WorldWideScience

Sample records for broad relativistic iron

  1. Relativistic redshifts in quasar broad lines

    CERN Document Server

    Tremaine, Scott; Liu, Xin; Loeb, Abraham

    2014-01-01

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few per cent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad H-beta line in the quasar rest frame (determined from the core component of the [OIII] line) for over 20,000 quasars from the Sloan Digital Sky Survey DR7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ~30-45 degrees, consistent with simple AGN unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  2. Broad iron lines in Active Galactic Nuclei

    CERN Document Server

    Fabian, A C; Reynolds, C S; Young, A J

    2000-01-01

    An intrinsically narrow line emitted by an accretion disk around a black hole appears broadened and skewed as a result of the Doppler effect and gravitational redshift. The fluorescent iron line in the X-ray band at 6.4-6.9keV is the strongest such line and is seen in the X-ray spectrum of many active galactic nuclei and, in particular, Seyfert galaxies. It is an important diagnostic with which to study the geometry and other properties of the accretion flow very close to the central black hole. The broad iron line indicates the presence of a standard thin accretion disk in those objects, often seen at low inclination. The broad iron line has opened up strong gravitational effects around black holes to observational study with wide-reaching consequences for both astrophysics and physics.

  3. Relativistic Calculations for Be-like Iron

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Hui; LI Ping; ZHANG Jian-Ping; LI Hui-Li

    2008-01-01

    Relativistic configuration interaction calculations for the states of 1s22s2, 1s22s3l (l=s,p,d) and 1s22p3l (l=s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable.

  4. On the apparent absence of broad iron lines in Seyfert galaxies

    OpenAIRE

    Bhayani, Shyam; Nandra, Kirpal

    2011-01-01

    We present an analysis of XMM-Newton observations of eleven Seyfert galaxies that appear to be missing a broad iron K alpha line. These objects represent a challenge to the established paradigm for active galactic nuclei, where a relatively cold accretion disc feeds the central black hole. In that paradigm, X-ray illumination of the accretion disc should lead to continuum and fluorescence emission from iron which is broadened and shifted by relativistic effects close the hole. We extend the w...

  5. Broad iron emission lines in Seyfert Galaxies - re-condensation of gas onto an inner disk below the ADAF

    OpenAIRE

    Meyer-Hofmeister, E.; Meyer, F

    2011-01-01

    Recent observations of Seyfert 1 AGN with Chandra, XMM-Newton and Suzaku revealed broad iron K_alpha emission lines, some relativistically blurred. For galactic black hole X-ray binaries XMM-Newton spectra during hard state also reveal the presence of a relativistic iron emission line and a thermal component, interpreted as an indication for a weak inner cool accretion disk underneath a hot corona. These thermal components were found after the transition from soft to hard spectral state and c...

  6. Unveiling the broad band X-ray continuum and iron line complex in Mkr 841

    CERN Document Server

    Petrucci, P O; Matt, G; Longinotti, A L; Malzac, J; Mouchet, M; Boisson, C; Maraschi, L; Nandra, K; Ferrando, P

    2007-01-01

    Mkr 841 is a bright Seyfert 1 galaxy known to harbor a strong soft excess and a variable K$\\alpha$ iron line. It has been observed during 3 different periods by XMM for a total cumulated exposure time of $\\sim$108 ks. We present in this paper a broad band spectral analysis of the complete EPIC-pn data sets. We were able to test two different models for the soft excess, a relativistically blurred photoionized reflection (\\r model) and a relativistically smeared ionized absorption (\\a model). The continuum is modeled by a simple cut-off power law and we also add a neutral reflection. These observations reveal the extreme and puzzling spectral and temporal behaviors of the soft excess and iron line. The 0.5-3 keV soft X-ray flux decreases by a factor 3 between 2001 and 2005 and the line shape appears to be a mixture of broad and narrow components. We succeed in describing this complex broad-band 0.5-10 keV spectral variability using either \\r or \\a to fit the soft excess. Both models give statistically equivalen...

  7. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495.

    Science.gov (United States)

    Fabian, A C; Zoghbi, A; Ross, R R; Uttley, P; Gallo, L C; Brandt, W N; Blustin, A J; Boller, T; Caballero-Garcia, M D; Larsson, J; Miller, J M; Miniutti, G; Ponti, G; Reis, R C; Reynolds, C S; Tanaka, Y; Young, A J

    2009-05-28

    Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole. PMID:19478778

  8. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  9. Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra

    CERN Document Server

    Walton, D J; Miller, J M; Reis, R C; Stern, D; Harrison, F A

    2015-01-01

    Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission...

  10. Variability of the X-ray Broad Iron Spectral Features in Active Galactic Nuclei and Black-hole Binaries

    CERN Document Server

    Mizumoto, Misaki; Tsujimoto, Masahiro; Inoue, Hajime

    2015-01-01

    The "broad iron spectral features" are often seen in X-ray spectra of Active Galactic Nuclei (AGN) and black-hole binaries (BHB). These features may be explained either by the "relativistic disc reflection" scenario or the "partial covering" scenario: It is hardly possible to determine which model is valid from time-averaged spectral analysis. Thus, X-ray spectral variability has been investigated to constrain spectral models. To that end, it is crucial to study iron structure of BHBs in detail at short time-scales, which is, for the first time, made possible with the Parallel-sum clocking (P-sum) mode of XIS detectors on board Suzaku. This observational mode has a time-resolution of 7.8~ms as well as a CCD energy-resolution. We have carried out systematic calibration of the P-sum mode, and investigated spectral variability of the BHB GRS 1915+105. Consequently, we found that the spectral variability of GRS 1915+105 does not show iron features at sub-seconds. This is totally different from variability of AGN ...

  11. On the inability of Comptonization to produce the broad X-ray iron lines observed in Seyfert nuclei

    CERN Document Server

    Reynolds, C S

    1999-01-01

    It has recently been suggested that Compton downscattering may give rise to the broad iron lines seen in the X-ray spectra of Seyfert 1 galaxies. This challenges the standard model in which these lines originate from the innermost regions of the black hole accretion disk with Doppler shifts and gravitational redshifts giving rise to the broadened line profile. Here, we apply observational constraints to the Compton downscattering model for MCG-6-30-15 and NGC3516, the two best cases to date of Seyfert galaxies with relativistically broad lines. We show that the continuum source in MCG-6-30-15 required by the constrained model violates the black body limit. In the case of NGC3516, only a very small region of parameter space is compatible with the constraints. Hence, we conclude that the Comptonization model is not a viable one for the broad line seen in these two objects. The accretion disk model remains the best interpretation of these data.

  12. Constraints on Black Hole Spin in a Sample of Broad Iron Line AGN

    Science.gov (United States)

    Brenneman, Laura W.; Reynolds, Christopher S.

    2008-01-01

    We present a uniform X-ray spectral analysis of nine type-1 active galactic nuclei (AGN) that have been previously found to harbor relativistically broadened iron emission lines. We show that the need for relativistic effects in the spectrum is robust even when one includes continuum "reflection" from the accretion disk. We then proceed to model these relativistic effects in order to constrain the spin of the supermassive black holes in these AGN. Our principal assumption, supported by recent simulations of geometrically-thin accretion disks, is that no iron line emission (or any associated Xray reflection features) can originate from the disk within the innermost stable circular orbit. Under this assumption, which tends to lead to constraints in the form of lower limits on the spin parameter, we obtain non-trivial spin constraints on five AGN. The spin parameters of these sources range from moderate (a approximates 0.6) to high (a > 0.96). Our results allow, for the first time, an observational constraint on the spin distribution function of local supermassive black holes. Parameterizing this as a power-law in dimensionless spin parameter (f(a) varies as absolute value of (a) exp zeta), we present the probability distribution for zeta implied by our results. Our results suggest 90% and 95% confidence limits of zeta > -0.09 and zeta > -0.3 respectively.

  13. A relativistic iron emission line from the neutron star low-mass X-ray binary GX 3+1

    CERN Document Server

    Piraino, S; Kaaret, P; Mück, B; DÁi', A; DI Salvo, T; Iaria, R; Robba, N; Burderi, L; Egron, E

    2012-01-01

    We present the results of a spectroscopic study of the Fe K{\\alpha} emission of the persistent neutron-star atoll low-mass X-ray binary and type I X-ray burster GX 3+1 with the EPIC-PN on board XMM-Newton. The source shows a flux modulation over several years and we observed it during its fainter phase, which corresponds to an X-ray luminosity of Lx~10^37 ergs/s. When fitted with a two-component model, the X-ray spectrum shows broad residuals at \\sim6-7 keV that can be ascribed to an iron K{\\alpha} fluorescence line. In addition, lower energy features are observed at \\sim3.3 keV, \\sim3.9 keV and might originate from Ar XVIII and Ca XIX. The broad iron line feature is well fitted with a relativistically smeared profile. This result is robust against possible systematics caused by instrumental pile-up effects. Assuming that the line is produced by reflection from the inner accretion disk, we infer an inner disk radius of \\sim25 Rg and a disk inclination of 35{\\deg} < i < 44{\\deg}.

  14. Relativistic Iron K Emission and absorption in the Seyfert 1.9 galaxy MCG-5-23-16

    CERN Document Server

    Braito, V; Dewangan, G C; George, I; Griffiths, R E; Markowitz, A; Nandra, K; Porquet, D; Ptak, A; Turner, T J; Yaqoob, T; Weaver, K

    2007-01-01

    We present the results of the simultaneous deep XMM and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron K-alpha line. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM < 5000 km/s, EW ~ 60 eV) plus a broad component. This latter component has FWHM ~ 44000 km/s and EW ~ 50 eV. Its profile is well described by an emission line originating from an accretion disk viewed with an inclination angle ~ 40^\\circ and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant in time within the errors. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associa...

  15. Estimation of relativistic accretion disk parameters from iron line emission

    CERN Document Server

    Pariev, V I; Miller, W A; Pariev, Vladimir I.; Bromley, Benjamin C.; Miller, Warner A.

    2000-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30 deg for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3 sigma level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the...

  16. Iron line profiles and self-shadowing from relativistic thick accretion discs

    CERN Document Server

    Wu, Sheng-Miao

    2007-01-01

    We present Fe Kalpha line profiles from and images of relativistic discs with finite thickness around a rotating black hole using a novel code. The line is thought to be produced by iron fluorescence of a relatively cold X-ray illuminated material in the innermost parts of the accretion disc and provides an excellent diagnostic of accretion flows in the vicinity of black holes. Previous studies have concentrated on the case of a thin, Keplerian accretion disc. This disc must become thicker and sub-Keplerian with increasing accretion rates. These can affect the line profiles and in turn can influence the estimation of the accretion disc and black hole parameters from the observed line profiles. We here embark on, for the first time, a fully relativistic computation which offers key insights into the effects of geometrical thickness and the sub-Keplerian orbital velocity on the line profiles. We include all relativistic effects such as frame-dragging, Doppler boost, time dilation, gravitational redshift and lig...

  17. Broad-band X-ray emission and the reality of the broad iron line from the neutron star-white dwarf X-ray binary 4U 1820-30

    Science.gov (United States)

    Mondal, Aditya S.; Dewangan, G. C.; Pahari, M.; Misra, R.; Kembhavi, A. K.; Raychaudhuri, B.

    2016-09-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disc. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here, we investigate the reality of the broad iron line detected earlier from the neutron-star low-mass X-ray binary 4U 1820-30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broad-band spectral study of the atoll source using Suzaku and simultaneous NuSTAR and Swift observations. We have used different continuum models involving accretion disc emission, thermal blackbody and thermal Comptonization of either disc or blackbody photons. The Suzaku data show positive and negative residuals in the region of Fe K band. These features are well described by two absorption edges at 7.67 ± 0.14 keV and 6.93 ± 0.07 keV or partial covering photoionized absorption or by blurred reflection. Though, the simultaneous Swift and NuSTAR data do not clearly reveal the emission or absorption features, the data are consistent with the presence of either absorption or emission features. Thus, the absorption based models provide an alternative to the broad iron line or reflection model. The absorption features may arise in winds from the inner accretion disc. The broad-band spectra appear to disfavour continuum models in which the blackbody emission from the neutron-star surface provides the seed photons for thermal Comptonization. Our results suggest emission from a thin accretion disc (kTdisc ˜ 1 keV), Comptonization of disc photons in a boundary layer most likely covering a large fraction of the neutron-star surface and innermost parts of the accretion disc, and blackbody emission (kTbb ˜ 2 keV) from the polar regions.

  18. Origin of the X-ray Broad Iron Spectral Feature in GRS 1915+105

    CERN Document Server

    Mizumoto, Misaki; Tsujimoto, Masahiro; Inoue, Hajime

    2015-01-01

    The X-ray spectrum of GRS 1915+105 is known to have a ``broad iron spectral feature'' in the spectral hard state. Similar spectral features are often observed in Active Galactic Nuclei (AGNs) and other black-hole binaries (BHBs), and several models have been proposed for explaining it. In order to distinguish spectral models, time variation provides an important key. In AGNs, variation amplitude has been found to drop significantly at the iron K-energy band at timescales of ~10 ks. If spectral variations of black-holes are normalized by their masses, the spectral variations of BHBs at timescales of sub-seconds should exhibit similar characteristics to those of AGNs. In this paper, we investigated spectral variations of GRS 1915+105 at timescales down to ~10 ms. This was made possible for the first time with the Suzaku XIS Parallel-sum clocking (P-sum) mode, which has the CCD energy-resolution as well as a time-resolution of 7.8 ms. Consequently, we found that the variation amplitude of GRS 1915+105 does not d...

  19. On the reality of broad iron L lines from the narrow line Seyfert 1 galaxies 1H0707-495 and IRAS 13224-3809

    CERN Document Server

    Pawar, Pramod; Patil, Madhav; Misra, Ranjeev; Jogadand, Sharada

    2016-01-01

    We performed time resolved spectroscopy of 1H0707-495 and IRAS 13224-3809 using long XMM-Newton observations. These are strongly variable narrow line Seyfert 1 galaxies and show broad features around 1 keV that has been interpreted as relativistically broad Fe L$\\alpha$ lines. Such features are not clearly observed in other AGN despite sometimes having high iron abundance required by the best fitted blurred reflection models. Given the importance of these lines, we explore the possibility if rapid variability of spectral parameters may introduce broad bumps/dips artificially in the time averaged spectrum, which may then be mistaken as broadened lines. We tested this hypothesis by performing time resolved spectroscopy using long (> 100 ks) XMM-Newton observations and by dividing it into segments with typical exposure of few ks. We extracted spectra from each such segment and modelled using a two component phenomenological model consisting of a power law to represent hard component and a black body to represent...

  20. Radio observations of a sample of broad-lined type Ic supernovae discovered by PTF/iPTF: A search for relativistic explosions

    CERN Document Server

    Corsi, A; Kulkarni, S R; Frail, D A; Mazzali, P A; Cenko, S B; Kasliwal, M M; Cao, Y; Horesh, A; Palliyaguru, N; Perley, D A; Laher, R R; Taddia, F; Leloudas, G; Maguire, K; Nugent, P E; Sollerman, J; Sullivan, M

    2015-01-01

    Long duration gamma-ray bursts are thought to be a rare subclass of stripped-envelope core-collapse supernovae that launch collimated relativistic outflows (jets). All gamma-ray-burst-associated supernovae are spectroscopically of Type Ic with broad lines, but the fraction of broad-lined Type Ic supernovae harboring low-luminosity gamma-ray-bursts remains largely unconstrained. Some supernovae should be accompanied by off-axis gamma-ray burst jets that remain invisible initially, but then emerge as strong radio sources (as the jets decelerate). However, this critical prediction of the jet model for gamma-ray bursts has yet to be verified observationally. Here, we present K. G. Jansky Very Large Array radio observations of 15 broad-lined supernovae of Type Ic discovered by the Palomar Transient Factory in an untargeted manner. Most of the supernovae in our sample exclude radio emission observationally similar to that of the radio-loud, relativistic SN 1998bw. We thus constrain the fraction of 1998bw-like broad...

  1. Origin of the Broad Iron Line Feature and the Soft X-ray Variation in Seyfert Galaxies

    CERN Document Server

    Iso, Naoki; Sameshima, Hiroaki; Mizumoto, Misaki; Miyakawa, Takehiro; Inoue, Hajime; Yamasaki, Hiroki

    2016-01-01

    Many Seyfert galaxies are known to exhibit significant X-ray spectral variations and seemingly broad iron K-emission line features. In this paper, we show that the "variable partial covering model", which has been successfully proposed for MCG-6.30-15 (Miyakawa, Ebisawa & Inoue 2012) and 1H0707.495 (Mizumoto, Ebisawa & Sameshima 2014), can also explain the spectral variations in 2-10 keV as well as the broad iron line features in 20 other Seyfert galaxies observed with Suzaku. In this model, the absorbed spectral component through the optically-thick absorbing clouds has a significant iron K-edge, which primarily accounts for the observed seemingly broad iron line feature. Fluctuation of the absorbing clouds in the line of sight of the extended X-ray source results in variation of the partial covering fraction, which causes an anti-correlation between the direct (not covered) spectral component and the absorbed (covered) spectral component below ~10 keV. Observed spectral variation in 2-10 keV in a ti...

  2. On the Origin of Broad Iron Lines in Neutron Star Low-mass X-ray Binaries

    CERN Document Server

    Chiang, Chia-Ying; Miller, Jon M; Barret, Didier; Fabian, Andy C; D'Ai, Antonino; Parker, Michael L; Bhattacharyya, Sudip; Burderi, Luciano; Di Salvo, Tiziana; Egron, Elise; Homan, Jeroen; Iaria, Rosario; Lin, Dacheng; Miller, M Coleman

    2015-01-01

    Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems, and in neutron star systems as well. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk, and broadened by strong relativistic effects. However, the nature of the lines in neutron star LMXBs has been under debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra HETGS observation of Serpens X-1. The observation was taken under the "continuous clocking" mode and thus free of photon pile-up effects. We carry out a systematic analysis and find that the blurred reflection model fits the Fe line of Serpens X-1 significantly better than a broad Gaussian component does, implying that the relativistic reflection scenario is much preferred. Chandra HETGS also provides highest spectral resolution view of the Fe K region and we find no strong evidence for add...

  3. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    CERN Document Server

    Aldi, G F

    2016-01-01

    The shape of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analytical calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.

  4. On the relativistic iron line and soft excess in the Seyfert 1 galaxy Markarian 335

    CERN Document Server

    O'Neill, Paul M; Cappi, Massimo; Longinotti, Anna Lia; Sim, Stuart A

    2007-01-01

    We report on a 133 ks XMM-Newton observation of the Seyfert 1 galaxy Markarian 335. The 0.4-12 keV spectrum contains an underlying power law continuum, a soft excess below 2 keV, and a double-peaked iron emission feature in the 6-7 keV range. We investigate the possibility that the double-peaked emission might represent the characteristic signature of the accretion disc. Detailed investigations show that a moderately broad, accretion disc line is most likely present, but that the peaks may be owing to narrower components from more distant material. The peaks at 6.4 and 7 keV can be identified, respectively, with the molecular torus in active galactic nucleus unification schemes, and very highly ionized, optically thin gas filling the torus. The X-ray variability spectra on both long (~100 ks) and short (~1 ks) timescales disfavour the recent suggestion that the soft excess is an artifact of variable, moderately ionized absorption.

  5. Broad-band radio circular polarization spectrum of the relativistic jet in PKS B2126-158

    Science.gov (United States)

    O'Sullivan, S. P.; McClure-Griffiths, N. M.; Feain, I. J.; Gaensler, B. M.; Sault, R. J.

    2013-10-01

    We present full Stokes radio polarization observations of the quasar PKS B2126-158 (z = 3.268) from 1 to 10 GHz using the Australia Telescope Compact Array. The source has large fractional circular polarization (CP), mc ≡ |V|/I, detected at high significance across the entire band (from 15 to 90σ per 128 MHz subband). This allows us to construct the most robust CP spectrum of an active galactic nucleus (AGN) jet to date. We find mc ∝ ν+0.60 ± 0.03 from 1.5 to 6.5 GHz, with a peak of mc ˜ 1 per cent before the spectrum turns over somewhere between 6.5 and 8 GHz, above which mc ∝ ν-3.0 ± 0.4. The fractional linear polarization (LP; p) varies from ≲0.2 to ˜1 per cent across our frequency range and is strongly anticorrelated with the fractional CP, with a best-fitting power law giving mc ∝ p-0.24 ± 0.03. This is the first clear relation between the observed LP and CP of an AGN jet, revealing the action of Faraday conversion of LP to CP within the jet. More detailed modelling in conjunction with high spatial resolution observations are required to determine the true driving force behind the conversion (i.e. magnetic twist or internal Faraday rotation). In particular determining whether the observed Faraday rotation is internal or entirely external to the jet is key to this goal. The simplest interpretation of our observations favours some internal Faraday rotation, implying that Faraday rotation-driven conversion of LP to CP is the dominant CP generation mechanism. In this case, a small amount of vector-ordered magnetic field along the jet axis is required, along with internal Faraday rotation from the low-energy end of the relativistic electron energy spectrum in an electron-proton-dominated jet.

  6. Discovery and Monitoring of a Broad Iron Line Complex in GRO J1655-40 by RXTE

    International Nuclear Information System (INIS)

    We present results from detailed spectral analyses of 43 RXTE observations of GRO J1655-40 made throughout 1996. Spectra taken over 27 days separated by about one week each allow us to determine 3-200 keV continuum and line variability during the thermally dominated and steep power-law states seen. Inferred effective radii for maximum disk emission are consistently below 6 gravitational radii, confirming the Kerr nature of the black hole. The broad iron line is modeled by a broad emission line and an absorption edge at ∼6.7 keV. We discuss the variation in line and continuum parameters, and suggest the inner portion of the accretion disk is warped and hot

  7. Revealing the broad iron Kalpha line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations

    CERN Document Server

    Duro, Refiz; Grinberg, Victoria; Miškovičová, Ivica; Rodriguez, Jérôme; Tomsick, John; Hanke, Manfred; Pottschmidt, Katja; Nowak, Michael A; Kreykenbohm, Sonja; Bel, Marion Cadolle; Bodaghee, Arash; Lohfink, Anne; Kendziorra, Eckhard; Kirsch, Marcus G F; Staubert, Rüdiger; Wilms, Jörn

    2016-01-01

    We report on the analysis of the broad Fe Kalpha line feature of Cygnus X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission (XMM-Newton), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe Kalpha reflection line at 6.4keV with a very high signal to noise ratio. The 4-500keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole ...

  8. Revealing the broad iron Kα line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations

    Science.gov (United States)

    Duro, Refiz; Dauser, Thomas; Grinberg, Victoria; Miškovičová, Ivica; Rodriguez, Jérôme; Tomsick, John; Hanke, Manfred; Pottschmidt, Katja; Nowak, Michael A.; Kreykenbohm, Sonja; Cadolle Bel, Marion; Bodaghee, Arash; Lohfink, Anne; Reynolds, Christopher S.; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Staubert, Rüdiger; Wilms, Jörn

    2016-05-01

    We report on the analysis of the broad Fe Kα line feature of Cyg X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission (XMM-Newton), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe Kα reflection line at 6.4 keV with a very high signal to noise ratio. The 4-500 keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole parameters with a spin of a ~ 0.9, in agreement with recent measurements from reflection and disk continuum fitting. The inclination is found to be i ~ 30°, consistent with the orbital inclination and different from inclination measurements made during the soft state, which show a higher inclination. We speculate that the difference between the inclination measurements is due to changes in the inner region of the accretion disk.

  9. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-ray Burst Detection

    CERN Document Server

    Milisavljevic, D; Parrent, J T; Soderberg, A M; Fesen, R A; Mazzali, P; Maeda, K; Sanders, N E; Cenko, S B; Silverman, J M; Filippenko, A V; Kamble, A; Chakraborti, S; Drout, M R; Kirshner, R P; Pickering, T E; Kawabata, K; Hattori, T; Hsiao, E Y; Stritzinger, M D; Marion, G H; Vinko, J; Wheeler, J C

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of 20,000 km/s that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (> 27,000 km/s). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Msolar, a kinetic energy of 1.0x10^{52} erg, and a 56Ni mass of 0.1-0.2 Msolar. Nebular spectra (t > 200d) exhibit an asymmetric double-peaked [OI] 6300,6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an al...

  10. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    Science.gov (United States)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  11. THE BROAD-LINED Type Ic SN 2012ap AND THE NATURE OF RELATIVISTIC SUPERNOVAE LACKING A GAMMA-RAY BURST DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Sanders, N. E.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, J. M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Pickering, T. E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Kawabata, K. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Hsiao, E. Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Stritzinger, M. D., E-mail: dmilisav@cfa.harvard.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); and others

    2015-01-20

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s{sup –1} that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s{sup –1}). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M {sub ☉}, a kinetic energy of ∼1.0 × 10{sup 52} erg, and a {sup 56}Ni mass of 0.1-0.2 M {sub ☉}. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z ≳ Z {sub ☉}, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  12. The broad iron Kalpha line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode

    CERN Document Server

    Duro, R; Wilms, J; Pottschmidt, K; Nowak, M A; Fritz, S; Kendziorra, E; Kirsch, M G F; Reynolds, C S; Staubert, R

    2011-01-01

    We present the analysis of the broadened, flourescent iron Kalpha line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-1. The XMM-Newton data were taken in a modified version of the timing mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal-to-noise ratio in the Fe Kalpha band. We find that the best-fit spectrum consists of the sum of an exponentially cut off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe Kalpha feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to rotating maximally.

