochromatic light beams was discovered and is now commonly known as the Gouy phase. Recent theoretical work has brought into question the validity of applying this monochromatic phase formulation to the broadband pulses becoming ubiquitous today. Based on electron backscattering at sharp nanometre-scale metal tips, a method is available to measure light fields with sub-wavelength spatial resolution and sub-optical-cycle time resolution. Here we report such a direct, three-dimensional measurement of the spatial dependence of the optical phase of a focused, 4-fs, near-infrared pulsed laser beam. The observed optical phase deviates substantially from the monochromatic Gouy phase--exhibiting a much more complex spatial dependence, both along the propagation axis and in the radial direction. In our measurements, these significant deviations are the rule and not the exception for focused, broadband laser pulses. Therefore, we expect wide ramifications for all broadband laser-matter interactions, such as in high-harmonic and attosecond pulse generation, femtochemistry, ophthalmological optical coherence tomography and light-wave electronics.

  1. Broadband planar multilayered absorbers tuned by VO2 phase transition

    Science.gov (United States)

    Peng, Hao; Ji, Chunhui; Lu, Lulu; Li, Zhe; Li, Haoyang; Wang, Jun; Wu, Zhiming; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun

    2017-08-01

    The metal-insulator transition makes vanadium dioxide an attractive material for developing reconfigurable optoelectronic components. Here we report on dynamically tunable broadband absorbers consisting of planar multilayered thin films. By thermally triggering the phase transition of vanadium dioxide, the effective impedance of multilayered structures is tuned in or out of the condition of impedance matching to free-space, leading to switchable broadband absorptions. Two types of absorbers are designed and demonstrated by using either the insulating or metallic state of vanadium dioxide at the impedance matched condition. The planar multilayered absorbers exhibit tunable absorption bands over the wavelength ranges of 5-9.3 μm and 3.9-8.2 μm, respectively. A large modulation depth up to 88% is measured. The demonstrated broadband absorbance tunability is of potential interest for reconfigurable bolometric sensing, camouflaging, and modulation of mid-infrared lights.

  2. Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping.

    Science.gov (United States)

    Song, Minhyup; Torres-Company, Victor; Metcalf, Andrew J; Weiner, Andrew M

    2012-03-01

    We present a programmable multitap microwave photonic filter with an arbitrary phase response operating over a broad bandwidth. Complex coefficient taps are achieved by optical line-by-line pulse shaping on a 10 GHz flat optical frequency comb using a novel interferometric scheme. Through high-speed real-time measurements, we demonstrate programmable chirp control of a waveform via phase filtering. This achievement enables us to compress broadband microwave signals to their corresponding bandwidth-limited pulse duration. © 2012 Optical Society of America

  3. Phase Noise in RF and Microwave Amplifiers

    OpenAIRE

    Boudot, Rodolphe; Rubiola, Enrico

    2010-01-01

    Understanding the amplifier phase noise is a critical issue in numerous fields of engineering and physics, like oscillators, frequency synthesis, telecommunications, radars, spectroscopy, in the emerging domain of microwave photonics, and in more exotic domains like radio astronomy, particle accelerators, etc. This article analyzes the two main types of phase noise in amplifiers, white and flicker. White phase noise results from adding white noise to the RF spectrum around the carrier. For a ...

  4. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber

    Science.gov (United States)

    Yahiaoui, Riad; Ouslimani, Habiba Hafdallah

    2017-09-01

    We report the simulation, fabrication, and experimental characterization of a single-layer broadband, polarization-insensitive and wide-angle near perfect metamaterial absorber (MA) in the microwave regime. The topology of the resonators is chosen in such a way that is capable of supporting simultaneously multiple plasmon resonances at adjacent frequencies, which lead to a broadband operation of the MA. Absorption larger than 80% at normal incidence covering a broad frequency range (between 7.4 GHz and 10.4 GHz) is demonstrated experimentally and through numerical simulations. Furthermore, the performance of the metamaterial absorber is kept constant up to an incident angle of 30°, for both TE and TM-polarizations. In addition, a hybrid model of the MA is proposed and implemented numerically in order to dynamically tune the absorption window. The hybrid MA is controlled by incorporating vanadium dioxide (VO2) temperature-driven metal-insulator phase transition material, which enables the transition from broadband (80% absorption and 3 GHz bandwidth) to narrowband (80% absorption and 0.7 GHz bandwidth) absorption window. Our proposed single-layer MA offers substantial advantages due to its low-cost and simplicity of fabrication. The results are very promising, suggesting a potential use of the MA in wide variety of applications including solar energy harvesting, biosensing, imaging, and stealth technology.

  5. Ultra-thin Low-Frequency Broadband Microwave Absorber Based on Magnetic Medium and Metamaterial

    Science.gov (United States)

    Cheng, Yongzhi; He, Bo; Zhao, Jingcheng; Gong, Rongzhou

    2017-02-01

    An ultra-thin low-frequency broadband microwave absorber (MWA) based on a magnetic rubber plate (MRP) and cross-shaped structure (CSS) metamaterial (MM) was presented numerically and experimentally. The designed composite MWA is consisted of the MRP, CSS resonator, dielectric substrate and metallic background plane. The low-frequency absorption can be easily adjusted by tuning the geometric parameter of the CSS MM and the thickness of MPR. A bandwidth (i.e. the reflectance is below -10 dB) from 2.5 GHz to 5 GHz can be achieved with the total thickness of about 2 mm in experiments. The broadband absorption is attributed to the overlap of two resonant absorption peaks originated from MRP and CSS MM, respectively. More importantly, the thickness of the composite WMA is much thinner ( λ/40; λ is the operation center frequency), which could operate well at wide incidence angles for both transverse electric and transverse magnetic waves. Thus, it can be expected that our design will be applicable in the area of eliminating microwave energy and electromagnetic stealth.

  6. Broadband opto-mechanical phase shifter for photonic integrated circuits

    Science.gov (United States)

    Guo, Xiang; Zou, Chang-Ling; Ren, Xi-Feng; Sun, Fang-Wen; Guo, Guang-Can

    2012-08-01

    A broadband opto-mechanical phase shifter for photonic integrated circuits is proposed and numerically investigated. The structure consists of a mode-carrying waveguide and a deformable non-mode-carrying nanostring, which are parallel with each other. Since the nanostring can be deflected by the optical gradient force between the waveguide and the nanostring, the effective refractive indices of the waveguide will be changed and a phase shift will be generated. The phase shift under different geometry sizes, launched powers and boundary conditions are calculated and the dynamical properties as well as the thermal noise's effect are also discussed. It is demonstrated that a π phase shift can be realized with only about 0.64 mW launched power and 50 μm long nanostring. The proposed phase shifter may find potential usage in future investigation of photonic integrated circuits.

  7. Experimental study of a high-current FEM with a broadband microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, G.G.; Bratman, V.L.; Ginzburg, N.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    One of the main features of FELs and FEMs is the possibility of fast and wideband tuning of the resonant frequency of active media, which can be provided by changing the particle energy. For a frequency adjustable FEM-oscillator, a broadband microwave system, which is simply combined with an electron-optical FEM system and consists of an oversized waveguide and reflectors based on the microwave beams multiplication effect has been proposed and studied successfully in {open_quotes}cold{close_quotes} measurements. Here, the operating ability of a cavity, that includes some key elements of the broadband microwave system, was tested in the presence of an electron beam. To provide large particle oscillation velocities in a moderate undulator field and the presence of a guide magnetic field, the FEM operating regime of double resonance was chosen. In this regime the cyclotron as well as undulator resonance conditions were satisfied. The FEM-oscillator was investigated experimentally on a high-current accelerator {open_quotes}Sinus-6{close_quotes} that forms an electron beam with particle energy 500keV and pulse duration 25ns. The aperture with a diameter 2.5mm at the center of the anode allows to pass through only the central fraction of the electron beam with a current about 100A and a small spread of longitudinal velocities of the particles. Operating transverse velocity was pumped into the electron beam in the pulse plane undulator of a 2.4cm period. The cavity with a frequency near 45GHz consists of a square waveguide and two reflectors. The broadband up-stream reflector based on the multiplication effect had the power reflectivity coefficient more than 90% in the frequency band 10% for the H{sup 10} wave of the square waveguide with the maximum about 100% at a frequency 45GHz. The down-stream narrow-band Bragg reflector had the power reflection coefficient approximately 80% in the frequency band of 4% near 45GHz for the operating mode.

  8. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    Science.gov (United States)

    Schmitz, D.; Shubert, V. A.; Giuliano, B. M.; Schnell, M.

    2014-07-01

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2-8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules.

  9. The broadband microwave spectra of the monoterpenoids thymol and carvacrol: Conformational landscape and internal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, D.; Shubert, V. A. [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); Giuliano, B. M. [Center for Astrobiology, INTA-CSIC, Torrejón de Ardoz, Madrid (Spain); Schnell, M., E-mail: melanie.schnell@mpsd.mpg.de [Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); The Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg (Germany)

    2014-07-21

    The rotational spectra of the monoterpenoids thymol and carvacrol are reported in the frequency range 2–8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. For carvacrol four different conformations were identified in the cold conditions of the molecular jet, whereas only three conformations were observed for thymol. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. For both molecules, line splittings due to methyl group internal rotation were observed and the resulting barrier heights could be determined. The experimental barrier heights, 4.0863(25) kJ/mol for trans-carvacrol-A, 4.4024(16) kJ/mol for trans-carvacrol-B, and 0.3699(11) kJ/mol for trans-thymol-A, are compared with similar molecules.

  10. Low-error and broadband microwave frequency measurement in a silicon chip

    CERN Document Server

    Pagani, Mattia; Zhang, Yanbing; Casas-Bedoya, Alvaro; Aalto, Timo; Harjanne, Mikko; Kapulainen, Markku; Eggleton, Benjamin J; Marpaung, David

    2015-01-01

    Instantaneous frequency measurement (IFM) of microwave signals is a fundamental functionality for applications ranging from electronic warfare to biomedical technology. Photonic techniques, and nonlinear optical interactions in particular, have the potential to broaden the frequency measurement range beyond the limits of electronic IFM systems. The key lies in efficiently harnessing optical mixing in an integrated nonlinear platform, with low losses. In this work, we exploit the low loss of a 35 cm long, thick silicon waveguide, to efficiently harness Kerr nonlinearity, and demonstrate the first on-chip four-wave mixing (FWM) based IFM system. We achieve a large 40 GHz measurement bandwidth and record-low measurement error. Finally, we discuss the future prospect of integrating the whole IFM system on a silicon chip to enable the first reconfigurable, broadband IFM receiver with low-latency.

  11. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-12

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  12. Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions

    Science.gov (United States)

    Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel; Hsieh, Wen-Ting

    2011-01-01

    isolation of 32 dB. It also has low in-band insertion loss and return loss of 1.2 dB and 18 dB, respectively, over more than 44 percent of bandwidth at room temperature. This microstrip-CPW transition requires the microstrip line to be split into two sections. Each section is connected to a microstrip quarter-wavelength openended stub. A slotline is also placed perpendicular to the microstrip section. The slot is connected to a grounded-end quarter-wavelength slotline and generates a microstrip-slotline transition. When two of these sections are placed in parallel and with the microstrip section combined at transition, a microstrip- CPW transition is formed. The slotline radiation is suppressed as two slots are excited with the electric field in an opposite direction, which cancels the radiation in far field. The invention on the crossover consists of the invented microstrip-CPW transitions combined back-to-back and a microstrip low-pass filter. One signal is crossed through to the microstrip layer, while the other signal is crossed through the CPW line located on the ground plane of the microstrip line. The microstrip low-pass filter produces a narrow line at the crossing point to enhance the system isolation. It also produces broadband response in the operating frequency band. The microstrip-CPW transition allows a microwave signal to travel from microstrip line to CPW line with low radiation loss. The crossover allows two microwave signals to cross with minimal parasitic coupling.

  13. A broadband reflective filter for applying dc biases to high-Q superconducting microwave cavities

    Science.gov (United States)

    Hao, Yu; Rouxinol, Francisco; Lahaye, Matt

    2015-03-01

    The integration of dc-bias circuitry into low-loss microwave cavities is an important technical issue for topics in many fields that include research with qubit- and cavity-coupled mechanical system, circuit QED and quantum dynamics of nonlinear systems. The applied potentials or currents serve a variety of functions such as maintaining the operating state of device or establishing tunable electrostatic interactions between devices (for example, in order to couple a nanomechanical resonator to a superconducting qubit to generate and detect quantum states of a mechanical resonator). Here we report a bias-circuit design that utilizes a broadband reflective filter to connect to a high-Q superconducting coplanar waveguide (CPW) cavity. Our design allows us to apply dc-voltages to the center trace of CPW, with negligible changes in loaded quality factors of the fundamental mode. Simulations and measurements of the filter demonstrate insertion loss greater than 20 dB in the range of 3 to 10 GHz. Transmission measurements of the voltage-biased CPW show that loaded quality factors exceeding 105 can be achieved for dc-voltages as high as V = +/- 20V for the cavity operated in the single photon regime. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  14. Broadband Microwave Spectroscopy as a Tool to Study Intermolecular Interactions in the Diphenyl Ether - Water System

    Science.gov (United States)

    Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    Many biological processes, such as chemical recognition and protein folding, are mainly controlled by the interplay of hydrogen bonds and dispersive forces. This interplay also occurs between organic molecules and solvent water molecules. Broadband rotational spectroscopy studies of weakly bound complexes are able to accurately reveal the structures and internal dynamics of molecular clusters isolated in the gas phase. Amongst them, water clusters with organic molecules are of particular interest. In this work, we investigate the interplay between different types of weak intermolecular interactions and how it controls the preferred interaction sites of aromatic ethers, where dispersive interactions may play a significant role. We present our results on diphenyl ether (C_{12}H_{10}O, 1,1'-Oxydibenzene) complexed with up to three molecules of water. Diphenyl ether is a flexible molecule, and it offers two competing binding sites for water: the ether oxygen and the aromatic π system. In order to determine the structure of the diphenyl ether-water complexes, we targeted transitions in the 2-8 GHz range using broadband rotational spectroscopy. We identify two isomers with one water, one with two water, and one with three water molecules. Further analysis from isotopic substitution measurements provided accurate structural information. The preferred interactions, as well as the observed structural changes induced upon complexation, will be presented and discussed.

  15. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  16. Semi-automated microwave assisted solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg

    Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...... with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...

  17. Broadband optical beam forming for airborne phased array antenna

    NARCIS (Netherlands)

    Schippers, H.; Verpoorte, J.; Jorna, P.; Hulzinga, A.; Zhuang, L.; Meijerink, Arjan; Roeloffzen, C.G.H.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Wintels, M.

    2009-01-01

    For enhanced communication on board aircraft, novel antenna systems with broadband satellite-based capabilities are required. The technology will enhance airline operations by providing in-flight connectivity for flight crew information and will bring live TV and high-speed Internet connectivity to

  18. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities

    KAUST Repository

    Zhang, Xueqian

    2013-06-21

    A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Broadband Microwave Spectroscopy as a Tool to Study Dispersion Interactions in Camphor-Alcohol Systems

    Science.gov (United States)

    Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2016-06-01

    Many biological processes such as chemical recognition and protein folding are mainly controlled by the interplay between hydrogen bonds and dispersive forces. Broadband rotational spectroscopy studies of weakly bound complexes are able to accurately reveal the structures and internal dynamics of molecular clusters isolated in the gas phase. To investigate the influence of the interplay between different types of weak intermolecular interactions and how it controls the preferred active sites of an amphiphilic molecule, we are using camphor (C10H16O, 1,7,7-trimethylbicyclo[2.2.1]hepta-2-one) with different aliphatic alcohol systems. Camphor is a conformationally rigid bicyclic molecule endowed with considerable steric hindrance and has a single polar group (-C=O). The rotational spectrum of camphor and its structure has been previously reported [1] as well as multiple clusters with water [2]. In order to determine the structure of the camphor-alcohol complexes, we targeted low energy rotational transitions in the 2-8 GHz range under the isolated conditions of a molecular jet in the gas phase. The data obtained suggests that camphor forms one complex with methanol and two with ethanol, with differences in the intermolecular interaction in both complexes. With these results, we aim to study the shift in intermolecular interaction from hydrogen bonding to dispersion with the increase in the size of the aliphatic alcohol. [1] Z. Kisiel, et al., Phys. Chem. Chem. Phys., 5 (2003), 820-826. [2] C. Pérez, et al, J. Phys. Chem. Lett., 7 (2016), 154-160.

  20. Microwave heating in solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg; Shelton, Anne Pernille Tofteng; Malik, Leila

    2012-01-01

    The highly refined organic chemistry in solid-phase synthesis has made it the method of choice not only to assemble peptides but also small proteins - mainly on a laboratory scale but increasingly also on an industrial scale. While conductive heating occasionally has been applied to peptide...... synthesis, precise microwave irradiation to heat the reaction mixture during coupling and N(a)-deprotection has become increasingly popular. It has often provided dramatic reductions in synthesis times, accompanied by an increase in the crude peptide purity. Microwave heating has been proven especially...... relevant for sequences which might form ß-sheet type structures and for sterically difficult couplings. The beneficial effect of microwave heating appears so far to be due to the precise nature of this type of heating, rather than a peptide-specific microwave effect. However, microwave heating...

  1. PLL application research of a broadband MEMS phase detector: Theory, measurement and modeling

    Science.gov (United States)

    Han, Juzheng; Liao, Xiaoping

    2017-06-01

    This paper evaluates the capability of a broadband MEMS phase detector in the application of phase locked loops (PLLs) through the aspect of theory, measurement and modeling. For the first time, it demonstrates how broadband property and optimized structure are realized through cascaded transmission lines and ANSYS simulations. The broadband MEMS phase detector shows potential in PLL application for its dc voltage output and large power handling ability which is important for munition applications. S-parameters of the power combiner in the MEMS phase detector are measured with S11 better than -15 dB and S23 better than -10 dB over the whole X-band. Compared to our previous works, developed phase detection measurements are performed and focused on signals at larger power levels up to 1 W. Cosine tendencies are revealed between the output voltage and the phase difference for both small and large signals. Simulation approach through equivalent circuit modeling is proposed to study the PLL application of the broadband MEMS phase detector. Synchronization and tracking properties are revealed.

  2. A Broadband Waveguide Transfer Standard for Dissemination of UK National Microwave Power Standards,

    Science.gov (United States)

    1982-01-01

    electrically isolated from the waveguide, to make it independent of the laboratory environment. The coupler feeds a fixed fraction of the microwave power...Weidman, "An international intercomparison of power standards in WR-28 waveguide". Metrologia, 17, June 1981. 4 G F Engen . "A refined X-band microwave

  3. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source

    Directory of Open Access Journals (Sweden)

    Xingyuan Xu

    2017-09-01

    Full Text Available We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR. The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for implementing a transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, frequency spacings of up to 200-GHz can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of the first-, second-, and third-order differentiation functions based on this principle are presented. The radio frequency amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for a Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.

  4. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2017-09-01

    We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for implementing a transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, frequency spacings of up to 200-GHz can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of the first-, second-, and third-order differentiation functions based on this principle are presented. The radio frequency amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for a Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.

  5. Internal Dynamics and Chiral Analysis of Pulegone, Using Microwave Broadband Spectroscopy

    Science.gov (United States)

    Krin, Anna; Perez, Cristobal; Schnell, Melanie; Quesada-Moreno, María del Mar; López-González, Juan Jesús; Avilés-Moreno, Juan Ramón; Pinacho, Pablo; Blanco, Susana; Lopez, Juan Carlos

    2017-06-01

    Essential oils, such as peppermint or pennyroyal oil, are widely used in medicine, pharmacology and cosmetics. Their major constituents, terpenes, are mostly chiral molecules and thus may exhibit different biological functionality with respect to their enantiomers. Here, we present recent results on the enantiomers of pulegone, one of the components of the peppermint (Mentha piperita L.) and pennyroyal (Mentha pulegium) essential oils, using the microwave three-wave mixing (M3WM) technique. M3WM relies on the fact that the scalar triple product of the dipole moment components μ_{a}, μ_{b} and μ_{c} differs in sign between the enantiomers. A loop of three dipole-allowed rotational transitions is required for the analysis of a chiral molecule. Since the recorded signal will be exactly out of phase for the two enantiomers, an unambiguous differentiation between them is possible, even in complex mixtures. In addition to the chiral analysis of pulegone, its internal dynamics, resulting from the independent rotation of two of its three methyl groups, will be discussed. Moreover, a cluster of pulegone with one water molecule will be presented.

  6. A New Broadband Microwave Frequency Device for Powering ECR Ion Sources

    CERN Document Server

    Kawai, Yoko; Liu, Yuan

    2005-01-01

    The multiple discrete frequency technique has been used to improve the performance of conventional B-field configuration ECR ion sources. However, the practical application of this technique is very costly, requiring multiple independent single-frequency rf power supplies and complicated rf injection systems. Broadband sources of rf power offer a low-cost and more effective method for increasing the physical size of the ECR zone within these ion sources. An Additive White Gaussian Noise Generator (AWGNG) system for injecting broadband rf power into these ion sources has been developed in conjunction with a commercial firm. The noise generator, in combination with an external oscillator and a traveling wave tube amplifier, can be used to generate broadband rf power without modifying the injection system. The AWGNG and its use for enhancing the performance of conventional B-field configuration ECR ion sources will be described.

  7. Integrated microwave photonics for phase modulated systems

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    For the last 25 years, microwave photonic (MWP) systems and links have relied almost exclusively on discrete optoelectronic devices, standard optical fibers and fiber-based components. With this concept, various functionalities like RF signal generation, distribution, processing and analysis have

  8. Broadband and high efficiency all-dielectric metasurfaces for wavefront steering with easily obtained phase shift

    Science.gov (United States)

    Yang, Hui; Deng, Yan

    2017-12-01

    All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.

  9. Linear coherent receiver based on a broadband and sampling optical phase-locked loop

    DEFF Research Database (Denmark)

    Bowers, J.E.; Ramaswamy, A.; Johansson, L.A.

    2007-01-01

    A novel coherent receiver for linear optical phase demodulation is proposed and experimentally demonstrated. The receiver, based on a broadband optical phase-lock loop has a bandwidth of 1.45 GHz. Using the receiver in an analog link experiment, a spurious free dynamic range of 125 dBHz2....../3 is measured at 300 MHz. Further, theoretical investigations are presented demonstrating receiver operation at high frequencies (>2 GHz) using a sampling phase-locked loop....

  10. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    Science.gov (United States)

    Mészárosová, H.; Rybák, J.; Kashapova, L.; Gömöry, P.; Tokhchukova, S.; Myshyakov, I.

    2016-09-01

    Aims: We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. Methods: The complex microwave dynamic spectrum and the expanding loop images were analyzed with the help of SDO/AIA/HMI, RHESSI, and the STEREO/SECCHI-EUVI data processing software, wavelet analysis methods, the GX Simulator tool, and the NAFE method. Results: We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz s-1. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal loop with twisted sub-structures observed in the 131, 94, and 193 Å SDO/AIA channels. Their slit-time diagrams were compared with the location of the radio source at 5.7 GHz to realize that the EUV intensity of the expanding loop increased just before the radio source triggering. We reveal two EUV bidirectional flows that are linked with the start time of the loop expansion. Their positions were close to the radio source and propagated with velocities within a range of 30-117 km s-1. Conclusions: We demonstrate that periodic regime of the electron acceleration in a model of the quasi-periodic magnetic reconnection might be able to explain physical properties and behavior of the sub

  11. Broadband Microwave Wireless Power Transfer for Weak-Signal and Multipath Environments

    Science.gov (United States)

    Barton, Richard J.

    2014-01-01

    In this paper, we study the potential benefits of using relatively broadband wireless power transmission WPT strategies in both weak-signal and multipath environments where traditional narrowband strategies can be very inefficient. The paper is primarily a theoretical and analytical treatment of the problem that attempts to derive results that are widely applicable to many different WPT applications, including space solar power SSP.

  12. Broadband metasurface for independent control of reflected amplitude and phase

    OpenAIRE

    Sheng Li Jia; Xiang Wan; Pei Su; Yong Jiu Zhao; Tie Jun Cui

    2016-01-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with pola...

  13. Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2

    Directory of Open Access Journals (Sweden)

    Zhejun Liu

    Full Text Available In this letter, we numerically demonstrate a thermally tunable super absorber by using phase change material VO2 as absorbing layer in metal-insulator-metal structure. An omnidirectional super absorption at λ=2.56μm can be realized by heating the patterned grating VO2 film due to magnetic resonance mechanism. Furthermore, a broadband super absorption higher than 0.8 in the entire 1.6μm–4μm region is achieved when VO2 film is patterned chessboard structure and transformed to metal phase beyond transition temperature. This broadband super absorption can be fulfilled in a wide range of incident angle (0°–70° and under all polarization conditions. Keywords: Phase change material, Metal-insulator-metal, Super absorption, Magnetic resonance

  14. Broadband metasurface for independent control of reflected amplitude and phase

    Directory of Open Access Journals (Sweden)

    Sheng Li Jia

    2016-04-01

    Full Text Available We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with polarization orthogonal to the incident waves. The simulated and measured results of the presented metasurfaces show very good agreements. The proposed method has potential applications in engineering high-efficiency holography and complex electromagnetic and optical patterns.

  15. The role of optical filtering in microwave phase shifting.

    Science.gov (United States)

    O Dúill, Seán; Shumakher, Evgeny; Eisenstein, Gadi

    2010-07-01

    We highlight the importance of the delay arising from optical filters in slow-light-based microwave phase shifting systems. We calculate the filter delay numerically from the measured amplitude response by using the well-known Kramers-Kronig relations. The complex filter transmission response is then incorporated within a numerical model with which we explain phase shifting results obtained from experiments employing semiconductor optical amplifiers as slow light elements.

  16. Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film

    Science.gov (United States)

    Dan-Dan, Bu; Chun-Sheng, Yue; Guang-Qiu, Zhang; Yong-Tao, Hu; Sheng, Dong

    2016-06-01

    A simple design of broadband metamaterial absorber (MA) based on resistive film is numerically presented in this paper. The unit cell of this absorber is composed of crossed rectangular rings-shaped resistive film, dielectric substrate, and continuous metal film. The simulated results indicate that the absorber obtains a 12.82-GHz-wide absorption from about 4.75 GHz to 17.57 GHz with absorptivity over 90% at normal incidence. Distribution of surface power loss density is illustrated to understand the intrinsic absorption mechanism of the structure. The proposed structure can work at wide polarization angles and wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. Finally, the multi-reflection interference theory is involved to analyze and explain the broadband absorption mechanism at both normal and oblique incidence. Moreover, the polarization-insensitive feature is also investigated by using the interference model. It is seen that the simulated and calculated absorption rates agree fairly well with each other for the absorber.

  17. Broadband Near IR Laser Hazard Filters. Phase 1

    Science.gov (United States)

    1990-10-02

    In order to provide the Army’s requirements for ocular and system protection in the near IR region (690 nm to 1100 nm), a filter should have for the...coated onto transparent glass substrates, glass mirrors and plastic substrates. The plastic substrates used in Phase I were polycarbonate, PMMA , Mylar, TPX...transparent in the visible to near IR spectrum including polycarbonate (PC), polymethyl methacrylate ( PMMA ), polystyrene (PS), polyvinyl-chloride (PVC

  18. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies.

    Science.gov (United States)

    Cao, Tun; Wei, Chen-wei; Simpson, Robert E; Zhang, Lei; Cryan, Martin J

    2014-02-04

    We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm(2), owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage.

  19. Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors.

    Science.gov (United States)

    Lessing, Maurice; Margolis, Helen S; Brown, C Tom A; Gill, Patrick; Marra, Giuseppe

    2013-11-04

    We demonstrate an amplitude-to-phase (AM-PM) conversion coefficient for a balanced optical-microwave phase detector (BOM-PD) of 0.001 rad, corresponding to AM-PM induced phase noise 60 dB below the single-sideband relative intensity noise of the laser. This enables us to generate 8 GHz microwave signals from a commercial Er-fibre comb with a single-sideband residual phase noise of -131 dBc Hz(-1) at 1 Hz offset frequency and -148 dBc Hz(-1) at 1 kHz offset frequency.

  20. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.

    1990-01-01

    Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...... are qualitatively very similar. The map predicts significantly different behaviors for locking at odd and even subharmonic frequencies and at superharmonic frequencies. It also gives indications regarding hysteresis in the current-voltage characteristic, the existence of zero-crossing steps, and a description...

  1. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers.

    Science.gov (United States)

    Deng, Ruixiang; Li, Meiling; Muneer, Badar; Zhu, Qi; Shi, Zaiying; Song, Lixin; Zhang, Tao

    2018-01-11

    Optically Transparent Microwave Metamaterial Absorber (OTMMA) is of significant use in both civil and military field. In this paper, equivalent circuit model is adopted as springboard to navigate the design of OTMMA. The physical model and absorption mechanisms of ideal lightweight ultrathin OTMMA are comprehensively researched. Both the theoretical value of equivalent resistance and the quantitative relation between the equivalent inductance and equivalent capacitance are derived for design. Frequency-dependent characteristics of theoretical equivalent resistance are also investigated. Based on these theoretical works, an effective and controllable design approach is proposed. To validate the approach, a wideband OTMMA is designed, fabricated, analyzed and tested. The results reveal that high absorption more than 90% can be achieved in the whole 6~18 GHz band. The fabricated OTMMA also has an optical transparency up to 78% at 600 nm and is much thinner and lighter than its counterparts.

  2. Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers

    Directory of Open Access Journals (Sweden)

    Ruixiang Deng

    2018-01-01

    Full Text Available Optically Transparent Microwave Metamaterial Absorber (OTMMA is of significant use in both civil and military field. In this paper, equivalent circuit model is adopted as springboard to navigate the design of OTMMA. The physical model and absorption mechanisms of ideal lightweight ultrathin OTMMA are comprehensively researched. Both the theoretical value of equivalent resistance and the quantitative relation between the equivalent inductance and equivalent capacitance are derived for design. Frequency-dependent characteristics of theoretical equivalent resistance are also investigated. Based on these theoretical works, an effective and controllable design approach is proposed. To validate the approach, a wideband OTMMA is designed, fabricated, analyzed and tested. The results reveal that high absorption more than 90% can be achieved in the whole 6~18 GHz band. The fabricated OTMMA also has an optical transparency up to 78% at 600 nm and is much thinner and lighter than its counterparts.

  3. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  4. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    National Research Council Canada - National Science Library

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-01-01

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz...

  5. Multiple magnetic resonance and broadband microwave absorption of metamaterials composed of split cut wires

    Science.gov (United States)

    Lim, Jun-Hee; Kim, Sung-Soo

    2017-09-01

    This study aims to overcome the narrowband limit of typical metamaterial absorbers through the multi-resonance of split cut wires (SCWs) on grounded dielectric substrate. Multi-band or broadband power absorption was obtained from multiple arrangements of SCWs of different length on the top layer. In particular, the multi-resonance of SCWs was found to be greatly dependent on substrate materials (FR4, air) and their layering sequence. Insertion of an air layer at the bottom side of the ground plane broadened the absorption band. The overall antiparallel current flow was identified at three resonance frequencies. The air layer at the bottom side of ground plane increased dielectric resistance by increasing the substrate thickness and by decreasing effective permittivity as well, resulting in impedance matching at three resonance frequencies. In the reverse layering of air+FR4, multi-frequency absorption with sharp and separated peaks was observed in the high frequency region, due to free space permittivity at the SCW gap.

  6. Broadband beam shaping using two cascaded diffractive optical elements with different sizes of effective phase region

    Science.gov (United States)

    Ding, Li; Cao, Guowei; Guo, Jin; Wang, Jun; Huang, Kun; Li, Yongping; Kang, Xueliang; Wang, Liang

    2017-10-01

    A unique design method of two cascaded diffractive optical elements (DOEs) with different sizes of effective phase region to modulate broadband beam is presented with consideration of single production material and low relief height on DOE. The iterative algorithm to calculate the relief heights on these DOEs is introduced at first. Where after, a broadband beam at wavelength from 500nm to 600nm propagates through the designed DOEs and is focused on the target plane in the simulation part. The shaping results demonstrate the excellent shaping ability of this unique design method. The shaping system proposed in this paper is significant for nonmonochromatic light modulation and has many applications such as graphic encryption, three-dimensional color display and multi wavelength division multiplexing.

  7. Development and application of a novel near-field microwave probe for local broadband characterization of ferromagnetic resonance

    Science.gov (United States)

    Benatmane, Mahmoud Nadjib

    A novel near-field microwave probe is developed for the characterization of magnetic materials. The ferromagnetic resonance probe consists of a shorted micro-coax, where the current path is a Cu thin film that sits on top of a focused ion beam deposited buffer layer. The buffer layer creates a mechanically more robust probe and leads to an increase in sensitivity. This is demonstrated through measurements on a broad range of samples, from common magnetic materials such as NiFe, to advanced materials such as multiferroic nanocomposites, where the magnetization dynamics are more complex. The data from these measurements are used to extract parameters on both the static and dynamic properties of the probed sample, such as the anisotropy field and the intrinsic magnetic damping. These parameters are important in the design of magneto-electronic devices, like the components of a hard drive in the magnetic recording industry. The main attributes of this technique are that it is broadband, it is local with the potential to achieve higher spatial resolution, and it is a non-contact method, although it is possible to measure a material while in contact. Because of the probe's metallic tip, and the ability to come in contact with the sample, it was possible to extend the measurements to both magnetically and electrically characterize the multiferroic material, which is of interest for an advanced media concept (Electrically Assisted Magnetic Recording). Finally, the probe can also measure samples of any form factor (e.g. wafers, media disc, chips), and can therefore be used to characterize devices in their working environment, or between fabrication steps.

