WorldWideScience

Sample records for broad band ultraviolet

  1. Spectral and Broad Band Ultraviolet Measurements in Valencia (Spain): A Preliminary Comparison

    International Nuclear Information System (INIS)

    Tena, F.; Marin, M.J.; Martinez-Lozano, J.A.; Utrillas, M.P.; Gomez, J.L.

    2000-01-01

    The Solar Radiation Group of the University of Valencia, in collaboration with the National Institute of Meteorology (INM), recently began a database of erythemal UV irradiance measurements. Such measurements are obtained by a YES UVB-1 pyranometer (280-330 nm) that measures continuously, integrates the values and stores them in a database. The measured values are being compared with those obtained by the integration of the data registered by an Optronic OL 754 spectroradiometer (250-800 nm) considering clear days and different solar zenith angles. For the present study only the data corresponding to the summer (1999) are being considered because these are the days of the year with the higher erythemal values and also the season when people enjoy sunbathing. The results are used to deduce the ultraviolet index (UVI) related to the erythemal doses and the sunburn time. (author)

  2. Spectral and Broad Band Ultraviolet Measurements in Valencia (Spain): A Preliminary Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Tena, F.; Marin, M.J.; Martinez-Lozano, J.A.; Utrillas, M.P.; Gomez, J.L

    2000-07-01

    The Solar Radiation Group of the University of Valencia, in collaboration with the National Institute of Meteorology (INM), recently began a database of erythemal UV irradiance measurements. Such measurements are obtained by a YES UVB-1 pyranometer (280-330 nm) that measures continuously, integrates the values and stores them in a database. The measured values are being compared with those obtained by the integration of the data registered by an Optronic OL 754 spectroradiometer (250-800 nm) considering clear days and different solar zenith angles. For the present study only the data corresponding to the summer (1999) are being considered because these are the days of the year with the higher erythemal values and also the season when people enjoy sunbathing. The results are used to deduce the ultraviolet index (UVI) related to the erythemal doses and the sunburn time. (author)

  3. Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability

    Science.gov (United States)

    Edelson, R. A.; Pike, G. F.; Krolik, J. H.

    1990-01-01

    A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.

  4. Broad-band beam buncher

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1986-01-01

    This patent describes a broad-band beam buncher. This beam buncher consists of: a housing adapted to be eacuated, an electron gun in the housing for producing a beam of electrons, buncher means in the housing forming a buncher cavity which has an entrance opening for receiving the electron beam and an exit opening through which the electron beam passes out of the buncher cavity, a drift tube electrode in the buncher cavity and disposed between the entrance opening and the exit opening with first and second gaps between the drift tube electrode and the entrance and exit openings, the drift tube electrode which has a first drift space through which the electron beam passes in traveling between the entrance and exit openings, modulating means for supplying an ultrahigh frequeny modulating signal to the drift tube electrode for producing velocity modulation of the electrons in the electron beam as the electrons pass through the buncher cavity and the drift tube electrode between the entrance opening and the exit opening, drift space means in the housing forming a second drift space for receiving the velocity modulated electron beam from the exit opening, the velocity modulated electron beam being bunched as it passes along the second drift space, the drift space means has a discharge opening through which the electron beam is discharged from the second drift space after being bunched therein, the modulating means containing a signal source for producing an ultrahigh frequency signal, a transmission line connected between the signal source and the drift tube electrode, and terminating means connected to the drift tube electrode for terminating the transmission line in approximately its characteristic impedance to afford a broad response band with minimum 6 variations therein

  5. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  6. Detection of broad ultraviolet Fe II lines in the spectrum of NGC 1068

    International Nuclear Information System (INIS)

    Snijders, M.A.J.; Netzer, Hagai; Boksenberg, A.

    1986-01-01

    Ultraviolet observations of the nucleus of NGC 1068, obtained by the IUE over a period of 5 yr, are combined to give a high signal-to-noise spectrum of this source. The ultraviolet stellar continuum, obtained by comparison with ground-based data, is subtracted to show the nuclear non-stellar component. The resulting spectrum shows clearly the presence of strong broad FeII emission bands similar to those observed in many broad-line objects. Broad profiles are also seen in other strong emission lines. These observations confirm the recent discovery of an optical Seyfert type 1 spectrum in NGC 1068. (author)

  7. Manta A New BroadBand OBS

    Science.gov (United States)

    Hello, Y.; Yegikyan, M.; Charvis, P.; Philippe, O.

    2017-12-01

    Manta is a new BroadBand OBS developed at Geoazur and commercialized by Osean. The design is inspired by 3-years autonomy MUG-OBS a Multiparameter Ocean Bottom System which carry a lot of sort of sensor types. As Mug-OBS, Manta-OBS rated 6000m is designed to resist a trawling. All the components are non corrosive such polyethylene, titanium and buoyancy is ensured by syntactic foam. Equipped in standard version with a Trillium compact OBS Manta has an autonomy of 18 months, but can accept on its 4 input channels any kind of signal as low as from an hydrophone or larger from other type of a seismometer or accelerometer. Tri-axial geophones unit (2 Hz or 4.5 Hz ) can replace the seismometer and will expend the lifespan for the instrument. The seismometer is encapsulated in a central well established by four panels of the main structure to protect it from sea current convection and is decoupled from main chassis. An health bulletin is recoverable by acoustic any time to facilitate the installation and during a visit when instrument is deployed. Main parameters for acquisition can be changed by acoustics command from surface at any time. Once at the bottom, release for the main sensor installation is programmed on a timer but controlled by the tilt of the OBS. If the tilt is too important based on programmed limits, sensor will not released automatically, but this can be forced by acoustic command after returning the tilt informations to the boat operator. Manta is equipped with flash light and AIS system for easy location at recovery, and can also send it's position by Iridium satellite in case of an unexpected ascent such caused by a possible trawling if deployed in shallow water. Clock drift calculation is automatically made against GPS time signal once the OBS return at the surface. The recovery of the OBS is initiated by an acoustic command. These new features made Manta a very versatile instrument for monitoring earthquakes.

  8. Broad-Band Variability in Accreting Compact Objects

    Directory of Open Access Journals (Sweden)

    S. Scaringi

    2015-02-01

    Full Text Available Cataclysmic variable stars are in many ways similar to X-ray binaries. Both types of systems possess an accretion disk, which in most cases can reach the surface (or event horizon of the central compact object. The main difference is that the embedded gravitational potential well in X-ray binaries is much deeper than those found in cataclysmic variables. As a result, X-ray binaries emit most of their radiation at X-ray wavelengths, as opposed to cataclysmic variables which emit mostly at optical/ultraviolet wavelengths. Both types of systems display aperiodic broad-band variability which can be associated to the accretion disk. Here, the properties of the observed X-ray variability in XRBs are compared to those observed at optical wavelengths in CVs. In most cases the variability properties of both types of systems are qualitatively similar once the relevant timescales associated with the inner accretion disk regions have been taken into account. The similarities include the observed power spectral density shapes, the rms-flux relation as well as Fourier-dependant time lags. Here a brief overview on these similarities is given, placing them in the context of the fluctuating accretion disk model which seeks to reproduce the observed variability.

  9. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-01-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition

  10. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity...... of the multilayer is found to agree extraordinarily well with theory (assuming an interface roughness of 4.5 Angstrom), while the agreement for the gold film is less, The overall performance of the supermirror is superior to that of gold, extending the band of reflection at least a factor of 2.8 beyond...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....

  11. Broad-Band Analysis of Polar Motion Excitations

    Science.gov (United States)

    Chen, J.

    2016-12-01

    Earth rotational changes, i.e. polar motion and length-of-day (LOD), are driven by two types of geophysical excitations: 1) mass redistribution within the Earth system, and 2) angular momentum exchange between the solid Earth (more precisely the crust) and other components of the Earth system. Accurate quantification of Earth rotational excitations has been difficult, due to the lack of global-scale observations of mass redistribution and angular momentum exchange. The over 14-years time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) have provided a unique means for quantifying Earth rotational excitations from mass redistribution in different components of the climate system. Comparisons between observed Earth rotational changes and geophysical excitations estimated from GRACE, satellite laser ranging (SLR) and climate models show that GRACE-derived excitations agree remarkably well with polar motion observations over a broad-band of frequencies. GRACE estimates also suggest that accelerated polar region ice melting in recent years and corresponding sea level rise have played an important role in driving long-term polar motion as well. With several estimates of polar motion excitations, it is possible to estimate broad-band noise variance and noise power spectra in each, given reasonable assumptions about noise independence. Results based on GRACE CSR RL05 solutions clearly outperform other estimates with the lowest noise levels over a broad band of frequencies.

  12. The broad-band overlap problem in atmospheric trace gases

    International Nuclear Information System (INIS)

    Subasilar, B.

