WorldWideScience

Sample records for broadband all-optical ultrasound

  1. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound

    Science.gov (United States)

    Wang, Tianxiong; Cao, Rui; Ning, Bo; Dixon, Adam J.; Hossack, John A.; Klibanov, Alexander L.; Zhou, Qifa; Wang, Anbo; Hu, Song

    2015-10-01

    We report on an implementation of all-optical photoacoustic microscopy (PAM), which capitalizes on the effect of surface plasmon resonance (SPR) for optical detection of ultrasound. The SPR sensor in our all-optical PAM shows, experimentally, a linear response to the acoustic pressure from 5.2 kPa to 2.1 MPa, an ultra-flat frequency response (±0.7 dB) from 680 kHz to 126 MHz, and a noise-equivalent pressure sensitivity of 3.3 kPa. With the broadband ultrasonic detection, our SPR-PAM has achieved high spatial resolution with relatively low anisotropy (i.e., 2.0 μm laterally and 8.4 μm axially). Three-dimensional high-resolution imaging of a single melanoma cell is demonstrated.

  2. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    Science.gov (United States)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  3. Ultrafast defect dynamics: A new approach to all optical broadband switching employing amorphous selenium thin films

    Directory of Open Access Journals (Sweden)

    Rituraj Sharma

    2015-07-01

    Full Text Available Optical switches offer higher switching speeds than electronics, however, in most cases utilizing the interband transitions of the active medium for switching. As a result, the signal suffers heavy losses. In this article, we demonstrate a simple and yet efficient ultrafast broadband all-optical switching on ps timescale in the sub-bandgap region of the a-Se thin film, where the intrinsic absorption is very weak. The optical switching is attributed to short-lived transient defects that form localized states in the bandgap and possess a large electron-phonon coupling. We model these processes through first principles simulation that are in agreement with the experiments.

  4. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film

    Institute of Scientific and Technical Information of China (English)

    WEI Lai; TENG Xue-Lei; Lu Ming; ZHAO You-Yuan; MA De-Wang; DING Jian-Dong

    2007-01-01

    Photoinduced birefringence with large optical nonlinearity in a bacteriorhodopsin/polymer composite film is observed.A high refractive index change of 8.5×10-5 photoinduced by 476nm pumping beam is reached at the low intensity of 6.5mW/cm2.Based on it,a broadband all-optical photonic switch is realized with an optical controlling switch system.Because of controlling beam's selectivity in switching,the transporting beams of different wavelengths with different intensities and shapes can be modulated by adjusting the wavelength and intensity of the controlling beam.

  5. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering

    CERN Document Server

    Long, Xin; Chen, Jianping

    2015-01-01

    Pulse compression processing based on stimulated Brillouin scattering (SBS) in an optical fiber is theoretically and experimentally demonstrated. Broadband microwave signal is electro-optically modulated onto the pump lightwave that is launched into one end of the fiber. Acoustic wave in the fiber inherits the amplitude and phase information of the pump lightwave and thus the coupling between the acoustic wave and pump lightwave leads to the auto-correlated process of the pump lightwave as well as the modulated microwave signal. Derivation of the SBS coupling equations shows that the short-pulse probe lightwave amplified by the pump lightwave possesses the nature of auto-correlation formula. All-optical pulse compression of the broadband microwave signal is implemented after a subtraction between the detected probe pulse with and without SBS. A proof-of-concept experiment is carried out. The pulse compression of a linear frequency-modulated microwave signal with 1 GHz sweep range at the carrier frequency of 4...

  6. Broadband Acoustic Cloak for Ultrasound Waves

    CERN Document Server

    Zhang, Shu; Fang, Nicholas

    2010-01-01

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Due to the non-resonant nature of the building elements, this low loss (~6dB/m) cylindrical cloak exhibits excellent invisibility over a broad frequency range from 52 to 64 kHz in the measurements. The low visibility of the cloaked object for underwater ultrasound shed a light on the fundamental understanding of ma...

  7. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    Science.gov (United States)

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-03-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices.

  8. Broadband Minimum Variance Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2009-01-01

    A minimum variance (MV) approach for near-field beamforming of broadband data is proposed. The approach is implemented in the frequency domain, and it provides a set of adapted, complex apodization weights for each frequency subband. The performance of the proposed MV beamformer is tested on...

  9. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging.

    OpenAIRE

    Colchester, R. J.; Zhang, E. Z.; Mosse, C. A.; Beard, P.C.; Papakonstantinou, I.; Desjardins, A. E.

    2015-01-01

    An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound tr...

  10. All-optical scanning acoustic microscope

    OpenAIRE

    Sharples, Steve David

    2003-01-01

    In this thesis a new instrument, the all-optical scanning acoustic microscope (O-SAM) is presented, it is a non contact scanning acoustic microscope (SAM) which uses lasers to both generate and detect surface acoustics waves (SAWs) The non contact nature of the O-SAM overcomes some difficulties associated with conventional SAMs because of the couplant and surface contact involved. This O-SAM also overcomes many of the problems associated with conventional laser ultrasound systems including th...

  11. Broadband ultrasound attenuation imaging: influence of location of region of measurement.

    Science.gov (United States)

    Damilakis, J; Papadakis, A; Perisinakis, K; Gourtsoyiannis, N

    2001-01-01

    The aim of the study was to investigate the effect of three different regions of interest (ROIs) varying in size and shape on broadband ultrasound attenuation (BUA) measurements of the calcaneus. Two hundred and sixty-five postmenopausal Caucasian women participated in this study. In 43 women osteoporotic fractures were documented on spinal radiographs. Bone mineral density (BMD) measurements of the lumbar spine and the femur were made using dual-energy X-ray absorptiometry. BUA measurements were obtained at a circular ROI automatically determined by the imaging system (ROIc), at a manually traced irregular ROI encompassing the posterior part of the calcaneus (ROIi), and at an anatomical square ROI located in the posterior part of the calcaneus (ROIs). Reproducibility was better in ROIc than in ROIi and ROIs. High correlations were found between BUA measurements with ROIc and ROIs (r = 0.981, P ROIc and ROIi (r = 0.965, P ROIc compared with ROIi and ROIs. No significant difference was found between the areas under the ROC curve at ROIi, ROIc, and ROIs for women with fractures. The results show that superior reproducibility makes ROIc the most appropriate region of BUA measurement in a comparison with ROIi and ROIs. PMID:11471598

  12. All-optical pressure sensor

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an all-optical pressure sensor comprising a waveguide accommodating a distributed Bragg reflector. Pressure sensing can then be provided by utilizing effective index modulation of the waveguide and detection of a wavelength shift of light reflected from the Bragg...... reflector. Sound sensing may also be provided thereby having an all-optical microphone. One embodiment of the invention relates to an optical pressure sensor comprising at least one outer membrane and a waveguide, the waveguide comprising at least one core for confining and guiding light,at least one...... distributed Bragg reflector located in said at least one core, and at least one inner deflecting element forming at least a part of the core,wherein the pressure sensor is configured such that the geometry and/or dimension of the at least one core is changed when the at least one outer membrane is submitted...

  13. High speed all optical networks

    Science.gov (United States)

    Chlamtac, Imrich; Ganz, Aura

    1990-01-01

    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  14. Broadband all-optical microwave photonics phase detector.

    Science.gov (United States)

    Ashourian, Mohsen; Emami, Hossein; Sarkhosh, Niusha

    2013-12-15

    A microwave photonics phase detector is conceived and practically demonstrated. The phase-detector system employs a semiconductor optical amplifier as a four-wave mixer to enable phase detection over a broad frequency range. The system behavior is first mathematically modeled and then demonstrated practically. Phase measurement over a frequency range of 1-18 GHz is achieved. This phase detector is an excellent candidate for wideband applications such as frequency-agile radar. PMID:24322231

  15. Design of a Broadband Electrical Impedance Matching Network for Piezoelectric Ultrasound Transducers Based on a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jianfei An

    2014-04-01

    Full Text Available An improved method based on a genetic algorithm (GA is developed to design a broadband electrical impedance matching network for piezoelectric ultrasound transducer. A key feature of the new method is that it can optimize both the topology of the matching network and perform optimization on the components. The main idea of this method is to find the optimal matching network in a set of candidate topologies. Some successful experiences of classical algorithms are absorbed to limit the size of the set of candidate topologies and greatly simplify the calculation process. Both binary-coded GA and real-coded GA are used for topology optimization and components optimization, respectively. Some calculation strategies, such as elitist strategy and clearing niche method, are adopted to make sure that the algorithm can converge to the global optimal result. Simulation and experimental results prove that matching networks with better performance might be achieved by this improved method.

  16. Design of a broadband electrical impedance matching network for piezoelectric ultrasound transducers based on a genetic algorithm.

    Science.gov (United States)

    An, Jianfei; Song, Kezhu; Zhang, Shuangxi; Yang, Junfeng; Cao, Ping

    2014-01-01

    An improved method based on a genetic algorithm (GA) is developed to design a broadband electrical impedance matching network for piezoelectric ultrasound transducer. A key feature of the new method is that it can optimize both the topology of the matching network and perform optimization on the components. The main idea of this method is to find the optimal matching network in a set of candidate topologies. Some successful experiences of classical algorithms are absorbed to limit the size of the set of candidate topologies and greatly simplify the calculation process. Both binary-coded GA and real-coded GA are used for topology optimization and components optimization, respectively. Some calculation strategies, such as elitist strategy and clearing niche method, are adopted to make sure that the algorithm can converge to the global optimal result. Simulation and experimental results prove that matching networks with better performance might be achieved by this improved method. PMID:24743156

  17. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... analyzed, emphasizing general aspects of active semiconductor waveguides....

  18. Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope

    International Nuclear Information System (INIS)

    Tooth decay, at its earliest stages, manifests itself as small, white, subsurface lesions in the enamel. Current methods for detection in the dental clinic are visual and tactile investigations, and bite-wing X-ray radiographs. These techniques suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease due to the small size (<100μm) of the lesion. A fine-resolution (600 nm) ultra-broadband (200 MHz) all-optical photoacoustic microscopy system was is used to image the early signs of tooth decay. Ex-vivo tooth samples exhibiting white spot lesions were scanned and were found to generate a larger (one order of magnitude) photoacoustic (PA) signal in the lesion regions compared to healthy enamel. The high contrast in the PA images potentially allows lesions to be imaged and measured at a much earlier stage than current clinical techniques allow. PA images were cross referenced with histology photographs to validate our experimental results. Our PA system provides a noncontact method for early detection of white-spot lesions with a high detection bandwidth that offers advantages over previously demonstrated ultrasound methods. The technique provides the sensing depth of an ultrasound system, but with the spatial resolution of an optical system

  19. Change in the waveform of broadband ultrasound reflected back from a sample via a polymer film

    Science.gov (United States)

    Tohmyoh, Hironori; Mukaimine, Shota

    2016-07-01

    This paper deals with the changes in the reflected waveform obtained from a sample after covering the sample with a polymer film. First, a theoretical model to predict the waveform obtained from the sample via the film was developed and the validity of the model was verified by experiments in which the ultrasound was transmitted from water into steel samples via a polymer film. Although the present model is based on plane wave theory, it was confirmed experimentally that the model is applicable for focused ultrasonic transducers.

  20. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    Science.gov (United States)

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser. PMID:27106311

  1. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne;

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  2. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology

    International Nuclear Information System (INIS)

    A micro-opto-mechanical system (MOMS) technology for the fabrication of fiber-optic optoacoustic emitters is presented. The described devices are based on the thermoelastic generation of ultrasonic waves from patterned carbon films obtained by the controlled pyrolysis of photoresist layers and fabricated on miniaturized single-crystal silicon frames used to mount the emitters on the tip of an optical fiber. Thanks to the micromachining process adopted, high miniaturization levels are reached in the fabrication of the emitters, and self-standing devices on optical fiber with diameter around 350 µm are demonstrated, potentially suited to minimally invasive medical applications. The functional testing of fiber-optic emitter prototypes in water performed by using a 1064 nm Q-switched Nd-YAG excitation laser source is also presented, yielding broadband emission spectra extended from low frequencies up to more than 40 MHz, and focused emission fields with a maximum peak-to-peak pressure level of about 1.2 MPa at a distance of 1 mm from the devices. (paper)

  3. All-optical optoacoustic microscope based on wideband pulse interferometry.

    Science.gov (United States)

    Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis

    2016-05-01

    Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI. PMID:27128047

  4. All-optical signal processing and regeneration

    OpenAIRE

    Wolfson, David; Stubkjær, Kristian

    2001-01-01

    The trend in the industry today is that more and more complex functionalities are moving from the electrical domain and into the optical domain, demonstrating that all-optical networks are coming closer to realisation. In order for this progress to continue, there is a need for advanced optical components. The objective of this thesis is therefore to present an ivestigation and evaluation fo key components that will be important enablers for future optical networks, namely optical space switc...

  5. Ultrafast all-optical switching in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-04-01

    All-optical switching has been demonstrated in bacteriorhodopsin based on excited-state nonlinear absorption. A probe laser beam at 640 nm corresponding to the O-state absorption maximum is switched due to a strong pulsed pump laser beam at 570 nm, that corresponds to the maximum ground state absorption. We have studied the effect of variation in pulse width and in small signal absorption coefficient on the switching characteristics. The switching time decreases as the pulse width of the pump beam decreases and the small signal absorption coefficient increases. The switching contrast depends mainly on the peak pumping intensity.

  6. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

    Science.gov (United States)

    Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong

    2014-03-01

    A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

  7. All-optical signal processing and regeneration

    DEFF Research Database (Denmark)

    Wolfson, David

    2001-01-01

    of a detailed large-signal model. An important parameter for SOA-based gates is the input power dynamic range (IPDR) as it determines the cascadability of the devices. Guidelines on how to maximise the IPDR are therefore established. Important trends are that short SOAs with low confinement factors and a low...... to conventional wavelength conversion since conversion of an optical clock signal is used instead of CW light. An investigation of these advantages is carried out and the feasibility of the scheme is demonstrated at 20 Gbit/s. A description of interferometric wavelength converters (IWCs) is also given. The high...... attractive for all-optical regeneration. Experiments carried out at 40 Gbit/s demonstrate excellent performance for 2R regeneration, which is emphasised by a clear improvement of the optical signal-to-noise ratio and a noise suppression capability. 3R regeneration is also illustrated at 40 Gbit/s, where...

  8. All-optical bandwidth-tailorable radar

    CERN Document Server

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2015-01-01

    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  9. Nanofiber-based all-optical switches

    CERN Document Server

    Kien, Fam Le

    2016-01-01

    We study all-optical switches operating on a single four-level atom with the $N$-type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of $20$ mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the $D_2$ line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers ...

  10. The GALAXIE all-optical FEL project

    International Nuclear Information System (INIS)

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project’s acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 μm laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  11. All-optical switching and all-optical logic gates based on bacteriorhodopsin

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-06-01

    We demonstrate an all-optical switching using a bacteriorhodopsin (bR) film. The transmission of the bR film is investigated using the pump-probe method. A diode-pumped second harmonic YAG laser (λ = 532nm which is around the maximum initial B state absorption) was used as a pumping beam and a cw He-Ne laser (λ = 632 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we design an all-optical operating device functioning as 11 kinds of variable binary all-optical logic gates. The incident 532nm beam acts as an input to the logic gate and the transmission of the 632nm bears the output of the gate.

  12. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.;

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  13. Photonic encryption using all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and

  14. Description of all-optical network test bed and applications

    Science.gov (United States)

    Marquis, Douglas; Castagnozzi, Daniel M.; Hemenway, B. R.; Parikh, Salil A.; Stevens, Mark L.; Swanson, Eric A.; Thomas, Robert E.; Ozveren, C.; Kaminow, Ivan P.

    1995-12-01

    We describe an all-optical network testbed deployed in the Boston metropolitan area, and some of the experimental applications running over the network. The network was developed by a consortium of AT&T Bell Laboratories, Digital Equipment Corporation, and Massachusetts Institute of Technology under a grant from ARPA. The network is an optical WDM system organized as a hierarchy consisting of local, metropolitan, and wide area nodes that support optical broadcast and routing modes. Frequencies are shared and reused to enhance network scalability. Electronic access is provided through optical terminals that support multiple services having data rates between 10 Mbps/user and 10 Gbps/user. Novel components used to implement the network include fast-tuning 1.5 micrometers distributed Bragg reflector lasers, passive wavelength routers, and broadband optical frequency converters. An overlay control network implemented at 1.3 micrometers allows reliable out-of-band control and standardized network management of all network nodes. We have created interfaces between the AON and commercially available electronic circuit-switched and packet-switched networks. We will report on network applications that can dynamically allocate optical bandwidth between electronic packet-switches based on the offered load presented by users, without requiring interfaces between users and the AON control system. We will also describe video and telemedicine applications running over the network. We have demonstrated an audio/video codec that is directly interfaced to the optical network, and is capable of transmitting high-rate digitized video signals for broadcast or videoconferencing applications. We have also demonstrated a state-of-the-art radiological workstation that uses the AON to transport 2000 X 2000 X 16 bit images from a remote image server.

  15. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge;

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given.......We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  16. All-optical demultiplexing using an electroabsorption modulator

    OpenAIRE

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    In the 1990s, the electroabsorption modulator (EAM) has found a wide range of applications. Functionalities such as pulse generation and demultiplexing by electrical modulation have been demonstrated using an EAM. Recently, all-optical wavelength conversion, demultiplexing, and signal regeneration, have also been experimentally demonstrated. In this paper, we investigate all-optical demultiplexing from 80 to 10 Gbit/s.

  17. All-optical storage and processing in optical fibers

    OpenAIRE

    Thévenaz, Luc; Primerov, Nikolay; Chin, Sanghoon; Antman, Yair; Denisov, Andrey; Zadok, Avi; Santagiustina, Marco

    2012-01-01

    The recent possibility to generate and read dynamic Bragg gratings in optical fibers by the interaction of multiple optical waves through stimulated Brillouin scattering has opened a new field to realize all-optical fiber-based functions.

  18. All-optical signal processing using dynamic Brillouin gratings

    Science.gov (United States)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  19. Analysis of noise suppression in cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, Svend

    2002-01-01

    We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic.......We derive an approximate analytical expression for the BER of cascaded links with all-optical regenerators and use it for performing a general analysis of the interplay between noise and the non-linearity of the regenerator characteristic....

  20. 100GHz Integrated All-Optical Switch Enabled by ALD

    CERN Document Server

    Moille, Gregory; Morgenroth, Laurence; Lehoucq, Gaëlle; Neuilly, François; Hu, Bowen; Decoster, Didier; de Rossi, Alfredo

    2015-01-01

    The carrier lifetime of a photonic crystal all-optical switch is optimized by controlling the surface of GaAs by Atomic Layer Deposition. We demonstrate an all optical modulation capability up to 100GHz at Telecom wavelengths, with a contrast as high as 7dB. Wavelength conversion has also been demonstrated at a repetition rate of 2.5GHz with average pump power of about 0.5mW

  1. All-optical signal processing technique for secure optical communication

    Science.gov (United States)

    Qian, Feng-chen; Su, Bing; Ye, Ya-lin; Zhang, Qian; Lin, Shao-feng; Duan, Tao; Duan, Jie

    2015-10-01

    Secure optical communication technologies are important means to solve the physical layer security for optical network. We present a scheme of secure optical communication system by all-optical signal processing technique. The scheme consists of three parts, as all-optical signal processing unit, optical key sequence generator, and synchronous control unit. In the paper, all-optical signal processing method is key technology using all-optical exclusive disjunction (XOR) gate based on optical cross-gain modulation effect, has advantages of wide dynamic range of input optical signal, simple structure and so on. All-optical XOR gate composed of two semiconductor optical amplifiers (SOA) is a symmetrical structure. By controlling injection current, input signal power, delay and filter bandwidth, the extinction ratio of XOR can be greater than 8dB. Finally, some performance parameters are calculated and the results are analyzed. The simulation and experimental results show that the proposed method can be achieved over 10Gbps optical signal encryption and decryption, which is simple, easy to implement, and error-free diffusion.

  2. All-optical Demultiplexing Using an Electroabsorption Modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    In the last decade, the electroabsorption modulator (EAM) (essentially a reverse biased semiconductor optical amplifier) has found an increasingly wider range of applications within optical communications, although mostly at the research level. Recently, all-optical signal-processing such as...... wavelength conversion, demultiplexing, and signal regeneration using an EAM have also been experimentally demonstrated, and lately theoretical calculations of wavelength conversion and signal regeneration have been presented. These functionalities are important for constructing ultrahigh-speed all......-optical networks.Here, we present modeling results of all-optical demultiplexing from 80 to 10 Gbit/s using an EAM. Our large-signal model for the reverse-biased quantum well absorber is based on a detailed gain model, and was originally developed for studying colliding-pulse mode-locked lasers. Sweep-out of photo...

  3. ALL OPTICAL 3-BIT SERIAL INPUT SHIFT REGISTER DESIGN

    Directory of Open Access Journals (Sweden)

    VIKRANT K SRIVASTAVA,

    2010-08-01

    Full Text Available In this Paper, we present all-optical shift Register logic with complete Boolean functionality as a representative circuit for modeling and optimization of monolithically integrated components. Proposed optical logic unit is based on nonlinear effects in semiconductor optical amplifiers (SOA. We show a strategy of optical pulse propagation in SOA based on coupled nonlinear equations describing XGM and FWM effects. These equations are first solved togenerate the pump, probe and conjugate pulses in a SOA. The pulse behavior are analyzed and applied to realize behavior of all-optical NAND gate. Next, the logic is used to implement All-Optical Flip-Flop logic, and its function is verified with the help of truth table. Finally with the help of three Flip Flop a 3-bit shift register is proposed. The full design is simple, compact, economical, thermally stable and integration capable.

  4. Photonic temporal integrator for all-optical computing.

    Science.gov (United States)

    Slavík, Radan; Park, Yongwoo; Ayotte, Nicolas; Doucet, Serge; Ahn, Tae-Jung; LaRochelle, Sophie; Azaña, José

    2008-10-27

    We report the first experimental realization of an all-optical temporal integrator. The integrator is implemented using an all-fiber active (gain-assisted) filter based on superimposed fiber Bragg gratings made in an Er-Yb co-doped optical fiber that behaves like an 'optical capacitor'. Functionality of this device was tested by integrating different optical pulses, with time duration down to 60 ps, and by integration of two consecutive pulses that had different relative phases, separated by up to 1 ns. The potential of the developed device for implementing all-optical computing systems for solving ordinary differential equations was also experimentally tested. PMID:18958098

  5. Control and Management Issues in All-Optical Networks

    Directory of Open Access Journals (Sweden)

    Ridha Rejeb

    2010-02-01

    Full Text Available As more intelligence and control mechanisms are added into optical networks, the need for the deployment of a reliable and secure management system using efficient control techniques has become increasingly relevant. While some of available control and management methods are applicable to different types of network architectures, many of them are not adequate for all-optical networks. These emerging transparent optical networks have particularly unique features and requirements in terms of security and quality of service thus requiring a much more targeted approach in terms of network management. In particular, the peculiar behavior of all-optical components and architectures bring forth a new set of challenges for network security. In this article, we briefly overview security and management issues that arise in all-optical networks. We then discuss the key management functions that are responsible for ensuring the secure and continued functioning of the network. Consequently, we present a framework for the realization of an appropriate management system that can meet the challenges posed by all-optical networks.

  6. All-optical signal processing in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær

    2002-01-01

    The focal point of the research presented here is all-optical signal processing via nonlinearities. The objective has been to investigate the interaction between optical signals via nonlinearities and how these nonlinearities can be engineered to serve specific purposes. The nonlinear response...

  7. Time and frequency transfer in all-optical network

    Czech Academy of Sciences Publication Activity Database

    Smotlacha, V.; Kuna, Alexander

    Praha: Terena, 2011. ISBN 978-90-77559-00-0. [27th Annual TERENA Networking Conference, TNC 2011. Praha (CZ), 16.05.2011-19.05.2011] Grant ostatní: GA MŠk(CZ) LM2010005 Institutional research plan: CEZ:AV0Z20670512 Keywords : Time transfer * Frequency transfer * All-optical network Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  8. All Optical Logical Operations Using Excitable Cavity Solitons

    OpenAIRE

    Jacobo, Adrián; Gomila, Damià; Colet, Pere; Matías, Manuel A

    2010-01-01

    We show theoretically that dissipative solitons arising in the transverse plane of nonlinear optical cavities show oscillatory and excitable regimes that can be used to perform all-optical logical operations. This allows for the construction of reconfigurable optical gates that can operate in parallel

  9. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering.

    Science.gov (United States)

    Suzuki, Takakazu; Isa, Fumihiro; Fujii, Leo; Hirosawa, Kenichi; Nakagawa, Keiichi; Goda, Keisuke; Sakuma, Ichiro; Kannari, Fumihiko

    2015-11-16

    We propose and experimentally demonstrate a new method called SF-STAMP for sequentially timed all-optical mapping photography (STAMP) that utilizes spectral filtering. SF-STAMP is composed of a diffractive optical element (DOE), a band-pass filter, and two Fourier transform lenses. Using a linearly frequency-chirped pulse and converting the wavelength to the time axis, we realize single-shot ultrafast burst imaging. As an experimental demonstration of SF-STAMP, we monitor the dynamics of a laser ablation using a linearly frequency-chirped broadband pulse (>100 nm) that is temporally stretched up to ~40 ps. This imaging method is expected to be effective for investigating ultrafast dynamics in a diverse range of fields, such as photochemistry, plasma physics, and fluidics. PMID:26698529

  10. Remoted all optical instantaneous frequency measurement system using nonlinear mixing in highly nonlinear optical fiber.

    Science.gov (United States)

    Bui, Lam Anh; Mitchell, Arnan

    2013-04-01

    A novel remoted instantaneous frequency measurement system using all optical mixing is demonstrated. This system copies an input intensity modulated optical carrier using four wave mixing, delays this copy and then mixes it with the original signal, to produce an output idler tone. The intensity of this output can be used to determine the RF frequency of the input signal. This system is inherently broadband and can be easily scaled beyond 40 GHz while maintaining a DC output which greatly simplifies receiving electronics. The remoted configuration isolates the sensitive and expensive receiver hardware from the signal sources and importantly allows the system to be added to existing microwave photonic implementations without modification of the transmission module. PMID:23571944

  11. All-optical tunable microwave interference suppression filter based on SOA

    Science.gov (United States)

    Xu, Enming; Zhang, Xinliang; Zhou, Lina; Huang, Dexiu

    2008-12-01

    An all-optical filter structure for interference suppression of microwave signals is presented. The filter is based on a recirculating delay line (RDL) loop consisting of a semiconductor optical amplifier (SOA) followed by a tunable narrowband optical filter, and a fiber Bragg grating connected after the RDL loop. Negative tap is generated in wavelength conversion process based on cross-gain modulation of amplified spontaneous emission spectrum of the SOA. A narrow passband filter with negative coefficients and a broadband all-pass filter are synthesized to achieve a narrow notch filter with flat passband which can excise interference with minimal impact on the wanted signal over a wide microwave range. Experimental results show that measured and theoretical frequency responses agree well and the filter is tunable.

  12. All-Optical Field-Induced Second-Harmonic Generation

    CERN Document Server

    Davidson, Roderick B; Ziegler, Jed I; Avanesyan, Sergey M; Lawrie, Ben J; Haglund, Richard F

    2015-01-01

    Efficient frequency modulation techniques are crucial to the development of plasmonic metasurfaces for information processing and energy conversion. Nanoscale electric-field confinement in optically pumped plasmonic structures enables stronger nonlinear susceptibilities than are attainable in bulk materials. The interaction of three distinct electric fields in (chi)^3 optical processes allows for all-optical modulation of nonlinear signals. Here we demonstrate effcient third-order second harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients within a dielectric material. We utilize an ultrafast optical pump to control the plasmonically induced electric-fields and to generate bandwidth-limited ultrafast second-harmonic pulses driven by the control pulses. The combination of plasmonic metasurfaces with all-optical control and the freedom to choose the dielectric allow multiple generalizations of this concept and geometry to other four-wave mixing process...

  13. Silicon photonic crystal all-optical logic gates

    International Nuclear Information System (INIS)

    All-optical logic gates, including OR, XOR, NOT, XNOR, and NAND gates, are realized theoretically in a two-dimensional silicon photonic crystal using the light beam interference effect. The ingenious photonic crystal waveguide component design, the precisely controlled optical path difference, and the elaborate device configuration ensure the simultaneous realization of five types of logic gate with low-power and a contrast ratio between the logic states of “1” and “0” as high as 20 dB. High power is not necessary for operation of these logic gate devices. This offers a simple and effective approach for the realization of integrated all-optical logic devices.

  14. Bufferless Ultra-High Speed All-Optical Packet Routing

    Science.gov (United States)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  15. All-Optical Switching Based on Azo Polymer Material

    Institute of Scientific and Technical Information of China (English)

    DENG Yan; LUO Yan-Hua; WANG Pei; LU Yong-Hua; MING Hai; ZhANG Qi-Jing

    2007-01-01

    Conventional all-optical switches based on azo polymer films and the all-optical switches based on the attenuated total reflection (ATR) geometry are investigated. A conventional switch system, including a pump beam of 532nm and a probe beam of 650nm, is based on the photoinduced birefringence effect of azo polymer. An ATR switch in a prism-multilayer configuration is achieved by changing the reflectance of the probe beam with an external pump beam. The ATR method provides the substantial improvement of the speed and the efficiency of the modulation over the conventional method. Although the azo polymer response still remains relatively slow,an enhanced nonlinear refractive index of the azo polymer film can effectively increase the modulation.

  16. The All Optical New Universal Gate Using TOAD

    Directory of Open Access Journals (Sweden)

    Goutam Kumar Maity

    2014-06-01

    Full Text Available Since the seventies of the past century the reversible logic has originated as an unconventional form of computing. It is new relatively in the area of extensive applications in quantum computing, low power CMOS, DNA computing, digital signal processing (DSP, nanotechnology, communication, optical computing, computer graphics, bio information, etc .Here we present and configure a new TAND gate in all-optical domain and also in this paper we have explained their principle of operations and used a theoretical model to fulfil this task, finally supporting through numerical simulations. In the field of ultra-fast all-optical signal processing Terahertz Optical Asymmetric Demultiplexer (TOAD, semiconductor optical amplifier (SOA-based, has an important function. The different logical (composing of Boolean function operations can be executed by designed circuits with TAND gate in the domain of universal logic-based information processing.