  8. Phase Transitions in Electron Spin Resonance Under Continuous Microwave Driving

    Science.gov (United States)

    Karabanov, A.; Rose, D. C.; Köckenberger, W.; Garrahan, J. P.; Lesanovsky, I.

    2017-10-01

    We study an ensemble of strongly coupled electrons under continuous microwave irradiation interacting with a dissipative environment, a problem of relevance to the creation of highly polarized nonequilibrium states in nuclear magnetic resonance. We analyze the stationary states of the dynamics, described within a Lindblad master equation framework, at the mean-field approximation level. This approach allows us to identify steady-state phase transitions between phases of high and low polarization controlled by the distribution of disordered electronic interactions. We compare the mean-field predictions to numerically exact simulations of small systems and find good agreement. Our study highlights the possibility of observing collective phenomena, such as metastable states, phase transitions, and critical behavior, in appropriately designed paramagnetic systems. These phenomena occur in a low-temperature regime which is not theoretically tractable by conventional methods, e.g., the spin-temperature approach.

  9. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  10. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  11. DSS 13 phase 2 pedestal room microwave layout

    Science.gov (United States)

    Cwik, T.; Chen, J. C.

    1991-01-01

    The design and predicted performance is described of the microwave layout for three band operation of the beam waveguide antenna Deep Space Station 13. Three pedestal room microwave candidate layout designs were produced for simultaneous X/S and X/Ka band operation. One of the three designs was chosen based on given constraints, and for this design the microwave performance was estimated.

  12. Estimating characteristic phase and delay from broadband interaural time difference tuning curves.

    Science.gov (United States)

    Lehmann, Jessica; Tellers, Philipp; Wagner, Hermann; Führ, Hartmut

    2015-02-01

    Characteristic delay and characteristic phase are shape parameters of interaural time difference tuning curves. The standard procedure for the estimation of these parameters is based on the measurement of delay curves measured for tonal stimuli with varying frequencies. Common to all procedures is the detection of a linear behavior of the phase spectrum. Hence a reliable estimate can only be expected if sufficiently many relevant frequencies are tested. Thus, the estimation precision depends on the given bandwidth. Based on a linear model, we develop and implement methods for the estimation of characteristic phase and delay from a single broadband tuning curve. We present two different estimation algorithms, one based on a Fourier-analytic interpretation of characteristic delay and phase, and the other based on mean square error minimization. Estimation precision and robustness of the algorithms are tested on artificially generated data with predetermined characteristic delay and phase values, and on sample data from electrophysiological measurements in birds and in mammals. Increasing the signal-to-noise ratio or the bandwidth increases the estimation accuracy of the algorithms. Frequency band location and strong rectification also affect the estimation accuracy. For realistic bandwidths and signal-to-noise ratios, the minimization algorithm reliably and robustly estimates characteristic delay and phase and is superior to the Fourier-analytic method. Bandwidth-dependent significance thresholds allow to assess whether the estimated characteristic delay and phase values are meaningful shape parameters of a measured tuning curve. These thresholds also indicate the sampling rates needed to obtain reliable estimates from interaural time difference tuning curves.

  13. Multiwavelength optical beam forming network with ring resonator-based binary-tree architecture for broadband phased array antenna systems

    NARCIS (Netherlands)

    Burla, M.; Khan, M.R.H.; Zhuang, L.; Roeloffzen, C.G.H.

    2008-01-01

    Integrated optical beam forming networks (OBFNs) offer many advantages for phased array applications. ORR-based true-time-delay units can be cascaded in a binary tree topology and tuned for continuously-adjustable broadband time delay. Nonetheless, with large number of antenna elements, the OBFN may

  14. Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase

    Directory of Open Access Journals (Sweden)

    Alessandra Basso

    2009-01-01

    Full Text Available Peptide bond synthesis was performed on PEGA beads under microwave radiations. Classical chemical coupling as well as thermolysin catalyzed synthesis was studied, and the effect of microwave radiations on reaction kinetics, beads' integrity, and enzyme activity was assessed. Results demonstrate that microwave radiations can be profitably exploited to improve reaction kinetics in solid phase peptide synthesis when both chemical and biocatalytic strategies are used.

  15. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  16. Broadband and high-efficient terahertz wave deflection based on C-shaped complex metamaterials with phase discontinuities

    KAUST Repository

    Tian, Zhen

    2013-09-01

    A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.

  17. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    Science.gov (United States)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  18. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2010-01-01

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population oscillat...... of the suggested technique, dictated by the underlying physics, are also analyzed....

  19. Broadband Microwave Filters Based on Open Split Ring Resonators (OSRRs and Open Complementary Split Ring Resonators (OCSRRs: Improved Models and Design Optimization

    Directory of Open Access Journals (Sweden)

    J. Bonache

    2011-12-01

    Full Text Available The paper is focused on the design of broadband bandpass filters at microwave frequencies. The proposed filters are based on a combination of open split ring resonators (OSRRs and open complementary split ring resonators (OCSRRs loaded in a host transmission line. Since these resonators (OSRRs and OCSRRs are electrically small, the resulting filters are compact. As compared to previous papers by the authors on this topic, the main aim and originality of the present paper is to demonstrate that by including a new series inductance in the circuit model of the OCSRR, it is possible to improve the predictions of these filter models and better fit the measured filter responses. Moreover, the parameter extraction method of the new circuit model and an automated filter design technique is introduced and demonstrated. The paper is complemented with the design and comparison of several prototypes.

  20. Automatic tunable and reconfigurable fiberoptic microwave filters based on a broadband optical source sliced by uniform fiber Bragg gratings.

    Science.gov (United States)

    Mora, J; Ortega, Beatriz; Capmany, J; Cruz, J; Andres, M; Pastor, D; Sales, S

    2002-11-04

    We demonstrate an automatic tunable transversal notch filter based on uniform fiber Bragg gratings and a broadband optical source. High tunability can be performed by stretching the fiber with the gratings written in series. Also, high sidelobe supression can be achieved by introducing tunable attenuators in a parallel configuration of the gratings.

  1. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  2. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator....... A quasi-linear phase shift of 360° with RF-power variation lower than 2dB and a continuous 270° phase shift without RF-power variation at a microwave frequency of 40GHz are also demonstrated....

  3. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters.

    Science.gov (United States)

    Choudhary, Amol; Aryanfar, Iman; Shahnia, Shayan; Morrison, Blair; Vu, Khu; Madden, Stephen; Luther-Davies, Barry; Marpaung, David; Eggleton, Benjamin J

    2016-02-01

    An unprecedented Brillouin gain of 44 dB in a photonic chip enables the realization of broadly tunable and reconfigurable integrated microwave photonic filters. More than a decade bandwidth reconfigurability from 30 up to 440 MHz, with a passband ripple filter central frequency is continuously tuned up to 30 GHz with no degradation of the passband response, which is a major improvement over electronic filters. Furthermore, we demonstrate pump tailoring to realize multiple bandpass filters with different bandwidths and central frequencies, paving the way for multiple on-chip microwave filters and channelizers.

  4. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  5. Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps.

    Science.gov (United States)

    Song, Minhyup; Torres-Company, Victor; Wu, Rui; Metcalf, Andrew J; Weiner, Andrew M

    2014-03-24

    Microwave photonic filters with arbitrary phase response can be achieved by merging high-repetition-rate electro-optic frequency comb technology with line-by-line pulse shaping. When arranged in an interferometric configuration, the filter features a number of programmable complex-coefficient taps equal to the number of available comb lines. In this work, we use an ultrabroadband comb generator resulting in a microwave photonic phase filter with >100 complex-coefficient taps. We demonstrate the potential of this filter by performing programmable chirp control of ultrawideband waveforms that extend over long (>10 ns) temporal apertures. This work opens new possibilities for compensating realistic linear distortion impairments on ultrabroadband wireless signals spanning over dozens of nanosecond temporal apertures.

  6. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2006-01-01

    Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat....... Analysis techniques and novel feedback schemes show improvement to the traditional circuit design. Subharmonic mixer measurements at 50 GHz RF signal agree very well with simulations, which manifests the broadband operating properties of these circuits....

  7. Photonic generation of frequency-sextupled microwave signal without filter or precise phase control

    Science.gov (United States)

    Chen, Yiwang; Teng, Yichao; Zhang, Baofu; Zhang, Pin; Li, Jianhua; Lu, Lin

    2017-08-01

    A photonic approach for frequency-sextupled microwave signal generation without filter or precise phase control is demonstrated by computer simulations and experiments. Without any filter, a frequency-sextupled microwave signal is generated by adjusting bias voltages of the cascade modulators. This structure largely reduces the dependence of particular phase relation that is built between the different modulated signals. The approach is verified by simulations and experiments, and stable 18- and 24-GHz frequency-sextupled signals are generated by 3 and 4 GHz local signals without filter or precise phase control.

  8. Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers

    Science.gov (United States)

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-01-01

    Broadening the bandwidth of electromagnetic wave absorbers has greatly challenged material scientists. Here, we propose a two-layer hybrid absorber consisting of a non-planar metamaterial (MM) and a magnetic microwave absorbing material (MAM). The non-planar MM using magnetic MAMs instead of dielectric substrates shows good low frequency absorption and low reflection across a broad spectrum. Benefiting from this and the high frequency strong absorption of the MAM layer, the lightweight hybrid absorber exhibits 90% absorptivity over the whole 2-18 GHz range. Our result reveals a promising and flexible method to greatly extend or control the absorption bandwidth of absorbers.

  9. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya; Fujita, Ryushiro; Ishi-Hayase, Junko; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp; Abe, Eisuke, E-mail: e-abe@keio.jp [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  10. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    Science.gov (United States)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  11. Broadband conformal phased array with optical beam forming for airborne satellite communication

    NARCIS (Netherlands)

    Schippers, H.; Verpoorte, J.; Jorna, P.; Hulzinga, A.; Meijerink, Arjan; Roeloffzen, C.G.H.; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Borreman, A.; Hoekman, M.; Wintels, M.

    2008-01-01

    For enhanced communication on board an aircraft, novel antenna systems with broadband satellite based capabilities are required. The technology will enhance airline operations by providing in-flight connectivity for flight crew information and will bring live TV and high speed Internet connectivity

  12. Broadband Transmission EPR Spectroscopy

    Science.gov (United States)

    Hagen, Wilfred R.

    2013-01-01

    EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed. PMID:23555819

  13. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    Science.gov (United States)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  14. Phase-locking of multiple magnetic droplets by a microwave magnetic field

    Directory of Open Access Journals (Sweden)

    Chengjie Wang

    2017-05-01

    Full Text Available Manipulating dissipative magnetic droplet is of great interest for both the fundamental and technological reasons due to its potential applications in the high frequency spin-torque nano-oscillators. In this paper, a magnetic droplet pair localized in two identical or non-identical nano-contacts in a magnetic thin film with perpendicular anisotropy can phase-lock into a single resonance state by using an oscillating microwave magnetic field. This resonance state is a little away from the intrinsic precession frequency of the magnetic droplets. We found that the phase-locking frequency range increases with the increase of the microwave field strength. Furthermore, multiple droplets with a random initial phase can also be synchronized by a microwave field.

  15. Imaging and Analyzing the Upper Lithosphere Beneath the Southern Appalachians using Global Seismic Phases Recorded by the SESAME Broadband Array

    Science.gov (United States)

    Alberts, E.; Verellen, D.; Parker, H., Jr.; Hawman, R. B.; Fischer, K. M.; Wagner, L. S.

    2016-12-01

    Global-phase seismic interferometry (GloPSI) is a seismic method that allows for the extraction of zero-offset reflections. We use the global seismic phase PKIKP as a virtual source to generate reflection profiles along three survey lines of the Southeastern Suture of the Appalachian Margin Experiment (SESAME). The broadband recordings provide constraints on long-wavelength structure that complement the higher-frequency images obtained along Consortium for Continental Reflection Profiling (COCORP) lines. Targets include structures associated with Paleozoic collision and Mesozoic extension. We focus in particular on the nature of the Southern Appalachian detachment, the Alleghanian suture and its possible relation to a zone of prominent south-dipping reflections observed on COCORP profiles, and estimating the volume of mafic intrusions added to the basement beneath the Coastal Plain. The broadband profiles also provide additional constraints on the thickness and lateral extent of Triassic sediments. Relative reflection amplitudes are used to estimate impedance contrasts to constrain the nature of major discontinuities. Over the Coastal Plain, we experiment with a number of approaches for suppressing multiple reflections generated by very low-velocity, unconsolidated sediments and poorly consolidated sedimentary rocks. The resulting improvement in image quality should allow us to better evaluate the continuity of the detachment and other orogen-wide structures.

  16. Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wangchang [Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000 (China); Lv, Junjun, E-mail: LyuJunJun@caep.cn [Institute of Chemical Material, CAEP, Mianyang 621900 (China); Zhou, Xiang; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing [Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000 (China); Che, Shenglei, E-mail: cheshenglei@zjut.edu.cn [Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000 (China)

    2017-03-15

    In order to achieve a broad bandwidth absorber at high frequency, the composites of M-type ferrite BaCo{sub 1.0}Ti{sub 1.0}Fe{sub 10}O{sub 19} (BaM) with flaked carbonyl iron powders (CIP) and flaked Fe{sub 50}Ni{sub 50} were prepared to optimize the surface impedance in broadband frequency, respectively. The diameter of the flaked carbonyl iron powders (CIP) and Fe{sub 50}Ni{sub 50} is in the range of 5–10 µm and 10–20 µm and the thickness of the CIP and Fe{sub 50}Ni{sub 50} is close to 200 nm and 400 nm, respectively. The complex permeability and permittivity show that the addition of BaM obviously reduces the values of real part of permittivity and imaginary part of the permeability which can enhance the matched-wave-impedance. The absorption bands less than −10 dB of CIP-BaM and FeNi-BaM absorber approach to 5.5 GHz (5.7–11.2 GHz) and 7 GHz (11–18 GHz) at 1.5 mm. However, the bands of CIP and FeNi are only 1.9 GHz (4.7–6.6 GHz) and 2.1 GHz (4.0–6.1 GHz). Hence, the electromagnetic match property is greatly improved by BaM ferrites, and this composite shows a broaden absorption band. - Highlights: • In order to achieve a broad bandwidth absorber at high frequency, the composites of M-type ferrite with flaked carbonyl iron powdersand Fe{sub 50}Ni{sub 50} were prepared to optimize the surface impedance. • The complex permeability and permittivity show that the addition of BaM obviously reduces the real part of permittivity and imaginary part of the permeability enhancing the matched-wave-impedance. • The structure, morphology and electromagnetic properties are studied in detail. The optimized properties are ascribed to the strength of dipolar polarization and high frequency magnetic resonance.

  17. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Ewald; Boccia, Marcello Massimo; Nielsen, John

    2014-01-01

    A facile and expedient route to the synthesis of arylopeptoid oligomers (N-alkylated aminomethyl benz-amides) using semi-automated microwave-assisted solid-phase synthesis is presented. The synthesis was optimized for the incorporation of side chains derived from sterically hindered or unreactive...

  18. Towards Solvation of a Chiral Alpha-Hydroxy Ester: Broadband Chirp and Narrow Band Cavity Fouirier Transform Microwave Spectroscopy of Methyl Lactate-Water Clusters

    Science.gov (United States)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2013-06-01

    Methyl lactate (ML), a chiral alpha-hydroxy ester, has attracted much attention as a prototype system in studies of chirality transfer,[1] solvation effects on chiroptical signatures,[2] and chirality recognition.[3] It has multiple functional groups which can serve both as a hydrogen donor and acceptor. By applying rotational spectroscopy and high level ab initio calculations, we examine the delicate competition between inter- and intramolecular hydrogen-bonding in the ML-water clusters. Broadband rotational spectra obtained with a chirp Fourier transform microwave (FTMW) spectrometer, reveal that the insertion conformations are the most favourable ones in the binary and ternary solvated complexes. In the insertion conformations, the water molecule(s) inserts itself (themselves) into the existing intramolecular hydrogen-bonded ring formed between the alcoholic hydroxyl group and the oxygen of the carbonyl group of ML. The final frequency measurements have been carried out using a cavity based FTMW instrument where internal rotation splittings due to the ester methyl group have also been detected. A number of insertion conformers with subtle structural differences for both the binary and ternary complexes have been identified theoretically. The interconversion dynamics of these conformers and the identification of the most favorable conformers will be discussed. 1. C. Merten, Y. Xu, Angew. Chem. Int. Ed., 2013, 52, 2073 -2076. 2. M. Losada, Y. Xu, Phys. Chem. Chem. Phys., 2007, 9, 3127-3135; Y. Liu, G. Yang, M. Losada, Y. Xu, J. Chem. Phys., 2010, 132, 234513/1-11. 3. A. Zehnacker, M. Suhm, Angew. Chem. Int. Ed. 2008, 47, 6970 - 6992.

  19. Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating.

    Science.gov (United States)

    Shahoei, Hiva; Yao, Jianping

    2012-06-18

    A continuously tunable microwave phase shifter based on slow and fast light effects in a tilted fiber Bragg grating (TFBG) written in an erbium/ytterbium (Er/Yb) co-doped fiber is proposed and experimentally demonstrated. By optically pumping the TFBG, the magnitude and phase responses of the cladding mode resonances are changed, which is used to introduce a tunable phase shift to the optical carrier of a single-sideband modulated signal. The beating between the phase-shifted optical carrier and the sideband will generate a microwave signal with the phase shift from the optical carrier directly translated to the generated microwave signal. A tunable phase shifter with a tunable phase shift of 280° at a microwave frequency tunable from 24 to 36 GHz is experimentally demonstrated.

  20. Phase locking and flux-flow resonances in Josephson oscillators driven by homogeneous microwave fields

    DEFF Research Database (Denmark)

    Salerno, Mario; Samuelsen, Mogens Rugholm

    1999-01-01

    We investigate both analytically and numerically phase locking and flux-flow resonances of long Josephson junctions in the presence of homogeneous microwave fields. We use a power balance analysis and a perturbation expansion around the uniform rotating solution to derive analytical expressions...... for the locking range in current of the phase-lock steps is also derived. These results are found to be in good agreement with numerical results....

  1. Broadband supercontinuum laser absorption spectrometer for multiparameter gas phase combustion diagnostics.

    Science.gov (United States)

    Göran Blume, Niels; Wagner, Steven

    2015-07-01

    We report on the development and application of a broadband absorption spectrometer utilizing a pulsed supercontinuum laser light source and dispersion compensating fiber with a single-pass absorption path to obtain absolute methane mole fractions in a laminar nonpremixed CH(4)/air flame supported on a Wolfhard-Parker burner. The basic principle of supercontinuum broadband absorption spectroscopy (SCLAS) provides advantageous means of combustion diagnostics since the broad spectral coverage allows for use in high-pressure high-temperature environments. Furthermore, a previously validated tunable diode laser absorption spectroscopy fitting algorithm was applied to the recorded spectra and found to be applicable to SCLAS measurements as well, by comparison of fitted methane gas concentrations to reference measurements on the Wolfhard-Parker burner. The spectrometer reached spectral resolutions of up to 0.152  cm(-1), while providing a spectral coverage of over 110  cm(-1), with an absorption path length of only 41 mm. First measurements of absolute CH(4) mole fractions showed the suitability of SCL-based spectroscopy for combustion diagnostics with short absorption path lengths in the nIR spectral region. Here, we achieved in-flame methane mole fraction resolutions of 3%(Vol.) (1210 ppm·m) and optical resolutions of up to 1.1×10(-2). Based on this first validation, this method can now be extended to other species and combustion parameters such as temperature and pressure.

  2. Features of Changing Microwave Radiation from Loaded Rock in Elastic Phase

    Science.gov (United States)

    Wu, Lixin; Mao, Wenfei; Huang, Jianwei; Liu, Shanjun; Xu, Zhongying

    2017-04-01

    Since the discovery of satellite infrared anomaly occurred before some earthquake by Russian geo-scientists in 1980's, both satellite remote sensing on seismic activities and experimental infrared detection on rock physics in process of rock loading were undertaken in many counties including China, Japan, Europe nations and United States. Infrared imager and spectrum instruments were applied to detect the changed infrared radiation from loaded rock to fracturing, which lead to the development of Remote Sensing Rock Mechanics. However, the change of microwave radiation from loaded rock was not so much studied, even if abnormal changes of microwave brightness temperature (MBT) preceding some large earthquakes were observed by satellite sensors such as AMSR-E on boarded Aqua. To monitor rock hazards, seismic activities, and to make earthquake precautions by via of microwave detection or microwave remote sensing, it is fairly demanded to explore the laws of microwave radiation variation with changed stress and to uncover the rock physics. We developed a large scale rock loading system with capability of 500 tons and 10 tons of load, respectively, at two horizontal loading head, and designed a group of microwave detectors in C, K, and Ka bands. To investigate the changed microwave radiation from loaded granite and sandstone in its elastics deformation phase, the first horizontal stress was circularly applied on rock samples of size 10×30×60cm3 at a constant second horizontal stress, and the changes microwave radiation was detected by the detectors hanged overhead the rock sample. The experiments were conducted outdoor at nighttime to keep off environmental radiation and to simulate the satellite observation conditions in background of cool sky. The first horizontal stress and the microwave radiations were synchronically detected and recorded. After reducing the random noise of detected microwave signals with wavelet method, we found the MBT increase with stress rising

  3. Dual broadband metamaterial absorber.

    Science.gov (United States)

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  4. Improving microwave antenna gain and bandwidth with phase compensation metasurface

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2015-06-01

    Full Text Available Metasurface, as a planar version of artificial metamaterial, provide an effective way to manipulate electromagnetic wave propagation. Here, we present a transparent metasurface for compensating the out-of-phase radiation from a microstrip patch antenna to improve its radiation gain and bandwidth. Based on the equivalence principle of Huygens’ surface, we propose metasurface composed of both inductive and capacitive resonant elements which could produce high transmission with variable phase characteristics. Such metasurface mounted on a patch antenna can transform the spherical-like phase profile generated from the patch into an in-phase planar one. A prototype antenna has been fabricated and validated the squeezed radiation pattern with suppressed sidelobes as well as enhanced impedance bandwidth due to strong near-field coupling. As operating at around 5.7 GHz, the proposed antenna may have potential application in wireless communication systems especially for point-to-point data transmission. It is believed that the design methodology could also be scaled to other frequency bands such as millimeter or terahertz wave.

  5. Advanced Microwave Ferrite Research (AMFeR): Phase Two

    Science.gov (United States)

    2006-12-31

    and high frequency magnetic devices, such as isolators, phase shifters, circulators, filters , delay lines, magnetic recording devices has provided an...the in-plane coercivity curve for these films is going to be achieved. The " cigar -shaped" crystallites produced in Dr. McIlroy’s lab are potentially

  6. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  7. Demonstration of a phase-lockable microwave to submillimeter wave sweeper

    Science.gov (United States)

    Waltman, Steve B.; Hollberg, Leo W.; McIntosh, Alexander K.; Brown, Elliott R.

    1996-12-01

    The development of low-temperature-grown GaAs photomixers enables the construction of a microwave to submillimeter- wave source capable of large frequency sweeps. By utilizing semiconductor diode lasers to drive the photomixer, this source is all solid-state and compact, and has small power consumption. Frequency stabilization of the semiconductor diode lasers allows this source to be phase-locked to an external microwave reference. Two 805 nm extended-cavity- diode lasers are mixed in a low-temperature-grown GaAs photoconductive photomixer. The difference-frequency mixing product is radiated by a planar spiral antenna and collimated by a Si lens. This output is phase-locked to a microwave reference by downconverting it in a whisker- contacted Schottky-barrier diode harmonic mixer and using the output to offset-phase-lock one laser to the other. The photomixer output power is 300 nW at 200 GHz and 10 nW at 1.6 THz, as measured by a 4 K InSb bolometer calibrated with a methanol laser and a power meter at 526 and 812 GHz.

  8. Solution-phase microwave-assisted synthesis of unsubstituted and modified alpha-quinque- and sexithiophenes.

    Science.gov (United States)

    Melucci, M; Barbarella, G; Zambianchi, M; Di Pietro, P; Bongini, A

    2004-07-09

    The facile synthesis of poorly soluble unsubstituted and modified alpha-quinque- and sexithiophenes under microwave irradiation in the liquid phase is described. The use of microwave irradiation allowed these compounds to be prepared in a few minutes and at high yields by means of the Suzuki cross-coupling reaction. Unsubstituted sexithiophene was obtained in 10 min via the one-pot borylation/Suzuki reaction, purified according to a very simple procedure, and isolated in 84% yield. The efficient synthesis of two new methylated quinque- and sexithiophenes displaying liquid crystalline properties is reported. A new microwave-assisted methodology for the conversion of aldehyde-terminated quinque- and sexithiophenes into the corresponding cyano derivatives is also described. The use of microwaves was extended to the Sonogashira coupling reaction and found to be very effective in the preparation of a quinquethiophene containing acetylenic spacers. The electronic and optical characterization of this compound is reported and discussed in relation to that of unsubstituted quinquethiophene.

  9. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  10. Ultrahigh-frequency microwave phase shifts mediated by ultrafast dynamics in quantum-dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2010-01-01

    We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers.......We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers....

  11. Analysis of an effective optical filtering technique to enhance microwave phase shifts based on slow and fast light effects

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Xue, Weiqi

    2008-01-01

    We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects.......We theoretically analyze and interpret an effective mechanism, which employs optical filtering to enhance the microwave phase shift that can be achieved in semiconductor optical amplifiers based on slow and fast light effects....

  12. MEMS Keys as a Way to Delay the Phase of the Microwave Range

    Directory of Open Access Journals (Sweden)

    Anton Antonenko

    2015-04-01

    Full Text Available The paper deals with a new type of phase shifter antennas scanned beam shows the principle of constructing controlled microwave phase shifters that have a low cost. Also, given the results of a theoretical study of the main characteristics of dependency - controlled phase shift and frequency band working on the design parameters and then refined by calculating finite element program CST Microwave Studio. These inexpensive scanned antenna can be used in radar centimeter and millimeter wavelengths in the frequency range 2 ¸ 30 GHz. The results of calculation of capacitive and inductive coupling during switching detector elements and the simulation results of the phase shift in passing through the phase shifter television signal containing includes microelectromechanical systems - manageable sections that have to change the direction of polarization of the signal. Thus for supplying voltage-controlled permanent magnet field is used. According to the simulation results, which are presented in the conclusions can be drawn about the development of the design of optimal geometric parameters, the values obtained for the results of the optimization modeling. However revealed a high quality factor switching phase.

  13. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    Science.gov (United States)

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  14. Electromagnetic properties of high-carbon ferrochrome powders decarburized in solid phase by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Chen, Jin, E-mail: chenjin2013815@126.com [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Guo, Lina; Hao, Jiujiu; Han, Peide [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Jinying [The 12th Institute of China Electronics Technology Group Corporation, Beijing 100016 (China)

    2014-11-15

    Highlights: • High-carbon ferrochrome powders present diamagnetism. • We study the effect of temperature and time on electromagnetic properties. • The relative permittivity and permeability exhibit an opposite change trend. • The absorption peak shifts to lower frequency with the increasing temperature. - Abstract: During solid-phase decarburization, the changes of the electromagnetic properties can reflect the variation degree of material components. High-carbon ferrochrome powders (HCFCP) with addition of CaCO{sub 3} were decarburized in solid phase by microwave heating and the electromagnetic properties of the decarburized materials were investigated. With increasing in heating temperature from 1173 to 1473 K, the relative permittivity of the decarburized materials increases initially and then decreases, whereas the relative permeability exhibits an opposite change trend. As holding time ranges from 40 to 60 min at 1273 K, the relative permittivity and dielectric loss factor tend to decrease while the relative permeability and magnetic loss factor tend to increase, corresponding to the maximum mean velocity of decarburization. In microwave fields, electromagnetic properties of the decarburized materials principally vary with carbon content, C-vacancies and crystal structure, and their changes in turn affect the interaction of microwaves with the decarburized materials.

  15. Superluminal pulse propagation and amplification without inversion of microwave radiation via four-wave mixing in superconducting phase quantum circuits

    Science.gov (United States)

    Amini Sabegh, Z.; Vafafard, A.; Maleki, M. A.; Mahmoudi, M.

    2015-08-01

    We study the interaction of the microwave fields with an array of superconducting phase quantum circuits. It is shown that the different four-level configurations i.e. cascade, N-type, diamond, Y-type and inverted Y-type systems can be obtained in the superconducting phase quantum circuits by keeping the third order of the Josephson junction potential expansion whereas by dropping the third order term, just the cascade configuration can be established. We study the propagation and amplification of a microwave field in a four-level cascade quantum system, which is realized in an array of superconducting phase quantum circuits. We find that by increasing the microwave pump tones feeding the system, the normal dispersion switches to the anomalous and the gain-assisted superluminal microwave propagation is obtained in an array of many superconducting phase quantum circuits. Moreover, it is demonstrated that the stimulated microwave field is generated via four-wave mixing without any inversion population in the energy levels of the system (amplification without inversion) and the group velocity of the generated pulse can be controlled by the external oscillating magnetic fluxes. We also show that in some special set of parameters, the absorption-free superluminal generated microwave propagation is obtained in superconducting phase quantum circuit system.

  16. A GaAs phase digitizing and summing system for microwave signal storage

    Science.gov (United States)

    Vu, Tho T.; Hattis, James M.

    1989-02-01

    The analysis, design, and development of a microwave signal storage prototype system using phase-quantization sampling are described. A GaAs 4-bit D/A converter has been demonstrated in a 3-bit DRFM prototype system with digital Si emitter-coupled logic (ECL) and RF microwave components at a sample rate of 200 MHz and exhibiting typically a -17-dBc harmonic suppression. A monolithic GaAs A/D and D/A converter has been demonstrated within an RF signal acquisition system. Performance data on the monolithic sampler reveal that the 3-bit quantization system exhibits signal reconstruction with harmonic supression exceeding 25 dB across an IF bandwidth of greater than 900 MHz.

  17. Development of a broadband integrated optical beamformer for Ku-Band Phased Array Antennas

    NARCIS (Netherlands)

    Roeloffzen, C.G.H.; van Dijk, Paul; Marpaung, D.A.I.; Burla, M.; Zhuang, L.

    2012-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) systems for satellite communications is being developed, targeting continuous reception of the full DVB-S band (10.7- 12.75 GHz), squint-free and seamless beam steering, and polarization

  18. Broadband suppression of phase-noise with cascaded phase-locked-loops for the generation of frequency ramps

    Directory of Open Access Journals (Sweden)

    T. Musch

    2003-01-01

    Full Text Available The generation of analogue frequency ramps with non-fractional phase-locked-loops (PLL is a cost effective way of linearising varactor controlled oscillators (VCO. In case that the VCO shows a high phase-noise level, a single non-fractional PLL is not able to suppress the phase-noise of the VCO sufficiently. The reason for this is the limited loopbandwidth of the PLL. In the field of precise measurements a high phase-noise level is mostly not tolerable. Examples of VCO-types with an extremely high phase noise level are integrated millimetre wave oscillators based on GaAs-HEMT technology. Both, a low quality factor of the resonator and a high flicker-noise corner frequency of the transistors are the main reason for the poor phase-noise behaviour. On the other hand this oscillator type allows a cost effective implementation of a millimetre-wave VCO. Therefore, a cascaded two-loop structure is presented that is able to linearise a VCO and additionally to reduce its phase-noise significantly.

  19. Demonstration of Broadband Contrast at 1.2 Lambda/D for the EXCEDE Phase-Induced Amplitude Apodization Coronagraph

    Science.gov (United States)

    Sirbu, Dan; Thomas, Sandrine J.; Belikov, Ruslan; Lozi, Julien; Bendek, Eduardo; Pluzhnik, Eugene; Lynch, Dana H.; Hix, Troy; Zell, Peter; Schneider, Glenn; hide 12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150023018_hide">

    2015-01-01

    The proposed coronagraph instrument on the EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) mission study uses a Phase-Induced Amplitude Apodization (PIAA) coronagraph architecture to enable high-contrast imaging of circumstellar debris disks and giant planets at angular separations as close in as the habitable zone of nearby host stars. We report on the experimental results obtained in the vacuum chamber at the Lockheed Martin Advanced Technology Center in 10 percent broadband light centered about 650 nanometers, with a median contrast of 1 x 10 (sup -5) between 1.2 and 2.0 lambda /D simultaneously with 3 x 10 (sup -7) contrast between 2 and 11 =D between 2 and 11 lambda/D for a single-sided dark hole using a deformable mirror (DM) upstream of the PIAA coronagraph. The results are stable and repeatable as demonstrated by three measurements runs with DM settings set from scratch and maintained on the best 90 percent out of the 1000 collected frames. We compare the reduced experimental data with simulation results from modeling observed experimental limits; performance is consistent with uncorrected low-order modes not estimated by the Low Order Wavefront Sensor (LOWFS). Modeled sensitivity to bandwidth and residual tip/tilt modes is well-matched to the experiment.