    1991-01-01

    In relation to a better understanding of climate change and the related greenhouse problem, one way of projecting for the next decades is through general circulation models (GCMs). The only input as a driving force in the changing atmospheric and oceanic circulation patterns is the amount of heat perturbation either due to natural or man-caused activities. Among these, CO 2 concentrations resulting from the latter has been observed to be accelerating at alarmingly high rates especially after the advent of the industrialization which just began in the last century. In addition to that, collective effects of other greenhouse gases (freons, SO 2 , H 2 O, CH 4 , etc.) are as important as CO 2 . Hence, it is evident from the above considerations that, in the predictions of climate models, the heat input which triggers changes in the atmospheric patterns, should be formulated accurately. In order to realize this objective, in this research, beginning with the available line parameter data, the problems of absorption have been investigated and attacked in the frame known as the broad band modeling since that is the only best and fastest manageable representation for GCMs. The first step was the construction of a full broad band (intra band overlap) model that was also flexible enough to accommodate the individual peculiarities of the bands. Before, the well known and very useful Ramanathan model had a limited applicability in the concentration scale, and it was also not systematically or successfully incorporated into an inter band overlap picture. Then, the established ideas that served as bases up to present, have been employed but found to have a limited practical applicability when it came to predict the inter band overlaps

  13. Strong overtones and combination bands in ultraviolet resonance Raman spectroscopy

    NARCIS (Netherlands)

    Efremov, E.V.; Ariese, F.; Mank, A.J.G.; Gooijer, C.

    2006-01-01

    Ultraviolet resonance Raman spectroscopy is carried out using a continuous wave frequency-doubled argon ion laser operated at 229, 244, and 257 nm in order to characterize the overtones and combination bands for several classes of organic compounds in liquid solutions. Contrary to what is generally

  14. Broad-band spectrophotometry of HAT-P-32 b

    DEFF Research Database (Denmark)

    Mallonn, M.; Bernt, I.; Herrero, E.

    2016-01-01

    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previou...... makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes....

  15. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    Science.gov (United States)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  16. Empirical relationship of ultraviolet extinction and the interstellar diffuse bands

    International Nuclear Information System (INIS)

    Wu, C.; York, D.G.; Snow, T.P.

    1981-01-01

    New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (lambdalambda4430, 5780, 6284) to the overall extinction curve. Equivalent widths of lambdalambda5780 and 6284 are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in our sample. The central depth of lambda4430 is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. lambda4430 is strongly correlated with the strength of the 2200-A bump. Our data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. lambda4430 may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as we are attempting

  17. SKS splitting observed at Romanian broad-band seismic network

    Science.gov (United States)

    Ivan, Marian; Popa, Mihaela; Ghica, Daniela

    2008-12-01

    Shear-wave splitting results are presented for the broad-band stations of the Romanian seismic network. For stations BUC1 and CRAR (located in Moesian Platform), IAS (in East-European Platform), TIRR and CVD (in Central Dobrudja-Black Sea microplate), TIM and DRGR (in Dacia-Tisza plate, including Apuseni Mts.), BURAR, BZS and GZR (in, or very close to the Carpathian Arc), the fast directions ( φ) are around 135°. The mean delay values ( δt) of the slow wave are slightly greater for the stations placed in platform areas ( δt ~ 1.5 s) than for the stations situated in the (proximity) of Carpathians ( δt ~ 1.2 s). For the MLR station located in the South-Western part of Vrancea area, at the Carpathian Bend, the fast direction is 48°, similar to VOIR station (located in Southern Carpathians, 70 km West of MLR). At VRI and PLOR, located in the North-Eastern part of Vrancea, the fast axis is oriented approximately on North-South direction, with a possible dependence of the splitting parameters with back azimuth. At least for some stations, the splitting results are not consistent with vertical coherent lithospheric anisotropy.

  18. Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films

    International Nuclear Information System (INIS)

    Karakuscu, Aylin; Guider, Romain; Pavesi, Lorenzo; Soraru, Gian Domenico

    2011-01-01

    Strong broad band tunable visible emission of SiBOC ceramic films is reported and the results are compared with one of boron free SiOC ceramic films. The insertion of boron into the SiOC network is verified by Fourier-Transform Infrared Spectroscopy. Optical properties are studied by photoluminescence and ultraviolet-visible spectroscopy measurements. Boron addition causes a decrease in the emission intensity attributed to defect states and shifts the emission to the visible range at lower temperatures (800-900 o C) leading to a very broad tunable emission with high external quantum efficiency.

  19. A prism based magnifying hyperlens with broad-band imaging

    DEFF Research Database (Denmark)

    Habib, Md. Samiul; Stefani, Alessio; Atakaramians, Shaghik

    2017-01-01

    Magnification in metamaterial hyperlenses has been demonstrated using curved geometries or tapered devices, at frequencies ranging from the microwave to the ultraviolet spectrum. One of the main issues of such hyperlenses is the difficulty in manufacturing. In this letter, we numerically and expe...

  20. Designing broad phononic band gaps for in-plane modes

    Science.gov (United States)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  1. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-10-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition, and tracking) because of its high atmospheric scattering with molecules and aerosols. And these advantages are driving people to explore and utilize UV band for constructing and implementing a high-data-rate, less PAT communication links, such as diffuse-line-of-sight links (diffuse-LOS) and non-line-of-sight (NLOS). The responsivity of the photodetector at UV range is far lower than that of visible range, high power UV transmitters which can be easily modulated are under investigation. These factors make it is hard to realize a high-data-rate diffuse-LOS or NLOS UV communication links. To achieve a UV link mentioned above with current devices and modulation schemes, this thesis presents some efficient modulation schemes and available devices for the time being. Besides, a demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm, and according to the measured L-I-V curve, we set the bias voltage as 7V for maximum the ac amplitude and thus get a high signal-noise-ratio (SNR) channel, and the light output power is 190 μW with such bias voltage. Besides, there is a unique silica gel lens on top of the LED to concentrate the beam. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment, and 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing direction of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link

  2. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  3. Free space optical networks for ultra-broad band services

    CERN Document Server

    Kartalopoulos, Stamatios V

    2011-01-01

    "Free Space Optical Network is a next generation communication network which uses optical waves instead of microwaves, potentially offering faster communication with ultra band width, meaning more complex communication services can be simultaneously offered. This book describes the network concepts in simple language starting with point-to-point free space optics basics and discusses networking, interoperability with existing communication network, and security. An ideal resource for communication professionals just entering the free space optical communication field and graduate students majoring in optical communications"--Provided by publisher.

  4. System Realization of Broad Band Digital Beam Forming for Digital Array Radar

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2013-09-01

    Full Text Available Broad band Digital Beam Forming (DBF is the key technique for the realization of Digital Array Radar (DAR. We propose the method of combination realization of the channel equalization and DBF time delay filter function by using adaptive Sample Matrix Inversion algorithm. The broad band DBF function is realized on a new DBF module based on parallel fiber optic engines and Field Program Gate Array (FPGA. Good performance is achieved when it is used to some radar products.

  5. Estimating carbon dioxide fluxes from temperate mountain grasslands using broad-band vegetation indices

    Directory of Open Access Journals (Sweden)

    G. Wohlfahrt

    2010-02-01

    Full Text Available The broad-band normalised difference vegetation index (NDVI and the simple ratio (SR were calculated from measurements of reflectance of photosynthetically active and short-wave radiation at two temperate mountain grasslands in Austria and related to the net ecosystem CO2 exchange (NEE measured concurrently by means of the eddy covariance method. There was no significant statistical difference between the relationships of midday mean NEE with narrow- and broad-band NDVI and SR, measured during and calculated for that same time window, respectively. The skill of broad-band NDVI and SR in predicting CO2 fluxes was higher for metrics dominated by gross photosynthesis and lowest for ecosystem respiration, with NEE in between. A method based on a simple light response model whose parameters were parameterised based on broad-band NDVI allowed to improve predictions of daily NEE and is suggested to hold promise for filling gaps in the NEE time series. Relationships of CO2 flux metrics with broad-band NDVI and SR however generally differed between the two studied grassland sites indicting an influence of additional factors not yet accounted for.

  6. The correlation between the ultraviolet lambda 220 feature and the diffuse lambda 4430 band

    International Nuclear Information System (INIS)

    Nandy, K.; Thompson, G.I.

    1975-01-01

    Observations of the ultraviolet feature which occurs close to 2200 A are presented for over 60 stars for which interstellar lambda 4430 data are available in the literature. Observational material used here is obtained from the ultraviolet spectra taken with the Sky Survey telescope (S2/68) in the ESRO TD1 satellite. The equivalent widths of the lambda 2200 feature have been determined from ultraviolet extinction at 2190 and 2500 A, and the relation between the equivalent width of the ultraviolet feature and the central depth of the lambda 4430 band has been determined. It is found that they are well correlated and the correlation coefficient, including allowance for errors, is greater than 0.9; this indicates that the carriers for the lambda 2200 feature and diffuse band lambda 4430 coexist in the interstellar medium. (author)

  7. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.; Mai, Paul Martin

    2012-01-01

    examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means

  8. Broad-Band Spectral Indices Variability of BL Lacertae by Wavelet ...

    Indian Academy of Sciences (India)

    by Wavelet Method. Hao-Jing Zhang1,2,∗, Jing-Ming Bai1, Yu-Ying Bao3 & Xiong Zhang2. 1Yunnan Astronomical Observatory, National Astronomical Observatory, ... 3Department of Physics, Yuxi Teachers' College, Yuxi, Yunnan 653100, China. ∗ ... broad-band spectral indices—periodic variation—methods: numerical:.