  13. Atomic data from the Iron Project. LIII. Relativistic allowed and forbidden transition probabilities for Fe XVII

    CERN Document Server

    Nahar, S N; Chen, G X; Pradhan, A K; Nahar, Sultana N.; Eissner, Werner; Chen, Guo-Xin; Pradhan, Anil K.

    2003-01-01

    An extensive set of fine structure levels and corresponding transition probabilities for allowed and forbidden transitions in Fe XVII is presented. A total of 490 bound energy levels of Fe XVII of total angular momenta 0 <= J <= 7 of even and odd parities with 2 <= n <= 10, 0 <= l <= 8, 0 <= L <= 8, and singlet and triplet multiplicities, are obtained. They translate to over 2.6 x 10^4 allowed (E1) transitions that are of dipole and intercombination type, and about 3000 forbidden transitions that include electric quadrupole (E2), magnetic dipole (M1), electric octopole (E3), and magnetic quadrupole (M2) type representing the most detailed calculations to date for the ion. Oscillator strengths f, line strengths S, and coefficients A of spontaneous emission for the E1 type transitions are obtained in the relativistic Breit-Pauli R-matrix approximation. A valus for the forbidden transitions are obtained from atomic structure calculations using codes SUPERSTRUCTURE and GRASP. The energy le...

  14. Observations of Relativistically Broadened Iron Kalpha Lines From Stellar Mass Black Holes

    Science.gov (United States)

    Tomsick, John

    2016-04-01

    The measurement of Doppler broadened and gravitationally redshifted iron emission lines from accreting black holes has been used to measure the inner radius of the optically thick disk (Rin). At high mass accretion rates, when the disk is at or close to the Innermost Stable Circular Orbit (ISCO), a determination of Rin provides a constraint on the spin of the black hole. Measuring Rin can also provide information about whether the disk is truncated or not, and this is especially important for understanding the relationship between the disk and the steady jet in the hard state. Over the past few years, the Nuclear Spectroscopic Telescope Array (NuSTAR) has provided improved measurements due to its combination of bandpass (3-79 keV), good energy resolution, and high throughput. In this presentation, we discuss NuSTAR results for a number of stellar mass black holes (e.g., Cyg X-1, GX 339-4, and GRS 1739-278). While these observations have been successful in obtaining measurements of Rin, the improved spectra have also provided extra information about the source geometry and the inner disk inclination, which we will discuss.

  15. The Broad Iron K-alpha line of Cygnus X-1 as Seen by XMM-Newton in the EPIC-pn Modified Timing Mode

    Science.gov (United States)

    Duro, Refiz; Dauser, Thomas; Wilms, Jorn; Pottschmidt, Katja; Nowak, Michael A.; Fritz, Sonja; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Reynolds, Christopher S.; Staubert, Rudiger

    2011-01-01

    We present the analysis of the broadened, flourescent iron K(alpha) line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-I. The XMM-Newton data were taken in a modified version of the Timing Mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal to noise ratio in the Fe K(alpha) band. We find that the best-fit spectrum consists of the sum of an exponentially cut-off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe K(alpha) feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to maximally rotating. Key words. X-rays: binaries - black hole physics - gravitation

  16. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  17. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  18. Iron

    Science.gov (United States)

    ... as recommended by an obstetrician or other health care provider. Infants and toddlers Iron deficiency anemia in infancy can lead to delayed psychological development, social withdrawal, and less ability to pay attention. By age 6 to 9 months, full-term infants could ...

  19. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  20. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  1. Relativistic Kinematics

    CERN Document Server

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  2. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  3. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  4. Relativistic geodesy

    Science.gov (United States)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  5. Relativistic Noise

    OpenAIRE

    Kapusta, Joseph; Mueller, Berndt; Stephanov, Misha

    2012-01-01

    The relativistic theory of hydrodynamic fluctuations, or noise, is derived and applied to high energy heavy ion collisions. These fluctuations are inherent in any space-time varying system and are in addition to initial state fluctuations. We illustrate the effects with the boost-invariant Bjorken solution to the hydrodynamic equations. Long range correlations in rapidity are induced by propagation of sound modes. The magnitude of these correlations are directly proportional to the viscositie...

  6. Atomic data from the Iron Project XLV. Relativistic transition probabilities for carbon-like Ar XIII and Fe XXI using Breit-Pauli R-matrix method

    OpenAIRE

    Nahar, Sultana N.

    2000-01-01

    The Breit-Pauli R-matrix method developed under the Iron Project has been used to obtain extensive sets of oscillator strengths and transition probabilities for dipole allowed and intercombination fine structure transitions in carbon like ions, Ar XIII and Fe XXI. The complete set consists of 1274 fine structure bound energy levels and 198,259 oscillator strengths for Ar XIII, and 1611 bound levels and 300,079 oscillator strengths for Fe XXI. These correspond to levels of total angular moment...

  7. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  8. Non-relativistic leptogenesis

    OpenAIRE

    Bödeker, Dietrich; Wörmann, Mirco(Fakultät für Physik, Universität Bielefeld, Bielefeld, D-33615 Germany)

    2013-01-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic appr...

  9. Relativistic diffusive transport

    OpenAIRE

    Haba, Z.

    2009-01-01

    We discuss transport equations resulting from relativistic diffusions in the proper time. We show that a solution of the transport equation can be obtained from the solution of the diffusion equation by means of an integration over the proper time. We study the stochastic processes solving the relativistic diffusion equation and the relativistic transport equation. We show that the relativistic transport equation for massive particles in the light cone coordinates and for massless particles i...

  10. Relativistic Theory of Superconductivity

    OpenAIRE

    Capelle, K.; Marques, M. A. L.; Gross, E. K. U.

    2001-01-01

    The relativistic generalization of the theory of superconductivity is reviewed with respect to its conceptual basis and first applications. The construction of relativistically covariant order parameters for superconductors is outlined and the generalization of the Dirac equation for the superconducting state is presented. A weakly relativistic expansion of this equation leads to the Pauli equation for superconductors, which describes the lowest-order relativistic corrections to the conventio...

  11. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  12. Relativistic Remnants of Non-Relativistic Electrons

    CERN Document Server

    Kashiwa, Taro

    2015-01-01

    Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.

  13. Relativistic Remnants of Non-Relativistic Electrons

    OpenAIRE

    Kashiwa, Taro; Yamaguchi, Taisuke

    2014-01-01

    Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.

  14. Iron and Iron Metabolism

    OpenAIRE

    Melike Sezgin Evim; Birol Baytan; Adalet Meral Güneş

    2012-01-01

    Iron is an essential element for almost all living organisms except some bacteria. A great number of new articles related to the iron metabolism have been published in recent years explaining new findings. Hepsidine, a peptide hormon, that is recently found, regulates iron methabolism by effecting iron absorbsion from gut, secreting iron from hepatic store and flows iron from macrophages. Hepsidin blockes to effluxe iron from cells by bounding to ferroportin and by inducing ferroportin destru...

  15. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  16. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  17. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  18. RELATIVISTIC TRANSPORT-THEORY

    NARCIS (Netherlands)

    MALFLIET, R

    1993-01-01

    We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.

  19. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  20. Relativistic Quark Physics

    OpenAIRE

    Rafelski, Johann

    1998-01-01

    We present a brief survey of the development of nuclear physics towards relativistic quark physics. This is followed by a thorough discussion of the quest for the observation of the dissolution of nuclear matter into the deconfined quark matter (QGP) in relativistic nuclear collisions. Use of strange particle signatures in search for QGP is emphasized.

  1. Towards relativistic quantum geometry

    Directory of Open Access Journals (Sweden)

    Luis Santiago Ridao

    2015-12-01

    Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  2. Non-relativistic leptogenesis

    International Nuclear Information System (INIS)

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ∼ 20%) effects compared to previous computations

  3. Non-relativistic leptogenesis

    CERN Document Server

    Bodeker, Dietrich

    2014-01-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large (~ 20%) effects compared to previous computations.

  4. Non-relativistic leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich; Wörmann, Mirco, E-mail: bodeker@physik.uni-bielefeld.de, E-mail: mwoermann@physik.uni-bielefeld.de [Fakultät für Physik, Universität Bielefeld, Bielefeld, D-33615 (Germany)

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ∼ 20%) effects compared to previous computations.

  5. FERO (Finding Extreme Relativistic Objects: statistics of relativistic broad Fe K lines in AGN

    Directory of Open Access Journals (Sweden)

    A. L. Longinotti

    2008-01-01

    Full Text Available Las propiedades de las líneas de emisión Fe Kα ensanchadas relativísticamente en núcleos activos de galaxias (AGN son aún materia de debate en la comunidad. Los trabajos recientes parecen excluir que la línea ancha de Fe es un rasgo común en los AGN. Se presenta el análisis de una gran muestra de 157 observaciones de archivo del XMM-Newton de AGN radio callados. Este trabajo en curso es lo desarrollado desde lo reportado en Guainazzi et al. (2006.

  6. The 2010 Broad Prize

    Science.gov (United States)

    Education Digest: Essential Readings Condensed for Quick Review, 2011

    2011-01-01

    A new data analysis, based on data collected as part of The Broad Prize process, provides insights into which large urban school districts in the United States are doing the best job of educating traditionally disadvantaged groups: African-American, Hispanics, and low-income students. Since 2002, The Eli and Edythe Broad Foundation has awarded The…

  7. Iron Features in the XMM-Newton spectrum of NGC 4151

    CERN Document Server

    Schurch, N J; Griffiths, R E; Ptak, A F

    2002-01-01

    We present a detailed analysis of the hard X-ray (>2.5 keV) EPIC spectra from the first observations of NGC 4151 made by XMM-Newton. We fit the spectra with a model consisting of a power-law continuum modified by line-of-sight absorption (arising in both partially photoionized and neutral gas) plus additional iron-K emission and absorption features. This model provides an excellent overall fit to the EPIC spectra. The iron K-alpha line is well modelled as a narrow Gaussian component. In contrast to several earlier studies based on data from ASCA, a relativistically broadened iron K-alpha emission feature is not required by the XMM-Newton data. The upper limit on the flux contained in any additional broad line is ~8% of that in the narrow line. The measured intrinsic line width (sigma =32+_7 eV) may be ascribed to (i) the doublet nature of the iron K-alpha line and (ii) emission from low ionization states of iron, ranging from neutral up to ~FeXVII. The additional iron absorption edge arises in cool material a...

  8. Relativistic Hall Effect

    CERN Document Server

    Bliokh, Konstantin Y

    2011-01-01

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.

  9. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  10. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  11. Exact Relativistic 'Antigravity' Propulsion

    CERN Document Server

    Felber, F S

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  12. State of the iron

    DEFF Research Database (Denmark)

    Reinisch, Walter; Staun, Michael; Bhandari, Sunil;

    2013-01-01

    Iron deficiency anemia (IDA) frequently occurs in patients suffering from inflammatory bowel disease (IBD) and negatively impacts their quality of life. Nevertheless, the condition appears to be both under-diagnosed and undertreated. Regular biochemical screening of patients with IBD for anemia...... by the gastroenterology community has to be advocated. Oral iron is a low cost treatment however its effectiveness is limited by low bioavailability and poor tolerability. Intravenous (IV) iron rapidly replenishes iron stores and has demonstrated its safe use in a number of studies in various therapeutic areas. A broad...... spectrum of new IV iron formulations is now becoming available offering improved tolerability and patient convenience by rapidly restoring the depleted iron status of patients with IBD. The following article aims to review the magnitude of the problem of IDA in IBD, suggest screening standards...

  13. Fourier evaluation of broad Moessbauer spectra

    International Nuclear Information System (INIS)

    It is shown by the Fourier analysis of broad Moessbauer spectra that the even part of the distribution of the dominant hyperfine interaction (hyperfine field or quadrupole splitting) can be obtained directly without using least-square fitting procedures. Also the odd part of this distribution correlated with other hyperfine parameters (e.g. isomer shift) can be directly determined. Examples for amorphous magnetic and paramagnetic iron-based alloys are presented. (author)

  14. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  15. Relativistic Multiple Scattering Theory and the Relativistic Impulse Approximation

    OpenAIRE

    Maung, Khin Maung; Norbury, John W.; Coleman, Trina

    2007-01-01

    It is shown that a relativistic multiple scattering theory for hadron-nucleus scattering can be consistently formulated in four-dimensions in the context of meson exchange. We give a multiple scattering series for the optical potential and discuss the differences between the relativistic and non-relativistic versions. We develop the relativistic multiple scattering series by separating out the one boson exchange term from the rest of the Feynman series. However this particular separation is n...

  16. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  17. The relativistic Pauli equation

    CERN Document Server

    Delphenich, David

    2012-01-01

    After discussing the way that C2 and the algebra of complex 2x2 matrices can be used for the representation of both non-relativistic rotations and Lorentz transformations, we show that Dirac bispinors can be more advantageously represented as 2x2 complex matrices. One can then give the Dirac equation a form for such matrix-valued wave functions that no longer necessitates the introduction of gamma matrices or a choice for their representation. The minimally-coupled Dirac equation for a charged spinning particle in an external electromagnetic field then implies a second order equation in the matrix-valued wave functions that is of Klein-Gordon type and represents the relativistic analogue of the Pauli equation. We conclude by presenting the Lagrangian form for the relativistic Pauli equation.

  18. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  19. Relativistic Rotating Vector Model

    CERN Document Server

    Lyutikov, Maxim

    2016-01-01

    The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.

  20. Relativistic electronic dressing

    CERN Document Server

    Attaourti, Y

    2002-01-01

    We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.

  1. Relativistic Effect in Galaxy Clustering

    OpenAIRE

    Yoo, Jaiyul

    2014-01-01

    The general relativistic description of galaxy clustering provides a complete and unified treatment of all the effects in galaxy clustering such as the redshift-space distortion, gravitational lensing, Sachs-Wolfe effects, and their relativistic effects. In particular, the relativistic description resolves the gauge issues in the standard Newtonian description of galaxy clustering by providing the gauge-invariant expression for the observed galaxy number density. The relativistic effect in ga...

  2. A General Quadrature Solution for Relativistic, Non-relativistic, and Weakly-Relativistic Rocket Equations

    CERN Document Server

    Bruce, Adam L

    2015-01-01

    We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.

  3. Suzaku Observations of Iron Lines and Reflection in AGN

    CERN Document Server

    Reeves, J N; Kataoka, J; Kunieda, H; Markowitz, A; Miniutti, G; Okajima, T; Serlemitsos, P; Takahashi, T; Terashima, Y; Yaqoob, T

    2006-01-01

    Initial results on the iron K-shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed time program are reviewed. This paper discusses a small sample of Compton-thin Seyferts observed to date with Suzaku; namely MCG -5-23-16, MCG -6-30-15, NGC 4051, NGC 3516, NGC 2110, 3C 120 and NGC 2992. The broad iron K$\\alpha$ emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG -6-30-15 shows the most extreme relativistic blurring of all the objects, the red-wing of the line requires the inner accretion disk to extend inwards to within 2.2Rg of the black hole, in agreement with the XMM-Newton observations. Strong excess emission in the Hard X-ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton-thick matter (e.g. the accretion disk). Only on...

  4. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  5. Relativistic cosmology; Cosmologia Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Bastero-Gil, M.

    2015-07-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  6. Relativistic kinetic momentum operators

    International Nuclear Information System (INIS)

    In the framework of the quantum theory in the relativistic configuration r-space the kinetic momenta, corresponding to the half of the non-Euclidean distance in the Lobachevsky velocities space, are introduced. These operators, coinciding up to the constant factor with the generators of translations of the r-space, are the exterior derivatives of the noncommutative differential calculus

  7. Relativistic Astrophysics; Astrofisica Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Font, J. A.

    2015-07-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  8. Dynamics of relativistic jets

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.

    1998-12-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  9. The Work Function Associated with Ultra-relativistic Electron Emission from Strongly Magnetized Neutron Star Surface

    Indian Academy of Sciences (India)

    Arpita Ghosh; Somenath Chakrabarty

    2011-09-01

    Following an extremely interesting idea (Schieber 1984), published long ago, the work function associated with the emission of ultra-relativistic electrons from magnetically deformed metallic crystal (mainly iron) at the outer crust of a magnetar is obtained using relativistic version of Thomas–Fermi type model for electron distribution around the nuclei in this region. In the present scenario, surprisingly, the work function becomes anisotropic; the longitudinal part is an increasing function of magnetic field strength, whereas the transverse part diverges.

  10. Relativistic shell model calculations

    Science.gov (United States)

    Furnstahl, R. J.

    1986-06-01

    Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.

  11. Relativistic Hydrodynamics with Wavelets

    CERN Document Server

    DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W

    2015-01-01

    Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...

  12. Local Relativistic Exact Decoupling

    CERN Document Server

    Peng, Daoling

    2012-01-01

    We present a systematic hierarchy of approximations for {\\it local} exact-decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary transformation needed for exact decoupling provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-$N^2$ scaling can be further reduced to linear scaling by employing the neighboring-atomic-blocks approximation. Therefore, it is a...

  13. Relativistic Viscous Universe Models

    OpenAIRE

    Brevik, Iver; Grøn, Øyvind

    2014-01-01

    The research on relativistic universe models with viscous fluids is reviewed. Viscosity may have been of significance during the early inflationary era, and may also be of importance for the late time evolution of the Universe. Bulk viscosity and shear viscosity cause exponential decay of anisotropy, while nonlinear viscosity causes power-law decay of anisotropy. We consider also the influence from turbulence, in connection with future singularities of the universe (Big Rip and Little Rip). F...

  14. Relativistic quark models

    OpenAIRE

    Simula, Silvano

    2001-01-01

    The application of relativistic constituent quark models to the evaluation of the electromagnetic properties of the nucleon and its resonances is addressed. The role of the pair creation process in the Feynmann triangle diagram is discussed and the importance both of choosing the light-front formalism and of using a Breit frame where the plus component of the four-momentum transfer is vanishing, is stressed. The nucleon elastic form factors are calculated free of spurious effects related to t...

  15. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  16. Relativistic Fractal Cosmologies

    OpenAIRE

    Ribeiro, Marcelo B.

    2009-01-01

    This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented,...

  17. Local Relativistic Exact Decoupling

    OpenAIRE

    Peng, Daoling; Reiher, Markus

    2012-01-01

    We present a systematic hierarchy of approximations for {\\it local} exact-decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is i...

  18. Relativistic and non-relativistic studies of nuclear matter

    OpenAIRE

    Banerjee, M. K.; Tjon, J. A.

    2001-01-01

    Recently we showed that while the tensor force plays an important role in nuclear matter saturation in non-relativistic studies, it does not do so in relativistic studies. The reason behind this is the role of $M^*$, the sum of nucleon mass and its attractive self-energy in nuclear matter. Yet nonrelativistic calculations at a certain level of approximation are far less difficult than comparative relativistic calculation. Naturally the question arises if one can modify a nonrelativistic metho...

  19. Sarma phase in relativistic and non-relativistic systems

    OpenAIRE

    Boettcher, I.; Herbst, T.K.(Institute for Theoretical Physics, Heidelberg University, Heidelberg, D-69120, Germany); Pawlowski, J. M.; N. Strodthoff; von Smekal, L.; Wetterich, C.

    2014-01-01

    We investigate the stability of the Sarma phase in two-component fermion systems in three spatial dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We find ...

  20. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  1. Relativistic corrections in magnetic systems

    OpenAIRE

    Crépieux, A.; Bruno, P

    2000-01-01

    We present a weak-relativistic limit comparison between the Kohn-Sham-Dirac equation and its approximate form containing the exchange coupling, which is used in almost all relativistic codes of density-functional theory. For these two descriptions, an exact expression of the Dirac Green's function in terms of the non-relativistic Green's function is first derived and then used to calculate the effective Hamiltonian, i.e., Pauli Hamiltonian, and effective velocity operator in the weak-relativi...

  2. On the Relativistic Quantum Plasma

    OpenAIRE

    Ahmad, Rashid; Ikramullah; Sharif, Saqib; Husain, Shakir; Khattak, Fida Younus

    2012-01-01

    Recently the interest in relativistic quantum plasma is increasing primarily to understand the fundamentals of the plasma behaviour and its properties. Mathematical models used to investigate these plasma are still need to be matured. Especially, the relativistic quantum electron-ion plasma are modeled using the Klein-Gordon equation and the Dirac equation for relativistic electrons. However, different properties of these plasma are investigated without anti-particles. We note that in order t...

  3. Relativistic dynamics without collisions and conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2008-01-01

    We show that the relativistic expressions for momentum and energy as well as the way in which they transform could be derived without involving collisions and conservation laws. Our approach involves relativistic kinematics via the addition law of relativistic velocities.

  4. Study of iron fluorination

    International Nuclear Information System (INIS)

    This report deals with the action of fluorine on iron. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been investigated over a very broad range of temperature and pressure. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase by oxygen on the fluorination process is reported. The solid-state reaction between ferric fluoride and iron has been studied by calorimetry and hydrated fluorides βFeF3, 3 H2O and FeF3, H2O have been studied by Moessbauer effect. A special study has been made of the growth of iron deposits by thermal decomposition of gaseous iron fluorides. (author)

  5. Relativistic multiple scattering theory and the relativistic impulse approximation

    International Nuclear Information System (INIS)

    It is shown that a relativistic multiple scattering theory for hadron-nucleus scattering can be consistently formulated in four dimensions in the context of meson exchange. We give a multiple scattering series for the optical potential and discuss the differences between the relativistic and non-relativistic versions. We develop the relativistic multiple scattering series by separating out the one-boson exchange term from the rest of the Feynman series. However, this particular separation is not absolutely necessary and we discuss how to include other terms. We then show how to make a three-dimensional reduction for hadron-nucleus scattering calculations and we find that the relative energy prescription used in the elastic scattering equation should be consistent with that used in the free two-body t-matrix involved in the optical potential. We also discuss what assumptions are involved in making a Dirac relativistic impulse approximation (RIA)

  6. Challenges of Relativistic Astrophysics

    CERN Document Server

    Opher, Reuven

    2013-01-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of: compact objects (Black Holes and Neutron Stars); dark sector (Dark Matter and Dark Energy); plasma astrophysics (Origin of Jets, Cosmic Rays and Magnetic Fields) and the primordial universe (Physics at the beginning of the Universe). In these four subjects, I discuss twelve of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale Universe. The near future possibilities, in observations and theory, for addressing these challenges, are also discussed.

  7. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  8. Photodetachment of relativistic ions

    International Nuclear Information System (INIS)

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (β = 0.842) H- ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H- beams and our spectroscopic work with H0 beams are presented. Plans for future work are discussed

  9. The relativistic Pauli equation

    OpenAIRE

    Delphenich, David

    2012-01-01

    After discussing the way that C2 and the algebra of complex 2x2 matrices can be used for the representation of both non-relativistic rotations and Lorentz transformations, we show that Dirac bispinors can be more advantageously represented as 2x2 complex matrices. One can then give the Dirac equation a form for such matrix-valued wave functions that no longer necessitates the introduction of gamma matrices or a choice for their representation. The minimally-coupled Dirac equation for a charge...

  10. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  11. Particle-in-Cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    CERN Document Server

    Shukla, Chandrasekhar; Patel, Kartik

    2016-01-01

    We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  12. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  13. Exotic Non-relativistic String

    CERN Document Server

    Casalbuoni, Roberto; Longhi, Giorgio

    2007-01-01

    We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.

  14. 'Antigravity' Propulsion and Relativistic Hyperdrive

    CERN Document Server

    Felber, F S

    2006-01-01

    Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.

  15. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  16. Relativistic covariance of Ohm's law

    CERN Document Server

    Starke, R

    2014-01-01

    The derivation of relativistic generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic plasmas in astrophysics and cosmology. Here we propose an alternative route to this problem by introducing the most general Lorentz covariant first order response law, which is written in terms of the fundamental response tensor $\\chi^\\mu_{~\

  17. Relativistic multiple scattering Xα calculations

    International Nuclear Information System (INIS)

    A one component relativistic theory has recently been developed and tested on isolated atoms and on molecules through the molecular scattered-wave formalism of Johnson, while its application to energy-band calculations (through a relativistic augmented-plane-wave program) has also been considered

  18. Stationary Relativistic Jets

    CERN Document Server

    Komissarov, S S; Lyutikov, M

    2015-01-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...