  20. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    Science.gov (United States)

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Amino Acids and Sugars in the Gas Phase: Microwave Data for Astrochemistry

    Science.gov (United States)

    Mata, S.; Cabezas, C.; Varela, M.; Peña, I.; Perez, C.; Blanco, S.; Sanz, M. E.; Lopez, J. C.; Alonso, J. L.

    2011-05-01

    Microwave spectroscopy, considered the most definitive gas phase structural probe, can distinguish between different conformational structures since they have unique spectroscopic constants and give separate rotational spectra. However it has been limited to molecular specimens having an appreciable vapor pressure. In general, molecules of biological importance have low vapor pressures and tend to undergo degradation upon heating. The combination of laser ablation with Fourier transform microwave spectroscopy in supersonic jets (LA-MB-FTMW) which overcomes the problems of thermal decomposition has rendered accessible the gas phase structural studies of these molecules. To date different α-, β- and γ-amino acids have been studied using this technique. Even in conformationally challenging systems the preferred conformations can be identified by rotational spectroscopy, as has been illustrated with the assignment of seven low-energy conformers in serine and threonine, six in cysteine and aspartic acid , and nine in γ-amino butyric (gaba). This technique has been successfully applied to the study of monosaccarides. Three conformers of the prototypes α-D-glucose and β-D-glucose have been characterized for the first time in the gas phase. After the first experimental observation of the monohydrated cluster of glycine, complexes between amino acids and nitrogen bases with water have also been investigated to obtain information on the changes induced in the conformational or tautomeric preferences by the addition of solvent molecules. The information given here is relevant for the unambiguous identification of these amino acids and sugars in the interstellar medium.

  2. Wireless Power Transfer to a Microaerial Vehicle with a Microwave Active Phased Array

    Directory of Open Access Journals (Sweden)

    Shotaro Nako

    2014-01-01

    Full Text Available A wireless power transfer system using a microwave active phased array was developed. In the system, power is transferred to a circling microaerial vehicle (MAV by a microwave beam of 5.8 GHz, which is formed and directed to the MAV using an active phased array antenna. The MAV is expected to support observation of areas that humans cannot reach. The power beam is formed by the phased array with eight antenna elements. Input power is about 5.6 W. The peak power density at 1,500 mm altitude was 2.63 mW/cm2. The power is sent to a circling MAV. Therefore, the transfer beam should be polarized circularly to achieve a constant power supply independent of its yaw angle. To minimize the polarization loss, a sequentially routed antenna (SRA was applied to the transmitter antenna. Results show that the axial ratio of 0.440 dB was accomplished and that power fluctuation was kept below 1%.

  3. A 2-10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators

    DEFF Research Database (Denmark)

    Bruun, Marlene; Gliese, Ulrik Bo; Petersen, Anders Kongstad

    1994-01-01

    Optical transmission of microwave signals becomes increasingly important. Techniques using beat between optical carriers of semiconductor lasers are promising if efficient optical phase locked loops are realized. A highly efficient GaAs MMIC optoelectronic phase detector for a 2-10 GHz OPLL...

  4. Dielectric prisms would improve performance of quasi-optical microwave components

    Science.gov (United States)

    Carson, J. W.

    1967-01-01

    Properties of the Brewster angle and internal reflection in a dielectric prism are proposed as the basis of a new type of element for use in oversize waveguide in quasi-optical microwave components. Waveguide loss is reduced and precision broadband attenuators, phase shifters, and directional couplers can be constructed on the basis of the properties.

  5. Microwave-assisted headspace solid-phase microextraction for the analysis of bioemissions from Eucalyptus citriodora leaves.

    Science.gov (United States)

    Xiong, Guohua; Goodridge, Carolyn; Wang, Limei; Chen, Yong; Pawliszyn, Janusz

    2003-12-31

    Microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) was developed as a simple and effective method for fast sampling of volatile organic compounds (VOCs) from Eucalyptus citriodora Hook (E. citriodora) leaves. During microwave heating, a simple shielding device made of aluminum foil was used to protect the SPME fiber from microwave irradiation while allowing the sample to be heated. A room temperature water bath was also used to allow microwave heating to be conducted in a more controlled manner. The inner heating caused by microwave irradiation dramatically accelerated the emission of VOCs from the sample, but no marked change in headspace temperature in the sample vial was found. Under optimum conditions, the extraction efficiencies obtained with microwave heating were much higher than those obtained without microwave heating for all fibers used, namely, 7-microm polydimethylsiloxane (PDMS), 100-microm polydimethylsiloxane (PDMS), 65-microm polydimethylsiloxane/divinylbenzene (PDMS/DVB), and 75-microm carboxen/polydimethylsiloxane (CAR/PDMS). The improvement of extraction efficiency using MA-HS-SPME allowed more VOC events to be detected, with more balanced extraction of VOCs of lower and higher molecular masses. Moreover, a good linear relationship was found between sample size and GC-FID response (total peak area of VOCs), indicating the usefulness of MA-HS-SPME for quantitative analysis of individual volatile compounds in E. citriodora leaves.

  6. Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation.

    Science.gov (United States)

    Yu, Yuan; Xu, Enming; Dong, Jianji; Zhou, Lina; Li, Xiang; Zhang, Xinliang

    2010-11-22

    We propose and demonstrate a novel switchable microwave photonic filter based on phase modulation. Both a microwave high Q bandpass filter and a microwave notch filter with flat passband are achieved respectively. And the switchability between them by tuning the two tunable optical bandpass filters is demonstrated. We also present a theoretical model and analytical expression for the proposed scheme. A frequency response of a high Q bandpass filter with a Q factor of 327 and a rejection ratio of exceeding 42 dB, and a frequency response of a notch filter with flat passband with a rejection ratio exceeding 34 dB are experimentally obtained. The operation frequency of microwave photonic filter is around 20 GHz.

  7. Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN.

    Science.gov (United States)

    Das, Ritwick; Kumar, S Chaitanya; Samanta, G K; Ebrahim-Zadeh, M

    2009-12-15

    We report a compact and viable source of broadband, high-power, cw, mid-IR radiation based on a singly resonant optical parametric oscillator (SRO) pumped by a wide-bandwidth cw Yb fiber laser centered at 1060 nm. By exploiting the extended phase-matching bandwidth in a 50 mm crystal of MgO:PPLN and a ring SRO cavity, we obtain 5.3 W of broadband idler output for 25.5 W of pump at >80% depletion, transferring a pump bandwidth of 73.9 cm(-1) to an idler spectrum spread across an equal bandwidth centered at 3454 nm. By deploying output coupling of the signal, we generate 11.2 W of total power at 44% extraction efficiency with a pump depletion of >73% at the maximum available pump power. Measurements of transverse modal power confirm Gaussian distribution of signal and idler beams.

  8. Self-propagating high-temperature synthesis (SHS) and microwave-assisted combustion synthesis (MACS) of the thallium superconducting phases

    Science.gov (United States)

    Bayya, S. S.; Snyder, R. L.

    1994-05-01

    This paper explores the speed of reaction as a parameter to minimizing thallium loss. Self-propagating high-temperature synthesis (SHS) and microwave-assisted combustion synthesis (MACS) were developed for the synthesis of Tl-2212 and Tl-2223 superconductors using Cu metal powder as a fuel. A kitchen microwave oven was used to carry out MACS reactions. The samples were reacted for few seconds and led to the formation of the superconducting phases. Further explorations and modifications in the processing could lead to the formation of single phases by MACS.

  9. Stochastic and deterministic phase slippage in quasi-one-dimensional superconducting nanowires exposed to microwaves

    Science.gov (United States)

    Bae, Myung-Ho; Dinsmore, R. C., III; Sahu, M.; Bezryadin, A.

    2012-04-01

    We study current-voltage (V-I) characteristics of short superconducting nanowires of length ˜100 nm exposed to microwave (MW) radiation of frequencies between 2 and 15 GHz. The radiation causes a decrease of the average switching current of the wire. This suppression of the switching current is modeled assuming that there is one-to-one correspondence between Little's phase slips, which are microscopic stochastic events induced by thermal and quantum fluctuations, and the experimentally observed switching events. We also find that at some critical power P* of the radiation a dissipative dynamic superconducting state occurs as an extra step on the V-I curve. It is identified as a phase slip center (PSC), which is essentially a deterministic and periodic in-time phase rotation. With the dependence of the switching currents and the standard deviations observed at the transitions: (i) from the supercurrent state to the normal state and (ii) from the supercurrent state to the PSC regime, we conclude that both of the two types of switching events are triggered by the same microscopic event, namely a single-phase slip. We show that the Skocpol-Beasley-Tinkham model is not applicable to our MW-driven PSCs, probably due to the tendency of the PSC to synchronize with the MW. Through the analysis of the switching current distributions at a sufficiently low temperature, we also present evidence that quantum phase slips play a role in switching events even under MWs.

  10. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    Science.gov (United States)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  11. Rapid microwave pyrolysis of coal: methodology and examination of the residual and volatile phases

    Energy Technology Data Exchange (ETDEWEB)

    Monsef-Mirzai, P.; Ravindran, M.; McWhinnie, W.R.; Burchill, P. (Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry)

    1995-01-01

    Substances such as CuO, Fe[sub 3]O[sub 4] and even metallurgical coke (termed 'receptors') heat rapidly in a microwave oven at 2.45 GHz. The receptor, when mixed with Creswell coal and subjected to microwave radiation, induces rapid pyrolysis of the coal. Condensable tar yields of 20 wt% are obtained with coke, 27 wt% with Fe[sub 3]O[sub 4] and as high as 49 wt% in some experiments with CuO. Despite the high final temperature (1200-1300[degree]C after 3 min), analyses suggest that the volatiles are released in the lower part of the temperature regime but that some secondary cracking does occur. The tars are similar in composition, although with coke the proportion of aromatic hydrogen is greater than with CuO and Fe[sub 3]O[sub 4]. X-ray photoelectron spectroscopy shows that both pyridinic and pyrrolic nitrogen are present in the tars and chars, and that the dominant form of tar sulfur is thiophenic. There is evidence that mineral sulfur is immobilized when CuO in particular is the receptor. The chars formed show a degree of graphitization and are themselves excellent microwave receptors. In the presence of oxide receptors, char-oxide redox reactions occur, with loss of char, reduction of oxide and enhanced yields of CO and CO[sub 2]. Of the lighter hydrocarbons identified in the gas phase, methane predominates. The data obtained are compared with those for other pyrolysis methods. 22 refs., 1 fig., 9 tabs.

  12. Broadband radiometer

    Science.gov (United States)

    Cannon, T.W.

    1994-07-26

    A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.

  13. Failures’ Study of a New Character Three-Phase High Voltage Supply for industrial Microwave Generators with one magnetrons per Phase

    Directory of Open Access Journals (Sweden)

    R. Batit

    2016-04-01

    Full Text Available This article treats the development of one of the equivalent electrical models for a single phase power supply for one magnetron; in particular that of its own high voltage (HV transformer newly dimensioned. This single phase system supplies a voltage doubler and current stabilizer circuit, which supplies a single magnetron. Then, by star connecting the three identical models of the single-phase power supply for one magnetron, we obtain a new character three-phase high voltage power supply for industrial microwave generators with one magnetron per phase. The simulation with EMTP (Electro Magnetic Transcients Program in nominal operation has given the theoretical results close to the experimental measurements. Finally, the magnetrons’ failure of the microwave generator was also treated and allowed to observe the interaction’s influence between magnetrons; also the regulation of the anode current has been achieved successfully.

  14. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique...

  15. A monolithic K-band phase-locked loop for microwave radar application

    Science.gov (United States)

    Zhou, Guangyao; Ma, Shunli; Li, Ning; Ye, Fan; Ren, Junyan

    2017-02-01

    A monolithic K-band phase-locked loop (PLL) for microwave radar application is proposed and implemented in this paper. By eliminating the tail transistor and using optimized high-Q LC-tank, the proposed voltage-controlled oscillator (VCO) achieves a tuning range of 18.4 to 23.3 GHz and reduced phase noise. Two cascaded current-mode logic (CML) divide-by-two frequency prescalers are implemented to bridge the frequency gap, in which inductor peaking technique is used in the first stage to further boost allowable input frequency. Six-stage TSPC divider chain is used to provide programmable division ratio from 64 to 127, and a second-order passive loop filter with 825 kHz bandwidth is also integrated on-chip to minimize required external components. The proposed PLL needs only approximately 18.2 μs settling time, and achieves a wide tuning range from 18.4 to 23.3 GHz, with a typical output power of -0.84 dBm and phase noise of -91.92 dBc/Hz @ 1 MHz. The chip is implemented in TSMC 65 nm CMOS process, and occupies an area of 0.56 mm2 without pads under a 1.2 V single voltage supply. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  16. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  17. Direct Synthesis of Fe-Pt Nanoparticles in Ordered Face Centered (fct) LIo Phase by Microwave Assisted Route

    Science.gov (United States)

    Acharya, S. A.; Khule, S. M.; Singh, K.; Bhoga, S. S.

    2011-07-01

    In the present work, microwave-assisted chemical reduction route has been explored for the direct synthesis of fct LIo-phase of Fe-Pt nanoparticles. Effects of microwave power and irradiation time on the growth process were investigated. Using this facile and high yield technique we could tune particle size from 7 to 17 nm. The as-prepared FePt were found to be sensitive to the microwave irradiation power, while influence of exposure time was insignificant. The hysteresis measurements were performed at room temperature (300 K) to study magnetic properties of as-synthesized Fe-Pt as a function of crystallize size. The coercivity and saturation magnetization was observed to be decrease with diminishing for direct synthesis of metal alloys.

  18. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  19. Microwave sterilization with metal thin film coated catalyst in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Hideaki [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511 (Japan); Miyakawa, Yozo [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511 (Japan); Kanno, Yoshinori [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511 (Japan)]. E-mail: kanno@yamanashi.ac.jp

    2007-05-16

    We developed a novel sterilization method by which Microwave (MW) irradiation sterilizes Escherichia coli and Bacillus subtilis using a unique material of catalyst. These materials contained SiO{sub 2}- and/or Al{sub 2}O{sub 3}-TiO{sub 2} that were coated with Pt and/or Ag. The pellets coated with micrometer size metal had a porous structure and a phase structure that maintained anatase in the system of SiO{sub 2}-TiO{sub 2}. We showed that MW irradiation completely sterilized the E. coli and B. subtilis that were loaded inside the pellet. The results suggested that other factors, besides temperature, contributed to effective sterilization. This is because there is a limit temperature for the life maintenance of such microorganisms. We showed that a very short time was needed to sterilize these microorganisms in comparison with the conventional methods. The coated metal ion absorbed the energy of the MWs quickly and easily, and the anatase crystal generates hydroxyl radicals. Results indicated that the active hydroxyl radical generated by the irradiation of MWs played an important role in the sterilization of microorganisms.

  20. Two-Dimensional Finite-Difference Modeling of Broadband Regional Wave Propagation Phenomena: Validation of Regional Three-Dimensional Earth Models and Prediction of Anomalous Regional Phases

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, P; Ryall, F D; Pasyanos, M E; Schultz, C A; Walter, W R

    2000-07-18

    An important challenge for seismic monitoring of nuclear explosions at low magnitude to verify a nuclear-test-ban treaty is the development of techniques that use regional phases for detection, location, and identification. In order to use such phases, region-specific earth models and tools are needed that accurately predict features such as travel times, amplitudes, and spectral characteristics. In this paper, we present our efforts to use two-dimensional finite-difference modeling to help develop and validate regional earth models for the Middle East and North Africa and to develop predictive algorithms for identifying anomalous regional phases. To help develop and validate a model for the Middle East and North Africa, we compare data and finite-difference simulations for selected regions. We show that the proposed three-dimensional regional model is a significant improvement over standard one-dimensional models by comparing features of broadband data and simulations and differences between observed and predicted features such as narrow-band group velocities. We show how a potential trade-off between source and structure can be avoided by constraining source parameters such as depth, mechanism, and moment/source-time function with independent data. We also present numerous observations of anomalous timing and amplitude of regional phases and show how incorporation of two-dimensional structure can explain many of these observations. Based on these observations, and the predictive capability of our simulations, we develop a simple model that can accurately predict the timing of such phases.

  1. Microwave-assisted cleavage of Alloc and Allyl Ester protecting groups in solid phase peptide synthesis.

    Science.gov (United States)

    Wilson, Krista R; Sedberry, Seth; Pescatore, Robyn; Vinton, Daniel; Love, Brian; Ballard, Sarah; Wham, Bradley C; Hutchison, Stacy K; Williamson, Eric J

    2016-10-01

    Orthogonal protection of amino acid side chains in solid phase peptide synthesis allows for selective deprotection of side chains and the formation of cyclic peptides on resin. Cyclizations are useful as they may improve the activity of the peptide or improve the metabolic stability of peptides in vivo. One cyclization method often used is the formation of a lactam bridge between an amine and a carboxylic acid. It is desirable to perform the cyclization on resin as opposed to in solution to avoid unwanted side reactions; therefore, a common strategy is to use -Alloc and -OAllyl protecting groups as they are compatible with Fmoc solid phase peptide synthesis conditions. Alloc and -OAllyl may be removed using Pd(PPh3 )4 and phenylsilane in DMF. This method can be problematic as the reaction is most often performed at room temperature under argon gas. It is not usually done at higher temperatures because of the fear of poisoning the palladium catalyst. As a result, the reaction is long and reagent-intensive. Herein, we report the development of a method in which the -Alloc/-OAllyl groups are removed using a microwave synthesizer under atmospheric conditions. The reaction is much faster, allowing for the removal of the protecting groups before the catalyst is oxidized, as well as being less reagent-intensive. This method of deprotection was tested using a variety of amino acid sequences and side chain protecting groups, and it was found that after two 5-min deprotections at 38°C, all -Alloc and -OAllyl groups were removed with >98% purity. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  2. Enhancement of Lipase Enzyme Activity in Non-Aqueous Media through a Rapid Three Phase Partitioning and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2008-01-01

    Full Text Available Three phase partitioning is fast developing as a novel bio-separation strategy with a wide range of applications including enzyme stability and enhancement of its catalytic activity. pH tuning of enzyme is now well known for use in non-aqueous systems. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. With optimal condition of ammonium sulphate and t-butanol, the protein appeared as an interfacial precipitate between upper t-butanol and lower aqueous phases. In this study we report the results on the lipase which has been subjected to pH tuning and TPP, which clearly indicate the remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. Hence it is shown that microwave irradiation can be used in conjunction with other strategies (like pH tuning and TPP for enhancing initial reaction rates.

  3. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    Science.gov (United States)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  4. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    Science.gov (United States)

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  5. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  6. Nonlinear 3-D Microwave Imaging for Breast-Cancer Screening: Log, Phase, and Log-Phase Formulation

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2011-01-01

    The imaging algorithm used in the 3-D microwave imaging system for breast cancer screening, currently being developed at the Technical University of Denmark, is based on an iterative Newton-type algorithm. In this algorithm, the distribution of the electromagnetic constitutive parameters is updat...

  7. Evolution of the frequency-dependent polarization-angle phase-shift in the microwave radiation-induced magnetoresistance oscillations

    Science.gov (United States)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Reichl, C.; Wegscheider, W.; Mani, R. G.

    2017-06-01

    We report the evolution of the phase shift, θ 0, extracted from traces of the diagonal resistance, Rxx , vs. the linear polarization angle, θ, at oscillatory extrema of the microwave radiation induced magnetoresistance oscillations over the 36 ≤ f ≤ 40 GHz band in GaAs/AlGaAs system. A reference phase shift for the linear polarization angle in the vicinity of the specimen is obtained with the help of a sensitive carbon resistor. We fit an empirical cosine square law to the sinusoidal responses of Rxx vs. θ to extract the phase shift θ 0. The quasi-continuous variation θ 0 vs. f trace suggests a preferable polarization orientation for the specimen, and the f- and B- independence of overall average of θ 0.

  8. Perfect and robust phase-locking of a spin transfer vortex nano-oscillator to an external microwave source

    Energy Technology Data Exchange (ETDEWEB)

    Hamadeh, A.; Loubens, G. de, E-mail: gregoire.deloubens@cea.fr; Klein, O. [Service de Physique de l' État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur-Yvette (France); Locatelli, N.; Lebrun, R.; Grollier, J.; Cros, V. [Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 av. Fresnel, 91767 Palaiseau (France); Naletov, V. V. [Service de Physique de l' État Condensé (CNRS URA 2464), CEA Saclay, 91191 Gif-sur-Yvette (France); Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 av. Fresnel, 91767 Palaiseau (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation)

    2014-01-13

    We study the synchronization of the auto-oscillation signal generated by the spin transfer driven dynamics of two coupled vortices in a spin-valve nanopillar to an external source. Phase-locking to the microwave field h{sub rf} occurs in a range larger than 10% of the oscillator frequency for drive amplitudes of only a few Oersteds. Using synchronization at the double frequency, the generation linewidth is found to decrease by more than five orders of magnitude in the phase-locked regime (down to 1 Hz, limited by the resolution bandwidth of the spectrum analyzer) in comparison to the free running regime (140 kHz). This perfect phase-locking holds for frequency detuning as large as 2 MHz, which proves its robustness. We also analyze how the free running spectral linewidth impacts the main characteristics of the synchronization regime.

  9. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching.

    Science.gov (United States)

    Guo, Peijun; Weimer, Matthew S; Emery, Jonathan D; Diroll, Benjamin T; Chen, Xinqi; Hock, Adam S; Chang, Robert P H; Martinson, Alex B F; Schaller, Richard D

    2017-01-24

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

  10. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peijun; Weimer, Matthew S. [Department; Emery, Jonathan D.; Diroll, Benjamin T.; Chen, Xinqi; Hock, Adam S. [Department; Chang, Robert P. H.; Martinson, Alex B. F.; Schaller, Richard D.

    2016-12-19

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

  11. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Suitability of microwave-assisted extraction coupled with solid-phase extraction for organophosphorus pesticide determination in olive oil.

    Science.gov (United States)

    Fuentes, Edwar; Báez, María E; Quiñones, Adalí

    2008-10-17

    A systematic study of the microwave-assisted extraction coupled to solid-phase extraction of nine organophosphorus pesticides (dimethoate, diazinon, pirimiphos methyl, parathion methyl, malathion, fenthion, chlorpyriphos, methidathion and azinphos methyl) from olive oil is described. The method is based on microwave-assisted liquid-liquid extraction with partition of organophosphorus pesticides between an acetonitrile-dichloromethane mixture and oil. Cleanup of extracts was performed with ENVI-Carb solid-phase extraction cartridge using dichloromethane as the elution solvent. The determination of pesticides in the final extracts was carried out by gas chromatography-flame photometric detection and gas chromatography-tandem mass spectrometry, using a triple quadrupole mass analyzer, for confirmative purposes. The study and optimization of the method was achieved through experimental design where recovery of compounds using acetonitrile for partition ranged from 62 to 99%. By adding dichloromethane to the extracting solution, the recoveries of more hydrophobic compounds were significantly increased. Under optimized conditions recoveries of pesticides from oil were equal to or higher than 73%, except for fenthion and chlorpyriphos at concentrations higher than 0.06microgg(-1) and diazinon at 0.03microgg(-1), with RSDs equal to or lower than 11% and quantification limits ranging from 0.007 to 0.020microgg(-1). The proposed method was applied to residue determination of the selected pesticides in commercial olive and avocado oil produced in Chile.

  13. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most...... successful markets for broadband. This is done through analysis of national policies in three European countries-Denmark, Sweden, and Germany-and the U.S., Japan, and South Korea. We concluded that successful implementation of broadband depends on the kind of policy measures to be taken at the national level...

  14. Broadband tunable bandpass filters using phase shifted vertical side wall grating in a submicrometer silicon-on-insulator waveguide.

    Science.gov (United States)

    Prabhathan, P; Murukeshan, V M; Jing, Zhang; Ramana, Pamidighantam V

    2009-10-10

    We propose the silicon-on-insulator (SOI) based, phase shifted vertical side wall grating as a resonant transmission filter suitable for dense wavelength division multiplexing (DWDM) communication channels with 100 GHz channel spacing. The gratings are designed and numerically simulated to obtain a minimum loss in the resonant cavity by adjusting the grating parameters so that a high transmittivity can be achieved for the resonant transmission. The resonant grating, which is designed to operate in the DWDM International Telecommunication Union (ITU) grid C band of optical communication, has a high free spectral range of 51.7 nm and a narrow band resonant transmission. The wavelength selectivity of the filter is improved through a coupled cavity configuration by applying two phase shifts to the gratings. The observed channel band width and channel isolation of the resonant transmission filter are good and in agreement with the ITU specifications.

  15. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-09-01

    Full Text Available Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE as the matrix and low-density polyethylene (LDPE coated BaO–Nd2O3–TiO2 (BNT ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol% could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz to 11.87 (7 GHz, while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  16. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Science.gov (United States)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  17. Seismic wavefield polarization: a study of spatial coherency within the LSBB 3-component broadband array to extract seismic phases

    Science.gov (United States)

    Labonne, Claire; Sèbe, Olivier; Gaffet, Stéphane; Schindelé, François

    2017-04-01

    In seismology, the key to interpreting data is wavefield characterization independent from the nature of the wavefield whether it is seismogram from earthquake or seismic noise from hydrocarbon production or ocean swell. The seismic wavefield is a combination of polarized waves. These waves are characterized not only by their propagation properties (i.e. velocity and direction of propagation) but also by the local particle motion trajectories they generate. These particle motion trajectories are the polarization properties of the waves and play a large part in identifying and extracting the seismic phases. To study the polarization, 3-component data are required. The LSBB (Low Noise Underground Laboratory) 3-component seismic array offers the possibility to study the spatial coherency of polarization properties of propagating waves through the array. An optimized time-frequency decomposition of the polarization properties, such as the ellipticity, the rectilinearity vector or the planarity vector, is done for each station of the array by approximating each time-frequency contribution by an elliptical motion lying in a plane in the 3D space. By assuming coherent polarization properties for plane waves propagating through a seismic array, these properties' spatial coherency could be integrated in advanced array processing techniques. Applied to teleseismic records, the study of the spatial coherency of the polarization yields three main results: (i) a very precise station orientation (lower than 1 degree) is required to observe a significant spatial coherency, (ii) a relative station orientation can be done by maximizing the spatial coherency of the polarization, and (iii) if the precision of the station orientation is sufficient, identifying seismic phases according to their coherent polarization parameters becomes possible. This type of array polarization analysis can be performed as well on telesismic records as on seismic noise. Our first results demonstrate the

  18. The design of broadband radar absorbing surfaces

    OpenAIRE

    Go, Han Suk

    1990-01-01

    Approved for public release, distribution unlimited There has been a growing and widespread interest in radar-absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being...

  19. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    Science.gov (United States)

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  20. Constructing a 3D Crustal Model Across the Entire Contiguous US Using Broadband Rayleigh Wave Phase Velocity and Ellipticity Measurements

    Science.gov (United States)

    Lin, F. C.; Schmandt, B.

    2015-12-01

    Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear

  1. Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation

    Science.gov (United States)

    Chen, Shijun; Sun, Fuyu; Bai, Qingsong; Chen, Dawei; Chen, Qiang; Hou, Dong

    2017-10-01

    We demonstrated a timing fluctuation suppression in outdoor laser-based atmospheric radio-frequency transfer over a 110 m one-way free-space link using an electronic phase compensation technique. Timing fluctuations and Allan Deviation are both measured to characterize the instability of transferred frequency incurred during the transfer process. With transferring a 1 GHz microwave signal over a timing fluctuation suppressed transmission link, the total root-mean-square (rms) timing fluctuation was measured to be 920 femtoseconds in 5000 s, with fractional frequency instability on the order of 1 × 10-12 at 1 s, and order of 2 × 10-16 at 1000 s. This atmospheric frequency transfer scheme with the timing fluctuation suppression technique can be used to fast build an atomic clock-based frequency free-space transmission link since its stability is superior to a commercial Cs and Rb clock.

  2. Photonic-assisted microwave frequency multiplication with a tunable multiplication factor.

    Science.gov (United States)

    Gao, Liang; Liu, Weilin; Chen, Xiangfei; Yao, Jianping

    2013-11-01

    Photonic-assisted microwave frequency multiplication with a tunable multiplication factor (MF) based on an optical comb generator and an embedded single-passband microwave photonic filter (MPF) is proposed and demonstrated. The optical comb is generated using two cascaded modulators which are driven by a microwave reference signal. By applying the optical comb to a photodetector, a fundamental frequency corresponding to the comb spacing and its harmonics is generated. Thanks to the embedded single-passband MPF, only one harmonic is selected by the single-passband MPF. Thus, a single-frequency frequency-multiplied microwave signal is generated. In the proposed system, the embedded single-passband MPF is formed by using a sliced broadband optical source and a section of dispersion-compensating fiber (DCF). By tuning the central frequency of the passband at a frequency corresponding to that of a specific harmonic, a microwave signal at that specific frequency is generated. The proposed system is experimentally demonstrated. A frequency-multiplied microwave signal with an MF from 1 to 5 is generated. The phase noise and frequency tunability of the generated microwave signal are also investigated.

  3. Epitaxy of the bound water phase on hydrophilic surfaces of biopolymers as key mechanism of microwave radiation effects on living objects.

    Science.gov (United States)

    Kuznetsov, Denis B; Orlova, Ekaterina V; Neschislyaev, Valery A; Volkhin, Igor L; Izmestiev, Igor V; Lunegov, Igor V; Balandina, Alevtina V; Dianova, Dina G

    2017-06-01

    The research investigates the mechanism of microwave radiation effects on biological characteristics and structural-dynamic parameters of a sensor bioluminescence system. The research objects are a sterile growth medium (fish meal hydrolisate) and a bacterial culture. It has been established that irradiation causes changes of the growth medium spectral properties within the range of 200-350nm. Changes take place in the intensity and character of luminescence, as well as in relaxation parameters of nuclear magnetic resonance, growth characteristics of the bacterial culture, its cellular morphology and surface topology. The research results enabled us to establish the mechanisms of primary molecular processes that occur when the bacterial culture is exposed to microwave radiation. Transformation of the dynamic-structural state of adsorbed water phases on biopolymer surfaces has been found to be the key factor in the mechanism of microwave effects on living and water-containing objects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Broadband homodyne reflectometer devoted to density fluctuation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Sanchez, J.; Branas, B.; Navarro, A.P. (Asociacion EURATOM/CIEMAT, 28040 Madrid (Spain))

    1990-10-01

    A microwave reflectometer has been used in the TJ-I tomakak ({ital R}=0.30 m, {ital a}=0.10 m, {ital I}{sub {ital p}I{ital p}}{lt} 50 kA, {ital B}{sub {ital t}} {lt} 1.5 T) to monitor density fluctuations in the plasma bulk. Experiments were made in the range 33--50 GHz, {ital x} mode. The system uses a single antenna for launching and receiving the microwave beam. Since broadband operation usually requires homodyne detection, different techniques were used to overcome the limitations due to this detection scheme. Radial profiles of the density turbulence were taken and the behavior of the spectra analyzed. A slow frequency sweeping has been performed to provide a method to normalize the signals reflected from different radial positions. In addition this technique can be used to obtain information on the absolute value of the phase oscillation amplitude. Spectra of the edge density fluctuations obtained by reflectometry and by Langmuir probes are compared. By the use of two reflectometers in the same antenna, radial correlation experiments can be performed. Some discussions on the ability of homodyne reflectometry to determine coherence lengths are also presented. A slow sweeping of the frequency is proposed to overcome the lack on the information given by the homodyne system.

  5. Single-step microwave assisted headspace liquid-phase microextraction of trihalomethanes and haloketones in biological samples.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Basheer, Chanbasha; Sajid, Muhammad

    2015-12-15

    A single-step microwave assisted headspace liquid-phase microextraction (MA-HS-LPME) method was developed for determination of trihalomethanes (THMs) and haloketones (HKs) in biological samples. In this method, a porous membrane envelope was filled with few microliters of extraction solvent and then placed inside the microwave extraction vial. A PTFE ring was designed to support the membrane envelope over a certain height inside the vial. An optimum amount of biological sample was placed in the vial equipped with magnetic stirrer. After that nitric acid was added to the vial for digestion of biological sample. The sample was digested and the volatile THMs and HKs were extracted at headspace in the solvent containing porous membrane. After simultaneous digestion and extraction, the extract was injected to gas chromatography/mass spectrometry for analysis. Factors affecting the extraction efficiency were optimized to achieve higher extraction performance. Quantification was carried out over a concentration range of 0.3-100ngg(-1) for brominated compounds while for the chlorinated ones linear range was between 0.5-100ngg(-1). Limit of detections (LODs) were ranged from 0.051 to 0.110ngg(-1) while limit of quantification (LOQ) were in the range of 0.175-0.351ngg(-1). The relative standard deviations (RSDs) of the calibrations were ranged between 1.1 and 6.8%. The MA-HS-LPME was applied for the determination of trace level THMs and HKs in fish tissue and green alga samples. Copyright © 2015. Published by Elsevier B.V.