  9. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  10. Electrostatic probes driven by broad band high power and propagation of the turbulent perturbation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Sun Xuan; Wan Shude; Wen Yizhi; Yu Changxuan; Liu Wandong; Wang Cheng; Pan Gesheng

    2003-01-01

    A high dynamic output, broad-band power source for driving electrostatic probes in the investigation on propagation of turbulent perturbation has been built and used successfully in experiments on the KT-5C tokamak. The details of the experiment setup as well as some preliminary results are presented. Detections both from the small size magnetic probes and electrostatic probes indicate that the modified perturbation excited by the power source may propagate electrostatically, and electromagnetically as well

  11. C.A.D for broad-band multistage microwave transimpedance amplifier.

    OpenAIRE

    Olomo Ngongo, A.; Perennec, A.; Soares, R.; Jarry, P.

    1992-01-01

    In high data rate optical-fiber, it is necessary to employ an ultra broad-band transimpedance amplifier. In this paper, we present a technique for the design of a transimpedance amplifiers. It can be applied as well to the design of interstage equalizers for microwave transimpedance amplifiers. In the version described in this paper, the optimisation process is applied to the transimpedance gain and noise which is adjusted. Based on the load charge matching technique, a sequential procedure t...

  12. Broad-band linear polarization and magnetic intensification in rotating magnetic stars

    International Nuclear Information System (INIS)

    Degl'Innocenti, M.L.; Calamai, G.; Degl'Innocenti, E.L.; Patriarchi, P.

    1981-01-01

    Magnetic intensification is proposed as a mechanism to explain the general features of the variable broad-band linear polarization emerging from rotating magnetic stars. This mechanism is studied in detail, and some efforts are made to investigate the wide variety of polarization diagrams that can result from it. Theoretical results are compared with direct observations of the variable magnetic star 53 Cam to determine its geometric and magnetic configuration

  13. The status of the search for muonless events in the broad band neutrino beam at NAL

    International Nuclear Information System (INIS)

    Aubert, B.; Benvenuti, A.; Cline, D.; Ford, W.T.; Imlay, R.; Ling, T.Y.; Mann, A.K.; Messing, F.; Piccioni, R.; Pilcher, J.; Reeder, D.D.; Rubbia, C.; Stefanski, R.; Sulak, L.

    The current status and results of the search for muonless events in the broad band neutrino beam at NAL are presented. An excess of events unaccompanied by muon is observed which cannot be explained by instrumental effects. The ratio of the unaccompanied events to the customary charged current events is 0.20+-0.05 for the mixture of ν and anti ν in this beam

  14. A novel approach for characterizing broad-band radio spectral energy distributions

    Science.gov (United States)

    Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.

    2018-05-01

    We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.

  15. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    Science.gov (United States)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  16. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.

    2012-12-06

    The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent

  17. Characteristics of temporal modulation in nonlinear propagation of broad-band lasers stacked by chirped pulses

    International Nuclear Information System (INIS)

    Wang Youwen; Chen Liezun; Zhang Lifu; Deng Jianqin; Zhang Jin; Wen Shuangchun; Fu Xiquan; Fan Dianyuan

    2010-01-01

    Characteristics of the temporal modulation riding on broad-band lasers stacked by chirped pulses are numerically investigated in nonlinear propagation. For the case of normal dispersion, the temporal modulations induced by interference among pulses and added artificially to simulate the noise weaken gradually with the increase of the propagation distance. For the case of anomalous dispersion, the temporal modulations induced by interference among pulses grow slowly at first, and start to grow rapidly after a long propagation distance; in contrast, the temporal modulations added artificially grow rapidly from the begin, indicating that the temporal peak of damage risk to the optics can be formed easily. (authors)

  18. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  19. The diverse broad-band light-curves of Swift GRBs reproduced with the cannonball model

    CERN Document Server

    Dado, Shlomo; De Rújula, A

    2009-01-01

    Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the cannonball (CB) model of long gamma ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows. Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early time until late time and well represent the entire diversity of the broad band light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of glory light. During their fast decline phase, ICS is taken over by SR which dominates their broad band afterglow. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical `humps' in XRFs, are correctly predicted. The canonical and non-canonical X-ra...

  20. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  1. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  2. High-power broad-band tunable microwave oscillator, driven by REB in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kuzelev, M V; Loza, O T; Ponomarev, A V; Rukhadze, A A; Strel` kov, P S; Shkvarunets, A G; Ulyanov, D K [General Physics Inst. of Russian Academy of Sciences, Moscow (Russian Federation)

    1997-12-31

    The radiation spectra of a plasma relativistic broad-band microwave oscillator were measured. A hollow relativistic electron beam (REB) was injected into the plasma waveguide, consisting of annular plasma in a circular metal waveguide. The radiation spectra were measured by means of a calorimeter-spectrometer with a large cross section in the band of 3-39 GHz. The mean frequency was tunable in the band of 20-27 GHz, the spectrum width was 5-25 GHz with a power level of 40-85 MW. Calculations were carried out based on non-linear theory, taking into account electromagnetic noise amplification due to REB injection into the plasma waveguide. According to the theory the radiation regime should change from the single-particle regime to the collective regime when the plasma density and the gap between the annular plasma and REB are increased. Comparison of the experimental results with the non-linear theory explains some peculiarities of the measured spectrum. (author). 4 figs., 2 refs.

  3. Solar-blind ultraviolet band-pass filter based on metal—dielectric multilayer structures

    International Nuclear Information System (INIS)

    Wang Tian-Jiao; Xu Wei-Zong; Lu Hai; Ren Fang-Fang; Chen Dun-Jun; Zhang Rong; Zheng You-Dou

    2014-01-01

    Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military applications, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of “transparent metal”. The filter consisting of Al/SiO 2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. 11th International Conference On Broad-Band Wireless Computing, Communication and Applications

    CERN Document Server

    Xhafa, Fatos; Yim, Kangbin

    2017-01-01

    The success of all-IP networking and wireless technology has changed the ways of living the people around the world. The progress of electronic integration and wireless communications is going to pave the way to offer people the access to the wireless networks on the fly, based on which all electronic devices will be able to exchange the information with each other in ubiquitous way whenever necessary. The aim of the volume is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of broadband and wireless computing. This proceedings volume presents the results of the 11th International Conference on Broad-Band Wireless Computing, Communication And Applications (BWCCA-2016), held November 5-7, 2016, at Soonchunhyang University, Asan, Korea. .

  5. Laser induced broad band anti-Stokes white emission from LiYbF4 nanocrystals

    Institute of Scientific and Technical Information of China (English)

    L. Marciniak; R. Tomala; M. Stefanski; D. Hreniak; W. Strek

    2016-01-01

    Spectroscopic properties of tetragonal LiYbF4 nanocrystals under high dense NIR excitation at vacuum condition were in-vestigated. White, broad band emission covering whole visible part of the spectrum from LiYbF4 nanocrystals was observed. Its in-tensity strongly depended on the excitation power, excitation wavelength and ambient pressure. Temperature of the nanocrystals un-der 975 nm excitation was determined as a function of excitation power. Strong photo-induced current was observed from LiYbF4 pallet. The emission kinetic was analyzed. The mechanism of the anti-Stokes white emission was discussed in terms of the la-ser-induced charge transfer emission from Yb2+ states.

  6. How to adapt broad-band gravitational-wave searches for r-modes

    International Nuclear Information System (INIS)

    Owen, Benjamin J.

    2010-01-01

    Up to now there has been no search for gravitational waves from the r-modes of neutron stars in spite of the theoretical interest in the subject. Several oddities of r-modes must be addressed to obtain an observational result: The gravitational radiation field is dominated by the mass current (gravitomagnetic) quadrupole rather than the usual mass quadrupole, and the consequent difference in polarization affects detection statistics and parameter estimation. To astrophysically interpret a detection or upper limit it is necessary to convert the gravitational-wave amplitude to an r-mode amplitude. Also, it is helpful to know indirect limits on gravitational-wave emission to gauge the interest of various searches. Here I address these issues, thereby providing the ingredients to adapt broad-band searches for continuous gravitational waves to obtain r-mode results. I also show that searches of existing data can already have interesting sensitivities to r-modes.

  7. Applicability of Broad-Band Photometry for Determining the Properties of Stars and Interstellar Extinction

    Science.gov (United States)

    Sichevskij, S. G.

    2018-01-01

    The feasibility of the determination of the physical conditions in star's atmosphere and the parameters of interstellar extinction from broad-band photometric observations in the 300-3000 nm wavelength interval is studied using SDSS and 2MASS data. The photometric accuracy of these surveys is shown to be insufficient for achieving in practice the theoretical possibility of estimating the atmospheric parameters of stars based on ugriz and JHK s photometry exclusively because such determinations result in correlations between the temperature and extinction estimates. The uncertainty of interstellar extinction estimates can be reduced if prior data about the temperature are available. The surveys considered can nevertheless be potentially valuable sources of information about both stellar atmospheric parameters and the interstellar medium.