  19. A relativistic trolley paradox

    Science.gov (United States)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  20. Relativistic fluid formulation and theory of intense relativistic electron beams

    International Nuclear Information System (INIS)

    A new general relativistic fluid formulation has been obtained for intense relativistic electron beams (IREB) with arbitrarily high relativistic mass factor γ. This theory is valid for confined IREB equilibria such as those found inside high energy accelerators as well as in the pinched and ion-focused regimes of beam propagation in plasma channels. The new relativistic fluid formulation is based on the covariant relativistic fluid formulation of Newcomb with the parameter lambda identical to 1, in order to allow for realistic confined equilibria. The resulting equilibrium constraints require that the beam has a slow rotational velocity around its direction of propagation and that the off-diagonal thermal stress element, associated with these two directions of motion, be nonzero. The effective betatron oscillation frequency of the fluid elements of the beam is modified by the radial gradient and anisotropies in the thermal stress elements of the beam fluid. The wave equation, for sausage, hose and filamentation excitations on the relativistic fluid beam, is found to be formally identical to that obtained from the Vlasov equation approach, hence phase-mixing damping is a generic and self-consistent correlate of the new relativistic fluid formulation

  1. Non-Relativistic Positronium Spectrum in Relativistic Schroedinger Theory

    OpenAIRE

    Mattes, M.; Sorg, M.

    2008-01-01

    The lowest energy levels of positronium are studied in the non-relativistic approximation within the framework of Relativistic Schr\\"odinger Theory (RST). Since it is very difficult to find the exact solutions of the RST field equations (even in the non-relativistic limit), an approximation scheme is set up on the basis of the hydrogen-like wave functions (i.e. polynomial times exponential). For any approximation order $\\NN (\\NN=0,1,2,3,...)$ there arises a spectrum of approximate RST solutio...

  2. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  3. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  4. Relativistic Astrophysics Explorer

    CERN Document Server

    Kaaret, P E

    2003-01-01

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m^2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  5. The Relativistic Astrophysics Explorer

    Science.gov (United States)

    Kaaret, P.

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 60,000 cm2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  6. Relativistic Fractal Cosmologies

    CERN Document Server

    Ribeiro, Marcelo B

    2009-01-01

    This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...

  7. Relativistic quantum clocks

    CERN Document Server

    Lock, Maximilian P E

    2016-01-01

    The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.

  8. Relativistic Runaway Electrons

    Science.gov (United States)

    Breizman, Boris

    2014-10-01

    This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of

  9. Lattice Boltzmann scheme for relativistic fluids

    OpenAIRE

    Mendoza, M.; B. Boghosian; Herrmann, H. J.; Succi, S.

    2009-01-01

    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.

  10. Dependence of the broad Fe Kα line on the physical parameters of AGN

    Science.gov (United States)

    Liu, Zhu; Yuan, Weimin; Lu, Youjun; Carrera, Francisco J.; Falocco, Serena; Dong, Xiao-Bo

    2016-08-01

    In this paper, the dependence of the broad Fe Kα line on the physical parameters of AGN, such as the black hole mass MBH, accretion rate (equivalently represented by Eddington ratio λEdd), and optical classification, is investigated by applying the X-ray spectra stacking method to a large sample of AGN which have well measured optical parameters. A broad line feature is detected (>3σ) in the stacked spectra of the high λEdd sub-sample (log λEdd > -0.9). The profile of the broad line can be well fitted with relativistic broad line model, with the line energy consistent with highly ionized Fe Kα line (i.e. Fe XXVI). A model consisting of multiple narrow lines cannot be ruled out, however. We found hints that the Fe K line becomes broader as the λEdd increases. No broad line feature is shown in the sub-sample of broad-line Seyfert 1 (BLS1) galaxies and in the full sample, while a broad line might be present, though at low significance, in the sub-sample of narrow-line Seyfert 1 (NLS1) galaxies. We find no strong dependence of the broad line on black hole masses. Our results indicate that the detection/properties of the broad Fe Kα line may strongly depend on λEdd, which can be explained if the ionization state and/or truncation radius of the accretion disc changes with λEdd. The non-detection of the broad line in the BLS1 sub-sample can be explained if the the average EW of the relativistic Fe Kα line is weak or/and the fraction of sources with relativistic Fe Kα line is small in BLS1 galaxies.

  11. Simulating relativistic binaries with Whisky

    Science.gov (United States)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  12. Relativistic calculations of atomic structure

    OpenAIRE

    Fricke, Burkhard

    1984-01-01

    A review of relativistic atomic structure calculations is given with a emphasis on the Multiconfigurational-Dirac-Fock method. Its problems and deficiencies are discussed together with the contributions which go beyond the Dirac-Fock procedure.

  13. Relativistic formulation of quark model

    International Nuclear Information System (INIS)

    A relativistic model, which describes spin-orbital excitations of quark-antiquark bound system, is proposed. A formulation of the model provides the meson classification established in frame of the nonrelativistic quark model. 3 refs

  14. Gravitational Waves from Relativistic Stars

    OpenAIRE

    Kojima, Yasufumi

    2000-01-01

    Stellar pulsations in rotating relativistic stars are reviewed. Slow rotation approximation is applied to solving the Einstein equations. The rotational effects on the non-axisymmetric oscillations are explicitly shown in the polar and axial modes.

  15. Scattering in Relativistic Particle Mechanics.

    Science.gov (United States)

    de Bievre, Stephan

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from

  16. Multifragmentation calculated with relativistic forces

    International Nuclear Information System (INIS)

    A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density dependence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 - 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. (orig.)

  17. Stability of Relativistic Blast Waves

    OpenAIRE

    OGURA, Jun; Kojima, Yasufumi

    2000-01-01

    A spherical blast wave with relativistic velocity can be described by a similarity solution, that is used for theoretical models of gamma-ray bursts. We consider the linear stability of such a relativistic blast wave propagating into a medium with density gradient. The perturbation can also be expressed by a self-similar form. We show that the shock front is unstable in general, and we evaluate the growth rate.

  18. Relativistic EOS for supernova simulations

    OpenAIRE

    Shen H

    2014-01-01

    We study the relativistic equation of state (EOS) of dense matter covering a wide range of temperature, proton fraction, and baryon density for the use of supernova simulations. This work is based on the relativistic mean-field theory (RMF) and the Thomas-Fermi approximation. The Thomas-Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We t...

  19. Relativistic hydrodynamics - causality and stability

    OpenAIRE

    Ván, P.; Biró, T. S.

    2007-01-01

    Causality and stability in relativistic dissipative hydrodynamics are important conceptual issues. We argue that causality is not restricted to hyperbolic set of differential equations. E.g. heat conduction equation can be causal considering the physical validity of the theory. Furthermore we propose a new concept of relativistic internal energy that clearly separates the dissipative and non-dissipative effects. We prove that with this choice we remove all known instabilities of the linear re...

  20. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  1. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    F W Giacobbe

    2003-03-01

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly different from a more typical Chandrasekhar mass limit approach. This technique produced a maximum stellar iron core mass value of 2.69 × 1030 kg (1.35 solar masses). This mass value is very near to the typical mass values found for neutron stars in a recent survey of actual neutron star masses. Although slightly lower and higher neutron star masses may also be found, lower mass neutron stars are believed to be formed as a result of enhanced iron core compression due to the weight of non-ferrous matter overlying the iron cores within large stars. And, higher mass neutron stars are likely to be formed as a result of fallback or accretion of additional matter after an initial collapse event involving an iron core having a mass no greater than 2.69 × 1030 kg.

  2. Interference in multilayer relativistic mirrors

    Science.gov (United States)

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Babaei, Javad; Taghipour, Meisam; Mohammadzadeh, Zahra

    2015-10-01

    In this paper, reflection coefficient of a relativistic ultra-thin electron multilayer is calculated using electromagnetic interference procedures. The relativistic electron layers are assumed to be formed by nonlinear plasma wake waves that constitute the electron density cusps. It is shown that the interference between successive relativistic mirrors is restricted by the condition, τ p ≫ ( 2 γ 0 ) 5 / 2 / ω p 0 , where τp is the laser pulse duration. The results showed that tailoring the pulse amplitude, incident wave frequency value, incidence angle, and plasma density leads to increasing reflection coefficient a few orders of magnitudes. This constructive interference condition can be used for increasing conversion efficiency in the reflected energy from relativistic mirrors for the purpose of generating ultra-short coherence pulses in the extreme ultraviolet and x-ray regions. We also performed reflection from relativistic thin electron layers using relativistic 1D3V electromagnetic particle-in-cell (PIC) simulation. It was found that the results of PIC simulation are in agreement with analytical considerations.

  3. Relativistic magnetohydrodynamics in one dimension.

    Science.gov (United States)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation. PMID:22463331

  4. Wet Chemistry of Spinel Iron oxide Particles

    OpenAIRE

    Jolivet, J.; Chanéac, C.; Prené, P.; Vayssières, L.; Tronc, E.

    1997-01-01

    Various properties of spinel iron oxide nanograins are reviewed, illustrating the broad possibilities of wet chemistry for tailoring materials for a wide range of utilizations, from catalysis and sensors to cast magnetic materials.

  5. Integrating Hot and Cool Intelligences: Thinking Broadly about Broad Abilities

    Directory of Open Access Journals (Sweden)

    W. Joel Schneider

    2016-01-01

    Full Text Available Although results from factor-analytic studies of the broad, second-stratum abilities of human intelligence have been fairly consistent for decades, the list of broad abilities is far from complete, much less understood. We propose criteria by which the list of broad abilities could be amended and envision alternatives for how our understanding of the hot intelligences (abilities involving emotionally-salient information and cool intelligences (abilities involving perceptual processing and logical reasoning might be integrated into a coherent theoretical framework.

  6. Sarma phase in relativistic and non-relativistic systems

    Directory of Open Access Journals (Sweden)

    I. Boettcher

    2015-03-01

    Full Text Available We investigate the stability of the Sarma phase in two-component fermion systems in three spatial dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We find that fluctuations induce a second-order phase transition at zero temperature, and thus a Sarma phase, in the relativistic setup for large isospin chemical potential. This motivates the investigation of the cold atoms setup with comparable mean-field phase structure, where the Sarma phase could then be realized in experiment. However, for the non-relativistic system we find the stability region of the Sarma phase to be smaller than the one predicted from mean-field theory. It is limited to the BEC side of the phase diagram, and the unitary Fermi gas does not support a Sarma phase at zero temperature. Finally, we propose an ultracold quantum gas with four fermion species that has a good chance to realize a zero-temperature Sarma phase.

  7. Empirical Foundations of Relativistic Gravity

    CERN Document Server

    Ni, W T

    2005-01-01

    In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter gammaγ with a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to 10 percent of the value predicted by general relativity. In April 2004, Gravity Probe B was launched and has been accumulating science data for more than ...

  8. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    Science.gov (United States)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  9. Relativistic corrections to stopping powers

    International Nuclear Information System (INIS)

    Relativistic corrections to the nonrelativistic Bethe-Bloch formula for the stopping power of matter for charged particles are traditionally computed by considering close collisions separately from distant collisions. The close collision contribution is further divided into the Mott correction appropriate for very small impact parameters, and the Bloch correction, computed for larger values. This division of the region of close collisions leads to a very cumbersome result if one generalizes the original Bloch procedure to relativistic energies. The authors avoid the resulting poorly specified scattering angle theta/sub o/ that divides the Mott and Bloch correction regimes by using the procedure suggested by Lindhard and applied by Golovchenko, Cox and Goland to determine the Bloch correction for relativistic velocities. 25 references, 2 figures

  10. Relativistic description of deformed nuclei

    International Nuclear Information System (INIS)

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  11. Special relativistic hydrodynamics with gravitation

    CERN Document Server

    Hwang, Jai-chan

    2016-01-01

    The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.

  12. Relativistic EOS for supernova simulations

    Directory of Open Access Journals (Sweden)

    Shen H.

    2014-03-01

    Full Text Available We study the relativistic equation of state (EOS of dense matter covering a wide range of temperature, proton fraction, and baryon density for the use of supernova simulations. This work is based on the relativistic mean-field theory (RMF and the Thomas-Fermi approximation. The Thomas-Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We compare the EOS tables in detail.

  13. Theory of relativistic direct interaction

    International Nuclear Information System (INIS)

    Report discusses the structure, the generality and the physical meaning of the relativistic Hamiltonian theory (RHT) as a whole, starting from its most general quantum-field version and finishing with its classical counterpart. It is shown, in particular, that in the absence of bound states any relativistic invariant S-matrix can be obtained in the framework of the RHT. The properties of causality and locality of RHT are discussed, and two mechanisms of interaction transfer are considered. The space-time interaction of the motion of particles inside the direct interaction range is formulated and shown to be non-unique

  14. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  15. Dirac Cat States in Relativistic Landau Levels

    OpenAIRE

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-01-01

    We show that a relativistic version of Schrodinger cat states, here called Dirac cat states, can be built in relativistic Landau levels when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily Dirac cat states involving the orbital quanta of the particle in a well defined mesoscopic regime. We demonstrate that the proposed Dirac cat states have a purely relativistic origin and cease...

  16. Comparison of Relativistic Nucleon-Nucleon Interactions

    OpenAIRE

    Allen, T. W.; Payne, G. L.; Polyzou, Wayne N.

    2000-01-01

    We investigate the difference between those relativistic models based on interpreting a realistic nucleon-nucleon interaction as a perturbation of the square of a relativistic mass operator and those models that use the method of Kamada and Gl\\"ockle to construct an equivalent interaction to add to the relativistic mass operator. Although both models reproduce the phase shifts and binding energy of the corresponding non-relativistic model, they are not scattering equivalent. The example of el...

  17. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  18. Relativistic Hydrodynamics for Heavy-Ion Collisions

    Science.gov (United States)

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  19. Relativistic treatment of inertial spin effects

    Science.gov (United States)

    Ryder, Lewis

    1998-03-01

    A relativistic spin operator for Dirac particles is identified and it is shown that a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

  20. Inverse scattering problem in relativistic quasiclassical approximation

    International Nuclear Information System (INIS)

    Inverse scattering problem is solved on the basis of quasipotential approach in quantum field theory within the framework of relativistic quasiclassical approximation. Formulas of quasipotential restoration by phase shifts are derived. Cases of non-relativistic and ultra-relativistic approximations are investigated

  1. Relativistic heavy cosmic rays

    Science.gov (United States)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  2. Relativistic Geometry and Weak Interactions

    CERN Document Server

    González-Martin, G R

    2000-01-01

    Geometric interactions in a new relativistic geometric unified theory include interactions other than gravitation and electromagnetism. In a low energy limit one of these interactions leads essentially to a Fermi type theory of weak interactions including the Hamiltonian and coupling constant.

  3. Transport coefficients of relativistic systems

    International Nuclear Information System (INIS)

    It becomes increasingly important to know the strength of dissipative effects in relativistic hydrodynamics. Recently, scientists have strongly focused on shear viscosity. Nevertheless, heat flow, being proportional to spatial gradients of e.g. chemical potential over temperature, can also be an important effect in studies of relativistic fluid dynamics. We investigated the heat conductivity coefficient for an ultrarelativistic Boltzmann-gas, using our partonic transport model BAMPS. BAMPS solves the relativistic Boltzmann-equation numerically for arbitrary different particle species. We use pQCD scattering cross-sections. Furthermore, the response of a charged, relativistic gas onto an external electric field determines the electric conductivity. We investigated the electric conductivity of different model systems using three different methods: analytic transport theory, linear response via Green-Kubo formulae in equilibrium BAMPS-setups, and applying the textbook-picture of linear response to BAMPS. We plan to investigate the electric conductivity with the recently improved 2<->3 processes from BAMPS and compare the results with lattice QCD.

  4. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  5. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  6. Relativistic formulation of the Voigt profile

    Science.gov (United States)

    Wcisło, P.; Amodio, P.; Ciuryło, R.; Gianfrani, L.

    2015-02-01

    The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect. Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases, namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.

  7. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows. PMID:20867451

  8. Relativistic Few-Body Hadronic Physics Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In

  9. The Broad Autism Phenotype Questionnaire

    Science.gov (United States)

    Hurley, Robert S. E.; Losh, Molly; Parlier, Morgan; Reznick, J. Steven; Piven, Joseph

    2007-01-01

    The broad autism phenotype (BAP) is a set of personality and language characteristics that reflect the phenotypic expression of the genetic liability to autism, in non-autistic relatives of autistic individuals. These characteristics are milder but qualitatively similar to the defining features of autism. A new instrument designed to measure the…

  10. Relativistic baryonic jets from an ultraluminous supersoft X-ray source.

    Science.gov (United States)

    Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-12-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows. PMID:26605521

  11. Relativistic atomic data for Cu-like tungsten

    Science.gov (United States)

    Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.

    2013-05-01

    Energy levels, radiative transition probabilities, and autoionization rates for [Ne] 3s2 3p6 3d9 4l' nl , [Ne] 3s2 3p5 3d10 4l' nl (n=4-6), and [Ne] 3s2 3p6 3d9 5l' nl ,(n=5-7) states in Cu-like tungsten (W45+) are calculated using the relativistic many-body perturbation theory method (RMBPT code), the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code (HULLAC code), and the Hartree-Fock-relativistic method (COWAN code). Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the singly excited, as well as doubly excited non-autoionizing states in Cu-like W45+ ion. Contributions from the autoionizing doubly excited states (with n up to 500), which are particulary important for calculating total DR rates, are estimated. Synthetic dielectronic satellite spectra from Cu-like W are simulated in a broad spectral range from 3 to 70 Å. These calculations provide highly accurate values for a number of W45+ properties useful for a variety of applications including for fusion applications. This research was sponsored by the grant DE-FG02-08ER54951.

  12. Non-Relativistic Positronium Spectrum in Relativistic Schroedinger Theory

    CERN Document Server

    Mattes, M

    2008-01-01

    The lowest energy levels of positronium are studied in the non-relativistic approximation within the framework of Relativistic Schr\\"odinger Theory (RST). Since it is very difficult to find the exact solutions of the RST field equations (even in the non-relativistic limit), an approximation scheme is set up on the basis of the hydrogen-like wave functions (i.e. polynomial times exponential). For any approximation order $\\NN (\\NN=0,1,2,3,...)$ there arises a spectrum of approximate RST solutions with the associated energies, quite similarly to the conventional treatment of positronium in the standard quantum theory (Appendix). For the lowest approximation order $(\\NN=0)$ the RST prediction for the \\emph{groundstate} energy exactly agrees with the conventional prediction of the standard theory. However for the higher approximation orders $(\\NN=1,2,3)$, the corresponding RST prediction differs from the conventional result by (roughly) $0,9 [eV]$ which confirms the previous estimate of the error being due to the ...

  13. Broad Diphotons from Narrow States

    CERN Document Server

    An, Haipeng; Zhang, Yue

    2015-01-01

    ATLAS and CMS have each reported a modest diphoton excess consistent with the decay of a broad resonance at ~ 750 GeV. We show how this signal can arise in a weakly coupled theory comprised solely of narrow width particles. In particular, if the decaying particle is produced off-shell, then the associated diphoton resonance will have a broad, adjustable width. We present simplified models which explain the diphoton excess through the three-body decay of a scalar or fermion. Our minimal ultraviolet completion is a weakly coupled and renormalizable theory of a singlet scalar plus a heavy vector-like quark and lepton. The smoking gun of this mechanism is an asymmetric diphoton peak recoiling against missing transverse energy, jets, or leptons.

  14. Cochlear microphonic broad tuning curves

    Science.gov (United States)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  15. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  16. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  17. Relativistic stars in bigravity theory

    CERN Document Server

    Aoki, Katsuki; Tanabe, Makoto

    2016-01-01

    Assuming static and spherically symmetric spacetimes in the ghost-free bigravity theory, we find a relativistic star solution, which is very close to that in general relativity. The coupling constants are classified into two classes: Class [I] and Class [II]. Although the Vainshtein screening mechanism is found in the weak gravitational field for both classes, we find that there is no regular solution beyond the critical value of the compactness in Class [I]. This implies that the maximum mass of a neutron star in Class [I] becomes much smaller than that in GR. On the other hand, for the solution in Class [II], the Vainshtein screening mechanism works well even in a relativistic star and the result in GR is recovered.

  18. Relativistic Hydrodynamics on Graphic Cards

    CERN Document Server

    Gerhard, Jochen; Bleicher, Marcus

    2012-01-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  19. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  20. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-05-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  1. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  2. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    commission are to: * clarify the geometrical and dynamical concepts of fundamental astronomy within a relativistic framework, * provide adequate mathematical and physical formulations to be used in fundamental astronomy, * deepen the understanding of relativity among astronomers and students of astronomy, and * promote research needed to accomplish these tasks. The present book is intended to make a theoretical contribution to the efforts undertaken by this commission. The first three chapters of the book review the foundations of celestial mechanics as well as those of special and general relativity. Subsequent chapters discuss the theoretical and experimental principles of applied relativity in the solar system. The book is written for graduate students and researchers working in the area of gravitational physics and its applications inmodern astronomy. Chapters 1 to 3 were written by Michael Efroimsky and Sergei Kopeikin, Chapters 4 to 8 by Sergei Kopeikin, and Chapter 9 by George Kaplan. Sergei Kopeikin also edited the overall text. It hardly needs to be said that Newtonian celestial mechanics is a very broad area. In Chapter 1, we have concentrated on derivation of the basic equations, on explanation of the perturbed two-body problem in terms of osculating and nonosculating elements, and on discussion of the gauge freedom in the six-dimensional configuration space of the orbital parameters. The gauge freedom of the configuration space has many similarities to the gauge freedom of solutions of the Einstein field equations in general theory of relativity. It makes an important element of the Newtonian theory of gravity, which is often ignored in the books on classic celestial mechanics. Special relativity is discussed in Chapter 2. While our treatment is in many aspects similar to the other books on special relativity, we have carefully emphasised the explanation of the Lorentz and Poincaré transformations, and the appropriate transformation properties of geometric

  3. Equations of motion in relativistic gravity

    CERN Document Server

    Lämmerzahl, Claus; Schutz, Bernard

    2015-01-01

     The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...

  4. Iron overdose

    Science.gov (United States)

    ... PA: Elsevier Saunders; 2014:chap 147. Liebelt EL. Iron. In: Shannon MW, Borron SW, Burns MJ, eds. Haddad and Winchester's Clinical Management of Poisoning and Drug Overdose . 4th ed. Philadelphia, PA: Elsevier ...

  5. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  6. Relativistically expanding cylindrical electromagnetic fields

    OpenAIRE

    Gourgouliatos, K. N.

    2009-01-01

    We study relativistically expanding electromagnetic fields of cylindrical geometry. The fields emerge from the side surface of a cylinder and are invariant under translations parallel to the axis of the cylinder. The expansion velocity is in the radial direction and is parametrized by $v=R/(ct)$. We consider force-free magnetic fields by setting the total force the electromagnetic field exerts on the charges and the currents equal to zero. Analytical and semi-analytical separable solutions ar...

  7. A special relativistic heat engine

    Directory of Open Access Journals (Sweden)

    William S. Cariens

    1983-01-01

    main concepts taken from themodynamics and special relativity are those of a heat engine and E=mc2 respectively. Central to understanding the operation of this relativistic heat engine is the fact that upon heating a mass, its rest mass increases! This concept is nonexistent in classical thermodynamics. An increase in rest mass means that both the internal energy of a mass and its macroscopic kinetic energy increase!!!

  8. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  9. Shock Dynamics In Relativistic Jets

    CERN Document Server

    Cantó, J; Fernández-López, M; González, R F; Hernández-Gómez, A

    2013-01-01

    We present a formalism of the dynamics of internal shocks in relativistic jets where the source has a time-dependent injection velocity and mass-loss rate. The variation of the injection velocity produces a two-shock wave structure, the working surface, that moves along the jet. This new formalism takes into account the fact that momentum conservation is not valid for relativistic flows where the relativistic mass lost by radiation must be taken into account, in contrast to the classic regime. We find analytic solutions for the working surface velocity and radiated energy for the particular case of a step function variability of the injection parameters. We model two cases: a pulse of fast material and a pulse of slow material (with respect to the mean flow). Applying these models to gamma ray burst light curves, one can determine the ratio of the Lorentz factors gamma_2 / gamma_1 and the ratio of the mass-loss rates dot{m_2} / dot{m_1} of the upstream and downstream flows. As an example, we apply this model ...

  10. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  11. Relativistic Tennis Using Flying Mirror

    Science.gov (United States)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  12. Magnetohydrodynamics of Chiral Relativistic Fluids

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg

    2015-01-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  13. Entropy current for non-relativistic fluid

    CERN Document Server

    Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar

    2014-01-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...

  14. Baryon Loaded Relativistic Blastwaves in Supernovae

    CERN Document Server

    Chakraborti, Sayan

    2010-01-01

    We provide a new analytic blastwave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long duration Gamma Ray Bursts (GRB). The blastwaves of such explosions are well described by the Blandford-McKee (in the ultra relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded mildly relativistic outflows which remains in nearly free expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating due to its collision with the pre-explosion circumstellar wind of the progenitor. We compute the synchrotron emission from ...

  15. Relativistic effects in Lyman-alpha forest

    CERN Document Server

    Iršič, Vid; Viel, Matteo

    2015-01-01

    We present the calculation of the Lyman-alpha (Lyman-$\\alpha$) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range ($z = 2 - 5$). Furthermore, we show a comprehensive application of our calculations to the Quasar- Lyman-$\\alpha$ cross-correlation function. Our results indicate that the signal of relativistic effects can be as large as 30% at Baryonic Acoustic Oscillation (BAO) scale, which is much larger than anticipated and mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross- correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considerin...