  6. Phase-controlled synthesis of Cu{sub 2}ZnSnS{sub 4} powders via the microwave-assisted solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hsung; Das, Subrata; Yang, Che-Yuan; Sung, Jen-Cheng; Lu, Chung-Hsin, E-mail: chlu@ntu.edu.tw

    2015-05-25

    Highlights: • Cu{sub 2}ZnSnS{sub 4} powders were prepared via the microwave-assisted solvothermal route. • Kesterite and wurtzite phase were formed via adjusting the amount of ethylenediamine. • Cu{sub 2}S was reacted with constituent ions and hydrogen sulfide ions to form Cu{sub 2}ZnSnS{sub 4}. • Single-phased kesterite and wurtzite Cu{sub 2}ZnSnS{sub 4} powders were derived in this study. - Abstract: Cu{sub 2}ZnSnS{sub 4} was successfully prepared via the microwave-assisted solvothermal route at the reaction temperature as low as 180 °C. In comparison with the conventional solution process for preparing Cu{sub 2}ZnSnS{sub 4} powders, the reaction time was significantly reduced to 1 h, and the preparation procedures were simplified with the incorporation of microwave irradiation technique. The mobility of ions and dipoles are suggested to have been accelerated via the microwave, thereby enhancing the reaction rates. Kesterite and wurtzite Cu{sub 2}ZnSnS{sub 4} powders were formed via adjusting the volume fraction of ethylenediamine in the microwave-solvothermal process. The amount of ethylenediamine affected the morphology of the derived powders due to the selective passivation of ethylenediamine on Cu{sub 2}ZnSnS{sub 4}. The microscopic analysis revealed that the samples prepared with high ethylenediamine concentrations had large particle sizes. The enhanced grain size reduced the surface recombination and increased the photoluminescence intensity of Cu{sub 2}ZnSnS{sub 4} particles. During the microwave-assisted solvothermal process, Cu{sub 2}S was formed first and reacted with the constituent ions and hydrogen sulfide ions to form Cu{sub 2}ZnSnS{sub 4} powders.

  7. A microwave photonic generator of chaotic and noise signals

    Science.gov (United States)

    Ustinov, A. B.; Kondrashov, A. V.; Kalinikos, B. A.

    2016-04-01

    The transition to chaos in a microwave photonic generator has been experimentally studied for the first time, and the generated broadband chaotic microwave signal has been analyzed. The generator represented a ring circuit with the microwave tract containing a low-pass filter and a microwave amplifier. The optical tract comprised a fiber delay line. The possibility of generating chaotic oscillations with uniform spectral power density in a 3-8 GHz range is demonstrated.

  8. Large microwave phase shift and small distortion in an integrated waveguide device

    DEFF Research Database (Denmark)

    Öhman, Filip; Sales, Salvador; Chen, Yaohui

    2007-01-01

    We have obtained a tunable phase shift of 150 degrees in an integrated semiconductor waveguide by optimizing the interplay of fast and slow light effects. Furthermore, the distortions imposed by device nonlinearities have been quantified.......We have obtained a tunable phase shift of 150 degrees in an integrated semiconductor waveguide by optimizing the interplay of fast and slow light effects. Furthermore, the distortions imposed by device nonlinearities have been quantified....

  9. Microwave field-efffect transistors theory, design, and application

    CERN Document Server

    Pengelly, Raymond

    1994-01-01

    This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.

  10. Study of microwave-induced phase switches from the finite voltage state in Bi2Sr2CaCu2Oy intrinsic Josephson junctions

    Science.gov (United States)

    Kitano, Haruhisa; Yamaguchi, Ayami; Takahashi, Yusaku; Kakehi, Daiki; Ayukawa, Shin-ya

    2017-07-01

    We study the microwave-induced phase switches from the finite voltage state for the underdamped intrinsic Josephson junctions (IJJs) made of Bi2Sr2CaCu2Oy (Bi2212). We observe the resonant double-peak structure in the switching current distribution at low temperatures. This feature is successfully explained by a quantum mechanical model where the strong microwave field effectively suppresses the potential barrier for the phase escape from a potential well and the macroscopic quantum tunneling (MQT) is resonantly enhanced. The detailed analyses considering the effects of multiple phase retrapping processes after the phase escape strongly suggest that the intense microwave field suppresses the energy-level spacing in the potential well, by effectively decreasing the fluctuation-free critical current and the Josephson plasma frequency. This effect also reduces the number of photons required for the multiphoton transition between the ground and the first excited states, making it possible to observe the energy level quantization in the MQT state. The temperature dependence of the resonance peak emerging in the switching rate clearly demonstrates that the quantized energy state can be survived up to ~10 K, which is much higher than a crossover temperature predicted by the conventional Caldeira-Leggett theory.

  11. Three-dimensional microwave imaging for breast-cancer detection using the log-phase formulation

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Meincke, Peter; Kim, Oleksiy S.

    2007-01-01

    The log-phase formulation is applied for the reconstruction of images from a simulation of a three-dimensional imaging system. By using this formulation, a clear improvement in the quality of the reconstructed images is achieved compared to the case in which the usual complex phasor notation...

  12. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.

    Science.gov (United States)

    Sabatino, Giuseppina; Papini, Anna M

    2008-11-01

    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  13. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator.

    Science.gov (United States)

    Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador

    2003-08-15

    We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.

  14. Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation

    Science.gov (United States)

    2012-05-11

    signal onto the intensity of an optical carrier provided by a semiconductor laser. The o-to-e transducer is a photodiode, which detects the envelope ...the light, phase and frequency modulation can not be directly detected . Coherent detection using hetero- dyning is one possibile demodulation scheme...but heterodyning is nonlinear and adds complexity. Alternatively, one can use a direct- detection system. We have designed demodulators which use optical

  15. Microwave assisted extraction-solid phase extraction for high-efficient and rapid analysis of monosaccharides in plants.

    Science.gov (United States)

    Zhang, Ying; Li, Hai-Fang; Ma, Yuan; Jin, Yan; Kong, Guanghui; Lin, Jin-Ming

    2014-11-01

    Monosaccharides are the fundamental composition units of saccharides which are a common source of energy for metabolism. An effective and simple method consisting of microwave assisted extraction (MAE), solid phase extraction (SPE) and high performance liquid chromatography-refractive index detector (HPLC-RID) was developed for rapid detection of monosaccharides in plants. The MAE was applied to break down the structure of the plant cells and release the monosaccharides, while the SPE procedure was adopted to purify the extract before analysis. Finally, the HPLC-RID was employed to separate and analyze the monosaccharides with amino column. As a result, the extraction time was reduced to 17 min, which was nearly 85 times faster than soxhlet extraction. The recoveries of arabinose, xylose, fructose and glucose were 85.01%, 87.79%, 103.17%, and 101.24%, with excellent relative standard deviations (RSDs) of 1.94%, 1.13%, 0.60% and 1.67%, respectively. The proposed method was demonstrated to be efficient and time-saving, and had been applied to analyze monosaccharides in tobacco and tea successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. High-power Microwave Pulse Compression of Klystrons by Phase-Modulation of High-Q Storage Cavities

    CERN Document Server

    Bossart, Rudolf; Mourier, J; Syratchev, I V; Tanner, L

    2004-01-01

    At the CERN linear electron accelerators LIL and CTF, the peak RF power from the 3GHz-klystrons was doubled by means of LIPS microwave pulse compressors. To produce constant RF power from the cavity-based pulse compressors, the klystrons were driven by a fast RF-phase modulation program. For the CLIC Test Facility CTF3, a new type of a Barrel Open Cavity (BOC) with a high quality factor Q0 has been developed. Contrary to LIPS with two resonant cavities, BOC operates with a single cavity supporting two orthogonal resonant modes TM 10,1,1 in the same cavity. For both LIPS and BOC storage cavities, it is important that the RF power reflected back to the klystron is minimal. This implies that the resonant frequencies, Q-factors and coupling factors of the two resonant modes of a pulse compressor are closely matched, and that the resonant frequencies are accurate to within a few KHz. The effects of small differences between the two orthogonal modes of the BOC cavity have been investigated. The dynamic pulse respon...

  17. Application of microwave-assisted micro-solid-phase extraction for determination of parabens in human ovarian cancer tissues.

    Science.gov (United States)

    Sajid, Muhammad; Basheer, Chanbasha; Narasimhan, Kothandaraman; Choolani, Mahesh; Lee, Hian Kee

    2015-09-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are widely used as preservatives in food, cosmetics and pharmaceutical products. However, weak estrogenicity of some parabens has been reported in several studies, which provided the impetus for this work. Here, a simple and efficient analytical method for quantifying parabens in cancer tissues has been developed. This technique involves the simultaneous use of microwave-assisted solvent extraction (MASE) and micro-solid phase extraction (μ-SPE), in tandem with high performance liquid chromatography (HPLC/UV) analysis for the determination of parabens. The pollutants studied included four parabens (methyl, ethyl, propyl and butyl parabens). Optimization of the experimental parameters for MASE and μ-SPE was performed. Good relative standard deviation (%RSD) ranged from 0.09 to 2.81% and high enrichment factors (27-314) were obtained. Coefficients of determination (r(2)) up to 0.9962 were obtained across a concentration range of 5.0-200ngg(-1). The method detection limits for parabens ranged from 0.005 to 0.0244ngg(-1). The procedure was initially tested on prawn samples to demonstrate its feasibility on a complex biological matrix. Preliminary studies on human ovarian cancer (OC) tissues showed presence of parabens. Higher levels of parabens were detected in malignant ovarian tumor tissues compared to benign tumor tissue samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Study of hematite-iron phase transformation during iron-carbon core-shell nanoparticles synthesis and investigation of their magnetic and microwave properties

    OpenAIRE

    Omid Khani; Morteza Zargar Shoushtari; Mohammad Jazirehpour; Mansoor Farbod

    2017-01-01

    The structural properties and microwave absorption capability of the iron nanoparticles and iron-carbon core-shell nanoparticles have been studied, in the present paper. The investigated nanoparticles were synthesized by hydrothermal route and by reduction of hematite nanoparticles during annealing in argon-hydrogen atmosphere. Hematite-iron phase transformation during the reduction process has been studied by X-ray diffraction (XRD). XRD patterns showed that in iron nanoparticles, hematite-i...

  19. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N's F09

    Science.gov (United States)

    Pines, D.

    1999-01-01

    This is the Performance Verification Report, METSAT (Meteorological Satellites) Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  20. Thermally tunable water-substrate broadband metamaterial absorbers

    Science.gov (United States)

    Pang, Yongqiang; Wang, Jiafu; Cheng, Qiang; Xia, Song; Zhou, Xiao Yang; Xu, Zhuo; Cui, Tie Jun; Qu, Shaobo

    2017-03-01

    The naturally occurring water has frequency dispersive permittivity at microwave frequencies and thus is a promising constituent material for broadband absorbers. Here, we develop water as the dielectric spacer in the substrate of metal-backed metamaterial (MM) absorbers. The designed substrate is a hybrid of water and a low-permittivity dielectric material. Such a design allows tight packaging of water and easy fabrication of the absorber. We obtain broadband absorption at temperatures of interest by designing the hybrid substrate and MM inclusions. Additionally, the absorption performance of the water-substrate MM absorbers could be tunable according to the environment temperature. We experimentally demonstrate the broadband and thermally tunable absorption performance. We expect that water could replace dielectric layers in other structural MM absorbers to achieve the broadband and thermally tunable absorption performance.

  1. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  2. Gas chromatography-mass spectrometry following microwave distillation and headspace solid-phase microextraction for fast analysis of essential oil in dry traditional Chinese medicine.

    Science.gov (United States)

    Li, Ning; Deng, Chunhui; Li, Yan; Ye, Hao; Zhang, Xiangmin

    2006-11-10

    In this paper, a novel method based on gas chromatography-mass spectrometry (GC-MS) following microwave distillation-headspace solid-phase microextraction (MD-HS-SPME) was developed for the determination of essential oil in dry traditional Chinese medicine (TCM). TCM is dried before being preserved and used, there is too little water to absorb microwave energy and heat the TCM samples. In the work, carbonyl iron powders (CIP) was added and mixed with the dried TCM sample, which was used as microwave absorption solid medium for dry distillation of the TCM. At the same time, SPME was used for the extraction and concentration of essential oil after MD. The dry rhizomes of Atractylodes lancea DC was used as the model TCM, and used in the study. The MD-HS-SPME parameters including fiber coating, microwave power, irradiation time, and the amount of added CIP, were studied. To demonstrate the method feasibility, the conventional HS-SPME method was also used for the analysis of essential oil in the TCM. Experimental results show that more compounds were isolated and identified by MD-HS-SPME than those by HS-SPME. Compared to conventional HS-SPME, the advantages of the proposed method are: short extraction time and high extraction efficiency. All experimental results show that the proposed method is an alternative tool for fast analysis of essential oils in dry TCMs.

  3. ATST visible broadband imager

    Science.gov (United States)

    McBride, William R.; Wöger, Friedrich; Hegwer, Steve L.; Ferayorni, Andrew; Gregory, B. Scott

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4 meter class telescope for observation of the solar atmosphere currently in the construction phase. The Visible Broadband Imager (VBI) is a diffraction limited imaging instrument planned to be the first-light instrument in the ATST instrumentation suite. The VBI is composed of two branches, the "VBI blue" and the "VBI red", and uses state-of-the-art narrow bandwidth interference filters and two custom designed high speed filter wheels to take bursts of images that will be re-constructed using a Graphics Processing Unit (GPU) optimized near-real-time speckle image reconstruction engine. At first light, the VBI instrument will produce diffraction-limited movies of solar activity at eight discrete wavelengths with a field of view of 2 arc minutes square. In this contribution, the VBI design team will discuss the capabilities of the VBI and describe the design of the instrument, highlighting the unique challenges faced in the development of this unique instrument.

  4. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  5. Effect of Er{sup 3+} ions on the phase formation and properties of In{sub 2}O{sub 3}nanostructures crystallized upon microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Samantha C.S.; Romeiro, Fernanda C.; Paula, Leonardo F. de [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Gonçalves, Rosana F. [UNIFESP, Universidade Federal de São Paulo, 09972-270 Diadema, SP (Brazil); Moura, Ana P. de [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Ferrer, Mateus M.; Longo, Elson [INCTMN-UFSCar, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Patrocinio, Antonio Otavio T. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Lima, Renata C., E-mail: rclima@ufu.br [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil)

    2017-05-15

    Regular sized nanostructures of indium oxide (In{sub 2}O{sub 3}) were homogeneously grown using a facile route, i.e. a microwave-hydrothermal method combined with rapid thermal treatment in a microwave oven. The presence of Er{sup 3+} doping plays an important role in controlling the formation of cubic (bcc) and rhombohedral (rh) In{sub 2}O{sub 3} phases. The samples presented broad photoluminescent emission bands in the green-orange region, which were attributed to the recombination of electrons at oxygen vacancies. The photocatalytic activities of pure bcc-In{sub 2}O{sub 3} and a bcc-rh-In{sub 2}O{sub 3} mixture towards the UVA degradation of methylene blue (MB) were also evaluated. The results showed that Er{sup +3} doped In{sub 2}O{sub 3} exhibited the highest photocatalytic activity with a photonic efficiency three times higher than the pure oxide. The improved performance was attributed to the higher surface area, the greater concentration of electron traps due the presence of the dopant and the possible formation of heterojunctions between the cubic and rhombohedral phases. - Graphical abstract: Photodegradation curves as a function of irradiation time of the samples obtained upon rapid microwave heating. - Highlights: • Efficient and rapid microwave heating to obtain Er{sup 3+} doped In{sub 2}O{sub 3} nanostructures. • Er{sup 3+} ions doping is fundamental to stabilizing the crystalline rhombohedral phase. • Symmetry breaking induced by vacancies in the lattice leads to photoluminescence. • Surface area of doped sample was two times higher than the surface of pure oxide. • The presence of defects in the lattice structure favors photocatalytic activity.

  6. Novel Phase Noise Reduction Method for CPW‐Based Microwave Oscillator Circuit Utilizing a Compact Planar Helical Resonator

    National Research Council Canada - National Science Library

    Hwang, Cheol Gyu; Myung, Noh Hoon

    2006-01-01

    This letter describes a compact printed helical resonator and its application to a microwave oscillator circuit implemented in coplanar waveguide (CPW) technology. The high quality (Q)‐factor and spurious...

  7. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  8. Broadband Radiometric LED Measurements.

    Science.gov (United States)

    Eppeldauer, G P; Cooksey, C C; Yoon, H W; Hanssen, L M; Podobedov, V B; Vest, R E; Arp, U; Miller, C C

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  9. Broadband Radiometric LED Measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2017-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed. PMID:28649167

  10. Advanced techniques for microwave reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, B.; Luna, E. de la; Estrada, T. [Asociacion Euratom-CIEMAT, Madrid (Spain); Zhuravlev, V. [Asociacion Euratom-CIEMAT, Madrid (Spain)]|[Kurchatov Institute, Moscow (Russian Federation); Hartfuss, H.J.; Hirsch, M.; Geist, T. [Max-Planck Institut fuer Plasmaphysik, Garching (Germany); Segovia, J.; Oramas, J.L. [Univ. Politecnica, Madrid (Spain)

    1994-12-31

    Microwave reflectometry has been applied during the last years as a plasma diagnostic of increasing interest, mainly due to its simplicity, no need for large access ports and low radiation damage of exposed components. Those characteristics make reflectometry an attractive diagnostic for the next generation devices. Systems used either for density profile or density fluctuations have also shown great development, from the original single channel heterodyne to the multichannel homodyne receivers. In the present work we discuss three different advanced reflectometer systems developed by CIEMAT members in collaboration with different institutions. The first one is the broadband heterodyne reflectometer installed on W7AS for density fluctuations measurements. The decoupling of the phase and amplitude of the reflected beam allows for quantitative analysis of the fluctuations. Recent results showing the behavior of the density turbulence during the L-H transition on W7AS are shown. The second system shows how the effect of the turbulence can be used for density profile measurements by reflectometry in situations where the complicated geometry of the waveguides cannot avoid many parasitic reflections. Experiments from the TJ-I tokamak will be shown. Finally, a reflectometer system based on the Amplitude Modulation (AM) technique for density profile measurements is discussed and experimental results from the TJ-I tokamak are shown. The AM system offers the advantage of being almost insensitive to the effect of fluctuations. It is able to take a direct measurement of the time delay of the microwave pulse which propagates to the reflecting layer and is reflected back. In order to achieve fast reconstruction for real time monitoring of the density profile application of Neural Networks algorithms will be presented the method can reduce the computing times by about three orders of magnitude. 10 refs., 10 figs.

  11. Enhanced microwave absorption and magnetic phase transitions of nanoparticles of multiferroic LaFeO3 incorporated in multiwalled carbon nanotubes (MWCNTs)

    Science.gov (United States)

    Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.

    2017-08-01

    Multiferroic nanoparticles of LaFeO3 (LFO) are prepared by a combination of sono-chemical and sol-gel auto combustion method. The as prepared sample is calcined at 500 °C for 5 h to get the desired crystallographic phase. To enhance the microwave absorption, nanoparticles of LFO are incorporated in the matrix of multi-walled carbon nanotubes (MWCNTs). Crystallographic phases of LFO and LFO-MWCNTs are confirmed by analyzing the X-ray diffractograms (XRD) using Rietveld method. The average size of nanoparticles, crystallographic phase, morphology, and incorporation of LFO nanoparticles in MWCNTs are also obtained by high-resolution transmission electron microscope (HRTEM). Micrographs, nanocrystalline fringe pattern and selected area electron diffraction pattern recorded during HRTEM observations confirmed the formation of the desired nanocomposite phase of LFO-MWCNTs. FTIR and Raman spectroscopy of LFO and LFO-MWCNTs are also recorded at room temperature (RT) which confirm the presence of the individual component in the nanocomposite sample. Hysteresis loops at different temperatures from 300 K down to 5 K, zero field cooled (ZFC) and field cooled (FC) magnetizations (M) as a function of temperature (T) of LFO-MWCNTs are recorded in SQUID magnetometer. Analysis of the observed magnetic data of LFO-MWCNTs suggests the presence of superparamagnetism above ∼298 K and a spin-glass like behavior is found below ∼50 K. The electromagnetic wave absorbing properties in X and Ku bands of microwave regions (8-12 GHz and 12-18 GHz) measured by a vector network analyzer (VNA) confirm the significant enhancement of microwave absorption (RL ∼ -34.88 dB at 10.53 GHz for 1 mm thickness) of LFO in LFO-MWCNTs, which is quite interesting for such multiferroic system.

  12. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  13. Enhanced microwave absorption and magnetic phase transitions of nanoparticles of multiferroic LaFeO{sub 3} incorporated in multiwalled carbon nanotubes (MWCNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, A.; Mahapatra, A.S.; Mallick, A.; Chakrabarti, P.K., E-mail: pabitra_c@hotmail.com

    2017-08-01

    Highlights: • Nanoparticles of LaFeO{sub 3} are successfully incorporated in MWCNTs. • Interestingly, phase transitions of LaFeO{sub 3}-MWCNTs are observed in magnetic data. • Superparamagnetic relaxations of LFO in MWCNTs are found at and above ∼298 K. • Microwave absorption of LFO is highly enhanced in the composite of LFO-MWCNTs. - Abstract: Multiferroic nanoparticles of LaFeO{sub 3} (LFO) are prepared by a combination of sono-chemical and sol-gel auto combustion method. The as prepared sample is calcined at 500 °C for 5 h to get the desired crystallographic phase. To enhance the microwave absorption, nanoparticles of LFO are incorporated in the matrix of multi-walled carbon nanotubes (MWCNTs). Crystallographic phases of LFO and LFO-MWCNTs are confirmed by analyzing the X-ray diffractograms (XRD) using Rietveld method. The average size of nanoparticles, crystallographic phase, morphology, and incorporation of LFO nanoparticles in MWCNTs are also obtained by high-resolution transmission electron microscope (HRTEM). Micrographs, nanocrystalline fringe pattern and selected area electron diffraction pattern recorded during HRTEM observations confirmed the formation of the desired nanocomposite phase of LFO-MWCNTs. FTIR and Raman spectroscopy of LFO and LFO-MWCNTs are also recorded at room temperature (RT) which confirm the presence of the individual component in the nanocomposite sample. Hysteresis loops at different temperatures from 300 K down to 5 K, zero field cooled (ZFC) and field cooled (FC) magnetizations (M) as a function of temperature (T) of LFO-MWCNTs are recorded in SQUID magnetometer. Analysis of the observed magnetic data of LFO-MWCNTs suggests the presence of superparamagnetism above ∼298 K and a spin-glass like behavior is found below ∼50 K. The electromagnetic wave absorbing properties in X and K{sub u} bands of microwave regions (8–12 GHz and 12–18 GHz) measured by a vector network analyzer (VNA) confirm the significant

  14. Effect of V2O5 Addition on the Phase Composition of Bi5FeTi3O15 Ceramic and RF/Microwave Dielectric Properties

    Science.gov (United States)

    Aguiar, F. A. A.; Sales, A. J. M.; Araújo, B. S.; Sabóia, K. D. A.; Filho, M. C. Campos; Sombra, A. S. B.; Ayala, A. P.; Fechine, P. B. A.

    2017-04-01

    Bi5FeTi3O15 (BFT) polycrystalline ceramic with the addition of different concentrations of V2O5 was obtained by a solid-state method. X-ray powder diffraction, Raman spectroscopy and scanning electron microscopy (SEM) were used to study the microstructure and crystalline phases of the ceramics. SEM images showed plate-like morphology with dimensions between 0.32 μm and 3.07 μm (grain size, average around 1.3 μm). For samples with V2O5 concentration below 5%, Raman spectra were mainly determined by the vibrational modes from BFT. Impedance spectroscopy was also performed to evaluate the dielectric properties at microwave and radio frequencies (RF). Two extra phases (Bi4V1.5Fe0.5O10.5 and Bi2Ti2O7) were found due to the chemical reaction between BFT and V2O5. These phases were responsible for the changes in the grain morphology and dielectric response. V2O5 addition increased the real part of the dielectric permittivity ( ɛ') and reduced the dielectric loss tangent (tan δ) values at the RF range of 10 Hz to 1 MHz. For microwave frequencies of 3-3.5 GHz, ɛ' and temperature coefficient of resonant frequency ( τ f) values ranged from 66.52 ppm/°C to 88.60 ppm/°C and -304.3 ppm/°C to -192.6 ppm/°C, respectively. Thereby, BFT ceramics with added V2O5 are good candidates to be used for microwave devices (e.g., cell phones).

  15. Direct UV-written broadband directional broadband planar waveguide couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  16. BCT phase formation in synthesis via microwave assisted hydrothermal method; Limite da concentracao de Ca na formacao da fase BCT em sintese via metodo hidrotermico assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Barra, B.C.; Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Lanzi, C.A.C. [Universidade Estadual Paulista Julio de Mesquita Filho (FCT/DFQB/UNESP), Presidente Prudente, SP (Brazil). Fac. de Ciencia e Tecnologia. Dept. de Fisica, Quimica e Biologia; Longo, E. [Universidade Estadual Paulista Julio de Mesquita Filho (IQ/UNESP/), Araraquara, SP (Brazil); Instituto Nacional de Ciencias e Tecnologia de Materiais em Nanotecnologia (INCTMN), Araraquara, SP (Brazil)

    2012-07-01

    In previous work, samples of barium and calcium titanate (Ba1-xCaxTiO3 (BCT x = 0- 1) were prepared using the microwave assisted hydrothermal method in conditions of relatively short time and temperature. To the sample with 75wt% of Ca no BCT phase was formed but the photoluminescent emission was improved. In the present study, these titanates were synthesized by the same method with other concentrations of Ca, Ba1-xCaxTiO3 (x = 0, 0.20, 0.40, 0. 60, 0.80 and 1) to evaluate the limit of BCT phase formation. Results of X-ray diffraction showed that the phase BCT is formed between zero and 50wt%-Ca, in Ba substitution. Above this concentration, was observed only the formation of carbonates, and to x = 1 there was carbonate formation together with CaTiO3. These results were confirmed by micro Raman spectroscopy. (author)

  17. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver

    CERN Document Server

    Portuondo-Campa, Erwin; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-01-01

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the current phase-noise limitations in the system.

  18. Analysis of hexachlorocyclohexanes in aquatic samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.

    Science.gov (United States)

    Tsai, Ming-Yuen; Kumar, Ponnusamy Vinoth; Li, Hong-Ping; Jen, Jen-Fon

    2010-03-19

    A microwave-assisted headspace controlled-temperature liquid-phase microextraction (HS-CT-LPME) technique was applied for the one-step sample extraction of hexachlorocyclohexanes (HCHs) from aqueous samples with complicate matrices, followed by gas chromatographic (GC) analysis with electron capture detector (ECD). Microwave heating was applied to accelerate the evaporation of HCHs into the headspace and an external-cooling system was used to control the temperature in the sampling zone for HS-LPME. Parameters affecting extraction efficiency, such as LPME solvent, sampling position and temperature, microwave power and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly investigated. From experimental results, the following conditions were selected for the extraction of HCHs from 10-mL water sample (pH 2.0) by using 1-octanol as the LPME solvent, with sampling done at 38 degrees C for 6 min under 167 W of microwave irradiation. The detections were linear in the concentration of 0.1-10 microg/L for alpha-HCH and gamma-HCH, and 1-100 microg/L for beta-HCH and delta-HCH. Detection limits were 0.05, 0.4, 0.03 and 0.1 microg/L for alpha-, beta-, gamma- and delta-HCH, respectively. Environmental water samples were analyzed with recovery between 86.4% and 102.4% for farm-field water, and between 92.2% and 98.6% for river water. The proposed method proved to serve as a simple, rapid, sensitive, inexpensive, and eco-friendly procedure for the determination of HCHs in aqueous samples. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Enhanced dielectric loss induced by the doping of SiC in thick defective graphitic shells of Ni@C nanocapsules with ash-free coal as carbon source for broadband microwave absorption

    Science.gov (United States)

    Li, Zhenxing; Ding, Xiaoli; Li, Fan; Liu, Xianguo; Zhang, Shihong; Long, Hongming

    2017-11-01

    The rapid development of microelectronic devices means increasing attention is being paid to the exploration of high-performance microwave absorption materials. Enhanced dielectric loss is an effective way of improving microwave absorption performance. Here, we report that Ni@C nanocapsules with ash-free carbon as a carbon source, functionalized by the doping of SiC in a thick defective graphitic shell, demonstrate enhanced dielectric losses at the gigahertz level, and energy transfer from permeability to permittivity at 14.24 GHz. Compared with Ni@C nanocapsules, which have ethanol as a carbon source, the same absorption band and absorption intensity can be obtained with a thinner absorber in the present Ni@C nanocapsules, and the frequency corresponding to maximum reflection loss exhibits a red shift for the same absorbing thickness. At 5.12 GHz, the maximum reflection loss value of the present Ni@C nanocapsules can reach  -49.99 dB for a planar absorber with a thickness of 5.1 mm. Experimental results coupled with theoretical simulations reveal the electromagnetic losses of the present Ni@C nanocapsules originating from the core-shell interfacial polarization and dipole polarization of the doping of SiC in the defective graphitic shell.

  20. Microwave Processing of Materials

    Science.gov (United States)

    1994-01-01

    reactions in sol-gel processing, gas-phase synthesis , solution evaporation/decomposition, or hydrothermal reactions. Each of these, and other powder... synthesis methods, will be described next. Sol-Gel Decomposition/Drying Microwaves have been used in several of the processing stages to synthesize BaTiO3 ...high surface areas (10-700 m2/g). Hydrothermal Reactions Microwave- hydrothermal processing has been utilized in catalyzing the synthesis of crystalline

  1. Effect of microwave- and microwave-convection drying conditions on the total soluble phenolic content of 2-phase olive mill waste

    Science.gov (United States)

    The California olive oil industry produces tons of 2-phase olive mill waste (2POMW) every year as a byproduct of the olive oil milling process. 2POMW is rich in health-promoting phenolic compounds, but it is greater than 60% moisture (wet basis) in its native form and thus expensive to store and tr...

  2. Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high Microwave Absorption Performance

    Science.gov (United States)

    Wang, Yu; Wang, Wei; Yu, Dan

    2017-12-01

    In this work, a three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with a layer by layer structure was designed and prepared to obtain excellent microwave attenuation performance. Firstly, PANI/PI fabric was prepared via in-situ deposition method. Then, the NiFe2O4 nanoparticles functionalized by oleic acid were uniformly dispersed in epoxy resin and coated on the top and bottom of PANI/PI fabric with 0.041 mm total thickness. The investigation of chemical structure and surface morphologies indicated the composite structure of f-NiFe2O4/PANI/PI fabric. Various parameters like magnetic property, reflection loss and attenuation constant were used to evaluate its microwave attenuation performance. The results demonstrated that the 30f-NiFe2O4/PANI/PI fabric had a highest attenuation effectiveness with the minimum reflection loss value of -42.5 dB (>90% attenuation) at 12.5 GHz and the effective absorption bandwidth was 3.4 GHz. The study of attenuation mechanism indicated that the dielectric loss from PANI, the magnetic loss caused by f-NiFe2O4 and the layer by layer structure effectively improved microwave attenuation performance of composite fabric. Furthermore, the favorable flexibility and dimensional stability of this resultant fabric would allow the composite fabric for a long time service under pressure or foldable conditions. In sum, the study clearly indicated that three-phase heterostructures f-NiFe2O4/PANI/PI fabric was a good candidate as electromagnetic shielding materials in many fields.

  3. Effect of Er3+ ions on the phase formation and properties of In2O3nanostructures crystallized upon microwave heating

    Science.gov (United States)

    Lemos, Samantha C. S.; Romeiro, Fernanda C.; de Paula, Leonardo F.; Gonçalves, Rosana F.; de Moura, Ana P.; Ferrer, Mateus M.; Longo, Elson; Patrocinio, Antonio Otavio T.; Lima, Renata C.

    2017-05-01

    Regular sized nanostructures of indium oxide (In2O3) were homogeneously grown using a facile route, i.e. a microwave-hydrothermal method combined with rapid thermal treatment in a microwave oven. The presence of Er3+ doping plays an important role in controlling the formation of cubic (bcc) and rhombohedral (rh) In2O3 phases. The samples presented broad photoluminescent emission bands in the green-orange region, which were attributed to the recombination of electrons at oxygen vacancies. The photocatalytic activities of pure bcc-In2O3 and a bcc-rh-In2O3 mixture towards the UVA degradation of methylene blue (MB) were also evaluated. The results showed that Er+3 doped In2O3 exhibited the highest photocatalytic activity with a photonic efficiency three times higher than the pure oxide. The improved performance was attributed to the higher surface area, the greater concentration of electron traps due the presence of the dopant and the possible formation of heterojunctions between the cubic and rhombohedral phases.

  4. X-radiation /E greater than 10 keV/, H-alpha and microwave emission during the impulsive phase of solar flares.

    Science.gov (United States)

    Vorpahl, J. A.

    1972-01-01

    A study has been made of the variation in hard (E greater than 10 keV) X-radiation, H-alpha and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20-30-keV X-ray spike depends on the electron hardness. The impulsive phase is also marked by an abrupt, very intense increase in H-alpha emission in one or more knots of the flare. Properties of these H-alpha kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20-30 sec before, peaking about 20-25 sec after, and lasting about twice as long as the hard spike, (3) a location lower in the chromosphere than the remaining flare, (4) essentially no expansion prior to the hard spike, and (5) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force. Correspondingly, impulsive microwave events are characterized by: (1) great similarity in burst structure with 20-32 keV X-rays but only above 5000 MHz, (2) typical low frequency burst cutoff between 1400-3800 MHz, and (3) maximum emission above 7500 MHz.