  8. Broad-band time-resolved near infrared spectroscopy in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.C.; Pastor, I.; Cal, E. de la; McCarthy, K.J. [Laboratorio Nacional de Fusion, CIEMAT, Madrid (Spain); Diaz, D. [Universidad Autonoma de Madrid, Dept Quimica Fisica Aplicada, Madrid (Spain)

    2014-11-15

    First experimental results on broad-band, time-resolved Near Infrared (NIR;here loosely defined as covering from 750 to 1650 nm) passive spectroscopy using a high sensitivity InGaAs detector are reported for the TJ-II Stellarator. Experimental set-up is described together with its main characteristics, the most remarkable ones being its enhanced NIR response, broadband spectrum acquisition in a single shot, and time-resolved measurements with up to 1.8 kHz spectral rate. Prospects for future work and more extended physics studies in this newly open spectral region in TJ-II are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Broad band seismology in the Scotia region. The base Esperanza seismological observatory

    International Nuclear Information System (INIS)

    Russi, M.; Costa, G.; Febrer, J.

    1995-08-01

    The lithospheric study and the identification of relevant lateral heterogeneities in the Antarctic continent and borderlands, is essential to understand the geodynamic evolution both of the continental and oceanic bordering regions. The complexity of the geological evolution and the structural properties of the lithosphere in the Scotia area have been stressed by many authors. The present setting of the area is the result of the mutual interaction among the Antarctic, South American and several minor plants whose geodynamic history and actual boundaries are still partially unknown. The intense seismic activity that characterizes the region encourages the use of the seismological approach to investigate the lithospheric structure of the area. Since January 1992 a broad band three components station is operating at the Antarctic base Esperanza in the NE area of Antarctic Peninsula. The station has been installed with financial support of the Italian Programma Nazionale di Ricerche in Antartide (PNRA) by Osservatorio Geofisico Sperimentale (OGS) and Instituto Antartico Argentino (IAA). Russi et al. (1994) have analyzed selected recordings using the frequency-time analysis (FTAN) method obtaining some relevant information on the large scale structure of the lithosphere in the Scotia region even if data recorded by a single station were available. The extension of our analysis to further events and to horizontal component records is here presented. Within the framework of the international co-operation to the Antarctic Seismographic Network, the OGS and the IAA are upgrading the Esperanza station and installing an additional broad band station near the town of Ushuaia (Tierra del Fuego, Argentina) with the financial support of PNRA. The inversion of the dispersion curves through the FTAN of the signals recorded by an increased number of stations and generated by events with source-station paths spanning the region will allow us to extract the elastic and anelastic

  10. Mednet: the very broad-band seismic network for the Mediterranean

    International Nuclear Information System (INIS)

    Boschi, E.; Giardini, D.; Morelli, A.

    1991-01-01

    Mednet is the very broad-band seismic network installed by the Istituto Nazionale di Geofisica (ING) in countries of the mediterranean area, with a final goal of 12-15 stations and a spacing of about 1000 km between stations. The project started in 1987 and will be completed within 1992. Mednet is motivated both by research interest and by seismic hazard monitoring; it will allow to define the structure of the mediterranean region to a high detail, to study properties of the seismic source for intermediate and large events, and to apply this knowledge to procedures of civil protection. To reach its goals, the network has been designed following the highest technical standards: STS-1/VBB sensors, Quanterra 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Five sites are now operational in Italy (L'Aquila, Bardonecchia and Villasalto) and in northern african countries (Midelt, Morocco; Gafsa, Tunisia); other sites are under construction in Pakistan (Islamabad), Irak (Rutba) and Egypt (Kottamya), while locations are examined for stations in Greece, Jugoslavia and Algeria. The centre of the mednet network is the data center (MDC) in Rome; its tasks include data collection, verification, quality control, archivial and dissemination, monitoring of station performance, event detection, routine determination of source parameters. Data distribution will follow the guidelines set by FDSN, and will be coordinated with other international network projects

  11. Design and construction of a broad-band electric field probe

    International Nuclear Information System (INIS)

    Bahrami, A.; Sohrabi, M.; Farvadin, D.

    1996-01-01

    The design of a broad-band electric field probe based on a resistive film diode antenna on RT/Duroid substrate to measure the electric RF/MW fields as constructed at the National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) are described in this paper. A square law diode detector with a matching circuit and also low pass filter have been used to produce a dc current proportional to the square RF voltage across the resistive antenna gap. A double-strip coplanar waveguide has also been designed to transfer this dc current to an amplifier with an output signal showing the electric field intensity in one direction. By using three mutually orthogonal resistive antennas, an isotropic electric field probe was made. All parts of this probe have been completely modeled and solved by the MATLAB computer program to determine the optimum values of the elements of the probe. The frequency response of the probe has also been theoretically found to be flat in the range 0.8 to 3 GHz. It was found to be quite satisfactory compared with those of similar probes commercially available. The probe is being used routinely in practice. (author)

  12. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Batlles, F.J. [Dept. de Ingenieria Electrica y Termica, EPS La Rabida, Univ. de Huelva, Huelva (Spain)

    2004-07-01

    Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Aangstroem turbidity coefficient {beta} is frequently used. In this work, we analyse the performance of three methods based on broadband solar irradiance measurements in the estimation of {beta}. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors) means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of {beta} for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns. (orig.)

  13. Ultra-Broad Band Radar Cross Section Reduction of Waveguide Slot Antenna with Metamaterials

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-06-01

    Full Text Available To reduce the radar cross section of a waveguide slot antenna, a three-layer metamaterial is presented based on orthogonal double split-ring resonators. The absorption characteristics of three-layer metamaterial are demonstrated by simulation. Moreover, the metamaterials have been loaded on common waveguide slot antenna according to the surface current distribution. The ultra-broad band radar cross section reduction of the antenna with metamaterials had been theoretically and experimentally investigated by radiating and scattering performances. Experimental and simulated results showed that the proposed antenna with metamaterials performed broadband radar cross section reduction from 3.9 GHz to 18 GHz and the gain had been improved due to the coupling effect between slot and the period structure. The maximal radar cross section reduction achieved 17.81 dB at 8.68 GHz for x-polarized incidence and 21.79 dB at 6.25 GHz for y-polarized waves.

  14. Numerical experiments to investigate the accuracy of broad-band moment magnitude, Mwp

    Science.gov (United States)

    Hara, Tatsuhiko; Nishimura, Naoki

    2011-12-01

    We perform numerical experiments to investigate the accuracy of broad-band moment magnitude, Mwp. We conduct these experiments by measuring Mwp from synthetic seismograms and comparing the resulting values to the moment magnitudes used in the calculation of synthetic seismograms. In the numerical experiments using point sources, we have found that there is a significant dependence of Mwp on focal mechanisms, and that depths phases have a large impact on Mwp estimates, especially for large shallow earthquakes. Numerical experiments using line sources suggest that the effects of source finiteness and rupture propagation on Mwp estimates are on the order of 0.2 magnitude units for vertical fault planes with pure dip-slip mechanisms and 45° dipping fault planes with pure dip-slip (thrust) mechanisms, but that the dependence is small for strike-slip events on a vertical fault plane. Numerical experiments for huge thrust faulting earthquakes on a fault plane with a shallow dip angle suggest that the Mwp estimates do not saturate in the moment magnitude range between 8 and 9, although they are underestimates. Our results are consistent with previous studies that compared Mwp estimates to moment magnitudes calculated from seismic moment tensors obtained by analyses of observed data.

  15. Two cases of eczematid-like purpura of Doucas and Kapetanakis responsive to narrow band ultraviolet B treatment.

    Science.gov (United States)

    Karadag, Ayse Serap; Bilgili, Serap Gunes; Onder, Sevda; Calka, Omer

    2013-04-01

    Eczematid-like purpura of Doucas and Kapetanakis is a type of pigmented purpuric dermatoses (PPDs) with eczematous changes in the purpuric surface. A 10-year-old male and a 44-year-old male patients were admitted to our clinics for itching and flaking of the skin rashes. Based on the clinical and histopathological evaluations, the rashes were identified as eczematid-like PPDs of Doucas and Kapetanakis. Both patients were treated with narrow band ultraviolet B. The lesions were remarkably regressed following the treatment. These cases reported due its rarity and good response to narrow band ultraviolet B. © 2013 John Wiley & Sons A/S.

  16. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    Science.gov (United States)

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  17. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  18. Precision Column CO2 Measurement from Space Using Broad Band LIDAR

    Science.gov (United States)

    Heaps, William S.

    2009-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  19. Long-term uvb forecasting on the basis of spectral and broad-band measurements

    Science.gov (United States)

    Bérces, A.; Gáspár, S.; Kovács, G.; Rontó, G.