  16. Relativistic non-equilibrium thermodynamics revisited

    CERN Document Server

    García-Colin, L S

    2006-01-01

    Relativistic irreversible thermodynamics is reformulated following the conventional approach proposed by Meixner in the non-relativistic case. Clear separation between mechanical and non-mechanical energy fluxes is made. The resulting equations for the entropy production and the local internal energy have the same structure as the non-relativistic ones. Assuming linear constitutive laws, it is shown that consistency is obtained both with the laws of thermodynamics and causality.

  17. On the relativistic L-S coupling

    OpenAIRE

    Alberto, P.; Fiolhais, M.; M. de OLIVEIRA

    1998-01-01

    The fact that the Dirac equation is linear in the space and time derivatives leads to the coupling of spin and orbital angular momenta that is of a pure relativistic nature. We illustrate this fact by computing the solutions of the Dirac equation in an infinite spherical well, which allows to go from the relativistic to the non-relativistic limit by just varying the radius of the well.

  18. Relativistic impulse approximation for nuclear inelastic scattering

    International Nuclear Information System (INIS)

    The Relativistic Impulse Approximation (RIA) for proton-nucleus elastic and inelastic scattering is contrasted with its non-relativistic counterpart (the NRIA). Differences between the two approaches are examined with special emphasis on the nuclear convection current and its generalizations which may show signatures of strong relativistic nuclear potentials. A simple extension of the RIA to meson-nucleus scattering based on the linear, spin-zero Duffin-Kemmer wave equation is considered

  19. Relativistic Thermodynamics: A Modern 4-Vector Approach

    OpenAIRE

    J. Güémez

    2011-01-01

    Using the Minkowski relativistic 4-vector formalism, based on Einstein's equation, and the relativistic thermodynamics asynchronous formulation (Grøn (1973)), the isothermal compression of an ideal gas is analyzed, considering an electromagnetic origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen (1969)) and Hamity (Hamity (1969)). In this relativistic framework Mechanics and Thermodynamics merge in the first law of rela...

  20. Geometric Models of the Relativistic Harmonic Oscillator

    CERN Document Server

    Cotaescu, I I

    1997-01-01

    A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.

  1. Dissipation in Relativistic Pair-Plasma Reconnection

    Science.gov (United States)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  2. Diocotron instability for relativistic non-neutral electron flow in planar magnetron geometry

    International Nuclear Information System (INIS)

    Diocotron stability properties of relativistic non-neutral electron flow in a planar magnetron are investigated within the framework of the cold-fluid-Maxwell equations. The eigenvalue equation for the extraordinary-mode waves in a relativistic velocity-sheared electron layer is obtained, and is solved in the massless, guiding-center approximation. Approximating the electromagnetic field in the anode resonator by the lowest-order mode, the dispersion relation for the diocotron instability is obtained. Although the tenuous beam approximation is assumed, the eigenvalue equation and corresponding dispersion relation are both fully electromagnetic, and valid for relativistic electron flow. The dispersion relation is numerically investigated for a broad range of system parameters. From numerical calculations of the dispersion relation, it is shown that the typical growth rate of the diocotron instability indicates a strong instability. The early evolution of the diocotron instability as an important precursor to the evolution of the full magnetron oscillation is discussed

  3. Relativistic and non-relativistic solitons in plasmas

    Science.gov (United States)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  4. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Science.gov (United States)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2016-08-01

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  5. Relativistic Corrections to the Bohr Model of the Atom

    Science.gov (United States)

    Kraft, David W.

    1974-01-01

    Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)

  6. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  7. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    Science.gov (United States)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  8. Relativistic radiative transfer and relativistic spherical shell flows

    Science.gov (United States)

    Fukue, Jun

    2016-06-01

    We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.

  9. Ghost imaging with broad distance

    Institute of Scientific and Technical Information of China (English)

    段德洋; 张路; 杜少将; 夏云杰

    2015-01-01

    We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate (RGGP) and spatial light modulator (SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position (or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.

  10. Missing Fe: hydrogenated iron nanoparticles

    CERN Document Server

    Bilalbegovic, G; Mohacek-Grosev, V

    2016-01-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the ISM have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles posses magnetic and electric moments and should interact with electromagnetic fields in the ISM. Fe_nH_m nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and Fe_nH_m in the ISM.

  11. Iron and Your Child

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Iron and Your Child KidsHealth > For Parents > Iron and ... enough iron in their daily diets. How Much Iron Do Kids Need? Kids require different amounts of ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have enough iron in your body. Low iron levels usually are due to blood loss, poor diet, ... iron supplements and multivitamins to improve her iron levels. Susan also made changes to her diet, such ...

  13. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja;

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  14. Einstein Toolkit for Relativistic Astrophysics

    Science.gov (United States)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  15. Observation of relativistic antihydrogen atoms

    Science.gov (United States)

    Blanford, Glenn Delfosse, Jr.

    1997-09-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e+e/sp- pair creation near a nucleus with the e+ being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  16. On the Relativistic anisotropic configurations

    CERN Document Server

    Shojai, F; Stepanian, A

    2016-01-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  17. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  18. Observables in Relativistic Quantum Mechanics

    CERN Document Server

    Srikanth, R

    2001-01-01

    An argument involving quantum clock synchronization to support the need for a covariant description of state vector reduction in standard quantum mechanics is presented. Hellwig-Kraus reduction, in which a wavefunction is collapsed along the boundary of the past light-cone of the measurement event, is proposed for the characterization of observables in relativistic quantum theory. The description is causal, covariant and practically compatible with standard quantum mechanics. A quantum clock synchronizing test of the formalism is given. It turns out that the epistemological price to pay for covariance is the unknowability of the complete state of a system due to present influences exerted by future measurements.

  19. Thermodynamics of polarized relativistic matter

    CERN Document Server

    Kovtun, Pavel

    2016-01-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  20. Relativistic baryonic jets from an ultraluminous supersoft X-ray source

    CERN Document Server

    Liu, Ji-Feng; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Alvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2015-01-01

    The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. While the theory is poorly understood, observations of relativistic jets from systems known as microquasars\\cite{Mirabel98,Paredes03} have led to a well-established phenomenology\\cite{Fender04,Migliari06}. Relativistic jets are not expected from sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows\\cite{Southwell96,Becker98}. Here we report optical spectra of an ultraluminous supersoft X-ray source (ULS\\cite{DiStefano03,Swartz02}) in the nearby galaxy M81 (M81 ULS-1\\cite{Liu08a,Liu08b}) showing blueshifted broad H\\alpha\\ emission lines, characteristic of baryonic jets with relativistic speeds. The time variable jets have projected velocities ~17 per cent of the speed of light, and seem similar to those in the prototype microquasar SS 433\\cite{Margon84,Blundell07}. Such relativistic jets are not expected to be laun...

  1. Theoretical Study of Spin Crossover in 30 Iron Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor ...... high-spin by 9 kJ/mol on average; dispersion and relativistic effects both favor low-spin by 9 kJ/mol on average. These drivers dominate the thermodynamics (but not the transition nature) of SCO and should be considered in rational design of new spin crossover systems....

  2. Compton Effect with Non-Relativistic Kinematics

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  3. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  4. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Itzhak Tserruya

    2003-04-01

    The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  5. A Primer to Relativistic MOND Theory

    OpenAIRE

    Bekenstein, J.D..; Sanders, R. H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its particular structure are discussed and its achievements so far are summarized.

  6. Physico-mathematical foundations of relativistic cosmology

    CERN Document Server

    Soares, Domingos

    2013-01-01

    I briefly present the foundations of relativistic cosmology, which are, General Relativity Theory and the Cosmological Principle. I discuss some relativistic models, namely, "Einstein static universe" and "Friedmann universes". The classical bibliographic references for the relevant tensorial demonstrations are indicated whenever necessary, although the calculations themselves are not shown.

  7. Magnetism and rotation in relativistic field theory

    Science.gov (United States)

    Mameda, Kazuya; Yamamoto, Arata

    2016-09-01

    We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.

  8. Conformal non-relativistic hydrodynamics from gravity.

    OpenAIRE

    Rangamani, Mukund; Ross, Simon F.; Son, D.T.; Thompson, Ethan G.

    2009-01-01

    We show that the recently constructed holographic duals of conformal non-relativistic theories behave hydrodynamically at long distances, and construct the gravitational dual of fluid flows in a long-wavelength approximation. We compute the thermal conductivity of the holographic conformal non-relativistic fluid. The corresponding Prandtl number is equal to one.

  9. Coherent dissociation of relativistic 12N nuclei

    International Nuclear Information System (INIS)

    The dissociation of relativistic 12N nuclei having a momentum of 2 GeV/c per nucleon and undergoing the most peripheral interactions in a track emulsion is studied. The picture of charged topology of product ensembles of relativistic fragments and special features of their angular distributions are presented

  10. Ponderomotive Acceleration by Relativistic Waves

    CERN Document Server

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  11. Relativistic navigation a theoretical foundation

    CERN Document Server

    Turyshev, S G

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an astronomical N-body system. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general theory of the celestial RFs applicable to a wide class of metric theories of gravity with an arbitrary model of matter distribution. We apply ...

  12. Single electron relativistic clock interferometer

    Science.gov (United States)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  13. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-08-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10−3 Am−2 associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  14. On the Relativistic Micro-Canonical Ensemble and Relativistic Kinetic Theory for N Relativistic Particles in Inertial and Non-Inertial Rest Frames

    OpenAIRE

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2012-01-01

    A new formulation of relativistic classical mechanics allows a revisiting of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincar\\'e generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonica...

  15. General relativistic hydrodynamics with a roe solver

    CERN Document Server

    Eulderink, F; Eulderink, Frits; Mellema, Garrelt

    1994-01-01

    We present a numerical method to solve the equations of general relativistic hydrodynamics in a given external gravitational field. The method is based on a generalization of Roe's approximate Riemann solver for the non relativistic Euler equations in Cartesian coordinates. The new method is applied to a set of standard test problems for general relativistic hydrodynamics, and is shown to perform well in comparison to existing numerical schemes. In contrast to existing explicit methods the present method can cope with strong relativistic shocks. By-products are: the characteristic form of the general relativistic Euler equations, a numerical method for special relativity that can deal with strong discontinuities, a numerical scheme for the integration of the Euler equations in an arbitrary coordinate system, possibly under the influence of (external) gravity, and a novel method to incorporate source terms in numerical schemes.

  16. Equation of State in Numerical Relativistic Hydrodynamics

    CERN Document Server

    Ryu, D; Choi, E; Ryu, Dongsu; Chattopadhyay, Indranil; Choi, Eunwoo

    2006-01-01

    Relativistic temperature of gas raises the issue of the equation of state (EoS) in relativistic hydrodynamics. We study the EoS for numerical relativistic hydrodynamics, and propose a new EoS that is simple and yet approximates very closely the EoS of the single-component perfect gas in relativistic regime. We also discuss the calculation of primitive variables from conservative ones for the EoS's considered in the paper, and present the eigenstructure of relativistic hydrodynamics for a general EoS, in a way that they can be used to build numerical codes. Tests with a code based on the Total Variation Diminishing (TVD) scheme are presented to highlight the differences induced by different EoS's.

  17. Relativistic Particles in Clusters of Galaxies

    CERN Document Server

    Ensslin, T A

    2002-01-01

    A brief overview on the theory and observations of relativistic particle populations in clusters of galaxies is given. The following topics are addressed: (i) the diffuse relativistic electron population within the intra-cluster medium (ICM) as seen in the cluster wide radio halos and possibly also seen in the high energy X-ray and extreme ultraviolet excess emissions of some clusters, (ii) the observed confined relativistic electrons within fresh and old radio plasma and their connection to cluster radio relics at cluster merger shock waves, (iii) the relativistic proton population within the ICM, and its observable consequences (if it exists), and (iv) the confined relativistic proton population (if it exists) within radio plasma. The importance of upcoming, sensitive gamma-ray telescopes for this research area is highlighted.

  18. Relativistic Non-Thermal Bremsstrahlung Radiation

    CERN Document Server

    Zeković, Vladimir; Dobardzić, Aleksandra; Pavlović, Marko

    2013-01-01

    By applying a method of virtual quanta we derive formulae for relativistic non-thermal bremsstrahlung radiation from relativistic electrons as well as from protons and heavier particles with power-law momentum distribution $N(p)dp = k p^{-q} dp.$ We show that emission which originates from an electron scattering on an ion, represents the most significant component of relativistic non-thermal bremsstrahlung. Radiation from an ion scattering on electron, known as inverse bremsstrahlung, is shown to be negligible in overall non-thermal bremsstrahlung emission. These results arise from theory refinement, where we introduce the dependence of relativistic kinetic energy of an incident particle, upon the energy of scattered photon. In part, it is also a consequence of a different mass of particles and relativistic effects.

  19. Relativistic mixtures of charged and uncharged particles

    Science.gov (United States)

    Kremer, Gilberto M.

    2014-01-01

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad's moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick's law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad's distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  20. Random Phase Approximation in Relativistic Approach

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-yu; YANG Ding; TIAN Yuan; CAO Li-gang

    2009-01-01

    Some special issues of the random phase approximation (RPA) in the relativistic approach are reviewed.A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei.The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states.The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed.The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established.A separable form of the paring force is introduced in the relativistic quasi-particle RPA.

  1. Ghost imaging with broad distance

    Science.gov (United States)

    Duan, De-Yang; Zhang, Lu; Du, Shao-Jiang; Xia, Yun-Jie

    2015-10-01

    We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate (RGGP) and spatial light modulator (SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position (or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, 11304179, and 11247240), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20133705110001 and 20123705120002), the Scientific Research Foundation for Outstanding Young Scientists of Shandong Province, China (Grant No. BS2013DX034), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024).

  2. Dependence of the broad Fe K$\\alpha$ line on the physical parameters of AGN

    CERN Document Server

    Liu, Zhu; Lu, Youjun; Carrera, Francisco J; Falocco, Serena; Dong, Xiao-Bo

    2016-01-01

    In this paper, the dependence of the broad Fe K$\\alpha$ line on the physical parameters of AGN, such as the black hole mass $M_{BH}$, accretion rate (equivalently represented by Eddington ratio $\\lambda_{Edd}$), and optical classification, is investigated by applying the X-ray spectra stacking method to a large sample of AGN which have well measured optical parameters. A broad line feature is detected ($>3\\sigma$) in the stacked spectra of the high $\\lambda_{Edd}$ sub-sample ($\\log\\lambda_{Edd}>-0.9$). The profile of the broad line can be well fitted with relativistic broad line model, with the line energy consistent with highly ionized Fe K$\\alpha$ line (i.e. Fe xxvi). A model consisting of multiple narrow lines cannot be ruled out, however. We found hints that the Fe K line becomes broader as the $\\lambda_{Edd}$ increases. No broad line feature is shown in the sub-sample of broad-line Seyfert 1 (BLS1) galaxies and in the full sample, while a broad line might be present, though at low significance, in the su...

  3. 78 FR 20119 - Broad Stakeholder Survey

    Science.gov (United States)

    2013-04-03

    ... SECURITY Broad Stakeholder Survey AGENCY: National Protection and Programs Directorate, DHS. ACTION: 30-day... soliciting comments concerning the Broad Stakeholder Survey. DHS previously published this ICR in the Federal... responders across the Nation. The Broad Stakeholder Survey is designed to gather stakeholder feedback on...

  4. 77 FR 50144 - Broad Stakeholder Survey

    Science.gov (United States)

    2012-08-20

    ... SECURITY Broad Stakeholder Survey AGENCY: National Protection and Programs Directorate, DHS. ACTION: 60-day... comments concerning the Broad Stakeholder Survey. DATES: Comments are encouraged and will be accepted until... across the Nation. The Broad Stakeholder Survey is designed to gather stakeholder feedback on...

  5. 76 FR 34087 - Broad Stakeholder Survey

    Science.gov (United States)

    2011-06-10

    ... SECURITY Broad Stakeholder Survey AGENCY: National Protection and Programs Directorate, DHS. ACTION: 60-day... comments concerning the Broad Stakeholder Survey. DATES: Comments are encouraged and will be accepted until.... The Broad Stakeholder Survey is designed to gather stakeholder feedback on the effectiveness of...

  6. Relativistic effects in Lyman-α forest

    Science.gov (United States)

    Iršič, Vid; Di Dio, Enea; Viel, Matteo

    2016-02-01

    We present the calculation of the Lyman-alpha (Lyman-α) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range (z=2-5). Furthermore, we show a comprehensive application of our calculations to the Quasar-Lyman-α cross-correlation function. Our results indicate that the signal of relativistic effects are sizeable at Baryonic Acoustic Oscillation (BAO) scale mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross-correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.

  7. General relativity and relativistic astrophysics

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.

  8. Relativistic Geometry and Quantum Electrodynamics

    CERN Document Server

    González-Martin, G R

    2000-01-01

    Excitations of a relativistic geometry are used to represent the theory of quantum electrodynamics. The connection excitations and the frame excitations reduce, respectively, to the electromagnetic field operator and electron field operator. Because of the inherent geometric algebraic structure these operators obey the standard commutation rules of QED. If we work with excitations, we need to use statistical theory when considering the evolution of microscopic subsystems. The use of classical statistics, in particular techniques of irreversible thermodynamics, determine that the probability of absorption or emission of a geometric excitation is a function of the classical energy density. Emission and absorption of geometric excitations imply discrete changes of certain physical variables, but with a probability determined by its wave energy density. Hence, this geometric theory, without contradicting the fundamental aspects of quantum physics, provides a geometric foundation for the theory.

  9. 3-D Relativistic MHD Simulations

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  10. Relativistic MOND from modified energetics

    International Nuclear Information System (INIS)

    We begin to investigate the question of what modifications in the energy-momentum tensor can yield the correct MOND regime. As a starting study, we refrain from insisting on an action principle and focus exclusively on the equations of motion. The present work, despite the absence of an explicit action functional, can be regarded to extend Milgrom's modified inertia approach to relativistic domain. Our results show that a proper MOND limit arises if the energy-momentum tensor is modified to involve the determinant of the metric tensor in reference to the flat metric, where the latter is dynamically generated as in the gravitational Higgs mechanism. This modified energy-momentum tensor is conserved in both Newtonian and MONDian regimes. (orig.)

  11. Relativistic MOND from modified energetics

    Energy Technology Data Exchange (ETDEWEB)

    Demir, Durmus Ali; Karahan, Canan Nurhan [izmir Institute of Technology, izmir (Turkey)

    2014-12-01

    We begin to investigate the question of what modifications in the energy-momentum tensor can yield the correct MOND regime. As a starting study, we refrain from insisting on an action principle and focus exclusively on the equations of motion. The present work, despite the absence of an explicit action functional, can be regarded to extend Milgrom's modified inertia approach to relativistic domain. Our results show that a proper MOND limit arises if the energy-momentum tensor is modified to involve the determinant of the metric tensor in reference to the flat metric, where the latter is dynamically generated as in the gravitational Higgs mechanism. This modified energy-momentum tensor is conserved in both Newtonian and MONDian regimes. (orig.)

  12. Some Surprises in Relativistic Gravity

    CERN Document Server

    Santos, N O

    2016-01-01

    General Relativity has had tremendous success both on the theoretical and the experimental fronts for over a century now. However, the contents of the theory are far from exhausted. Only very recently, with the detection of gravitational waves from colliding black holes, we have started probing the behavior of gravity in the strongly non-linear regime. Even today, the studies of black holes keep revealing more and more paradoxes and bizarre results. In this paper, inspired by David Hilbert's startling observation, we show that, contrary to the conventional wisdom, a freely falling test particle feels gravitational repulsion by a black hole as seen by the asymptotic observer. We dig deeper into this surprising behavior of relativistic gravity and offer some explanations.

  13. Playing relativistic billiards beyond graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sadurni, E [Institut fuer Quantenphysik, Ulm Universitaet, Albert-Einstein Allee 11, 89081 Ulm (Germany); Seligman, T H [Centro Internacional de Ciencias A.C., Apartado Postal 6-101 C.P. 62131 Cuernavaca, Mor. (Mexico); Mortessagne, F, E-mail: esadurni@uni-ulm.d, E-mail: seligman@fis.unam.m, E-mail: fabrice.mortessagne@unice.f [Laboratoire de Physique de la Matiere Condensee, Universite de Nice-Sophia Antipolis, CNRS, UMR 6622 Parc Valrose, 06108 Nice cedex 2 (France)

    2010-05-15

    The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.

  14. Playing relativistic billiards beyond graphene

    Science.gov (United States)

    Sadurní, E.; Seligman, T. H.; Mortessagne, F.

    2010-05-01

    The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.

  15. Playing relativistic billiards beyond graphene

    CERN Document Server

    Sadurni, Emerson; Mortessagne, Fabrice

    2010-01-01

    The possibility of using hexagonal structures in general and graphene in particular to emulate the Dirac equation is the basis of our considerations. We show that Dirac oscillators with or without restmass can be emulated by distorting a tight binding model on a hexagonal structure. In a quest to make a toy model for such relativistic equations we first show that a hexagonal lattice of attractive potential wells would be a good candidate. First we consider the corresponding one-dimensional model giving rise to a one-dimensional Dirac oscillator, and then construct explicitly the deformations needed in the two-dimensional case. Finally we discuss, how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and describe an appropriate experimental setup.

  16. The general relativistic infinite plane

    CERN Document Server

    Jones, Preston; Ragsdale, Michael; Singleton, Douglas

    2007-01-01

    Uniform fields are one of the simplest and most pedagogically useful examples in introductory courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals as to what constitutes a uniform field. In this article we examine two metrics that can be considered the general relativistic version of the infinite plane with finite mass per unit area. The first metric is the 4D version of the 5D "brane" world models which are the starting point for many current research papers. The second case is the cosmological domain wall metric. We examine to what extent these different metrics match or deviate from our Newtonian intuition about the gravitational field of an infinite plane. These solutions provide the beginning student in general relativity both computational practice and conceptual insight into Einstein's field equations. In addition they do this by introducing the student to material that is at the forefront of current research.

  17. Human iron transporters

    OpenAIRE

    Garrick, Michael D.

    2010-01-01

    Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned task...

  18. BARYON LOADED RELATIVISTIC BLAST WAVES IN SUPERNOVAE

    International Nuclear Information System (INIS)

    We provide a new analytic blast wave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long-duration gamma-ray bursts (GRBs). The blast waves of such explosions are well described by the Blandford-McKee (in the ultra-relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept-up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded, mildly relativistic outflows which remains in nearly free-expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We compute the synchrotron emission from relativistic electrons in the shock amplified magnetic field. This models the radio emission from the circumstellar interaction of a CEDEX. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow. We discuss the effect of baryon loading on the dynamics and observational manifestations of a CEDEX. In particular, our predicted angular size of SN 2009bb is consistent with very long baseline interferometric (VLBI) upper limits on day 85, but is presently resolvable on VLBI angular scales, since the relativistic ejecta is still in the nearly free-expansion phase.

  19. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-01-01

    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  20. QED and relativistic corrections in superheavy elements

    CERN Document Server

    Indelicato, P J; Desclaux, J P; Santos, J P; Indelicato, Paul

    2007-01-01

    In this paper we review the different relativistic and QED contributions to energies, ionic radii, transition probabilities and Land\\'{e} $g$-factors in super-heavy elements, with the help of the MultiConfiguration Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by including it in the self-consistent field process are demonstrated. State of the art radiative corrections are included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation and find that the non-relativistic offset can be unexpectedly large.

  1. Statistical kinetic treatment of relativistic binary collisions.

    Science.gov (United States)

    Peano, F; Marti, M; Silva, L O; Coppa, G

    2009-02-01

    In particle-based algorithms, the effect of binary collisions is commonly described in a statistical way, using Monte Carlo techniques. It is shown that, in the relativistic regime, stringent constraints should be considered on the sampling of particle pairs for collision, which are critical to ensure physically meaningful results, and that nonrelativistic sampling criteria (e.g., uniform random pairing) yield qualitatively wrong results, including equilibrium distributions that differ from the theoretical Jüttner distribution. A general procedure for relativistically consistent algorithms is provided, and verified with three-dimensional Monte Carlo simulations, thus opening the way to the numerical exploration of the statistical properties of collisional relativistic systems. PMID:19391799

  2. DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...

  3. Viscous photons in relativistic heavy ion collisions

    CERN Document Server

    Dion, Maxime; Schenke, Bjoern; Young, Clint; Jeon, Sangyong; Gale, Charles

    2011-01-01

    Theoretical studies of the production of real photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using MUSIC, a 3+1D relativistic hydrodynamic simulation. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v_2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, eta/s, and to the morphology of the initial state.