  5. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    Science.gov (United States)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  6. Very large phase shift of microwave signals in a 6 nm Hf x Zr1-x O2 ferroelectric at ±3 V

    Science.gov (United States)

    Dragoman, Mircea; Modreanu, Mircea; Povey, Ian M.; Iordanescu, Sergiu; Aldrigo, Martino; Romanitan, Cosmin; Vasilache, Dan; Dinescu, Adrian; Dragoman, Daniela

    2017-09-01

    In this letter, we report for the first time very large phase shifts of microwaves in the 1-10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf x Zr1-x O2 ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO2 could play an important role in the future development of wireless communication systems for very low power applications.

  7. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    Science.gov (United States)

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 μg g(-1) and 0.03-0.08 μg g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 μg g(-1) and 0.005-0.01 μg g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 μg g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%).

  8. Application of microwave-assisted desorption/headspace solid-phase microextraction as pretreatment step in the gas chromatographic determination of 1-naphthylamine in silica gel adsorbent.

    Science.gov (United States)

    Yan, Cheing-Tong; Jen, Jen-Fon; Shih, Tung-Sheng

    2007-03-30

    Pretreatment of silica gel sample containing 1-naphthylamine by microwave-assisted desorption (MAD) coupled to in situ headspace solid phase microextraction (HS-SPME) has been investigated as a possible alternative to conventional methods prior to gas chromatographic (GC) analysis. The 1-naphthylamine desorbs from silica gel to headspace under microwave irradiation, and directly absorbs onto a SPME fiber located in a controlled-temperature headspace area. After being collected on the SPME fiber, and desorbed in the GC injection port, 1-naphthylamine is analyzed by GC-FID. Parameters that influence the extraction efficiency of the MAD/HS-SPME, such as the extraction media and its pH, the microwave irradiation power and irradiation time as well as desorption conditions of the GC injector, have been investigated. Experimental results indicate that the extraction of a 150mg silica gel sample by using 0.8ml of 1.0M NaOH solution and a PDMS/DVB fiber under high-powered irradiation (477W) for 5min maximizes the extraction efficiency. Desorption of 1-naphthylamine from the SPME fiber in GC injector is optimal at 250 degrees C held for 3min. The detection limit of method is 8.30ng. The detected quantity of 1-naphthylamine obtained by the proposed method is 33.3 times of that obtained by the conventional solvent extraction method for the silica gel sample containing 100ng of 1-naphthylamine. It provides a simple, fast, sensitive and organic-solvent-free pretreatment procedure prior to the analysis of 1-naphthylamine collected on a silica gel adsorbent.

  9. Magneto-optical and Microwave Properties of LuBiIG Thin Films Prepared by Liquid Phase Epitaxy Method from Lead-Free Flux

    Science.gov (United States)

    Yang, Qing-Hui; Zhnag, Huai-Wu; Wen, Qi-Ye; Liu, Ying-Li; Ihor, Syvorotka M.; Ihor, Syvorotka I.

    2009-04-01

    Lu2.1 Bi0.9Fe5 O12 (LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on gadolinium gallium garnet (GGG) substrates from lead-free flux. Three-inch single crystal garnet films with (444) orientation and good surface are successfully fabricated. The lattice mismatch to the GGG(111) substrate is as small as 0.08%. The ferromagnetic resonance (FMR) linewidth of the film is 2ΔH = 2.8-5.1 Oe, the Faraday rotation is 1.64 deg/μm at 633 nm at room temperature and the optical absorption coefficient of the film is 600 cm-1 in visible range and about 100-170 cm-1 when the wavelength is larger than 800 nm. The epitaxy film possesses dominating in-plane magnetization with a saturation magnetization of about 1562G. These superior optical, magnetic-optical (MO) and microwave properties of our garnet films have potential applications in both MO and microwave devices.

  10. 160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide.

    Science.gov (United States)

    Lu, Guo-Wei; Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya; Miyazaki, Tetsuya; Ito, Hiromasa

    2010-03-15

    We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.

  11. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating

    Science.gov (United States)

    Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming

    2018-01-01

    We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.

  12. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Data.gov (United States)

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  13. A compact broadband nonsynchronous noncommensurate impedance transformer

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the tradit......Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison...... to the traditional tapered line transformers. This flexibility of the broadband nonsynchronous noncommensurate impedance transformers is experimentally demonstrated in this article allowing the length reduction by almost three times. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1832–1835, 2012; View...

  14. Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism

    Science.gov (United States)

    Li, Wangchang; Qiao, Xiaojing; Luo, Yang; Qin, F. X.; Peng, H. X.

    2014-04-01

    In this paper, we present a design, simulation and experimental measurement of a metamaterial absorber (MMA) in the microwave regime. The proposed MMA structure consists of periodic cross electric resonators separated from the ground metal plane using a magnetic composite layer. The broadband absorption can be ascribed to the periodic cross electric resonators. The anti-parallel currents are observed at the peak frequency on the surface of the MMA and the ground metal plane, respectively, and thus the coupled resonance magnetic field occurs in the magnetic medium resulting in the magnetic loss. The new absorption peak located at 2.8 GHz broadens the whole absorption spectrum. The frequency of this peck is lower than that of the cross resonator of 3.7 GHz, suggesting the distinguish resonance mechanism: the absorbing properties are ascribed to the phase cancellation, Ohmic loss, dielectric loss at the end of the cross pattern, and the magnetic loss caused by the above mentioned coupled magnetic field. The obvious absorption peak at 2.8 GHz is also observed experimentally verifying the simulation result. All these results indicate the proposed MMA structure is promising for microwave absorbing application.

  15. The Use of Microwave-Assisted Solid-Phase Peptide Synthesis and Click Chemistry for the Synthesis of Vaccine Candidates Against Hookworm Infection.

    Science.gov (United States)

    Fuaad, Abdullah A H Ahmad; Skwarczynski, Mariusz; Toth, Istvan

    2016-01-01

    A protein-based vaccine approach against hookworm infection has failed to deliver the expected outcome, due to a problem with an allergic response in the patient or difficulties in the proteins' production. This implication could be overcome by using a chemically synthesized peptide-based vaccine approach. This approach utilizes minimal pathogenic components that are necessary for the stimulation of the immune response without triggering adverse side effects. To boost the peptide's immunogenicity, a lipid core peptide (LCP) system can be utilized as a carrier molecule/immunostimulant. This chapter describes in detail the synthesizing of protected lipoamino acid, the self-adjuvanting moiety (LCP core), the peptide epitope, and the final vaccine candidate. The subunit peptide and the LCP core were synthesized using microwave-assisted solid-phase peptide synthesis (SPPS). Then the final hookworm vaccine construct was assembled using the copper-catalyzed azide-alkyne cycloaddition, or "click," reaction.

  16. A fast synthesis for Zintl phase compounds of Na 3SbTe 3, NaSbTe 2 and K 3SbTe 3 by microwave irradiation

    Science.gov (United States)

    Zhou, Gen-Tao; Pol, V. G.; Palchik, Oleg; Kerner, Riki; Sominski, Elena; Koltypin, Yuri; Gedanken, Aharon

    2004-01-01

    The microwave irradiation technique was used to prepare three Zintl phase compounds Na 3SbTe 3, NaSbTe 2 and K 3SbTe 3. The as-prepared products were analyzed and characterized by XRD, EDX and SEM techniques. Higher microwave oven power and shorter irradiation time are required for the synthesis of Na 3SbTe 3, whereas lower oven power and longer irradiation time are needed for NaSbTe 2. Moderate microwave irradiation conditions facilitate the formation of pure K 3SbTe 3. Pure phase of Na 3SbTe 3 are directly obtained by this technique for the first time. Compared with the traditional high-temperature solid-state synthesis, the microwave reaction required a considerable shortened reaction time for the preparation of the three Zintl compounds. The initial driving force for these reactions originates from the interaction of microwave electric field with alkali metals (Na and K) and Sb powders.

  17. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  18. The design of broadband radar absorbing surfaces

    Science.gov (United States)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  19. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber by micro......We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber...

  20. Toward broadband mechanical spectroscopy

    DEFF Research Database (Denmark)

    Hecksher, Tina; Torchinsky, Darius; Klieber, Christoph

    2017-01-01

    Diverse material classes exhibit qualitatively similar behavior when made viscous upon cooling toward the glass transition, suggesting a common theoretical basis. We used seven different measurement methods to determine the mechanical relaxation kinetics of a prototype molecular glass former over...... a temporal range of 13 decades and over a temperature range spanning liquid to glassy states. The data conform to time–temperature superposition for the main (alpha) process and to a scaling relation of schematic mode-coupling theory. The broadband mechanical measurements demonstrated have fundamental...

  1. BPL (Broadband Power Line)

    OpenAIRE

    Peralta, Arturo

    2010-01-01

    El mundo actual requiere cada vez más el estar conectados con la sociedad de la Información y el Conocimiento, esto demanda que en los hogares, lugares de turismo, trabajos, universidades, etcétera, se cuente con una conexión a Internet de Alta Velocidad, que además sea segura y confiable. En este documento se presenta las características más importantes de la tecnología BPL (Broadband Power Line) o PLC (Power Line Comunication), la cual permite brindar el servicio de Internet ...

  2. Broadband frequency conversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    We present a simple, passive and static setup for broadband frequency conversion. By using simple optical components like lenses, mirrors and gratings, we obtain the spectral angular dispersion to match the second harmonic generation phasematching angles in a nonlinear BiBO crystal. We are able...... to frequency double a single-frequency diode laser, tunable in the 1020-1090 nm range, with almost equal efficiency for all wavelengths. In the experimental setup, the width of the phasematch was increased with a factor of 50. The method can easily be extended to other wavelength ranges and nonlinear crystals...

  3. Phase, microstructure and microwave dielectric properties of Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics

    Directory of Open Access Journals (Sweden)

    Manan Abdul

    2015-03-01

    Full Text Available Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics was prepared via conventional solid-state mixed-oxide route. The phase, microstructure and microwave dielectric properties of the sintered samples were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and a vector network analyzer. The microstructure comprised of circular and elongated plate-like grains. The semi quantitative analysis (EDS of the circular and elongated grains revealed the existence of Mg0:95Ni0:05T2O5 as a secondary phase along with the parent Mg0:95Ni0:05Ti0:98Zr0:02O3 phase, which was consistent with the XRD findings. In the present study, εr ~17.1, Qufo~195855 ± 2550 GHz and τf ~ -46 ppm/K was achieved for the synthesized Mg0:95Ni0:05Ti0:98Zr0:02O3 ceramics sintered at 1325 °C for 4 h.

  4. Rapid determination of 54 pharmaceutical and personal care products in fish samples using microwave-assisted extraction-Hollow fiber-Liquid/solid phase microextraction.

    Science.gov (United States)

    Zhang, Yi; Guo, Wen; Yue, Zhenfeng; Lin, Li; Zhao, Fengjuan; Chen, Peijin; Wu, Weidong; Zhu, Hong; Yang, Bo; Kuang, Yanyun; Wang, Jiong

    2017-04-15

    In this paper, a simple, rapid, solvent-less and environmental friendliness microextraction method, microwave-assisted extraction-hollow fiber-liquid/solid phase microextraction (MAE-HF-L/SME), was developed for simultaneous extraction and enrichment of 54 trace hydrophilic/lipophilic pharmaceutical and personal care products (PPCPs) from fish samples. A solid-phase extraction material, solid-phase microextraction (SPME) fiber, was synthesized. The SPME fiber had a homogeneous, loose structure and good mechanical properties, and they exhibited a good adsorption capacity for most PPCPs selected. The material formed the basis for the method of MAE-HF-L/SME. A method of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) for analysis of 54 PPCPs. Under optimal synthesis and extraction conditions, the limits of detection (LODs, n=3) and the limits of quantitation (LOQs, n=10) for the 54 PPCPs were between 0.01-0.50μg·kg-1 and 0.052.00μg·kg-1, respectively. Percent recoveries and the relative standard deviations (RSDs) in spiked fish samples (n=6) were between 56.3%-119.9% and 0.3%-17.1%, respectively. The microextraction process of 54 PPCPs in MAE-HF-L/SME took approximately 12min. The method has a low matrix interference and high enrichment factor and may be applicable for determination of 54 different PPCPs in fish samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.

  6. Microwave Irradiation

    Indian Academy of Sciences (India)

    The rapid heating of food in the kitchen using microwave ovens ... analysis; application to waste treatment; polymer technology; .... Microwave heating for carrying out reactions on solids has also attracted considerable attention in recent years. For such 'dry media' reactions, solid supports such as alumina, silica and.

  7. 75 FR 29516 - Broadband Researchers' Data Workshop

    Science.gov (United States)

    2010-05-26

    ... Administration Broadband Researchers' Data Workshop AGENCY: National Telecommunications and Information... demonstrated in the agency's October 30, 2009, Broadband Data Transparency Public Workshop.\\2\\ \\2\\ See http...

  8. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  9. Microwave-assisted solid-phase peptide synthesis of the 60-110 domain of human pleiotrophin on 2-chlorotrityl resin.

    Science.gov (United States)

    Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore

    2011-05-01

    A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond.

  10. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  11. Ultrathin microwave absorber based on metamaterial

    Science.gov (United States)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8-4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62-4.2 GHz; however, the absorption was slightly lower than 99% in 1.8-2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  12. High Accuracy Microwave Frequency Measurement Based on Single-Drive Dual-Parallel Mach-Zehnder Modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan

    2011-01-01

    A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method....

  13. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  14. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  15. Broadband unidirectional ultrasound propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N.; Pantea, Cristian

    2017-12-12

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystal provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.

  16. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  17. Cumulative-Phase-Alteration of Galactic-Light Passing Through the Cosmic-Microwave-Background: A New Mechanism for Some Observed Spectral-Shifts

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-07-01

    Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.

  18. Broadband unidirectional behavior of electromagnetic waves based on transformation optics.

    Science.gov (United States)

    Zang, XiaoFei; Zhu, YiMing; Ji, XueBin; Chen, Lin; Hu, Qing; Zhuang, SongLin

    2017-01-20

    High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.

  19. Application of Planar Broadband Slow-Wave Systems

    Directory of Open Access Journals (Sweden)

    Edvardas Metlevskis

    2012-04-01

    Full Text Available Different types of planar broadband slow-wave systems are used for designing microwave devices. The papers published by Lithuanian scientists analyze and investigate the models of helical and meander slow-wave systems. The article carefully examines the applications of meander slow-wave systems and presents the areas where similar systems, e.g. mobile devices, RFID, wireless technologies are used and reviewed nowadays. The paper also focuses on the examples of the papers discussing antennas, filters and couplers that contain designed and fabricated meander slow-wave systems.Article in Lithuanian

  20. Broadband unidirectional behavior of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Zang, Xiaofei; Zhu, Yiming; Ji, Xuebin; Chen, Lin; Hu, Qing; Zhuang, Songlin

    2017-01-01

    High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.

  1. Broadband Advanced Spectral System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  2. Nanoscale broadband transmission lines for spin qubit control.

    Science.gov (United States)

    Dehollain, J P; Pla, J J; Siew, E; Tan, K Y; Dzurak, A S; Morello, A

    2013-01-11

    The intense interest in spin-based quantum information processing has caused an increasing overlap between the two traditionally distinct disciplines of magnetic resonance and nanotechnology. In this work we discuss rigorous design guidelines to integrate microwave circuits with charge-sensitive nanostructures, and describe how to simulate such structures accurately and efficiently. We present a new design for an on-chip, broadband, nanoscale microwave line that optimizes the magnetic field used to drive a spin-based quantum bit (or qubit) while minimizing the disturbance to a nearby charge sensor. This new structure was successfully employed in a single-spin qubit experiment, and shows that the simulations accurately predict the magnetic field values even at frequencies as high as 30 GHz.

  3. Does broadband internet affect fertility?

    OpenAIRE

    Billari, Francesco C.; Giuntella, Osea; Stella, Luca

    2017-01-01

    The spread of high-speed Internet epitomizes the digital revolution, affecting several aspects of our life. Using German panel data, we test whether the availability of broadband Internet influences fertility choices in a low-fertility setting, which is well-known for the difficulty to combine work and family life. We exploit a strategy devised by Falck et al. (2014) to obtain causal estimates of the impact of broadband on fertility. We find positive effects of highspeed Internet availability...

  4. Development of an analytical method based on microwave-assisted extraction and solid phase extraction cleanup for the determination of organochlorine pesticides in animal feed.

    Science.gov (United States)

    Iglesias-García, I; Barriada-Pereira, M; González-Castro, M J; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2008-06-01

    A method to determine 21 organochlorine pesticides in animal feed samples using microwave assisted extraction and solid phase extraction cleanup was optimised regarding its main parameters. After extraction with hexane-acetone (50:50), three different sorbents (alumina/ENVI-Florisil, ENVI-Carb and ENVI-Carb II/PSA) were assayed for the cleanup step. Analytes were eluted with hexane-ethyl acetate (80:20) and determined by gas chromatography and electron capture detection followed by gas chromatography-mass spectrometry. ENVI-Carb and ENVI-Carb II/PSA provided colourless eluates but fewer interferent compounds were found in ENVI-Carb II/PSA chromatograms, so this system was selected to carry out the purification of the extracts. The analytical recoveries obtained with this method were close to 100% in most cases with relative standard deviations lower than 10%. These percentages were similar to those obtained with the Soxhlet extraction procedure, which shows the method suitable for the determination of organochlorine pesticides in animal feed material. The method was also validated with the analysis of a certified reference material (CRM-115 BCR), and the results obtained were in good accordance with the certified values.

  5. PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass--Distribution among solid, liquid and gaseous phases and effects of material composition.

    Science.gov (United States)

    Gao, Qiuju; Budarin, Vitaliy L; Cieplik, Mariusz; Gronnow, Mark; Jansson, Stina

    2016-02-01

    Microwave-assisted pyrolysis (MAP) of lignocellulosic biomass is a technique that could potentially be used to produce and upgrade renewable energy carriers. However, there is no available information about the formation of dioxins and other organic pollutants in MAP treatment of woody biomass. In this study, MAP experiments were conducted in lab-scale using virgin softwood, bark, and impregnated wood as feedstocks. The non-condensable gas, liquid (fractionated into aqueous and oil phases), and char fractions generated during pyrolysis were collected and analysed for polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and naphthalenes (PCNs). The concentrations of PCDDs, PCDFs and PCNs in the pyrolysis products ranged from 0.52 to 43.7 ng kg(-1). All investigated compound groups were most abundant in the oil fraction, accounting for up to 68% (w/w) of the total concentrations. The highest PCDD, PCDF and PCN concentrations were found from the pyrolysis of bark, which has relatively high contents of chlorine and mineral matter, followed by impregnated wood, which contains organic and metal-based preservatives. The homologue profiles of all three compound groups were dominated by the less chlorinated homologues. The homologue abundance decreased as the degree of chlorination increased. This trend was observed for all three feedstocks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Broadband accelerator control network

    Energy Technology Data Exchange (ETDEWEB)

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel.

  7. Microwave sintering of sol-gel composite films using a domestic microwave oven

    Science.gov (United States)

    Kobayashi, Makiko; Matsumoto, Makoto

    2016-07-01

    Feasibility study of sol-gel composite microwave sintering using a domestic microwave oven was carried out. Two kinds of lead zirconate titanate (PZT) powders were mixed with PZT sol-gel solution and the mixture was sprayed onto 3-mm-thick titanium substrate. The films were sintered by 700 W domestic oven for 10 min. Ultrasonic measurement was carried out in pulse-echo mode and clear multiple echoes were confirmed. It would be suitable method to fabricate high frequency broadband focused ultrasonic transducers. Further research is required to improve sintering degree.

  8. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  9. Architectures for ku-band broadband airborne satellite ccommunication antennas

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Jorna, Pieter; Roeloffzen, C.G.H.; Marpaung, D.A.I.; Baggen, Rens; Sanadgol, Bahram

    2010-01-01

    This paper describes different architectures for a broadband antenna for satellite communication on aircraft. The antenna is a steerable (conformal) phased array antenna in Ku-band (receive-only). First the requirements for such a system are addressed. Subsequently a number of potential

  10. Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency.

    Science.gov (United States)

    Yao, Zhongqi; Luo, Jie; Lai, Yun

    2016-11-01

    Photonic crystals (PhCs) are well-known band gap materials that can block the propagation of electromagnetic waves within certain frequency regimes. Here, we demonstrate that PhCs can also exhibit the contrary property: broadband, wide-angle, and polarization-insensitive transparency beyond normal dielectric solids. Such high transparency attributes to robust impedance matching between a large group of eigen-states in PhCs and propagating waves in free space. As a demonstration, a transparent wall for broadband microwaves is designed for enhancing the transmittance of WiFi and 4G signals.

  11. Fast recursive algorithm for broadband APFs using complex cepstrums.

    Science.gov (United States)

    Phua, P B; Ippen, E

    2004-10-04

    Integrated-optical All-Pass Filters are of interest for their potential compactness and economy of production. For broadband applications, the number of APFs involved can be as large as 50. To find optima for all the large number of parameters involved, we need a fast and efficient algorithm based on recursive equations. APF design algorithms based on complex cepstrum are proposed in digital signal processing. In this paper, we enhance these algorithms to efficiently fit the differential phase profile required for in-line broadband Polarization Mode Dispersion and Polarization Dependent Loss compensation.

  12. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  13. Using Multi Resonance Effects Towards Single Conformer Microwave Spectroscopy

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Hays, Brian M.; Zwier, Timothy S.

    2016-06-01

    The relationship between the molecular structure and rotational frequencies makes rotational spectroscopy highly structural specific and an ideal tool for complex mixture analysis. The modern developments in broadband microwave techniques have immensely reduced the data acquisition time, while creating a need for high speed data analysis procedures. A new microwave-microwave double resonance method will be introduced, to perform single conformer/isomer microwave spectroscopy in complex chemical mixtures. The method combines the selective excitation schemes possible in chirped pulse microwave spectroscopy with multi-resonance effects observed upon sweeping in the rapid adiabatic passage regime, enabling perturbations to be induced in the intensities of most of the transitions ascribable to a single molecular constituent (e.g. a conformational isomer) in a mixture. Details of the method, experimental implementation and future challenges will be discussed.

  14. Highly Reflecting, Broadband Deformable Membrane Mirror for Wavefront Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will develop a highly reflecting, broadband, radiation resistant, low-stress and lightweight, membrane integrated into an electrostatically...

  15. Microwave Confocal Detection and Thermal Therapy for Breast Cancer: Adaptive Phased Array System for In-Vivo Mapping/Targeting Telomerase Activity

    National Research Council Canada - National Science Library

    York, Robert

    2002-01-01

    .... The first area of research is developing biocompatible vectors with high microwave absorbing and scattering materials, enhancing in-vivo localization of target cells, where the activity of specific markers is present...

  16. Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance

    Science.gov (United States)

    Shen, Yang; Zhang, Jieqiu; Pang, Yongqiang; Li, Yongfeng; Zheng, QiQi; Wang, Jiafu; Ma, Hua; Qu, Shaobo

    2017-08-01

    Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance are proposed, discussed, and demonstrated in this paper. The three-dimensional metamaterial absorbers (MAs) consist of multilayered metal-insulator composition which are introduced here for broadband electromagnetic wave absorption. The frequency selective surfaces (FSSs) backed on the bottom also help achieve multi-transmissions inside or outside of the absorption band. Simulations indicate that diversiform combinations of the MAs and the FSSs will contribute more choice of customizable absorption-transmission-integrated performance. Compared with the foregoing designs, the three-dimensional MAs used here possess broadband absorption with abrupt transition zone which are easier to achieve absorption-transmission-integrated performance with almost no reflection during the entire frequency band. Meanwhile, the simple component and the easy fabrication also make it possible for the absorption-transmission-integrated metamaterials (ATMAs) to be referenced at higher frequencies, such as infrared or optical frequencies. At last, an experimental proof is given at the microwave frequencies. The good agreement between simulation and measurement indicates that our proposed ATMAs will exhibit great potential applications, for example, stealth technology, communication security, and selective multi-frequency sensing.

  17. A NOVEL QOS SCHEDULING FOR WIRELESS BROADBAND NETWORKS

    Directory of Open Access Journals (Sweden)

    D. David Neels Pon Kumar

    2010-09-01

    Full Text Available During the last few years, users all over the world have become more and more familiar to the availability of broadband access. When users want broadband Internet service, they are generally restricted to a DSL (Digital Subscribers Line, or cable-modem-based connection. Proponents are advocating worldwide interoperability for microwave access (WiMAX, a technology based on an evolving standard for point-to multipoint wireless networking. Scheduling algorithms that support Quality of Service (QoS differentiation and guarantees for wireless data networks are crucial to the deployment of broadband wireless networks. The performance affecting parameters like fairness, bandwidth allocation, throughput, latency are studied and found out that none of the conventional algorithms perform effectively for both fairness and bandwidth allocation simultaneously. Hence it is absolutely essential for an efficient scheduling algorithm with a better trade off for these two parameters. So we are proposing a novel Scheduling Algorithm using Fuzzy logic and Artificial neural networks that addresses these aspects simultaneously. The initial results show that a fair amount of fairness is attained while keeping the priority intact. Results also show that maximum channel utilization is achieved with a negligible increment in processing time.

  18. Gas-Phase Molecular Structure of Nopinone and its Water Complexes Studied by Microwave Fourier Transform Spectroscopy and Quantum Chemical Calculations

    Science.gov (United States)

    Neeman, Elias M.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2016-06-01

    Several monoterpenes and terpenoids are biogenic volatile organic compounds which are emitted in the atmosphere, where they react with OH, O_3 and NO_x etc. to give rise to several oxidation and degradation products. Their decomposition products are a major source of secondray organic aerosol (SOA). Spectroscopic information on these atmospheric species is still very scarce. The rotational spectrum of nopinone (C_9H14O) one of the major oxidation products of β-pinene, and of its water complexes were recorded in a supersonic jet expansion with a Fourier transform microwave spectrometer over the range 2-20 GHz. The structure of the unique stable conformer of the nopinone was optimized using density functional theory and ab initio calculations. Signals from the parent species and from the 13C and 18O isotopomers were observed in natural abundance. A magnetic hyperfine structure associated with the pairs of hydrogen nuclei in the methylene groups was observed and modeled. The structures of several conformers of the nopinone-water complexes with up to three molecules of water were optimized using density functional theory and ab initio calculations. The energetically most stable of calculated conformers were observed and anlyzed. The rotational and centrifugal distortion parameters were fitted to a Watson's Hamiltonian in the A-reduction. The present work provides the first spectroscopic characterization of nopinone and its water complexes in the gas phase. A. Calogirou, B.R. Larsen, and D. Kotzias, Atmospheric Environment, 33, 1423-1439, (1999) P. Paasonen et al., Nat. Geosci., 6, 438-442 (2013) D. Zhang and R. Zhang The Journal of Chemical Physics, 122, 114308, (2005) R. Winterhalter et al. Journal of Atmospheric Chemistry, 35, 165-197, (2000)

  19. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  20. Microwave chemistry for inorganic nanomaterials synthesis.

    Science.gov (United States)

    Bilecka, Idalia; Niederberger, Markus

    2010-08-01

    This Feature Article gives an overview of microwave-assisted liquid phase routes to inorganic nanomaterials. Whereas microwave chemistry is a well-established technique in organic synthesis, its use in inorganic nanomaterials' synthesis is still at the beginning and far away from having reached its full potential. However, the rapidly growing number of publications in this field suggests that microwave chemistry will play an outstanding role in the broad field of Nanoscience and Nanotechnology. This article is not meant to give an exhaustive overview of all nanomaterials synthesized by the microwave technique, but to discuss the new opportunities that arise as a result of the unique features of microwave chemistry. Principles, advantages and limitations of microwave chemistry are introduced, its application in the synthesis of different classes of functional nanomaterials is discussed, and finally expected benefits for nanomaterials' synthesis are elaborated.

  1. 75 FR 27984 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-05-19

    ... interoperability framework for use across the United States. The FCC's National Broadband Plan recognized that... Research, Projects, at http://www.pscr.gov/projects/broadband/700mhz/700mhz.php . Pursuant to the eligible...

  2. Broadband and chiral binary dielectric meta-holograms.

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-05-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices' compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics.

  3. Broadband and chiral binary dielectric meta-holograms

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-01-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices’ compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics. PMID:27386518

  4. Broadband Cooperative Spectrum Sensing Based on Distributed Modulated Wideband Converter.

    Science.gov (United States)

    Xu, Ziyong; Li, Zhi; Li, Jian

    2016-09-28

    The modulated wideband converter (MWC) is a kind of sub-Nyquist sampling system which is developed from compressed sensing theory. It accomplishes highly accurate broadband sparse signal recovery by multichannel sub-Nyquist sampling sequences. However, when the number of sparse sub-bands becomes large, the amount of sampling channels increases proportionally. Besides, it is very hard to adjust the number of sampling channels when the sparsity changes, because its undersampling board is designed by a given sparsity. Such hardware cost and inconvenience are unacceptable in practical applications. This paper proposes a distributed modulated wideband converter (DMWC) scheme innovatively, which regards one sensor node as one sampling channel and combines MWC technology with a broadband cooperative spectrum sensing network perfectly. Being different from the MWC scheme, DMWC takes phase shift and transmission loss into account in the input terminal, which are unavoidable in practical application. Our scheme is not only able to recover the support of broadband sparse signals quickly and accurately, but also reduces the hardware cost of the single node drastically. Theoretical analysis and numerical simulations show that phase shift has no influence on the recovery of frequency support, but transmission loss degrades the recovery performance to a different extent. Nevertheless, we can increase the amount of cooperative nodes and select satisfactory nodes by a different transmission distance to improve the recovery performance. Furthermore, we can adjust the amount of cooperative nodes flexibly when the sparsity changes. It indicates DMWC is extremely effective in the broadband cooperative spectrum sensing network.

  5. Microwave Filters

    OpenAIRE

    Zhou, Jiafeng

    2010-01-01

    The general theory of microwave filter design based on lumped-element circuit is described in this chapter. The lowpass prototype filters with Butterworth, Chebyshev and quasielliptic characteristics are synthesized, and the prototype filters are then transformed to bandpass filters by lowpass to bandpass frequency mapping. By using immitance inverters ( J - or K -inverters), the bandpass filters can be realized by the same type of resonators. One design example is given to verify the theory ...

  6. Broadband Synthetic Ground Motion Records

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit,...

  7. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  8. A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection.

    Science.gov (United States)

    Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2011-09-28

    In this study, a novel graphene nanosheets (GNSs) coated solid phase microextraction (SPME) fiber was prepared by immobilizing microwave synthesized GNSs on a stainless steel wire. Microwave synthesized GNSs were verified by X-ray diffraction, field emission-scanning electron microscopy (FE-SEM) and transmission electron microscope (TEM). GNS-SPME fiber was characterized using FE-SEM and the results showed the GNS coating was homogeneous, porous, and highly adherent to the surface of the stainless steel fiber. The performance and feasibility of the GNS-SPME fiber was evaluated under one-step microwave assisted (MA) headspace (HS) SPME followed by gas chromatography with electron capture detection for five organochlorine pesticides (OCPs) in aqueous samples. Parameters influencing the extraction efficiency of MA-HS-GNS-SPME such as microwave irradiation power and time, pH, ionic strength, and desorption conditions were thoroughly examined. Under the optimized conditions, detection limits for the OCPs varied between 0.16 and 0.93 ng L(-1) and linear ranges varied between 1 and 1500 n gL(-1), with correlation coefficients ranging from 0.9984 to 0.9998, and RSDs in the range of 3.6-15.8% (n=5). In comparison with the commercial 100 μm polydimethylsiloxane fiber, the GNS coated fiber showed better extraction efficiency, higher mechanical and thermal stability (up to 290°C), longer life span (over 250 times), and lower production cost. The method was successfully applied to the analysis of real water samples with recoveries ranged between 80.1 and 101.1% for river water samples. The results demonstrated that the developed MA-HS-GNS-SPME method was a simple, rapid, efficient pretreatment and environmentally friendly procedure for the analysis of OCPs in aqueous samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Exploring the conformational landscape of menthol, menthone, and isomenthone: A microwave study

    Science.gov (United States)

    Schmitz, David; Shubert, V.; Betz, Thomas; Schnell, Melanie

    2015-03-01

    The rotational spectra of the monoterpenoids menthol, menthone, and isomenthone are reported in the frequency range of 2-8.5GHz, obtained with broadband Fourier-transform microwave spectroscopy. For menthol only one conformation was identified under the cold conditions of the molecular jet, whereas three conformations were observed for menthone and one for isomenthone. The conformational space of the different molecules was extensively studied using quantum chemical calculations, and the results were compared with molecular parameters obtained by the measurements. Finally, a computer program is presented, which was developed to automatically identify different species in a dense broadband microwave spectrum using calculated ab initio rotational constants as input.