    2003-04-01

    The stratospheric ozone concentration has been investigated by several methods, e.g. determinations of the ozone layer using a network of ground based spectrophotometers, of the Dobson and the Brewer types. These data indicate significant decrease of the ozone layer superimposed by much larger seasonal changes at specific geographical locations. The stratospheric ozone plays an important role in the attenuation of the short-wavelength components of the solar spectrum, thus the consequence of the decreased ozone layer is an increased UVB level. Various pyranometers measuring the biological effect of environmental UV radiation have been constructed with spectral sensitivities close to the erythema action spectrum defined by the CIE. Using these erythemally weighted broad-band instruments to detect the tendency of UVB radiation controversial data have been found. To quantify the biological risk due to environmental UV radiation it is reasonable to weight the solar spectrum by the spectral sensitivity of the DNA damage taking into account the high DNA-sensitivity at the short wavelength range of the solar spectrum. Various biological dosimeters have been developed e.g. polycrystalline uracil thin layer. These are usually simple biological systems or components of them. Their UV sensitivity is a consequence of the DNA-damage. Biological dosimeters applied for long-term monitoring are promising tools for the assessment of the biological hazard. Simultaneous application of uracil dosimeters and Robertson-Berger meters can be useful to predict the increasing tendency of the biological UV exposure more precisely. The ratio of the biologically effective dose obtained by the uracil dosimeter (a predominately UVB effect) and by the Robertson-Berger meter (insensitive to changes below 300 nm) is a sensitive method for establishing changes in UVB irradiance due to changes in ozone layer.

  20. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    Science.gov (United States)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  1. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    Science.gov (United States)

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  2. Receiver function structure beneath a broad-band seismic station in south Sumatra

    Science.gov (United States)

    MacPherson, K. A.; Hidayat, D.; Goh, S.

    2010-12-01

    We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver

  3. Broad frequency band full field measurements for advanced applications: Point-wise comparisons between optical technologies

    Science.gov (United States)

    Zanarini, Alessandro

    2018-01-01

    The progress of optical systems gives nowadays at disposal on lightweight structures complex dynamic measurements and modal tests, each with its own advantages, drawbacks and preferred usage domains. It is thus more easy than before to obtain highly spatially defined vibration patterns for many applications in vibration engineering, testing and general product development. The potential of three completely different technologies is here benchmarked on a common test rig and advanced applications. SLDV, dynamic ESPI and hi-speed DIC are here first deployed in a complex and unique test on the estimation of FRFs with high spatial accuracy from a thin vibrating plate. The latter exhibits a broad band dynamics and high modal density in the common frequency domain where the techniques can find an operative intersection. A peculiar point-wise comparison is here addressed by means of discrete geometry transforms to put all the three technologies on trial at each physical point of the surface. Full field measurement technologies cannot estimate only displacement fields on a refined grid, but can exploit the spatial consistency of the results through neighbouring locations by means of numerical differentiation operators in the spatial domain to obtain rotational degrees of freedom and superficial dynamic strain distributions, with enhanced quality, compared to other technologies in literature. Approaching the task with the aid of superior quality receptance maps from the three different full field gears, this work calculates and compares rotational and dynamic strain FRFs. Dynamic stress FRFs can be modelled directly from the latter, by means of a constitutive model, avoiding the costly and time-consuming steps of building and tuning a numerical dynamic model of a flexible component or a structure in real life conditions. Once dynamic stress FRFs are obtained, spectral fatigue approaches can try to predict the life of a component in many excitation conditions. Different

  4. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers

    International Nuclear Information System (INIS)

    Jackson, H.G.; Shimizu, T.T.; Leskovar, B.

    1985-01-01

    The effect of gamma radiation on electrical characteristics of cryogenically cooled broad-band low-noise microwave preamplifiers has been preliminarily evaluated. The change in the gain and noise figure of a 1-2 GHz preamplifier using GaAs microwave transistors was determined at gamma doses between 10 5 rad to 5 /times/ 10 8 rad. The gain and noise figure was measured at ambient temperatures of 300 K and 80 K. 8 refs., 2 figs

  5. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  6. An Underwater Acoustic Vector Sensor with High Sensitivity and Broad Band

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2014-05-01

    Full Text Available Recently, acoustic vector sensor that use accelerators as sensing elements are widely used in underwater acoustic engineering, but the sensitivity of which at low frequency band is usually lower than -220 dB. In this paper, using a piezoelectric trilaminar optimized low frequency sensing element, we designed a high sensitivity internal placed ICP piezoelectric accelerometer as sensing element. Through structure optimization, we made a high sensitivity, broadband, small scale vector sensor. The working band is 10-2000 Hz, sound pressure sensitivity is -185 dB (at 100 Hz, outer diameter is 42 mm, length is 80 mm.

  7. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    Science.gov (United States)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  8. Broad-spectrum sunscreens prevent the secretion of proinflammatory cytokines in human keratinocytes exposed to ultraviolet A and phototoxic lomefloxacin

    International Nuclear Information System (INIS)

    Reinhardt, P.; Cybulski, M.; Miller, S.M.; Ferrarotto, C.; Wilkins, R.; Deslauriers, Y.

    2006-01-01

    The combination of phototoxic drugs and ultraviolet (UV) radiation can trigger the release of proinflammatory cytokines. The present study measured the ability of sunscreens to prevent cytokine secretion in human keratinocytes following cotreatment of these cells with a known photoreactive drug and UVA. Keratinocytes were treated for 1 h with increasing concentrations of lomefloxacin (LOM) or norfloxacin (NOR), exposed to 15 J/cm 2 UVA, and incubated for 24 h. NOR, owing to the absence of a fluorine atom in position 8, was non-phototoxic and used as a negative control. Cell viability and the release of 3 cytokines were assessed, namely interleukin-1α (IL-1α), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α). The measurement of these cytokines may be a useful tool for detecting photoreactive compounds. To measure their ability to prevent cytokine secretion, various sunscreens were inserted between the UVA source and the cells. Treatment with NOR, NOR plus UVA, or LOM had no effect on the cells. LOM plus UVA, however, had an effect on cell viability and on cytokine secretion. IL-1α levels increased with LOM concentration. The release of TNF-α and IL-6 followed the same pattern at lower concentrations of LOM but peaked at 15 μmol/L and decreased at higher concentrations. Sunscreens protected the cells from the effects of LOM plus UVA, as cell viability and levels of cytokines remained the same as in the control cells. In conclusion, the application of broad-spectrum sunscreen by individuals exposed to UVA radiation may prevent phototoxic reactions initiated by drugs such as LOM. (author)

  9. Simultaneous detection and analysis of optical and ultraviolet broad emission lines in quasars at z 2.2

    Science.gov (United States)

    Bisogni, S.; di Serego Alighieri, S.; Goldoni, P.; Ho, L. C.; Marconi, A.; Ponti, G.; Risaliti, G.

    2017-06-01

    We studied the spectra of six z 2.2 quasars obtained with the X-shooter spectrograph at the Very Large Telescope. The redshift of these sources and the X-shooter's spectral coverage allow us to cover the rest of the spectral range 1200-7000 Å for the simultaneous detection of optical and ultraviolet lines emitted by the broad-line region. Simultaneous measurements, avoiding issues related to quasars variability, help us understand the connection between the different broad-line region line profiles generally used as virial estimators of black hole masses in quasars. The goal of this work is to compare the different emission lines for each object to check on the reliability of Hα, Mg II and C iv with respect to Hβ. Hα and Mg II linewidths correlate well with Hβ, while C iv shows a poorer correlation, due to the presence of strong blueshifts and asymmetries in the profile. We compared our sample with the only other two whose spectra were taken with the same instrument and for all examined lines our results are in agreement with the ones obtained with X-shooter at z 1.5-1.7. We finally evaluate C III] as a possible substitute of C iv in the same spectral range and find that its behaviour is more coherent with those of the other lines: we believe that, when a high quality spectrum such as the ones we present is available and a proper modelization with the Fe II and Fe III emissions is performed, it is more appropriate to use this line than that of C iv if not corrected for the contamination by non-virialized components. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme 086.B-0320(A).The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A1

  10. How narrow-band and broad-band uvb irradiation influences the immunohistochemistry analyses of experimental animals’ skin – a comparative study. Part II

    Directory of Open Access Journals (Sweden)

    Katarzyna Borowska

    2017-09-01

    Full Text Available This is the second part of the artcle series impact narrow-band UVB radiation (NB-UVB and broad-band UVB radiation (BB-UVB on experimental animals’ skin (white Wistar female rats. The aim of this comparative study was immunohistochemistry analyses containing expression of p53 protein. Expression of p53 protein was performed on two experimental groups. One – exposed to NB-UVB; the other – exposed to BB-UVB radiation. The results indicate that p53 protein takes an active part in the process of apoptosis that is induced by both NB-UVB and BB-UVB. The results showed an increase in p53 expressing cells following BB-UVB than NB-UVB phototherapy.