  4. Particle Acceleration at Multiple Internal Relativistic Shocks

    CERN Document Server

    Dempsey, P; Dempsey, Paul; Duffy, Peter

    2006-01-01

    Relativistic shocks provide an efficient method for high-energy particle acceleration in many astrophysical sources. Multiple shock systems are even more effective and of importance, for example, in the internal shock model of gamma-ray bursts. We investigate the reacceleration of pre-existing energetic particles at such relativistic internal shocks by the first order Fermi process of pitch angle scattering. We use a well established eigenfunction method to calculate the resulting spectra for infinitely thin shocks. Implications for GRBs and relativistic jets are discussed.

  5. Simulation studies of the relativistic magnetron

    International Nuclear Information System (INIS)

    This paper reports on simulations of the relativistic magnetron that were performed with the 2-D fully electromagnetic particle-in-cell code MAGIC. These simulations reveal that the operating principles of the relativistic magnetron differ fundamentally from those generally thought to apply in these devices; in the fully oscillating state there is no synchronism between the azimuthal motion of the electrons and the RF wave; the gain mechanism has been identified as a negative resistance interaction. Other results of the authors simulations include rough quantitative agreement with published results of relativistic magnetron experiments performed at Physics International

  6. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  7. Relativistic MHD with Adaptive Mesh Refinement

    CERN Document Server

    Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David

    2006-01-01

    We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.

  8. Relativistic stellar pulsations in the Cowling approximation

    International Nuclear Information System (INIS)

    Much that is known about the general pulsational properties of non-rotating Newtonian stars is traceable to the fact that in the Cowling approximation, the stellar pulsation equations can be cast in a nearly Sturm-Liouville form. In this paper, the relativistic Cowling approximation is investigated, and it is shown that in this approximation the equations for non-radial relativistic stellar pulsations are also of nearly Sturm-Liouville character. The consequences of this are discussed as a series of theorems regarding the eigenfrequencies and eigenfunctions of g-, f- and p-modes in relativistic stars. (author)

  9. Analytical models of relativistic accretion disks

    CERN Document Server

    Zhuravlev, Viacheslav V

    2015-01-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is much older than the other, both are of topical current interest for black hole studies. The way the exposition is presented, the reader with only a limited knowledge of general relativity and relativistic hydrodynamics can --- with little or no use of additional sources -- gain good insight into many technical details lacking in the original papers.

  10. Line emission from optically thick relativistic accretion tori

    CERN Document Server

    Fuerst, Steven V

    2007-01-01

    We calculate line emission from relativistic accretion tori around Kerr black holes and investigate how the line profiles depend on the viewing inclination, spin of the central black hole, parameters describing the shape of the tori, and spatial distribution of line emissivity on the torus surface. We also compare the lines with those from thin accretion disks. Our calculations show that lines from tori and lines from thin disks share several common features. In particular, at low and moderate viewing inclination angles they both have asymmetric double-peaked profiles with a tall, sharp blue peak and a shorter red peak which has an extensive red wing. At high viewing inclination angles they both have very broad, asymmetric lines which can be roughly considered single-peaked. Torus and disk lines may show very different red and blue line wings, but the differences are due to the models for relativistic tori and disks having differing inner boundary radii. Self-eclipse and lensing play some role in shaping the ...

  11. Line Emission from Optically Thick RelativisticAccretion Tori

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Steven V.; /KIPAC, Menlo Park /Mullard Space Sci. Lab.; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-09-14

    We calculate line emission from relativistic accretion tori around Kerr black holes and investigate how the line profiles depend on the viewing inclination, spin of the central black hole, parameters describing the shape of the tori, and spatial distribution of line emissivity on the torus surface. We also compare the lines with those from thin accretion disks. Our calculations show that lines from tori and lines from thin disks share several common features. In particular, at low and moderate viewing inclination angles they both have asymmetric double-peaked profiles with a tall, sharp blue peak and a shorter red peak which has an extensive red wing. At high viewing inclination angles they both have very broad, asymmetric lines which can be roughly considered as single-peaked. Torus and disk lines may show very different red and blue line wings, but the differences are due to the models for relativistic tori and disks having differing inner boundary radii. Self-eclipse and lensing play some role in shaping the torus lines, but they are effective only at high inclination angles. If inner and outer radii of an accretion torus are the same as those of an accretion disk, their line profiles show substantial differences only when inclination angles are close to 90{sup o}, and those differences are manifested mostly at the central regions of the lines instead of the wings.

  12. Relativistic ion collisions as the source of hypernuclei

    Science.gov (United States)

    Botvina, A. S.; Bleicher, M.; Pochodzalla, J.; Steinheimer, J.

    2016-08-01

    We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM@N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for Λ hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures.

  13. Relativistic versus Newtonian orbitography: the Relativistic Motion Integrator (RMI) software. Illustration with the LISA mission

    CERN Document Server

    Pireaux, S

    2008-01-01

    The Relativistic Motion Integrator (RMI) consists in integrating numerically the EXACT relativistic equations of motion, with respect to the appropriate gravitational metric, instead of Newtonian equations plus relativistic corrections. The aim of the present paper is to validate the method, and to illustrate how RMI can be used for space missions to produce relativistic ephemerides of satellites. Indeed, nowadays, relativistic effects have to be taken into account, and comparing a RMI ephemeris with a classical keplerian one helps to quantify such effects. LISA is a relevant example to use RMI. This mission is an interferometer formed by three spacecraft which aims at the detection of gravitational waves. Precise ephemerides of LISA spacecraft are needed not only for the sake of the orbitography but also to compute the photon flight time in laser links between spacecraft, required in LISA data pre-processing in order to reach the gravitational wave detection level. Relativistic effects in LISA orbitography n...

  14. Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.

  15. Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation

    OpenAIRE

    Boisseau, B.

    2002-01-01

    The Bogoliubov procedure in quantum field theory is used to describe a relativistic almost ideal Bose gas at zero temperature. Special attention is given to the study of a vortex. The radius of the vortex in the field description is compared to that obtained in the relativistic fluid approximation. The Kelvin waves are studied and, for long wavelengths, the dispersion relation is obtained by an asymptotic matching method and compared with the non relativistic result.

  16. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  17. Investigations of instabilities in nuclear matter in stochastic relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, S., E-mail: ayik@tntech.edu [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Yilmaz, O.; Acar, F.; Danisman, B. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey); Er, N. [Physics Department, Abant Izzet Baysal University, Bolu (Turkey); Gokalp, A. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)

    2011-06-01

    The spinodal instabilities for symmetric nuclear matter at finite temperature are studied within different relativistic mean-field models in the semi-classical approximation and the relativistic results are compared with Skyrme type non-relativistic calculations. Qualitatively similar results appear in the unstable response of the system in both non-relativistic and relativistic descriptions. Furthermore, the early growth of baryon, scalar and current density correlation functions are calculated for hot symmetric nuclear matter.

  18. Electromagnetic interaction of relativistic electrons in matter; Interaction electromagnetique d`electrons relativistes dans la matiere

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France); Collaboration: IPN-Lyon, IRMM (Gell), LURE (Orsay); Collaboration: IPN-Lyon, LAL and IEF (Orsay), HIP (Helsinki), INFN (Frascati, Milan)

    1998-12-31

    We have studied different effects related to electromagnetic interaction of relativistic electrons in matter and investigated their use in beam profile measurements. (authors) 4 refs. Short communication

  19. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  20. General relativistic 'screening' in cosmological simulations

    CERN Document Server

    Hahn, Oliver

    2016-01-01

    We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential $\\psi$ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for $\\psi$ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of $\\psi$ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic 'screening' scale $\\ell$ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a ...

  1. Relativistic effect of spin and pseudospin symmetries

    CERN Document Server

    Chen, Shou-Wan

    2012-01-01

    Dirac Hamiltonian is scaled in the atomic units $\\hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% \\lambda \\rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter $\\lambda$. With $\\lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with $\\lambda$ are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.

  2. Solutions of relativistic radial quasipotential equations

    Energy Technology Data Exchange (ETDEWEB)

    Minh, V.X.; Kadyshevskii, V.G.; Zhidkov, E.P.

    1985-11-01

    A systematic approach to the investigation of relativistic radial quasipotential equations is developed. The quasipotential equations can be interpreted either as linear equations in finite differences of fourth and second orders, respectively, or as differential equations of infinite order.

  3. Relativistic transformation of phase-space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2011-07-01

    Full Text Available We investigate the transformation of the distribution function in the relativistic case, a problem of interest in plasma when particles with high (relativistic velocities come into play as for instance in radiation belt physics, in the electron-cyclotron maser radiation theory, in the vicinity of high-Mach number shocks where particles are accelerated to high speeds, and generally in solar and astrophysical plasmas. We show that the phase-space volume element is a Lorentz constant and construct the general particle distribution function from first principles. Application to thermal equilibrium lets us derive a modified version of the isotropic relativistic thermal distribution, the modified Jüttner distribution corrected for the Lorentz-invariant phase-space volume element. Finally, we discuss the relativistic modification of a number of plasma parameters.

  4. Hyper-relativistic mechanics and superluminal particles

    CERN Document Server

    Bogdanov, Yu I

    2012-01-01

    Recent experiments by OPERA with high energy neutrinos, as well as astrophysics observation data, may possibly prove violations of underlying principles of special relativity theory. This paper attempts to present an elementary modification of relativistic mechanics that is consistent both with the principles of mechanics and with Dirac's approach to derivation of relativistic quantum equations. Our proposed hyper-relativistic model is based on modified dispersion relations between energy and momentum of a particle. Predictions of the new theory significantly differ from the standard model, as the former implies large Lorentz gamma-factors (ratio of particle energy to its mass). First of all, we study model relationships that describe hypothetical motion of superluminal neutrinos. Next, we analyze characteristics of Cherenkov radiation of photons and non-zero mass particles in vacuum. Afterwards, we derive generalized Lorentz transformations for a hyper-relativistic case, resulting in a radical change in the ...

  5. Relativistic diffusion equation from stochastic quantization

    CERN Document Server

    Kazinski, P O

    2007-01-01

    The new scheme of stochastic quantization is proposed. This quantization procedure is equivalent to the deformation of an algebra of observables in the manner of deformation quantization with an imaginary deformation parameter (the Planck constant). We apply this method to the models of nonrelativistic and relativistic particles interacting with an electromagnetic field. In the first case we establish the equivalence of such a quantization to the Fokker-Planck equation with a special force. The application of the proposed quantization procedure to the model of a relativistic particle results in a relativistic generalization of the Fokker-Planck equation in the coordinate space, which in the absence of the electromagnetic field reduces to the relativistic diffusion (heat) equation. The stationary probability distribution functions for a stochastically quantized particle diffusing under a barrier and a particle in the potential of a harmonic oscillator are derived.

  6. Relativistic Entropy and Related Boltzmann Kinetics

    CERN Document Server

    Kaniadakis, G

    2009-01-01

    It is well known that the particular form of the two-particle correlation function, in the collisional integral of the classical Boltzmman equation, fix univocally the entropy of the system, which turn out to be the Boltzmann-Gibbs-Shannon entropy. In the ordinary relativistic Boltzmann equation, some standard generalizations, with respect its classical version, imposed by the special relativity, are customarily performed. The only ingredient of the equation, which tacitely remains in its original classical form, is the two-particle correlation function, and this fact imposes that also the relativistic kinetics is governed by the Boltzmann-Gibbs-Shannon entropy. Indeed the ordinary relativistic Boltzmann equation admits as stationary stable distribution, the exponential Juttner distribution. Here, we show that the special relativity laws and the maximum entropy principle, suggest a relativistic generalization also of the two-particle correlation function and then of the entropy. The so obtained, fully relativ...

  7. Cavity mode entanglement in relativistic quantum information

    CERN Document Server

    Friis, Nicolai

    2013-01-01

    A central aim of relativistic quantum information (RQI) is the investigation of quantum information tasks and resources taking into account the relativistic aspects of nature. More precisely, it is of fundamental interest to understand how the storage, manipulation, and transmission of information utilizing quantum systems are influenced by the fact that these processes take place in a relativistic spacetime. In particular, many studies in RQI have been focused on the effects of non-uniform motion on entanglement, the main resource of quantum information protocols. Early investigations in this direction were performed in highly idealized settings that prompted questions as to the practical accessibility of these results. To overcome these limitations it is necessary to consider quantum systems that are in principle accessible to localized observers. In this thesis we present such a model, the rigid relativistic cavity, and its extensions, focusing on the effects of motion on entanglement and applications such...

  8. Relativistic Thermodynamics: A Modern 4-Vector Approach

    Directory of Open Access Journals (Sweden)

    J. Güémez

    2011-01-01

    Full Text Available Using the Minkowski relativistic 4-vector formalism, based on Einstein's equation, and the relativistic thermodynamics asynchronous formulation (Grøn (1973, the isothermal compression of an ideal gas is analyzed, considering an electromagnetic origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen (1969 and Hamity (Hamity (1969. In this relativistic framework Mechanics and Thermodynamics merge in the first law of relativistic thermodynamics expressed, using 4-vector notation, such as ΔUμ  =  Wμ  +  Qμ, in Lorentz covariant formulation, which, with the covariant formalism for electromagnetic forces, constitutes a complete Lorentz covariant formulation for classical physics.

  9. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Joshua Faber; Phillippe Grandclément; Frederic Rasio

    2004-10-01

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.

  10. Spin, localization and uncertainty of relativistic fermions

    CERN Document Server

    Céleri, Lucas C; Terno, Daniel R

    2016-01-01

    We describe relations between several relativistic spin observables and derive a Lorentz-invariant characteristic of a reduced spin density matrix. A relativistic position operator that satisfies all the properties of its non-relativistic analogue does not exist. Instead we propose two causality-preserving positive operator-valued measures (POVM) that are based on projections onto one-particle and antiparticle spaces, and on the normalized energy density. They predict identical expectation values for position. The variances differ by less than a quarter of the squared de Broglie wavelength and coincide in the non-relativistic limit. Since the resulting statistical moment operators are not canonical conjugates of momentum, the Heisenberg uncertainty relations need not hold. Indeed, the energy density POVM leads to a lower uncertainty. We reformulate the standard equations of the spin dynamics by explicitly considering the charge-independent acceleration, allowing a consistent treatment of backreaction and incl...

  11. Non haematological effects of iron deficiency - A perspective

    Directory of Open Access Journals (Sweden)

    Ghosh Kanjaksha

    2006-01-01

    Full Text Available Iron deficiency is a continuum beginning from lowering of tissue stores to the phase of exhausted tissue stores, interference with iron driven biochemical reactions in the body, microcytosis, hypochromia, increasing severity of anaemia with all its attendant consequences. Iron deficiency anaemia is a very well known concept but what is often not appreciated is the effect of broad canvas of iron deficiency on various tissues, organs and systems in our body in addition to iron deficiency anaemia leading to concept of "Iron deficiency disease". In this condition not only tissue delivery of oxygen is compromised but proliferation, growth, differentiation, myelinogenesis, immunofunction, energy metabolism, absorption and biotransformation are compromised leading to abnormal growth and behaviour, mental retardation, reduced cardiac performance and work efficiency, infection etc which ultimately leads to the concept that "iron deficiency not only breaks the machine but also wrecks the machinery."

  12. Timeless path integral for relativistic quantum mechanics

    OpenAIRE

    Chiou, Dah-Wei

    2010-01-01

    Starting from the canonical formalism of relativistic (timeless) quantum mechanics, the formulation of timeless path integral is rigorously derived. The transition amplitude is reformulated as the sum, or functional integral, over all possible paths in the constraint surface specified by the (relativistic) Hamiltonian constraint, and each path contributes with a phase identical to the classical action divided by $\\hbar$. The timeless path integral manifests the timeless feature as it is compl...

  13. Localization and Entanglement in Relativistic Quantum Physics

    OpenAIRE

    Yngvason, Jakob

    2014-01-01

    The combination of quantum theory and special relativity leads to structures that differ in several respects from non-relativistic quantum mechanics of particles. These differences are quite familiar to practitioners of Algebraic Quantum Field Theory but less well known outside this community. The paper is intended as a concise survey of some selected aspects of relativistic quantum physics, in particular regarding localization and entanglement.

  14. On Lorentz invariants in relativistic magnetic reconnection

    Science.gov (United States)

    Yang, Shu-Di; Wang, Xiao-Gang

    2016-08-01

    Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.

  15. Relativistic mean field description of exotic nuclei

    Science.gov (United States)

    Meng, Jie; Ring, Peter; Zhao, Pengwei; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) models with pairing treated by the Bardeen-Cooper-Schrieffer (BCS) and the relativistic Hartree-Bogoliubov (RHB) approaches and applications for exotic nuclear phenomena including nuclear halos, the position of the proton drip line and proton radioactivity, the surface diffuseness and its relation to nuclear exotic phenomena, and the effects of pairing correlations on the nuclear size.

  16. Chiral quark model with relativistic kinematics

    CERN Document Server

    Garcilazo, H

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  17. Relativistic effect of spin and pseudospin symmetries

    OpenAIRE

    Chen, Shou-Wan; Guo, Jian-You

    2012-01-01

    Dirac Hamiltonian is scaled in the atomic units $\\hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% \\lambda \\rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter $\\lambda$. With $\\lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin s...

  18. On the convexity of Relativistic Hydrodynamics

    CERN Document Server

    Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.

  19. Relativistic uranium beams - the Bevalac experience

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.

    1983-03-01

    This paper will address areas where relativistic heavy ion accelerators differ from proton facilities. Salient areas are: (1) the specialized injectors for heavy ions; ion sources, structures for very low charge-to-mass ratio (q/A) ions, and stripper optimization; (2) special requirements for the synchrotron ring; ultrahigh vacuum, flexible controls and instrumentation. These areas are discussed in the context of the Bevalac, as well as our idea for a next-generation relativistic heavy ion accelerator.

  20. General relativistic observables of the GRAIL mission

    OpenAIRE

    Turyshev, Slava G.; Toth, Viktor T.; Sazhin, Mikhail V.

    2012-01-01

    We present a realization of astronomical relativistic reference frames in the solar system and its application to the GRAIL mission. We model the necessary spacetime coordinate transformations for light-trip time computations and address some practical aspects of the implementation of the resulting model. We develop all the relevant relativistic coordinate transformations that are needed to describe the motion of the GRAIL spacecraft and to compute all observable quantities. We take into acco...

  1. The relativistic virial theorem and scale invariance

    OpenAIRE

    Gaite, Jose

    2013-01-01

    The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. H...

  2. Limits and Signatures of Relativistic Spaceflight

    CERN Document Server

    Yurtsever, Ulvi

    2015-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave phtotons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  3. Relativistic diffusive motion in random electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Z, E-mail: zhab@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Plac Maxa Borna 9 (Poland)

    2011-08-19

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature {beta}{sup -1} = mc{sup 2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  4. Relativistic effects in the chaotic Sitnikov problem

    OpenAIRE

    Kovács, T; Bene, Gy.; Tél, T. (Tamás)

    2011-01-01

    We investigate the phase space structure of the relativistic Sitnikov problem in the first post-Newtonian approximation. The phase space portraits show a strong dependence on the gravitational radius which describes the strength of the relativistic pericentre advance. Bifurcations appearing at increasing the gravitational radius are presented. Transient chaotic behavior related to escapes from the primaries are also studied. Finally, the numerically determined chaotic saddle is investigated i...

  5. Relativistic Bottomonium Spectrum from Anisotropic Lattices

    OpenAIRE

    Liao, X.; Manke, T.

    2001-01-01

    We report on a first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices. Using a very fine discretisation in the temporal direction we were able to go beyond the non-relativistic approximation and perform a continuum extrapolation of our results from five different lattice spacings (0.04-0.17 fm) and two anisotropies (4 and 5). We investigate several systematic errors within the quenched approximation and compare our results with those from non-relativisti...

  6. Propagation in quantum walks and relativistic diffusions

    OpenAIRE

    Debbasch, Fabrice; Di Molfetta, Giuseppe; Espaze, David; Foulonneau, Vincent

    2013-01-01

    Propagation in quantum walks is revisited by showing that very general 1D discrete-time quantum walks with time- and space-dependent coefficients can be described, at the continuous limit, by Dirac fermions coupled to electromagnetic fields. Short-time propagation is also established for relativistic diffusions by presenting new numerical simulations of the Relativistic Ornstein-Uhlenbeck Process. A geometrical generalization of Fick's law is also obtained for this process. The results sugges...

  7. Entropy current for non-relativistic fluid

    Science.gov (United States)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash; Roychowdhury, Dibakar

    2014-08-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermodynamics. Therefore, we need to add two parity-odd vectors to the entropy current with arbitrary coefficients. Upon demanding the validity of second law, we see that one can fix these two coefficients exactly.

  8. Ascorbate status modulates reticuloendothelial iron stores and response to deferasirox iron chelation in ascorbate-deficient rats

    DEFF Research Database (Denmark)

    Brewer, Casey; Otto-Duessel, Maya; Lykkesfeldt, Jens;

    2012-01-01

    Iron chelation is essential to patients on chronic blood transfusions to prevent toxicity from iron overload and remove excess iron. Deferasirox (DFX) is the most commonly used iron chelator in the United States; however, some patients are relatively refractory to DFX therapy. We postulated...... weeks. Cardiac and liver iron levels were measured after iron loading (n = 18), 12 weeks of sham chelation (n = 18), and 12 weeks of DFX chelation (n = 18) at 75 mg/kg/day. Ascorbate supplementation of 150 ppm, 900 ppm, and 2250 ppm was used in the chow to mimic a broad range of ascorbate status; plasma...... 12 weeks of sham chelation. Most importantly, ascorbate supplementation at 2250 ppm improved DFX efficiency, allowing DFX to remove 21% more hepatic iron than ascorbate supplementation with 900 ppm or 150 ppm (p

  9. Iron Sucrose Injection

    Science.gov (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called ...

  10. Steam iron cleaner poisoning

    Science.gov (United States)

    ... cleaner is a substance used to clean steam irons. Poisoning occurs when someone swallows steam iron cleaner. This ... Below are symptoms of steam iron cleaner poisoning in different ... AND THROAT Severe pain in the throat Severe pain in the mouth ...

  11. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... refers to a condition in which your blood has a lower than normal number of red blood ... iron, your body starts using the iron it has stored. Soon, the stored iron gets used up. ...

  13. Relativistic SU(4) and quaternions

    CERN Document Server

    Dahm, R

    1996-01-01

    A classification of hadrons and their interactions at low energies according to SU(4) allows to identify combinations of the fifteen mesons \\pi, \\omega and \\rho within the spin-isospin decomposition of the regular representation \\rhdmulti{15}. Chirally symmetric SU(2)\\timesSU(2) hadron interactions are then associated with transformations of a subgroup of SU(4). Nucleon and Delta resonance states are represented by a symmetric third rank tensor \\rhdmulti{20} whose spin-isospin decomposition leads to 4\\oplus 16 `tower states' also known from the large-N_c limit of QCD. Towards a relativistic hadron theory, we consider possible generalizations of the stereographic projection {\\bf S}^{2} \\to {\\bf C} and the related complex spinorial calculus {\\it on the basis of the division algebras with unit element}. Such a geometrical framework leads directly to transformations in a quaternionic projective `plane' and the related symmetry group SL(2,{\\bf H}). In exploiting the Lie algebra isomorphism sl(2,{\\bf H}) \\cong su*(...

  14. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  15. Investigation of relativistic runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R.; Lopes Cardozo, N.J.; Schueller, F.C. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Finken, K.H.; Mank, G.; Hoenen, F. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Boedo, J. [California Univ., Los Angeles, CA (United States). Inst. of Plasma and Fusion Research

    1993-12-31

    The runaway generation during disruptions is regarded as a serious problem in future tokamak devices. The number and the high energy of these runaways can lead to considerable damage of wall components. In the TEXTOR tokamak (R{sub 0}=1.75 m, a=0.46 m; I{sub p}=350 kA, B{sub t}=2.25T, flat top time {approx_equal}2 s), low density discharges (n{sub e} < 1x10{sup 19} m{sup -3}) are analyzed to study the creation mechanism and the energy increase of the runaways. This is mainly done by the synchrotron radiation emitted by highly relativistic runaways (> 20 MeV). The general features of this synchrotron radiation will be described in Sect.2. In Sect.3 the creation rate of runaways is derived from this radiation. An intriguing observation made at the end of low density ohmic discharges is a fast increase in the pitch angle (i.e. the ratio of perpendicular to parallel velocity) from the runaways on a time scale of less than 65 {mu}s. This phenomenon is discussed in Sect.4. Finally some conclusions will be drawn on the implications these results have for future tokamak operation. (author) 4 refs., 3 figs.

  16. Relativistic Self-similar Disks

    CERN Document Server

    Cai, M J; Cai, Mike J.; Shu, Frank H.

    2002-01-01

    We formulate and solve by semi-analytic means the axisymmetric equilibria of relativistic self-similar disks of infinitesimal vertical thickness. These disks are supported in the horizontal directions against their self-gravity by a combination of isothermal (two-dimensional) pressure and a flat rotation curve. The dragging of inertial frames restricts possible solutions to rotation speeds that are always less than 0.438 times the speed of light, a result first obtained by Lynden-Bell and Pineault in 1978 for a cold disk. We show that prograde circular orbits of massive test particles exist and are stable for all of our model disks, but retrograde circular orbits cannot be maintained with particle velocities less than the speed of light once the disk develops an ergoregion. We also compute photon trajectories, planar and non-planar, in the resulting spacetime, for disks with and without ergoregions. We find that all photon orbits, except for a set of measure zero, tend to be focused by the gravity of the flat...