  17. Optimised Design and Analysis of All-Optical Networks

    DEFF Research Database (Denmark)

    Glenstrup, Arne John

    2002-01-01

    high. A new optical network concept, the synchronous optical hierarchy, is proposed, in which wavelengths are subdivided into timeslots to match the traffic granularity. Various theoretical properties of this concept are investigated and compared in simulation studies. An integer linear programming......This PhD thesis presents a suite of methods for optimising design and for analysing blocking probabilities of all-optical networks. It thus contributes methodical knowledge to the field of computer assisted planning of optical networks. A two-stage greenfield optical network design optimiser...... is developed, based on shortest-path algorithms and a comparatively new metaheuristic called simulated allocation. It is able to handle design of all-optical mesh networks with optical cross-connects, considers duct as well as fibre and node costs, and can also design protected networks. The method is assessed...

  18. An exciton-polariton mediated all-optical router

    OpenAIRE

    Flayac, H.; Savenko, I. G.

    2013-01-01

    We propose an all-optical nonlinear router based on a double barrier gate connected to periodically modulated guides. A semiconductor microcavity is driven nonresonantly in-between the barriers to form an exciton-polariton condensate on a discrete state that is subject to the exciton blueshift. The subsequent coherent optical signal is allowed to propagate through a guide provided that the condensate energy is resonant with a miniband or is blocked if it faces a gap. While a symmetric sample ...

  19. All-optical switching in metamaterial with high structural symmetry

    OpenAIRE

    Tuz, Vladimir R.; Prosvirnin, Sergey L.

    2011-01-01

    We argue the possibility of realization of a polarization insensitive all-optical switching in a planar metamaterial composed of a 4-fold periodic array of two concentric metal rings placed on a substrate of nonlinear material. It is demonstrated that a switching may be achieved between essentially different values of transmission near the resonant frequency of the high-quality-factor Fano-shape trapped-mode excitation.

  20. A coherent perceptron for all-optical learning

    International Nuclear Information System (INIS)

    We present nonlinear photonic circuit models for constructing programmable linear transformations and use these to realize a coherent perceptron, i.e., an all-optical linear classifier capable of learning the classification boundary iteratively from training data through a coherent feedback rule. Through extensive semi-classical stochastic simulations we demonstrate that the device nearly attains the theoretical error bound for a model classification problem. (orig.)

  1. All Optical Flip-Flop Based on Coupled Laser Diodes

    OpenAIRE

    Hill, MT Martin

    1999-01-01

    An all optical set-reset flip flop is presented that is based on two coupled identical laser diodes. The lasers are coupled so that when one of the lasers lases it quenches lasing in the other laser. The state of the flip flop is determined by which laser is currently lasing. Rate equations are used to model the flip flop and obtain steady state characteristics. The flip flop is experimentally demonstrated by use of antireflection coated laser diodes and free space optics.

  2. All-optical mode unscrambling on a silicon photonic chip

    CERN Document Server

    Morichetti, Francesco; Grillanda, Stefano; Peserico, Nicola; Carminati, Marco; Ciccarella, Pietro; Ferrari, Giorgio; Guglielmi, Emanuele; Sorel, Marc; Melloni, Andrea

    2015-01-01

    We demonstrate a 4-channel silicon photonic MIMO demultiplexer performing all-optical unscrambling of four mixed modes. Mode unscrambling is achieved by means of a cascaded Mach-Zehnder architecture that is sequentially reconfigured by individually monitoring each stage though integrated transparent detectors, namely Contact Less Integrated Photonic Probes (CLIPPs). Robust demultiplexing of 10 Gbit/s channels with less than -20 dB crosstalk is achieved.

  3. All-optical signal processing in quadratic nonlinear materials

    OpenAIRE

    Johansen, Steffen Kjær; Sørensen, Mads Peter; Bang, Ole

    2002-01-01

    The focal point of the research presented here is all-optical signal processing via nonlinearities. The objective has been to investigate the interaction between optical signals via nonlinearities and how these nonlinearities can be engineered to serve specific purposes. The nonlinear response of materials with a second order nonlinearity, the so-called X(2) materials, is faster and stronger than that of more conventional materials with a cubic nonlinearity. The X(2) materials support spatial...

  4. All-optical logic-gates based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Zhang Chun-Ping; Guo Zong-Xia; Tian Jian-Guo; Zhang Guang-Yin; Song Qi-Wang

    2005-01-01

    Based on self-diffraction in bacteriorhodopsin (bR) film, we propose all-optical NOT, XOR, half adder and XNOR logic operations. Using the relation between diffraction light and the polarization states of recording beams, we demonstrate NOT and XNOR logic operations. Studying the relation of polarization states among the diffracting, recording and reading beams, we implement XOR logic and half adder operations with three inputs. The methods are simple and practicable.

  5. A coherent perceptron for all-optical learning

    Energy Technology Data Exchange (ETDEWEB)

    Tezak, Nikolas; Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)

    2015-12-15

    We present nonlinear photonic circuit models for constructing programmable linear transformations and use these to realize a coherent perceptron, i.e., an all-optical linear classifier capable of learning the classification boundary iteratively from training data through a coherent feedback rule. Through extensive semi-classical stochastic simulations we demonstrate that the device nearly attains the theoretical error bound for a model classification problem. (orig.)

  6. New generation of devices for all-optical communications

    International Nuclear Information System (INIS)

    To increase the transmission capacity of future communication networks is becoming very critical. This task can only be accomplished by taking advantage of optical networks where multiplexing techniques such as Dense Wavelength Division Multiplexing (DWDM) and Optical Time Division Multiplexing (OTDM) are employed. To avoid electronic bottlenecks a whole new generation of ultrafast devices is needed. To fulfill these needs a new class of all optical devices has been proposed and developed. By taking advantage of the nonlinear dynamics in semiconductor optical amplifiers in combination with the fiber interferometers a new generation of ultrafast all-optical de multiplexers and wavelength converters has been demonstrated. Other switching technologies are also promising for the future. The latest technologies in the area of micro machining have created very attractive low cost MEMS. Recently announced use of bubble technology for all-optical switching might also lead to the development of next generation large scale switching fabrics. This paper is an overview of the recent development in these areas. (authors)

  7. All-Optical Signal Processing using Silicon Devices

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Pu, Minhao; Ding, Yunhong;

    2014-01-01

    This paper presents an overview of recent wo rk on the use of silicon waveguides for processing optical data signals. We will describe ultra-fast, ultra-broadband, polarisation-insensitive and phase-sensitive applications including processing of spectrally-efficient data formats and optical phase...

  8. Tunable all-optical single-bandpass photonic microwave filter based on spectrally sliced broad optical source and phase modulation.

    Science.gov (United States)

    Chen, Ming; Pan, Wei; Zou, Xihua; Luo, Bin; Yan, Lianshan; Liu, Xinkai

    2013-01-10

    A tunable all-optical single-bandpass photonic microwave filter (PMF) based on spectrally sliced broadband optical source and phase modulation is proposed and experimentally demonstrated. A broadband optical source and a Mach-Zehnder interferometer (MZI) are used to generate continuous optical spectral samples, which are employed to form a finite impulse response filter with a single-bandpass response with the help of a single-mode fiber. A phase modulator is then adopted to eliminate the baseband components in the filtering response. The center frequency of the PMF can be tuned by changing the free spectral range of the MZI. An experiment is performed, and the results demonstrate that the proposed PMF has a single-bandpass without baseband components and a tuning range of 5-15 GHz. PMID:23314649

  9. Realization of an all optical exciton-polariton router

    International Nuclear Information System (INIS)

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions

  10. All-optical corrole-based oxygen sensor

    International Nuclear Information System (INIS)

    We investigate the applicability of a corrole molecule, 5,15-bis(pentafluorophenyl)- 10-(4-methylphenyl)-corrole, as a possible fluorescent sensor of oxygen. Upon illumination we observe a strong increase of the fluorescence intensity and the emission spectrum broadens considerably towards a short wavelength range. This behaviour is in contrast to most fluorescent molecules, which typically feature photobleaching. For the corrole studied here, classic photobleaching is observed only when the sample is placed in a vacuum. This unique behaviour of fluorescence emission suggests the use of these molecules in all-optical oxygen sensor architectures. (paper)

  11. All-optical flip-flop and control methods thereof

    Science.gov (United States)

    Maywar, Drew; Agrawal, Govind P.

    2010-03-23

    Embodiments of the invention pertain to remote optical control of holding beam-type, optical flip-flop devices, as well as to the devices themselves. All-optical SET and RE-SET control signals operate on a cw holding beam in a remote manner to vary the power of the holding beam between threshold switching values to enable flip-flop operation. Cross-gain modulation and cross-polarization modulation processes can be used to change the power of the holding beam.

  12. Realization of an all optical exciton-polariton router

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Bloch, Jacqueline, E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Physics Department, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)

    2015-11-16

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  13. All-Optical Generation of Surface Plasmons in Graphene

    CERN Document Server

    Constant, Thomas J; Chang, Darrick E; Hendry, Euan

    2015-01-01

    Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by using nonlinear wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase-matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching $10^{-5}$.

  14. All-optical noninvasive delayed feedback control of semiconductor lasers

    CERN Document Server

    Schikora, Sylvia

    2013-01-01

    The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.   The work has been awarded the Carl-Ramsauer-Prize 2012.   Contents ·         All-Optical Control Setup ·         Stable States with Resonant Fabry-Perot Feedback ·         Control of an Unstable Stationary State and of Unstable Selfpulsations ·         Controlling Chaos ·         Con...

  15. Rapidly reconfigurable all-optical universal logic gate

    Science.gov (United States)

    Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.

    2010-09-07

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  16. All-optical biomolecular parallel logic gates with bacteriorhodopsin.

    Science.gov (United States)

    Sharma, Parag; Roy, Sukhdev

    2004-06-01

    All-optical two input parallel logic gates with bacteriorhodopsin (BR) protein have been designed based on nonlinear intensity-induced excited-state absorption. Amplitude modulation of a continuous wave (CW) probe laser beam transmission at 640 nm corresponding to the peak absorption of O intermediate state through BR, by a modulating CW pump laser beam at 570 nm corresponding to the peak absorption of initial BR state has been analyzed considering all six intermediate states in its photocycle using the rate equation approach. The transmission characteristics have been shown to exhibit a dip, which is sensitive to normalized small-signal absorption coefficient (beta), rate constants of O and N intermediate states and absorption of the O state at 570 nm. There is an optimum value of beta for a given pump intensity range for which maximum modulation can be achieved. It is shown that 100% modulation can be achieved if the initial state of BR does not absorb the probe beam. The results have been used to design low-power all-optical parallel NOT, AND, OR, XNOR, and the universal NAND and NOR logic gates for two cases: 1) only changing the output threshold and 2) considering a common threshold with different beta values. PMID:15382746

  17. All-optical ion generation for ion trap loading

    CERN Document Server

    Sheridan, Kevin; Keller, Matthias

    2011-01-01

    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.

  18. All-optical generation of surface plasmons in graphene

    Science.gov (United States)

    Constant, T. J.; Hornett, S. M.; Chang, D. E.; Hendry, E.

    2016-02-01

    Surface plasmons in graphene offer a compelling route to many useful photonic technologies. As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability, crystalline stability, large optical nonlinearities and extremely high electromagnetic field concentration. As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10-5.

  19. All-Optical Implementation of the Ant Colony Optimization Algorithm

    Science.gov (United States)

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-05-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.

  20. All optical cooling of $^{39}$K to Bose Einstein condensation

    CERN Document Server

    Salomon, Guillaume; Lepoutre, Steven; Aspect, Alain; Bourdel, Thomas

    2014-01-01

    We report the all-optical production of Bose Einstein condensates (BEC) of $^{39}$K atoms. We directly load $3 \\times 10^{7}$ atoms in a large volume optical dipole trap from gray molasses on the D1 transition. We then apply a small magnetic quadrupole field to polarize the sample before transferring the atoms in a tightly confining optical trap. Evaporative cooling is finally performed close to a Feshbach resonance to enhance the scattering length. Our setup allows to cross the BEC threshold with $3 \\times 10^5$ atoms every 7s. As an illustration of the interest of the tunability of the interactions we study the expansion of Bose-Einstein condensates in the 1D to 3D crossover.

  1. All-Optical Parity Circuits Using Nonlinear Directional Coupler

    Directory of Open Access Journals (Sweden)

    L. A.Bakhtiar

    2013-06-01

    Full Text Available Since in the previous existing optical designs, the electronic-optic-electronic conversion has not been completely eliminated. Construction of the optical circuits with nonlinear waveguides can overcome this drawback. We have developed a nonlinear directional coupler theory to describe novel all-optical parity circuits. By using three channels, appropriate adjusting of the refractive indices, and selecting the correct length for coupling event, even/odd parity circuits can be obtained. The operation of these circuits is simulated with the aid of RSoft CAD-Layout (BeamPROP simulator. Towards the end of the work, we compared the speed of our proposed novel circuit with the existing optical designs and also electronic structure of which we have a better result.

  2. Generalized model for all-optical light modulation in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-10-01

    We present a generalized model for the photochemical cycle of bacteriorhodopsin (bR) protein molecule. Rate equations have been solved for the detailed light-induced processes in bR for its nine states: B→K↔L↔MI→MII↔N↔O↔P→Q→B. The complete steady-state intensity-induced population densities in various states of the molecule have been computed to obtain a general, exact, and analytical expression for the nonlinear absorption coefficient for multiple modulation pump laser beams. All-optical light modulation of different probe laser beam transmissions by intensity induced population changes due to one and two modulation laser beams has been analyzed. The proposed model has been shown to accurately model experimental results.

  3. High-contrast, all-optical switching in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2005-09-01

    We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films.

  4. All-optical optoacoustic microscopy system based on probe beam deflection technique

    Science.gov (United States)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  5. All-optical nonlinear holographic correlation using bacteriorhodopsin films

    Science.gov (United States)

    Thoma, Ralph; Dratz, Michael; Hampp, Norbert

    1995-05-01

    Films made of the halobacterial photochrome bacteriorhodopsin (BR) can be used in a number of holographic real-time applications. Their application as active material in a dual-axis joint- Fourier-transform (DAJFT) real-time correlator was shown recently. The BR films have a strong nonlinear intensity dependence on the light-induced absorption and refractive-index changes. Therefore the holographic diffraction efficiency also shows a nonlinear dependence on the writing intensity. We investigate the effect of this nonlinearity on the result of the correlation process in a bacteriorhodopsin-based DAJFT correlator. Numerical models supporting the experimental observations are presented. It was found that the BR film combines the holographic function for most objects with that of a spatial bandpass filter, whose center frequency is tuned by the writing intensity. This results in smaller peak widths and a suppression of the sidelobes. BR films allow the application of this nonlinear behavior in real time to the all-optical correlation process.

  6. All-optical switchings of 3-hydroxyflavone in different solvents

    International Nuclear Information System (INIS)

    3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using the third-harmonic generation (355nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave (cw) He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of 3-HF in the three different solvents are determined by using the Z-scan technique under an ultraviolet (UV) pump beam at a wavelength of 355 nm. It has been found that the optical switching and beam deflection effects result from the change in refractive index of 3-HF under the irradiation of the pump beam. On the basis of the analyses of absorption spectra and fluorescence spectra, we conclude that the change in refractive index of 3-HF is due to not the thermal effect but the ESIPT effect of 3-HF under the pump beam. As the ESIPT is exceedingly fast, 3-HF might be an excellent candidate for high-speed optical switching

  7. Terahertz-driven, all-optical electron gun

    CERN Document Server

    Huang, W Ronny; Wu, Xiaojun; Cankaya, Huseyin; Calendron, Anne-Laure; Ravi, Koustuban; Zhang, Dongfang; Nanni, Emilio A; Hong, Kyung-Han; Kärtner, Franz X

    2016-01-01

    Ultrashort electron beams with narrow energy spread, high charge, and low jitter are essential for resolving phase transitions in metals, semiconductors, and molecular crystals. These semirelativistic beams, produced by phototriggered electron guns, are also injected into accelerators for x-ray light sources. The achievable resolution of these time-resolved electron diffraction or x-ray experiments has been hindered by surface field and timing jitter limitations in conventional RF guns, which thus far are 96 fs, respectively. A gun driven by optically-generated single-cycle THz pulses provides a practical solution to enable not only GV/m surface fields but also absolute timing stability, since the pulses are generated by the same laser as the phototrigger. Here, we demonstrate an all-optical THz gun yielding peak electron energies approaching 1 keV, accelerated by 300 MV/m THz fields in a novel micron-scale waveguide structure. We also achieve quasimonoenergetic, sub-keV bunches with 32 fC of charge, which ca...

  8. All-optical active switching in individual semiconductor nanowires

    Science.gov (United States)

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  9. Assessment of signal quality in 10 Gbit/s all-optical networks with wavelength converters

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Stubkjær, Kristian

    Detailed modelling is used to assess the performance of an all-optical network. We predict that more than 10 all-optical cross connects interconnected by dispersion compensated single mode fiber can be cascaded at 10 Gbit/s......Detailed modelling is used to assess the performance of an all-optical network. We predict that more than 10 all-optical cross connects interconnected by dispersion compensated single mode fiber can be cascaded at 10 Gbit/s...

  10. Performance evaluations for dynamic wavelength routed all-optical multifiber networks

    DEFF Research Database (Denmark)

    Fenger, Christian

    2004-01-01

    This paper presents a study on dynamic wavelength routed all-optical networks by simulating traffic on all-optical networks. A performance study is carried out on dynamic all-optical networks for fixed and free routing. It is explained how multiple fibers correspond to limited wavelength conversion...

  11. Photonic encryption : modeling and functional analysis of all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    2004-10-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple

  12. All-optical flip-flop based on coupled SOA-PSW

    Science.gov (United States)

    Wang, Lina; Wang, Yongjun; Wu, Chen; Wang, Fu

    2016-07-01

    The semiconductor optical amplifier (SOA) has obvious advantages in all-optical signal processing, because of the simple structure, strong non-linearity, and easy integration. A variety of all-optical signal processing functions, such as all-optical wavelength conversion, all-optical logic gates and all-optical sampling, can be completed by SOA. So the SOA has been widespread concerned in the field of all-optical signal processing. Recently, the polarization rotation effect of SOA is receiving considerable interest, and many researchers have launched numerous research work utilizing this effect. In this paper, a new all-optical flip-flop structure using polarization switch (PSW) based on polarization rotation effect of SOA is presented.

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound ... limitations of Pelvic Ultrasound Imaging? What is Pelvic Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of Pelvic Ultrasound Imaging? What is Pelvic Ultrasound Imaging? Ultrasound is safe and painless, and produces pictures ... page What are the limitations of Pelvic Ultrasound Imaging? Ultrasound waves are disrupted by air or gas; ...

  15. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  16. Heterogeneous broadband network

    Science.gov (United States)

    Dittmann, Lars

    1995-11-01

    Although the vision for the future Integrated Broadband Communication Network (IBCN) is an all optical network, it is certain that for a long period to come, the network will remain very heterogeneous, with a mixture of different physical media (fiber, coax and twisted pair), transmission systems (PDH, SDH, ADSL) and transport protocols (TCP/IP, AAL/ATM, frame relay). In the current work towards the IBCN, the ATM concept is considered the generic network protocol for both public and private network, with the ability to use different underlying transmission protocols and, through adaptation protocols, provide the appropriate services (old as well as new) to the customer. One of the major difficulties of heterogeneous network is the restriction that is usually given by the lowest common denominator, e.g. in terms of single channel capacity. A possible way to overcome these limitations is by extending the ATM concept with a multilink capability, that allows us to use separate resources as one common. The improved flexibility obtained by this protocol extension further allows a real time optimization of network and call configuration, without any impact on the quality of service seen from the user. This paper describes an example of an ATM based multilink protocol that has been experimentally implemented within the RACE project 'STRATOSPHERIC'. The paper outlines the complexity of introducing an extra network functionality compared with the added value, such as an improved ability to recover an error due to a malfunctioning network component.

  17. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu; Li, Mo, E-mail: jpwang@umn.edu, E-mail: moli@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-09-07

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  18. All-optical adder/subtractor based on tera-hertz optical asymmetric demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Dilip Kumar Gayen; Rajat Kumar Pal; Jitendra Nath Roy

    2009-01-01

    An all-optical adder/subtractor (A/S) unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed.Tile all-optical A/S unit with a set of all-optical full-adders and optical exclusive-ORs (XORs),can be used to perform a fast central processor unit using optical hardware components.We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform binary addition and subtraction.With computer simulation results confirming the described methods,conclusions are given.

  19. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    International Nuclear Information System (INIS)

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities

  20. ALL-OPTICAL BINARY COUNTER BY USING T FLIP-FLOP: AN IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    SAMIR SAHU

    2011-10-01

    Full Text Available All-optical T (Toggle flip-flop with preset (PR and clear (CLR are basic building modules for the development of ultra-high speed all optical binary counter. In this paper, a non-linear material based alloptical switching mechanism is utilized here to realize the all-optical T flip-flop with PR and CLR. A composite slab of linear medium (LM and non-linear medium (NLM is used to design the all-optical switch that exploit the attractive features of NLM. These all-optical T flip-flops can find application in the development of several complex all-optical circuits of enhanced performances. Here we demonstrate an all-optical binary 3-bit ripple counter which is nothing but the successive application of the flip flop. This circuit can elevate to a higher bit different counters. As this all optical circuits are purely all-optical in nature, these are very simple as well as very fast. Also the schemes have capacity of cascading.

  1. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way

  2. All-optical signal processing at 10 GHz using a photonic crystal molecule

    Energy Technology Data Exchange (ETDEWEB)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  3. All-optical signal processing at 10 GHz using a photonic crystal molecule

    International Nuclear Information System (INIS)

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk

  4. 160 Gb/s all-optical packet switching field experiment

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; Herrera, J.; Raz, O.;

    2007-01-01

    We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits.......We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits....

  5. All-optical photoacoustic imaging and detection of early-stage dental caries

    Science.gov (United States)

    Sampathkumar, Ashwin; Hughes, David A.; Longbottom, Chris; Kirk, Katherine J.

    2015-02-01

    Dental caries remain one of the most common oral diseases in the world. Current detection methods, such as dental explorer and X-ray radiography, suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease because of the small size (tooth decay. This AOPAI system provides a non-contact, non-invasive and non-ionizing means of detecting early-stage dental caries. Ex-vivo teeth exhibiting early-stage, white-spot lesions were imaged using AOPAI. Experimental scans targeted each early-stage lesion and a reference healthy enamel region. Photoacoustic (PA) signals were generated in the tooth using a 532-nm pulsed laser and the light-induced broadband ultrasound signal was detected at the surface of the tooth with an optical path-stabilized Michelson interferometer operating at 532 nm. The measured time-domain signal was spatially resolved and back-projected to form 2D and 3D maps of the lesion using k-wave reconstruction methods. Experimental data collected from areas of healthy and diseased enamel indicate that the lesion generated a larger PA response compared to healthy enamel. The PA-signal amplitude alone was able to detect a lesion on the surface of the tooth. However, time- reversal reconstructions of the PA scans also quantitatively depicted the depth of the lesion. 3D PA reconstruction of the diseased tooth indicated a sub-surface lesion at a depth of 0.6 mm, in addition to the surface lesion. These results suggest that our AOPAI system is well suited for rapid clinical assessment of early-stage dental caries. An overview of the AOPAI system, fine-resolution PA and histology results of diseased and healthy teeth will be presented.

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ... exam may be part of a pelvic ultrasound examination. Doppler ultrasound is a special ultrasound technique that ...

  7. Obstetrical Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures of ... What are the limitations of Obstetrical Ultrasound Imaging? Obstetric ultrasound cannot identify all fetal abnormalities. Consequently, when ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... CT scanning , and MRI are the methods of choice in such a setting. Large patients are more ... content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Images ...

  9. Intravascular Ultrasound

    Science.gov (United States)

    ... Nuclear Ventriculography Optical Coherence Tomography Positron Emission Tomography (PET) Stress Echocardiography Transesophageal Echocardiography Intravascular Ultrasound | Share Intravascular ultrasound ( ...

  10. All-Optical Switches in Optical Time-Division Multiplexing Technology: Theory,Experience and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Optical time division multiplexing (OTDM) is one of thepromisinig ways for the future high-speed optical fiber communication networks. All-optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time-division demultiplexing, packet switching, all-optical regenerating and so on. This thesis mainly studies various all-optical switch technologies and their utilization in the fields of all-optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.(1) A novel all-optical ultrafast demultiplexing scheme using the soliton self-trapping effect in birefringent fiber is proposed.(2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.(3) The performance analysis and the configuration optimization of the all-optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all-optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach-Zehnder Interferometer configuration.(4) The 8×2\\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.(5) The NOLM switch is used to realize the all-optical 3R regeneration of 2\\^5 Gb/s Return-to-Zero signal.(6) The feasibility and limitation of the all-optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all-optical packet dropping node suitable in the networks with ring or bus configuration and an all-optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all-optical packet switching through combining the all-optical switches and the reasonable logic decisions.

  11. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can be...... treated as generic switching elements and, when efficiently interconnected, can form larger and more functional network subsystems. Specifically, this paper reports on all-optical subsystems capable of performing on-the-fly packet clock recovery, 3R regeneration, label/ payload separation, and packet...

  12. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    Science.gov (United States)

    He, Zhou; Li, Wei; Tao, Zhiyong; Shao, Ji ng; Liang, Xiaojun; Deng, Zhuanhua; Huang, Dexiu

    2011-02-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  13. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    International Nuclear Information System (INIS)

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  14. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.;

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  15. All-optical demultiplexing and wavelength conversion in an electroabsorption modulator

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hilliger, E.; Tersigni, Andrea;

    2001-01-01

    Cross-absorption modulation in an all electroabsorption modulator is utilised to perform 80/10 Gb/s all-optical demultiplexing. An improvement in receiver sensitivity at 10 Gb/s is demonstrated when wavelength converting....

  16. A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.

  17. All-Optical Signal Processing with Super-Continuum Generated from Optical Fibers

    Institute of Scientific and Technical Information of China (English)

    Kazuro Kikuchi

    2003-01-01

    Super-continuum (SC) generated from optical fibers has many attractive applications in optical communication systems.Discussing the mechanism of wideband and flat SC generation, we describe all-optical signal processing that employs the SC.

  18. All-Optical Signal Processing with Super-Continuum Generated from Optical Fibers

    Institute of Scientific and Technical Information of China (English)

    Kazuro; Kikuchi

    2003-01-01

    Super-continuum (SC) generated from optical fibers has many attractive applications in optical communication systems. Discussing the mechanism of wideband and flat SC generation, we describe all-optical signal processing that employs the SC.

  19. All-optical calculus based on dynamic Brillouin grating reflectors in optical fibers

    OpenAIRE

    Primerov, Nikolay; Chin, Sang Hoon; Thévenaz, Luc; Ursini, Leonora; Santagiustina, Marco

    2011-01-01

    We experimentally demonstrate that all-optical signal calculus can be realized based on dynamic Brillouin gratings in optical fibers. Temporal integration and first-order differentiation were performed for optical pulse with various waveforms.

  20. All optical 160 to 10 Gbit/s demultiplexing using co-propagating optical clock

    DEFF Research Database (Denmark)

    Seoane, Jorge; Siahlo, Andrei; Clausen, Anders; Oxenløwe, Leif Katsuo; Zhenbo, Xu; Jeppesen, Palle

    2004-01-01

    All optical demultiplexing of a 160 Gbit/s optical time domain multiplexed signal using a co-propagating 10 GHz optical clock as control signal into a nonlinear optical loop mirror is demonstrated.......All optical demultiplexing of a 160 Gbit/s optical time domain multiplexed signal using a co-propagating 10 GHz optical clock as control signal into a nonlinear optical loop mirror is demonstrated....

  1. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  2. Parity Checking and Generating Circuit with Nonlinear Material in All-Optical Domain

    Institute of Scientific and Technical Information of China (English)

    Kuladeep Roy Chowdhury; Debduti De; Sourangshu Mukhopadhyay

    2005-01-01

    @@ An all-optical parity checker and parity bit generator circuit is proposed, in which optical non-linear materials are used as switching devices. High-speed (above GHz) logic operations can be achieved by this all-optical circuit that is tremendously fast than its equivalent electronic counterpart. Here these circuits are used to check the errors in optical data through a transmission line.

  3. Adoption of Broadband Services

    DEFF Research Database (Denmark)

    Falch, Morten

    2008-01-01

    Broadband is seen as a key infrastructure for developing the information society. For this reason many Governments are actively engaged in stimulating investments in broadband infrastructures and use of broadband services. This chapter compares a wide range of broadband strategies in the most...... successful markets for broadband. This is done through analysis of national policies in three European countries-Denmark, Sweden, and Germany-and the U.S., Japan, and South Korea. We concluded that successful implementation of broadband depends on the kind of policy measures to be taken at the national level...

  4. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound is most often performed to evaluate the: uterus cervix ovaries fallopian tubes bladder Pelvic ultrasound exams ... to view the endometrium , the lining of the uterus, and the ovaries. Transvaginal ultrasound also provides a ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ... Pelvic Ultrasound Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and organs ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  10. Broadband acoustic properties of a murine skull

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-01

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  11. Laser Trimming for Adjustment of Grating Offset in Phase-Shifted Fiber Grating Coupler for All-Optical Switching Application

    Institute of Scientific and Technical Information of China (English)

    Hirohisa; Yokota; Yutaka; Sasaki

    2003-01-01

    We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.

  12. Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses

    Science.gov (United States)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Petit-Watelot, S.; Quessab, Y.; Hehn, M.; Montaigne, F.; Malinowski, G.; Mangin, S.

    2016-08-01

    Using a time-dependent electrical investigation of the all-optical switching in ferrimagnetic and ferromagnetic Hall crosses via the anomalous Hall effect, intriguing insights into the rich physics underlying the all-optical switching are provided. We demonstrate that two different all-optical magnetization switching mechanisms can be distinguished; a "single pulse" switching for ferrimagnetic GdFeCo alloys, and a "two regimes" switching process for both ferrimagnetic TbCo alloys and ferromagnetic Pt/Co multilayers. We show that the latter takes place at two different time scales, and consists of a steplike helicity-independent multiple-domain formation within the first 1 ms followed by a helicity-dependent remagnetization on several tens of milliseconds.