  11. HMB-45 Study Before and After Narrow-Band (311 nm Ultraviolet B Treatment in Vitiligo

    Directory of Open Access Journals (Sweden)

    Moosavi

    2015-06-01

    Full Text Available Background Vitiligo is an acquired disease in which the loss of functional melanocytes results in depigmented macules and patches. Over the years, wide arrays of markers for melanocytes have been described, including human melanoma black 45 (HMB-45. Narrow-band ultraviolet B (NB-UVB therapy is one of the therapeutic modalities for vitiligo. Objectives We sought to detect HMB-45 staining after 30 sessions of NB-UVB therapy in vitiligo and perivitiliginous skin. Patients and Methods All the participants were planned to have 30 sessions of NB-UVB therapy with 724 lamps (FS, 72 T, 12-HO Daavlin MED at 311 nm wavelengths. The patients underwent skin sampling from lesional and perilesional area before and after 30 sessions of treatment. The skin biopsies were sent to the laboratory for light microscopy and immunohistochemical study. The evaluation of HMB-45 was based on the quantitative method, measuring the number of positive stained cells. Clinical response was defined as repigmentation in three categories: more than 75%; between 40% and 75%; and less than 40%. The data were analyzed using SPSS (version 17. Results Twenty-nine patients completed the study. The Wilcoxon test showed a meaningful relation between HMB-45 staining before and after NB-UVB treatment in perilesional skin. We did not find a meaningful relation between HMB-45 staining before and after treatment regarding the mean age, gender, mean duration of disease, and initial lesional area (P = 0.55, P = 0.41, P = 0.55, and P = 0.87, respectively. After 30 sessions of NB-UVB therapy, repigmentation was less than 40% in 8 (27.6%, 40 - 75% in 7 (24.1%, and more than 75% in 6 patients. Conclusions The HMB-45 stain strength significantly changed after treatment in perilesional skin.

  12. Comparison of UV action spectra for lethality and mutation in Salmonella typhimurium using a broad band source and monochromatic radiations

    International Nuclear Information System (INIS)

    Calkins, John; Selby, Christopher; Enoch, H.G.

    1987-01-01

    The UV-B region (280-320 nm) is thought to be primarily responsible for the mutagenic, lethal, and carcinogenic effects of solar radiation. We have conducted UV-B action spectroscopy for mutagenesis and survival of Ames' Salmonella typhimurium strain TA98 (uvrB, pKM101) using both monochromatic radiation from a dye laser and broader bandwidth radiation emitted from FS-20 sunlamps. A series of optical filters having different transmission cut-offs together with the sunlamp source provided bandwidths having successively less short wavelength components from which a ''broad band'' action spectrum was deduced. The two sets of action spectra differed both qualitatively and quantitatively: in comparison to the monochromatic action spectra, the ''broad band'' spectra showed up to a 200-fold reduced efficiency for both mutation induction and lethality by UV-B wavelengths. These results suggest a large protective effect of the background UV-A and/or visible radiations which were present during the broad spectrum irradiations and which are also present in solar radiation. Additional experiments show that to the extent tested this protective effect is not due to photo-reactivation or irradiance (dose rate) effects. (author)

  13. Analysis of Broad-band Frequency Selective Shielding Glass by FDTD method

    OpenAIRE

    笠嶋, 善憲; Kasashima, Yoshinori

    2010-01-01

    A frequency Selective shielding (FSS) glass is a print of many same size antennas on a sheet of glass, and it has high shielding properties for one specific frequency. In the past, the author analyzed theoretically the characteristics of the FSS, as a large scale array antenna. The FSS has narrow-band shielding characteristics. This time, the author analyzed accurately the characteristics of a FSS glass being a print of many same size dipole antennas on a sheet of glass by FDTD method. As the...

  14. A broad band X-ray imaging spectrophotometer for astrophysical studies

    Science.gov (United States)

    Lum, Kenneth S. K.; Lee, Dong Hwan; Ku, William H.-M.

    1988-01-01

    A broadband X-ray imaging spectrophotometer (BBXRIS) has been built for astrophysical studies. The BBXRIS is based on a large-imaging gas scintillation proportional counter (LIGSPC), a combination of a gas scintillation proportional counter and a multiwire proportional counter, which achieves 8 percent (FWHM) energy resolution and 1.5-mm (FWHM) spatial resolution at 5.9 keV. The LIGSPC can be integrated with a grazing incidence mirror and a coded aperture mask to provide imaging over a broad range of X-ray energies. The results of tests involving the LIGSPC and a coded aperture mask are presented, and possible applications of the BBXRIS are discussed.

  15. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schmerge, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fazio, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fisher, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frisch, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guehr, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hettel, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hoffmann, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kirchmann, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Limborg, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lindenberg, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Raubenheimer, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Reis, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ross, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stupakov, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tian, K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Xiang, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  16. Broad band energy distribution of UV-bright BL Lac objects

    International Nuclear Information System (INIS)

    Maraschi, L.; Tanzi, E.G.; Treves, A.

    1984-01-01

    IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references

  17. Broad band energy distribution of UV-bright BL Lac objects

    Energy Technology Data Exchange (ETDEWEB)

    Maraschi, L.; Tanzi, E.G.; Treves, A.

    1984-01-01

    IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references.

  18. YIG based broad band microwave absorber: A perspective on synthesis methods

    Science.gov (United States)

    Sharma, Vinay; Saha, J.; Patnaik, S.; Kuanr, Bijoy K.

    2017-10-01

    The fabrication of a thin layer of microwave absorber that operates over a wide band of frequencies is still a challenging task. With recent advances in nanostructure synthesis techniques, considerable progress has been achieved in realizations of thin nanocomposite layer designed for full absorption of incident electromagnetic (EM) radiation covering S to K band frequencies. The primary objective of this investigation is to achieve best possible EM absorption with a wide bandwidth and attenuation >10 dB for a thin absorbing layer (few hundred of microns). Magnetic yttrium iron garnet (Y3Fe5O12; in short YIG) nanoparticles (NPs) were prepared by sol-gel (SG) as well as solid-state (SS) reaction methods to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles and hence their microwave absorption capabilities. It is found that YIG prepared by these two methods are different in many ways. Magnetic properties investigated using vibrating sample magnetometry (VSM) exhibit that the coercivity (Hc) of solid-state NPs is much larger (72 Oe) than the sol-gel NPs (31 Oe). Microwave absorption properties were studied by ferromagnetic resonance (FMR) technique in field sweep mode at different fixed frequencies. A thin layer (∼300 μm) of YIG film was deposited using electrophoretic deposition (EPD) technique over a coplanar waveguide (CPW) transmission line made on copper coated RT/duroid® 5880 substrates. Temperature dependent magnetic properties were also investigated using VSM and FMR techniques. Microwave absorption properties were investigated at high temperatures (up to 300 °C) both for sol-gel and solid-state synthesized NPs and are related to skin depth of YIG films. It is observed that microwave absorption almost vanishes when the temperature reached the Néel temperature of YIG.

  19. Nonlinear optics with broad-band lasers: Progress report, July 15, 1987-April 14, 1988

    International Nuclear Information System (INIS)

    Raymer, M.G.

    1988-01-01

    During this reporting period several important results were obtained on the fluctuation dynamics of both continuous-wave (cw) and pulsed dye lasers, as well as their effects in certain nonlinear optical processes: (1) A new method discovered for producing optical pulses with broad bandwidths (5 GHz) and smooth, slowly varying amplitude. The bandwidth is determined purely by phase fluctuations. (2) A theoretical treatment of pulsed dye lasers was developed to explain intensity autocorrelation measurements. (3) The effects of laser bandwidth on the resonance fluorescence spectrum of a two-level atom were calculated. (4) The source of mode intensity fluctuations in a multimode, cw dye laser were shown, both experimentally and theoretically, to be caused by deterministic chaos, rather than quantum noise as had been previously assumed in the literature

  20. Broad-band spectral studies of optical lightnings and possible correlation with solar activity

    International Nuclear Information System (INIS)

    Bhat, C.L.; Sapru, M.L.; Kaul, R.K.; Razdan, H.

    1984-01-01

    Optical pulses from lightning discharges have been recorded in a ground-based experiment, meant primarily for the detection of cosmic X- and γ-ray bursts through the atmospheric fluorescence technique. It is shown that the spectral ratio Asub(v)/Asub(y), i.e. the ratio of pulse amplitudes in the violet to that in yellow wavelength bands (3400-4300 A and 4400-6000 A respectively) provides a good indication of the lightning channel temperature, the range of derived temperatures extending from 5.000 K to 60.000 K. Based on the distribution of observed Asub(v)/Asub(y) values on a daily basis, it has been possible to separate the observed lightning activity into two classes. One class of event is shown to be correlated with the peaking of the global atmospheric electric field and occurs preferentially on days when the ground-level cosmic ray intensity shows a significant decrease in association with an increase in geomagnetic activity. The results are discussed in terms of the contemporary views regarding solar control of atmospheric electricity and the various sun-weather correlations reported earlier. (author)

  1. Particle acceleration model for the broad-band baseline spectrum of the Crab nebula

    Science.gov (United States)

    Fraschetti, F.; Pohl, M.

    2017-11-01

    We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.