  17. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  18. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry;

    crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and....../or liquid immiscibility. Forty-eight whole rock samples from well-constrained stratigraphic levels in the intrusion were crushed, powdered and dissolved, followed by iron separation by ion chromatography. Purified solutions were analyzed by MC- ICPMS in high-resolution mode using the sample-std bracket...

  19. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  20. BIRKHOFF'S EQUATIONS AND GEOMETRICAL THEORY OF ROTATIONAL RELATIVISTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LUO SHAO-KAI; CHEN XIANG-WEI; FU JING-LI

    2001-01-01

    The Birkhoffian and Birkhoff's functions of a rotational relativistic system are constructed, the Pfaff action of rotational relativistic system is defined, the Pfaff-Birkhoff principle of a rotational relativistic system is given, and the Pfaff-Birkhoff-D'Alembert principles and Birkhoff's equations of rotational relativistic system are constructed. The geometrical description of a rotational relativistic system is studied, and the exact properties of Birkhoff's equations and their forms onR × T*M for a rotational relativistic system are obtained. The global analysis of Birkhoff's equations for a rotational relativistic system is studied, the global properties of autonomous, semi-autonomous and non-autonomous rotational relativistic Birkhoff's equations, and the geometrical properties of energy change for rotational relativistic Birkhoff's equations are given.

  1. The Physical Nature of Polar Broad Absorption Line Quasars

    Science.gov (United States)

    Ghost, Kajal; Punsly, Brian

    2007-01-01

    It has been shown based on radio variability arguments that some BALQSOs (broad absorption line quasars) are viewed along the polar axis (o rthogonal to accretion disk) in the recent article of Zhou et a. Thes e arguments are based on the brightness temperature, T(sub b) exceedi ng 10(exp 12) K which leads to the well-known inverse Compton catastr ophe unless the radio jet is relativistic and is viewed along its axi s. In this letter, we expand the Zhou et al sample of polar BALQSOs u sing their techniques applied to SDSS DR5. In the process, we clarify a mistake in their calculation of brightness temperature. The expanded sample of high T(sub b) BALQSOS, has an inordinately large fraction of LoBALQSOs (low ionization BALQSOs). We consider this an important clue to understanding the nature of the polar BALQSOs. This is expec ted in the polar BALQSO analytical/numerical models of Punsly that pr edicted that LoBALQSOs occur when the line of sight is very close to the polar axis, where the outflow density is the highest.

  2. A study of tachyon dynamics for broad classes of potentials

    Energy Technology Data Exchange (ETDEWEB)

    Quiros, Israel [Division de Ciencias e Ingenieria de la Universidad de Guanajuato, AP 150, 37150, Leon, Guanajuato (Mexico); Gonzalez, Tame [Departamento de Fisica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); Gonzalez, Dania; Napoles, Yunelsy [Departamento de Matematica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); GarcIa-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria del IPN, Mexico DF (Mexico); Moreno, Claudia, E-mail: iquiros@Fisica.ugto.m, E-mail: tame@uclv.edu.c, E-mail: dgm@uclv.edu.c, E-mail: yna@uclv.edu.c, E-mail: rigarcias@ipn.m, E-mail: claudia.moreno@cucei.udg.m [Departamento de Fisica y Matematicas, Centro Universitario de Ciencias Exactas e IngenierIas, Av. Revolucion 1500 SR, Universidad de Guadalajara, 44430 Guadalajara, Jalisco (Mexico)

    2010-11-07

    We investigate in detail the asymptotic properties of tachyon cosmology for a broad class of self-interaction potentials. The present approach relies on an appropriate re-definition of the tachyon field, which, in conjunction with a method formerly applied in the bibliography in a different context allows us to generalize the dynamical systems study of tachyon cosmology to a wider class of self-interaction potentials beyond the (inverse) square-law one. It is revealed that independent of the functional form of the potential, the matter-dominated solution and the ultra-relativistic (also matter-dominated) solution are always associated with equilibrium points in the phase space of the tachyon models. The latter is always the past attractor, while the former is a saddle critical point. For inverse power-law potentials V{proportional_to}{phi}{sup -2{lambda}} the late-time attractor is always the de Sitter solution, while for sinh-like potentials V{proportional_to}sinh {sup -{alpha}}({lambda}{sup {phi}}), depending on the region of parameter space, the late-time attractor can be either the inflationary tachyon-dominated solution or the matter-scaling (also inflationary) phase. In general, for most part of known quintessential potentials, the late-time dynamics will be associated either with de Sitter inflation, or with matter-scaling, or with scalar field-dominated solutions.

  3. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  4. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  5. Non-relativistic and relativistic scattering by short-range potentials

    DEFF Research Database (Denmark)

    Arnbak, H.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2011-01-01

    Relativistic and non-relativistic scattering by short-range potentials is investigated for selected problems. Scattering by the δ′ potential in the Schrödinger equation and δ potentials in the Dirac equation must be solved by regularization, efficiently carried out by a perturbation technique inv...... involving a stretched variable. Asymmetric regularizations yield non-unique scattering coefficients. Resonant penetration through the potentials is found. Approximative Schrödinger equations in the non-relativistic limit are discussed in detail.......Relativistic and non-relativistic scattering by short-range potentials is investigated for selected problems. Scattering by the δ′ potential in the Schrödinger equation and δ potentials in the Dirac equation must be solved by regularization, efficiently carried out by a perturbation technique...

  6. Liver iron transport

    Institute of Scientific and Technical Information of China (English)

    Ross M Graham; Anita CG Chua; Carly E Herbison; John K Olynyk; Debbie Trinder

    2007-01-01

    The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV),which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.

  7. Broad Prize: Do the Successes Spread?

    Science.gov (United States)

    Samuels, Christina A.

    2011-01-01

    When the Broad Prize for Urban Education was created in 2002, billionaire philanthropist Eli Broad said he hoped the awards, in addition to rewarding high-performing school districts, would foster healthy competition; boost the prestige of urban education, long viewed as dysfunctional; and showcase best practices. Over the 10 years the prize has…

  8. The curious time lags of PG 1244+026: discovery of the iron K reverberation lag

    NARCIS (Netherlands)

    E. Kara; E.M. Cackett; A.C. Fabian; C. Reynolds; P. Uttley

    2014-01-01

    High-frequency iron K reverberation lags, where the red wing of the line responds before the line centroid, are a robust signature of relativistic reflection off the inner accretion disc. In this Letter, we report the discovery of the Fe K lag in PG 1244+026 from ∼120 ks of data (one orbit of the XM

  9. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  10. Nonlinear stability of relativistic sheared planar jets

    CERN Document Server

    Perucho, M; Hanasz, M

    2005-01-01

    The linear and non-linear stability of sheared, relativistic planar jets is studied by means of linear stability analysis and numerical hydrodynamical simulations. Our results extend the previous Kelvin-Hemlholtz stability studies for relativistic, planar jets in the vortex sheet approximation performed by Perucho et al. (2004a,b) by including a shear layer between the jet and the external medium and more general perturbations. The models considered span a wide range of Lorentz factors ($2.5-20$) and internal energies ($0.08 c^2-60 c^2$) and are classified into three classes according to the main characteristics of their long-term, non-linear evolution. We observe a clear separation of these three groups in a relativistic Mach-number Lorentz-factor plane. Jets with a low Lorentz factor and small relativistic Mach number are disrupted after saturation. Those with a large Lorentz factor and large relativistic Mach number are the stablest, due to the appearance of short wavelength resonant modes which generate l...

  11. Applying Relativistic Reconnection to Blazar Jets

    CERN Document Server

    Nalewajko, Krzysztof

    2016-01-01

    Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma...

  12. General relativistic observables of the GRAIL mission

    CERN Document Server

    Turyshev, Slava G; Sazhin, Mikhail V

    2012-01-01

    We present a realization of astronomical relativistic reference frames in the solar system and its application to the GRAIL mission. We model the necessary spacetime coordinate transformations for light-trip time computations and address some practical aspects of the implementation of the resulting model. We develop all the relevant relativistic coordinate transformations that are needed to describe the motion of the GRAIL spacecraft and to compute all observable quantities. We take into account major relativistic effects contributing to the dual one-way range observable, which is derived from one-way signal travel times between the two GRAIL spacecraft. We develop a general relativistic model for this fundamental observable of GRAIL, accurate to 1 $\\mu$m. We develop and present a relativistic model for another key observable of this experiment, the dual one-way range-rate, accurate to 1 $\\mu$m/s. The presented formulation justifies the basic assumptions behind the design of the GRAIL mission. It may also be ...

  13. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  14. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b+2/b−2∝(ϵ+/ϵ−)n with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  15. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  16. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  17. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked.

  18. Ground-state properties of the nucleus 100Sn in relativistic and non-relativistic mean-field approaches

    International Nuclear Information System (INIS)

    The ground-state properties of the nucleus 100Sn have been studied by the non-relativistic mean-field approach with Skyrme interactions, the relativistic mean-field approach with the Hartree approximation and the density-dependent relativistic mean-field approach. We compare and discuss the numerical results of average binding energies, and matter root-mean-square radii of proton and neutron distributions. It is shown that the non-relativistic, relativistic and density-dependent relativistic mean-field theories can be successfully applied to the nucleus near the proton drip line. (author)

  19. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  20. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  1. Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F. [LULI, Ecole Polytechnique, 91128 Palaiseau Cedex (France); CEA, DAM, DIF, F-91297 Arpajon (France); Gremillet, L.; Decoster, A.; Drouin, M.; Lefebvre, E. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2012-08-15

    An improved Monte Carlo collisional scheme modeling both elastic and inelastic interactions has been implemented into the particle-in-cell code CALDER[E. Lefebvre et al., Nucl. Fusion 43, 629 (2003)]. Based on the technique proposed by Nanbu and Yonemura [J. Comput. Phys. 145, 639 (1998)] allowing to handle arbitrarily weighted macro-particles, this binary collision scheme uses a more compact and accurate relativistic formulation than the algorithm recently worked out by Sentoku and Kemp [J. Comput. Phys. 227, 6846 (2008)]. Our scheme is validated through several test cases, demonstrating, in particular, its capability of modeling the electrical resistivity and stopping power of a solid-density plasma over a broad parameter range. A relativistic collisional ionization scheme is developed within the same framework, and tested in several physical scenarios. Finally, our scheme is applied in a set of integrated particle-in-cell simulations of laser-driven fast electron transport.

  2. Relativistic Consistent Angular-Momentum Projected Shell-Model:Relativistic Mean Field

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Song; LONG Gui-Lu

    2004-01-01

    We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shellmodel (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method.In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF)theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained.This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei 16O and 208Pb,the deformed nucleus 20Ne. Good agreement is obtained.

  3. Relativistic dynamics, Green function and pseudodifferential operators

    CERN Document Server

    Cirilo-Lombardo, Diego Julio

    2016-01-01

    The central role played by pseudodifferential operators in relativistic dynamics is very well know. In this work, operators as the Schrodinger one (e.g: square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by mean of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability : it is non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as Zitterbewegung and rogue waves, are prese...

  4. INTRACLUSTER MEDIUM REHEATING BY RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Perucho, Manel; Quilis, Vicent; Marti, Jose-Maria [Departament d' Astronomia i Astrofisica, Universitat de Valencia, c/Dr. Moliner 50, E-46100 Burjassot (Valencia) (Spain)

    2011-12-10

    Galactic jets are powerful energy sources reheating the intracluster medium in galaxy clusters. Their crucial role in the cosmic puzzle, motivated by observations, has been established by a great number of numerical simulations excluding the relativistic nature of these jets. We present the first relativistic simulations of the very long-term evolution of realistic galactic jets. Unexpectedly, our results show no buoyant bubbles, but large cocoon regions compatible with the observed X-ray cavities. The reheating is more efficient and faster than in previous scenarios, and it is produced by the shock wave driven by the jet, that survives for several hundreds of Myr. Therefore, the X-ray cavities in clusters produced by powerful relativistic jets would remain confined by weak shocks for extremely long periods and their detection could be an observational challenge.

  5. Relativistic Thermodynamics of Magnetized Fermi Electron Gas

    CERN Document Server

    Tsintsadze, Nodar L

    2012-01-01

    To study the relativistic thermodynamic properties of a Fermi gas in a strong magnetic field, we construct the relativistic thermodynamic potential by the relativistic Fermi distribution function taking into account that the motion of particles in a plane perpendicular to the magnetic field is quantized. With this general potential at hand, we investigate all the thermodynamic quantities as a function of densities, temperatures and the magnetic field. We obtain a novel set of adiabatic equations. Having the expression of the pressure and adiabatic state equations, we determine the sound velocity for several cases revealing a new type of sound velocity. Finally, we disclose the magnetic cooling in the quantized electron Fermi gas, which is based on an adiabatic magnetization in contrast to the known adiabatic demagnetization.

  6. Polarization transfer in relativistic magnetized plasmas

    CERN Document Server

    Heyvaerts, Jean; Prunet, Simon; Thiebaut, Jerome

    2012-01-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency, or quasi resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle s population. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofreq...

  7. Relativistic Transport Approach to Collective Nuclear Dynamics

    CERN Document Server

    Yildirim, S; Di Toro, M; Greco, V

    2005-01-01

    The isoscalar giant monopole resonance (ISGMR) and isovector giant dipole resonance (IVGDR) in finite nuclei are studied in the framework of a relativistic transport approach. The kinetic equations are derived within an effective nucleon-meson field theory in the Relativistic Mean Field (RMF) scheme, even extended to density dependent vertices. Small amplitude oscillations are analysed using the Relativistic Vlasov (RV) approach, i.e. neglecting nucleon collision terms. The time evolution of the isoscalar monopole moment and isovector dipole moment and the corresponding Fourier power spectra are discussed. In the case of ^{208}Pb we study in detail the dependence of the monopole response on the effective mass and symmetry energy at saturation given by the used covariant effective interaction. We show that a reduced m^* and a larger a_4 can compensate the effect on the ISGMR energy centroid of a much larger compressibility modulus K_{nm}. This result is important in order to overcome the conflicting determinat...

  8. Viscous photons in relativistic heavy ion collisions

    Science.gov (United States)

    Dion, Maxime; Paquet, Jean-François; Schenke, Björn; Young, Clint; Jeon, Sangyong; Gale, Charles

    2011-12-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  9. Corrugation of Relativistic Magnetized Shock Waves

    Science.gov (United States)

    Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent

    2016-08-01

    As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.

  10. General relativistic observables for the ACES experiment

    CERN Document Server

    Turyshev, Slava G; Toth, Viktor T

    2015-01-01

    We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient $J_2$ and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudo-inertial at th...

  11. Relativistic Spin Precession in the Double Pulsar

    CERN Document Server

    Breton, Rene P; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-01-01

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully use a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 (+0.66,-0.65) degrees per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  12. Relativistic mirrors in laser plasmas (analytical methods)

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  13. On the convexity of Relativistic Ideal Magnetohydrodynamics

    CERN Document Server

    Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio

    2015-01-01

    We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...

  14. The relativistic virial theorem and scale invariance

    CERN Document Server

    Gaite, Jose

    2013-01-01

    The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.

  15. Relativistic Entanglement From Maxwell's Classical Equations

    Science.gov (United States)

    Carroll, John E.; Quarterman, Adrian H.

    2013-09-01

    With the help of light cone coordinates and light cone field representations of Maxwell's classical equations, quantum polarization entanglement is explained using the relativistic results of a companion paper that shows how conventional or reference waves can have an adjoint wave, travelling in phase with the reference wave, but in a proper relativistic frame that travels in the opposing direction to the proper frame of the reference wave. This subsequently allows waves, travelling in opposite directions, to have the same proper frame and consequently such waves can be regarded as relativistically local. The light cone coordinates offer a classical form of a quantum wave function and demonstrate a classical equivalent of a mixed quantum state.

  16. Numerical Simulations of Driven Relativistic MHD Turbulence

    CERN Document Server

    Zrake, Jonathan

    2011-01-01

    A wide variety of astrophysical phenomena involve the flow of turbulent magnetized gas with relativistic velocity or energy density. Examples include gamma-ray bursts, active galactic nuclei, pulsars, magnetars, micro-quasars, merging neutron stars, X-ray binaries, some supernovae, and the early universe. In order to elucidate the basic properties of the relativistic magnetohydrodynamical (RMHD) turbulence present in these systems, we present results from numerical simulations of fully developed driven turbulence in a relativistically warm, weakly magnetized and mildly compressible ideal fluid. We have evolved the RMHD equations for many dynamical times on a uniform grid with 1024^3 zones using a high order Godunov code. We observe the growth of magnetic energy from a seed field through saturation at about 1% of the total fluid energy. We compute the power spectrum of velocity and density-weighted velocity and conclude that the inertial scaling is consistent with a slope of -5/3. We compute the longitudinal a...

  17. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  18. Peculiar Broad Absorption Line Quasars found in DPOSS

    CERN Document Server

    Brunner, R J; Djorgovski, S G; Gal, R R; Mahabal, A A; Lopes, P A A; De Carvalho, R R; Odewahn, S C; Castro, S; Thompson, D; Chaffee, F; Darling, J; Desai, V; Brunner, Robert J.; Hall, Patrick B.

    2003-01-01

    With the recent release of large (i.e., > hundred million objects), well-calibrated photometric surveys, such as DPOSS, 2MASS, and SDSS, spectroscopic identification of important targets is no longer a simple issue. In order to enhance the returns from a spectroscopic survey, candidate sources are often preferentially selected to be of interest, such as brown dwarfs or high redshift quasars. This approach, while useful for targeted projects, risks missing new or unusual species. We have, as a result, taken the alternative path of spectroscopically identifying interesting sources with the sole criterion being that they are in low density areas of the g - r and r - i color-space defined by the DPOSS survey. In this paper, we present three peculiar broad absorption line quasars that were discovered during this spectroscopic survey, demonstrating the efficacy of this approach. PSS J0052+2405 is an Iron LoBAL quasar at a redshift z = 2.4512 with very broad absorption from many species. PSS J0141+3334 is a reddened...

  19. Investigation on shock waves stability in relativistic gas dynamics

    Directory of Open Access Journals (Sweden)

    Alexander Blokhin

    1993-05-01

    Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.

  20. Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states

    CERN Document Server

    Longhi, Stefano

    2011-01-01

    Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating.

  1. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  2. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  3. Variational generalization of free relativistic top

    CERN Document Server

    Matsyuk, Roman

    2014-01-01

    We prove that well known first-order (in spin, momentum, and space-time coordinates) equations of motion of relativistic top are equivalent to the third-order equations of Mathisson on the surface of the Mathisson-Pirani auxiliary constraint. We then consider these third-order equations in flat space-time with constant spin 4-vector and invent a Lagrange function for them. Allowing physical interpretation to be applied to the complete set of extremals yields a whole spectrum of spin-dependent effective 'proper mass' of the relativistic top.

  4. Causal localizations in relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Leiseifer, Andreas David

    2014-06-30

    Sufficient and necessary conditions for causal localizations of massive relativistic systems are developed. It is proven that the Dirac- and the Dirac tensor-system are up to unitary equivalence the only irreducible causal localizations with finite spinor dimension which have a massive relativistic extension. A formula for this extension is given. The existence of arbitrarily good localized states of positive energy is shown. In the context of the causality condition a Paley-Wiener theorem for bounded measurable matrix-valued functions is proven.

  5. General relativistic tidal heating for Moller pseudotensor

    CERN Document Server

    So, Lau Loi

    2015-01-01

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  6. Towards universal quantum computation through relativistic motion

    CERN Document Server

    Bruschi, David Edward; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette

    2013-01-01

    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tunable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes.

  7. Relativistic Mirrors in Laser Plasmas (Analytical Methods)

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K

    2016-01-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort X-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role.

  8. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  9. A relativistic and autonomous navigation satellite system

    CERN Document Server

    Delva, Pacôme; Kostić, Uros; Carloni, Sante

    2011-01-01

    A relativistic positioning system has been proposed by Bartolom\\'e Coll in 2002. Since then, several group developed this topic with different approaches. I will present a work done in collaboration with Ljubljana University and the ESA Advanced Concepts Team. We developed a concept, Autonomous Basis of Coordinates, in order to take advantage of the full autonomy of a satellite constellation for navigation and positioning, by means of satellite inter-links. I will present the advantages of this new paradigm and a number of potential application for reference systems, geophysics and relativistic gravitation.

  10. Relativistic wave equations: an operational approach

    Science.gov (United States)

    Dattoli, G.; Sabia, E.; Górska, K.; Horzela, A.; Penson, K. A.

    2015-03-01

    The use of operator methods of an algebraic nature is shown to be a very powerful tool to deal with different forms of relativistic wave equations. The methods provide either exact or approximate solutions for various forms of differential equations, such as relativistic Schrödinger, Klein-Gordon, and Dirac. We discuss the free-particle hypotheses and those relevant to particles subject to non-trivial potentials. In the latter case we will show how the proposed method leads to easily implementable numerical algorithms.

  11. Stream instabilities in relativistically hot plasma

    CERN Document Server

    Shaisultanov, Rashid; Eichler, David

    2011-01-01

    The instabilities of relativistic ion beams in a relativistically hot electron background are derived for general propagation angles. It is shown that the Weibel instability in the direction perpendicular to the streaming direction is the fastest growing mode, and probably the first to appear, consistent with the aligned filaments that are seen in PIC simulations. Oblique, quasiperpendicular modes grow almost as fast, as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates.

  12. Generalized magnetofluid connections in relativistic magnetohydrodynamics.

    Science.gov (United States)

    Asenjo, Felipe A; Comisso, Luca

    2015-03-20

    The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept. PMID:25839284

  13. Strong-field Relativistic Processes in Highly Charged Ions

    OpenAIRE

    Postavaru, Octavian

    2010-01-01

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part,we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic...

  14. Strong-field relativistic processes in highly chargerd ions

    OpenAIRE

    Postavaru, O.

    2010-01-01

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Diracv equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynam...

  15. Form Invariance and Noether Symmetries of Rotational Relativistic Birkhoff Systems

    Institute of Scientific and Technical Information of China (English)

    LUOShao-Kai

    2002-01-01

    Under the infinitesimal transformations of groups,a form invariance of rotational relativistic Birkhoff systems is studied and the definition and criteria are given,In view of the invariance of rotational relativistic Pfaff-Birkhoff-D' Alembert principle under the infinitesimal transformations of groups,the theory of Noether symmetries of rotational relativistic Birkhoff systems are constructed.The relation between the form invariance and the Noether symmetries is studied ,and the conserved quantities of rotational relativistic Birkhoff systems are obtained.

  16. Form Invariance and Noether Symmetries of Rotational Relativistic Birkhoff Systems

    Institute of Scientific and Technical Information of China (English)

    LUO Shao-Kai

    2002-01-01

    Under the infinitesimal transformations of groups, a form invariance of rotational relativistic Birkhoffsystems is studied and the definition and criteria are given. In view of the invariance of rotational relativistic PfaffBirkhoff D'Alcmbert principle under the infinitesimal transformations of groups, the theory of Noether symmetries ofrotational relativistic Birkhoff systems are constructed. The relation between the form invariance and the Noethersymmetries is studied, and the conserved quantities of rotational relativistic Birkhoff systems are obtained.

  17. Relativistic heat conduction and thermoelectric properties of nonuniform plasmas

    CERN Document Server

    Honda, M

    2003-01-01

    Relativistic heat transport in electron-two-temperature plasmas with density gradients has been investigated. The Legendre expansion analysis of relativistically modified kinetic equations shows that strong inhibition of heat flux appears in relativistic temperature regimes, suppressing the classical Spitzer-H{\\"a}rm conduction. The Seebeck coefficient, the Wiedemann-Franz law, and the thermoelectric figure of merit are derived in the relativistic regimes.

  18. Hydrodynamics of a Relativistic Fireball: the Complete Evolution

    OpenAIRE

    Kobayashi, Shiho; Piran, Tsvi; Sari, Re'em

    1998-01-01

    We study numerically the evolution of an adiabatic relativistic fireball expanding into a cold uniform medium. We follow the stages of initial free expansion and acceleration, coasting and then deceleration and slowing down to a non-relativistic velocity. We compare the numerical results with simplified analytical estimates. We show that the relativistic self similar Blandford-McKee solution describes well the relativistic deceleration epoch. It is an excellent approximation throughout the re...

  19. Relativistic Thomas-Fermi Model at Finite Temperatures

    OpenAIRE

    G. Bertone(GRAPPA Center of Excellence, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, The Netherlands); Ruffini, R.

    2001-01-01

    We briefly review the Thomas-Fermi statistical model of atoms in the classical non-relativistic formulation and in the generalised finite-nucleus relativistic formulation. We then discuss the classical generalisation of the model to finite temperatures in the non-relativistic approximation and present a new relativistic model at finite temperatures, investigating how to recover the existing theory in the limit of low temperatures. This work is intended to be a propedeutical study for the eval...