  13. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. PMID:22109510

  14. Tunable optoelectronic oscillator incorporating an all-optical microwave photonic filter

    Science.gov (United States)

    Li, Cheng-Xin; Chen, Fu-Shen; Zhang, Jia-Hong

    2015-01-01

    A tunable optoelectronic oscillator (OEO), which employs an all-optical microwave photonic filter (MPF) consisting of two laser sources (LD1 and LD2), an optical coupler (OC, 50:50), a Mach-Zehnder modulator (MZM), and a chirped fiber Bragg grating, is proposed. Because the central frequency of the all-optical MPF can be shifted by changing the wavelength spacing between the two laser sources, the frequency tunability of the OEO can be realized by incorporating such an all-optical MPF into an optical domain dual-loop OEO without any electronic microwave filters. A detailed theoretical analysis is presented and the results are confirmed by an experiment. A microwave signal with a frequency-tuning range from 4.057 to 8.595 GHz is generated. The phase noise, the long-term stability, and the side-mode suppression performance of the generated microwave signal are also investigated.

  15. An all-optical time-delay relay based n a bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Xu Xu-Xu; Zhang Chun-Ping; Qi Shen-Wen; Song Qi-Wang

    2008-01-01

    Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film,we have demonstrated an all-optical time-delay relay.To extend our work,the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied.We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film.Furthermore,the shortest and longest delay times are given for the relay of 'switch off'.The saturable delay time and maximum delaytime of 'switch on' are also given.How the wavelengths (632.8,568,533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed.The simulation results are useful for optimizing the design of all-optical time-delay relays.

  16. Frequency-time coherence for all-optical sampling without optical pulse source

    CERN Document Server

    Preussler, Stefan; Schneider, Thomas

    2016-01-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave, allowing simple integration in appropriate platforms, such as Silicon Photonics. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift.

  17. All-Optical Switching in Bacteriorhodopsin Based on Excited-State Absorption

    Science.gov (United States)

    Roy, Sukhdev

    2008-03-01

    Switching light with light is of tremendous importance for both fundamental and applied science. The advent of nano-bio-photonics has led to the design, synthesis and characterization of novel biomolecules that exhibit an efficient nonlinear optical response, which can be utilized for designing all-optical biomolecular switches. Bacteriorhodopsin (bR) protein found in the purple membrane of Halobacterium halobium has been the focus of intense research due to its unique properties that can also be tailored by physical, chemical and genetic engineering techniques to suit desired applications. The talk would focus on our recent results on all-optical switching in bR and its mutants, based on excited-state absorption, using the pump-probe technique. We would discuss the all-optical control of various features of the switching characteristics such as switching contrast, switching time, switching pump intensity, switched probe profile and phase, and relative phase-shift. Optimized conditions for all-optical switching that include optimized values of the small-signal absorption coefficient (for cw case), the pump pulse width and concentration for maximum switching contrast (for pulsed case), would be presented. We would discuss the desired optimal spectral and kinetic properties for device applications. We would also discuss the application of all-optical switching to design low power all-optical computing devices, such as, spatial light modulators, logic gates and multiplexers and compare their performance with other natural photoreceptors such as pharaonis phoborhodopsin, proteorhodopsin, photoactive yellow protein and the blue light plant photoreceptor phototropin.

  18. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

    DEFF Research Database (Denmark)

    Liu, Liu; Kumar, R.; Huybrechts, K.;

    2010-01-01

    Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising pl...

  19. An all-optical buffer based on temporal cavity solitons operating at 10 Gb/s

    CERN Document Server

    Jang, Jae K; Schröder, Jochen; Eggleton, Benjamin J; Murdoch, Stuart G; Coen, Stéphane

    2016-01-01

    We demonstrate the operation of an all-optical buffer based on temporal cavity solitons stored in a nonlinear passive fiber ring resonator. Unwanted acoustic interactions between neighboring solitons are suppressed by modulating the phase of the external laser driving the cavity. A new locking scheme is presented that allows the buffer to operate with an arbitrarily large number of cavity solitons in the loop. Experimentally, we are able to demonstrate the storage of 4536 bits of data, written all-optically into the fiber ring at 10 Gb/s, for 1 minute.

  20. High-order all-optical differential equation solver based on microring resonators.

    Science.gov (United States)

    Tan, Sisi; Xiang, Lei; Zou, Jinghui; Zhang, Qiang; Wu, Zhao; Yu, Yu; Dong, Jianji; Zhang, Xinliang

    2013-10-01

    We propose and experimentally demonstrate a feasible integrated scheme to solve all-optical differential equations using microring resonators (MRRs) that is capable of solving first- and second-order linear ordinary differential equations with different constant coefficients. Employing two cascaded MRRs with different radii, an excellent agreement between the numerical simulation and the experimental results is obtained. Due to the inherent merits of silicon-based devices for all-optical computing, such as low power consumption, small size, and high speed, this finding may motivate the development of integrated optical signal processors and further extend optical computing technologies. PMID:24081039

  1. All-optical diode action with Thue-Morse quasiperiodic photonic crystals

    CERN Document Server

    Biancalana, Fabio

    2008-01-01

    We theoretically investigate the possibility of realizing a nonlinear all-optical diode by using the unique field-localization properties (known as Anderson-Kohmoto localization) of Thue-Morse quasiperiodic 1D photonic crystals. The interplay between the intrinsic spatial asymmetry in odd-order Thue-Morse lattices and Kerr nonlinearity gives rise to sharp resonances of perfect transmission that can be used to give a polarization-insensitive, nonreciprocal propagation with a contrast close to unity for low optical intensities. Such nonlinear diode would also represent the first all-optical device which is crucially based on Anderson-like localization.

  2. 160 Gb/s Silicon All-Optical Data Modulator based on Cross Phase Modulation

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Ji, Hua; Galili, Michael; Mulvad, Hans Christian Hansen; Yvind, Kresten; Hvam, Jørn Märcher; Jeppesen, Palle; Oxenløwe, Leif Katsuo

    2012-01-01

    We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal.......We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal....

  3. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    CERN Document Server

    Colman, Pierre; Yu, Yi; Mørk, Jesper

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse. The measurements are in good agreement with a theoretical model that allows us to ascribe the observation to oscillations of the free carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  4. An all-optical comparison scheme between two multi-bit data with optical nonlinear material

    Institute of Scientific and Technical Information of China (English)

    Kuladeep Roy Chowdhury; Abhijit Sinha; Sourangshu Mukhopadhyay

    2008-01-01

    Over the last few decades, several all-optical circuits have been proposed to meet the need of high-speed data processing. In some information processing architectures, the role of various analog and digital data comparisons is very important. In this letter, we proposed a multi-bit data comparison scheme. The scheme is based on the switching property of optical nonlinear material. Ultrafast operational speed larger than gigahertz can be expected from this all-optical scheme.OCIS codes: 190.0190, 200.0200, 200.1130, 200.3760.

  5. All-Optical Signal processing using Highly Nonlinear Photonic Crystal Fiber

    OpenAIRE

    Andersen, Peter Andreas; Jeppesen, Palle; Peucheret, Christophe; Clausen, Anders

    2006-01-01

    The use of HNL-PCF in optical communication systems has been investigated in this thesis. The investigation has been done with respect to the future of telecommunications in an all-optical system. The PCFs used have all been used for all-optical signal processing as part of an optical component. A large part of the work performed for this thesis has been on supercontinuum generation in a HNL-PCF and the use of such a supercontinuum in a system experiment. It has been shown how a supercontinuu...

  6. All-optical transistor action by off-resonant activation at laser threshold

    CERN Document Server

    Andrews, David L

    2009-01-01

    The development of viable all-optical data processing systems has immense importance for both the computing and telecommunication industries, but device realization remains elusive. In this Letter, we propose an innovative mechanism deployed as a basis for all optical transistor action. In detail, it is determined that an optically pumped system, operating just below laser threshold, can exhibit a greatly enhanced output on application of an off-resonant beam of sufficient intensity. The electrodynamics of the underlying, nonlinear optical mechanism is analyzed, model calculations are performed, and the results are illustrated graphically.

  7. Ultrafast low-energy all-optical switching using a photonic-crystal asymmetric Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Hu, Hao; Oxenløwe, Leif Katsuo;

    2015-01-01

    We experimentally demonstrate 20 Gbit/s all-optical switching with low-energy consumption using a simple and ultra-compact InP photonic-crystal structure by employing a well-engineered Fano resonance in combination with broken mirror symmetry.......We experimentally demonstrate 20 Gbit/s all-optical switching with low-energy consumption using a simple and ultra-compact InP photonic-crystal structure by employing a well-engineered Fano resonance in combination with broken mirror symmetry....

  8. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  9. All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing a sh...

  10. All-optical 10 Gb/s AND logic gate in a silicon microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Lei, Lei; Ding, Yunhong;

    2013-01-01

    An all-optical AND logic gate in a single silicon microring resonator is experimentally demonstrated at 10 Gb/s with 50% RZ-OOK signals. By setting the wavelengths of two intensity-modulated input pumps on the resonances of the microring resonator, field-enhanced four-wave mixing with a total input...

  11. A Highly Linear All Optical Gate Based on Coupled Photonic Crystal Cavities

    OpenAIRE

    Moille, Gregory; De Rossi, Alfredo; Lehoucq, Gaelle; Martin, Aude; Bramerie, Laurent; Gay, Mathilde; Combrie, Sylvain

    2014-01-01

    International audience A photonic crystal molecule is used as an all-optical gate to perform sampling of microwave signals. We demonstrate a very linear operation over a 50dB still with a 1.2mW power consumption.

  12. Magnetic induction measurements using an all-optical $^{87}$Rb atomic magnetometer

    CERN Document Server

    Wickenbrock, Arne; Renzoni, Ferruccio

    2013-01-01

    In this work we propose, and experimentally demonstrate, the use of a self-oscillating all-optical atomic magnetometer for magnetic induction measurements. Given the potential for miniaturization of atomic magnetometers, and their extreme sensitivity, the present work shows that atomic magnetometers may play a key role in the development of instrumentation for magnetic induction tomography.

  13. Improving the All-Optical Response of SOAs Using a Modulated Holding Signal

    DEFF Research Database (Denmark)

    Bischoff, Svend; Nielsen, Mads Lønstrup; Mørk, Jesper

    2004-01-01

    A method for increasing the all-optical modulation bandwidth of semiconductor optical amplifiers (SOAs) by use of a cross-gain-modulated (XGM) holding signal is suggested and analyzed. The bandwidth improvement is numerically demonstrated by studying wavelength conversion in an SOA-based Mach...

  14. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.;

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate an...

  15. All-optical subcarrier labeling based on the carrier suppression of the payload

    DEFF Research Database (Denmark)

    Chi, Nan; Zhang, Jianfeng; Jeppesen, Palle

    2003-01-01

    We report on a new approach to all-optical subcarrier labeling based on sideband generation through carrier-suppression of the payload. The experimental transmission over 50-km standard fiber of a 10-Gb/s payload data multiplexed with a synchronized 1.25-Gb/s subcarrier label is carried out with...

  16. A Novel All-optical Wavelength Converter Based on Self-pump Four-wave Mixing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianxiao; CHEN Zhangyuan; TAO Zhenning; WU Deming; XU Anshi; WANG Ziyu

    2002-01-01

    A novel scheme of all-optical wavelength converter(AOWC) based on dual pump four-wave mixing(DP-FWM) was demonstrated. To suppress the ASE noise of the semiconductor optical amplifier (SOA), one of the two pumps was generated interiorly from a loop laser constructed mainly by tunable optical filter and SOA. The theoretical model and some experimental results were presented.

  17. All-optical broadcast and multicast technologies based on PPLN waveguide

    DEFF Research Database (Denmark)

    Ye, Lingyun; Wang, Ju; Hu, Hao;

    2013-01-01

    All-optical 1×4 broadcast and 1×3 multicast experiments of a 40-Gb/s return-to-zero on-off keying (RZ-OOK) signal based on a periodically poled lithium niobate (PPLN) waveguide are demonstrated in this letter. Clear opened eye diagrams and error-free performance are achieved for the broadcast...

  18. Demonstration of all-optical beam steering in modulated photonic lattices

    OpenAIRE

    Rosberg, Christian R.; Garanovich, Ivan L.; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Krolikowski, Wieslaw; Kivshar, Yuri S.

    2005-01-01

    We demonstrate experimentally all-optical beam steering in modulated photonic lattices induced optically by three beam interference in a biased photorefractive crystal. We identify and characterize the key physical parameters governing the beam steering, and show that the spatial resolution can be enhanced by the additional effect of nonlinear beam self-localization.

  19. Analytical expression for the bit error rate of cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, S.

    2003-01-01

    We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed....

  20. Ultrafast all-optical modulation using a photonic-crystal Fano structure with broken symmetry

    DEFF Research Database (Denmark)

    Yu, Yi; Hu, Hao; Oxenløwe, Leif Katsuo;

    2015-01-01

    We experimentally demonstrate ultrafast all-optical modulation using an ultracompact InP photonic-crystal Fanostructure. In contrast to symmetric configurations previously considered, the use of a structure with broken symmetryin combination with a well-engineered Fano resonance is shown to...

  1. Patterning Effects in Ultrafast All-Optical Photonic Crystal Nanocavity Switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    All-optical switches are expected to play a key role in increasing the bandwidth of future communication networks by replacing slower electronic components for certain signal processing tasks. Previous work has demonstrated the possibility of switching a single pulse [1,2]. However, a more realis...

  2. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg;

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...

  3. All-Optical Switching Using Fabry-Perot Laser Diodes (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P.; K.; A.; Wai; L.; Y.; Chan; H.; Y.; Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  4. All-optical gates facilitated by soliton interactions in a multilayered Kerr medium

    OpenAIRE

    Scheuer, Jacob; Orenstein, Meir

    2005-01-01

    All-optical soliton logic operations, facilitated by incoherent interactions of multiple spatial solitons with nonlinear interfaces, are proposed and analyzed. A particlelike model, validated by beam propagation simulations, was developed for calculating the soliton trajectories and was employed for the analysis of the soliton-based logic gates.

  5. 8x40 Gb/s RZ all-optical broadcasting utilizing an electroabsorption modulator

    DEFF Research Database (Denmark)

    Xu, Lin; Chi, Nan; Yvind, Kresten;

    2004-01-01

    We experimentally demonstrate all-optical broadcasting through simultaneous 8 × 40 Gb/s wavelength conversion in the RZ format based on cross absorption modulation in an electroabsorption modulator. The original intensity-modulated information is successfully duplicated onto eight wavelengths that...

  6. Comparison of delay-interferometer and time-lens-based all-optical OFDM demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael;

    2015-01-01

    In this paper we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification (...

  7. Comparison of Delay-Interferometer and Time- Lens-Based All-Optical OFDM Demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael;

    2015-01-01

    In this letter, we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification...

  8. Optical parametric chirped pulse amplifier at 1600 nm with all-optical synchronization

    Directory of Open Access Journals (Sweden)

    Leitenstorfer Alfred

    2013-03-01

    Full Text Available We demonstrate the amplification of 1.6 μm pulses by a KTA optical parametric chirped-pulse amplifier based on an all-optical synchronization scheme as a scalable approach to generation of high power tunable mid infrared.

  9. All-Optical Wavelength Conversion with Amplitude Equalization and Pulse Shaping

    Institute of Scientific and Technical Information of China (English)

    C.W.Chow; C.S.Wong; H.K.Tsang

    2003-01-01

    A dual-wavelength-injection-locked (DWIL) Fabry-Perot (FP) laser is used as an all-optical wavelength converter and regenerator. Regenerated pulses have narrower pulse-width of 37ps. Power penalty and extinction-ratio improvement of 1.5dB and 4dB respectively were achieved.

  10. On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities

    Directory of Open Access Journals (Sweden)

    Masaya Notomi

    2008-01-01

    Full Text Available We review our recent studies on all-optical switching and memory operations based on thermo-optic and carrier-plasma nonlinearities both induced by two-photon absorption in silicon photonic crystal nanocavities. Owing to high-Q and small volume of these photonic crystal cavities, we have demonstrated that the switching power can be largely reduced. In addition, we demonstrate that the switching time is also reduced in nanocavity devices because of their short diffusion time. These features are important for all-optical nonlinear processing in silicon photonics technologies, since silicon is not an efficient optical nonlinear material. We discuss the effect of the carrier diffusion process in our devices, and demonstrate improvement in terms of the response speed by employing ion-implantation process. Finally, we show that coupled bistable devices lead to all-optical logic, such as flip-flop operation. These results indicate that a nanocavity-based photonic crystal platform on a silicon chip may be a promising candidate for future on-chip all-optical information processing in a largely integrated fashion.

  11. All-optical 2R regeneration based on interometic structure incoporating semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Wolfson, David; Hansen, Peter Bukhave; Kloch, Allan;

    1999-01-01

    All-optical 2R regeneration in an SOA-based interferometric Michelson structure using a novel technique is experimentally demonstrated. An output extinction ratio of ~10 dB is measured for an input extinction ratio of 6 dB and a noise suppression capability of ~4.5 dB is obtained, clearly...

  12. Characterisation of a MQW electroabsorption modulator as an all-optical demultiplexer

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Romstad, Francis Pascal; Tersigni, Andrea;

    2001-01-01

    A detailed experimental investigation of the all-optical switching properties of an InGaAsP MQW electroabsorption modulator has been performed. Using high pump pulse energies and high reverse bias settings, switching windows were demonstrated with extinction ratios up to 25 dB and widths down to ...

  13. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    Science.gov (United States)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  14. Development of High Frequency Miniature Ultrasound Transducers

    OpenAIRE

    Manh, Tung

    2013-01-01

    Small, high frequency (≥ 10MHz) broadband ultrasound transducers are required in modern medical imaging systems to provide short range, high resolution images for studying of microstructures in soft tissues, such as the composition of small tumors or a vessel wall. The manufacturing of these probes using conventional methods, i.e. lapping and dicing, becomes difficult and expensive for high frequency applications and there is a need to produce small ultrasound transducers with low cost and hi...

  15. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  16. All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal.

    Science.gov (United States)

    Martelli, P; Boffi, P; Ferrario, M; Marazzi, L; Parolari, P; Siano, R; Pusino, V; Minzioni, P; Cristiani, I; Langrock, C; Fejer, M M; Martinelli, M; Degiorgio, V

    2009-09-28

    We present the results of an in-depth experimental investigation about all-optical wavelength conversion of a 100-Gb/s polarization-multiplexed (POLMUX) signal. Each polarization channel is modulated at 25 Gbaud by differential quadrature phase-shift keying (DQPSK). The conversion is realized exploiting the high nonlinear chi((2)) coefficient of a periodically poled lithium niobate waveguide, in a polarization-independent configuration. We find that slight non-idealities in the polarization independent setup of the wavelength converter can significantly impair the performance of POLMUX systems. We show that high-quality wavelength conversion can be nevertheless achieved for both the polarization channels, provided that an accurate optimization of the setup is performed. This is the first demonstration, to the best of our knowledge, of the possibility to obtain penalty-free all-optical wavelength conversion in a 100-Gb/s POLMUX transmission system using direct-detection. PMID:19907562

  17. Efficient ultra-fast all-optical wavelength converters with Ti:PPLN waveguides

    DEFF Research Database (Denmark)

    Nouroozi, Rahman; Suche, Hubertus; Hu, Hao;

    2014-01-01

    Applications of packaged and pigtailed (tunable) integrated all-optical Ti:PPLN wavelength converters (AOWC) with different modulation formats (RZ-DQPSK, 16-ary QAM) are reported. The devices take advantage of cascaded second order nonlinear interactions allowing tuning with either one or two...... control waves via cSHG/DFG or cSFG/DFG. Operation of polarization insensitive AOWCs on a variety of presented high-bit-rate (up to 320 Gb/s) transmission experiments and mid-span chromatic dispersion compensation in the C-band with negligible penalties promises great potential for application in...... transparent all-optical networks (TAON). In addition recent progress with respect to bandwidth and efficiency of the cSHG/DFG-based wavelength converters is reported. The efficiency is increased by pump-resonant wavelength conversion and by increased interaction length in a phase controlled double-pass scheme...

  18. An all-optical modulation method in sub-micron scale.

    Science.gov (United States)

    Yang, Longzhi; Pei, Chongyang; Shen, Ao; Zhao, Changyun; Li, Yan; Li, Xia; Yu, Hui; Li, Yubo; Jiang, Xiaoqing; Yang, Jianyi

    2015-01-01

    We report a theoretical study showing that by utilizing the illumination of an external laser, the Surface Plasmon Polaritons (SPP) signals on the graphene sheet can be modulated in the sub-micron scale. The SPP wave can propagate along the graphene in the middle infrared range when the graphene is properly doped. Graphene's carrier density can be modified by a visible laser when the graphene sheet is exfoliated on the hydrophilic SiO2/Si substrate, which yields an all-optical way to control the graphene's doping level. Consequently, the external laser beam can control the propagation of the graphene SPP between the ON and OFF status. This all-optical modulation effect is still obvious when the spot size of the external laser is reduced to 400 nm while the modulation depth is as high as 114.7 dB/μm. PMID:25777581

  19. Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures.

    Science.gov (United States)

    Shcherbakov, Maxim R; Vabishchevich, Polina P; Shorokhov, Alexander S; Chong, Katie E; Choi, Duk-Yong; Staude, Isabelle; Miroshnichenko, Andrey E; Neshev, Dragomir N; Fedyanin, Andrey A; Kivshar, Yuri S

    2015-10-14

    We demonstrate experimentally ultrafast all-optical switching in subwavelength nonlinear dielectric nanostructures exhibiting localized magnetic Mie resonances. We employ amorphous silicon nanodisks to achieve strong self-modulation of femtosecond pulses with a depth of 60% at picojoule-per-disk pump energies. In the pump-probe measurements, we reveal that switching in the nanodisks can be governed by pulse-limited 65 fs-long two-photon absorption being enhanced by a factor of 80 with respect to the unstructured silicon film. We also show that undesirable free-carrier effects can be suppressed by a proper spectral positioning of the magnetic resonance, making such a structure the fastest all-optical switch operating at the nanoscale. PMID:26393983

  20. All-optical signal amplifier and distributor using cavity-atom coupling systems

    Science.gov (United States)

    Duan, Yafan; Lin, Gongwei; Niu, Yueping; Gong, Shangqing

    2016-05-01

    We report an all-optical signal amplifier and a signal distributor using cavity-atom coupling systems. In this system we couple atoms with an optical cavity and realize the great enhancement of a control laser by the cavity with the help of two high coupling lasers. By this effect, we can use one weak control field to control another strong target field and the intensity changes are linear with our experimental conditions. This can be used as an all-optical signal amplifier, also known as a ‘transphasor’. In our experiment, the gain of the weak field to strong field can be as high as 60. Furthermore, we can realize the distribution of optical signals, if we coordinate multiple cavity-atom coupling systems.

  1. All-Optical Logic and Arithmetic Operation using Soliton Control for Tree Architecture Use

    Directory of Open Access Journals (Sweden)

    S. Mitatha

    2012-01-01

    Full Text Available This study has proposed a new design system for basic all-optical logic and arithmetic operation using dark-bright soliton conversion control base on tree architecture. Optical tree architecture and nonlinear materials can provide a significant role for contribution in optical interconnecting network and ultrafast photonic computing system. In operation, the input data for all-optical binary logic can be formed by dark and bright soliton pulses for logic ‘0’ and ‘1’, respectively. By using the dark-bright soliton conversion behaviors, the conversion between dark and bright soliton pulses can be obtained and formed the logic pulse by a π/2 phase shifted device (i.e., an optical coupler. In application, the proposed scheme can be recognized as a simple and flexible system for forming the logic switching system, which can be used for advanced logical system.

  2. All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-03-01

    We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at l=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (l=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (l=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates.

  3. All-optical code routing in interconnected optical CDMA and WDM ring networks.

    Science.gov (United States)

    Deng, Yanhua; Fok, Mable P; Prucnal, Paul R; Wang, Ting

    2010-11-01

    We propose an all-optical hybrid network composed of optical code division multiple access (CDMA) rings interconnecting through a reconfigurable wavelength division multiplexing (WDM) metro area ring. This network retains the advantages of both the optical CDMA and WDM techniques, including asynchronous access and differentiated quality of service, while removing the hard limit on the number of subscribers and increasing network flexibility. The all-optical network is enabled by using nonlinear optical loop mirrors in an add/drop router (ADR) that performs code conversion, dropping, and switching asynchronously. We experimentally demonstrate the functionalities of the ADR in the proposed scheme asynchronously and obtain error-free performance. The bit-error rate measurements show acceptable power penalties for different code routes. PMID:21042372

  4. An all-optical vector atomic magnetometer for fundamental physics applications

    Science.gov (United States)

    Wurm, David; Mateos, Ignacio; Zhivun, Elena; Patton, Brian; Fierlinger, Peter; Beck, Douglas; Budker, Dmitry

    2014-05-01

    We have developed a laboratory prototype of a compact all-optical vector magnetometer. Due to their high precision and absolute accuracy, atomic magnetometers are crucial sensors in fundamental physics experiments which require extremely stable magnetic fields (e.g., neutron EDM searches). This all-optical sensor will allow high-resolution measurements of the magnitude and direction of a magnetic field without perturbing the magnetic environment. Moreover, its absolute accuracy makes it calibration-free, an advantage in space applications (e.g., space-based gravitational-wave detection). Magnetometry in precision experiments or space applications also demands long-term stability and well-understood noise characteristics at frequencies below 10-4 Hz. We have characterized the low-frequency noise floor of this sensor and will discuss methods to improve its long-time performance.

  5. Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities.

    Science.gov (United States)

    Fan, Cairong; Shi, Fenghua; Wu, Hongxing; Chen, Yihang

    2015-06-01

    Tunable all-optical plasmonic diode is proposed based on the Fano resonance in an asymmetric and nonlinear system, comprising metal-insulator-metal waveguides coupled with nanocavities. The spatial asymmetry of the system gives rise to the nonreciprocity of the field localizations at the nonlinear gap between the coupled cavities and to the nonreciprocal nonlinear response. Nonlinear Fano resonance, originating from the interference between the discrete cavity mode and the continuum traveling mode, is observed and effectively tuned by changing the input power. By combining the unidirectional nonlinear response with the steep dispersion of the Fano asymmetric line shape, a transmission contrast ratio up to 41.46 dB can be achieved between forward and backward transmission. Our all-optical plasmonic diode with compact structure can find important applications in integrated optical nanocircuits. PMID:26030529

  6. Efficient all-optical quantum computing based on a hybrid approach

    CERN Document Server

    Lee, Seung-Woo

    2011-01-01

    Quantum computers are expected to offer phenomenal increases of computational power. In spite of many proposals based on various physical systems, scalable quantum computation in a fault-tolerant manner is still beyond current technology. Optical models have some prominent advantages such as relatively quick operation time compared to decoherence time. However, massive resource requirements and the gap between the fault tolerance limit and the realistic error rate should be significantly reduced. Here, we develop a novel approach with all-optical hybrid qubits devised to combine advantages of well-known previous approaches. It enables one to efficiently perform universal gate operations in a simple and near-deterministic way using all-optical hybrid entanglement as off-line resources. Remarkably, our approach outperforms the previous ones when considering both the resource requirements and fault tolerance limits. Our work paves an efficient way for the optical realization of scalable quantum computation.

  7. All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals

    Science.gov (United States)

    Lucchetta, D. E.; Vita, F.; Simoni, F.

    2010-12-01

    We report the realization and the characterization of an all-optical switching device based on a transmission grating recorded in a polymeric substrate infiltrated with a methyl red-doped liquid crystal. The properties of this highly nonlinear mixture are exploited to modulate the diffraction of the grating by a pump beam when a static electric field is applied. The behavior of the device is in agreement with the existing model for methyl red-doped liquid crystals.

  8. An efficient all-optical gate based on photonic crystals cavities and applications

    OpenAIRE

    Combrié, Sylvain; Martin, Aude; Moille, Gregory; Lehoucq, Gaëlle; De Rossi, Alfredo; Reithmaier, Johann-Peter; Bramerie, Laurent; Gay, Mathilde

    2014-01-01

    International audience We use two coupled photonic crystal cavities to build an all-optical gate. The control and the modulated signal are separated spectrally by about 10 nm. This device was uperated at a rate ranging from 1 to 10 GHz with maximum coupled average power of less than 1 mW in the control signal, which translates to about 100 fJ per control pulse .

  9. Implementation of tristate logic based all optical flip-flop with nonlinear material

    Institute of Scientific and Technical Information of China (English)

    Partha Ghosh; Sourangshu Mukhopadhyay

    2005-01-01

    @@ The advantages of multivalued logic in optical parallel computation need no introduction. There are lots of proposals, already reported, where tristate, quarternary state logic operations can be performed with optics. Here we report a new approach to implement tristate logic based all optical flip-flop using optical nonlinear material. The concept and the principle of operation of this type of flip-flop are different from that of the conventional binary one.

  10. All-optical signal processing based on self-induced polarization control in optical fibers

    OpenAIRE

    Guasoni, Massimiliano; Bony, P.-Y.; Gilles, Marin; Picozzi, Antonio; Fatome, Julien

    2015-01-01

    In this contribution, we review our recent progress on the all-optical control of the state-of-polarization of light in optical fibers upon propagation in a system called Omnipolarizer. More precisely, in this device we exploit the unexpected capability of light to self-organize its own state-of-polarization, upon propagation in optical fibers, into universal and environmentally robust states. The underlying physical mechanism consists in a nonlinear cross-polarization feedback interaction be...

  11. Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers

    International Nuclear Information System (INIS)

    All-optical clock recovery by a two-section DFB laser with different injection wavelengths is demonstrated experimentally at 38.5 GHz. An optical clock with a root-mean-square timing jitter of 250 fs and an extinction ratio of 12.1 dB is obtained with 1551 nm injection. The timing jitter of the recovered clock is further investigated for various intensity ratios of the two DFB emission modes. (fundamental areas of phenomenology(including applications))

  12. Semiconductor Devices for All Optical Signal Processing: Just How Fast can They Go?

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A

    1999-01-01

    Several different semiconductor device structures for accomplishing all-optical signal processing have been proposed, but they nearly all employ the semiconductor optical amplifier (SOA) as a central element. In this talk we will discuss the physical processes in SOA's that are important in deter...... determining the speed of SOA based switches. We shall consider both devices based on incoherent processes, such as optically induced cross-gain and cross-phase modulation as well as devices employing coherent four-wave mixing....

  13. All-optical nonlinear signal processing devices and their applications within fibre-optic communication systems

    OpenAIRE

    Lee, Ju Han

    2003-01-01

    This thesis is concerned with research into the development of a range of all-optical fibre based nonlinear devices for optical communication applications. The research can he divided into two main themes. The first concerns the use nf superstructured fibre Bragg grating technology together with fibre based nonlinear devices to improve the overall system performance in both OCDMA and OTDM systems. The second theme area concerns the use of highly nonlinear holey fibre within a range of nonline...