  2. High-performance broad-band spectroscopy for breast cancer risk assessment

    Science.gov (United States)

    Pawluczyk, Olga; Blackmore, Kristina; Dick, Samantha; Lilge, Lothar

    2005-09-01

    Medical diagnostics and screening are becoming increasingly demanding applications for spectroscopy. Although for many years the demand was satisfied with traditional spectrometers, analysis of complex biological samples has created a need for instruments capable of detecting small differences between samples. One such application is the measurement of absorbance of broad spectrum illumination by breast tissue, in order to quantify the breast tissue density. Studies have shown that breast cancer risk is closely associated with the measurement of radiographic breast density measurement. Using signal attenuation in transillumination spectroscopy in the 550-1100nm spectral range to measure breast density, has the potential to reduce the frequency of ionizing radiation, or making the test accessible to younger women; lower the cost and make the procedure more comfortable for the patient. In order to determine breast density, small spectral variances over a total attenuation of up to 8 OD have to be detected with the spectrophotometer. For this, a high performance system has been developed. The system uses Volume Phase Holographic (VPH) transmission grating, a 2D detector array for simultaneous registration of the whole spectrum with high signal to noise ratio, dedicated optical system specifically optimized for spectroscopic applications and many other improvements. The signal to noise ratio exceeding 50,000 for a single data acquisition eliminates the need for nitrogen cooled detectors and provides sufficient information to predict breast tissue density. Current studies employing transillumination breast spectroscopy (TIBS) relating to breast cancer risk assessment and monitoring are described.

  3. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  4. Occupational applications of ultraviolet radiation

    International Nuclear Information System (INIS)

    Eriksen, P.

    1987-01-01

    A large population of workers are exposed to ultraviolet radiation in various occupational environments which often necessitates protection. Since ultraviolet radiation may create other environmental problems an occupational hazard- and protection evaluation can be complicated. Threshold Limit Values adopted by the American Conference of Governmental Industrial Hygienists (ACGIH) on ultraviolet radiation are used in most countries as guidelines for risk assessment and control measures. This review addresses the levels of ultraviolet radiation met in occupational environments, its measurement and evaluation, and discusses different protection methods. Ultraviolet lasers are beginning to find their way into industrial processes but are still limited in number and they will not be covered here. Emphasis is on broad band incoherent radiation in high risk environments such as welding, and on the evaluation of protective eyewear, see-through curtains and plastics. Other occupational risks associated with the emission of ultraviolet radiation are discussed

  5. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  6. Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods

    Science.gov (United States)

    Prasad, Neena; Karthikeyan, Balasubramanian

    2018-06-01

    Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.

  7. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection

    Science.gov (United States)

    Nazirzadeh, Mohammad Amin; Atar, Fatih Bilge; Turgut, Berk Berkan; Okyay, Ali Kemal

    2014-01-01

    In this work, we propose Silicon based broad-band near infrared Schottky barrier photodetectors. The devices operate beyond 1200 nm wavelength and exhibit photoresponsivity values as high as 3.5 mA/W with a low dark current density of about 50 pA/µm2. We make use of Au nanoislands on Silicon surface formed by rapid thermal annealing of a thin Au layer. Surface plasmons are excited on Au nanoislands and this field localization results in efficient absorption of sub-bandgap photons. Absorbed photons excite the electrons of the metal to higher energy levels (hot electron generation) and the collection of these hot electrons to the semiconductor results in photocurrent (internal photoemission). Simple and scalable fabrication makes these devices suitable for ultra-low-cost NIR detection applications. PMID:25407509

  8. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    Energy Technology Data Exchange (ETDEWEB)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C. [Dipartimento di Fisica, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano (Italy); Gupta, A. [Department of Chemistry, University of Alabama, Tuscaloosa, Alabama 35487 (United States); Carpene, E., E-mail: ettore.carpene@polimi.it [CNR-IFN, Dipartimento di Fisica, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO{sub 2} single crystals as a benchmark.

  9. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    International Nuclear Information System (INIS)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-01

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO 2 single crystals as a benchmark

  10. Revealing the Faraday depth structure of radio galaxy NGC 612 with broad-band radio polarimetric observations

    Science.gov (United States)

    Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.

    2018-05-01

    We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.

  11. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P.; Foster, Jonathan B.; Fesen, Robert A.; Parrent, Jerod T.; Pickering, Timothy E.; Cenko, S. Bradley; Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef; Filippenko, Alexei V.; Mazzali, Paolo; Maeda, Keiichi

    2014-01-01

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers

  12. INTERACTION BETWEEN THE BROAD-LINED TYPE Ic SUPERNOVA 2012ap AND CARRIERS OF DIFFUSE INTERSTELLAR BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, Dan; Margutti, Raffaella; Crabtree, Kyle N.; Soderberg, Alicia M.; Sanders, Nathan E.; Drout, Maria R.; Kamble, Atish; Chakraborti, Sayan; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Foster, Jonathan B. [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States); Fesen, Robert A.; Parrent, Jerod T. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Lab, Hanover, NH 03755 (United States); Pickering, Timothy E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, Jeffrey M.; Marion, G. H. Howie; Vinko, Jozsef [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Mazzali, Paolo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, Keiichi, E-mail: dmilisav@cfa.harvard.edu [Department of Astronomy, Kyoto University Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); and others

    2014-02-10

    Diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond to electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (≲ 30 days) timescales. The 4428 Å and 6283 Å DIB features get weaker with time, whereas the 5780 Å feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.

  13. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    Science.gov (United States)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  14. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    Science.gov (United States)

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  15. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking

    Science.gov (United States)

    Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.

    2018-02-01

    The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions

  16. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  17. A broad-spectrum sunscreen prevents cumulative damage from repeated exposure to sub-erythemal solar ultraviolet radiation representative of temperate latitudes.

    Science.gov (United States)

    Seité, S; Christiaens, F; Bredoux, C; Compan, D; Zucchi, H; Lombard, D; Fourtanier, A; Young, A R

    2010-02-01

    We have previously shown the detrimental effects of 19 sub-erythemal exposures to daily ultraviolet radiation (DUVR, which mimics non-extreme exposure conditions), delivered over 4 weeks to volunteers. This source had UVA (320-400 nm) to UVB (290-320 nm) irradiance ratio of 25, instead of that close to 10 that is typically the case with solar-simulated radiation (SSR) that represents summer global sunlight with a clear sky and quasi-zenith solar irradiance. Here, we report on an extension of this previous study, in which we evaluated the photoprotection afforded by a broad-spectrum daily-care product with a low-sun protection factor (SPF 8, UVA-PF 7 and 3* rated UVA protection). We assessed cellular and molecular markers of photodamage that are relevant to skin cancer and photoageing. This study shows that biological effects of repeated exposure to DUVR can be prevented by a broad-spectrum daily-care product and that the level of protection afforded varies with the studied endpoint. Efficient daily UVR protection, as provided by a broad-spectrum daily-care product, is necessary to prevent the 'silent' sub-erythemal cumulative effects of UVR from inadvertent sun exposure.

  18. A novel facility for ageing materials with narrow-band ultraviolet radiation exposure

    International Nuclear Information System (INIS)

    Kaerhae, Petri; Ruokolainen, Kimmo; Heikkilae, Anu; Kaunismaa, Merja

    2011-01-01

    A facility for exploring wavelength dependencies in ultraviolet (UV) radiation induced degradation in materials has been designed and constructed. The device is essentially a spectrograph separating light from a lamp to spectrally resolved UV radiation. It is based on a 1 kW xenon lamp and a flat-field concave holographic grating 10 cm in diameter. Radiation at the wavelength range 250-500 nm is dispersed onto the sample plane of 1.5 cm in height and 21 cm in width. The optical performance of the device has been characterized by radiometric measurements. Using the facility, test samples prepared of regular newspaper have been irradiated from 1 to 8 h. Color changes on the different locations of the aged samples have been quantified by color measurements. Yellowness indices computed from the color measurements demonstrate the capability of the facility in revealing wavelength dependencies of the material property changes in reasonable time frames.

  19. The relation of the broad band with the E2g phonon and superconductivity in the Mg(B1-xCx)2 compound

    International Nuclear Information System (INIS)

    Parisiades, P.; Lampakis, D.; Palles, D.; Liarokapis, E.; Karpinski, J.

    2007-01-01

    We have carried out an extensive micro-Raman study on Mg(B 1-x C x ) 2 single crystals, for carbon concentrations up to x=0.15. The E 2g symmetry broad band for pure MgB 2 at ∼600cm -1 disappears even for small doping levels (x=0.027) and two well-defined peaks in the high-energy side of this band play a major role in the Raman spectra of the substituted compounds. We propose that a two-mode behavior of the compound might be present, induced by the coupling of the observed phonons with the electronic bands

  20. X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    International Nuclear Information System (INIS)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.

    2010-01-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the γ-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N H ) and radio (N HI ) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  1. Ultraviolet out-of-band radiation studies in laser tin plasma sources

    Science.gov (United States)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2017-11-01

    Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.

  2. The broad-band X-ray spectrum of IC 4329A from a joint NuSTAR/Suzaku observation

    Energy Technology Data Exchange (ETDEWEB)

    Brenneman, L. W.; Elvis, M. [Harvard-Smithsonian CfA, 60 Garden St., MS-67, Cambridge, MA 02138 (United States); Madejski, G. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Fuerst, F.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Rivers, E.; Walton, D. J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Matt, G.; Marinucci, A. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Boggs, S. E. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E.; Craig, W. W. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku and NuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found to be modest (∼6×10{sup 21} cm{sup −2} ), and does not introduce any significant curvature in the Fe K band. We are able to place a strong constraint on the presence of a broadened Fe Kα line (E{sub rest}=6.46{sub −0.07}{sup +0.08} keV with σ=0.33{sub −0.07}{sup +0.08} keV and EW=34{sub −7}{sup +8} eV), though we are not able to constrain any of the parameters of a relativistic reflection model. These results highlight the range in broad Fe K line strengths observed in nearby, bright, active galactic nuclei (roughly an order of magnitude), and imply a corresponding range in the physical properties of the inner accretion disk in these sources. We have also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than just NuSTAR alone: E {sub cut} = 186 ± 14 keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate this parameter from the plasma's optical depth and to update our results for these parameters as well. We derive kT=50{sub −3}{sup +6} keV with τ=2.34{sub −0.11}{sup +0.16} using a spherical geometry, kT = 61 ± 1 keV with τ = 0.68 ± 0.02 for a slab geometry, with both having an equivalent goodness-of-fit.