  20. Measuring Prevention More Broadly, An Empirical...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Measuring Prevention More Broadly, An Empirical Assessment of CHIPRA Core Measures Differences in CHIP design and structure, across states and over time, may limit...

  1. Invariance of the relativistic one-particle distribution function

    CERN Document Server

    Debbasch, Fabrice; Van Leeuwen, Willem

    2001-01-01

    The one-particle distribution function is of importance both in non-relativistic and relativistic statistical physics. In the relativistic framework, Lorentz invariance is possibly its most fundamental property. The present article on the subject is a contrastive one: we review, discuss critically, and, when necessary, complete, the treatments found in the standard literature.

  2. Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?

    Energy Technology Data Exchange (ETDEWEB)

    Guemez, J.

    2010-07-01

    A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.

  3. A Structurally Relativistic Quantum Theory. Part 1: Foundations

    OpenAIRE

    Grgin, Emile

    2012-01-01

    The apparent impossibility of extending non-relativistic quantum mechanics to a relativistic quantum theory is shown to be due to the insufficient structural richness of the field of complex numbers over which quantum mechanics is built. A new number system with the properties needed to support an inherently relativistic quantum theory is brought to light and investigated to a point sufficient for applications.

  4. Analytic solution for relativistic transverse flow at the softest point

    CERN Document Server

    Biro, T S

    2000-01-01

    We obtain an extension of Bjorken's 1+1 dimensional scaling relativistic flow solution to relativistic transverse velocities with cylindrical symmetry in 1+3 dimensions at constant, homogeneous pressure (vanishing sound velocity). This can be the situation during a first order phase transition converting quark matter into hadron matter in relativistic heavy ion collisions.

  5. A probabilistic view on the general relativistic Boltzmann equation

    CERN Document Server

    Bailleul, Ismael

    2011-01-01

    A new probalistic approach to general relativistic kinetic theory is proposed. The general relativistic Boltzmann equation is linked to a new Markov process in a completely intrinsic way. This treatment is then used to prove the causal character of the relativistic Boltzmann model.

  6. Black Sun: Ocular Invisibility of Relativistic Luminous Astrophysical Bodies

    CERN Document Server

    Lee, Jeffrey S

    2015-01-01

    The relativistic Doppler shifting of visible electromagnetic radiation to beyond the human ocular range reduces the incident radiance of the source. Consequently, luminous astrophysical bodies (LABs) can be rendered invisible with sufficient relativistic motion. This paper determines the proper distance as a function of relativistic velocity at which a luminous object attains ocular invisibility.

  7. Gravity at the horizon: on relativistic effects, CMB-LSS correlations and ultra-large scales in Horndeski's theory

    OpenAIRE

    Renk, Janina; Zumalacarregui, Miguel; Montanari, Francesco

    2016-01-01

    We address the impact of consistent modifications of gravity on the largest observable scales, focusing on relativistic effects in galaxy number counts and the cross-correlation between the matter large scale structure (LSS) distribution and the cosmic microwave background (CMB). Our analysis applies to a very broad class of general scalar-tensor theories encoded in the Horndeski Lagrangian and is fully consistent on linear scales, retaining the full dynamics of the scalar field and not assum...

  8. Alternative evaluation of statistical indicators in atoms: The non-relativistic and relativistic cases

    International Nuclear Information System (INIS)

    In this work, the calculation of a statistical measure of complexity and the Fisher-Shannon information is performed for all the atoms in the periodic table. Non-relativistic and relativistic cases are considered. We follow the method suggested in [C.P. Panos, N.S. Nikolaidis, K.Ch. Chatzisavvas, C.C. Tsouros, (arXiv:0812.3963v1)] that uses the fractional occupation probabilities of electrons in atomic orbitals, instead of the continuous electronic wave functions. For the order of shell filling in the relativistic case, we take into account the effect due to electronic spin-orbit interaction. The increasing of both magnitudes, the statistical complexity and the Fisher-Shannon information, with the atomic number Z is observed. The shell structure and the irregular shell filling is well displayed by the Fisher-Shannon information in the relativistic case.

  9. Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    CERN Document Server

    Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J

    2015-01-01

    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...

  10. Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.

  11. Relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang Ludwig

    2010-01-01

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here, are of ...

  12. Unified geometrical approach to relativistic particle dynamics

    International Nuclear Information System (INIS)

    Models for systems of relativistic particle dynamics are reviewed in terms of a geometrical setting for constraint dynamics. They are derived from the same grand abstract space by means of a common reduction procedure and are put in correspondence with invariant subgroups of the Poincare group. A new model corresponding to the identity subgroup is also discussed

  13. Glueball Masses in Relativistic Potential Model

    CERN Document Server

    Shpenik, A; Kis, J; Fekete, Yu

    2000-01-01

    The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.

  14. Detectors for relativistic heavy-ion experiments

    International Nuclear Information System (INIS)

    We present in some detail an overview of the detectors currently used in relativistic heavy-ion research at the BNL AGS and the CERN SPS. Following that, a detailed list of RandD projects is given, including specific areas of work which need to be addressed in preparation for further experiments at the AGS and SPS for the upcoming experiments at RHIC

  15. Lectures on hydrodynamic fluctuations in relativistic theories

    International Nuclear Information System (INIS)

    These are pedagogical lecture notes on hydrodynamic fluctuations in normal relativistic fluids. The lectures discuss correlation functions of conserved densities in thermal equilibrium, interactions of the hydrodynamic modes, an effective action for viscous fluids and the breakdown of the derivative expansion in hydrodynamics. (topical review)

  16. The Alpha Constant from Relativistic Groups

    CERN Document Server

    González-Martin, G R

    2000-01-01

    The value of the alpha constant, known to be equal to an algebraic expression in terms of pi and entire numbers related to certain group volumes, is derived from the relativistic structure group of a geometric unified theory, its subgroups and corresponding symmetric space quotients.

  17. Linear wave propagation in relativistic magnetohydrodynamics

    NARCIS (Netherlands)

    Keppens, R.; Meliani, Z.

    2008-01-01

    The properties of linear Alfven, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comp

  18. Linear wave propagation in relativistic magnetohydrodynamics

    NARCIS (Netherlands)

    Keppens, R.; Meliani, Z.

    2008-01-01

    The properties of linear Alfvén, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comp

  19. Path Integral for Relativistic Equations of Motion

    OpenAIRE

    Gosselin, Pierre; Polonyi, Janos

    1997-01-01

    A non-Grassmanian path integral representation is given for the solution of the Klein-Gordon and the Dirac equations. The trajectories of the path integral are rendered differentiable by the relativistic corrections. The nonrelativistic limit is briefly discussed from the point of view of the renormalization group.

  20. Solitary Waves in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HUA Cun-Cai

    2005-01-01

    Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.

  1. Tensor Fields in Relativistic Quantum Mechanics

    CERN Document Server

    Dvoeglazov, Valeriy V

    2015-01-01

    We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We discuss corresponding massless limits. We analize the quantum field theory taking into account the mass dimensions of the notoph and the photon. Next, we deduced the gravitational field equations from relativistic quantum mechanics.

  2. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been provided in this article.

  3. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  4. Polarizational bremsstrahlung in non-relativistic collision

    CERN Document Server

    Korol, A V

    2004-01-01

    We review the developments made during the last decade in the theory of polarization bremsstrahlung in the non-relativistic domain. A literature survey covering the latest history of the phenomenon is given. The main features which distinguish the polarization bremsstrahlung from other mechanisms of radiation are discussed and illustrated by the results of numerical calculations.

  5. Asymptotic theory of relativistic, magnetized jets.

    Science.gov (United States)

    Lyubarsky, Yuri

    2011-01-01

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors. PMID:21405769

  6. Turbulent Comptonization in Relativistic Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2006-01-01

    Turbulent Comptonization, a potentially important damping and radiation mechanism in relativistic accretion flows, is discussed. Particular emphasis is placed on the physical basis, relative importance, and thermodynamics of turbulent Comptonization. The effects of metal-absorption opacity on the spectral component resulting from turbulent Comptonization is considered as well.

  7. Stable discrete representation of relativistically drifting plasmas

    CERN Document Server

    Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R

    2016-01-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  8. Color screening in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    We calculate the color screening length in a non-equilibrated gluon gas formed by interacting minijets in relativistic heavy-ion collisions. We show that the screening length is too short at CERN LHC collider energy to permit the formation of independent flux-tubes or strings. The prediction for RHIC energies is somewhat ambiguous. (orig.)

  9. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...

  10. Extended Kelvin theorem in relativistic magnetohydrodynamics

    OpenAIRE

    Bekenstein, Jacob D.; Oron, Asaf

    2000-01-01

    We prove the existence of a generalization of Kelvin's circulation theorem in general relativity which is applicable to perfect isentropic magnetohydrodynamic flow. The argument is based on a new version of the Lagrangian for perfect magnetohydrodynamics. We illustrate the new conserved circulation with the example of a relativistic magnetohydrodynamic flow possessing three symmetries.

  11. Relativistic Boltzmann theory for a plasma. II

    International Nuclear Information System (INIS)

    The linear or phenomenological laws such as Ohm's law, Fourier's law and Fick's law are derived for a relativistic plasma in an electromagnetic field. It is shown that the choice of a reference frame as proposed by Landau and Lifshitz entails - in contrast to, for instance, the choice of Eckart - the validity of Onsager's reciprocity relations. (Auth.)

  12. Flux-limited diffusion with relativistic corrections

    International Nuclear Information System (INIS)

    A recently reported flux-limited diffusion theory is extended to include relativistic terms, correct to first order in the fluid velocity. We show that this diffusion theory is fully flux limited, and yields the correct result for the radiative flux in the classical diffusion limit, namely a Fick's law component plus a v/c convective term

  13. How one can estimate relativistic contribution into nucleon observables in the relativistic constituent quark model

    OpenAIRE

    Ilichova, T. P.

    2002-01-01

    A nonrelativistic decomposition for the quark energy by the ratio of the dispersion of quark momentum squared and the effective quark mass is investigated in the framework of the relativistic oscillator constituent quark model as bound systems of three valence quarks. It is shown that relativistic corrections are defined by dispersion of the squared absolute value of the quark momentum. The variations of the quark mass and oscillator parameter are studied in detail both in the spectrum and in...

  14. Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics

    OpenAIRE

    Shigehara, T.; Mizoguchi, H.; T. Mishima; Cheon, Taksu

    1999-01-01

    We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called $\\epsilon$ potential. It will be also shown that the scattering properties at high energy substantially diff...

  15. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    Science.gov (United States)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  16. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  17. Accuracy of the non-relativistic approximation for momentum diffusion

    Science.gov (United States)

    Liang, Shiuan-Ni; Lan, Boon Leong

    2016-06-01

    The accuracy of the non-relativistic approximation, which is calculated using the same parameter and the same initial ensemble of trajectories, to relativistic momentum diffusion at low speed is studied numerically for a prototypical nonlinear Hamiltonian system -the periodically delta-kicked particle. We find that if the initial ensemble is a non-localized semi-uniform ensemble, the non-relativistic approximation to the relativistic mean square momentum displacement is always accurate. However, if the initial ensemble is a localized Gaussian, the non-relativistic approximation may not always be accurate and the approximation can break down rapidly.

  18. Relativistic BCS-BEC Crossover at Quark Level

    OpenAIRE

    Zhuang P.; Mao S; He L

    2010-01-01

    The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon ...

  19. Relativistic Thomas-Fermi Model at Finite Temperatures

    CERN Document Server

    Bertone, Gianfranco

    2002-01-01

    We briefly review the Thomas-Fermi statistical model of atoms in the classical non-relativistic formulation and in the generalised finite-nucleus relativistic formulation. We then discuss the classical generalisation of the model to finite temperatures in the non-relativistic approximation and present a new relativistic model at finite temperatures, investigating how to recover the existing theory in the limit of low temperatures. This work is intended to be a propedeutical study for the evaluation of equilibrium configurations of relativistic ``hot'' white dwarfs.

  20. BROAD PHONEME CLASSIFICATION USING SIGNAL BASED FEATURES

    Directory of Open Access Journals (Sweden)

    Deekshitha G

    2014-12-01

    Full Text Available Speech is the most efficient and popular means of human communication Speech is produced as a sequence of phonemes. Phoneme recognition is the first step performed by automatic speech recognition system. The state-of-the-art recognizers use mel-frequency cepstral coefficients (MFCC features derived through short time analysis, for which the recognition accuracy is limited. Instead of this, here broad phoneme classification is achieved using features derived directly from the speech at the signal level itself. Broad phoneme classes include vowels, nasals, fricatives, stops, approximants and silence. The features identified useful for broad phoneme classification are voiced/unvoiced decision, zero crossing rate (ZCR, short time energy, most dominant frequency, energy in most dominant frequency, spectral flatness measure and first three formants. Features derived from short time frames of training speech are used to train a multilayer feedforward neural network based classifier with manually marked class label as output and classification accuracy is then tested. Later this broad phoneme classifier is used for broad syllable structure prediction which is useful for applications such as automatic speech recognition and automatic language identification.

  1. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia.

    Directory of Open Access Journals (Sweden)

    Alexander eRakin

    2012-11-01

    Full Text Available Low molecular weight siderophores are used by many living organisms to scavenge scarcely available ferric iron. Presence of at least a single siderophore-based iron acquisition system is usually acknowledged as a virulence-associated trait and a prerequisite to become an efficient and successful pathogen. Currently it is assumed that yersiniabactin (Ybt is the solely functional endogenous siderophore iron uptake system in highly virulent Yersinia (Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica biotype 1B. Genes responsible for biosynthesis, transport and regulation of the yersiniabactin (ybt production are clustered on a mobile genetic element, the High Pathogenicity Island (HPI that is responsible for broad dissemination of the ybt genes in Enterobacteriaceae. However, the ybt gene cluster is absent from nearly half of Y. pseudotuberculosis O3 isolates and epidemic Y. pseudotuberculosis O1 isolates responsible for the Far East Scarlet-like Fever. Several potential siderophore-mediated iron uptake gene clusters are documented in Yersinia genomes, however neither of them have been proven to be functional. It has been suggested that at least two siderophores alternative to Ybt may operate in the highly virulent Yersinia pestis / Y. pseudotuberculosis group, and are referred to as pseudochelin (Pch and yersiniachelin (Ych. Furthermore, most sporadic Y. pseudotuberculosis O1 strains possess gene clusters encoding all three iron scavenging systems. Thus, the Ybt system appears not to be the sole endogenous siderophore iron uptake system in the highly virulent yersiniae and may be efficiently substituted and / or supplemented by alternative iron scavenging systems.

  2. Calculation of self-diffusion coefficients in iron

    OpenAIRE

    Baohua Zhang

    2014-01-01

    On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ɛ phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature r...

  3. Relativistic Landau Models and Generation of Fuzzy Spheres

    CERN Document Server

    Hasebe, Kazuki

    2015-01-01

    Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...

  4. Relativistic quantum similarities in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    A study of different quantum similarity measures and their corresponding quantum similarity indices is carried out for the atoms from H to Lr (Z=1-103). Relativistic effects in both position and momentum spaces have been studied by comparing the relativistic values to the non-relativistic ones. We have used the atomic electron density in both position and momentum spaces obtained within relativistic and non-relativistic numerical-parameterized optimized effective potential approximations. -- Highlights: → Quantum similarity measures and indices in electronic structure of atoms. → Position and momentum electronic densities. → Similarity of relativistic and non-relativistic densities. → Similarity of core and valence regions of different atoms. → Dependence with Z along the Periodic Table.

  5. Formulation of the Relativistic Quantum Hall Effect and "Parity Anomaly"

    CERN Document Server

    Yonaga, Kouki; Shibata, Naokazu

    2016-01-01

    We present a relativistic formulation of the quantum Hall effect on a Riemann sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term.We clarify particular features of the relativistic quantum Hall states with use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to relativistic quantum Hall states are investigated in detail.The mass term acts as an interporating parameter between the relativistic and non-relativistic quantum Hall effects. It is pointed out that the mass term inequivalently affects to many-body physics of the positive and negative Landau levels and brings instability of the Laughlin state of the positive first relativistic Landau level as a consequence of the "parity anomaly".

  6. Giant Broad Line Regions in Dwarf Seyferts

    CERN Document Server

    Devereux, Nick

    2015-01-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, ...

  7. Silicon micromachined broad band light source

    Science.gov (United States)

    George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)

    2004-01-01

    A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood ...

  9. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  10. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ... treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics ...

  12. Serum iron test

    Science.gov (United States)

    ... of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, et al, ... EJ, Gardner LB. Anemia of chronic diseases. In: Hoffman R, Benz EJ Jr, Silberstein LE, et al, ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from ... iron levels. Susan also made changes to her diet, such as focusing more on green leafy vegetables, ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency ... 2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National Institutes ...

  15. Special thermite cast irons

    Directory of Open Access Journals (Sweden)

    Yu. Zhiguts

    2008-07-01

    Full Text Available The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  16. Iron deficiency and cognition

    OpenAIRE

    Hulthén, Lena

    2003-01-01

    Iron deficiency is the most prevalent nutritional disorder in the world. One of the most worrying consequences of iron deficiency in children is the alteration of behaviour and cognitive performance. In iron-deficient children, striking behavioural changes are observed, such as reduced attention span, reduced emotional responsiveness and low scores on tests of intelligence. Animal studies on nutritional iron deficiency show effects on learning ability that parallel the human studies. Despite ...

  17. Alternative iron making routes

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, P.; Sharma, T. [Indian School of Mines, Dhanbad (India)

    2002-07-01

    The versatile route of iron production 'blast furnace' technique is being replaced by widely accepted Corex technology, Midrex process using Fastmelt ironmaking, eco-friendly Romelt process, more innovative Ausmelt & Hismelt technology, TATA KORF Mini blast furnace improvement, 'quickest iron through Orbiting Plasma', Direct iron ore smelting process, Conred, AISI-Hyl, Inred processes, Direct iron ore reduction methods, their comparison and proposed modifications. 18 refs., 11 figs., 14 tabs.

  18. Iron-Deficiency Anemia

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ... Institutes of Health—shows how Susan, a full-time worker and student, has coped with having iron- ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body. Low iron levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  2. The relativistic solar particle event of 2005 January 20: prompt and delayed particle acceleration

    CERN Document Server

    Klein, K -L; Bouratzis, C; Grechnev, V; Hillaris, A; Preka-Papadema, P

    2014-01-01

    The highest energies of solar energetic nucleons detected in space or through gamma-ray emission in the solar atmosphere are in the GeV range. Where and how the particles are accelerated is still controversial. We search for observational evidence on the acceleration region(s) by comparing the timing of relativistic protons detected at Earth and radiative signatures in the solar atmosphere. To this end a detailed comparison is undertaken of the double-peaked time profile of relativistic protons, derived from the worldwide network of neutron monitors during the large particle event of 2005 January 20, with UV imaging and radio petrography over a broad frequency band from the low corona to interplanetary space. We show that both relativistic proton releases to interplanetary space were accompanied by distinct episodes of energy release and electron acceleration in the corona traced by the radio emission and by brightenings of UV kernels in the low solar atmosphere. The timing of electromagnetic emissions and re...

  3. The GREGOR Broad-Band Imager

    Science.gov (United States)

    von der Lühe, O.; Volkmer, R.; Kentischer, T. J.; Geißler, R.

    2012-11-01

    The design and characteristics of the Broad-Band Imager (BBI) of GREGOR are described. BBI covers the visible spectral range with two cameras simultaneously for a large field and with critical sampling at 390 nm, and it includes a mode for observing the pupil in a Foucault configuration. Samples of first-light observations are shown.

  4. Broad resonances and beta-decay

    DEFF Research Database (Denmark)

    Riisager, K.; Fynbo, H. O. U.; Hyldegaard, S.;

    2015-01-01

    Beta-decay into broad resonances gives a distorted lineshape in the observed energy spectrum. Part of the distortion arises from the phase space factor, but we show that the beta-decay matrix element may also contribute. Based on a schematic model for p-wave continuum neutron states it is argued...

  5. Iron and the liver.

    Science.gov (United States)

    Pietrangelo, Antonello

    2016-01-01

    Humans have evolved to retain iron in the body and are exposed to a high risk of iron overload and iron-related toxicity. Excess iron in the blood, in the absence of increased erythropoietic needs, can saturate the buffering capacity of serum transferrin and result in non-transferrin-bound highly reactive forms of iron that can cause damage, as well as promote fibrogenesis and carcinogenesis in the parenchymatous organs. A number of hereditary or acquired diseases are associated with systemic or local iron deposition or iron misdistribution in organs or cells. Two of these, the HFE- and non-HFE hemochromatosis syndromes represent the paradigms of genetic iron overload. They share common clinical features and the same pathogenic basis, in particular, a lack of synthesis or activity of hepcidin, the iron hormone. Before hepcidin was discovered, the liver was simply regarded as the main site of iron storage and, as such, the main target of iron toxicity. Now, as the main source of hepcidin, it appears that the loss of the hepcidin-producing liver mass or genetic and acquired factors that repress hepcidin synthesis in the liver may also lead to iron overload. Usually, there is low-grade excess iron which, through oxidative stress, is sufficient to worsen the course of the underlying liver disease or other chronic diseases that are apparently unrelated to iron, such as chronic metabolic and cardiovascular diseases. In the future, modulation of hepcidin synthesis and activity or hepcidin hormone-replacing strategies may become therapeutic options to cure iron-related disorders.

  6. Decoupling of Iron and Phosphate in the Global Ocean

    Science.gov (United States)

    Parekh, Payal

    2003-01-01

    Iron is an essential micronutrient for marine phytoplankton, limiting their growth in high nutrient, low chlorophyll regions of the ocean. I use a hierarchy of ocean circulation and biogeochemistry models to understand controls on global iron distribution. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a phosphorus cycling model. Iron's aeolian source is prescribed. In the context of a highly idealized multi-box model scheme, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. This biogeochemical scheme is also implemented in a coarse resolution ocean general circulation model. This model also successfully reproduces the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean result from iron limitation in the model. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface phosphate response to increased aeolian dust flux. My box model and GCM results suggest that a global ten fold increase in dust flux can support a phosphate drawdown of 0.25-0.5 micromolar.

  7. Exact relativistic theory of geoid's undulation

    CERN Document Server

    Kopeikin, Sergei; Karpik, Alexander

    2014-01-01

    Precise determination of geoid is one of the most important problem of physical geodesy. The present paper extends the Newtonian concept of the geoid to the realm of Einstein's general relativity and derives an exact relativistic equation for the unperturbed geoid and level surfaces under assumption of axisymmetric distribution of background matter in the core and mantle of the Earth. We consider Earth's crust as a small disturbance imposed on the background distribution of matter, and formulate the master equation for the anomalous gravity potential caused by this disturbance. We find out the gauge condition that drastically simplifies the master equation for the anomalous gravitational potential and reduces it to the form closely resembling the one in the Newtonian theory. The master equation gives access to the precise calculation of geoid's undulation with the full account for relativistic effects not limited to the post-Newtonian approximation. The geoid undulation theory, given in the present paper, uti...

  8. Relativistic Magnetic Reconnection in the Laboratory

    CERN Document Server

    Raymond, A; McKelvey, A; Zulick, C; Alexander, N; Batson, T; Bhattacharjee, A; Campbell, P; Chen, H; Chvykov, V; Del Rio, E; Fitzsimmons, P; Fox, W; Hou, B; Maksimchuk, A; Mileham, C; Nees, J; Nilson, P M; Stoeckl, C; Thomas, A G R; Wei, M S; Yanovsky, V; Willingale, L; Krushelnick, K

    2016-01-01

    Magnetic reconnection is a fundamental plasma process involving an exchange of magnetic energy to plasma kinetic energy through changes in the magnetic field topology. In many astrophysical plasmas magnetic reconnection plays a key role in the release of large amounts of energy \\cite{hoshino1}, although making direct measurements is challenging in the case of high-energy astrophysical systems such as pulsar wind emissions \\cite{lyubarsky1}, gamma-ray bursts \\cite{thompson1}, and jets from active galactic nuclei \\cite{liu1}. Therefore, laboratory studies of magnetic reconnection provide an important platform for testing theories and characterising different regimes. Here we present experimental measurements as well as numerical modeling of relativistic magnetic reconnection driven by short-pulse, high-intensity lasers that produce relativistic plasma along with extremely strong magnetic fields. Evidence of magnetic reconnection was identified by the plasma's X-ray emission patterns, changes to the electron ene...

  9. Relativistic-microwave theory of ball lightning.

    Science.gov (United States)

    Wu, H-C

    2016-06-22

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  10. The internal structure of magnetized relativistic jets

    CERN Document Server

    Martí, José M; Gómez, José L

    2016-01-01

    This work presents the first characterization of the internal structure of overpressured steady superfast magnetosonic relativistic jets in connection with their dominant type of energy. To this aim, relativistic magnetohydrodynamic simulations of different jet models threaded by a helical magnetic field have been analyzed covering a wide region in the magnetosonic Mach number - specific internal energy plane. The merit of this plane is that models dominated by different types of energy (internal energy: hot jets; rest-mass energy: kinetically dominated jets; magnetic energy: Poynting-flux dominated jets) occupy well separated regions. The analyzed models also cover a wide range of magnetizations. Models dominated by the internal energy (i.e., hot models, or Poynting-flux dominated jets with magnetizations larger than but close to 1) have a rich internal structure characterized by a series of recollimation shocks and present the largest variations in the flow Lorentz factor (and internal energy density). Conv...