  14. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    OpenAIRE

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    All-optical wavelength conversion and signal regeneration based on cross-absorption modulation in an InGaAsP quantum well electroabsorption modulator (EAM) is studied at different bit rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing experimental results, and the signal regeneration capability of the device is investigated. In particular, we demonstrate the dependence of the extinction ratio of both the converted signal and the control s...

  15. Integrated polymer waveguides incorporating nonlinear chromophores for all-optical signal processing

    OpenAIRE

    Delcourt, Enguerran; Bodiou, Loïc; Charrier, Joël; Achelle, Sylvain; Lemaitre, Jonathan; Lorrain, Nathalie; Bosc, Dominique

    2014-01-01

    In order to obtain non-linear waveguides for all-optical signal processing, new nonlinear polymer waveguides incorporating chromophores have been designed and processed using standard photolithographic steps. Polymer refractive index changes with chromophore concentration are presented. Waveguides exhibiting single mode propagation and high optical field confinement are demonstrated and optical propagation losses of 4.1 dB/cm at 1550 nm are measured.

  16. Comparison of Delay-Interferometer and Time- Lens-Based All-Optical OFDM Demultiplexers

    OpenAIRE

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2015-01-01

    In this letter, we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification (SM) based on time lenses. In the former scheme, cascaded delay-interferometers (DIs) are used to perform the O-DFT, with subsequent active optical gating to remove the intercarrier interference (ICI...

  17. All-optical central-frequency-programmable and bandwidth-tailorable radar

    OpenAIRE

    Weiwen Zou; Hao Zhang; Xin Long; Siteng Zhang; Yuanjun Cui; Jianping Chen

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-loc...

  18. Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    The performance of all-optical switches is a compromise between the achievable bandwidth of the switched signal and the energy requirement of the switching operation. In this work we consider a system consisting of a photonic crystal cavity coupled to two input and two output waveguides. As a...... dynamics of the switching operation, and the results show optimum parameter ranges that may serve as design guidelines in device fabrication. © 2011 Optical Society of America....

  19. All optical implementation of a time-domain ptychographic pulse reconstruction set-up

    CERN Document Server

    Spangenberg, Dirk-Mathys; Rohwer, Erich; Feurer, Thomas

    2016-01-01

    An all optical implementation of pulse reconstruction using time-domain ptychography is demonstrated showing excellent results. Setup and reconstruction are easy to implement and a number of drawbacks found in other second order techniques are removed, such as the beam splitter modifying the pulse under consideration, the time ambiguity, or the strict correspondence between time delay increment and temporal resolution. Ptychography generally performs superior to algorithms based on general projections, requires considerable less computational effort and is much less susceptible to noise.

  20. Electroabsorption modulators used for all-optical signal processing and labelling

    OpenAIRE

    Xu, Lin; Jeppesen, Palle; Mørk, Jesper

    2004-01-01

    This thesis concerns the applications of semiconductor components, primarily electroabsorption modulators (EAMs), in optical signal processing and labelling for future all optical communication networks. An introduction to electroabsorption modulators is given and several mechanisms that form the basis of electroabsorption are briefly discussed including Franz Keldysh effect, Quantum-Confined Stark Effect (QCSE) and Quantum-Confined Franz-Keldysh effect. QCSE is found to be more effective for...

  1. Broadband Telecommunications Benchmarking Study

    OpenAIRE

    2004-01-01

    This report assesses Ireland's competitiveness relative to 21 countries, with particular focus on the broadband telecommunications requirements of the enterprise sector. The report outlines strengths and weaknesses that currently exist and progress that has already been made. It also makes a series of recommendations to further promote the development of the broadband market in Ireland.

  2. The Broadband Buzz.

    Science.gov (United States)

    Buchanan, Bruce

    2003-01-01

    "Broadband," the term for a variety of high-speed Internet options, opens up many opportunities for online classroom learning. Challenges for school districts include keeping the network running, training teachers, and paying for it. A sidebar lists broadband resources. (MLF)

  3. All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment.

    Science.gov (United States)

    Long, Yun; Wang, Jian

    2015-07-13

    We propose and demonstrate an all-optical tuning mechanism to tune the response of a microwave photonic filter (MPF) based on a nonlinear silicon microring resonator (MRR). The tuning mechanism relies on the optical nonlinearities induced resonant wavelength shift in the silicon MRR, leading to the change of frequency difference between the optical carrier frequency and resonant frequency of the silicon MRR. A detailed theoretical model is established to describe the operation of the proposed all-optical tunable MPF. Two cases are studied in the experiment, i.e. the optical carrier frequency is located at the left or right side of the MRR resonant frequency. Both forward and backward pumping configurations in each case are demonstrated. Using the fabricated silicon MRR and exploiting light to control light, the central frequency of the notch MPF can be flexibly tuned by adjusting the pump light power. Moreover, the presented all-optical tuning mechanism might also facilitate interesting applications such as microwave switching and microwave modulation. PMID:26191838

  4. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... help to distract the child and make the time pass quickly. The ultrasound exam room may have ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... kidneys. top of page What are some common uses of the procedure? In women, a pelvic ultrasound ... patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to view the prostate gland, involves ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal , endovaginal ) ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Prostate Images related to Ultrasound - Pelvis About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in the lower abdomen and pelvis. There are three types of pelvic ultrasound: abdominal, vaginal (for women), ... physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal , ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... medicine, ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is used to evaluate the: bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to view the prostate gland, involves inserting a specialized ultrasound transducer into ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. Three- ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the reproductive and ... women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of a pelvic ultrasound examination. ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  18. Obstetric Ultrasound

    OpenAIRE

    1988-01-01

    This article addresses the current indications for an obstetric ultrasound and describes the findings that it is reasonable to expect when reading an ultrasound report. The authors discuss several common obstetrical problems focussing the attention on the usefulness of the imaging information. Finally, they provide a glimpse into the future direction of obstetric ultrasound by discussing vaginal scanning, Doppler assessment of fetal blood flow, and routine ultrasound in pregnancy.

  19. All-optical characterization of large-signal modulation bandwidth of a monolithically integrated DFB-EA

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mulvad, Hans Christian Hansen; Oxenløwe, Leif Katsuo; Chacinski, Marek; Westergren, Urban; Stoltz, Björn

    We use an all-optical method to characterize the modulation bandwidth of a DFB-EA designed for 100 Gb/s Ethernet. In a large-signal wavelength conversion set-up, we show the device has an all-optical bandwidth of 83 GHz.......We use an all-optical method to characterize the modulation bandwidth of a DFB-EA designed for 100 Gb/s Ethernet. In a large-signal wavelength conversion set-up, we show the device has an all-optical bandwidth of 83 GHz....

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during pregnancy. See the Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  1. All optical wavelength converter and its application in optical network%全光波长变换器及其在光网络中的应用

    Institute of Scientific and Technical Information of China (English)

    方捻

    2006-01-01

    @@ All optical network (AON) is a hot topic in recent studies of optical fiber communications. Key techniques in AON include optical switching/routing, optical cross connection (OXC), all optical wavelength conversion (AOWC), all optical buffering, etc.

  2. Cranial Ultrasound/Head Ultrasound

    Science.gov (United States)

    ... is the procedure performed? Head Ultrasound A head ultrasound is performed in the neonatal intensive care unit (NICU) at the infant's bedside. The infant is positioned lying face-up. A clear, water-based gel is applied ...

  3. Broadband adoption by SMES

    OpenAIRE

    Oni, Oluwasola

    2007-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Because the benefits of broadband for businesses have been widely publicized, the UK government has tried to ensure that there is a wide and fast take-up of the technology. Initial figures showed that broadband adoption by SMEs was particularly slow and there has been little research on the use of broadband by businesses, particularly SMEs. An in-depth study into the roles and activities of t...

  4. Realization of an all-optical zero to pi cross-phase modulation jump.

    Science.gov (United States)

    Camacho, Ryan M; Dixon, P Ben; Glasser, Ryan T; Jordan, Andrew N; Howell, John C

    2009-01-01

    We report on the experimental demonstration of an all-optical pi cross-phase modulation jump. By performing a preselection, an optically induced unitary transformation, and then a postselection on the polarization degree of freedom, the phase of the output beam acquires either a zero or pi phase shift (with no other possible values). The postselection results in optical loss in the output beam. An input state may be chosen near the resulting phase singularity, yielding a pi phase shift even for weak interaction strengths. The scheme is experimentally demonstrated using a coherently prepared dark state in a warm atomic cesium vapor. PMID:19257193

  5. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks

    International Nuclear Information System (INIS)

    We present a joint theoretical and experimental characterization of the coherent population trapping (CPT) resonance excited on the D1 line of 87Rb atoms by bichromatic linearly polarized laser light. We observe high-contrast transmission resonances (up to ≅25%), which makes this excitation scheme promising for miniature all-optical atomic clock applications. We also demonstrate cancellation of the first-order light shift by proper choice of the frequencies and relative intensities of the two laser-field components. Our theoretical predictions are in good agreement with the experimental results.

  6. Three-photon-absorption resonance for all-optical atomic clocks

    International Nuclear Information System (INIS)

    We report an experimental study of an all-optical three-photon-absorption resonance (known as an 'N resonance') and discuss its potential application as an alternative to atomic clocks based on coherent population trapping. We present measurements of the N-resonance contrast, width and light shift for the D1 line of 87Rb with varying buffer gases, and find good agreement with an analytical model of this resonance. The results suggest that N resonances are promising for atomic clock applications

  7. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    All-optical wavelength conversion and signal regeneration based on cross-absorption modulation in an InGaAsP quantum well electroabsorption modulator (EAM) is studied at different bit rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing...... experimental results, and the signal regeneration capability of the device is investigated. In particular, we demonstrate the dependence of the extinction ratio of both the converted signal and the control signal on the device length and on the power level of the control signal. We also show how the sweep...

  8. Instability in Self-Pulsation in Laser Diodes and its Effect on All-Optical Synchonization

    OpenAIRE

    Hyland, Jonathan; Farrell, Gerald

    1994-01-01

    The effect of short- and long-term frequency instability in self pulsation on all-optical synchronization using a twin-section laser diode is experimentally investigated. Short-term frequency instability broadens the unlocked full width at half maximum (FWHM) of the fundamental of the rf spectrum of the self-pulsating laser diode. We show experimentally that the value of the unlocked FWHM, and thus the level of short-term instability, has a direct effect on the optical power required to maint...

  9. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Science.gov (United States)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  10. All-optical tailoring of single-photon spectra in a quantum-dot microcavity system

    CERN Document Server

    Breddermann, Dominik; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan

    2016-01-01

    Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.

  11. Design, fabrication and application of photonic components for all-optical networking and switching

    Science.gov (United States)

    Fan, Jenyu

    1999-11-01

    All-optical networks have the advantage of utilizing the transparency and of the full bandwidth of optical fibers. Since the transmitted signal remains in the optical domain from the source to the destination and electronic conversions occur only at the end points, it can transmit a heterogeneous mix of very different traffic at nearly any kind of bit rate. Wavelength-division-multiplexing (WDM) technique offers a very effective way of utilizing the fiber bandwidth directly in the wavelength domain. To improve the network efficiency, different kinds of photonic switches have been reported. This dissertation is focused on the development of integrated active/passive devices based on semiconductor optical amplifiers (SOAs). It is aimed at a full research program of design, fabrication, and performance characteristic. Their application and functionality in all-optical photonic switch have been demonstrated successfully. The novel WDM data-block switch based on integrated 1 x 2, SOAs, Y-junction photonic component (for 1550 nm) is first demonstrated. This new type of switching component can direct a full block of parallel data to a desired location with a single photonic switch. Using this component with differing length of fiber, high accuracy and stable delay lines can be made. It can be achieved 100 ps delay, the highest accuracy as our knowledge. Cascaded these delay lines, an optical synchronizer is realized and can also be applied to phase array radar as a fast reconfigurable electrically controlled delay line. The accuracy is dependent on the number of cascaded stages. Novel components such as mode-spot transformers and integrated wavelength converters are also fabricated. The mode expansion laser has been demonstrated as a mode-spot transformer. This type of component can facilitate the chip-fiber coupling operation and reduce the fiber-to- fiber insertion loss of an integrated device. The integrated wavelength converter is very useful in all- optical networks

  12. All-optical modulation in wavelength-sized epsilon-near-zero media

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We investigate the interaction of two pulses (pump and probe) scattered by a nonlinear epsilon-near-zero (ENZ) slab whose thickness is comparable with the ENZ wavelength. We show that when the probe has a narrow spectrum localized around the ENZ wavelength its transmission is dramatically affected by the intensity of the pump. Conversely, if the probe is not in the ENZ regime, its propagation is not noticeably affected by the pump. Such all-optical modulation is due to the oversensitive character of the ENZ regime and it is so efficient to even occur in a wavelength thick slab.

  13. All-optical KarhunenLoeve Transform Using Multimode Interference Structures on Silicon Nanowires

    Science.gov (United States)

    Le, Trung-Thanh

    2011-12-01

    A variety of unitary transforms have attracted considerable attention for their application in data, image compression and other signal processing applications. Among many transforms, the KarhunenLoeve transform (KLT) is known to be optimal because of its advantages of computational efficiency, residual correlation and rate distortion criterion. In this paper, it is shown that the all-optical KarhunenLoeve transform can be realized using multimode interference (MMI) structures on silicon wire waveguides. The transfer matrix method (TMM) and the beam propagation method (BPM) are used to verify and optimally design the proposed devices.

  14. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    Science.gov (United States)

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed. PMID:19412257

  15. Improving Multi Access Interference Suppression in Optical CDMA by using all-Optical Signal Processing

    Directory of Open Access Journals (Sweden)

    T. B. Osadola

    2013-06-01

    Full Text Available This paper presents the study of a novel all-optical method for processing optical CDMA signals towards improving suppression of multi access interference. The main focus is on incoherent OCDMA systems using multiwavelength 2D-WH/TS codes generated using FBG based encoders and decoders. The MAI suppression capabilities based on its ability to eliminate selective wavelength pulse processing have been shown. A novel transmitter architecture that achieves up to 3dB power saving was also presented. As a result of hardware savings, processing cost will be significantly reduced and power budget improvement resulted in improved performance.

  16. All-optical 3D atomic loops generated with Bessel light fields

    CERN Document Server

    Volke-Sepulveda, K

    2008-01-01

    The propagation invariance of Bessel beams as well as their transversal structure are used to perform a comparative analysis of their effect on cold atoms for four different configurations and combinations thereof. We show that, even at temperatures for which the classical description of the atom center of mass motion is valid, the interchange of momentum, energy and orbital angular momentum between light and atoms yields efficient tools for all-optical trapping, transporting and, in general, manipulating the state of motion of cold atoms.

  17. All-optical 3D atomic loops generated with Bessel light fields

    Energy Technology Data Exchange (ETDEWEB)

    Volke-Sepulveda, Karen; Jauregui, RocIo [Departamento de Fisica Teorica, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, Mexico 01000 D.F. (Mexico)], E-mail: karen@fisica.unam.mx, E-mail: rocio@fisica.unam.mx

    2009-04-28

    The propagation invariance of Bessel beams as well as their transversal structure is used to perform a comparative analysis of their effect on cold atoms for four different configurations and combinations thereof. We show that, even at temperatures for which the classical description of the atom's centre-of-mass motion is valid, the interchange of momentum, energy and orbital angular momentum between light and atoms yields efficient tools for all-optical trapping, transporting and, in general, manipulating the state of motion of cold atoms.

  18. All-optical 3D atomic loops generated with Bessel light fields

    International Nuclear Information System (INIS)

    The propagation invariance of Bessel beams as well as their transversal structure is used to perform a comparative analysis of their effect on cold atoms for four different configurations and combinations thereof. We show that, even at temperatures for which the classical description of the atom's centre-of-mass motion is valid, the interchange of momentum, energy and orbital angular momentum between light and atoms yields efficient tools for all-optical trapping, transporting and, in general, manipulating the state of motion of cold atoms.

  19. Microwave photonic quadrature filter based on an all-optical programmable Hilbert transformer.

    Science.gov (United States)

    Huang, Thomas X H; Yi, Xiaoke; Minasian, Robert A

    2011-11-15

    A microwave photonic quadrature filter, new to our knowledge, based on an all-optical Hilbert transformer is presented. It is based on mapping of a Hilbert transform transfer function between the optical and electrical domains, using a programmable Fourier-domain optical processor and high-speed photodiodes. The technique enables the realization of an extremely wide operating bandwidth, tunable programmable bandwidth, and a highly precise amplitude and phase response. Experimental results demonstrate a microwave quadrature filter from 10 to 20 GHz, which achieves an amplitude imbalance of less than ±0.23 dB and a phase imbalance of less than ±0.5°. PMID:22089590

  20. Polarization insensitive all-optical wavelength conversion of polarization multiplexed signals using co-polarized pumps.

    Science.gov (United States)

    Anthur, Aravind P; Zhou, Rui; O'Duill, Sean; Walsh, Anthony J; Martin, Eamonn; Venkitesh, Deepa; Barry, Liam P

    2016-05-30

    We study and experimentally validate the vector theory of four-wave mixing (FWM) in semiconductor optical amplifiers (SOA). We use the vector theory of FWM to design a polarization insensitive all-optical wavelength converter, suitable for advanced modulation formats, using non-degenerate FWM in SOAs and parallelly polarized pumps. We demonstrate the wavelength conversion of polarization-multiplexed (PM)-QPSK, PM-16QAM and a Nyquist WDM super-channel modulated with PM-QPSK signals at a baud rate of 12.5 GBaud, with total data rates of 50 Gbps, 100 Gbps and 200 Gbps respectively. PMID:27410100

  1. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael; Oxenløwe, Leif Katsuo; Azana, Jose

    2014-01-01

    We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitude...... optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper. (C) 2014 Optical Society of America...

  2. All optical controlled photonic integrated circuits using azo dye functionized sol-gel material

    Science.gov (United States)

    Ke, Xianjun

    The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters

  3. Single Shot Radiography Using an All-optical Compton Backscattering Source

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Lifschitz, A.; Conejero, E.; Ruiz, C.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    The development of compact laser-based synchrotron sources is a field of active research. Here we present recent results on an all-optical Compton backscattering source using laser-accelerated electrons and a plasma mirror, as introduced in [K. Ta Phuoc et al., Nature Photonics 6 (5) (2012) 308-311]. Scattering of quasi-monoenergetic electrons of up to 200 MeV energy with their proper drive-beam leads to emission of femtosecond X-ray pulses, whose energies exceed 100 keV. We demonstrate that the photon yield from the source is sufficient to illuminate a centimeter-size sample placed 90 centimeters behind the source.

  4. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

    CERN Document Server

    Pelc, Jason S; Vo, Sonny; Santori, Charles; Fattal, David A; Beausoleil, Raymond G

    2014-01-01

    We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

  5. All-Optical Steering of Laser-Wakefield-Accelerated Electron Beams

    International Nuclear Information System (INIS)

    We investigate the influence of a tilted laser-pulse-intensity front on laser-wakefield acceleration. Such asymmetric light pulses may be exploited to obtain control over the electron-bunch-pointing direction and in our case allowed for reproducible electron-beam steering in an all-optical way within an 8 mrad opening window with respect to the initial laser axis. We also discovered evidence of collective electron-betatron oscillations due to off-axis electron injection into the wakefield induced by a pulse-front tilt. These findings are supported by 3D particle-in-cell simulations.

  6. Low-power all-optical tunable plasmonic-mode coupling in nonlinear metamaterials

    International Nuclear Information System (INIS)

    All-optical tunable plasmonic-mode coupling is realized in a nonlinear photonic metamaterial consisting of periodic arrays of gold asymmetrically split ring resonators, covered with a poly[(methyl methacrylate)-co-(disperse red 13 acrylate)] azobenzene polymer layer. The third-order optical nonlinearity of the azobenzene polymer is enormously enhanced by using resonant excitation. Under excitation with a 17-kW/cm2, 532-nm pump light, plasmonic modes shift by 51 nm and the mode interval is enlarged by 30 nm. Compared with previous reports, the threshold pump intensity is reduced by five orders of magnitude, while extremely large tunability is maintained

  7. Towards all-optical control and measurement of Casimir forces via evanescent optical forces

    CERN Document Server

    Rodriguez, Alejandro W; Hui, Pui-Chuen; Iwase, Eiji; McCauley, Alexander P; Capasso, Federico; Loncar, Marko; Johnson, Steven G

    2011-01-01

    We propose an optomechanical structure consisting of a photonic-crystal (holey) membrane suspended above a layered silicon-on-insulator substrate in which resonant bonding/antibonding optical forces created by externally incident light from above enable all-optical control and actuation of stiction effects induced by the Casimir force. The same optical response (reflection spectrum) of the membrane to the incident light can be exploited to accurately measure the effects of the Casimir force on the equilibrium separation of the membrane.

  8. Ultrafast all-optical shutter based on two-photon absorption

    CERN Document Server

    Versteegh, Marijn A M

    2016-01-01

    An ultrafast all-optical shutter is presented, based on a simple two-color two-photon absorption technique. For time-resolved luminescence measurements this shutter is an interesting alternative to the optical Kerr gate. The rejection efficiency is 99%, the switching-off and switching-on speeds are limited by the pulse length only, the rejection time is determined by the crystal slab thickness, and the bandwidth spans the entire visible spectrum. We show that our shutter can also be used for accurate measurement of group velocity inside a transparent material.

  9. Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    OpenAIRE

    A. Didier; Millo, J.; Grop, S.; Dubois, B.; Bigler, E.; Rubiola, E.; Lacroûte, C.; Kersalé, Y.

    2015-01-01

    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $\\mathcal{L}(f)=-104 \\ \\mathrm{dBc}/\\mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained ...

  10. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard;

    2004-01-01

    Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs......) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated. Here we demonstrate an all-optical modulator, which utilizes a pulsed 532nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid...

  11. Mechanism of all-optical control of ferromagnetic multilayers with circularly polarized light

    CERN Document Server

    Medapalli, Rajasekhar; Kim, Dokyun; Quessab, Yassine; Monotoya, Sergio A; Kirilyuk, Andrei; Rasing, Theo; Kimel, Alexey V; Fullerton, Eric E

    2016-01-01

    Time-resolved imaging reveals that the helicity dependent all-optical switching (HD-AOS) of Co/Pt ferromagnetic multilayers proceeds by two stages. First one involves the helicity independent and stochastic nucleation of reversed magnetic domains. At the second stage circularly polarized light breaks the degeneracy between the magnetic domains and promotes the preferred direction of domain wall (DW) motion. The growth of the reversed domain from the nucleation cite, for a particular helicity, leads to full magnetic reversal. This study demonstrates a novel mechanism of HD-AOS mediated by the deterministic displacement of DWs.

  12. All-optical chaotic MQW laser repeater for long-haul chaotic communications

    Institute of Scientific and Technical Information of China (English)

    Senlin Yan

    2005-01-01

    We present an all-optical chaotic multi-quantum-well (MQW) laser repeater system to be used in long-haul chaotic communications. Chaotic synchronization is achieved among transmitter, repeater, and receiver. Chaotic repeater communications with a sinusoidal signal of 0.2-GHz modulation frequency and a digital signal of 0.4-Gb/s bit rate are numerically simulated, respectively. Calculation results illustrate that the signals are well decoded by the chaotic repeaters. Its bandwidth and the characteristics at much high bit rate are also analyzed. Simulation shows that the repeater can improve decoding quality, especially in higher bit rate chaotic communications.

  13. Multi-band radio over fiber system with all-optical halfwave rectification, transmission and frequency down-conversion

    DEFF Research Database (Denmark)

    Prince, Kamau; Tafur Monroy, Idelfonso

    2011-01-01

    We introduce a novel application of all-optical half-wave rectification in the transportation and delivery of multi-frequency radio-over fiber signals. System evaluation was performed of transmission over various optical fiber types and all-optical envelope detection was implemented to achieve...

  14. All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap

    Science.gov (United States)

    Hagenmüller, David

    2016-06-01

    We identify an architecture for the observation of all-optical dynamical Casimir effect in realistic experimental conditions. We suggest that by integrating quantum wells in a three-dimensional (3D) photonic band-gap material made out of large-scale (˜200 -μ m ) germanium logs, it is possible to achieve ultrastrong light-matter coupling at terahertz frequencies for the cyclotron transition of a two-dimensional electron gas interacting with long-lived optical modes, in which vacuum Rabi splitting is comparable to the Landau level spacing. When a short, intense electromagnetic transient of duration ˜250 fs and carrying a peak magnetic field ˜5 T is applied to the structure, the cyclotron transition can be suddenly tuned on resonance with a desired photon mode, switching on the light-matter interaction and leading to a Casimir radiation emitted parallel to the quantum well plane. The radiation spectrum consists of sharp peaks with frequencies coinciding with engineered optical modes within the 3D photonic band gap, and its characteristics are extremely robust to the nonradiative damping which can be large in our system. Furthermore, the absence of continuum with associated low-energy excitations for both electromagnetic and electronic quantum states can prevent the rapid absorption of the photon flux which is likely to occur in other proposals for all-optical dynamical Casimir effect.

  15. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

    Science.gov (United States)

    Wu, Hsueh-Yu; Huang, Yen-Ta; Shen, Po-Ting; Lee, Hsuan; Oketani, Ryosuke; Yonemaru, Yasuo; Yamanaka, Masahito; Shoji, Satoru; Lin, Kung-Hsuan; Chang, Chih-Wei; Kawata, Satoshi; Fujita, Katsumasa; Chu, Shi-Wei

    2016-04-01

    Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 μm3, can be optically switched off with less than 100 μW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10‑9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation.

  16. All-optical binary logic unit (BLU) using frequency encoded data

    Science.gov (United States)

    Mandal, Dhoumendra; Garai, Sisir Kumar

    2015-03-01

    In frequency division multiplexing based communication network frequency encoded data is very important. In this communication, authors propose a new approach of developing an all-optical binary logic unit (BLU) by means of which sixteen different types of binary logic operations can be performed using frequency encoded data. The authors first develop all-optical NOT, AND, OR, XOR, etc. logic gates exploiting the polarization switching character of semiconductor optical amplifier which works based on the principle of nonlinear state of polarization rotation of the probe beam. Finally these logic gates are coupled by means of polarization switches, and activated to implement different logic operations as desired using control beams of different frequencies, after being proper routing the control beams by means of 16:1 MUX and 1:16 DMUX. Frequency conversion by polarization switching character of SOA is very efficient and faster with least optical power consumption, and therefore our proposed scheme of binary logic unit with frequency encoded data offers bit error free secure different binary logic operations with faster speed of processing. Simulation result reflects the feasibility of the proposed scheme.

  17. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  18. Design of an All-Optical Network Based on LCoS Technologies

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  19. All optical NAND gate based on nonlinear photonic crystal ring resonator

    Directory of Open Access Journals (Sweden)

    Somaye Serajmohammadi

    2016-06-01

    Full Text Available In this paper we proposed a new design for all optical NAND gate. By combining nonlinear Kerr effect with photonic crystal ring resonators, we designed an all optical NAND gate. A typical NAND gate is a logic device with one bias and two logic input and one output ports. It has four different combinations for its logic input ports. The output port of the NAND gate is OFF, when both logic ports are ON, otherwise the output port will be ON. The switching power threshold obtained for this structure equals to 1.5 kW/μm2. For designing the proposed optical logic gate we employed one resonant ring whose resonant wavelength is at 1554 nm. The functionality of the proposed NAND gate depends on the operation of this resonant ring. When the power intensity of optical waves is less than the switching threshold the ring will couple optical waves into drop waveguide otherwise the optical waves will propagate on the bus waveguide.

  20. Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

    Science.gov (United States)

    Wu, Hsueh-Yu; Huang, Yen-Ta; Shen, Po-Ting; Lee, Hsuan; Oketani, Ryosuke; Yonemaru, Yasuo; Yamanaka, Masahito; Shoji, Satoru; Lin, Kung-Hsuan; Chang, Chih-Wei; Kawata, Satoshi; Fujita, Katsumasa; Chu, Shi-Wei

    2016-01-01

    Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 μm3, can be optically switched off with less than 100 μW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10−9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation. PMID:27063920

  1. M-Burst: A Framework of SRLG Failure Localization in All-Optical Networks

    KAUST Repository

    Ali, Mohammed L.

    2012-07-27

    Fast and unambiguous failure localization for shared risk link groups (SRLGs) with multiple links is essential for building a fully survivable and functional transparent all-optical mesh network. Monitoring trails (m-trails) have been proposed as an effective approach to achieve this goal. However, each m-trail traverses through each link by constantly taking a wavelength channel, causing a significant amount of resource consumption. In this paper, a novel framework of all-optical monitoring for SRLG failure localization is proposed. We investigate the feasibility of periodically launching optical bursts along each m-trail instead of assigning it a dedicated supervisory lightpath to probe the set of fiber segments along the m-trail, aiming to achieve a graceful compromise between resource consumption and failure localization latency. This paper defines the proposed framework and highlights the relevant issues regarding its feasibility. We provide theoretical justifications of the scheme. As a proof of concept, we formulate the optimal burst scheduling problem via an integer linear program (ILP) and implement the method in networks of all possible SRLGs with up to d=3 links. A heuristic method is also proposed and implemented for multiple-link SRLG failure localization, keeping all the assumptions the same as in the ILP method. Numerical results for small networks show that the scheme is able to localize single-link and multiple-link SRLG failures unambiguously with a very small amount of failure localization latency.

  2. Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses

    Science.gov (United States)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Bergeard, N.; Petit-Watelot, S.; Hehn, M.; Malinowski, G.; Montaigne, F.; Quessab, Y.; Medapalli, R.; Fullerton, E. E.; Mangin, S.

    2016-02-01

    We present an experimental study of all-optical helicity-dependent switching (AO-HDS) of ferromagnetic Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy. The sample is patterned into a Hall cross and the AO-HDS is measured via the anomalous Hall effect. This all-electrical probing of the magnetization during AO-HDS enables a statistical quantification of the switching ratio for different laser parameters, such as the threshold power to achieve AO-HDS and the exposure time needed to reach complete switching at a given laser power. We find that the AO-HDS is a cumulative process, a certain number of optical pulses is needed to obtain a full and reproducible helicity-dependent switching. The deterministic switching of the ferromagnetic Pt/Co/Pt Hall cross provides a full "opto-spintronic device," where the remanent magnetization can be all-optically and reproducibly written and erased without the need of an external magnetic field.