  10. Exploring the conformational landscape of menthol, menthone, and isomenthone: A microwave study

    Directory of Open Access Journals (Sweden)

    David eSchmitz

    2015-03-01

    Full Text Available The rotational spectra of the monoterpenoids menthol, menthone, and isomenthone are reportedin the frequency range of 2−8.5GHz, obtained with broadband Fourier-transform microwave spectroscopy.For menthol only one conformation was identified under the cold conditions of the molecularjet, whereas three conformations were observed for menthone and one for isomenthone. Theconformational space of the different molecules was extensively studied using quantum chemicalcalculations, and the results were compared with molecular parameters obtained by the measurements.Finally, a computer program is presented, which was developed to automatically identifydifferent species in a dense broadband microwave spectrum using calculated ab initio rotationalconstants as input.

  11. Broadband Approximations for Doubly Curved Reflector Antenna

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2010-12-01

    Full Text Available The broadband approximations for shaped-beam doubly curved reflector antennas with primary feed (rectangular horn producing uniform amplitude and phase aperture distribution are derived and analyzed. They are very valuable for electromagnetic compatibility analyses both from electromagnetic interference and susceptibility point of view, because specialized more accurate methods such as physical optics are only used by antenna designers. To allow quick EMC analyses, typical values, beamwidth changes, sidelobe levels and aperture efficiencies are given for frequency changes approximately up to four times operating frequency. A comparison of approximated and measured patterns of doubly curved reflector antennas shows that the given approximation could be reliably used for analyses of pattern changes due to very broad frequency changes.

  12. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  13. QR Factorization for the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jakub Kurzak

    2009-01-01

    Full Text Available The QR factorization is one of the most important operations in dense linear algebra, offering a numerically stable method for solving linear systems of equations including overdetermined and underdetermined systems. Modern implementations of the QR factorization, such as the one in the LAPACK library, suffer from performance limitations due to the use of matrix–vector type operations in the phase of panel factorization. These limitations can be remedied by using the idea of updating of QR factorization, rendering an algorithm, which is much more scalable and much more suitable for implementation on a multi-core processor. It is demonstrated how the potential of the cell broadband engine can be utilized to the fullest by employing the new algorithmic approach and successfully exploiting the capabilities of the chip in terms of single instruction multiple data parallelism, instruction level parallelism and thread-level parallelism.

  14. Broadband optical modulators based on graphene supercapacitors.

    Science.gov (United States)

    Polat, Emre O; Kocabas, Coskun

    2013-01-01

    Optical modulators are commonly used in communication and information technology to control intensity, phase, or polarization of light. Electro-optic, electroabsorption, and acousto-optic modulators based on semiconductors and compound semiconductors have been used to control the intensity of light. Because of gate tunable optical properties, graphene introduces new potentials for optical modulators. The operation wavelength of graphene-based modulators, however, is limited to infrared wavelengths due to inefficient gating schemes. Here, we report a broadband optical modulator based on graphene supercapacitors formed by graphene electrodes and electrolyte medium. The transparent supercapacitor structure allows us to modulate optical transmission over a broad range of wavelengths from 450 nm to 2 μm under ambient conditions. We also provide various device geometries including multilayer graphene electrodes and reflection type device geometries that provide modulation of 35%. The graphene supercapacitor structure together with the high-modulation efficiency can enable various active devices ranging from plasmonics to optoelectronics.

  15. Theory and design of broadband matching networks applied electricity and electronics

    CERN Document Server

    Chen, Wai-Kai

    1976-01-01

    Theory and Design of Broadband Matching Networks centers on the network theory and its applications to the design of broadband matching networks and amplifiers. Organized into five chapters, this book begins with a description of the foundation of network theory. Chapter 2 gives a fairly complete exposition of the scattering matrix associated with an n-port network. Chapter 3 considers the approximation problem along with a discussion of the approximating functions. Chapter 4 explains the Youla's theory of broadband matching by illustrating every phase of the theory with fully worked out examp

  16. All electrical propagating spin wave spectroscopy with broadband wavevector capability

    Energy Technology Data Exchange (ETDEWEB)

    Ciubotaru, F., E-mail: Florin.Ciubotaru@imec.be [imec, Kapeldreef 75, B-3001 Leuven (Belgium); KU Leuven, Departement Electrotechniek (ESAT), Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Devolder, T. [Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Manfrini, M.; Adelmann, C.; Radu, I. P. [imec, Kapeldreef 75, B-3001 Leuven (Belgium)

    2016-07-04

    We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for the all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.

  17. Broadband light-emitting diode

    Science.gov (United States)

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  18. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Microwave Sterilization and Depyrogenation System

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  20. Metamaterial-based perfect absorber: polarization insensitivity and broadband

    Science.gov (United States)

    Hien Nguyen, Thi; Bui, Son Tung; Nguyen, Trong Tuan; Nguyen, Thanh Tung; Lee, YoungPak; Nguyen, Manh An; Vu, Dinh Lam

    2014-06-01

    We report the design and simulation of a microwave metamaterials-based perfect absorber using a simple and highly symmetric structure. The basic structure consists of three functional layers: the middle is a dielectric, the back is a metallic plane and the front is a ring of metal. The influence of structural parameters on the absorbance and absorption frequency were investigated. The results show an exceptional absorption performance of near unity around 16 GHz. In addition, the absorption is insensitive to the polarization of the incident beam due to the highly symmetric structure. Finally, four and nine rings with different sizes are arranged appropriately in a unit cell in order to construct a broadband absorber. A polarization-insensitive absorbance of above 90% is achieved over a bandwidth of 15%.

  1. High-Temperature-Superconductor Films In Microwave Circuits

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1993-01-01

    Report discusses recent developments in continuing research on fabrication and characterization of thin films of high-temperature superconducting material and incorporation of such films into microwave circuits. Research motivated by prospect of exploiting superconductivity to reduce electrical losses and thereby enhancing performance of such critical microwave components as ring resonators, filters, transmission lines, phase shifters, and feed lines in phased-array antennas.

  2. The Microwave Spectrum of Lactaldehyde, the Simplest Chiral Sugar.

    Science.gov (United States)

    Alonso, Elena R.; Kolesniková, Lucie; Cabezas, Carlos; Mata, Santiago; Guillemin, J.-C.; Alonso, José L.

    2017-06-01

    Among the sugar compounds whose conformations have been determined by different spectroscopic techniques the structure of the lactaldehyde (CH_3CH(OH)CHO), the simplest chiral sugar, is conspicuously absent. It is of great interest in the field of astrophysics, where the ongoing search in the interstellar medium (ISM) has been able to detect, based on the rotational spectra identification, the simplest C_{2} sugar glycoaldehyde. Lactaldehyde is a solid with high melting point and low vapor pressure, preventing easy measurements of its gas-phase spectra. Herein, crystalline DL-lactaldehyde samples have been vaporized by laser ablation (LA) and the monomer and the non-centrosymmetric hemiacetal dimer have been revealed in a supersonic expansion by broadband Fourier transform microwave (CP-FTMW) spectroscopy. This rotational study enables the search of the lactaldehyde in the ISM. Hollis JM; Lovas FJ; Jewell. Astrophys J. (2000), 540(2):L107-L110 Hollis JM; Jewell PR; Lovas FJ; Remijan A. Astrophys J. (2004), 613(1):L45-L48.

  3. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  4. Analysis of the Proposed Ghana Broadband Strategy

    DEFF Research Database (Denmark)

    Williams, Idongesit; Botwe, Yvonne

    This project studied the Ghana Broadband Strategy with the aim of evaluating the recommendations in the strategy side by side the broadband development in Ghana. The researchers conducted interviews both officially and unofficially with ICT stakeholders, made observations, studied Government...... intervention policies recommended in the Ghana broadband policy is used to evaluate the broadband market to find out whether the strategy consolidates with the Strengths and opportunities of the market and whether it corrects the anomalies that necessitate the weaknesses and threats to the market....... The strategy did address some threats and weaknesses of the broadband market. It also consolidated on some strengths and opportunities of the broadband market. The researchers also discovered that a market can actually grow without a policy. But a market will grow faster if a well implemented policy is guiding...

  5. Distortion mechanisms in varactor diode-tuned microwave filters

    OpenAIRE

    Carey-Smith, BE; Warr, PA

    2006-01-01

    This paper examines the broadband distortion behavior in flexible filters employing varactor-diode tuning elements. Series- and parallel-resonant varactor-loaded transmission-lines, both commonly used in bandpass and bandstop microwave filters, are analyzed. Nonlinear Volterra-series analysis is employed to determine the second- and third-order distortion ratios dependent on the frequencies of the incident signals. It is shown that in a bandpass filter (employing parallel tuned resonators), m...

  6. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  7. Characterization of Large Water Clusters by Broadband Rotational Spectroscopy

    Science.gov (United States)

    Perez, Cristobal; Zaleski, Daniel P.; Seifert, Nathan A.; Pate, Brooks H.; Kisiel, Zbigniew; Temelso, Berhane; Shields, George C.; Shipman, Steven T.; Finnerman, Ian

    2013-06-01

    Most theoretical water models match with experimental result reasonably well up to n=10. For clusters larger than the decamer there is no clear consensus in the global minimum geometries, as the low-energy landscape for a given cluster size changes considerably depending on the model applied. However, there is agreement in considering the undecamer regime as one of the richer pure water cluster regimes, with a large number (>50) of isomers within 1 kcal/mol of the global minimum. Using broadband chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy operating in the 2-8 GHz frequency range, seven low-energy isomers of the water undecamer have been identified in a pulsed molecular beam. The observed water cluster structures have been identified as belonging to four families on basis to their rotational constants according to their different oxygen atom frameworks. These families can be explained by building up the structures from smaller water cluster subunits. Rotational spectra consistent with theoretical predictions for two isomers of (H_{2}O)_{13} and one of (H_{2}O)_{15} have also been identified. Due to the high density of lines observed in the broadband spectrum, the traditional method of pattern recognition using ab-initio calculations was replaced with a new approach combining high-level ab-initio calculations with automatic fitting tools. These autofitting routines were tested on these systems and are also briefly described.

  8. Broadband Traffic Forecasting in the Transport Network

    Directory of Open Access Journals (Sweden)

    Valentina Radojičić

    2012-07-01

    Full Text Available This paper proposes a modification of traffic forecast model generated by residential and small business (SOHO, Small Office Home Office users. The model includes forecasted values of different relevant factors and competition on broadband market. It allows forecasting the number of users for various broadband technologies and interaction impact of long-standing technologies as well as the impact of the new technology entrant on the market. All the necessary parameters are evaluated for the Serbian broadband market. The long-term forecasted results of broadband traffic are given. The analyses and evaluations performed are important inputs for the transport network resources planning.

  9. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  10. Achieving universal access to broadband

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    2009-01-01

    The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures...... to be applied. The paper concludes that other policy measure than the classical universal service obligation are in play, and discusses various policy measures taking the Lisbon process as a point of departure. Available policy measures listed in the paper include, universal service obligation, harmonization...

  11. POTS to broadband ... cable modems.

    Science.gov (United States)

    Kabachinski, Jeff

    2003-01-01

    There have been 3 columns talking about broadband communications and now at the very end when it's time to compare using a telco or cableco, I'm asking does it really matter? So what if I can actually get the whole 30 Mbps with a cable network when the website I'm connecting to is running on an ISDN line at 128 Kbps? Broadband offers a lot more bandwidth than the connections many Internet servers have today. Except for the biggest websites, many servers connect to the Internet with a switched 56-Kbps, ISDN, or fractional T1 line. Even with the big websites, my home network only runs a 10 Mbps Ethernet connection to my cable modem. Maybe it doesn't matter that the cable lines are shared or that I can only get 8 Mbps from an ADSL line. Maybe the ISP that I use has a T1 line connection to the Internet so my new ADSL modem has a fatter pipe than my provider! (See table 1). It all makes me wonder what's in store for us in the future. PC technology has increased exponentially in the last 10 years with super fast processor speeds, hard disks of hundreds of gigabytes, and amazing video and audio. Internet connection speeds have failed to keep the same pace. Instead of hundreds of times better or faster--modem speeds are barely 10 times faster. Broadband connections offer some additional speed but still not comparable growth as broadband connections are still in their infancy. Rather than trying to make use of existing communication paths, maybe we need a massive infrastructure makeover of something new. How about national wireless access points so we can connect anywhere, anytime? To use the latest and fastest wireless technology you will simply need to buy another $9.95 WLAN card or download the latest super slick WLAN compression/encryption software. Perhaps it is time for a massive infra-restructuring. Consider the past massive infrastructure efforts. The telcos needed to put in their wiring infrastructure starting in the 1870s before telephones were useful to the

  12. Achieving Universal Access to Broadband

    Directory of Open Access Journals (Sweden)

    Morten FALCH

    2009-01-01

    Full Text Available The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures to be applied. The paper concludes that other policy measure than the classical universal service obligation are in play, and discusses various policy measures taking the Lisbon process as a point of departure. Available policy measures listed in the paper include, universal service obligation, harmonization, demand stimulation, public support for extending the infrastructure, public private partnerships (PPP, and others.

  13. Understanding broadband over power line

    CERN Document Server

    Held, Gilbert

    2006-01-01

    Understanding Broadband over Power Line explores all aspects of the emerging technology that enables electric utilities to provide support for high-speed data communications via their power infrastructure. This book examines the two methods used to connect consumers and businesses to the Internet through the utility infrastructure: the existing electrical wiring of a home or office; and a wireless local area network (WLAN) access point.Written in a practical style that can be understood by network engineers and non-technologists alike, this volume offers tutorials on electric utility infrastru

  14. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  15. Broadband Wireline Provider Service Summary; BBRI_wirelineSum12

    Data.gov (United States)

    University of Rhode Island Geospatial Extension Program — This dataset represents the availability of broadband Internet access in Rhode Island via all wireline technologies assessed by Broadband Rhode Island. Broadband...

  16. Enhanced microwave absorption property of epoxy nanocomposites based on PANI@Fe3O4@CNFs nanoparticles with three-phase heterostructure

    Science.gov (United States)

    Yang, Lingfeng; Cai, Haopeng; Zhang, Bin; Huo, Siqi; Chen, Xi

    2018-02-01

    Novel electromagnetic functionalized carbon nanofibers (CNFs) have been synthesized by coating with Fe3O4 magnetite nanoparticles and conducting polymers polyaniline (PANI) on CNFs through a layer by layer assembly. The Fe3O4@CNFs were first prepared by coating nano-Fe3O4 particles on CNFs via co-precipitation method; Then the PANI was coated on Fe3O4@CNFs using an in situ polymerization process to obtain PANI@Fe3O4@CNFs nanoparticles. The prepared PANI@Fe3O4@CNFs nanoparticles were dispersed in the epoxy matrix to fabricate microwave absorbing nanocomposites. Compared with the Fe3O4@CNFs/epoxy nanocomposites, the PANI@Fe3O4@CNFs/epoxy nanocomposites exhibit better microwave absorbing properties. The composite containing 15 wt% of PANI@Fe3O4@CNFs with the thickness of 2 mm showed a minimum reflection loss (RL) value of ‑23.7 dB with an effective absorption bandwidth which is about 3.7 GHz (11.9–15.6 GHz) in the frequency range of 1–18 GHz, indicating that it is an attractive candidate for efficient microwave absorber. A potential absorption mechanism was proposed for enhancement of the impedance-matching condition and electromagnetic wave-attenuation characteristic of materials. Specifically, the impedance-matching condition was improved by the combination of conductive polymers and magnetic nanoparticles with CNFs. The electromagnetic wave attenuation characteristic was enhanced by multiple reflections, due to the increased propagation paths.

  17. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    OpenAIRE

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption...

  18. Development of microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for quantification of camphor and borneol in Flos Chrysanthemi Indici

    Energy Technology Data Exchange (ETDEWEB)

    Deng Chunhui [Department of Chemistry, Fudan University, Shanghai 200433 (China); Mao Yu [Department of Basic Medical Sciences, Second Military Medicinal University, Shanghai 200433 (China); Yao Ning [Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhang Xiangmin [Department of Chemistry, Fudan University, Shanghai 200433 (China)]. E-mail: xmzhang@fudan.edu.cn

    2006-08-04

    In the work, microwave-assisted extraction (MAE) followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was developed for quantitative analysis of the bioactive components of camphor and borneol in a traditional Chinese medicines (TCM) of Flos Chrysanthemi Indici. After systematical investigation, the optimal experimental parameters microwave power (400 W), irradiation time (4 min), fiber coating (PDMS/DVB fiber), extraction temperature (40 deg. C), extraction time (20 min), stirring rate (1100 rpm), and salt effect (no salt added) were investigated. The optimized method provided satisfactory precision (RSD values less than 12%), good recovery (from 86% to 94%), and good linearity (R {sup 2} > 0.999). The proposed method was applied to quantitative analysis of camphor and borneol in Flos Chrysanthemi Indici samples from 11 different growing areas. To demonstrate the method feasibility, steam distillation was also used to analyze camphor and borneol in Flos Chrysanthemi Indici samples from these different growing areas. The very close results were obtained by the two methods. It has been shown that the proposed ME-HS-SPME-GC-MS is a simple, rapid, solvent-free and reliable method for quantitative analysis of camphor and borneol in TCM, and a potential tool for quality assessment of Flos Chrysanthemi Indici.

  19. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  20. Electronically Switchable Broadband Metamaterial Absorber.

    Science.gov (United States)

    Lee, Dongju; Jeong, Heijun; Lim, Sungjoon

    2017-07-07

    In this study, the novel electronically switchable broadband metamaterial absorber, using a PIN diode, is proposed. The unit cell of the absorber was designed with a Jerusalem-cross resonator and an additive ring structure, based on the FR-4 dielectric substrate. Chip resistors and PIN diodes were used to provide both a broadband characteristic and a switching capability. To satisfy the polarization insensitivity, the unit cell was designed as a symmetrical structure, including the DC bias network, electronic devices, and conductor patterns. The performance of the proposed absorber was verified using full-wave simulation and measurements. When the PIN diode was in the ON state, the proposed absorber had a 90% absorption bandwidth from 8.45-9.3 GHz. Moreover, when the PIN diode was in the OFF state, the 90% absorption bandwidth was 9.2-10.45 GHz. Therefore, the absorption band was successfully switched between the low-frequency band and the high-frequency band as the PIN diode was switched between the ON and OFF states. Furthermore, the unit cell of the proposed absorber was designed as a symmetrical structure, and its performance showed insensitivity with respect to the polarization angle.

  1. Microwave Magnetochiral Dichroism in the Chiral-Lattice Magnet Cu_{2}OSeO_{3}.

    Science.gov (United States)

    Okamura, Y; Kagawa, F; Seki, S; Kubota, M; Kawasaki, M; Tokura, Y

    2015-05-15

    Through broadband microwave spectroscopy in Faraday geometry, we observe distinct absorption spectra accompanying magnetoelectric (ME) resonance for oppositely propagating microwaves, i.e., directional dichroism, in the multiferroic chiral-lattice magnet Cu_{2}OSeO_{3}. The magnitude of the directional dichroism critically depends on the magnetic-field direction. Such behavior is well accounted for by considering the relative direction of the oscillating electric polarizations induced via the ME effect with respect to microwave electric fields. Directional dichroism in a system with an arbitrary form of ME coupling can be also discussed in the same manner.

  2. 78 FR 32165 - Broadband Over Power Lines

    Science.gov (United States)

    2013-05-29

    ... providing for Access BPL technology--which has potential applications for broadband and Smart Grid uses... strike an appropriate balance between the dual objectives of providing for Access BPL technology--which has potential applications for broadband and Smart Grid uses--while protecting incumbent radio...

  3. Broadband Helps Bridge the Achievement Gap

    Science.gov (United States)

    Simmons, Jamal

    2013-01-01

    In education, technology is giving new meaning to the phrase "equal opportunity." Teachers and students in schools across America--urban, rural, wealthy, and impoverished--are gaining access to online learning and all of its benefits through broadband technology. What is broadband? According to the Federal Communications Commission (FCC), it is…

  4. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe{sub 3}O{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dandan, E-mail: mdd4776@126.com; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-08-01

    Highlights: • Flake carbonyl iron/Fe{sub 3}O{sub 4} composites were prepared by surface oxidation technique. • Lower permittivity and modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. • Enhanced absorption efficiency and broader absorption band were obtained. - Abstract: Flake carbonyl iron/Fe{sub 3}O{sub 4} (FCI/Fe{sub 3}O{sub 4}) composites with enhanced microwave absorption properties were prepared by a direct and flexible surface oxidation technique. The phase structures, morphology, magnetic properties, frequency-dependent electromagnetic and microwave absorption properties of the composites were investigated. The measurement results showed that lower permittivity as well as modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. The calculated microwave absorption properties indicated that enhanced absorption efficiency and broader absorption band were obtained by the FCI/Fe{sub 3}O{sub 4} composite comparing with the FCI composite. The absorption frequency range with reflection loss (RL) below −5 dB of FCI/Fe{sub 3}O{sub 4} composites at reaction time of 90 min at thickness of 1.5 mm is 13.3 GHz from 4.7 to 18 GHz, while the bandwidth of the FCI composite is only 5.9 GHz from 2.6 to 8.5 GHz at the same thickness. Thus, such absorbers could act as effective and wide broadband microwave absorbers in the GHz range.

  5. Customer Churn Prediction for Broadband Internet Services

    Science.gov (United States)

    Huang, B. Q.; Kechadi, M.-T.; Buckley, B.

    Although churn prediction has been an area of research in the voice branch of telecommunications services, more focused studies on the huge growth area of Broadband Internet services are limited. Therefore, this paper presents a new set of features for broadband Internet customer churn prediction, based on Henley segments, the broadband usage, dial types, the spend of dial-up, line-information, bill and payment information, account information. Then the four prediction techniques (Logistic Regressions, Decision Trees, Multilayer Perceptron Neural Networks and Support Vector Machines) are applied in customer churn, based on the new features. Finally, the evaluation of new features and a comparative analysis of the predictors are made for broadband customer churn prediction. The experimental results show that the new features with these four modelling techniques are efficient for customer churn prediction in the broadband service field.

  6. Broadening microwave absorption via a multi-domain structure

    Directory of Open Access Journals (Sweden)

    Zhengwang Liu

    2017-04-01

    Full Text Available Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz is a great challenge. Herein, the three-dimensional (3D Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as −55 dB and the bandwidth (<−10 dB spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450–850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  7. Broadening microwave absorption via a multi-domain structure

    Science.gov (United States)

    Liu, Zhengwang; Che, Renchao; Wei, Yong; Liu, Yupu; Elzatahry, Ahmed A.; Dahyan, Daifallah Al.; Zhao, Dongyuan

    2017-04-01

    Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz) is a great challenge. Herein, the three-dimensional (3D) Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as -55 dB and the bandwidth (spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450-850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  8. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  9. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Qu, Shaobo

    2015-06-01

    In this paper, the topology design of a lightweight ultra-broadband polarization-independent frequency selective surface absorber is proposed. The absorption over a wide frequency range of 6.68-26.08 GHz with reflection below -10 dB can be achieved by optimizing the topology and dimensions of the resistive frequency selective surface by virtue of genetic algorithm. This ultra-broadband absorption can be kept when the incident angle is less than 55 degrees and is independent of the incident wave polarization. The experimental results agree well with the numerical simulations. The density of our ultra-broadband absorber is only 0.35 g cm  -  3 and thus may find potential applications in microwave engineering, such as electromagnetic interference and stealth technology.

  10. Computer Aided Design and Analysis of a 2-4 GHz Broadband Balanced Microstrip Amplifier

    Directory of Open Access Journals (Sweden)

    S. H. Ibrahim

    2012-07-01

    Full Text Available In this paper, a computer-aided design and analysis of a 2-4 GHz broadband balanced microstrip amplifier using a full computer simulation program developed by the author and others is presented. A short and efficient CAD procedure for broadband amplifier design is introduced. The first step is to design an initial narrow-band high gain microstrip amplifier at 3-GHz central frequency. The second step is to optimize the initial lengths and widths of the input and output microstrip-matching circuits to get the broadband amplifier over the range 2-4 GHz. The analysis of both narrow and broadband amplifiers is investigated. In addition, with the design and analysis of a low-pass microstrip filter, the paper introduces the design and analysis of a Lange coupler. The final AC schematic diagram of the designed amplifier with the lengths and widths of microstrip lines is presented.Key Words: Computer-Aided Design and Analysis, Microstrip Amplifier, Microwave Amplifier.

  11. Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial

    Science.gov (United States)

    Stephen, Lincy; Yogesh, N.; Subramanian, V.

    2018-01-01

    The giant optical activity of chiral metamaterials (CMMs) holds great potential for tailoring the polarization state of an electromagnetic (EM) wave. In controlling the polarization state, the aspect of asymmetric transmission (AT), where a medium allows the EM radiation to pass through in one direction while restricting it in the opposite direction, adds additional degrees of freedom such as one-way channelling functionality. In this work, a CMM formed by a pair of mutually twisted slanted complementary metal strips is realized for broadband AT accompanied with cross-polarization (CP) conversion for linearly polarized EM waves. Numerically, the proposed ultra-thin (˜λ/42) CMM shows broadband AT from 8.58 GHz to 9.73 GHz (bandwidth of 1.15 GHz) accompanied with CP transmission magnitude greater than 0.9. The transmission and reflection spectra reveal the origin of the asymmetric transmission as the direction sensitive cross polarization conversion and anisotropic electric coupling occurring in the structure which is then elaborated with the surface current analysis and electric field distribution within the structure. An experiment is carried out to verify the broadband AT based CP conversion of the proposed CMM at microwave frequencies, and a reliable agreement between numerical and experimental results is obtained. Being ultra-thin, the reported broadband AT based CP conversion of the proposed CMM is useful for controlling radiation patterns in non-reciprocal EM devices and communication networks.

  12. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  13. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  14. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  15. Water metamaterial for ultra-broadband and wide-angle absorption.

    Science.gov (United States)

    Xie, Jianwen; Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Jin, Ronghong; Premaratne, Malin

    2018-02-19

    A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

  16. Development of Double Layer Microwave Absorber Using Genetic Algorithm

    Science.gov (United States)

    Kumar, Abhishek; Singh, Samarjit; Singh, Dharmendra

    2017-09-01

    In this paper, an efficient two-layer microwave absorber at X-band is designed, optimized and implemented using the available materials with frequency dependent complex permittivity and complex permeability values as material database. The present work is focused on the design of a two-layer microwave absorber with good microwave absorption properties combined with broadband features at X-band. The optimization of various parameters such as materials, their sequence and thickness for obtaining better microwave absorption characteristics at X-band has been realized using Genetic Algorithm (GA). The optimized results were used to design a two-layer microwave absorber and experimentally tested using Attenuation Testing Device (ATD). Further verification of the experimentally obtained absorption results were simulated in High Frequency Structure Simulator (HFSS). The ATD result show that the maximum Reflection Loss (RL) for two-layer microwave absorber was -21.98 dB with 2.77 GHz bandwidth (corresponding to -10 dB) at 11.06 GHz for a total coating thickness of 1.5 mm.

  17. Crustal thickness investigation on three broadband stations in Northern Sumatra

    Science.gov (United States)

    Anggono, T.; Syuhada; Soedjatmiko, B.; Amran, A.

    2017-04-01

    We present a preliminary result of crustal thickness in Northern Sumatra from receiver function analysis and grid search. Total of 111 teleseismic events from three broadband stations (TPTI, KCSI, and BSI) of IA-Network were used to calculate the receiver functions. We identified direct P and S arrival from the receiver function. Converted phases Ps were relatively clear for all three broadband stations. Ps-P time was estimated about 2 - 3 s, 2 s, and 5 - 6 s for station TPTI, KCSI, and BSI, respectively. We applied H-k stacking method to obtain crustal thickness and Vp/Vs ratio beneath the three broadband stations. At station TPTI, we obtained the crustal thickness is about 19.54 ± 3.84 km, Vp/Vs ratio is about 1.73 ± 0.14. At station KCSI, the crustal thickness was estimated to be 37.07 ± 4.47 km, Vp/Vs ratio is about 1.84 ± 0.10. At station BSI, which is located to the north of these two stations, the crustal thickness was estimated to be 40.56 ± 2.26 km, Vp/Vs ratio is about 1.81 ± 0.05. These results show relatively large variation of crustal thickness in the Northern Sumatra.

  18. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  19. Medical applications of microwaves

    Science.gov (United States)

    Vrba, Jan; Lapes, M.

    2004-04-01

    Medical applications of microwaves (i.e. a possibility to use microwave energy and/or microwave technique and technology for therapeutical purposes) are a quite new and a very rapidly developing field. Microwave thermotherapy is being used in medicine for the cancer treatment and treatment of some other diseases since early eighties. In this contribution we would like to offer general overview of present activities in the Czech Republic, i.e. clinical applications and results, technical aspects of thermo therapeutic equipment and last but not least, prospective diagnostics based on microwave principals ant technology and instrumentation.

  20. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    Science.gov (United States)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  1. High brightness microwave lamp

    Science.gov (United States)

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  2. High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits

    Science.gov (United States)

    Romanofsky, Robert R.; Miranda, Felix A.

    1999-01-01

    Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.

  3. Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory

    Science.gov (United States)

    Huang, Xiaojun; He, Xiaoling; Guo, Linyan; Yi, Yuanyuan; Xiao, Boxun; Yang, Helin

    2015-05-01

    The simplified multireflection interference theory is proposed to analyze the physical insight quantitatively of the ultra-broadband metamaterial absorber (MMA) loading lumped resisters in which the resonant layer, including lumped resisters and the substrate, are equivalent to a homogeneous and isotropic effective medium. The simulated full width at half maximum (FWHM) absorption bandwidths is approximately 11.2 GHz with relative FWHM absorption bandwidths of 116.7% for a normal incidence electromagnetic wave. Microwave experiments are performed and measured results are in good agreement with the numerical results. The absorbance of the proposed MMA calculated by the simplified multi-reflection interference theory coincides well with simulated and measured results.

  4. 47 CFR 27.1305 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  5. 47 CFR 90.1405 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  6. Microwave-assisted synthesis of bismuth oxide

    OpenAIRE

    Eva Bartonickova; Jaroslav Cihlar; Klara Castkova

    2007-01-01

    Single phase and ultrafine bismuth oxide was synthesized via microwave-assisted hydrothermal synthesis. The effect of reaction parameters (temperature/pressure and pH) on the product phase composition and morphology was discussed. The transformation of bismuth hydroxide into bismuth oxide was controlled by pH value and it was accelerated by time and temperature. The phase composition of reaction products was strongly dependent on pH value. The amorphous products were obtained at acidic pH con...

  7. Rapid determination of dichlorodiphenyltrichloroethane and its main metabolites in aqueous samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection.

    Science.gov (United States)

    Vinoth Kumar, Ponnusamy; Jen, Jen-Fon

    2011-03-01

    A rapid and sensitive analytical method for the determination of dichlorodiphenyltrichloroethane (DDT) and its main metabolites in environmental aqueous samples has been developed using one-step microwave-assisted headspace controlled-temperature liquid-phase micro-extraction (MA-HS-CT-LPME) technique coupled with gas chromatography-electron-capture detection (GC-ECD). In this study, the one-step extraction of DDT and its main metabolites was achieved by using microwave heating to accelerate the evaporation of analytes into the controlled-temperature headspace to form a cloudy mist vapor zone for LPME sampling. Parameters influencing extraction efficiency were thoroughly optimized, and the best extraction for DDT and its main metabolites from 10-mL aqueous sample at pH 6.0 was achieved by using 1-octanol (4-μL) as the LPME solvent, sampling at 34°C for 6.5 min under 249W of microwave irradiation. Under optimum conditions, excellent linear relationship was obtained in the range of 0.05-1.0 μg/L for 1-dichloro-2,2-bis-(p'-chlorophenyl)ethylene (p,p'-DDE), 0.1-2.0 μg/L for o,p'-DDT, 0.15-3.0 μg/L for 1,1-dichloro-2,2-bis-(p'-chlorophenyl)ethane (p,p'-DDD) and p,p'-DDT, with detection limits of 20 ng/L for p,p'-DDE, and 30 ng/L for o,p'-DDT, p,p'-DDD and p,p'-DDT. Precision was in the range of 3.2-11.3% RSD. The proposed method was validated with environmental water samples. The spiked recovery was between 95.5% and 101.3% for agricultural-field water, between 94% and 99.7% for sea water and between 93.5% and 98% for river water. Thus the established method has been proved to be a simple, rapid, sensitive, inexpensive and eco-friendly procedure for the determination of DDT and its main metabolites in environmental water samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Broadband aberration-free focusing reflector for acoustic waves

    Science.gov (United States)

    Wang, Aixia; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Jiang, Wei; Feng, Mingde

    2017-11-01

    An aberration-free focusing reflector (AFR) for acoustic waves is proposed with the aim to eliminate spherical aberration and coma simultaneously. Meanwhile, the AFR can focus acoustic waves with low dispersion in a wide frequency range of 14-50 kHz. The broadband aberration-free focusing effect is originated from an elliptical reflection phase gradient profile, which is achieved by milling different depths of axisymmetric grooves on a planoconcave-like brass plate using the ray theory. Theoretical and numerical results are in good agreement. The designed AFR can find broad engineering, industrial and medical applications.