  11. Relativistic internally contracted multireference electron correlation methods

    CERN Document Server

    Shiozaki, Toru

    2015-01-01

    We report internally contracted relativistic multireference configuration interaction (ic-MRCI), complete active space second-order perturbation (CASPT2), and strongly contracted n-electron valence state perturbation theory (NEVPT2) on the basis of the four-component Dirac Hamiltonian, enabling accurate simulations of relativistic, quasi-degenerate electronic structure of molecules containing transition-metal and heavy elements. Our derivation and implementation of ic-MRCI and CASPT2 are based on an automatic code generator that translates second-quantized ans\\"atze to tensor-based equations, and to efficient computer code. NEVPT2 is derived and implemented manually. The rovibrational transition energies and absorption spectra of HI and TlH are presented to demonstrate the accuracy of these methods.

  12. Relativistic mean field for nuclear periphery

    Science.gov (United States)

    Gambhir, Y. K.; Bhagwat, A. A.

    2002-09-01

    The antiproton annihilation experiments help to extract so-called peripheral factors representing the ratio of neutron to proton densities at the annihilation site that is about 2.5 fm away from the half-density radius of the nucleus. The relativistic mean field (RMF) approach is used to calculate the peripheral factors. The RMF equations (with frozen gap) and relativistic Hartree-Bogoliubov (RHB) equations (with finite range Gogny interaction-D1S for pairing) are solved employing the basis expansion method. The RHB equations are also solved in the coordinate space using a large box (30 fm); with an effective zero range density dependent interaction (consistent with Gogny D1S interaction) for pairing. The results are analyzed to ascertain quantitatively the effect of using these different techniques for solving the RMF/RHB equations. The calculated peripheral factors obtained by solving RHB equations in the coordinate space are relatively closer to the corresponding experimental values.

  13. Relativistic Rotation: A Comparison of Theories

    CERN Document Server

    Klauber, R D

    2006-01-01

    Alternative theories of relativistic rotation considered viable as of 2004 are compared in the light of experiments reported in 2005. En route, the contentious issue of simultaneity choice in rotation is resolved by showing that only one simultaneity choice, the one possessing continuous time, gives rise, via the general relativistic equation of motion, to the correct Newtonian limit Coriolis acceleration. In addition, the widely dispersed argument purporting to justify an absolute Lorentz contraction in rotation is analyzed and found lacking for more than one reason. It is argued that only via experiment can we know whether such absolute contraction exists in rotation or not. The Coriolis/simultaneity correlation, and the results of the 2005 experiments, support the Selleri theory as being closest to the truth, though it is incomplete in a more general applicability sense, because it does not provide a global metric. Two alternatives, a modified Klauber approach and a Selleri-Klauber hybrid, are presented wh...

  14. Diffraction radiation from relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Potylitsyna, N.A. E-mail: nata@interact.phtd.tpu.edu.ru

    2001-01-01

    In recent years, the relativistic heavy ion beams at new accelerator facilities are allowed to obtain some new interesting results (see, for instance, Datz et al., Phys. Rev. Lett. 79 (18) (1997) 3355; Ladyrin et al., Nucl. Instr. and Meth. A 404 (1998) 129). The problem of non-destructive heavy ion beam diagnostics at these accelerators is highly pressing. The authors of the papers (Rule et al., Proceedings of the Seventh Beam Instrumentation Workshop, Argonne IL, AIP Conference Proceedings, Vol. 390, NY, 1997; Castellano, Nucl. Instr. and Meth. A 394 (1997) 275) suggested to use diffraction radiation (DR) appearing when a charge moves close to a conducting surface (Bolotovskii and Voskresenskii, Sov. Phys. Usp. 9 (1966) 73) for non-destructive electron beam diagnostics. The DR characteristics are defined by both Lorentz-factor and the particle charge, and do not depend on its mass. The estimation of feasibility of using DR for relativistic ion beam diagnostics is undoubtedly interesting.

  15. Relativistic-microwave theory of ball lightning.

    Science.gov (United States)

    Wu, H-C

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835

  16. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  17. Relativistic Lagrangian displacement field and tensor perturbations

    CERN Document Server

    Rampf, Cornelius

    2014-01-01

    We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the fundamental Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully non-perturbative approach based on the ADM split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the non-perturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve for gravitational waves in the relativistic analysis,...

  18. Path integration in relativistic quantum mechanics

    CERN Document Server

    Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo

    1993-01-01

    The simple physics of a free particle reveals important features of the path-integral formulation of relativistic quantum theories. The exact quantum-mechanical propagator is calculated here for a particle described by the simple relativistic action proportional to its proper time. This propagator is nonvanishing outside the light cone, implying that spacelike trajectories must be included in the path integral. The propagator matches the WKB approximation to the corresponding configuration-space path integral far from the light cone; outside the light cone that approximation consists of the contribution from a single spacelike geodesic. This propagator also has the unusual property that its short-time limit does not coincide with the WKB approximation, making the construction of a concrete skeletonized version of the path integral more complicated than in nonrelativistic theory.

  19. Awaking the vacuum in relativistic stars

    CERN Document Server

    Lima, William C C; Vanzella, Daniel A T

    2010-01-01

    Void of any inherent structure in classical physics, the vacuum has revealed to be incredibly crowded with all sorts of processes in relativistic quantum physics. Yet, its direct effects are usually so subtle that its structure remains almost as evasive as in classical physics. Here, in contrast, we report on the discovery of a novel effect according to which the vacuum is compelled to play an unexpected central role in an astrophysical context. We show that the formation of relativistic stars may lead the vacuum energy density of a quantum field to an exponential growth. The vacuum-driven evolution which would then follow may lead to unexpected implications for astrophysics, while the observation of stable neutron-star configurations may teach us much on the field content of our Universe.

  20. Relativistic Positioning Systems: The Emission Coordinates

    CERN Document Server

    Coll, B; Coll, Bartolom\\'{e}; Pozo, Jos\\'{e} Mar\\'{I}a

    2006-01-01

    This paper introduces some general properties of the gravitational metric and the natural basis of vectors and covectors in 4-dimensional emission coordinates. Emission coordinates are a class of space-time coordinates defined and generated by 4 emitters (satellites) broadcasting their proper time by means of electromagnetic signals. They are a constitutive ingredient of the simplest conceivable relativistic positioning systems. Their study is aimed to develop a theory of these positioning systems, based on the framework and concepts of general relativity, as opposed to introducing `relativistic effects' in a classical framework. In particular, we characterize the causal character of the coordinate vectors, covectors and 2-planes, which are of an unusual type. We obtain the inequality conditions for the contravariant metric to be Lorentzian, and the non-trivial and unexpected identities satisfied by the angles formed by each pair of natural vectors. We also prove that the metric can be naturally split in such...

  1. Corrugation of relativistic magnetized shock waves

    CERN Document Server

    Lemoine, M; Gremillet, L

    2016-01-01

    As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophys...

  2. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  3. Hydrodynamics of ultra-relativistic bubble walls

    CERN Document Server

    Leitao, Leonardo

    2015-01-01

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss on the extrapolation of the friction force away from the ultra-relativistic limit.

  4. More about the S=1 relativistic oscillator

    CERN Document Server

    Dvoeglazov, V V

    2000-01-01

    Following to the lines drawn in my previous paper about the S=0 relativistic oscillator I build up an oscillatorlike system which can be named as the S=1 Proca oscillator. The Proca field function is obtained in the framework of the Bargmann-Wigner prescription and the interaction is introduced similarly to the S=1/2 Dirac oscillator case regarded by Moshinsky and Szczepaniak. We obtained the intriguing rule of quantization: E = \\hbar ømega /2 for the parity states (-1)^j and E = \\pm \\hbar ømega (j+1/2) for the parity states -(-1)^j. There are no radial excitations. Finally, I apply the above-mentioned procedure to the case of the two-body relativistic oscillator.

  5. Newtonian view of general relativistic stars

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.M. [Instituto Federal do Espirito Santo (IFES), Grupo de Ciencias Ambientais e Recursos Naturais, Guarapari (Brazil); Velten, H.E.S.; Fabris, J.C. [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica, Vitoria (Brazil); Salako, I.G. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin)

    2014-11-15

    Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore cannot be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian, and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars' equations of state. (orig.)

  6. Hydrodynamic Approaches in Relativistic Heavy Ion Reactions

    CERN Document Server

    de Souza, Rafael Derradi; Kodama, Takeshi

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation with the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to...

  7. Simulations of substructures in relativistic jets

    CERN Document Server

    Garcia, R O

    2016-01-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with a new code in Fortran 90 to get numerical solutions of a system of General Relativistic Magnetohydrodynamics (GRMHD) partial differential equations in a fixed Black Hole (BH) spacetime which is able to show substructures formations inside the jet as well as a lobe formation on the disk. For this, a central scheme of finite volume method without dimensional split and no Riemann solvers (a Nessyahu-Tadmor method) was implemented. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and no excessive numerical dissipation. We setup a magnetized accretion disk uncharged plasma surrounding a central Schwarzschild BH immersed in a magnetosphere which evolve to the ejection of matter in the form of jet with its substructures over a distance of almost twenty times the BH radius.

  8. Effects of relativistic corrections in deuteron electrodisintegration

    International Nuclear Information System (INIS)

    The influence of relativistic corrections to the electromagnetic current operators on various observables in deuteron electro disintegration is studied for different kinematic conditions. An appreciable relativistic effect has been found, in particular, for the azimuthal asymmetry of the 2 H (e,e'p)n cross section in the quasi-free region. The sensitivity of outgoing neutron polarization and beam-target asymmetry in the two-body break-up of unpolarized and vector polarized deuterons by longitudinally polarized electrons to the choice of the model for the neutron charge form factor is discussed. The results of calculations are compared with the data on the e'p-coincidence cross sections measured at Bonn as well as obtained at Amsterdam and Saclay in experiments with a separate determination of individual structure functions. 30 refs., 9 figs

  9. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  10. Stochastic oscillations of general relativistic disks

    CERN Document Server

    Harko, Tiberiu

    2012-01-01

    We analyze the general relativistic oscillations of thin accretion disks around compact astrophysical objects interacting with the surrounding medium through non-gravitational forces. The interaction with the external medium (a thermal bath) is modeled via a friction force, and a random force, respectively. The general equations describing the stochastically perturbed disks are derived by considering the perturbations of trajectories of the test particles in equatorial orbits, assumed to move along the geodesic lines. By taking into account the presence of a viscous dissipation and of a stochastic force we show that the dynamics of the stochastically perturbed disks can be formulated in terms of a general relativistic Langevin equation. The stochastic energy transport equation is also obtained. The vertical oscillations of the disks in the Schwarzschild and Kerr geometries are considered in detail, and they are analyzed by numerically integrating the corresponding Langevin equations. The vertical displacement...

  11. Recent results on relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Inst. de Fisica

    2013-07-01

    Full text: The study of relativistic heavy ion collisions is a very important tool in order to understand the strong interaction described by QCD. The formation of the Quark-Gluon Plasma and the study of its properties is a very challenging quest. The Large Hadron Collider (LHC) from CERN (European Organization for Nuclear Research) generates ultra-relativistic Pb + Pb collisions at the TeV scale inaugurating a new era for such studies. Three experiments, ATLAS, CMS and ALICE are able to measure the products of such collisions. In special, the ALICE experiment was designed specifically for the study of heavy ion collisions. In this presentation, I'll discuss the latest results that shed light in the QGP understanding. (author)

  12. The host galaxies of AGN with powerful relativistic jets

    Science.gov (United States)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.310^27 WHz^-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4GHz = 10^23.7 - 10^28.3WHz^-1, allowing us to divide our sample into high-excitation (quasar-mode; HERGs) and low-excitation (radio-mode; LERGs) radio galaxies. The host galaxies of our sample are bright and seem to follow the Kormendy relation. Nuclear emission (dominated by non-thermal mechanisms) and host-galaxy magnitudes show a slightly negative weak trend for LERGs. On the other hand, the m_bulge -m_nuc relation is statistically significant for HERGs. Although it may be affected by selection effects, this correlation suggests a close coupling between the relativistic jets and their host galaxy. Our findings are consistent with the excitation state (LERG/HERG) scenario. In this view, LERGs emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and HERGs are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  13. Characterisation of ion acceleration with relativistic laser-plasmas

    International Nuclear Information System (INIS)

    The presented work investigates the processes which lead to the generation of ion beams by means of relativistic laser-plasma interaction. For this purpose, specific methods have been developed that serve to characterize, observe, and consequently optimize the ion acceleration process. A series of scaling laws was derived which, for the first time, treat the dependency of the ion acceleration on the laser intensity explicitly in its components laser energy, pulse duration, and focus area. Furthermore, an all-optical observation technique was developed which allows to directly observe and analyze the hot electron population responsible for the ion acceleration with a temporal resolution matching that of the laser pulse itself, enabling for the first time the complete characterization and optimization of the accelerating fields, the electron temperature, and the conversion efficiency from laser energy into kinetic energy of the electrons. With a unique staged acceleration setup, the first proof of the additivity of the laser-based ion acceleration process was achieved, granting reliable spectral control over the produced narrow-band beams. Supported by numerical simulations, a detailed theoretical model is introduced which allows to explain the experimental observations of this additive ion acceleration satisfactorily. The presented results have broad implications beyond mere fundamental research. Applications for compact and competitive laser-based ion accelerators with partially unique properties are versatile, and include, for example, the combination with conventional accelerator technology, the generation of secondary radiation, material processing, and medical radiology. (orig.)

  14. The double Compton emissivity in a mildly relativistic thermal plasma within the soft photon limit

    CERN Document Server

    Chluba, J; Sunyaev, R A

    2006-01-01

    We wish to provide simple and accurate analytic approximations for the low frequency double Compton (DC) emission coefficient, which are applicable in a broad range of physical situations up to mildly relativistic temperatures and may be useful for checking under which circumstances the double Compton process is important. We perform series expansions of the DC emission integral for low energies of the incident photon and electron and compare the derived analytic expressions with the results obtained by numerical integrations of the full DC cross section. We explicitly derived analytic approximations to the low frequency double Compton emission coefficient for initial monochromatic photons and Wien spectra. We show that combining the analytic approximations given in this paper an accuracy of better than 5% in a very broad range of temperatures and under various physical conditions can be achieved. Furthermore we show that the double Compton emissivity strongly depends on the ratio of the energies of the incom...

  15. Relativistic Toda chain at root of unity

    OpenAIRE

    Pakuliak, S.; Sergeev, S.

    2001-01-01

    We declare briefly several interesting features of the quantum relativistic Toda chain at N-th root of unity. We consider the finite dimensional representation of the Weyl algebra. The origin of the features mentioned is that we consider simultaneously the quantum finite dimensional part and the classical dynamics of N-th powers of Weyl's elements. As the main result, using the technique of Q-operators, we establish a correspondence between the separation of variables in the quantum model and...

  16. Relativistic point interactions: Approximation by smooth potentials

    Science.gov (United States)

    Hughes, Rhonda J.

    1997-06-01

    We show that the four-parameter family of one-dimensional relativistic point interactions studied by Benvegnu and Dąbrowski may be approximated in the strong resolvent sense by smooth, local, short-range perturbations of the Dirac Hamiltonian. In addition, we prove that the nonrelativistic limits correspond to the Schrödinger point interactions studied extensively by the author and Paul Chernoff.

  17. Supersymmetric solutions for non-relativistic holography

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)

    2009-01-15

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  18. Relativistic Density Functional Treatment of Magnetic Anisotropy

    OpenAIRE

    Zhang, Hongbin

    2009-01-01

    Spin-orbit coupling (SOC) reduces the spatial symmetry of ferromagnetic solids. That is, the physical properties of ferromagnetic materials are anisotropic, depending on the magnetization direction. In this thesis, by means of numerical calculations with full-relativistic density functional theory, we studied two kinds of physical properties: surface magnetic anisotropy energy (MAE) and anisotropic thermoelectric power due to Lifshitz transitions. After a short introduction to ...

  19. Two centre problems in relativistic atomic physics

    OpenAIRE

    McConnell, Sean R.

    2012-01-01

    The work contained within this thesis is concerned with the explanation and usage of a set of theoretical procedures for the study of static and dynamic two–centre problems in the relativistic framework of Dirac’s equation. Two distinctly different theories for handling time–dependent atomic interactions are reviewed, namely semi–classical perturbation theory and a non–perturbative numerical technique based on the coupled channel equation to directly solve the time–dependent, two–centre Dirac...

  20. L-shell ionization by relativistic electrons

    International Nuclear Information System (INIS)

    Measurements of the relative x-ray production cross-sections Lsub(α)/Lsub(l), Lsub(β)/Lsub(α) and Lsub (γ)/Lsub(α) by relativistic electrons for the heavy elements Gd, Tm, Ta, Au, Pb, Bi and Th have been carried out. The ratios Lsub(β)/Lsub(α) and Lsub(α)/Lsub (l), are compared with previous experimental and theoretical work

  1. Synchrotron radiation of a relativistic magneton

    Energy Technology Data Exchange (ETDEWEB)

    Bordovitsyn, V.A.; Torres, R.

    1986-11-01

    The classical theory of synchrotron radiation of an electrically neutral relativistic particle with a large intrinsic magnetic moment is considered (g-factor much greater than unit). The spectral-angular composition and polarization of the radiation are studied. The magneton radiation self-polarization time is calculated. It is shown that identical results follow from the Ternov-Bagrov-Khapaev quantum theory constructed on the basis of the Dirac-Pauli equation for a neutron.

  2. Interferometric Measurement of Acceleration at Relativistic Speeds

    CERN Document Server

    Christian, Pierre

    2016-01-01

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional "mass-on-a-spring" accelerometers. In an interstellar mission to Alpha-Centauri, such an accelerometer could be used to measure the masses of planets around other stars as well as the mass distribution of the Milky Way Galaxy.

  3. Relativistic models of magnetars: Nonperturbative analytical approach

    CERN Document Server

    Yazadjiev, Stoytcho

    2011-01-01

    In the present paper we focus on building simple nonperturbative analytical relativistic models of magnetars. With this purpose in mind we first develop a method for generating exact interior solutions to the static and axisymmetric Einstein-Maxwell-hydrodynamic equations with anisotropic perfect fluid and with pure poloidal magnetic field. Then using an explicit exact solution we present a simple magnetar model and calculate some physically interesting quantities as the surface elipticity and the total energy of the magnetized star.

  4. Modelling collisions in a relativistic plasma

    CERN Document Server

    Noble, Adam

    2009-01-01

    Generalising the work of Lenard and Bernstein, we introduce a new, fully relativistic model to describe collisional plasmas. Like the Fokker-Planck operator, this equation represents velocity diffusion and conserves particle number. However, unlike the Fokker-Planck operator it is linear in the distribution function, and so more amenable to a fluid treatment. By taking moments, we derive a new fluid model, and demonstrate the damping effects of collisions on Langmuir waves.

  5. Relativistic theory of tidal Love numbers

    OpenAIRE

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neut...

  6. An HLLC Solver for Relativistic Flows

    CERN Document Server

    Mignone, A

    2005-01-01

    We present an extension of the HLLC approximate Riemann solver by Toro, Spruce and Speares to the relativistic equations of fluid dynamics. The solver retains the simplicity of the original two-wave formulation proposed by Harten, Lax and van Leer (HLL) but it restores the missing contact wave in the solution of the Riemann problem. The resulting numerical scheme is computationally efficient, robust and positively conservative. The performance of the new solver is evaluated through numerical testing in one and two dimensions.

  7. Relativistic Accretion Mediated by Turbulent Comptonization

    OpenAIRE

    Socrates, Aristotle

    2008-01-01

    Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in t...

  8. Collective dynamics in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    I will review the current status of describing spacetime evolution of the relativistic nuclear collisions with fluid dynamics, and of determining the transport coefficients of strongly interacting matter. The fluid dynamical models suggest that shear viscosity to entropy density ratio of the matter is small. However, there are still considerable challenges in determining the transport coefficients, and especially their temperature dependence is still poorly constrained

  9. Using MUSIC to study relativistic nuclear collisions

    International Nuclear Information System (INIS)

    A large Multiple Sampling Ionization Chamber (MUSIC) has been developed as a part of the Heavy Ion Spectrometer System (HISS). This facility is being used for the study of relativistic nuclear collisions at the Bevalac of Lawrence Berkeley Laboratory. Preliminary data from MUSIC indicate that a charge resolution of one unit should be achieved from Z approximately equal to 7 to Z approximately equal to 100. (author)

  10. Relativistic Lagrangian displacement field and tensor perturbations

    OpenAIRE

    Rampf, C.; Wiegand, A.

    2014-01-01

    We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the fundamental Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully non-perturbative approach based on the ADM split. The la...

  11. Relativistic Electron Transport Through Carbon Foils

    Science.gov (United States)

    Seliger, M.; Takasi, K.; Reinhold, C. O.; Takabayashi, Y.; Ito, T.; Komaki, K.; Azuma, T.; Yamazaki, Y.; Yamazaki, Y.

    We present a theoretical study of convoy electron emission resulting from transmission of relativistic 390 MeV/amu Ar17+ ions through carbon foils of various thicknesses. Our approach is based on a Langevin equation describing the random walk of the electron initially bound to the argon nucleus and later in the continuum. The calculated spectra of ejected electrons in the forward direction exhibit clear signatures of multiple scattering and are found to be in good agreement with recent experimental data.

  12. Higher-order methods for relativistic magnetohydrodynamics

    OpenAIRE

    Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter

    2014-01-01

    A higher-order finite volume method based on WENO7 reconstruction for solving the relativistic magnetohydrodynamics equations in two-dimensional domains is presented. In the presence of strong shocks, a WENO3 reconstruction is used instead. The time discretization is performed by a Strong Stability-Preserving Runge-Kutta method of fourth order. Numerical results include the Orszag-Tang vortex, the Rotor problem and the Spherical Blast Wave problem.

  13. Relativistic Conformal Magneto-Hydrodynamics from Holography

    OpenAIRE

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1) dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in e...

  14. Non-explosion criteria for relativistic diffusions

    CERN Document Server

    Bailleul, Ismael

    2010-01-01

    General Lorentz covariant operators, associated to so-called $\\Theta$(or $\\Xi$)-relativistic diffusions, and making sense in any Lorentz manifold, were introduced by Franchi and Le Jan in [F-LJ-1], [F-LJ-2]. Only a few examples have been studied. We provide in this work non-explosion criteria for these diffusions, which can be used in generic cases.

  15. Relativistic symmetry breaking in light kaonic nuclei

    OpenAIRE

    Yang, Rong-Yao; Jiang, Wei-Zhou; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na

    2014-01-01

    As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkabl...

  16. A New Maneuver Against the Epistemic Relativist

    OpenAIRE

    Carter, J. Adam; Gordon, Emma C.

    2014-01-01

    Epistemic relativists often appeal to an epistemic incommensurability thesis. One notable example is the position advanced by Wittgenstein in On Certainty (1969). However, Ian Hacking’s radical denial of the possibility of objective epistemicreasons for belief poses, we suggest, an even more forceful challenge to mainstream meta-epistemology. Our central objective will be to develop a novel strategy for defusing Hacking’s line of argument. Specifically, we show that the epistemic incommensura...

  17. Non relativistic predictions for proton decay

    International Nuclear Information System (INIS)

    We examine proton decay in a non-relativistic approximation for quarks, which is expected to provide a good guide-line in studying explicit branching ratios and total lifetimes. The Grand Unification schemes considered are SU(5) and SO(10). We obtain algebraic relations, SU(6) relations, between the matrix elements coming from spin-flavor symmetries. Important differences are found when compared to previous calculations

  18. [Iron function and carcinogenesis].

    Science.gov (United States)

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models.

  19. Numerical Evolution of General Relativistic Voids

    CERN Document Server

    Vadas, S L

    1993-01-01

    In this paper, we study the evolution of a relativistic, superhorizon-sized void embedded in a Friedmann-Robertson-Walker universe. We numerically solve the spherically symmetric general relativistic equations in comoving, synchronous coordinates. Initially, the fluid inside the void is taken to be homogeneous and nonexpanding. In a radiation- dominated universe, we find that radiation diffuses into the void at approximately the speed of light as a strong shock---the void collapses. We also find the surprising result that the cosmic collapse time (the $1^{\\rm st}$-crossing time) is much smaller than previously thought, because it depends not only on the radius of the void, but also on the ratio of the temperature inside the void to that outside. If the ratio of the initial void radius to the outside Hubble radius is less than the ratio of the outside temperature to that inside, then the collapse occurs in less than the outside Hubble time. Thus, superhorizon-sized relativistic void may thermalize and homogeni...

  20. Hydrodynamic approaches in relativistic heavy ion reactions

    Science.gov (United States)

    Derradi de Souza, R.; Koide, T.; Kodama, T.

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.