  3. Formation and all-optical control of optical patterns in semiconductor microcavities

    Science.gov (United States)

    Binder, R.; Tsang, C. Y.; Tse, Y. C.; Luk, M. H.; Kwong, N. H.; Chan, Chris K. P.; Leung, P. T.; Lewandowski, P.; Schumacher, Stefan; Lafont, O.; Baudin, E.; Tignon, J.

    2016-05-01

    Semiconductor microcavities offer a unique way to combine transient all-optical manipulation of GaAs quantum wells with the benefits of structural advantages of microcavities. In these systems, exciton-polaritons have dispersion relations with very small effective masses. This has enabled prominent effects, for example polaritonic Bose condensation, but it can also be exploited for the design of all-optical communication devices. The latter involves non-equilibrium phase transitions in the spatial arrangement of exciton-polaritons. We consider the case of optical pumping with normal incidence, yielding a spatially homogeneous distribution of exciton-polaritons in optical cavities containing the quantum wells. Exciton-exciton interactions can trigger instabilities if certain threshold behavior requirements are met. Such instabilities can lead, for example, to the spontaneous formation of hexagonal polariton lattices (corresponding to six-spot patterns in the far field), or to rolls (corresponding to two-spot far field patterns). The competition among these patterns can be controlled to a certain degree by applying control beams. In this paper, we summarize the theory of pattern formation and election in microcavities and illustrate the switching between patterns via simulation results.

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal , endovaginal ) ...

  5. Complete all-optical processing polarization-based binary logic gates and optical processors.

    Science.gov (United States)

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple

  6. Experimental and theoretical investigation of semiconductor optical amplifier (SOA)-based all-optical wavelength converters

    Science.gov (United States)

    Dailey, James M.

    Use of fiber-optical networks has increased along with the growing demand for higher data throughputs. As data bandwidths increase, physical switching technologies must also scale accordingly. Optical-electrical-optical (OEO) switching technologies are widely utilized, where incoming optical signals are converted into and processed as electrical signals before conversion back into the optical domain. However, issues such as speed, cost, and power consumption have driven interest in the development of all-optical techniques, where data remains in the optical domain while being processed. Semiconductor optical amplifiers (SOAs) have shown great promise for realizing all-optical technologies. Our work begins with the experimental characterization of SOAs, and we discuss the use of a time-resolved spectroscopy technique. We present a detailed analysis clarifying measurement requirements, though we conclude that this simple technique provides insufficient resolution for characterizing high-speed optical systems. We discuss the measurement theory for spectrograms, which provide high signal-to-noise ratios, excellent temporal resolution, and are sensitive to phase dynamics. We apply the spectrogram measurement to the characterization of an SOA. We develop a system of rate equations for modeling SOA dynamics, beginning with a detailed density matrix analysis providing expressions for gain and chirp without invoking the linewidth-enhancement factor. In accordance with the measurement results, we include a carrier temperature rate calculation in order to capture ultrafast dynamics. The traveling wave partial differential equations are solved so that both forward and reverse propagating signals are accurately modeled, and the results show good agreement with the spectrogram measurement. We identify the free-carrier plasma and the asymmetrical broadening terms in the real and imaginary parts of the refractive index as driving factors in the relatively larger ultrafast response

  7. Large-scale photonic integration for advanced all-optical routing functions

    Science.gov (United States)

    Nicholes, Steven C.

    Advanced InP-based photonic integrated circuits are a critical technology to manage the increasing bandwidth demands of next-generation all-optical networks. Integrating many of the discrete functions required in optical networks into a single device provides a reduction in system footprint and optical losses by eliminating the fiber coupling junctions between components. This translates directly into increased system reliability and cost savings. Although many key network components have been realized via InP-based monolithic integration over the years, truly large-scale photonic ICs have only recently emerged in the marketplace. This lag-time has been mostly due to historically low device yields. In all-optical routing applications, large-scale photonic ICs may be able to address two of the key roadblocks associated with scaling modern electronic routers to higher capacities---namely, power and size. If the functions of dynamic wavelength conversion and routing are moved to the optical layer, we can eliminate the need for power-hungry optical-to-electrical (O/E) and electrical-to-optical (E/O) data conversions at each router node. Additionally, large-scale photonic ICs could reduce the footprint of such a system by combining the similar functions of each port onto a single chip. However, robust design and manufacturing techniques that will enable high-yield production of these chips must be developed. In this work, we demonstrate a monolithic tunable optical router (MOTOR) chip consisting of an array of eight 40-Gbps wavelength converters and a passive arrayed-waveguide grating router that functions as the packet-forwarding switch fabric of an all-optical router. The device represents one of the most complex InP photonic ICs ever reported, with more than 200 integrated functional elements in a single chip. Single-channel 40 Gbps wavelength conversion and channel switching using 231-1 PRBS data showed a power penalty as low as 4.5 dB with less than 2 W drive power

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures ... limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  9. All-optical sampling and magnification based on XPM-induced focusing

    CERN Document Server

    Nuno, J; Guasoni, M; Finot, C; Fatome, J

    2016-01-01

    We theoretically and experimentally investigate the design of an all-optical noiseless magnification and sampling function free from any active gain medium and associated high-power continuous wave pump source. The proposed technique is based on the co-propagation of an arbitrary shaped signal together with an orthogonally polarized intense fast sinusoidal beating within a normally dispersive optical fiber. Basically, the strong nonlinear phase shift induced by the sinusoidal pump beam on the orthogonal weak signal through cross-phase modulation turns the defocusing regime into localized temporal focusing effects. This periodic focusing is then responsible for the generation of a high-repetition-rate temporal comb upon the incident signal whose amplitude is directly proportional to its initial shape. This internal redistribution of energy leads to a simultaneous sampling and magnification of the signal intensity profile. This process allows us to experimentally demonstrate a 40-GHz sampling operation as well ...

  10. Photonic Routing Systems Using All-optical, Hybrid Integrated Wavelength Converter Arrays

    Directory of Open Access Journals (Sweden)

    Leontios Stampoulidis

    2010-02-01

    Full Text Available The integration of a new generation of all-optical wavelength converters within European project ISTMUFINS has enabled the development of compact and multi-functional photonic processing systems. Here we present the realization of demanding functionalities required in high-capacity photonic routers using these highly integrated components including: Clock recovery, data/label recovery, wavelength routing and contention resolution; all implemented with multi-signal processing using a single photonic chip – a quadruple array of SOAMZI wavelength converters which occupies a chip area of only 15 x 58 mm2. In addition, we present the capability of the technology to build WDM signal processing systems with the simultaneous operation of four quad devices in a four wavelength burst-mode regenerator. Finally, the potential of the technology to provide photonic systems-onchip is demonstrated with the first hybrid integrated alloptical burst-mode receiver prototype.

  11. All-optical switches, unidirectional flow, and logic gates with discrete solitons in waveguide arrays.

    Science.gov (United States)

    Al Khawaja, U; Al-Marzoug, S M; Bahlouli, H

    2016-05-16

    We propose a mechanism by which a number of useful all-optical operations, such as switches, diodes, and logic gates, can be performed with a single device. An effective potential well is obtained by modulating the coupling between the waveguides through their separations. Depending on the power of a control soliton injected through the potential well, an incoming soliton will either completely transmit or reflect forming a controllable switch. We show that two such switches can work as AND, OR, NAND, and NOR logic gates. Furthermore, the same device may also function as a perfect soliton diode with adjustable polarity. We discuss the feasibility of realising such devices with current experimental setups. PMID:27409929

  12. All-optical switching in silicon-on-insulator photonic wire nano-cavities.

    Science.gov (United States)

    Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2010-01-18

    We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated. PMID:20173973

  13. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  14. All-optical code-division multiple-access applications: 2(n) extended-prime codes.

    Science.gov (United States)

    Zhang, J G; Kwong, W C; Mann, S

    1997-09-10

    A new family of 2(n) codes, called 2(n) extended-prime codes, is proposed for all-optical code-division multiple-access networks. Such 2(n) codes are derived from so-called extended-prime codes so that their cross-correlation functions are not greater than 1, as opposed to 2 for recently proposed 2(n) prime codes. As a result, a larger number of active users can now be supported by the new codes for a given bit-error rate than can be by 2(n) prime codes, while power-efficient, waveguide-integrable all-serial coding and correlating configurations proposed for the 2(n) prime codes can still be employed. PMID:18259529

  15. Architectures and algorithms for all-optical 3D signal processing

    Science.gov (United States)

    Giglmayr, Josef

    1999-07-01

    All-optical signal processing by >= 2D lightwave circuits (LCs) is (i) aimed to allow the (later) inclusion of the frequency domain and is (ii) subject to photonic integration and thus the architectural and algorithmic framework has to be prepared carefully. Much work has been done in >= 2D algebraic system theory/modern control theory which has been applied in the electronic field of signal and image processing. For the application to modeling, analysis and design of the proposed 3D lightwave circuits (LCs) some elements are needed to describe and evalute the system efficiency as the number of system states of 3D LCs increases dramatically with regard to the number of i/o. Several problems, arising throughput such an attempt, are made transparent and solutions are proposed.

  16. Electroabsorption modulators used for all-optical signal processing and labelling

    DEFF Research Database (Denmark)

    Xu, Lin

    2004-01-01

    This thesis concerns the applications of semiconductor components, primarily electroabsorption modulators (EAMs), in optical signal processing and labelling for future all optical communication networks. An introduction to electroabsorption modulators is given and several mechanisms that form...... and various signal-processing functions based on Polarization Shift Keying (PolSK) modulation format are demonstrated. Polarization modulation is implemented by a normal Mach Zednder Modulator operating in a special but simple way. Detection and erasure of polarization information are realised by a device...... with the signal wavelength, indicating that an optimum wavelength can be found as a trade-off between the on-off ratio and the signal-to-noise ratio. The chirp property and the small signal bandwidth for electrical-to-optical modulation of the EAM are investigated. It is found that the measured chirp α...

  17. Silicon Nanowires for All-Optical Signal Processing in Optical Communication

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua;

    2012-01-01

    such as four-wave mixing (FWM) which is an imperative process for optical signal processing. Since the current mature silicon fabrication technology enables a precise dimension control on nanowires, dispersion engineering can be performed by tailoring nanowire dimensions to realize an efficient nonlinear...... process. In the last four years, we investigated and demonstrated different ultra-fast all-optical nonlinear signal processing applications in silicon nanowires for optical time domain multiplexing (OTDM) systems, including wavelength conversion, signal regeneration, ultra-fast waveform sampling......, demultiplexing, and multicasting, which shows great potentials in the future optical communication systems. Although the strong light confinement in nanowires allows efficient nonlinear optical signal processing, it also leads to coupling difficulty between on-chip sub-micron nanowires and micro-size fibers due...

  18. Optimization of all-optical gain-clamped lumped Raman fibre amplifier for dynamic performance

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Radil, J.

    Vol. 1. Piscataway: Institute of Electrical and Electronic Engineers, 2005 - (Marciniak, M.), s. 43-45 ISBN 0-7803-9236-1. [International Conference on Transparent Optical Networks ICTON'2005 /7./ collocated with European Symposium on Photonic Crystals ESPC /4./, Workshop on All-Optical Routing WAOR /4./, Global Optical & Wireless Networking GOWN Seminar /2./, COST 270 Workshop on Reliability Issues in Next Generation Optical Networks RONEXT, Photonic Integrated Components & Applications Workshop PICAW, COST 291 Workshop on Issues and Challenges in Optical Networking and "e-Photon/ONe" Special Session. Barcelona (ES), 03.07.2005-07.07.2005] R&D Projects: GA MŠk(CZ) 1P05OC001 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical communication * amplifiers * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. An all-optical spatial light modulator for field-programmable silicon photonic circuits

    CERN Document Server

    Bruck, Roman; Lalanne, Philippe; Mills, Ben; Thomson, David J; Mashanovich, Goran Z; Reed, Graham T; Muskens, Otto L

    2016-01-01

    Reconfigurable photonic devices capable of routing the flow of light enable flexible integrated-optic circuits that are not hard-wired but can be externally controlled. Analogous to free-space spatial light modulators, we demonstrate all-optical wavefront shaping in integrated silicon-on-insulator photonic devices by modifying the spatial refractive index profile of the device employing ultraviolet pulsed laser excitation. Applying appropriate excitation patterns grants us full control over the optical transfer function of telecommunication-wavelength light travelling through the device, thus allowing us to redefine its functionalities. As a proof-of-concept, we experimentally demonstrate routing of light between the ports of a multimode interference power splitter with more than 97% total efficiency and negligible losses. Wavefront shaping in integrated photonic circuits provides a conceptually new approach toward achieving highly adaptable and field-programmable photonic circuits with applications in optica...

  20. All-Optical Clock Recovery from NRZ-DPSK Signals at Flexible Bit Rates

    International Nuclear Information System (INIS)

    We propose and demonstrate all-optical clock recovery (CR) from nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signals at different bit rates theoretically and experimentally. By pre-processing with a single optical filter, clock component can be enhanced significantly and thus clock signal can be extracted from the preprocessed signals, by cascading a CR unit with a semiconductor optical amplifier based fibre ring laser. Compared with the previous preprocessing schemes, the single filter is simple and suitable for different bit rates. The clock signals can be achieved with extinction ratio over 10 dB and rms timing jitter of 0.86 and 0.9 at 10 and 20 Gb/s, respectively. The output performances related to the bandwidth and the detuning of the filter are analysed. By simply using a filter with larger bandwidth, much higher operation can be achieved easily. (fundamental areas of phenomenology (including applications))

  1. Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials

    International Nuclear Information System (INIS)

    An all-optical tunable double plasmon-induced transparency is realized in a photonic metamaterial coated on the surface of a nanocomposite layer made of polycrystalline indium-tin oxide doped with gold nanoparticles. The local-field effect, quantum confinement effect, and hot-electron injection ensure a large optical nonlinearity for the nanocomposite. A shift of 120 nm in the central wavelength of transparency windows is reached under excitation with a weak pump laser with an intensity of 21 kW/cm2. Compared with previous reports, the threshold pump intensity is reduced by five orders of magnitude, while an ultrafast response time of 34.9 ps is maintained.

  2. Tunable all-optical devices based on liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;

    of discrete and nonlinear light propagation in extended two-dimensional periodic systems. We experimentally demonstrate strongly tunable beam diffraction in a triangular waveguide array created by infiltration of a high index liquid into the cladding holes of a standard PCF, and employ the thermal...... nonlinearity of the liquid to achieve beam self-defocusing at higher light intensity. Based on the observed effects we devise a compact all-optical power limiter device with tunable characteristics. The use of commercially available PCFs in combination with liquid infiltration avoids the need for specialized...... high-precision fabrication procedures, and provides high tunability and nonlinearity at moderate laser powers while taking advantage of a compact experimental setup. The increasingly broad range of PCF structures available could stimulate further efforts in applying them in discrete nonlinear optics...

  3. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer

    Science.gov (United States)

    Liu, Hewei; Huang, Yinggang; Jiang, Hongrui

    2016-04-01

    The ability to acquire images under low-light conditions is critical for many applications. However, to date, strategies toward improving low-light imaging primarily focus on developing electronic image sensors. Inspired by natural scotopic visual systems, we adopt an all-optical method to significantly improve the overall photosensitivity of imaging systems. Such optical approach is independent of, and can effectively circumvent the physical and material limitations of, the electronics imagers used. We demonstrate an artificial eye inspired by superposition compound eyes and the retinal structure of elephantnose fish. The bioinspired photosensitivity enhancer (BPE) that we have developed enhances the image intensity without consuming power, which is achieved by three-dimensional, omnidirectionally aligned microphotocollectors with parabolic reflective sidewalls. Our work opens up a previously unidentified direction toward achieving high photosensitivity in imaging systems.

  4. Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures.

    Science.gov (United States)

    Le Guyader, L; Savoini, M; El Moussaoui, S; Buzzi, M; Tsukamoto, A; Itoh, A; Kirilyuk, A; Rasing, T; Kimel, A V; Nolting, F

    2015-01-01

    Ultrafast magnetization reversal driven by femtosecond laser pulses has been shown to be a promising way to write information. Seeking to improve the recording density has raised intriguing fundamental questions about the feasibility of combining ultrafast temporal resolution with sub-wavelength spatial resolution for magnetic recording. Here we report on the experimental demonstration of nanoscale sub-100 ps all-optical magnetization switching, providing a path to sub-wavelength magnetic recording. Using computational methods, we reveal the feasibility of nanoscale magnetic switching even for an unfocused laser pulse. This effect is achieved by structuring the sample such that the laser pulse, via both refraction and interference, focuses onto a localized region of the structure, the position of which can be controlled by the structural design. Time-resolved photo-emission electron microscopy studies reveal that nanoscale magnetic switching employing such focusing can be pushed to the sub-100 ps regime. PMID:25581133

  5. All-optical NRZ wavelength conversion using a Sagnac loop with optimized SOA characteristics

    International Nuclear Information System (INIS)

    We investigated the all-optical wavelength conversion technique for non-return-to-zero (NRZ) signals based on a Sagnac loop interferometer using an SOA. For the wavelength conversion of the NRZ signal at and above 40 Gbit/s, we used an in-house numerical SOA model to analyze the influence of the SOA carrier characteristics and the SOA length on the performance of the Sagnac loop. We found that the SOA carrier recovery time should be between 2 and 3 times of one bit duration in order to get optimum NRZ wavelength conversion. In addition to the carrier recovery time requirement, SOAs with a shorter physical length are preferred to be used in the Sagnac interferometer. (semiconductor devices)

  6. Orientation of azobenzene molecules in polymer films induced by all-optical poling

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Zhong(钟晓霞); Shouyu Luo(罗售余); Xiuqin Yu(虞秀琴); Qu Li(李劬); Yingli Chen(陈英礼); Yu Sui(隋郁); Jie Yin(印杰)

    2003-01-01

    A model of the alignment of azobenzene molecules in polymer film induced by all-optical poling is proposedand verified by experiment. We found that when the writing beams of frequencies ω and 2ω are both linearlypolarized with their polarization directions parallel to each other, azobenzene molecules tend to reorientto the direction perpendicular to the writing beams polarization. At the end of the writing process, moremolecules orient to the direction perpendicular to the writing beams polarization than those which orientto the parallel direction. The alignment of molecules parallel or perpendicular to the polarization of thewriting beams is characteristic of polarity or no polarity, respectively. The alignment of molecules alongthe polarization of writing beams results in the second order nonlinearity in the polymer film. Accordingto the model, a new method to improve the optical poling efficiency is put forward.

  7. Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.

    Science.gov (United States)

    Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M

    2007-10-01

    We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders. PMID:19550579

  8. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    International Nuclear Information System (INIS)

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 μm. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  9. Modeling of semiconductor devices for high-speed all-optical signal processing

    DEFF Research Database (Denmark)

    Bischoff, Svend; Højfeldt, Sune; Mørk, Jesper

    2001-01-01

    The all-optical signal processing performance of devices based on active semiconductor waveguides is investigated. A large signal model is used to analyse the physical mechanisms limiting the high-speed performance of both semiconductor optical amplifiers (SOAs) and electro-absorption modulators...... (EAMs). Wavelength conversion and signal regeneration in EAMs is discussed at 10 and 40 Gbit/s. The finite carrier sweep-out time is shown to limit the EAM performance. Four-wave mixing (FWM) in SOAs is almost instantaneous. However, with increasing bit rates and advanced processing functionalities some...... Mach-Zehnder interferometer. The finite response time of the SOAs is found to limit the base bit rate to 40 Gbit/s. Base bit rates above 40 Gbit/s will require an improved device design with faster material response....

  10. Nonlinear Transient Dynamics of Photoexcited Silicon Nanoantenna for Ultrafast All-Optical Signal Processing

    CERN Document Server

    Baranov, Denis G; Milichko, Valentin A; Kudryashov, Sergey I; Krasnok, Alexander E; Belov, Pavel A

    2016-01-01

    Optically generated electron-hole plasma in high-index dielectric nanostructures was demonstrated as a means of tuning of their optical properties. However, until now an ultrafast operation regime of such plasma driven nanostructures has not been attained. Here, we perform pump-probe experiments with resonant silicon nanoparticles and report on dense optical plasma generation near the magnetic dipole resonance with ultrafast (about 2.5 ps) relaxation rate. Basing on experimental results, we develop an analytical model describing transient response of a nanocrystalline silicon nanoparticle to an intense laser pulse and show theoretically that plasma induced optical nonlinearity leads to ultrafast reconfiguration of the scattering power pattern. We demonstrate 100 fs switching to unidirectional scattering regime upon irradiation of the nanoparticle by an intense femtosecond pulse. Our work lays the foundation for developing ultracompact and ultrafast all-optical signal processing devices.

  11. High efficiency all-optical diode based on photonic crystal waveguide

    Science.gov (United States)

    Liu, Bin; Liu, Yun-Feng; Li, Shu-Jing; He, Xing-Dao

    2016-06-01

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a Fano cavity containing nonlinear Kerr medium and a F-P cavity in PC waveguide. Because of interference between two cavities, Fano peak and F-P peak can both appear in transmission spectra. Working wavelength is set between the two peaks and approaching to Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can be excited. It would result in red shift of Fano peak and achieving forward transmission. But due to the asymmetric design, backward launch need stronger incidence light to excite Kerr effect. This design has many advantages, including high maximum transmittance (>90%), high transmittance contrast ratio, low power threshold, short response time (picosecond level), ease of integration.

  12. All-Optical Nanometric Switch based on the Directional Scattering of Semiconductor Nanoparticles

    CERN Document Server

    Garcia-Camara, Braulio; Cuadrado, Alexander; Urruchi, Virginia; Sanchez-Pena, Jose Manuel; Serna, Rosalia; Vergaz, Ricardo

    2015-01-01

    A structure based on a dimer of silicon nanoparticles, presenting directional scattering in the visible range, was studied as a new design of an all-optical switch. The combination of spherical nanoparticles satisfying, at the same incident wavelength, the zero-backward and the minimum-forward scattering conditions, can produce either a maximum or a minimum of the scattered field in the area between the nanoparticles. The modulation of the incident wavelength can be used as switching parameter, due to the sensitivity of these conditions to it. An optimization of the dimer setup, both in the distance between the nanoparticles and the incident wavelength, was numerically performed to obtain a maximum contrast. Also, near-field and far-field distributions of the electric field have been considered.

  13. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Directory of Open Access Journals (Sweden)

    Hussain Ali Badran

    2014-01-01

    Full Text Available In this work thermal lens spectrometry (TLS is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino-5-methylphenyl] telluride platinum(II, doped polyacrylamide gel using transistor-transistor logic (TTL modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  14. Real-time wavefront-shaping through scattering media by all optical feedback

    CERN Document Server

    Nixon, Micha; Small, Eran; Bromberg, Yaron; Friesem, Asher A; Silberberg, Yaron; Davidson, Nir

    2013-01-01

    Focusing light through dynamically varying heterogeneous media is a sought-after goal with important applications ranging from free-space communication to nano-surgery. The underlying challenge is to control the optical wavefront with a large number of degrees-of-freedom (DOF) at timescales shorter than the medium dynamics. Recently, many advancements have been reported following the demonstration of focusing through turbid samples by wavefront-shaping, using spatial light modulators (SLMs) having >1000 DOF. Unfortunately, SLM-based wavefront-shaping requires feedback from a detector/camera and is limited to slowly-varying samples. Here, we demonstrate a novel approach for wavefront-shaping using all-optical feedback. We show that the complex wavefront required to focus through highly scattering samples, including thin biological tissues, can be generated at sub-microsecond timescales by the process of field self-organization inside a multimode laser cavity, without requiring electronic feedback or SLMs. This...

  15. All-optical modulator based on a ferrofluid core metal cladding waveguide chip

    International Nuclear Information System (INIS)

    We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  17. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  18. All-optical light modulation in pharaonis phoborhodopsin and its application to parallel logic gates

    Science.gov (United States)

    Sharma, Parag; Roy, Sukhdev

    2004-08-01

    All-optical light modulation in pharaonis phoborhodopsin (ppR) protein has been analyzed considering its ppRO state dynamics based on nonlinear intensity-induced excited-state absorption. Amplitude modulation of a cw probe laser beam transmission at 560nm corresponding to the peak absorption of ppRO intermediate state through ppR, by a modulating cw pump laser beam at 498nm corresponding to the peak absorption of initial ppR state has been analyzed considering all six intermediate states in its photocylce using the rate equation approach. The transmission characteristics have been shown to exhibit a dip at relatively lower pump intensity values compared to bacteriorhodopsin, which is sensitive to normalized small-signal absorption coefficient (β ), rate constants of ppRM and ppRO states, and absorption of the ppRO state at 498nm. There is an optimum value of β for a given pump intensity range for which maximum modulation can be achieved. It is shown that 100% modulation can be achieved if the initial state of ppR does not absorb the probe beam. The results have been used to design low power all optical parallel NOT, AND, OR, XNOR, and the universal NAND and NOR logic gates for two cases: (i) only changing the output threshold and (ii) considering a common threshold with different β values. At typical parameters, wild-type (WT) ppR based logic gates can be realized at considerably lower pump powers than WT-bR.

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of ...

  20. Ultrasound -- Vascular

    Science.gov (United States)

    ... page How is the procedure performed? For most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... either side or on occasion placed in a face down position to improve the quality ... (ultrasound technologist) or radiologist then places the transducer on ...

  1. Musculoskeletal Ultrasound

    Science.gov (United States)

    ... examination table or a swivel chair. For other ultrasound exams, the patient is positioned lying face-up or face-down on an examination table. The radiologist or sonographer may ask you to move the extremity being examined or may ... ultrasound studies of infants and children are performed with ...

  2. Direct UV-written broadband directional broadband planar waveguide couplers

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2005-01-01

    We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation.......We report the fabrication of broadband directional couplers by direct UV-writing. The fabrication process is shown to be beneficial, robust and flexible. The components are compact and show superior performance in terms of loss and broadband operation....

  3. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco;

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  4. A novel self-routing address scheme for all-optical packet-switched networks with arbitrary topologies

    OpenAIRE

    Yuan, XC; Li, VOK; Li, CY.; Wai, PKA

    2003-01-01

    Pure all-optical packet-switched networks in which both header processing and packet routing are carried out in the optical domain overcome the bandwidth bottlenecks of optoelectronic conversions and therefore are expected to meet the needs of next generation high speed networks. Due to the limited capabilities of available optical logic devices, realizations of pure all-optical packet-switched networks in the near future will likely employ routing schemes that minimize the complexity of rout...

  5. All-optical cryptography of M-QAM formats by using two-dimensional spectrally sliced keys.

    Science.gov (United States)

    Abbade, Marcelo L F; Cvijetic, Milorad; Messani, Carlos A; Alves, Cleiton J; Tenenbaum, Stefan

    2015-05-10

    There has been an increased interest in enhancing the security of optical communications systems and networks. All-optical cryptography methods have been considered as an alternative to electronic data encryption. In this paper we propose and verify the use of a novel all-optical scheme based on cryptographic keys applied on the spectral signal for encryption of the M-QAM modulated data with bit rates of up to 200 gigabits per second. PMID:25967489

  6. Ultra-Fast All-Optical Self-Aware Protection Switching Based on a Bistable Laser Diode

    DEFF Research Database (Denmark)

    An, Yi; Vukovic, Dragana; Lorences Riesgo, Abel;

    2014-01-01

    We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps.......We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps....

  7. Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime

    International Nuclear Information System (INIS)

    We present the design and analysis of a polarization-insensitive and wide-angle broadband nearly perfect absorber by planar metamaterial in the visible regime. The bandwidth of absorption spectrum can be effectively expanded by combining multiple resonant elements. The forming mechanisms of the broadband metamaterial perfect absorber (MPA) are also demonstrated by the hybridization of the plasmonic system. The resonance of the broadband MPA can be dynamically tuned by varying the intensity of the incident beam. This kind of all-optically tunable perfect absorber will help to overcome some of the limitations of customary designs developed so far. (paper)

  8. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal

    Science.gov (United States)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-01

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  9. All-optical devices based on carrier nonlinearities for optical filtering and spectral equalization

    Science.gov (United States)

    Burger, Johan Petrus

    InGaAsP-based quantum wells can display nonlinear refractive index changes of ~0.1 near the band-edge for intrawell carrier density changes of 1 × 1018cm-3, due to effects like bandfilling and the plasma effect, which make these materials promising for the realization of all-optical signal processing devices, as demonstrated here. A novel single passband filter with sub-gigahertz bandwidth and greater than 40nm of tunability was experimentally demonstrated. The filter uses the detuning characteristics of nearly degenerate four-wave mixing in a broad area semiconductor optical amplifier to obtain frequency selectivity. The key to this demonstration was the spatial separation of the filtered signal from the input signal, based on their different propagation directions. An analysis of an analogous integrated optic dual-order mode nonlinear mode-converter, with integrated mode sorters which separate the signal from the interacting modes, was also undertaken. This device is promising as a filter, a wavelength converter, notch filter, and a wavelength recognizing switch. Novel ways to prevent carrier diffusion, which washes out the nonlinear grating, were suggested. It is important to have a large mutual overlap to modal overlap ratio of the two interacting modes on the nonlinear medium, because the mixing efficiency scales as the fourth power of this number. Three types of integrated optic limiters (based on Kerr- like nonlinearities) namely an all-optical cutoff modulator, a nonlinear Y-branch and an interferometer with an internal Kerr element, were theoretically investigated. A beam propagation program, which can solve the propagation of an optical field in a semiconductor in the presence of carrier diffusion, was developed for the numerical analysis of these structures. A negative feedback mechanism was identified in the Y-branch devices and a new limiting configuration was discovered in a Y- branch with a selectively placed defocusing nonlinearity. Dichroic

  10. Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope

    Science.gov (United States)

    Hughes, D. A.; Sampathkumar, A.; Longbottom, C.; Kirk, K. J.

    2015-01-01

    Tooth decay, at its earliest stages, manifests itself as small, white, subsurface lesions in the enamel. Current methods for detection in the dental clinic are visual and tactile investigations, and bite-wing X-ray radiographs. These techniques suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease due to the small size (tooth decay. Ex-vivo tooth samples exhibiting white spot lesions were scanned and were found to generate a larger (one order of magnitude) photoacoustic (PA) signal in the lesion regions compared to healthy enamel. The high contrast in the PA images potentially allows lesions to be imaged and measured at a much earlier stage than current clinical techniques allow. PA images were cross referenced with histology photographs to validate our experimental results. Our PA system provides a noncontact method for early detection of white-spot lesions with a high detection bandwidth that offers advantages over previously demonstrated ultrasound methods. The technique provides the sensing depth of an ultrasound system, but with the spatial resolution of an optical system.