  9. Design of a Broadband Inverted Conical Quadrifilar Helix Antenna

    Directory of Open Access Journals (Sweden)

    Jingyan Mo

    2016-01-01

    Full Text Available This paper introduces the design of a broadband inverted conical circularly polarized quadrifilar helix antenna (QHA. The antenna has many good characteristics, including wide beam and broad bandwidth, which are achieved by utilizing inverted conical geometry and adjusting the dimensions of the inverted conical support. The antenna is fed by a wideband network to provide 90° phase difference between the four arms with constant amplitude. The antenna impedance and axial ratio bandwidth values are more than 39% and 31.5%, respectively. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.

  10. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Wei, Qi, E-mail: weiqi@nju.edu.cn; Cheng, Ying [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Xu, Zheng [School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Liu, Xiaojun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  11. Analyzing Broadband Divide in the Farming Sector

    DEFF Research Database (Denmark)

    Jensen, Michael; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

    2013-01-01

    , upstream and downstream connection. The main constraint is that farms are naturally located in rural areas where the required access broadband data rates are not available. This paper studies the broadband divide in relation to the Danish agricultural sector. Results show how there is an important......Agriculture industry has been evolving for centuries. Currently, the technological development of Internet oriented farming tools allows to increase the productivity and efficiency of this sector. Many of the already available tools and applications require high bandwidth in both directions...... difference between the broadband availability for farms and the rest of the households/buildings the country. This divide may be slowing down the potential technological development of the farming industry, in order to keep their competitiveness in the market. Therefore, broadband development in rural areas...

  12. 75 FR 3820 - Broadband Initiatives Program

    Science.gov (United States)

    2010-01-22

    ... the RUS, under the Recovery Act. Broadband means providing two-way data transmission with advertised... no cost (including no costs for installation, activation, or other hidden fees) and to providing to...

  13. 75 FR 14131 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-03-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Program AGENCY: National Telecommunications and Information Administration, U.S. Department of Commerce... for the electronic submission of CCI projects under the Broadband Technology Opportunities Program...

  14. Nanophotonic Design for Broadband Light Management

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Emily; Callahan, Dennis; Horowitz, Kelsey; Pala, Ragip; Atwater, Harry

    2014-10-13

    We describe nanophotonic design approaches for broadband light management including i) crossed-trapezoidal Si structures ii) Si photonic crystal superlattices, and iii) tapered and inhomogeneous diameter III-V/Si nanowire arrays.

  15. Broadband networks, smart grids and climate change

    CERN Document Server

    Noam, Eli M; Kranz, Johann J

    2015-01-01

    Noted scholars and professionals from the energy and telecommunications businesses explain in this volume how the convergence of broadband services and responsive 'smart' energy grids could help to mitigate climate change and boost corporation profits.

  16. Three-dimensional broadband ground-plane cloak made of metamaterials

    Science.gov (United States)

    Ma, Hui Feng; Cui, Tie Jun

    2010-01-01

    Since invisibility cloaks were first suggested by transformation optics theory, there has been much work on the theoretical analysis and design of various types and a few experimental verifications at microwave and optical frequencies within two-dimensional limits. Here, we realize the first practical implementation of a fully 3D broadband and low-loss ground-plane cloak at microwave frequencies. The cloak, realized by drilling inhomogeneous holes in multi-layered dielectric plates, can conceal a 3D object located under a curved conducting plane from all viewing angles by imitating the reflection of a flat conducting plane. We also designed and realized, using non-resonant metamaterials, a high-gain lens antenna that can produce narrow-beam plane waves in the near-field region in a broad frequency band. The antenna constitutes the transmitter of the measurement system and is essential for the measurement of cloaking behaviour. PMID:20975696

  17. Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial

    Science.gov (United States)

    Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han

    2016-12-01

    In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.

  18. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  19. Ultra-broadband photonic internet

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  20. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  1. Adaptive multichannel control of time-varying broadband noise and vibrations

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    This paper presents results obtained from a number of applications in which a recent adaptive algorithm for broadband multichannel active noise control is used. The core of the algorithm uses the inverse of the minimum-phase part of the secondary path for improvement of the speed of convergence. A

  2. Microwave calorimetry using X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nicula, R., E-mail: radu.nicula@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Stir, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Wurm, A. [University of Rostock, Institute of Physics, Wismarsche Str. 43-45, 18051 Rostock (Germany); Catala-Civera, J.M. [Universidad Politecnica de Valencia, Camino Vera s/n, E-46022 Valencia (Spain); Ishizaki, K.; Vaucher, S. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Zhuravlev, E.; Schick, C. [University of Rostock, Institute of Physics, Wismarsche Str. 43-45, 18051 Rostock (Germany)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer New approach for microwave calorimetry using synchrotron radiation powder diffraction. Black-Right-Pointing-Pointer In situ monitoring of the magnetostructural transformation of Co under magnetic microwave heating at 2.45 GHz. Black-Right-Pointing-Pointer Magnetic heat capacity of Co due to the spin-reorientation transition at microwave frequencies. - Abstract: An alternative approach for microwave calorimetry is proposed which relies on the synchrotron radiation powder diffraction technique as well as on the Grueneisen formalism for the analysis of thermal expansion. Cobalt was selected as suitable magnetic material for the present evaluation of the method. First results are reported concerning the calorimetric assessment of the HCP (hexagonal close-packed) to FCC (face centered cubic) transition of cobalt from in situ time-resolved X-ray diffraction experiments performed during magnetic (H-field) microwave heating. The X-ray calorimetry method yields specific heat capacity estimations that compare well with results from conventional differential scanning calorimetry measurements. In the presence of the 2.45 GHz microwave H-field, an 'anomalous' behaviour of the heat capacity across the structural phase transition is detected, which can be correlated with the magnetic spin reorientation transition of cobalt in the same temperature range.

  3. Combination microwave ovens: an innovative design strategy.

    Science.gov (United States)

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  4. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  5. Group III-Nitride LNAs for Microwave Radiometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This phase I proposal addresses the need for microwave and millimeter wave Low Noise Amplifiers (LNAs) for remote sensing applications of the earth's atmosphere. In...

  6. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    Science.gov (United States)

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  7. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  8. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  9. Broadband in schools: towards a definition and model of broadband for South African schools

    CSIR Research Space (South Africa)

    Ford, Merryl

    2017-05-01

    Full Text Available South Africa is about to provide broadband internet connectivity to all schools in the country via the implementation of the national broadband policy. The challenge is to ensure a balance between the schools’ demand-side usage and supply...

  10. A Broadband and High Gain Tapered Slot Antenna for W-Band Imaging Array Applications

    Directory of Open Access Journals (Sweden)

    Dong Sik Woo

    2014-01-01

    Full Text Available A broadband and high gain tapered slot antenna (TSA by utilizing a broadband microstrip- (MS- to-coplanar stripline (CPS balun has been developed for millimeter-wave imaging systems and sensors. This antenna exhibits ultrawideband performance for frequency ranges from 70 to over 110 GHz with the high antenna gain, low sidelobe levels, and narrow beamwidth. The validity of this antenna as imaging arrays is also demonstrated by analyzing mutual couplings and 4-element linear array. This antenna can be applied to mm-wave phased array, imaging array for plasma diagnostics applications.

  11. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies

    Science.gov (United States)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.

    2011-06-01

    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  12. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    Science.gov (United States)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  13. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    Science.gov (United States)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-19

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  14. Ultrathin microwave metamaterial absorber utilizing embedded resistors

    Science.gov (United States)

    Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak

    2017-10-01

    We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.

  15. Microwave instability in electron storage rings

    CERN Document Server

    Mosnier, A

    1999-01-01

    Tracking simulations, with the aim of studying the microwave regime with short and intense bunches, suggest different instability mechanisms, according to the impedance model. In order to get a better insight of the source of the instability, i.e. azimuthal or radial mode coupling, we choose to follow the Sacherer (IEEE Trans. Nucl. Sci. NS-24, 1977 1393) approach to investigate the stability of the stationary solution. The generalized Sacherer's integral, including mode coupling and potential well distortion, is then solved by using the 'step function technique' for the expansion of the radial function, as proposed by Oide and Yokoya (KEK Preprint-90-10, April, 1990). For illustration, the effect of the resonant frequency of a broadband resonator in the SOLEIL storage ring is studied. When the resonator frequency is much higher than the bunch spectrum width, azimuthal mode coupling can occur before radial mode coupling. When the resonator frequency is lower, radial mode coupling comes usually first, but two ...

  16. Microwave noise modeling of FinFETs

    Science.gov (United States)

    Crupi, Giovanni; Caddemi, Alina; Schreurs, Dominique M. M.-P.; Wiatr, Wojciech; Mercha, Abdelkarim

    2011-02-01

    The noise characteristics of advanced silicon semiconductor devices fabricated with FinFET technology are investigated and modeled at the probe tip reference planes in the microwave frequency range. The transistor noise model is obtained by assigning an equivalent temperature to each resistor of the small signal equivalent circuit. These temperatures are selected to be equal to the room temperature with the exception of the temperature values of the intrinsic output, feedback, and substrate resistances, which are selected in order to reproduce accurately the 50 Ω noise factor measurements over a broadband frequency range going from 0.5 GHz up to 26.5 GHz. Accurate model simulations are obtained at such high frequencies, thanks to the inclusion of the noise temperature associated to the feedback and substrate resistances representing non-quasi-static effects which cannot be neglected in the investigated frequency range.

  17. Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment

    Science.gov (United States)

    Yuan, Wenshan; Cheng, Yongzhi

    2014-12-01

    In this paper, we propose and experimentally validate a low-frequency metamaterial absorber (MMA) based on lumped elements with broadband stronger absorptivity in the microwave regime. Compared with the electric resonator structure MMA, the composite MMA (CMMA) loaded with lumped elements has stronger absorptivity and nearly impedance-matched to the free space in a broadband frequency range. The simulated voltage in lumped elements and the absorbance under different substrate loss conditions indicate that incident electromagnetic wave energy is mainly transformed to electric energy in the absorption band with high efficiency and subsequently consumed by lumped resistors. Simulated surface current and power loss density distributions further clarify the mechanism underlying observed absorption. The CMMA also shows a polarization-insensitive and wide-angle strong absorption. Finally, we fabricate and measure the MMA and CMMA samples. The CMMA yields below -10 dB reflectance from 2.85 to 5.31 GHz in the experiment, and the relative bandwidth is about 60.3 %. This low-frequency microwave absorber has potential applications in many martial fields.

  18. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, A., E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Motoi, K.; Miyajima, H. [Department of Physics, Keio University, Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan); Utsumi, Y. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2014-09-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices. - Highlights: • We describe an experimental investigation of the magnetic response of a single layered ferromagnetic nano-scale wire. • We present the conventional broadband microwave spectroscopy with a vector network analyzer and rectifying spectroscopy obtained with a Wheatstone bridge technique. • The investigation enables us to characterize the size effect on the ferromagnetic response and also to detect the magnetization precession induced by the thermal fluctuations.

  19. Microwave Soil Moisture Retrieval Under Trees

    Science.gov (United States)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.

    2008-01-01

    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave

  20. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  1. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  2. 77 FR 31520 - Connect America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable...

    Science.gov (United States)

    2012-05-29

    ... Docket Nos. 01-92, 96-45; WT Docket No. 10-208; FCC 12-47] Connect America Fund; A National Broadband... request to permit carriers accepting incremental support in Phase I of the Connect America Fund (CAF) to... Transformation Order. II. Connect America Fund Phase I Incremental Support 3. In the USF/ICC Transformation Order...

  3. Broadband Mm-Wave OFDM Communications in Doubly Selective Channel: Performance Evaluation Using Measured Mm-Wave Channel

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Fan, Wei; Pedersen, Gert F.

    2018-01-01

    In this work, we evaluate the performance of the broadband millimeter-wave (mm-wave) OFDM system in the presence of phase noise (PN) of phase-locked loop based oscillator and delay spread of measured mm-wave channel. It is shown, using Akaike's information criterion, that the channel tap coeffici...

  4. Microwave hydrology: A trilogy

    Science.gov (United States)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  5. Policy factors affecting broadband development in Poland

    DEFF Research Database (Denmark)

    Henten, Anders; Windekilde, Iwona Maria

    2014-01-01

    Poland joined the EU in 2004 and still has one of the Europe’s least developed information societies. Broadband penetration in Poland is still amongst the lowest in the EU and significantly below the EU average. Considering the present state of information technology, the key challenge for Poland...... will gradually change the previous balance of power. The specific problem of the Polish market is its very poor infrastructure development and the lack of competitors on the fixed market. This translates into limited access to services for end users particularly in the rural areas. A much lower level...... and discuss broadband access development in Poland and the policy factors influencing this development as well as to examine national strategies used to stimulate service and infrastructure competition in Poland. There are, indeed, many other factors affecting broadband development such as the income level...

  6. Service Differentiation in Residential Broadband Networks

    DEFF Research Database (Denmark)

    Sigurdsson, Halldór Matthias

    2004-01-01

    As broadband gains widespread adoption with residential users, revenue generating voice- and video-services have not yet taken off. This slow uptake is often attributed to lack of Quality of Service management in residential broadband networks. To resolve this and induce service variety, network...... access providers are implementing service differentiation in their networks where voice and video gets prioritised before data. This paper discusses the role of network access providers in multipurpose packet based networks and the available migration strategies for supporting multimedia services...... in digital subscriber line (DSL) based residential broadband networks. Four possible implementation scenarios and their technical characteristics and effects are described. To conclude, the paper discusses how network access providers can be induced to open their networks for third party service providers....

  7. Is European Broadband Ready for Smart Grid?

    DEFF Research Database (Denmark)

    Balachandran, Kartheepan; Pedersen, Jens Myrup

    2014-01-01

    In this short paper we compare the communication requirements for three Smart Grid scenarios with the availability of broadband and mobile communication networks in Europe. We show that only in the most demanding case - where data is collected and transmitted every second - a standard GSM/GPRS co....../GPRS connection is not enough. Whereas in the less demanding scenarios it is almost all of the European households that can be covered by a standard broadband technology for use with Smart Grid.......In this short paper we compare the communication requirements for three Smart Grid scenarios with the availability of broadband and mobile communication networks in Europe. We show that only in the most demanding case - where data is collected and transmitted every second - a standard GSM...

  8. Topology optimization of microwave waveguide filters

    DEFF Research Database (Denmark)

    Aage, Niels; Johansen, Villads Egede

    2017-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap...... little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering....... optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share...

  9. Topology optimization of microwave waveguide filters

    Science.gov (United States)

    Aage, N.; Egede Johansen, V.

    2017-10-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering.

  10. Design of metamaterial surfaces with broadband absorbance.

    Science.gov (United States)

    Wu, Chihhui; Shvets, Gennady

    2012-02-01

    A simple design paradigm for making broadband ultrathin plasmonic absorbers is introduced. The absorber's unit cell is composed of subunits of various sizes, resulting in nearly 100% absorbance at multiple adjacent frequencies and high absorbance over a broad frequency range. A simple theoretical model for designing broadband absorbers is presented. It uses a single-resonance model to describe the optical response of each subunit and employs the series circuit model to predict the overall response. Validity of the circuit model relies on short propagation lengths of the surface plasmons.

  11. Broadband Polarizers Based on Graphene Metasurfaces

    CERN Document Server

    Guo, Tianjing

    2016-01-01

    We present terahertz (THz) metasurfaces based on aligned rectangular graphene patches placed on top of a dielectric layer to convert the transmitted linearly polarized waves to circular or elliptical polarized radiation. Our results lead to the design of an ultrathin broadband THz quarter-wave plate. In addition, ultrathin metasurfaces based on arrays of L-shaped graphene periodic patches are demonstrated to achieve broadband cross-polarization transformation in reflection and transmission. The proposed metasurface designs have tunable responses and are envisioned to become the building blocks of several integrated THz systems.

  12. Temperature-independent broadband silicon modulator

    Science.gov (United States)

    Yi, H. X.; Li, T. T.; Zhang, J. L.; Wang, X. J.; Zhou, Z.

    2015-04-01

    We demonstrate a 20 Gb/s temperature-independent silicon modulator based on symmetrical Mach-Zehnder Interferometer. The MMI coupler was used as splitter/combiner in symmetrical MZI for balanced propagation. The ±15 °C temperature-independent eye diagrams were measured at 10 Gb/s with over 15 dB extinction ratio. Based on over 30 nm flat optical bandwidth, the broadband modulation was demonstrated from 1530 nm to 1560 nm. The temperature-independent broadband silicon modulator is adaptable to interconnection and communication systems in practice.

  13. Graphical programming for broadband pulse NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.B. [Universidade do Estado (UERJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Eletronica; Oliveira, I.S.; Guimaraes, A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1997-12-31

    In a broadband pulsed nuclear magnetic resonance (NMR) spectrometer we often need to sweep the excitation frequency over a wide range, and acquire the spin echo components in quadrature for further spectral analysis. Computer languages such as C or Pascal have been traditionally applied to the development of software control of laboratory equipment, and consequently, the automatization of NMR experiments. However, the use of graphical languages have proved to be a flexible and convenient way for experiment and data acquisition control. In our application we use the graphical language Labview for the automatic control of a broadband pulse NMR spectrometer, dedicated to the study of magnetic metal systems. (author) 2 refs., 2 figs.

  14. Participation in the broadband society in Denmark

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders; Skouby, Knud Erik

    2009-01-01

    The purpose of the paper is to provide an empirical overview of broadband developments in Denmark. The overview includes sections on coverage and penetration, connection speeds, retail prices, competition, interconnection prices, and residential access to Internet. The documentation shows...... that Denmark is doing well in most international comparisons, but retail prices are still relatively high and connection speeds are lower than the best performing countries. In terms of households, approximately three quarters have broadband access. Denmark - and a number of other countries as well - has thus...

  15. Polarization insensitive, broadband terahertz metamaterial absorber.

    Science.gov (United States)

    Grant, James; Ma, Yong; Saha, Shimul; Khalid, Ata; Cumming, David R S

    2011-09-01

    We present the simulation, implementation, and measurement of a polarization insensitive broadband resonant terahertz metamaterial absorber. By stacking metal-insulator layers with differing structural dimensions, three closely positioned resonant peaks are merged into one broadband absorption spectrum. Greater than 60% absorption is obtained across a frequency range of 1.86 THz where the central resonance frequency is 5 THz. The FWHM of the device is 48%, which is two and half times greater than the FWHM of a single layer structure. Such metamaterials are promising candidates as absorbing elements for bolometric terahertz imaging.

  16. Techno-Economics of Residential Broadband Deployment

    DEFF Research Database (Denmark)

    Sigurdsson, Halldor Matthias

    2007-01-01

    og kombinerer en solid teknisk viden om telenet og tjenester med økonomisk teori og teori for regulering af telekommunikation. På grundlag heraf opstilles en tekno-økonomisk omkostningsmodel, der simulerer kapitaludgifter og ydelser. Som et særligt element i modellen benyttes spilteori til......-Economics of Residential Broadband Deployment. It investigates the current market situation of broadband services, where the electricity companies challenge the incumbent telecom operators by extensive deployment of optical fibres to the end users. Very often the old telecom operators have a well-developed infrastructure...

  17. VT Wireless Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  18. VT Detailed Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  19. VT Total Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  20. VT Cable Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  1. VT Detailed Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  2. VT Wireline Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  3. VT Detailed Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  4. VT DSL Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  5. VT Wireline Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  6. VT Cable Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  7. VT DSL Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  8. VT Total Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  9. VT Wireline Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  10. VT Public Locations of Broadband Data - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  11. VT DSL Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  12. VT Cable Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  13. VT Detailed Broadband Availability by Census Block -12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  14. VT DSL Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  15. VT Public Locations of Broadband Data - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  16. VT Public Locations of Broadband Data - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  17. VT Wireless Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  18. VT Wireline Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  19. VT Wireline Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  20. VT Total Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  1. VT Detailed Broadband Availability by Census Block -12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  2. VT Total Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  3. VT Wireline Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  4. VT Wireless Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  5. VT Total Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  6. VT Total Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  7. VT Wireless Broadband Availability by Census Block - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  8. VT Detailed Broadband Availability by Census Block - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  9. VT Public Locations of Broadband Data - 06-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201106 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2011. This...

  10. VT Public Locations of Broadband Data - 06-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201006 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2010. This...

  11. VT Cable Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  12. VT DSL Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  13. VT Cable Broadband Availability by Census Block - 12-2011

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201112 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2011. This...

  14. VT Wireless Broadband Availability by Census Block - 12-2012

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201212 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2012. This...

  15. VT Wireless Broadband Availability by Census Block - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  16. VT DSL Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  17. VT Cable Broadband Availability by Census Block - 06-2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201306 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 6/30/2013. This...

  18. VT Public Locations of Broadband Data - 12-2010

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VTBB201012 VT Broadband Availability Dataset represents wireline and wireless 'broadband service' availability in VT as of 12/31/2010. This...

  19. Migration factors among broadband services: Panel data analysis

    OpenAIRE

    Shinohar, Sobee; Akematsu, Yuji; Tsuji, Masatsugu

    2012-01-01

    Providing nationwide deployment of broadband services has become an important national agenda. The U.S. announced a National Broadband Plan and EU a Digital Agenda for Europe, both of which aim at providing access to 100 Mbps broadband services by 2020 to substantial numbers of households. The purpose of this paper is to analyze the migration factors among broadband services, namely CATV (BB), DSL and FTTx, in OECD 30 countries. In so doing, we focus especially on migration from CATV (BB) and...

  20. Broadband Grounded Vertical Antennas for 30-180 MHZ (VHF)

    Science.gov (United States)

    2013-10-18

    antennas are well known for their broadband gain (monocone, bicone ) but are never combined with a monopole. An eccentric combination of broadband...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Broadband Grounded Vertical Antennas For 30-180 MZH (VHF) 5a. CONTRACT NUMBER 5b...18 Attorney Docket No. 102536 1 of 17 BROADBAND GROUNDED VERTICAL ANTENNAS FOR 30-180 MHZ (VHF) STATEMENT OF GOVERNMENT INTEREST

  1. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  2. Microwave enhanced stabilization of heavy metal sludge.

    Science.gov (United States)

    Hsieh, Ching-Hong; Lo, Shang-Lien; Chiueh, Pei-Te; Kuan, Wen-Hui; Chen, Ching-Lung

    2007-01-02

    A microwave process can be utilized to stabilize the copper ions in heavy metal sludge. The effects of microwave processing on stabilization of heavy metal sludge were studied as a function of additive, power, process time, reaction atmosphere, cooling gas, organic substance, and temperature. Copper leach resistance increased with addition of aluminum metal powder, with increased microwave power, increased processing time, and using a gaseous environment of nitrogen for processing and air for cooling [N2/air]. The organic in the sludge affected stabilization, whether or not the organic smoldered. During heating in conventional ovens, exothermic oxidation of the organic resulted in sludge temperatures of about 500 degrees C for oven control temperatures of 200-500 degrees C. After microwave heating dried the sludge, the sludge temperature rose to 500 degrees C. The reaction between copper ions and metal aluminum in the dried sludge should be regarded as a solid phase reaction. Adding aluminum metal powder and reaction temperature were the key parameters in stabilizing copper in the heavy metal sludge, whether heated by microwave radiation or conventional oven. The mass balance indicates insignificant volatization of the copper during heating.

  3. Broadband non-unity magnetic permeability in planar hyperbolic metamaterials

    Science.gov (United States)

    Papadakis, Georgia Theano; Fleischman, Dagny; Davoyan, Artur R.; Thyagarajan, Krishnan; Atwater, Harry A.

    Metal/dielectric heterostructures with extreme anisotropy and topologically nontrivial dispersion are of fundamental and applied interest due to unique optical and opto-electronic properties. Here we demonstrate that, surprisingly, such systems exhibit a broadband non-unity magnetic response. Typically the electromagnetic properties of such metal-dielectric stacks are deduced from effective medium theories for unbounded, i.e., infinite in size periodic arrangements (c.f., Maxwell-Garnett approximation). In this talk, we show that this description is incomplete for metamaterials with finite number of layers. We demonstrate that a few-layer metal-dielectric metamaterial exhibits a non-unity magnetic permeability across the whole visible spectrum. The response can be diamagnetic or paramagnetic depending on the type of the terminating layers: metallic or dielectric, with non-resonant magnetic permeability that can be engineered to attain values as low as -2 or as high as 2. We have developed a theoretical model that explains the underlying mechanism. We further experimentally validate non-unity effective permeability in the optical range of frequencies. Ag/SiO2 and Ge-based metamaterials fabricated with electron beam evaporation are characterized by ellipsometric measurements and also phase and amplitude of transmittance/reflectance. These results open pathways for creating broadband subwavelength magnetic structures in the visible regime.

  4. Broadband: An Insight and Its Benefits | Devardhi | Science ...

    African Journals Online (AJOL)

    It is viewed by some as a double-edged sword: networking could promote economic development, yet electronic commerce also has the potential to displace local businesses. The paper focuses on defining broadband, identifying and assessing the benefits of broadband technologies. Although broadband technologies are ...

  5. 75 FR 36071 - Framework for Broadband Internet Service

    Science.gov (United States)

    2010-06-24

    ... COMMISSION Framework for Broadband Internet Service AGENCY: Federal Communications Commission. ACTION: Notice..., broadband Internet service. Recent developments--including a decision of the United States Court of Appeals... broadband Internet service. DATES: Comments must be submitted by July 15, 2010, and reply comments must be...

  6. Modelling and control of broadband traffic using multiplicative ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Modelling of broadband network traffic has emerged as an active area in the last decade. This has been primarily ... that broadband network traffic exhibits statistical self-similarity triggered off an immense volume of ...... with CAC control techniques and adaptive prediction of delay for bandwidth management in broadband ...

  7. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  8. Microwave coupler and method

    Science.gov (United States)

    Holcombe, C. E.

    1984-11-01

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  9. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  10. 77 FR 36903 - Accelerating Broadband Infrastructure Deployment

    Science.gov (United States)

    2012-06-20

    ... and wireless broadband infrastructure. The Federal Government controls nearly 30 percent of all land... their respective agencies, in consultation with the Director of the Office of Science and Technology... of all application and other requirements; ensuring consistent interpretation and application of all...

  11. Catalyzing Broadband Internet in Africa | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to inform policies that help marginalized groups in Africa, such as women and the poor, to take advantage of the social and economic opportunities of broadband Internet. Internet access is critical for social and economic development in developing countries. According to a 2009 World Bank study, a 10% ...

  12. Broadband Minimum Variance Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2009-01-01

    A minimum variance (MV) approach for near-field beamforming of broadband data is proposed. The approach is implemented in the frequency domain, and it provides a set of adapted, complex apodization weights for each frequency subband. The performance of the proposed MV beamformer is tested on simu...

  13. Broadband Satellite Technologies and Markets Assessed

    Science.gov (United States)

    Wallett, Thomas M.

    1999-01-01

    The current usage of broadband (data rate greater than 64 kilobits per second (kbs)) for multimedia network computer applications is increasing, and the need for network communications technologies and systems to support this use is also growing. Satellite technology will likely be an important part of the National Information Infrastructure (NII) and the Global Information Infrastructure (GII) in the next decade. Several candidate communications technologies that may be used to carry a portion of the increased data traffic have been reviewed, and estimates of the future demand for satellite capacity have been made. A study was conducted by the NASA Lewis Research Center to assess the satellite addressable markets for broadband applications. This study effort included four specific milestones: (1) assess the changing nature of broadband applications and their usage, (2) assess broadband satellite and terrestrial technologies, (3) estimate the size of the global satellite addressable market from 2000 to 2010, and (4) identify how the impact of future technology developments could increase the utility of satellite-based transport to serve this market.

  14. 75 FR 10455 - Broadband Initiatives Program

    Science.gov (United States)

    2010-03-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Rural Utilities Service RIN 0572-ZA01 Broadband Initiatives Program AGENCY: Rural Utilities Service... fraud, waste and abuse, contact [email protected] for BIP. You may obtain additional...

  15. The broadband debate: A documentary research on the broadband policy in Australia

    OpenAIRE

    Li, Grace

    2011-01-01

    Against a current trend of investing in the next generation networks (NGNs) by using public funds, the Australian government has recently initiated a so-called National Broadband Networks (NBN) project to invest up to AUD$36 billion tax payer's money on building a national wide fibre broadband network aiming to cover 93 per cent Australian by 2020. As being the most costly infrastructure-building project in Australian history, the NBN project will use a public-private-partnership as the instr...

  16. Identifying and separating magnetic and electric microwave responses of chiral elements

    Science.gov (United States)

    Kazantsev, Yu. N.; Kraftmakher, G. A.; Mal'tsev, V. P.

    2016-03-01

    We propose a technique for identifying the type of resonance excitation by ac magnetic or electric fields in conducting chiral elements by reflection of electromagnetic waves in the standing- and travelingwave modes. The technique was tested experimentally in the microwave range and confirmed numerically. We demonstrate the possibility of broadband matching of composite radar absorbing materials with the use of a lattice of resonance elements excited by magnetic field of the wave rather instead of the traditional quarter- wavelength effects.

  17. Analisis Efektivitas Perangkat pada Program Desa Broadband Terpadu [Analysis of Device Effectiveness in Integrated Broadband Village Program

    Directory of Open Access Journals (Sweden)

    Hilarion Hamjen

    2016-12-01

    Full Text Available Pemerintah berkomitmen mendukung pertumbuhan e-commerce dan ekonomi digital di Indonesia untuk mencapai visi Indonesia 2020 sebagai negara ekonomi digital terbesar di Asia Tenggara. Secara fundamental diperlukan dukungan konektivitas nasional dari tingkat pusat sampai ke tingkat lokal, salah satunya melalui program KPU/USO yaitu program DBT (Desa Broadband Terpadu. Penelitian ini bertujuan untuk mengetahui efektivitas perangkat pada program DBT phase 1 dan keterkaitannya dengan konektivitas, dengan menggunakan metode analisis kepentingan kinerja dan uji statistik Chi square. Berdasarkan hasil penelitian diketahui bahwa efektivitas perangkat meliputi variabel kondisi, fungsi, pemeliharaan dan pemanfaatan rata-rata adalah 84,5 persen. Dengan nilai efektivitas tersebut diketahui bahwa keseluruhan variabel kondisi perangkat, fungsi dan pemanfaatannya tidak mempengaruhi konektivitas.  *****The Indonesian government has a strong commitment in supporting the growth of e-commerce and Digital Economy in Indonesia to attain Indonesia’s vision by 2020 as the largest digital economy nation in Southeast Asia. Fundamentally, the national connectivity supports from central level to local level are needed, where one of them comes from Integrated Broadband Village program. This research determines the effectiveness of devices in the DBT program and its correlation to the connectivity, by using importance-performance analysis method and Chi-square statistical test. It is known from the result that the effectiveness of devices, including condition, function, maintenance, and utilization variables, achieves 84.5 percent on average. The value shows that all mentioned variables have insignificant correlations to the connectivity.

  18. Magnetic microwave heating of magnetite-carbon black mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, K., E-mail: kotaro.ishizaki@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Stir, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Gozzo, F. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Catala-Civera, J.M. [Universidad Politecnica de Valencia, Camino Vera s/n E-46022 Valencia (Spain); Vaucher, S.; Nicula, R. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland)

    2012-06-15

    The kinetics of the carbothermal reduction of magnetite to iron using carbon black was investigated in situ using the time-resolved X-ray powder diffraction synchrotron radiation technique for the case of magnetic microwave heating in an H-field maximum and conventional heating, respectively. The phase transformation sequence and the reaction kinetics were studied with respect to the case of heating in a microwave E-field maximum investigated earlier. The reduction to iron proceeds an order of magnitude faster when using microwaves. It proceeds at comparable rates in the E- and the H-field microwave heating, yet the reaction temperature is lowered to 770 Degree-Sign C in magnetic H-field microwave heating, compared to nearly 1200 Degree-Sign C for the E-field case. - Highlights: Black-Right-Pointing-Pointer First in situ synchrotron study of reduction of Fe{sub 3}O{sub 4} to Fe during H-field microwave heating. Black-Right-Pointing-Pointer Faster kinetics of the carbothermal reaction when microwaves are used. Black-Right-Pointing-Pointer The carbothermal reaction occurs at much lower temperature in microwave H-field than in E-field.

  19. Heating behavior and crystal growth mechanism in microwave field.

    Science.gov (United States)

    Yang, Gang; Kong, Yan; Hou, Wenhua; Yan, Qijie

    2005-02-03

    A simple microwave solid-state reactor was designed on the basis of a domestic microwave oven by using graphite powder as heating medium. The heating behavior of the reactor was studied by using an on-line computer to monitor the real-time temperature during irradiation. It was found that the temperature (T) was related to the time (t) and that microwave power depended on the duty cycle (x) of microwave irradiation. Two empirical equations were proposed and could be applied to the similar microwave solid-state reactors. Four inorganic layered materials, LiV(3)O(8), KNb(3)O(8), KTiNbO(5), and KSr(2)Nb(3)O(10), were successfully synthesized in the designed reactor at a suitable heating rate and temperature that were fully controlled by the empirical equations. Characterization results of X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, and scanning (SEM) and transmission (TEM) electron microscopy indicated that the phases of samples prepared by traditional and microwave methods were in good agreement; nevertheless, the heating nature and the morphologies of products were quite different. The samples synthesized in the microwave field had crystallographic defects and showed an incompactly stacking structure of nanosheets. Due to the rapid formation of crystallites and different extended growth rate along the crystal axis of the products in microwave field, the crystal growth mechanism of layered metal oxides was not according to that of the traditional method and is briefly discussed.