  11. Czech way to broadband

    Czech Academy of Sciences Publication Activity Database

    Kuchar, Anton; Peterka, J.; Hrstka, J.; Hankiewiczová, H.

    -, August (2006), s. 274-278. ISSN 1106-2975. [FITCE Congress /45./. Athens, 30.08.2006-02.09.2006] Grant ostatní: BReATH Consortium EU(XE) EC FP6 1ST Programme Institutional research plan: CEZ:AV0Z20670512 Keywords : telecommunication networks * Internet * broadband networks Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  13. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Science.gov (United States)

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  14. Proposal of all-optical sensor based on nonlinear MMI coupler for multi-purpose usage

    Science.gov (United States)

    Tajaldini, M.; MatJafri, M. Z.

    2015-10-01

    In this study, we propose an all-optical sensor based on consideration the nonlinear effects on modal propagation and output intensity based on ultra-compact nonlinear multimode interference (NLMMI) coupler. The sensor can be tuned to highest sensitivity in the wavelength and refractive index ranges sufficient to detect water- soluble chemical, air pollutions, and heart operation. The results indicate high output sensitivity to input wavelength. This sensitivity guides us to propose a wave sensor both transverse and longitudinal waves such as acoustic and light wave, when an external wave interacts with input waveguide. For instance, this sensor can be implemented by long input that inserted in the land, then any wave could detected from earth. The visible changes of intensity at output facet in various surrounding layer refractive index show the high sensitivity to the refractive index of surrounding layer that is foundation of introducing a sensor. Also, the results show the high distinguished changes on modal expansion and output throat distribution in various refractive indices of surrounding layer.

  15. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme

    Science.gov (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier

    2014-02-01

    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  16. All-Optical Signal Processing for 640 Gbit/s Applications

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen

    2008-01-01

    This thesis concerns all-optical signal processing technologies for ultra-high serial data rates up to 640 Gbit/s. Firstly, time-division add-drop multiplexing at 640 Gbit/s is demonstrated for the first time using two different fibre-based switching techniques. Secondly, a novel principle......-based technique. Et væsentligt forskningsområde indenfor optisk kommunikation er forøgelsen af de nuværende data hastigheder, hvilket især er nødvendiggjort pga. den hastigt stigende Internet trafik. Denne afhandling omhandler teknikker til optisk signalbehandling af data signaler med bit hastigheder op til 640...... Gbit/s, herunder tidslig add-drop multiplexing (TADM), demultiplexing, samt klokkegendannelse. Optisk signal behandling udføres direkte på det optiske data signal (infrarødt laserlys), uden at det konverteres til et elektrisk signal. Fordelen ved den optiske tilgang er at den tillader signalbehandling...

  17. All-optical central-frequency-programmable and bandwidth-tailorable radar

    Science.gov (United States)

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution.

  18. All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators.

    Science.gov (United States)

    Lowery, Arthur James; Du, Liang

    2011-08-15

    An Arrayed-Waveguide Grating Router (AWGR) can be used as a demultiplexer for an optical OFDM system, as it provides both the serial-to-parallel converter and the optical Fourier transform (FT) in one component. Because an inverse FT is topologically identical to a Fourier transform, the AWGR can also be used as a FT in an OFDM transmitter. In most all-optical OFDM systems the optical modulators are fed with CW tones; however, the subcarriers (SC) will only be perfectly orthogonal if the bandwidth of the data modulators is similar to the total bandwidth of all subcarriers. Using simulations, this paper investigates the reduction in modulator bandwidth that could be achieved if the modulators are placed before an AWGR designed as a FT. This arrangement also allows the complex (IQ) modulators to be replaced with simpler and more-compact phase modulators. We show that these design improvements enable 7.5-GHz bandwidth modulators to be used in a 4 × 10 Gsymbol/s (80 Gbit/s) per polarization per wavelength system. PMID:21934931

  19. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    International Nuclear Information System (INIS)

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm3) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm3). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics

  20. Design of photonic crystal-based all-optical AND gate using T-shaped waveguide

    Science.gov (United States)

    haq Shaik, Enaul; Rangaswamy, Nakkeeran

    2016-05-01

    We present a new configuration of all-optical AND gate based on two-dimensional photonic crystal composed of Si rods in air. Two AND gate structures with and without probe input are proposed. The proposed structures are designed with T-shaped waveguide without using nonlinear materials and optical amplifiers. The performance of the proposed AND gate structures is analyzed and simulated by plane-wave expansion and finite difference time domain methods. The AND gate without probe input needs only one T-shaped waveguide, whereas the AND gate with probe input needs two T-shaped waveguides. The former AND gate offers a bit rate of 6.26 Tbps with a contrast ratio of 5.74 dB, whereas the latter AND gate offers a bit rate of 3.58 Tbps whose contrast ratio is 9.66 dB. It can be expected that these small size T-shaped structures are suitable for large-scale integration and can potentially be used in on-chip photonic integrated circuits.

  1. All-optical central-frequency-programmable and bandwidth-tailorable radar.

    Science.gov (United States)

    Zou, Weiwen; Zhang, Hao; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2016-01-01

    Radar has been widely used for military, security, and rescue purposes, and modern radar should be reconfigurable at multi-bands and have programmable central frequencies and considerable bandwidth agility. Microwave photonics or photonics-assisted radio-frequency technology is a unique solution to providing such capabilities. Here, we demonstrate an all-optical central-frequency-programmable and bandwidth-tailorable radar architecture that provides a coherent system and utilizes one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates a wideband linearly chirped radar signal. The working bands can be flexibly tailored with the desired bandwidth at a user-preferred carrier frequency. Radar echoes are first modulated onto the pre-chirped optical pulse, which is also used for signal generation, and then stretched in time or compressed in frequency several fold based on the time-stretch principle. Thus, digitization is facilitated without loss of detection ability. We believe that our results demonstrate an innovative radar architecture with an ultra-high-range resolution. PMID:26795596

  2. All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators

    Science.gov (United States)

    Moniem, Tamer A.

    2016-04-01

    The photonic crystals draw significant attention to build all-optical logic devices and are considered one of the solutions for the opto-electronic bottleneck via speed and size. The paper presents a novel optical 4 × 2 encoder based on 2D square lattice photonic crystals of silicon rods. The main realization of optical encoder is based on the photonic crystal ring resonator NOR gates. The proposed structure has four logic input ports, two output ports, and two bias input port. The photonic crystal structure has a square lattice of silicon rods with a refractive index of 3.39 in air. The structure has lattice constant 'a' equal to 630 nm and bandgap range from 0.32 to 044. The total size of the proposed 4 × 2 encoder is equal to 35 μm × 35 μm. The simulation results using the dimensional finite difference time domain and Plane Wave Expansion methods confirm the operation and the feasibility of the proposed optical encoder for ultrafast optical digital circuits.

  3. All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators

    Science.gov (United States)

    Lowery, Arthur James; Du, Liang

    2011-08-01

    An Arrayed-Waveguide Grating Router (AWGR) can be used as a demultiplexer for an optical OFDM system, as it provides both the serial-to-parallel converter and the optical Fourier transform (FT) in one component. Because an inverse FT is topologically identical to a Fourier transform, the AWGR can also be used as a FT in an OFDM transmitter. In most all-optical OFDM systems the optical modulators are fed with CW tones; however, the subcarriers (SC) will only be perfectly orthogonal if the bandwidth of the data modulators is similar to the total bandwidth of all subcarriers. Using simulations, this paper investigates the reduction in modulator bandwidth that could be achieved if the modulators are placed before an AWGR designed as a FT. This arrangement also allows the complex (IQ) modulators to be replaced with simpler and more-compact phase modulators. We show that these design improvements enable 7.5-GHz bandwidth modulators to be used in a 4 - 10 Gsymbol/s (80 Gbit/s) per polarization per wavelength system.

  4. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications.

    Science.gov (United States)

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J; Ramírez-Miquet, Evelio E; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  5. Quantum-dot all-optical logic in a structured vacuum

    International Nuclear Information System (INIS)

    We demonstrate multiwavelength channel optical logic operations on the Bloch vector of a quantum two-level system in the structured electromagnetic vacuum of a bimodal photonic crystal waveguide. This arises through a bichromatic strong-coupling effect that enables unprecedented control over single quantum-dot (QD) excitation through two beams of ultrashort femtojoule pulses. The second driving pulse (signal) with slightly different frequency and weaker strength than the first (holding) pulse leads to controllable strong modulation of the QD Bloch vector evolution path. This occurs through resonant coupling of the signal pulse with the Mollow sideband transitions created by the holding pulse. The movement of the Mollow sidebands during the passage of the holding pulse leads to an effective chirping in transition frequency seen by the signal. Bloch vector dynamics in the rotating frame of the signal pulse and within the dressed-state basis created by the holding pulse reveals that this chirped coupling between the signal pulse and the Mollow sidebands leads to either augmentation or negation of the final quantum-dot population (after pulse passage) compared to the outcome of the holding pulse alone and depending on the relative frequencies of the pulses. By making use of this extra degree of freedom for ultrafast control of QD excitations, applications in ultrafast all-optical logic and, or, and not gates are proposed in the presence of significant (0.1) THz nonradiative dephasing and (about 1%) inhomogeneous broadening.

  6. Transmission performance of a 400 Gbit s−1 all-optical orthogonal frequency division multiplexing system

    International Nuclear Information System (INIS)

    The performance of a 400 Gbit s−1 all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system is researched with the effects of chromatic dispersion, fiber nonlinearities and amplified spontaneous emission (ASE) noise. The numerical simulation results show that the AO-OFDM system can provide a higher spectral efficiency (SE) and a better sensitivity than a dense wavelength division multiplexing (DWDM) system. The accumulated dispersion tolerance of the system reaches 330 ps nm−1. When transmitted over single-span 80 km single-mode fiber (SMF), AO-OFDM signals have a 1.5 dB power penalty at BER=10−3 due to the fiber Kerr nonlinearities, and the receiver sensitivity of the AO-OFDM system is obviously degraded with increasing incident optical power. In multispan transmission, the interaction of the fiber Kerr nonlinearity with the ASE noise is analyzed. A 1320 km maximum transmission distance is realized at 0 dBm incident optical power. The transmission discount due to the ASE noise and fiber nonlinearities in the AO-OFDM system is calculated. Fiber Kerr nonlinearities impose a greater limitation on the performance of the AO-OFDM system for long-distance transmission. All results clearly indicate the feasibility of AO-OFDM technology for next generation 400 Gbit s−1 fiber communication and multiservice networks. (paper)

  7. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    David, Sabrina N. [Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309 (United States); Zhai, Yao [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Zande, Arend M. van der [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); O' Brien, Kevin [NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley 3112 Etcheverry Hall, UC Berkeley, California 94720 (United States); Huang, Pinshane Y. [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Chenet, Daniel A.; Hone, James C. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Zhang, Xiang [NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley 3112 Etcheverry Hall, UC Berkeley, California 94720 (United States); Department of Physics, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Yin, Xiaobo, E-mail: Xiaobo.Yin@Colorado.Edu [Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-14

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.

  8. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Eiichi, E-mail: kuramochi.eiichi@lab.ntt.co.jp; Nozaki, Kengo; Shinya, Akihiko; Taniyama, Hideaki; Notomi, Masaya [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Takeda, Koji; Matsuo, Shinji [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Sato, Tomonari [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2015-11-30

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.

  9. A matrix based on germanium/ormosil system for all-optical applications

    Science.gov (United States)

    Gao, Tianxi; Que, Wenxiu; Wang, Yushu

    2016-05-01

    Germania/ormosil hybrid matrix with large third-order nonlinearity is prepared by a low-temperature sol-gel process. Z-scan measurements indicate that the film fabricated from the pure Germania/ormosil hybrid solution shows an excellent third-order nonlinearity at all measured wavelengths. In order to explore its potential to be a functional matrix, a well-investigated organic dopant disperse red 1 (DR1) azoaromatic chromophore is introduced into the Germania/ormosil system. As a comparison, the poly(methyl methacrylate) (PMMA) polymer is employed and doped with the same content of DR1 molecule. Results indicate that by employing Germania/ormosil matrix system, the figure of merit of DR1-doped material at 532 nm can be greatly improved as compared to that of the PMMA/DR1 polymer film and also other published reports. This improvement helps broaden the limited applications of DR1-doped material and make it acceptable for devices fabrication at 532 nm. Results demonstrate that the as-prepared hybrid matrix might be a promising candidate for all-optical applications.

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... detect: uterine anomalies uterine scars endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, ... the sounds that bounce back and a computer then uses those sound waves to create an ...

  12. Hip Ultrasound

    Science.gov (United States)

    ... Infant ultrasound can be used to check the hips for developmental dysplasia of the hip (DDH), which in infants can range from a shallow cup (bony acetabular dysplasia), to complete dislocation with the ball of the ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs ... or uterine cancers A transvaginal ultrasound is usually performed to view ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of urinary and reproductive system disorders in both sexes without even the minimal risks associated with x- ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are also used to monitor the health and development of an embryo or fetus during pregnancy. See ... ultrasound , there are no known harmful effects on humans. top of ... Radiation Therapy for Gynecologic Cancers Radiation ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves into the ... ultrasound study is performed, you may actually hear pulse-like sounds that change in pitch as the ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement ... by a computer, which in turn creates a real-time picture on the monitor. One or more ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... tip of the transducer is smaller than the standard speculum used when performing a Pap test . A ... risks associated with x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... physicians with expertise in several radiologic areas. Outside links: For the convenience of our users, RadiologyInfo .org ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... legs, neck and/or brain (in infants and children) or within various body organs such as the ... tumors other disorders of the urinary bladder In children, pelvic ultrasound can help evaluate: pelvic masses pelvic ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... stable or changes over time. top of page Benefits Most ultrasound scanning is noninvasive (no needles or ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during ... and send a signed report to your primary care physician, or to the physician or other healthcare ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... and evaluate a variety of urinary and reproductive system disorders in both sexes without even the minimal ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... prior to the exam. Bringing books, small toys, music or games can help to distract the child ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... between the transducer and the skin that can block the sound waves from passing into your body. ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, noninvasive and does not use ... and evaluate a variety of urinary and reproductive system disorders in both sexes without even the minimal ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to the child prior to the exam. Bringing books, small toys, music or games can help to ... ultrasound , there are no known harmful effects on humans. top of ... Radiation Therapy for Gynecologic Cancers Radiation ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... can help identify: kidney stones bladder tumors other disorders of the urinary bladder In children, pelvic ultrasound ... evaluate a variety of urinary and reproductive system disorders in both sexes without even the minimal risks ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... for men). These exams are frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, ... technique that allows the physician to see and evaluate blood flow through arteries and veins in the ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging ... the device used to examine the patient), as well as the type of body structure and composition ...

  13. Ultrasound - Scrotum

    Science.gov (United States)

    ... tube immediately next to a testicle that collects sperm) and scrotum. Ultrasound is safe, noninvasive, and does ... tube immediately next to a testis that collects sperm made by the testicle) and scrotum. This study ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... small amount of gel is put on the skin to allow the sound waves to best travel ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... associated with x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects on ... by: Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical ...

  17. State of the Art of the all-Optical Radiocarbon Detection (Invited)

    Science.gov (United States)

    Cancio Pastor, P.; Mazzotti, D.; Galli, I.; Giusfredi, G.; Bartalini, S.; Cappelli, F.; De Natale, P.

    2013-12-01

    Radiocarbon (14C), the 'natural clock' for dating organic matter, is a very elusive atom. Its present concentration is about one part per trillion. For the past 30 years, accelerator mass spectrometry (AMS) has been adopted as the standard method for detecting such carbon isotope at concentrations well below its natural abundance (3 parts per quadrillion). AMS requires a smaller carbon mass and shorter measurement times than the old standard method of liquid scintillation counting. However, AMS requires huge, expensive and high-maintenance experimental facilities. We have developed a laser spectroscopy technique that is sensitive enough to detect the radiocarbon dioxide molecules at very low concentrations with an all-optical setup that is orders of magnitude more compact and less expensive than AMS [1]. The optical spectroscopy approach is based in the detection of very weak absorption of IR laser light by a 14C-containing molecule as 14C-Carbon Dioxide. Spectroscopic techniques as Cavity Ring Down (CRD) spectroscopy that uses the kilometric absorption paths provided by high-Finesse Fabry-Perot cavities have revolutionized the trace gas detection of molecular species in terms of ultimate sensitivity. Nevertheless CRD has been not capable to detect very elusive molecules as radiocarbon Dioxide. The new developed technique, named SCAR (saturated-absorption cavity ring-down), makes use of molecular absorption saturation to enhance resolution and sensitivity with respect to conventional CRD [2]. By combining SCAR with a frequency-comb-linked CW coherent source, which delivers tunable radiation (around 4.5-μm wavelength) [3], we could set an unprecedented limit in trace gas detection, accessing the part-per-quadrillion concentration range. Comparison between AMS and SCAR techniques to detect 14C by measuring the same carbon samples shows SCAR-based results are currently one order of magnitude shy of challenging AMS, but there is still room for improvement [4

  18. All-optical quality-of-signal monitoring in real time

    Science.gov (United States)

    Anderson, Betty Lise; Abou-Galala, Feras; Rabb, David; Durresi, Arjan

    2003-08-01

    An new optical correlator containing a tapped delay line with thousands of taps is described. This enables ultra-high resolution correlation. We apply this to monitoring quality-of-signal by correlating the received, degraded bits with and un-degraded signal. The strength of the correlation signal, which is all optical, is proportional to the quality. Dispersion and attenuation can be evaluated in less than 100 ps at 40Gb/s, and jitter and noise in less than 100 ns. This is a significant improvement over minutes or even hours for bit-error-rate measurements. Simulations show good correspondence to eye-diagram measurements, the conventional (but slow) way to measure signal quality. If a network node can know the quality of all its links in real-time, it can re-route signals around poor links, and provide restoration and protection as well. The key to all this is an optical correlator with a very large number of taps in its internal tapped delay line. Our device uses a White cell and a fixed micro-mirror array. In a White cell, light bounces back and forth between three spherical mirrors. Multiple beams circulate in the same cell without interfering and are each refocused to a unique pattern of spots. We make the spots land on the micro-mirror array to switch between cells of slightly different lengths. Our current design provides 6550 possible delays for thousands of light beams, using only ten mirrors, a lens, and the micro-mirror array. We have developed two routing and protection protocols to exploit having this real-time information available to the network.

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose a variety of heart ... Articles and Media Angioplasty and Vascular Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview ...

  20. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm−2. (paper)

  1. High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity

    Science.gov (United States)

    Xia, Xiu-Wen; Zhang, Xin-Qin; Xu, Jing-Ping; Yang, Ya-Ping

    2016-08-01

    We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701).

  2. All-optical NOT and XOR logic operation at 2.5 Gb/s based on semiconductor optical amplifier loop mirror

    Institute of Scientific and Technical Information of China (English)

    Wang Ying; Zhang Xin-Liang; Huang De-Xiu

    2004-01-01

    All-optical XOR and NOT logic operations based on semiconductor optical amplifier loop mirror (SLALOM) are simultaneously demonstrated theoretically and experimentally. Based on a segmented semiconductor optical amplifier model, the all-optical logic operation process is simulated theoretically. In an experimental study, 2.5 Gb/s all-optical XOR operation was achieved in the output port of SLALOM, while all-optical NOT operation was achieved in the input port through a circulator at the same time.

  3. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  4. Broadband terahertz spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wenhui Fan

    2011-01-01

    1.Introduction Spanning the frequency range between the infrared (IR) radiation and microwaves,terahertz (THz) waves are,also known as T-rays,T-lux,or simply called THz,assigned to cover the electromagnetic spectrum typically from 100 GHz (1011 Hz) to 10 THz (1013 Hz),namely,from 3 mm to 30 μm in wavelength,although slightly different definitions have been quoted by different authors.For a very long time,THz region is an almost unexplored field due to its rather unique location in the electromagnetic spectrum.Well-known techniques in optical or microwave region can not be directly employed in the THz range because optical wavelengths are too short and microwave wavelengths are too long compared to THz wavelengths.%An overview of the major techniques to generate and detect THz radiation so far, especially the major approaches to generate and detect coherent ultra-short THz pulses using ultra-short pulsed laser, has been presented. And also, this paper, in particularly, focuses on broadband THz spectroscopy and addresses on a number of issues relevant to generation and detection of broadband pulsed THz radiation as well as broadband time-domain THz spectroscopy (THz-TDS) with the help of ultra-short pulsed laser. The time-domain waveforms of coherent ultra-short THz pulses from photoconductive antenna excited by femtosecond laser with different pulse durations and their corresponding Fourier-transformed spectra have been obtained via the numerical simulation of ultrafast dynamics between femtosecond laser pulse and photoconductive material. The origins of fringes modulated on the top of broadband amplitude spectrum, which is measured by electric-optic detector based on thin nonlinear crystal and extracted by fast Fourier transformation, have been analyzed and the major solutions to get rid of these fringes are discussed.

  5. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.;

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition by interc...

  6. All-Optical Wavelength Conversion of a High-Speed RZ-OOK Signal in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael; Pu, Minhao; Mulvad, Hans Christian Hansen; Yvind, Kresten; Hvam, Jørn Märcher; Jeppesen, Palle; Oxenløwe, Leif Katsuo

    All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits.......All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits....

  7. All-Optical 2R Regeneration of a 160-Gbit/s RZOOK Serial Data Signal Using a FOPA

    DEFF Research Database (Denmark)

    Wang, Ju; Ji, Hua; Hu, Hao;

    2012-01-01

    All-optical 2R regeneration of a 160-Gbit/s RZ-OOK signal is demonstrated in a fiber optical parametric amplifier using a highly nonlinear fiber with the data as pump. Bit error rate bathtub curves validate the regeneration performance.......All-optical 2R regeneration of a 160-Gbit/s RZ-OOK signal is demonstrated in a fiber optical parametric amplifier using a highly nonlinear fiber with the data as pump. Bit error rate bathtub curves validate the regeneration performance....

  8. IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops

    DEFF Research Database (Denmark)

    Ramos, F.; Kehayas, E.; Martinez, J.M.;

    2005-01-01

    The Information Society Technologies - all-optical LAbel SwApping employing optical logic Gates in NEtwork nodes (IST-LASAGNE) project aims at designing and implementing the first, modular, scalable, and truly all-optical photonic router capable of operating at 40 Gb/s. The results of the first p...... project year are presented in this paper, with emphasis on the implementation of network node functionalities employing optical logic gates and optical flip-flops, as well as the definition of the network architecture and migration scenarios. © 2005 IEEE....

  9. Performance Investigation of All-Optical NRZ-to-Manchester Format Conversion with SOA-MZI Based XOR Logic Gate

    International Nuclear Information System (INIS)

    All-optical format conversion between non-return-to-zero (NRZ) and the Manchester code is implemented by using an optical exclusive-OR (XOR) logic gate based on a semiconductor optical amplifier Mach-Zehnder Interferometer (SOA-MZI). There is 10 Gbit/s all-optical NRZ-to-Manchester conversion implemented in our simulation system and BER performance of the format conversion is investigated. Transmission performances of the converted Manchester coded signal are discussed in terms of transmission length and received optical power. (fundamental areas of phenomenology(including applications))

  10. Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach - Zehnder-type all-optical switch

    International Nuclear Information System (INIS)

    We investigate the effect of intraband carrier dynamics on a nonlinear phase shift induced in a semiconductor optical amplifier (SOA) in terms of its applicability to the Symmetric Mach - Zehnder (SMZ) all-optical switch. Nonlinear phase shifts in an SOA and a passive semiconductor waveguide are compared under control-pulse durations ranging from 3.2 to 0.4 ps. The results show that femtosecond switching with higher efficiency is still possible by using the SOA. We experimentally achieve femtosecond (670 fs), femtojoule (140 fJ) switching with the SOA-based SMZ all-optical switch. [copyright] 2001 American Institute of Physics

  11. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard;

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km.......We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  12. Therapeutic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Lawrence A [Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, University of Washington, Seattle, WA 98105 (United States)

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  13. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  14. Broadband Radio Service (BRS) and Educational Broadband Service (EBS) Transmitters

    Data.gov (United States)

    Department of Homeland Security — The Broadband Radio Service (BRS), formerly known as the Multipoint Distribution Service (MDS)/Multichannel Multipoint Distribution Service (MMDS), is a commercial...

  15. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm;

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  16. All-optical three-input logic minterms generation using semiconductor optical amplifier-based Sagnac interferometer

    DEFF Research Database (Denmark)

    Lei, L.; Da Ros, Francesco; Xu, Jing;

    2013-01-01

    All-optical three-input logic minterms are generated at 42 Gbit/s with a Sagnac interferometer by using cross-phase modulation in a semiconductor optical amplifier. To the best of the author's knowledge, this is the first time that high-speed logic operations with more than two inputs have been...

  17. Flexible WDM/FTDM passive optical network with RZ-seeded all-optical sub-wavelength grid engine

    OpenAIRE

    Schrenk, Bernhard; Katopodis, Vasilis; Bauwelinck, Johan; Lázaro Villa, José Antonio; Yin, Xin; Bakopoulos, Paraskevas; Spyropoulou, Maria; Qiu, Xing Z.; Avramopoulos, Hércules

    2013-01-01

    All-optical FDM grid generation and channel selection is experimentally demonstrated through optical signal processing. Full-duplex 10G/2×10G transmission with reflective ONUs is validated for 20dB budget and 25km reach. An optional 10Gb/s FDM/TDM mode is verified.

  18. All-optical 2R regeneration at 40 Gbit/s in an SOA-based Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Wolfson, David; Hansen, Peter Bukhave; Fjelde, Tina;

    1999-01-01

    All-optical 2 R regeneration, with wavelength conversion, at 40 Gbit/s is demonstarted in an all-active Mach-Zehnder interferometer showing the capability of improving the signal-to-noise ratio by more than 20 db....

  19. All-Optical Flip-Flop Based on an SOA/DFB-Laser Diode Optical Feedback Scheme

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Buron, Jakob Due; Öhman, Filip;

    2007-01-01

    We report on the dynamic all-optical flip-flop (AOFF) operation of an optical feedback scheme consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB-LD), bidirectionally coupled to each other. The operation of the AOFF relies on the interplay between...

  20. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.;

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output signal...

  1. All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Öhman, Filip; Buron, Jakob Due;

    2007-01-01

    We report on the switching of an all-optical flip-flop consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB), bidirectionally coupled to each other. Both simulation and experimental results are presented. Switching times as low as 50ps, minimal required...

  2. A Theoretical Model of All-optical Switching Induced by a Soliton Pulse in Nano-waveguide Ring Resonator

    International Nuclear Information System (INIS)

    We propose a theoretical model of 1×2 all-optical switching in a silicon nano-waveguide ring resonator induced by a soliton pulse. All-optical switches made by silicon fiber or silicon waveguide have attracted much attention, because the low-absorption wavelength windows of silicon material just match optical fiber communication. However, to achieve all-optical switching in silicon is challenging owing to its relatively weak nonlinear optical properties and require high switching power, which is much higher than the signal power. Such high power is inappropriate for effective on-chip integration. To overcome this limitation, we have used a highly confined nano-waveguide ring resonator structure with soliton pulse input to enhance the nonlinearity and this leads to enhance the effect of refractive index change on the transmission response. The refractive index is changed by controlling the free-carrier concentration through two-photon absorption (TPA) effect. The result indicates that a refractive index change as small as 6.4×10−3 can reduce the switching power to 2.38 ×10−6 W. The nano-waveguide ring resonator all-optical switching described here is achieved by using the concept of strong light confinement, and the switching power is approximately three orders of magnitude lower than the available silicon optical switches. Such controllable switch is desired for achieving high performance in nanometer-size planar structures.

  3. Broadband frequency conversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter;

    We present a simple, passive and static setup for broadband frequency conversion. By using simple optical components like lenses, mirrors and gratings, we obtain the spectral angular dispersion to match the second harmonic generation phasematching angles in a nonlinear BiBO crystal. We are able to...... frequency double a single-frequency diode laser, tunable in the 1020-1090 nm range, with almost equal efficiency for all wavelengths. In the experimental setup, the width of the phasematch was increased with a factor of 50. The method can easily be extended to other wavelength ranges and nonlinear crystals...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to the child prior to the exam. Bringing books, small toys, music or games can help to distract the child and make the time pass quickly. The ultrasound exam room may have a television. Feel free to ask for your child's favorite channel. top ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... have a television. Feel free to ask for your child's favorite channel. top of page What does the equipment look like? Ultrasound scanners consist ... your side, facing away from the examiner, with your knees and hips slightly ... page What will I experience during and after the procedure? ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... sometimes seen in infections top of page How should I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound ... a cause of pelvic pain, the sonogram itself should not be painful or significantly increase your discomfort. ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis ... imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... masses such as ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top ... not be used for any purpose other than this referral.

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the ... tissues that do not show up well on x-ray images. Ultrasound is the preferred imaging modality for ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on June 12, 2015 Send us your feedback Did you find the information you were looking for? Yes ... - Prostate Images related to Ultrasound - Pelvis About this Site ...

  11. Broadband pendulum energy harvester

    Science.gov (United States)

    Liang, Changwei; Wu, You; Zuo, Lei

    2016-09-01

    A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.

  12. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd; Bang, Ole

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber by...

  13. Routing and wavelength assignment algorithms for all-optical WDM networks based on virtual multiple self-healing ring architecture

    Science.gov (United States)

    Ishikawa, Akio; Kishi, Yoji

    2000-09-01

    This paper newly proposes a self-healing architecture in all- optical WDM networks based on virtual embedded multiple rings (Virtual Multiple Self Healing Rings: VM-SHR). Focusing upon the network design aspect of the proposed architecture, this paper describes design methodologies for VM-SHR networks. For two major problems in all-optical WDM network design, that is, the connection routing and wavelength assignment problems, we first established solution models based on mathematical programming formulation, each of which can be solved by common integer programming algorithms, respectively. In addition, we also developed an efficient heuristic algorithm for the wavelength assignment problem. Their usefulness and performance are demonstrated through the extensive simulation results.

  14. Performance analysis of relay-assisted all-optical FSO networks over strong atmospheric turbulence channels with pointing errors

    KAUST Repository

    Yang, Liang

    2014-12-01

    In this study, we consider a relay-assisted free-space optical communication scheme over strong atmospheric turbulence channels with misalignment-induced pointing errors. The links from the source to the destination are assumed to be all-optical links. Assuming a variable gain relay with amplify-and-forward protocol, the electrical signal at the source is forwarded to the destination with the help of this relay through all-optical links. More specifically, we first present a cumulative density function (CDF) analysis for the end-to-end signal-to-noise ratio. Based on this CDF, the outage probability, bit-error rate, and average capacity of our proposed system are derived. Results show that the system diversity order is related to the minimum value of the channel parameters.

  15. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches

    CERN Document Server

    Bruck, Roman

    2013-01-01

    The performance of plasmonic nanoantenna structures on top of SOI wire waveguides as coherent perfect absorbers for modulators and all-optical switches is explored. The absorption, scattering, reflection and transmission spectra of gold and aluminum nanoantenna-loaded waveguides were calculated by means of 3D finite-difference time-domain simulations for single waves propagating along the waveguide, as well as for standing wave scenarios composed from two counterpropagating waves. The investigated configurations showed losses of roughly 1% and extinction ratios greater than 25 dB for modulator and switching applications, as well as plasmon effects such as strong field enhancement and localization in the nanoantenna region. The proposed plasmonic coherent perfect absorbers can be utilized for ultracompact all-optical switches in coherent networks as well as modulators and can find applications in sensing or in increasing nonlinear effects.

  16. Theoretical study of the all-optical tunable rainbow-trapping-like effect in chirped plasmonic slot waveguides

    International Nuclear Information System (INIS)

    An all-optical tunable rainbow-trapping-like effect is realized theoretically in a plasmonic slot waveguide with a chirped nanograting, permeated with organic polymer made of poly(hexafluoropropylene oxide) doped with cholesteryl iodide. Gradually increasing the grating period ensures that the stop band edge of the surface plasmon polariton mode varies with position along the nanograting, which brings about the rainbow-trapping-like effect. The physical mechanism underlying the all-optical tunability of this effect is attributed to the variation in the dispersion relations of the surface plasmon polariton mode caused by the pump laser induced refractive index change of cholesteryl iodide. A shift of up to 17 μm in the trapped position of the surface plasmon polariton mode is achieved under excitation of a 450 mJ cm−2 pump laser. (paper)

  17. EW WEIGHT DEPENDENT ROUTING AND WAVELENGTH ASSIGNMENT STRATEGY FOR ALL OPTICAL NETWORKS IN ABSENCE OF WAVELENGTH CONVERTERS

    Directory of Open Access Journals (Sweden)

    Shilpa S. Patil

    2015-09-01

    Full Text Available In wavelength division multiplexed all optical networks; lightpath establishes a connection between sending and receiving nodes bypassing the electronic processing at intermediate nodes. One of the prime objectives of Routing and Wavelength Assignment (RWA problem is to maximize the number of connections efficiently by choosing the best routes. Although there are several algorithms available, improving the blocking performance in optical networks and finding optimal solutions for RWA problem has still remained a challenging issue. Wavelength conversion can be helpful in restricting the problem of wavelength continuity constraint but it increases complexity in the network. In this paper, we propose new weight dependent routing and wavelength assignment strategy for all optical networks without use of wavelength converters. Proposed weight function reduces blocking probability significantly, improving the network performance at various load conditions. Further, due to absence of wavelength converters, the cost and complexity of network reduces. Results show that the proposed strategy performs better than earlier reported methods.

  18. All-optical transistors and logic gates using a parity-time-symmetric Y-junction: Design and simulation

    International Nuclear Information System (INIS)

    Classical nonlinear or quantum all-optical transistors are dependent on the value of input signal intensity or need extra co-propagating beams. In this paper, we present a kind of all-optical transistors constructed with parity-time (PT)-symmetric Y-junctions, which perform independently on the value of signal intensity in an unsaturated gain case and can also work after introducing saturated gain. Further, we show that control signal can switch the device from amplification of peaks in time to transformation of peaks to amplified troughs. By using these PT-symmetric Y-junctions with currently available materials and technologies, we can implement interesting logic functions such as NOT and XOR (exclusive OR) gates, implying potential applications of such structures in designing optical logic gates, optical switches, and signal transformations or amplifications

  19. Performance of All-Optical XNOR Gate Based on Two-Photon Absorption in Semiconductor Optical Amplifiers

    Directory of Open Access Journals (Sweden)

    Amer Kotb

    2014-01-01

    Full Text Available All-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is realized by using Mach-Zehnder interferometers (MZIs and exploiting the nonlinear effect of two-photon absorption (TPA in semiconductor optical amplifiers (SOAs. The employed model takes into account the impact of amplified spontaneous emission (ASE, input pulse energy, pulsewidth, SOAs carrier lifetime, and linewidth enhancement factor (α-factor on the gate’s output quality factor (Q-factor. The outcome of this study shows that the all-optical XNOR gate is indeed feasible with the proposed scheme at 250 Gb/s with both logical correctness and acceptable quality.

  20. Enhancement of modulation depth of an all-optical switch using an azo dye-ethyl red film

    International Nuclear Information System (INIS)

    The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays. (classical areas of phenomenology)

  1. All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal

    CERN Document Server

    Xia, Kangwei; Wang, Ya; Siyushev, Petr; Reuter, Rolf; Kornher, Thomas; Kukharchyk, Nadezhda; Wieck, Andreas D; Villa, Bruno; Yang, Sen; Wrachtrup, Jörg

    2015-01-01

    All-optical addressing and control of single solid-state based qubits allows for scalable architectures of quantum devices such as quantum networks and quantum simulators. So far, all-optical addressing of qubits was demonstrated only for color centers in diamond and quantum dots. Here, we demonstrate generation of coherent dark state of a single rare earth ion in a solid, namely a cerium ion in yttrium aluminum garnet (YAG). The dark state was formed under the condition of coherent population trapping. Furthermore, high-resolution spectroscopic studies of native and implanted single Ce ions have been performed. They revealed narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states, indicating the feasibility of interfacing single photons with a single electron spin of a cerium ion.

  2. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A., E-mail: me144@phys.vsu.ru [Voronezh State University (Russian Federation)

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  3. All-Optical Programmable Disaggregated Data Centre Network realized by FPGA-based Switch and Interface Card

    OpenAIRE

    Yan, Yan; Saridis, George; Shu, Yi; R. Rofoee, Bijan; Yan, Shuang Yi; Arslan, Murat; Richardson, David; Poole, Simon; Zervas, Georgios; Simeonidou, Dimitra; Bradley, Tom; Wheeler, Natalie V.; Wong, Nicholas H.L.; Poletti, Francesco; Petrovich, Marco N.

    2016-01-01

    This paper reports a FPGA-based Switch and Interface Card (SIC) and its application scenario in an all-optical, programmable disaggregated Data Centre Network (DCN). Our novel SIC is designed and implemented to replace traditional optical Network Interface Cards (NICs), plugged into the server directly, supporting Optical Packet Switching (OPS)/ Optical Circuit Switching (OCS) or Time Division Multiplexing (TDM)/ Wavelength Division Multiplexing (WDM) traffic on demand. Placing the SIC in eac...

  4. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    Science.gov (United States)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  5. Mitigation of phase noise in all-optical OFDM systems based on minimizing interaction time between subcarriers

    Science.gov (United States)

    Hmood, Jassim K.; Noordin, Kamarul A.; Harun, Sulaiman W.; Shalaby, Hossam M. H.

    2015-11-01

    A new approach to mitigate the phase noise in all-optical OFDM systems is analytically modeled and numerically demonstrated. The interaction time between subcarriers is minimized by shaping the envelopes of QAM subcarriers and making a delay time between even and odd subcarriers. Return-to-zero (RZ) coding is adopted for shaping the envelopes of subcarriers. In addition, the subcarriers are alternately delayed (AD) by optical time delayers. The performance of an all-optical OFDM system, that implements the proposed technique, is analyzed and simulated. This system has 29 subcarriers with symbol rate of 25 Gsymbol/s and is composed of coupler-based inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT) schemes. Each subcarrier is modulated with QAM format before shaping with RZ coding. Due to RZ being more affected by dispersion; a full periodic dispersion map is adopted to keep the total accumulated dispersion low. The results reveal that the nonlinear phase noise (NPN) due to fiber nonlinearity is significantly mitigated when the time delay between the odd and even subcarriers is equal to half the symbol period. The total phase noise variance is reduced from 9.3×10-3 to 6.1×10-3 rad2 when employing AD RZ-QAM for a transmission distance of 550 km. Furthermore, both the transmission distance and optical signal to noise ratio (OSNR) are improved when compared to all-optical OFDM systems that adopt traditional QAM modulation formats.

  6. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  7. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Ambrosi, Christina M.; Yu, Jinzhu; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-01-01

    The improvement of preclinical cardiotoxicity testing, discovery of new ion-channel-targeted drugs, and phenotyping and use of stem cell-derived cardiomyocytes and other biologics all necessitate high-throughput (HT), cellular-level electrophysiological interrogation tools. Optical techniques for actuation and sensing provide instant parallelism, enabling contactless dynamic HT testing of cells and small-tissue constructs, not affordable by other means. Here we show, computationally and experimentally, the limits of all-optical electrophysiology when applied to drug testing, then implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We validate optical actuation by virally introducing optogenetic drivers in rat and human cardiomyocytes or through the modular use of dedicated light-sensitive somatic ‘spark' cells. We show that this automated all-optical approach provides HT means of cellular interrogation, that is, allows for dynamic testing of >600 multicellular samples or compounds per hour, and yields high-content information about the action of a drug over time, space and doses. PMID:27161419

  8. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  9. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  10. Metamaterial broadband angular selectivity

    Science.gov (United States)

    Shen, Yichen; Ye, Dexin; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D.; Soljačić, Marin

    2014-09-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  11. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  12. ALL OPTICAL IMPLEMENTATION OF HIGH SPEED AND LOW POWER REVERSIBLE FULL ADDER USING SEMICONDUCTOR OPTICAL AMPLIFIER BASED MACH-ZEHNDER INTERFEROMETER

    Directory of Open Access Journals (Sweden)

    R. M. Bommi

    2014-01-01

    Full Text Available In the recent years reversible logic design has promising applications in low power computing, optical computing, quantum computing. VLSI design mainly concentrates on low power logic circuit design. In the present scenario researchers have made implementations of reversible logic gates in optical domain for its low energy consumption and high speed. This study is all about designing a reversible Full adder using combination of all optical Toffoli and all optical TNOR and to compare it with the Full adder designed using all optical Toffoli gate in terms of optical cost. All optical TNOR gate can work as a replacement of existing NAND based All optical Toffoli Gate (TG. The gates are designed using Mach-Zehnder Interferometer (MZI based optical switch. The proposed system is developed with the basic of reversibility to design all optical full Adder implemented with CMOS transistors. The design is efficient in terms of both architecture and in power consumption.

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... data into 3-D images. A Doppler ultrasound study may be part of an ultrasound examination. Doppler ... not stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study may be ...

  15. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging of the abdomen ... limitations of Abdominal Ultrasound Imaging? What is Abdominal Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  17. Broadband and ultra-broadband modular half-wave plates

    Science.gov (United States)

    Dimova, Emiliya; Huang, Wei; Popkirov, George; Rangelov, Andon; Kyoseva, Elica

    2016-05-01

    We experimentally demonstrate broadband and ultra-broadband spectral bandwidth modular half-wave plates. Both modular devices comprise an array of rotated single half-wave plates (HWPs), whereby for broadband and ultra-broadband performance we use standard and commercial achromatic HWPs, respectively. The bandwidth of the modular HWPs depends on the number N of individual HWPs used and in this paper we experimentally investigate this for N = { 3 , 5 , 7 , 9 }. The elements in the arrays are rotated at specific angles with respect to their fast-polarization axes, independent of the nature of the birefringent material. We find the rotation angles using an analogy to the technique of composite pulses, which is widely used for control in nuclear magnetic resonance.

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, ...

  19. Eye and orbit ultrasound

    Science.gov (United States)

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  20. Broadband Advanced Spectral System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  1. All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient ( d n / d T ) measurements

    Science.gov (United States)

    Putnam, Shawn A.; Fairchild, Steven B.; Arends, Armando A.; Urbas, Augustine M.

    2016-05-01

    This work describes an all-optical beam deflection method to simultaneously measure the thermal conductivity ( Λ) and thermo-optic coefficient ( d n / d T ) of materials that are absorbing at λ = 10.6 μm and are transparent to semi-transparent at λ = 632.8 nm. The technique is based on the principle of measuring the beam deflection of a probe beam (632.8 nm) in the frequency-domain due to a spatially and temporally varying index gradient that is thermally induced by 50:50 split pump beam from a CO2 laser (10.6 μm). The technique and analysis methods are validated with measurements of 10 different optical materials having Λ and d n / d T properties ranging between 0.7 W/m K ≲ Λ ≲ 33.5 W/m K and -12 × 10-6 K-1 ≲ d n / d T ≲ 14 × 10-6 K-1, respectively. The described beam deflection technique is highly related to other well-established, all-optical materials characterization methods, namely, thermal lensing and photothermal deflection spectroscopy. Likewise, due to its all-optical, pump-probe nature, it is applicable to materials characterization in extreme environments with minimal errors due to black-body radiation. In addition, the measurement principle can be extended over a broad range of electromagnetic wavelengths (e.g., ultraviolet to THz) provided the required sources, detectors, and focusing elements are available.

  2. Broadband transmission EPR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wilfred R Hagen

    Full Text Available EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9-10 GHz range. Most (biomolecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin - nuclear spin interactions and electron spin - electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8-2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed.

  3. Broadband accelerator control network

    International Nuclear Information System (INIS)

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  4. Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal

    Science.gov (United States)

    Rani, Preeti; Kalra, Yogita; Sinha, R. K.

    2016-09-01

    In this paper, we have reported design and analysis of polarization independent all optical logic gates in silicon-on-insulator photonic crystal consisting of two dimensional honeycomb lattices with two different air holes exhibiting photonic band gap for both TE and TM mode in the optical communication window. The proposed structures perform as an AND optical logic gate and all the optical logic gates based on the phenomenon of interference. The response period and bit rate for TE and TM polarizations at a wavelength of 1.55 μm show improved results as reported earlier.

  5. Femtosecond multi-level phase switching in chalcogenide thin films for all-optical data and image processing

    OpenAIRE

    Wang, Q; Maddock, J; B. Mills; Craig, C; MacDonald, K. F.; Hewak, D.W.; Zheludev, N.I.

    2014-01-01

    We report on the non-volatile switching of amorphous chalcogenide glass thin films to the crystalline phase through a through a number of reproducible, discrete, optically distinguishable intermediate states, and on the re-amorphization of these films using femtosecond laser pulses. Potential applications lie in high-base (>binary) all-optical signal modulation, high-density data storage, image processing and non-Von Neuman computing. Chalcogenide phase-change media such as Ge2Sb2Te5 (GST) ar...

  6. An all-optical scheme of signed digit binary addition based on optical non-linear material

    Institute of Scientific and Technical Information of China (English)

    Kuladeep Roy Chowdhury; Sourangshu Mukhopadhyay

    2008-01-01

    We propose a new integrated method which covers addition of any two signed digit numbers in all-optical domain. Toimplement this scheme we have exploited some photo-refractive characters of optical non-linear materials, which mayexperience 0.1-0.2 dB attenuation loss as silica is used as non-linear medium. Moreover, the attenuation loss may bereduced to 0.001 dB/m if we consider the use of slow light at 1.56 um.

  7. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Stubkjær, Kristian; Schilling, M.; Daub, K.; Doussiere, P.; Pommerau, F.; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov; Kloch, Allan; Vaa, Michael; Mikkelsen, Benny; Lach, E.; Laube, G.; Idler, W.; Wunstel, K.

    1997-01-01

    This work assesses the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination. Operation and design guidelines for conversion speeds above 10 Gb/s are describe...... and the various tradeoffs are discussed. Experiments at bit rates up to 40 Gb/s are presented for both cross-gain modulation (XGM) and cross-phase modulation (XPM) in SOAs demonstrating the high-speed capability of these techniques...

  8. 5 GHz all-optical binary counter employing SOA-MZIs and an optical NOT gate

    International Nuclear Information System (INIS)

    We present an all-optical two-bit binary counter using two stages of optical T-flip-flop (T-FF) and an optical NOT Gate. The T-FF comprises a single semiconductor optical amplifier based Mach–Zehnder interferometer (SOA-MZI) and an external feedback loop. The NOT gate is realized by means of the cross gain modulation effect in an SOA. The proposed counter requires the minimum number of active components and just a single control signal as input. Featuring distinctive simplicity for reduced footprint and low power consumption, it is ideal for photonic integration and operation at multi-Gb s−1 speeds. (paper)

  9. All-Optical RZ to NRZ Format Conversion Using Single SOA Assisted by Optical Band-Pass Filter

    International Nuclear Information System (INIS)

    We propose a novel all-optical format conversion from the return-to-zero (RZ) to the non-return-to-zero (NRZ) based on single semiconductor optical amplifier (SOA) and optical band-pass filter (OBF). We demonstrate the proof of the principle experiment at 10Gbps by using the test SOA and OBF converter. The format conversion can be achieved with output extinction ratio of 11.51 dB. The BER is 5.5 × 10−9 when the power of NRZ is −10 dBm. The proposed scheme is robust and potential for applications in optical networks. (fundamental areas of phenomenology (including applications))

  10. 160-Gb/s Silicon All-Optical Packet Switch for Buffer-less Optical Burst Switching

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Pu, Minhao;

    2015-01-01

    We experimentally demonstrate a 160-Gb/s Ethernet packet switch using an 8.6-mm-long silicon nanowire for optical burst switching, based on cross phase modulation in silicon. One of the four packets at the bit rate of 160 Gb/s is switched by an optical control signal using a silicon based 1 × 1 all......-optical packet switch. Error free performance (BER <1E-9) is achieved for the switched packet. The use of optical burst switching protocols could eliminate the need for optical buffering in silicon packet switch based optical burst switching, which might be desirable for high-speed interconnects within a short...

  11. All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide.

    Science.gov (United States)

    Long, Yun; Liu, Jun; Hu, Xiao; Wang, Andong; Zhou, Linjie; Zou, Kaiheng; Zhu, Yixiao; Zhang, Fan; Wang, Jian

    2015-12-01

    We experimentally demonstrate on-chip all-optical multi-channel wavelength conversion of Nyquist 16 ary quadrature amplitude modulation (16 QAM) signal in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalties of wavelength conversion are ∼2  dB. The observed constellations of converted idlers indicate favorable performance of silicon-waveguide-based multi-channel wavelength conversion. We also experimentally study and compare the phase-conjugated wavelength conversion by degenerate four-wave mixing (FWM) and transparent wavelength conversion by non-degenerate FWM in the silicon waveguide. PMID:26625029

  12. Compact All-optical Parity calculator based on a single all-active Mach-Zehnder Interferometer with an all-SOA amplified feedback

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Petersen, Martin Nordal; Nord, Martin

    2003-01-01

    An all-optical signal processing circuit capable of parity calculations is demonstrated using a single integrated all-active SOA-based MZI, exploiting the integrated SOAs for feedback amplification.......An all-optical signal processing circuit capable of parity calculations is demonstrated using a single integrated all-active SOA-based MZI, exploiting the integrated SOAs for feedback amplification....

  13. All-optical signal regeneration at 40 Gbit/s using a Mach-Zehnder Interferometer based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2000-01-01

    Summary form only given. All-optical signal regeneration and processing are interesting for high bit-rate transmission systems. The Mach-Zehnder interferometer (MZI) is a promising device for functionalities like all-optical add/drop and signal regeneration. Wavelength conversion up-to 20 Gbit/s,...... optimization issues....

  14. Ultrasound and Therapy

    Science.gov (United States)

    Lafon, Cyril

    This paper begins with an overview and a description of the interactions between ultrasound and biological tissues encountered during treatment protocols. In a second part of this seminar, two clinical applications of therapeutic ultrasound will be described in details: -Kidney stone destruction by ultrasound (lithotripsy) and High Intensity Focused Ultrasound for treating prostate cancer (HIFU).

  15. A novel all-optical label processing for OPS networks based on multiple OOC sequences from multiple-groups OOC

    Science.gov (United States)

    Qiu, Kun; Zhang, Chongfu; Ling, Yun; Wang, Yibo

    2007-11-01

    This paper proposes an all-optical label processing scheme using multiple optical orthogonal codes sequences (MOOCS) for optical packet switching (OPS) (MOOCS-OPS) networks, for the first time to the best of our knowledge. In this scheme, the multiple optical orthogonal codes (MOOC) from multiple-groups optical orthogonal codes (MGOOC) are permuted and combined to obtain the MOOCS for the optical labels, which are used to effectively enlarge the capacity of available optical codes for optical labels. The optical label processing (OLP) schemes are reviewed and analyzed, the principles of MOOCS-based optical labels for OPS networks are given, and analyzed, then the MOOCS-OPS topology and the key realization units of the MOOCS-based optical label packets are studied in detail, respectively. The performances of this novel all-optical label processing technology are analyzed, the corresponding simulation is performed. These analysis and results show that the proposed scheme can overcome the lack of available optical orthogonal codes (OOC)-based optical labels due to the limited number of single OOC for optical label with the short code length, and indicate that the MOOCS-OPS scheme is feasible.

  16. All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates

    Science.gov (United States)

    Singh, Chandra Pal; Roy, Sukhdev

    2003-03-01

    All-optical switching has been theoretically analyzed in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption of the M state. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial B state absorption. The switching characteristics have been numerically simulated using the rate equation approach considering all the six intermediate states (B, K, L, M, N and O) in the bR photocycle. The switching characteristics are shown to be sensitive to various parameters such as the pump pulse width, pump intensity, life time of the M state, thickness of the film and absorption cross-section of the B-state at probe wavelength ( σBp). It has been shown that the probe laser beam can be completely switched off (100% modulation) by the pump laser beam at relatively low pump powers, for σBp=0. The switching characteristics have also been used to theoretically design all-optical NOT, OR, AND and the universal NOR and NAND logic gates with two pulsed pump laser beams using the six state model.

  17. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  18. All-optical reconfigurable multi-logic gates based on nonlinear polarization rotation effect in a single SOA

    Institute of Scientific and Technical Information of China (English)

    Lilin Yi; Weisheng Hu; Hao He; Yi Dong; Yaohui Jin; Weiqiang Sun

    2011-01-01

    We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a singlc semiconductor optical amplifier (SOA). Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability. The operation principle is explained in detail. By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.%@@ We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a single semiconductor optical amplifier (SOA).Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability.The operation principle is explained in detail.By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.

  19. All-Optical Format Conversion from RZ-DPSK to NRZ-DPSK at 40 Gbit/s

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zheng; PAN Di; YU Yu; ZHANG Xin-Liang

    2011-01-01

    @@ All-optical format conversion from return-to-zero differential phase shift keying(RZ-DPSK) to non-return-to-zero DPSK(NRZ-DPSK) is demonstrated by using a delay interferometer and a 1-nm-bandwidth filter at 40 Gbit/s.The operation principle is theoretically analyzed and numerically simulated with the help of VPI Transmission Maker 8.5.The simulated results are in agreement well with the experimental results.The conversion can be achieved with power penalty of 0.7dB.%All-optical format conversion from return-to-zero differential phase shift keying (RZ-DPSK) to non-return-to-zero DPSK (NRZ-DPSK) is demonstrated by using a delay interferometer and a 1-nm-bandwidth filter at 40 Gbit/s.The operation principle is theoretically analyzed and numerically simulated with the help of VPI Transmission Maker 8.5.The simulated results are in agreement well with the experimental results.The conversion can be achieved with power penalty of 0.7dB.

  20. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  1. All-Optical Routing of Single Photons by a One-Atom Switch Controlled by a Single Photon

    CERN Document Server

    Shomroni, Itay; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-01-01

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. Here we realize the most basic unit of such a photonic circuit: a single-photon activated switch, capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single 87Rb atom coupled to a fiber-coupled, chip-based microresonator, and is completely all-optical, requiring no other fields beside the in-fiber single-photon pulses. Nonclassical statistics of the control pulse confirm that a single reflected photon toggles the switch from high reflection (65%) to high transmission (90%), with average of ~1.5 control photons per switching event (~3 including linear losses). The fact that the control and target photons are both in-fiber and practically identical makes this scheme compatible with scalable architectures for quantum information processing.

  2. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  3. Ultrasound in Space Medicine

    Science.gov (United States)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  4. Clinical ultrasound physics

    OpenAIRE

    Abu-Zidan, Fikri M; Hefny, Ashraf F; Corr, Peter

    2011-01-01

    Understanding the basic physics of ultrasound is essential for acute care physicians. Medical ultrasound machines generate and receive ultrasound waves. Brightness mode (B mode) is the basic mode that is usually used. Ultrasound waves are emitted from piezoelectric crystals of the ultrasound transducer. Depending on the acoustic impedance of different materials, which depends on their density, different grades of white and black images are produced. There are different methods that can contro...

  5. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  6. All fiber sensor array for ultrasound sensing

    Science.gov (United States)

    Gabai, Haniel; Steinberg, Idan; Eyal, Avishay

    2016-03-01

    The field of Optical Fiber Sensors (OFS) is gaining tremendous popularity in recent years. OFS natural immunity to electromagnetic disturbances, inherent biocompatibility and compactness making them highly attractive for ultrasound sensing. Moreover, their compatibility with photoacoustics can make them useful in situations where traditional piezoelectric probes are inadequate. However, the issue of multiplexing individual OFS into an array remains a challenging and costly task. In this work, we demonstrate a straightforward approach for multiplexing multiple broadband OFS for ultrasound sensing by exploiting most of the photoreceiver's bandwidth. The design is based on a recently developed system in which all sensing elements are connected to a single interrogator and to a single digitizing circuit. To mitigate aliasing, the system employs I/Q coherent detection. Synchronization of the sensor interrogation with the excitation enables very high repetition rates (kHz) making it ideal for applications where imaging of dynamic processes is desired.

  7. Reduction of pattern effects in SOA-based all-optical switches by using cross-gain modulated holding signal

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2002-01-01

    The effective carrier lifetime of SOAs is typically shortened by an intense Continuous Wave (CW) holding signal. However, the SOA gain is reduced by the holding signal resulting in smaller gain and refractive index changes induced by the data signal. Accordingly, an optimum exists for the CW and...... data signal power. Here, we demonstrate that the modulation bandwidth (amplitude jitter) is significantly improved (reduced) by replacing the CW holding beam with a signal, which is low-pass filtered and inverted with respect to the data signal. Such a holding beam can be generated by XGM WC in an SOA......, and reduces the fluctuations of the total energy injected into the interferometer within a bit-slot. Thus, we demonstrate a technique for reducing pattern effects in SOAs by employing a partially inverted holding beam. The method should be useful for increasing the data rates of all-optical switches....

  8. Comparison: Simulation and Experimental Characterisation of an all-Optical Gain-Clamped Erbium-Doped Fibre Amplifier

    Directory of Open Access Journals (Sweden)

    T. Subramaniam M. A. Mahdi P. Poopalan, and H. Ahmad

    2012-10-01

    Full Text Available This paper presents the GC-EDFA characteristics comparison between the simulated results (using EDFA_Design software and experimental results. The comparisons reveal the usefulness of the software in simulating the behaviour of an all-optical GC-EDFA system. Comparisons are made for values obtained from the system operated at high laser power, in order to highlight the differences between the experimental and simulated values. The main objective for this comparison is to prove the capability of the software in simulating the gain-clamped system. Therefore, the software can be used to test new configurations, aimed at improvising current gain-clamped EDFA performances.Keywords optical, gain-clamping, erbium, fibre amplifier, simulation, experiment

  9. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  10. A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic

    Science.gov (United States)

    Sharifi, Hojjat; Hamidi, Seyyedeh Mehri; Navi, Keivan

    2016-07-01

    In this paper, a general method is proposed to design all-optical photonic crystal logic gates and functions based on threshold logic concept that have regular pattern in inputs. In our proposed structure, a photonic crystal junction is cascaded by a threshold power level detector. Additionally, a novel mechanism is introduced to shift the threshold power level for designing different logic gates and functions. The finite difference time domain and plane wave expansion methods are used to evaluate the proposed structures. The proposed gates and functions occupy an area less than 150 μm2 and also, the maximum power required for the switching mechanism is 15 μW. The inputs and output in the mentioned gates and functions are homogeneous and they can operate with a bit rate of about 500 Gbits/s.

  11. Laser-induced Bessel beams can realize fast all-optical switching in gold nanosol prepared by pulsed laser ablation

    International Nuclear Information System (INIS)

    We demonstrate the possibility of realizing, all-optical switching in gold nanosol. Two overlapping laser beams are used for this purpose, due to which a low-power beam passing collinear to a high-power beam will undergo cross phase modulation and thereby distort the spatial profile. This is taken to advantage for performing logic operations. We have also measured the threshold pump power to obtain a NOT gate and the minimum response time of the device. Contrary to the general notion that the response time of thermal effects used in this application is of the order of milliseconds, we prove that short pump pulses can result in fast switching. Different combinations of beam splitters and combiners will lead to the formation of other logic functions too.

  12. Single-SOA-Based Ultrahigh-Speed All-Optical Half Subtracter with PolSK Modulated Signals

    International Nuclear Information System (INIS)

    A novel ultrahigh-speed all-optical half subtracter based on four-wave mixing (FWM) in a single semiconductor optical amplifier (SOA) is proposed. This scheme only requires a single SOA and two input signals without additional light source, so it is quite simple and compact. Due to the polarization-shift-keying (PolSK) modulated signals being used in this scheme, pattern-dependent degradation can be avoided. By numerical simulation, dependence of the critical factors of the logic gate performance, e.g., the output power of logic 1 and extinction ratio (ER), on two input signals power is investigated. In addition, the effect of the gain polarization dependence of SOA is analysed. (fundamental areas of phenomenology (including applications))

  13. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks

    Science.gov (United States)

    Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun

    2008-05-01

    This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.