  20. Emitron: microwave diode

    Science.gov (United States)

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  1. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  2. Microwave Service Towers

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Universal Licensing System (ULS) licensed by the Wireless Telecommunications Bureau (WTB). It consists of Microwave Transmitters (see...

  3. The Cosmic Microwave Background

    Science.gov (United States)

    Pierpaoli, E.

    2011-03-01

    In these lectures I present the physical aspects of the Cosmic Microwave Background primary and secondary anisotropies; the characteristics of the CMB power spectra and their dependence on cosmological parameters. I also discuss the observational status and future perspectives.

  4. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haixiang [College of Science, China Agricultural University, Beijing 100094 (China); Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Department of Basic Agricultural Science, Hebei North College, Zhangjiakou Hebei 075131 (China); Wang Liping [College of Science, China Agricultural University, Beijing 100094 (China); Qiu Yueming [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Zhou Zhiqiang [College of Science, China Agricultural University, Beijing 100094 (China)]. E-mail: zqzhou@cau.edu.cn; Zhong Weike [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Li Xiang [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China)

    2007-03-14

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH{sub 3}I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 {mu}g kg{sup -1}. Limit of detection (LOD) of barbital was 0.2 {mu}g kg{sup -1} and that of amobarbital and phenobarbital were both 0.1 {mu}g kg{sup -1} (S/N {>=} 3). Limit of quatification (LOQ) was 0.5 {mu}g kg{sup -1} for three barbiturates (S/N {>=} 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%.

  5. Management of broadband technology and innovation policy, deployment, and use

    CERN Document Server

    Choudrie, Jyoti

    2013-01-01

    When one considers broadband, the Internet immediately springs to mind. However, broadband is impacting society in many ways. For instance, broadband networks can be used to deliver healthcare or community related services to individuals who don't have computers, have distance as an issue to contend with, or don't use the internet. Broadband can support better management of scarce energy resources with the advent of smart grids, enables improved teleworking capacity and opens up a world of new entertainment possibilities. Yet scholarly examinations of broadband technology have so far examin

  6. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  7. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jilek, Brook Anton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of the MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.

  8. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... in a microwave oven chamber....... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...

  9. Microwave-assisted hydrothermal synthesis of lead zirconate fine powders

    Directory of Open Access Journals (Sweden)

    Apinpus Rujiwatra

    2011-01-01

    Full Text Available A rapid synthesis of lead zirconate fine powders by microwave-assisted hydrothermal technique is reported. The influences of type of lead precursor, concentration of potassium hydroxide mineraliser, applied microwave power and irradiation time are described. The synthesised powders were characterised by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopic microanalysis and light scattering technique. The merits of the microwave application in reducing reaction time and improving particle mono-dispersion and size uniformity as well as the drawbacks, viz. low purity of the desired phase and increasing demand of mineraliser, are discussed in relation to conventional heating method.

  10. Microwave-enhanced folding and denaturation of globular proteins

    DEFF Research Database (Denmark)

    Bohr, Henrik; Bohr, Jakob

    2000-01-01

    It is shown that microwave irradiation can affect the kinetics of the folding process of some globular proteins, especially beta-lactoglobulin. At low temperature the folding from the cold denatured phase of the protein is enhanced, while at a higher temperature the denaturation of the protein from...... its folded state is enhanced. In the latter case, a negative temperature gradient is needed for the denaturation process, suggesting that the effects of the microwaves are nonthermal. This supports the notion that coherent topological excitations can exist in proteins. The application of microwaves...

  11. Generation of octupled microwave signal via frequency multiplication method

    Science.gov (United States)

    Singh, Mandeep; Raghuwanshi, Sanjeev Kumar

    2017-11-01

    We propose experimentally a technique to generate a low noise frequency octupled microwave signal. We demonstrate that by carefully arranging the phase of 90° between two MZMs (out of three), a low noise photonically assisted octupled microwave signal can be generated. A 25.6 GHz optical microwave signal is achieved with 3.2 GHz of local RF oscillator signal. Moreover, the intensity expressions at the output of photodiode are derived for both with and without dispersion terms. Finally, we advocate the impact of the electrical spurious suppression ratio on the extinction ratio of the modulators. Our experimental and simulation results agree well with the theoretical analysis.

  12. Ba-hexaferrite Films for Next Generation Microwave Devices (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Harris,V.; Chen, Z.; Chen, Y.; Yoon, S.; Sakai, T.; Geiler, A.; Yang, A.; He, Y.; Ziemer, K.; et al.

    2006-01-01

    Next generation magnetic microwave devices require ferrite films to be thick (>300 {mu}m), self-biased (high remanent magnetization), and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite (M-type) films using pulsed laser deposition (PLD), liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.

  13. Local government broadband policies for areas with limited Internet access

    Directory of Open Access Journals (Sweden)

    Yoshio Arai

    2014-03-01

    Full Text Available Despite their wide diffusion in developed countries, broadband services are still limited in areas where providing them is not profitable for private telecom carriers. To address this, many local governments in Japan have implemented broadband deployment projects subsidized by the national government. In this paper, we discuss local government broadband policies based on survey data collected from municipalities throughout the country. With the support of national promotion policies, broadband services were rapidly introduced to most local municipalities in Japan during the 2000s. Local government deployment policies helped to reduce the number of areas with no broadband access. A business model based on the Indefeasible Right of Use (IRU contract between a private telecom carrier and a local government has been developed in recent years. Even local governments without the technical capacity to operate a broadband business can introduce broadband services into their territory using the IRU business model.

  14. Broadband degenerate OPO for mid-infrared frequency comb generation.

    Science.gov (United States)

    Leindecker, Nick; Marandi, Alireza; Byer, Robert L; Vodopyanov, Konstantin L

    2011-03-28

    We present a new technique suitable for generating broadband phase- and frequency-locked frequency combs in the mid-infrared. Our source is based on a degenerate optical parametric oscillator (OPO) which rigorously both down-converts and augments the spectrum of a pump frequency comb provided by a commercial mode-locked near-IR laser. Low intracavity dispersion, combined with extensive cross-mixing of comb components, results in extremely broad instantaneous mid-IR bandwidths. We achieve an output power of 60 mW and 20 dB bandwidth extending from 2500 to 3800 nm. Among other applications, such a source is well-suited for coherent Fourier-transform spectroscopy in the absorption-rich mid-IR 'molecular fingerprint' region.

  15. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    Science.gov (United States)

    Duka, M. V.; Dvoretskaya, L. N.; Babelkin, N. S.; Khodzitskii, M. K.; Chivilikhin, S. A.; Smolyanskaya, O. A.

    2014-08-01

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 - 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth.

  16. Broadband Dielectric Spectroscopic Characterization of Thermal Stability of Low-k Dielectric Thin Films for Micro- and Nanoelectronic Applications.

    Science.gov (United States)

    Sunday, Christopher E; Montgomery, Karl R; Amoah, Papa K; Obeng, Yaw S

    2017-01-01

    In this paper, we discuss the use of broadband microwaves (MW) to characterize the thermal stability of organic and hybrid silicon-organic thin films meant for insulation applications in micro- and nanoelectronic devices. We take advantage of MW propagation characteristics to extract and examine the relationships between electrical properties and the chemistry of prototypical low-k materials. The impact of thermal anneal at modest temperatures is examined to shed light on the thermal-induced performance and reliability changes within the dielectric films. These changes are then correlated with the chemical changes in the films, and could provide basis for rational selection of organic dielectrics for integrated devices.

  17. Broadband mid-IR subharmonic OPOs for molecular spectroscopy

    Science.gov (United States)

    Leindecker, Nick; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.

    2012-02-01

    We generate broadband mid-infrared frequency combs via degenerate optical parametric oscillation in a subharmonic OPO. This technique efficiently transfers the desirable properties of shorter wavelength mode-locked sources to the mid- IR. Our OPO resonator is a 3m or 4m ring cavity composed of one pair of concave mirrors with R=50mm and four flat mirrors, all but one of which are gold coated with > 99% reflection. A single dielectric mirror is used to introduce the pump (2.05 micron from IMRA America, 75 MHz, 80 fs, 600mW or 1.55 micron from Menlo Systems C-fiber, 100 MHz, 70 fs, 350 mW or 1.56 micron from Toptica Photonics FemtoFiber Pro, 80 MHz, 85 fs, 380 mW). The dielectric mirror is transmissive for the pump and reflective in a 2.5- 4 micron or 3- 6 micron (for 2 micron pump) range. Broadband parametric gain around the 3.1-micron subharmonic is provided by short (0.2-0.5mm) periodically poled lithium niobate (MgO:PPLN) at Brewster angle. Crystals were cut from Crystal Technology Inc. material having QPM period of 34.8 microns for type 0 (e=e+e) phase matching at t=32 deg. C. With the 2-micron pump, orientation patterned gallium arsenide from BAE systems is used as the non-linear material In both systems, the enormous acceptance bandwidth at degeneracy, typical for OPOs with type 0 (or type I) phase-matching, gives broad bandwidth and makes temperature tuning insignificant. Broadband oscillation is achieved when signal/idler are brought into degenerate resonance by fine-tuning the cavity length with a mirror on a piezo stage. Using an 8% reflective pellicle, we outcouple a frequency comb of more than 1000nm bandwidth, centered around 3.1 microns from the Er/PPLN system. A 1mm or 2.5mm thick ZnSe plate at Brewster angle provides 2nd-order group velocity dispersion compensation, improving the OPO bandwidth. The OPO threshold was measured to be < 30mW. When locked, the OPO outputs 60 mW of average power centered at 3.1 microns. With the Tm/OP-GaAs system we

  18. Frequency-tunable microwave field detection in an atomic vapor cell

    Science.gov (United States)

    Horsley, Andrew; Treutlein, Philipp

    2016-05-01

    We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the σ+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high-resolution microwave imaging system [Horsley et al., New J. Phys. 17, 112002 (2015)], this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

  19. High-Resolution Broadband Spectral Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  20. Broadband active electrically small superconductor antennas

    Science.gov (United States)

    Kornev, V. K.; Kolotinskiy, N. V.; Sharafiev, A. V.; Soloviev, I. I.; Mukhanov, O. A.

    2017-10-01

    A new type of broadband active electrically small antenna (ESA) based on superconducting quantum arrays (SQAs) has been proposed and developed. These antennas are capable of providing both sensing and amplification of broadband electromagnetic signals with a very high spurious-free dynamic range (SFDR)—up to 100 dB (and even more)—with high sensitivity. The frequency band can range up to tens of gigahertz, depending on Josephson junction characteristic frequency, set by fabrication. In this paper we review theoretical and experimental studies of SQAs and SQA-based antenna prototypes of both transformer and transformer-less types. The ESA prototypes evaluated were fabricated using a standard Nb process with critical current density 4.5 kA cm-2. Measured device characteristics, design issues and comparative analysis of various ESA types, as well as requirements for interfaces, are reviewed and discussed.

  1. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  2. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  3. Switched Broadband Services For The Home

    Science.gov (United States)

    Sawyer, Don M.

    1990-01-01

    In considering the deployment of fiber optics to the residence, two critical questions arise: what are the leading services that could be offered to justify the required investment; and what is the nature of the business that would offer these services to the consumer ? This talk will address these two questions together with the related issue of how the "financial engine" of today's television distribution infrastructure - TV advertising - would be affected by an open access system based on fiber optics coupled with broadband switching. On the business side, the talk concludes that the potential for open ended capacity expansion, fair competition between service providers, and new interactive services inherent in an open access, switched broadband system are the critical items in differentiating it from existing video and TV distribution systems. On the question of broadband services, the talk will highlight several new opportunities together with some findings from recent market research conducted by BNR. The talk will show that there are variations on existing services plus many new services that could be offered and which have real consumer appeal. The postulated open access system discussed here is visualized as having ultimately 1,000 to 2,000 video channels available to the consumer. Although this may appear to hopelessly fragment the TV audience and destroy the current TV advertising infrastructure, the technology of open access, switched broadband will present many new advertising techniques, which have the potential to be far more effective than those available today. Some of these techniques will be described in this talk.

  4. Synthesis and microwave dielectric properties of Ca substituted ...

    Indian Academy of Sciences (India)

    Keywords. Patch antenna; theoretical density; phase; ceramics. Abstract. Microwave dielectric ceramics in Sr1-CaLa4Ti4.93Zr0.07O17 (0 ≤ ≤ 0.5) composition series were processed via a solid-state sintering rout. X-ray diffraction revealed single phase ceramics. Ca substitutions for Sr tuned f towards zero with ...

  5. Coherent Generation of Broadband Pulsed Light in the SWIR and Mwir Using AN all Polarization-Maintaining Fiber Frequency Comb Source

    Science.gov (United States)

    Hoogland, H.; Engelbrecht, M.; McRaven, C.; Holzwarth, R.; Thai, A.; Sánchez, D.; Cousin, S. L.; Hemmer, M.; Baudisch, M.; Zawilski, K.; Schunemann, P. G.; Biegert, J.

    2014-06-01

    We report on an all polarization-maintaining, modelocked, fiber laser system which generates coherent broadband pulses centered at 2.03 μm with a spectral FWHM bandwidth of 60 nm and 360 mW. Using this frequency comb source, we generate phase-coherent, ultra-broadband pulses centered at 6.5 μm and spanning 5.5 μm to 8 μm with DFG in CdSiP_2.

  6. Broadband electromagnetic analysis of compacted kaolin

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  7. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  8. Subfemtosecond pulse synthesis via coherent broadband generation in Raman-active crystal

    Science.gov (United States)

    Shutova, Mariia; Zhdanova, Alexandra; Sokolov, Alexei

    2017-04-01

    Subfemtosecond single- or sub-cycle broadband pulses of light are under active study because of their many applications; for example, detecting electron drift and atomic ionization; moreover, single cycle pulses offer the possibility of optical arbitrary waveform generation. Our group works on synthesizing such ultrashort pulses in ultraviolet-visible-near infrared range by making use of broadband generation in a Raman-active crystal. We have previously proven that the multi-color Raman sidebands generated in this way are mutually coherent and thus can be recombined to obtain ultrashort pulses of broadband radiation by proper phase alignment. We present a setup scheme which uses dichroic mirrors to combine near infrared pump and Stokes beams along with several sidebands in visible range in one beam in collinear scheme and control the phase of each sideband with nanometer precision. Finally, we examine the relative phase between each sideband by analyzing the beating of SHG and SFG signals generated in BBO crystal, moreover, the subfemtosecond duration of resultant pulse can be proved by looking at multiphoton ionization of xenon gas, since it has been shown that the ion yield is related to the duration of the pulse. The work is supported by NSF(Grant No.PHY-1307153 and CHE-1609608);Robert A.Welch Foundation (Grant A1547); Office of Naval Research Award(N00014-16-1-2578). M.S. thanks Herman F.Heep and Minnie Belle Heep TAMU Endowed Fund administered by the TAMU Foundation.

  9. Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers.

    Science.gov (United States)

    Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U

    2013-01-14

    A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

  10. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...

  11. Numerical simulation of broadband vortex terahertz beams propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    Orbital angular momentum (OAM) represents new informational degree of freedom for data encoding and multiplexing in fiber and free-space communications. OAM-carrying beams (also called vortex beams) were successfully used to increase the capacity of optical, millimetre-wave and radio frequency communication systems. However, the investigation of the OAM potential for the new generation high-speed terahertz communications is also of interest due to the unlimited demand of higher capacity in telecommunications. Here we present a simulation-based study of the propagating in non-dispersive medium broadband terahertz vortex beams generated by a spiral phase plate (SPP). The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the vortex beam in the frequency range from 0.1 to 3 THz at the distances 20-80 mm from the SPP. The simulation results show that the amplitude and phase distributions without unwanted modulation are presented in the wavelengths ranges with centres on the wavelengths which are multiple to the SPP optical thickness. This fact may allow to create the high-capacity near-field communication link which combines OAM and wavelength-division multiplexing.

  12. Vortices at Microwave Frequencies

    Science.gov (United States)

    Silva, Enrico; Pompeo, Nicola; Dobrovolskiy, Oleksandr V.

    2017-11-01

    The behavior of vortices at microwave frequencies is an extremely useful source of information on the microscopic parameters that enter the description of the vortex dynamics. This feature has acquired particular relevance since the discovery of unusual superconductors, such as cuprates. Microwave investigation then extended its field of application to many families of superconductors, including the artificially nanostructured materials. It is then important to understand the basics of the physics of vortices moving at high frequency, as well as to understand what information the experiments can yield (and what they can not). The aim of this brief review is to introduce the readers to some basic aspects of the physics of vortices under a microwave electromagnetic field, and to guide them to an understanding of the experiment, also by means of the illustration of some relevant results.

  13. Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire

    Science.gov (United States)

    Yang, Yong-Jun; Huang, Yong-Jun; Wen, Guang-Jun; Zhong, Jing-Ping; Sun, Hai-Bin; Oghenemuero, Gordon

    2012-03-01

    A tunable broadband metamaterial absorber is demonstrated at microwave frequencies in this paper. The metamaterial absorber is composed of ferrite slabs with large resonance beamwidths and a copper wire. The theoretical analysis for the effective media parameters is presented to show the mechanism for achieving the perfect absorptivity characteristic. The numerical results of transmission, reflectance, and absorptivity indicate that the metamaterial absorber exhibits a near perfect impedance-match to free space and a high absorptivity of 98.2% for one layer and 99.97% for two layers at 9.9 GHz. The bandwidth with the absorptivity above 90% is about 2.3 GHz. Moreover, the absorption band can be shifted linearly in a wide frequency range by adjusting the magnetic bias. This metamaterial absorber opens a way to prepare perfectly matched layers for engineering applications.

  14. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates.

    Science.gov (United States)

    Pang, Yongqiang; Cheng, Haifeng; Zhou, Yongjiang; Li, Zenggnag; Wang, Jun

    2012-05-21

    An ultrathin and simultaneously broadband high impedance surface absorber based on a metamaterial (MM) substrate is presented at microwave frequencies. The MM substrate is designed using metallic split ring resonators (SRRs) vertically embedded into a dielectric slab. Both the simulated and experimental results display two absorption peaks and an expanded absorption bandwidth of less than -10 dB compared to conventional ultrathin absorbers. By analyzing the field distributions and the substrate impedance characteristics, it is found that this feature is mainly related to the LC resonance of the substrate caused by the embedded SRRs. Our results demonstrate the great feasibility of broadening the absorption bandwidth of the ultrathin high impedance surface absorbers by the MMs incorporation.

  15. Compact and Broadband Microstrip-Line-Fed Modified Rhombus Slot Antenna

    Directory of Open Access Journals (Sweden)

    C. Y. Pan

    2013-09-01

    Full Text Available The printed microstrip-line-fed broadband rhombus slot antenna is investigated in this paper. With the use of the offset microstrip feed line and the corner-truncated protruded ground plane, the bandwidth enhancement and the slot size reduction for the proposed slot antenna can be obtained. The experimental results demonstrate that the impedance bandwidth for 10 dB return loss reaches 5210 MHz (108.2%, 2210-7420 MHz, which is about 2.67 times of a conventional microstrip-line-fed rhombus slot antenna. This bandwidth can provide with the wireless communication services operating in wireless local area network (WLAN and worldwide interoperability for microwave access (WiMAX bands. Under the use of the protruded ground plane, the slot size can be reduced by about 52%. Details of simulated and measured results are presented and discussed.

  16. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Science.gov (United States)

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Utsumi, Y.

    2014-09-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices.

  17. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  18. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  19. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  20. Further Developments in Microwave Ablation of Prostate Cells

    Science.gov (United States)

    Arndt, G. Dickey; Ngo, Phong

    2005-01-01

    A report presents additional information about the subject matter of Microwave Treatment of Prostate Cancer and Hyperplasia (MSC-23049), NASA Tech Briefs, Vol. 29, No. 6 (June 2005), page 62. To recapitulate: the basic idea is to use microwaves to heat and thereby kill small volumes of unhealthy prostate tissue. The prostate is irradiated with microwaves from one or more antennas positioned near the prostate by means of catheters inserted in the urethra and/or colon. The microwave frequency, power, and exposure time, phasing, positions, and orientations of the antennas may be chosen to obtain the desired temperature rise in the heated region and to ensure that the location and extent of the heated region coincides with the region to be treated to within a few millimeters. Going beyond the description in the cited previous article, the report includes a diagram that illustrates typical placement of urethra and colon antenna catheters and presents results of computationally simulated prostate-heating profiles for several different combinations of antenna arrangements, frequencies, and delivered- energy levels as well as experimental results within phantom materials. The advantage of the two-antenna technology is that the heat generated at each antenna is significantly reduced from that associated with only one antenna. The microwave energy radiated from each antenna is focused at the tumor center by adjusting the phasing of the irradiated microwave signal from the antennas.

  1. Spin dynamical phase and anti-resonance in a strongly coupled magnon-photon system

    OpenAIRE

    Harder, Michael; Hyde, Paul; Bai, Lihui; Match, Christophe; Hu, Can-Ming

    2016-01-01

    We experimentally studied a strongly coupled magnon-photon system via microwave transmission measurements. An anti-resonance, i.e. the suppression of the microwave transmission, is observed, indicating a relative phase change between the magnon response and the driving microwave field. We show that this anti-resonance feature can be used to interpret the phase evolution of the coupled magnon-microwave system and apply this technique to reveal the phase evolution of magnon dark modes. Our work...

  2. Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application

    Science.gov (United States)

    Chen, Huijie; Yang, Xiaoqing; Wu, Shiyue; Zhang, Di; Xiao, Hui; Huang, Kama; Zhu, Zhanxia; Yuan, Jianping

    2018-01-01

    In this work, a type of flexible, broadband electromagnetic microwave absorber is designed, fabricated and experimentally characterized. The absorber is composed of lumped resistors loaded frequency selective surface which is mounted on flexible substrate using silicone rubber and in turn backed by copper film. The simulated results show that an effective absorption (over 90%) bandwidth spans from 7.6 to 18.3 GHz, which covers both X (8–12 GHz) and Ku (12–18 GHz) bands, namely a 82.6% fraction bandwidth. And the bandwidth performs a good absorption response by varying the incident angle up to 60° for both TE and TM polarization. Moreover, the flexibility of the substrate enables the absorber conformably to bend and attach to cylinders of various radius without breakdown of the absorber. The designed structure has been fabricated and measured for both planar and conformable cases, and absorption responses show a good agreement of the broadband absorption feature with the simulated ones. This work has demonstrated specifically that proposed structure provides polarization-insensitive, wide-angle, flexible and conformable wideband absorption, which extends the absorber’s application to practical radar cross section reductions for radars and warships.

  3. A three-dimensional ultra-broadband metamaterial absorber in terahertz region

    Science.gov (United States)

    Ling, Xinyan; Xiao, Zhongyin; Zheng, Xiaoxia; Tang, Jingyao; Xu, Kaikai

    2016-11-01

    In this paper, we proposed a three-dimensional metamaterial absorber with ultra-broadband in terahertz region. Compared with other three-layer structures, our structure is only composed of graphite film and a metal plate. The simulated results show that the metamaterial absorber can achieve an ultra-broadband absorption more than 90 % from 3 to 9 THz for either transverse electric or magnetic polarization wave at normal incidence. In addition, the absorption properties based on the oblique incidence and different polarization angles are also observed. A good absorption bandwidth can be kept when the incidence angle is up to 60°. Moreover, the absorber is polarization-insensitive with the polarization angle increase. Finally, the power loss density and surface current distributions at distinct resonance point are analyzed, which can demonstrate that the graphite plays an important role for the absorption of electromagnetic waves. We believe that the design idea of the three-dimensional metamaterial absorber maybe can extend to microwave, infrared or optical region.

  4. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level--a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (~50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers.

  5. DXBC: a long distance wireless broadband communication system for coastal maritime surveillance applications

    Science.gov (United States)

    Vastianos, George E.; Argyreas, Nick D.; Xilouris, Chris K.; Thomopoulos, Stelios C. A.

    2015-05-01

    The field of Homeland Security focuses on the air, land, and sea borders surveillance in order to prevent illegal activities while facilitating lawful travel and trade. The achievement of this goal requires collaboration of complex decentralized systems and services, and transfer of huge amount of information between the remote surveillance areas and the command & control centers. It becomes obvious that the effectiveness of the provided security depends highly on the available communication capabilities between the interconnected areas. Although nowadays the broadband communication between remote places is presumed easy because of the extensive infrastructure inside residential areas, it becomes a real challenge when the required information should be acquired from locations where no infrastructure is available such as mountain or sea areas. The Integrated Systems Lab of NCSR Demokritos within the PERSEUS FP7- SEC-2011-261748 project has developed a wireless broadband telecommunication system that combines different communication channels from subGHz to microwave frequencies and provides secure IP connectivity between sea surveillance vessels and the Command and Control Centers (C3). The system was deployed in Fast Patrol Boats of the Hellenic Coast Guard that are used for maritime surveillance in sea boarders and tested successfully in two demonstration exercises for irregular migration and smuggling scenarios in the Aegean Archipelagos. This paper describes in detail the system architecture in terms of hardware and software and the evaluation measurements of the system communication capabilities.

  6. Comprehensive techniques to determine broadband physically-consistent material characteristics using transmission lines

    Science.gov (United States)

    Zhou, Zhen

    Dispersion, attenuation, and crosstalk are several major challenges that both a high-speed digital and a microwave serial link must overcome to achieve their desirable performance. These phenomena are directly related to the frequency dependency of the dielectric property of the material used in package and interconnect. The dielectric property of a material is commonly measured by its manufacturer in a particular direction at a few discrete frequencies using resonator and waveguide methodology. Since the dielectric property may vary during manufacturing processing, the measurements taken by the manufacturer might be not adequate. Moreover, the dielectric property of a material in a bandwidth that covers at least the second harmonics of the fundamental operational frequency is required to accurately predict the link performance. One of the efforts in this research is to investigate the methodology of realizing broadband characteristics of the dielectric property of a material in its "as packaged" configuration using various transmission line topologies, such as microstrip line and Co-Planar Waveguide (CPW). Transitions from CPW to other transmission line topologies are mandatory if CPW probes are used to achieve broadband and repeatable measurements. Since microstrip line is one of the transmission line topologies involved in this research, a research effort is dedicated to develop a broadband CPW-to-microstrip line transition. An effort is also expended to creating casual material models that can be used in electromagnetic simulators to appropriately model the link based on the polarization mechanism of the materials. In addition to focusing on the measurement method in frequency domain, Short Pulse Propagation (SPP), a time domain method, is investigated as well. A virtual test bench is created to investigate the correlation between impedance variations in stripline structures due to fabricated tolerance and the attenuation predicted by SPP.

  7. Microwave-assisted synthesis of bismuth oxide

    Directory of Open Access Journals (Sweden)

    Eva Bartonickova

    2007-12-01

    Full Text Available Single phase and ultrafine bismuth oxide was synthesized via microwave-assisted hydrothermal synthesis. The effect of reaction parameters (temperature/pressure and pH on the product phase composition and morphology was discussed. The transformation of bismuth hydroxide into bismuth oxide was controlled by pH value and it was accelerated by time and temperature. The phase composition of reaction products was strongly dependent on pH value. The amorphous products were obtained at acidic pH conditions and the crystalline single phase product α-Bi2O3 phase was obtained at pH ≥12. The particle size was reduced from micrometric to nanometric size in the presence of a chelating agent. The bismuth hydroxides into bismuth oxides transformation mechanism, consisting in polycondensation ofBi–OH bounds to Bi–O–Bi bridges and crystallization of Bi2O3, was proposed.

  8. Rail-based Broadband Synthetic Aperture Ocean Measurement System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables collection of broadband acoustic scattering databases where acoustic sources and receivers can be translated on a precise linear path under program...

  9. Broadband low‐frequency electromagnetic waves in the inner magnetosphere

    National Research Council Canada - National Science Library

    Chaston, C. C; Bonnell, J. W; Kletzing, C. A; Hospodarsky, G. B; Wygant, J. R; Smith, C. W

    2015-01-01

    A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field...

  10. Microwave extraction of bioactive compounds

    Directory of Open Access Journals (Sweden)

    Monika Blekić

    2011-01-01

    Full Text Available Microwave extraction presents novel extraction and treatment method for food processing. In paper, several examples of microwave extraction of bioactive compounds are presented. Also, novel innovative equipment for microwave extraction and hydrodiffusion with gravitation is presented. Advantage of using novel equipment for microwave extraction is shown, and it include, shorter treatment time, less usage or without any solvent use. Novel method is compared to standard extraction methods. Some positive and negative aspects of microwave heating can be observed, and also its influence on development of oxidation in sunflower oil subjected to microwave heating. Also, use of microwaves for the extraction of essential oils is shown. One can also see the advantages of solvent-free microwave extraction of essential oil from aromatic herbs in comparison with the standard extraction, and determination of antioxidant components in rice bran oil extracted by microwave-assisted method. Comparison of microwave and ultrasound extraction, as well as positive and negative aspects of the combination of microwaves and ultrasound is described.

  11. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  12. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain f...

  13. Nonlinear Microwave Optomechanics

    NARCIS (Netherlands)

    Shevchuk, O.

    2017-01-01

    The nonlinearity is essential for creation of non-classical states of the cavity or mechanical resonator such as squeezed or cat states. A microwave cavity can be made nonlinear by, for instance, adding Josephson junctions. The mechanical resonator is inherently nonlinear. The radiation pressure

  14. Ultimate VHF Broadband Interferometer Zen KAWASAKI and Manabu AKITA

    Science.gov (United States)

    Kawasaki, Z.; Akita, M.

    2013-12-01

    propagation, like electromagnetic wave propagation in non-dispersive medium. This procedure presented exciting results of lightning channel imaging, and the bi-directional leader propagation can be visualized in terms of azimuth and elevation as a function of time. Moreover all of the VHF radiation process for an entire lightning flash from initiation to termination can be imaged, and it is concluded that the system might be an ultimate broad band digital interferometer. The authors would like to show their appreciation to Paul Krehbiel, NMIMT, who gave a chance and suggestion of a continuous recording scheme for BDITF. M. Stock et al. : Continuous Broadband Digital Interferometry of Lightning using a Generalized Cross Correlation Algorithm M. Akita et al. : Data Processing Procedure 1 using Distribution of Slopes of Phase Differences for Broadband VHF Interferometer

  15. Analysis of United States’ Broadband Policy

    Science.gov (United States)

    2007-03-01

    of webcams . Today there is a much greater chance that someone working in the corporate sector is working or keeping up to date with their office...all American adults had high-speed Internet connections at home in the United States. In March 2005, that number was only 30 percent.47 Many new...Project’s combined January-March tracking survey of 4,402 adults ; 1,265 were home broadband users. 2006 data comes from the Pew Internet Project’s February

  16. Broad-band semiconductor optical amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Ying [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)]. E-mail: yingding@red.semi.ac.cn; Kan Qiang [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Wang Junling [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Pan Jiaoqing [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhou Fan [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Chen Weixi [School of Physics, Peking University, Beijing 100871 (China); Wang Wei [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2007-01-15

    Broad-band semiconductor optical amplifiers (SOAs) with different thicknesses and thin bulk tensile-strained active layers were fabricated and studied. Amplified spontaneous emission (ASE) spectra and gain spectra of SOAs were measured and analyzed at different CW biases. A maximal 3 dB ASE bandwidth of 136 nm ranging from 1480 to 1616 nm, and a 3 dB optical amplifier gain bandwidth of about 90 nm ranging from 1510 to 1600 nm, were obtained for the very thin bulk active SOA. Other SOAs characteristics such as saturation output power and polarization sensitivity were measured and compared.

  17. Bioinspired irregularly chirped broadband reflecting multilayers

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio

    2017-08-01

    Dielectric multilayers consisting of alternating layers of two different materials with thicknesses irregularly decreasing with depth in the structure are included in the cuticle of some beetles whose shell exhibits broadband reflection in the optical wavelength range. Emulating these structures, we propose and numerically analyze irregularly chirped dielectric multilayers. Analysis was performed using a dedicated genetic algorithm (GA) that searches for the multilayer configurations maximizing the reflection for normal incidence over a large wavelength range. We found that the GA leads to the irregularly chirped reflectors that significantly outperform the regularly chirped ones proposed and analyzed in the literature.

  18. Broadband Planar 5:1 Impedence Transformer

    Science.gov (United States)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  19. Broadband slant linearly polarized biconical antenna

    Science.gov (United States)

    Lakshminarayana, D.; Prasad, R. V. H.; Murthy, T. G. K.

    1993-06-01

    A broadband biconical antenna with a slant linear polarizer, operating over 2-26 GHz range was designed and fabricated. The results of tests are presented, including the return loss plot of the antenna, radiation patterns at 2, 10, and 26 GHz for vertical and horizontal polarizations in azimuth and elevation planes, and curves indicating the elevation beam-width and gain of the antenna vs. frequency. The antenna gives an omni deviation of +/- 3 dB over 2-26 GHz. It is highly compact, and thus is suitable for systems where space requirements are very stringent.

  20. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    State-of-the-art optical fiber technology can contribute towards complex multi-element broadband terahertz imaging systems. Classical table-top terahertz imaging systems are generally limited to a single emitter/receiver pair, which constrains their imaging capability to tedious raster scanning...... imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...