  14. A monolithically integrated dual-mode laser for photonic microwave generation and all-optical clock recovery

    International Nuclear Information System (INIS)

    We demonstrate a monolithically integrated dual-mode laser (DML) with narrow-beat-linewidth and wide-beat-tunability. Using a monolithic DFB laser subjected to amplified feedback, photonic microwave generation of up to 45 GHz is obtained with higher than 15 GHz beat frequency tunability. Thanks to the high phase correlation of the two modes and the narrow mode linewidth, a RF linewidth of lower than 50 kHz is measured. Simulations are also carried out to illustrate the dual-mode beat characteristic. Furthermore, using the DML, an all-optical clock recovery for 40  Gbaud NRZ-QPSK signals is demonstrated. Timing jitter of lower than 363 fs (integrated within a frequency range from 100 Hz to 1 GHz) is obtained. (letter)

  15. System Impact of Cascaded All-Optical Wavelength Conversion of D(QPSK Signals in Transparent Optical Networks

    Directory of Open Access Journals (Sweden)

    Robert Elschner

    2010-02-01

    Full Text Available We will compare techniques for all-optical wavelength conversion of differentially phase-modulated signals using four-wave mixing and super-continuum generation. For the super-continuum generation, a relation between the conversion efficieny and the nonlinear phase distortion will be derived and it will be shown that this technique is not suitable for the conversion of phase-modulated signals. For the four-wave mixing, techniques for the improvement of the conversion efficiency will be studied. Mainly the suppression of Brillouin scattering and its impact on phase-distortions will be discussed. A detailed discussion of its cascadability in transparent optical networks will conclude the contribution. The introduction of a maximum outage probability can significantly relax the OSNR requirements.

  16. Deterministic control of all-optical analogue to electromagnetically induced transparency in coherently-coupled silicon photonic crystal cavities

    CERN Document Server

    Yang, Xiaodong; Kwong, Dim-Lee; Wong, Chee Wei

    2008-01-01

    Quantum coherence in atomic systems has led to fascinating outcomes, such as laser cooling and trapping, Bose-Einstein condensates, and electromagnetically-induced-transparency (EIT). In EIT, the sharp cancellation of medium absorption has led to phenomena such as lasing without inversion, freezing light, and dynamic storage of light in a solid-state system. Similar to atomic systems, EIT-like effects can be observed through classical and optical means. Here we report the first experimental deterministic tuning of all-optical analogue to EIT in coherently-coupled standing-wave photonic crystal cavities. Our observations include transparency-resonance lifetimes more than three times the single loaded cavity, Fano-type lineshapes, and stepwise control of the coherent cavity-cavity interference. Our system, with wavelength-scale localization and coupled to a single waveguide, is analyzed well through the coupled-mode formalism which examines the delay in both transparency- and Fano-like lineshapes. Our observati...

  17. Four-bit all-optical quantization based on Raman self-frequency shift and spectral compression

    Institute of Scientific and Technical Information of China (English)

    LIANG Rui; ZHOU Xiao-jun; ZHANG Zhi-yao; LI He-ping; LIU Yong-zhi; LIU Yong

    2009-01-01

    An all-optical quantization based on Raman self-frequency shift (RSFS) in a photonic crystal fiber (PCF) and spectral compression in a dispersion-increasing fiber (DIF) is analyzed, and the evolution of femtosecond pulse in fibers is de-scribed by numerically solving the generalized nonlinear Schr6dinge equation (GNLSE). Gaussian pulse with the width of 300 fs and center wavelength of 1550 nm is injected into 15 m-long PCF and 100 m-long DIF. The simulation results show that the center wavelength increases linearly with the input peak power which changes from 110 W to 165 W. The RSFS of 65.3 nm and maximal spectral compression ratio of 3.38 can be obtained. The resolution of the quantization is improved from 2.4 bits to 4 bits by using the spectral compression in the DIF.

  18. Parametric Phase-sensitive and Phase-insensitive All-optical Signal Processing on Multiple Nonlinear Platforms - Invited talk

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Da Ros, Francesco; Vukovic, Dragana;

    Parametric processes in materials presenting a second- or third-order nonlinearity have been widely used to demonstrate a wide range of all-optical signal processing functionalities, including amplication, wavelength conversion, regeneration, sampling, switching, modulation format conver- sion, o...... signal processing functionalities that are compatible with the novel dimension of space multiplexing. More specically, we will show how mode-selective wavelength conversion based on four-wave mixing can be realized in a multimode silicon waveguide [5]......., optical phase conjugation, etc. The recent evolution of optical ber communication systems towards advanced modulation formats making use of the phase dimension, as well as polarization- and, more recently, space-multiplexing, has created new requirements, as well as new opportunities, for parametric all...

  19. Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling

    International Nuclear Information System (INIS)

    We report the formation of directionally ordered nano-scale surface domains on the +z face of undoped congruent lithium niobate single crystals by using UV illumination through a phase mask of sub-micron periodicity with an energy fluence between ∼90 mJ/cm2 and 150 mJ/cm2 at λ 266 nm. We clearly show here that the UV-induced surface ferroelectric domains only nucleate at and propagate along maxima of laser intensity. Although the domain line separation varies and is greater than 2 μm for this set of experimental conditions, this enables a degree of control over the all-optical poling process

  20. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...... multiplexing (OTDM). Most of the thesis is focused on the utilization of spacetime dualities for temporal pulse shaping and Fourier transformation. The space-time duality led to the implementation of the optical Fourier transform (OFT) technique which was used as a crossing bridge between the temporal and...... spectral domain. By using the frequency-totime OFT technique or optical temporal differentiators based on long-period gratings (LPGs), it was possible to generate narrow at-top pulses in the picosecond regime, and use them for mitigation of timing jitter or polarization dependence effects in OTDM...

  1. Magnetic layer thickness dependence of all-optical magnetization switching in GdFeCo thin films

    Science.gov (United States)

    Yoshikawa, Hiroki; El Moussaoui, Souliman; Terashita, Shinnosuke; Ueda, Ryohei; Tsukamoto, Arata

    2016-07-01

    To clarify the relationship between all-optical magnetization switching (AOS) and nonlocal and nonadiabatic energy dissipation process, we focus on the contribution from energy dissipation in the depth direction. Differently designed structure dependence of created magnetic domain is observed from the reversal phenomenon, AOS, or multidomains by thermomagnetic nucleation (TMN) in GdFeCo multilayer thin films. TMN depends on the shared absorbed energy throughout the continuous metallic volume. On the other hand, AOS critically depends on nonadiabatic energy dissipation process with the electron system in sub-picoseconds. Furthermore, the laser fluence dependence of AOS-created domain sizes indicates that the value of irradiated laser fluence threshold per magnetic domain volume is almost constant. However, a lower laser irradiation fluence below 1–2 mW has a larger value and thickness dependence. From these results, we suggest that AOS depends on energy dissipation from the incident surface in the depth direction for a few picoseconds.

  2. Determination of elastic and thermal properties of a thin nanocrystalline diamond coating using all-optical methods

    Energy Technology Data Exchange (ETDEWEB)

    Sermeus, J.; Verstraeten, B.; Salenbien, R. [KU Leuven-University of Leuven, Soft Matter and Biophysics, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Pobedinskas, P.; Haenen, K. [Instituut voor Materiaalonderzoek (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek (Belgium); Glorieux, C., E-mail: christ.glorieux@fys.kuleuven.be [KU Leuven-University of Leuven, Soft Matter and Biophysics, Celestijnenlaan 200D, B-3001 Heverlee (Belgium)

    2015-09-01

    Results are presented on the thermal and elastic properties of a thin, 1.5 μm, nanocrystalline diamond coating (NCD), deposited on a silicon substrate by microwave plasma enhanced chemical vapor deposition. A combination of two all-optical measurement techniques, impulsive stimulated thermal scattering and grating induced laser beam deflection, was employed to launch and detect surface acoustic waves (SAWs). The relation between the dispersive propagation velocity of SAWs to the coating-substrate geometry is exploited to determine the elastic properties of the NCD coating. The elastic properties are found to be consistent with literature values. The thermal properties of the coating were determined by monitoring the thermal diffusion induced washing away of the laser induced transient surface temperature grating. The transient thermal grating signals were fitted by the low-frequency limit of a thermoelastic model for a multilayer configuration. Similar to the dispersion of the surface acoustic wave velocity, the characteristic time of the thermal diffusion driven grating decay evolves from a coating-dominated value at short grating spacings towards a substrate-dominated value at grating spacings well exceeding the coating thickness. The grating spacing dependence of the corresponding effective thermal diffusivity was experimentally determined and fitted, leading to a value for the thermal diffusivity of the NCD coating α{sub NCD} = 8.4{sub −0.1}{sup +2.7} mm{sup 2}·s{sup −1}, which is an order of magnitude lower than that of the silicon substrate. The low value of the thermal diffusivity is interpreted with a simple touching model. - Highlights: • We investigate a thin nano-crystalline diamond coating. • We used two all optical surface acoustic wave based methods. • We found a young's modulus and density that is in line with literature. • The thermal diffusivity of the NCD coating was 2 orders of magnitude lower than the one of bulk diamond.

  3. Determination of elastic and thermal properties of a thin nanocrystalline diamond coating using all-optical methods

    International Nuclear Information System (INIS)

    Results are presented on the thermal and elastic properties of a thin, 1.5 μm, nanocrystalline diamond coating (NCD), deposited on a silicon substrate by microwave plasma enhanced chemical vapor deposition. A combination of two all-optical measurement techniques, impulsive stimulated thermal scattering and grating induced laser beam deflection, was employed to launch and detect surface acoustic waves (SAWs). The relation between the dispersive propagation velocity of SAWs to the coating-substrate geometry is exploited to determine the elastic properties of the NCD coating. The elastic properties are found to be consistent with literature values. The thermal properties of the coating were determined by monitoring the thermal diffusion induced washing away of the laser induced transient surface temperature grating. The transient thermal grating signals were fitted by the low-frequency limit of a thermoelastic model for a multilayer configuration. Similar to the dispersion of the surface acoustic wave velocity, the characteristic time of the thermal diffusion driven grating decay evolves from a coating-dominated value at short grating spacings towards a substrate-dominated value at grating spacings well exceeding the coating thickness. The grating spacing dependence of the corresponding effective thermal diffusivity was experimentally determined and fitted, leading to a value for the thermal diffusivity of the NCD coating αNCD = 8.4−0.1+2.7 mm2·s−1, which is an order of magnitude lower than that of the silicon substrate. The low value of the thermal diffusivity is interpreted with a simple touching model. - Highlights: • We investigate a thin nano-crystalline diamond coating. • We used two all optical surface acoustic wave based methods. • We found a young's modulus and density that is in line with literature. • The thermal diffusivity of the NCD coating was 2 orders of magnitude lower than the one of bulk diamond

  4. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  5. Bidirectionally tunable all-optical switch based on multiple nano-structured resonators using backward quasi-phase-matching

    Institute of Scientific and Technical Information of China (English)

    Jun Xie; Yuping Chen; Wenjie Lu; Xianfeng Chen

    2011-01-01

    @@ Based on the second-order nonlinearity, we present a bidirectional tunable all-optical switch at C-band by introducing backward quasi-phase-matching technique in Mg-doped periodically poled lithium niobate (MgO:PPLN) waveguide with a nano-8tructure called multiple resonators.Two injecting forward lights and one backward propagating light interact with difference frequency generations.The transmission of forward signal and backward idler light can be modulated simultaneously with the variation of control light power based on the basic "phase shift" structure of a single resonator.In this scheme, all the results come from our simulation, The speed of tlus bidirectional optical switch can reach to femtosecond if a femtosecond laser is used as the control light.%Based on the second-order nonlinearity, we present a bidirectional tunable all-optical switch at C-band by introducing backward quasi-phase-matching technique in Mg-doped periodically poled lithium niobate (MgO:PPLN) waveguide with a nano-structure called multiple resonators.Two injecting forward lights and one backward propagating light interact with difference frequency generations.The transmission of forward signal and backward idler light can be modulated simultaneously with the variation of control light power based on the basic "phase shift" structure of a single resonator.In this scheme, all the results come from our simulation.The speed of this bidirectional optical switch can reach to femtosecond if a femtosecond laser is used as the control light.

  6. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  7. Broadband perfect polarization conversion metasurfaces

    International Nuclear Information System (INIS)

    We propose a broadband perfect polarization conversion metasurface composed of copper sheet-backed asymmetric double spilt ring resonator (DSRR). The broadband perfect polarization convertibility results from metallic ground and multiple plasmon resonances of the DSRR. Physics of plasmon resonances are governed by the electric and magnetic resonances. Both the simulation and measured results show that the polarization conversion ratio (PCR) is higher than 99% for both x- and y-polarized normally incident EM waves and the fractional bandwidth is about 34.5%. The metasurface possesses the merits of high PCR and broad bandwidth, and thus has great application values in novel polarization-control devices. (paper)

  8. Broadband giant-refractive-index material based on mesoscopic space-filling curves.

    Science.gov (United States)

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-01-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications. PMID:27573337

  9. A flexible and high-performance bidirectional optical amplifier with all optical gain control using ASE noise path through multi-port circulators

    Institute of Scientific and Technical Information of China (English)

    An Vu Tran; Chang-Joon Chae; Rodney S. Tucker

    2003-01-01

    We report a flexible all-optical gain controlled bidirectional optical amplifier. The device achieves constant gain and low noise figure over a large input power range. Moreover, the device removes Rayleigh backscattered light and amplifier noise.

  10. The Skill Complementarity of Broadband Internet

    OpenAIRE

    Akerman, Anders; Gaarder, Ingvil; Mogstad, Magne

    2013-01-01

    Does adoption of broadband internet in firms enhance labor productivity and increase wages? And is this technological change skill biased or factor neutral? We exploit rich Norwegian data with firm-level information on value added, factor inputs and broadband adoption to answer these questions. We estimate production functions where firms can change their technology by adopting broadband internet. A public program with limited funding rolled out broadband access points, and provides plausibly...

  11. Broadband Internet's Value for Rural America

    OpenAIRE

    Stenberg, Peter L.; Morehart, Mitchell J.; Vogel, Stephen J.; Cromartie, John; Breneman, Vincent E.; Brown, Dennis M.

    2009-01-01

    As broadband—or high-speed—Internet use has spread, Internet applications requiring high transmission speeds have become an integral part of the “Information Economy,” raising concerns about those who lack broadband access. This report analyzes (1) rural broadband use by consumers, the community-at-large, and businesses; (2) rural broadband availability; and (3) broadband’s social and economic effects on rural areas. It also summarizes results from an ERS-sponsored workshop on rural broadband...

  12. Ultrasound mammography

    International Nuclear Information System (INIS)

    We introduce a near-field formulation of the acoustic field scattered by a soft tissue organ. This derivation is based on the Huygens-Fresnel principle that describes the scattered field as the result of the interferential scheme of all the secondary spherical waves. This leads us to define a new Fourier transform which yields a spectrum whose harmonic components have an elliptical spatial support. Based on these projections, we define an Elliptical Radon transform that enables us to reconstruct either the impedance or the celerity maps of an acoustical model characterized in terms of impedance and celerity fluctuations. The formulation is very similar to that developed in the far-field domain where the Radon transform pair is derived from an harmonic plane wave decomposition. This formulation allows us to introduce the Ductal Tomography, following the example of the Ductal Echography, that provides a systematic inspection of each mammary lobe, in order to reveal breast lesions at an early stage. In order to review the performances obtained with current echographs in view of specific experiment (numerical simulations), we develop a computer phantom that gains in realism. This 2-D anatomical phantom is an axial cut of the ductolobular structure corresponding to a daisy-like internal arrangement with petals (lobes) radiating around the nipple, for healthy and pathological situations. The different constitutive tissues and ducts are characterized in terms of density and celerity parameters whose spatial distributions are defined with specific random density laws. The use of a velocity-pressure formulation permits us to model time domain acoustic wave propagation. Broadband US pulses are transmitted and measured in diffraction around the breast with a ring antenna, the images are reconstructed using the elliptical back-projection-based procedure mentioned above

  13. Achieving universal access to broadband

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    2009-01-01

    The paper discusses appropriate policy measures for achieving universal access to broadband services in Europe. Access can be delivered by means of many different technology solutions described in the paper. This means a greater degree of competition and affects the kind of policy measures to be...

  14. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann; Jensen, Jørgen Arendt

    2007-01-01

    coded signals are used to increase SNR, followed by sub-band processing. The received broadband signal, is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared to what would be possible when transmitting a......This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... excitation signal is broadband and has good spatial resolution after pulse compression. Two different codin-schemes are used in this paper, Barker codes and Golay codes. The performance of the codes for velocity estimation is compared to a conventional approach transmitting a narrow-band pulse. The study was...

  15. Prenatal ultrasound - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100197.htm Prenatal ultrasound - series To use the sharing features on ... A.M. Editorial team. Related MedlinePlus Health Topics Prenatal Testing Ultrasound A.D.A.M., Inc. is ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... General Ultrasound Videos related to General Ultrasound About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... medicine, ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  19. General Ultrasound Imaging

    Science.gov (United States)

    ... The ultrasound gel does not stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and inserted into a natural opening in the body. These exams include: Transesophageal ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... again. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... technique that allows the physician to see and evaluate blood flow through arteries and veins in the ... following illness. Ultrasound is used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is ...

  2. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...

  3. Harmonic Intravascular Ultrasound

    NARCIS (Netherlands)

    M.E. Frijlink (Martijn)

    2006-01-01

    textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte

  4. All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.

    Science.gov (United States)

    Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In

    2016-09-01

    An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3. PMID:27607637

  5. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system

    Science.gov (United States)

    Zhang, X.; Li, R.; Wu, Haibin

    2016-01-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the “dark-state polariton,” three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the “bright polariton,” the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g(3)(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology. PMID:26936334

  6. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Birgit eHebler

    2016-02-01

    Full Text Available Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an effective composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  7. Ability of dynamic holography in self-assembled hybrid nanostructured silica films for all-optical switching and multiplexing

    Science.gov (United States)

    Telbiz, German; Bugaychuk, Svitlana; Leonenko, Eugen; Derzhypolska, Liudmyla; Gnatovskyy, Vladimir; Pryadko, Igor

    2015-04-01

    The sol-gel method has been employed in the fabrication of easily processable mesostructured films consisting of a nonionic surfactant and silica as the inorganic component. The ability of the occluded Pluronic P123 mesostructures to solubilize guest molecules made these films ideal host matrices for organic dyes and molecular assemblies, possessing substantial nonlinear susceptibilities. These films were explored for use as the photonic layer in all-optical time-to-space converters and proved successful at increasing the optical response of the intercalated dyes to a point that would make these composite films applicable for use as the photonic layer. Recording of a dynamical grating in a single-pulse regime has been obtained. Since the dynamical grating exhibits the fast relaxation time (up to 10 ns), the nonlinear mechanism represents an electronic excitation of the photosensitive molecules. As far as the dye molecules are distributed in nanoporous silica, a model of `gas of molecular dye' may be rightly used in order to consider nonlinear optical properties in the nanostructured hybrid films. We suppose that further improvement of the nonlinear optical nanomaterials may follow on the way to embed additional inclusions, which will not promote the heat accumulation in the host matrix and will lead to effective dissipation of the heat energy.

  8. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system.

    Science.gov (United States)

    Zhang, X; Li, R; Wu, Haibin

    2016-01-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the "dark-state polariton," three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the "bright polariton," the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g((3))(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology. PMID:26936334

  9. All optical up-converted signal generation with high dispersion tolerance using frequency quadrupling technique for radio over fiber system

    Science.gov (United States)

    Gu, Yiying; Zhao, Jiayi; Hu, Jingjing; Kang, Zijian; Zhu, Wenwu; Fan, Feng; Han, Xiuyou; Zhao, Mingshan

    2016-05-01

    A novel all optical up-converted signal generation scheme with optical single-sideband (OSSB) technique for radio over fiber (RoF) application is presented and experimentally demonstrated using low-bandwidth devices. The OSSB signal is generated by one low-bandwidth intensity LiNbO3 Mach-Zehnder modulator (LN-MZM) under frequency quadrupling modulation scheme and one low-bandwidth LN-MZM under double sideband carrier suppressed modulation (DSB-CS) scheme. The proposed all OSSB generation scheme is capable of high tolerance of fiber chromatic dispersion induced power fading (DIPF) effect. Benefiting from this novel OSSB generation scheme, a 26 GHz radio frequency (RF) signal up-conversion is realized successfully when one sideband of the optical LO signal is reused as the optical carrier for intermediate frequency (IF) signal modulation. The received vector signal transmission over long distance single-mode fiber (SMF) shows negligible DIPF effect with the error vector magnitude (EVM) of 15.7% rms. In addition, a spurious free dynamic range (SFDR) of the OSSB up-converting system is measured up to 81 dB Hz2/3. The experiment results indicate that the proposed system may find potential applications in future wireless communication networks, especially in microcellular personal communication system (MPCS).

  10. All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal

    Science.gov (United States)

    Goudarzi, Kiyanoosh; Mir, Ali; Chaharmahali, Iman; Goudarzi, Dariush

    2016-04-01

    In this paper, we have proposed an all-optical logic gate structure based on line and point defects created in the two dimensional square lattice of silicon rods in air photonic crystals (PhCs). Line defects are embedded in the ГX and ГZ directions of the momentum space. The device has two input and two output ports. It has been shown analytically whether the initial phase difference between the two input beams is π/2, they interfere together constructively or destructively to realize the logical functions. The simulation results show that the device can acts as a XOR and an OR logic gate. It is applicable in the frequency range of 0-0.45 (a/λ), however we set it at (a/λ=) 0.419 for low dispersion condition, correspondingly the lambda is equal to 1.55 μm. The maximum delay time to response to the input signals is about 0.4 ps, hence the speed of the device is about 2.5 THz. Also 6.767 dB is the maximum contrast ratio of the device.

  11. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system

    Science.gov (United States)

    Zhang, X.; Li, R.; Wu, Haibin

    2016-03-01

    Manipulating the nature of photons emission is one of the basic tasks in quantum optics and photonics. The ever growing list of quantum applications requires a robust means of controlling the strongly coupled coherent interaction of photons and matter. Here, we investigate three-photon transmission spectra in a strongly coupled cavity polariton system and show that the correlation functions and transmitted photon stream can be optically manipulated. The dynamics of single photons and photon pairs at the polariton resonances can be changed by light from a single external coupling laser. At the “dark-state polariton,” three-photon transmission is a perfectly coherent field in contrast to the strong photon-bunching behavior of a typical cavity quantum electrodynamics system. When the detuned probe light is tuned to the “bright polariton,” the light exhibits a dramatic photon antibunching effect. Remarkably, the Fano-resonant asymmetric three-photon transmission caused by the interference between the dressed states leads to a new quantum feature that is strongly nonclassical (the third-order correlation function g(3)(0, 0) ≪ 1) and has a wide and tunable bandwidth. The dependence of the intrinsic third-order correlation and time symmetry of the photon stream on the controlled parameters is also examined. Strongly nonclassical, all-optically controllable multi-photon dynamics are very important for future quantum devices and metrology.

  12. Effectiveness of phase-conjugated twin waves on fiber nonlinearity in spatially multiplexed all-optical OFDM system

    Science.gov (United States)

    Hmood, Jassim K.; Noordin, Kamarul A.; Harun, Sulaiman W.

    2016-07-01

    In this paper, we investigate the effectiveness of using phase-conjugated twin waves (PCTWs) technique to mitigate fiber nonlinear impairments in spatially multiplexed all-optical orthogonal frequency division multiplexing (AO-OFDM) systems. In this technique, AO-OFDM signal and its phase-conjugated copy are directly transmitted through two identical fiber links. At the receiver, the two signals are coherently superimposed to cancel the phase noise and to enhance signal-to-noise ratio (SNR). To show the effectiveness of proposed technique, a spatially multiplexed AO-OFDM system is demonstrated by numerical simulation. AO-OFDM signal and its phase conjugated copy are optically generated by using optical coupler-based inverse fast Fourier transform (OIFFT)/fast Fourier transform (OFFT). The generated signal includes 29 subcarriers where each subcarrier is modulated by 4-quadrature amplitude modulation (4QAM) format at a symbol rate of 25 Gsymbol/s. The results reveal that transmission performance is considerably improved where the transmission distance of the proposed system is increased by ∼45% as compared to that of original system without PCTWs technique.

  13. All-optical error-bit amplitude monitor based on NOT and AND gates in cascaded semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    Dong Jian-Ji; Zhang Xin-Liang; Huang De-Xiu

    2008-01-01

    This paper proposes and simulates a novel all-optical error-bit amplitude monitor based on cross-gain modulation and four-wave mixing in cascaded semiconductor optical amplifiers (SOAs),which function as logic NOT and logic AND,respectively.The proposed scheme is successfully simulated for 40 Gb/s return-to-zero (RZ) signal with different duty cycles.In the first stage,the SOA is followed by a detuning filter to accelerate the gain recovery as well as improve the extinction ratio.A clock probe signal is used to avoid the edge pulse-pairs in the output waveform.Among these RZ formats,33% RZ format is preferred to obtain the largest eye opening.The normalized error amplitude,defined as error bit amplitude over the standard mark amplitude,has a dynamic range from 0.1 to 0.65 for all RZ formats.The simulations show small input power dynamic range because of the nonlinear gain variation in the first stage.This scheme is competent for nonreturn-to-zero format at 10Gb/s as well.

  14. Exchange scattering as the driving force for ultrafast all-optical and bias-controlled reversal in ferrimagnetic metallic structures

    Science.gov (United States)

    Kalashnikova, A. M.; Kozub, V. I.

    2016-02-01

    Experimentally observed ultrafast all-optical magnetization reversal in ferrimagnetic metals and heterostructures based on antiferromagnetically coupled ferromagnetic d - and f -metallic layers relies on intricate energy and angular momentum flow between electrons, phonons, and spins. Here we treat the problem of angular momentum transfer in the course of ultrafast laser-induced dynamics in a ferrimagnetic metallic system using microscopical approach based on the system of rate equations. We show that the magnetization reversal is supported by a coupling of d and f subsystems to delocalized s or p electrons. The latter can transfer spin between the two subsystems in an incoherent way owing to the (s ;p )-(d ;f ) exchange scattering. Since the effect of the external excitation in this process is reduced to the transient heating of the mobile electron subsystem, we also discuss the possibility to trigger the magnetization reversal by applying a voltage bias pulse to antiferromagnetically coupled metallic ferromagnetic layers embedded in point contact or tunneling structures. We argue that such devices allow controlling reversal with high accuracy. We also suggest using the anomalous Hall effect to register the reversal, thus playing a role of reading probes.

  15. Obstetric ultrasound simulation.

    Science.gov (United States)

    Nitsche, Joshua F; Brost, Brian C

    2013-06-01

    Obstetric ultrasound is becoming an increasingly important part of the practice of maternal-fetal medicine. Thus, it is important to develop rigorous and effective training curricula for obstetrics and gynecology residents and maternal-fetal medicine fellows. Traditionally, this training has come almost entirely from exposure to ultrasound in the clinical setting. However, with the increased complexity of modern ultrasound and advent of duty-hour restrictions, a purely clinical training model is no longer viable. With the advent of high-fidelity obstetric ultrasound simulators, a significant amount of training can occur in a non-clinical setting which allows learners to obtain significant skill prior to their first patient ultrasound encounter and obtain proficiency in a shorter period of time. In this manuscript we discuss the available obstetric ultrasound simulators and ways to construct a comprehensive ultrasound training curricula to meet the increasing demands of modern maternal-fetal medicine. PMID:23721777

  16. Broadband non-reciprocal transmission of sound with invariant frequency

    CERN Document Server

    Gu, Zhong-ming; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2015-01-01

    The emergence of "acoustic diode" (AD) capable of rectifying acoustic wave like electrical diodes do to electricity has been believed to be able to offer unconventional manipulation on sound, e.g., to isolate the wrong-way reflection, and therefore have great potential in various important scenarios such as medical ultrasound applications. However, the existing ADs have always been suffering from the problem that the transmitted wave must have either doubled frequency or deviated direction, lacking the most crucial features for achieving such expectations in practice. Here we design and experimentally demonstrate a broadband yet compact non-reciprocal device with hitherto inaccessible functionality of maintaining the original frequency and high forward transmission while virtually blocking the backscattered wave, which is close to what a perfect AD is expected to provide and is promising to play the essential role in realistic acoustic systems like electric diodes do in electrical circuits. Such an extreme ab...

  17. Broadband non-reciprocal transmission of sound with invariant frequency

    Science.gov (United States)

    Gu, Zhong-Ming; Hu, Jie; Liang, Bin; Zou, Xin-Ye; Cheng, Jian-Chun

    2016-01-01

    We design and experimentally demonstrate a broadband yet compact acoustic diode (AD) by using an acoustic nonlinear material and a pair of gain and lossy materials. Due to the capabilities of maintaining the original frequency and high forward transmission while blocking backscattered wave, our design is closer to the desired features of a perfect AD and is promising to play the essential diode-like role in realistic acoustic systems, such as ultrasound imaging, noise control and nondestructive testing. Furthermore, our design enables improving the sensitivity and the robustness of device simultaneously by tailoring an individual structural parameter. We envision our design will take a significant step towards the realization of applicable acoustic one-way devices, and inspire the research of non-reciprocal wave manipulation in other fields.

  18. Broadband SHF Direction-Finder

    Directory of Open Access Journals (Sweden)

    S. Radionov

    2008-06-01

    Full Text Available The original design of the compact broadband direction-finder is presented in this paper. The cylindrical monopole antenna serves as a primary source of the reflector- type antenna. "Zero-amplitude" technique is used for bearing the SHF sources. The model experiments with the proposed direction-finder prototype in the frequency band 6 GHz - 11 GHz have been carried out.

  19. Broadband Loaded Cylindrical Monopole Antenna

    OpenAIRE

    Boucher, Solene; Sharaiha, Ala; Potier, Patrick

    2013-01-01

    Ahstract-A broadband printed monopole antenna based on the variation of the conductivity along its length is proposed .. The result indicates that a non-monotonous repartition provides interesting performances in terms of impedance bandwidth but also concerning antenna gain. The achievement of the method is demonstrated through its application, using the carbon fibers to perform this conductivity variation. Monopole antenna presents a large impedance bandwidth of 123% with an interesting gain...

  20. [An improved software design of ultrasound bone densitometer].

    Science.gov (United States)

    Yu, Zhengtao; Yang, Lian; Xu, Shijie; Deng, Jiangjun; Dong, Qingqing; He, Aijun

    2014-10-01

    In order to meet the requirements of ultrasound bone density measurement, we proposed a software solution to improve the accuracy and speed of measurement of bone mineral density of the ultrasound bone densitometer. We used a high-speed USB interface chip FT232H, along with a high-speed AD converter chip to calculate speed of sound (SOS), broadband ultrasound attenuation (BUA ) and other bone density parameters in the PC software. This solution improved the accuracy of the measurement data, reduced the measurement time and increased the quality of the displayed image. It is well concluded that the new software can greatly improve the accuracy and transmission speed of bone density measurement data through a high-speed USB interface and a software data processing technology. PMID:25764722