  3. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes

    International Nuclear Information System (INIS)

    Fang, Yun-tuan; Ni, Zhi-yao; Zhu, Na; Zhou, Jun

    2016-01-01

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively. (paper)

  4. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    Science.gov (United States)

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.

  5. Chronic exposure of Sk-1 hairless mice to narrow-band ultraviolet A (320-355 nm)

    International Nuclear Information System (INIS)

    Menter, J.M.; Sayre, R.M.; Etemadi, A.A.; Agin, P.P.; Wills, I.

    1996-01-01

    Several recent investigations collectively suggest that the role of ultraviolet A (UVA) in chronic actinic skin damage may be greater than originally thought. In the present work, the output of a xenon-arc solar-simulator passed through a Bausch and Lomb monochromator in conjunction with a 2-mm Schott WG-320 filter produced narrow-band UVA centered at 338 nm, half-band width 24 nm, I 0 =3.4±0.3 mW/cm 2 . We chronically irradiated 10 SK-1 albino hairless mice 5 times per week for 18 weeks, starting with 1.25 J/cm 2 , for 33 irradiation days, sequentially followed by 1.50 J/cm 2 (34 days), 1.8 J/cm 2 (10 days), 2.0 J/cm 2 (22 days) to afford a total UVA dose of 154.3 J/cm 2 over 99 irradiation days. Erythema was noted clinically by day 6, which persisted throughout the irradiation. During the irradiation period, some scaling, consistent with mild epidermal hyperplasia was noted during irradiation days 37-56. This response later regressed despite continued chronic irradiation. Hematoxylin and eosin examination immediately after the final irradiation revealed a mild inflammatory response, with some dermal restructuring. At the end of the experiment, no significant signs of epidermal hyperplasia or (pre)malignant lesions were seen, although some stratum corneum thickening was noted. Marked dermal collagen damage and moderate elastosis was also evident. We believe that the observed differences in results reported in previous studies are in large part due to differences in light sources and irradiation protocols. (au)

  6. Field measurements of the global UV-B radiation: a comparison between a broad-band radiometer and a Brewer spectrophotometer

    International Nuclear Information System (INIS)

    Anav, A.; Moriconi, M.L.; Di Menno, M.; Giannoccolo, S.

    1996-01-01

    The spectral responsivity shape plays an important role in the prospect of a wide use of broad-band meters in the UV-B monitoring. As most UV-B broad-band meters have a responsivity approximating an erythemal action spectrum, a measurement campaign was planned to verify if such an instrument could be successfully used to measure the unfiltered global irradiance. A Yankee radiometer mod. UV-B 1 and a Brewer spectrophotometer, considered as a reference meter, were compared for this purpose. A short theoretical treatment of the Yankee radiometer response and some results of the comparison are shown. Only clear-sky days data are selected so that the UV-B radiation reaching the ground could be modelled as the sum of the direct and isotropic diffuse components. The comparison results show a good agreement between the two instruments and confirm the capability of a broad-band UV-B radiometer of correctly measuring the global irradiance

  7. Study of CD variation caused by the black border effect and out-of-band radiation in extreme ultraviolet lithography

    Science.gov (United States)

    Gao, Weimin; Niroomand, Ardavan; Lorusso, Gian F.; Boone, Robert; Lucas, Kevin; Demmerle, Wolfgang

    2014-04-01

    Although extreme ultraviolet lithography (EUVL) remains a promising candidate for semiconductor device manufacturing of the 1× nm half pitch node and beyond, many technological burdens have to be overcome. The "field edge effect" in EUVL is one of them. The image border region of an EUV mask, also known as the "black border" (BB), reflects a few percent of the incident EUV light, resulting in a leakage of light into neighboring exposure fields, especially at the corner of the field where three adjacent exposures take place. This effect significantly impacts on critical dimension (CD) uniformity (CDU) across the exposure field. To avoid this phenomenon, a light-shielding border is introduced by etching away the entire absorber and multilayer at the image border region of the EUV mask. We present a method of modeling the field edge effect (also called the BB effect) by using rigorous lithography simulation with a calibrated resist model. An additional "flare level" at the field edge is introduced on top of the exposure tool flare map to account for the BB effect. The parameters in this model include the reflectivity and the width of the BB, which are mainly determining the leakage of EUV light and its influence range, respectively. Another parameter is the transition width which represents the half shadow effect of the reticle masking blades. By setting the corresponding parameters, the simulation results match well the experimental results obtained at the IMEC's NXE:3100 EUV exposure tool. Moreover, these results indicate that the out-of-band (OoB) radiation also contributes to the CDU. Using simulation, we can also determine the OoB effect rigorously using the methodology of an "effective mask blank." The study demonstrates that the impact of BB and OoB effects on CDU can be well predicted by simulations.

  8. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    NARCIS (Netherlands)

    De Visser, P.J.; Yates, S.J.C.; Guruswamy, T.; Goldie, D.J.; Withington, S.; Neto, A.; Llombart, N.; Baryshev, A.M.; Klapwijk, T.M.; Baselmans, J.J.A.

    2015-01-01

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the

  9. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R., E-mail: srl@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic

  10. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    Science.gov (United States)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  11. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)

    2004-10-15

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  12. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    International Nuclear Information System (INIS)

    Yoon, Hyun Jin; Kim, Dong Il

    2004-01-01

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  13. Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.

    Science.gov (United States)

    Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang

    2017-05-24

    Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.

  14. Comparing Broad-Band and Red Edge-Based Spectral Vegetation Indices to Estimate Nitrogen Concentration of Crops Using Casi Data

    Science.gov (United States)

    Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo

    2016-06-01

    In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.

  15. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    Science.gov (United States)

    Walton, D. J.; Fürst, F.; Harrison, F. A.; Stern, D.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A. C.; Middleton, M. J.; Ptak, A.; Tao, L.

    2018-02-01

    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM-Newton, NuSTAR and Chandra observatories. The broad-band XMM-Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∼0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B ≲ 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual 'off' states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.

  16. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    Science.gov (United States)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  17. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    Energy Technology Data Exchange (ETDEWEB)

    Visser, P. J. de, E-mail: p.j.devisser@tudelft.nl [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Yates, S. J. C. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Guruswamy, T.; Goldie, D. J.; Withington, S. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Neto, A.; Llombart, N. [Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands); Baryshev, A. M. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Klapwijk, T. M. [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Baselmans, J. J. A. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands)

    2015-06-22

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.

  18. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    International Nuclear Information System (INIS)

    Visser, P. J. de; Yates, S. J. C.; Guruswamy, T.; Goldie, D. J.; Withington, S.; Neto, A.; Llombart, N.; Baryshev, A. M.; Klapwijk, T. M.; Baselmans, J. J. A.

    2015-01-01

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements

  19. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    Science.gov (United States)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-21

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  20. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  1. Exploring the origin of broad-band emissions of Mrk 501 with a two-zone model

    Science.gov (United States)

    Lei, Maichang; Yang, Chuyuan; Wang, Jiancheng; Yang, Xiaolin

    2018-04-01

    We propose a two-zone synchrotron self-Compton (SSC) model, including an inner gamma-ray emitting region with spherical shape and a conical radio emitting region located at the extended jet, to alleviate the long-standing "bulk Lorentz factor crisis" in blazars. In this model, the spectral energy distributions (SEDs) of blazars are produced by considering the gamma-ray emitting region inverse Compton scattering of both the synchrotron photons itself and the ambient photons from the radio emitting region. Applying the model to Mrk 501, we obtain that the radio emitting region has a comoving length of ˜0.15 pc and is located at sub-parsec scale from the central engine by modeling the radio data; the flux of the Compton scattering of the ambient photons is so low that it can be neglected safely. The characteristic hard gamma-ray spectrum can be explained by the superposition of two SSC processes, and the model can approximately explain the very high energy (VHE) data. The insights into the spectral shape and the inter-band correlations under the flaring state will provide us with a diagnostic for the bulk Lorentz factor of radio emitting region, where the low and upper limits of 8 and 15 are preferred, and for the two-zone SSC model itself. In addition, our two-zone SSC model shows that the gamma-ray emitting region creates flare on the timescale of merely a few hours, and the long time outbursts more likely originate from the extended radio emitting region.

  2. BROAD BALMER WINGS IN BA HYPER/SUPERGIANTS DISTORTED BY DIFFUSE INTERSTELLAR BANDS: FIVE EXAMPLES IN THE 30 DORADUS REGION FROM THE VLT-FLAMES TARANTULA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Walborn, Nolan R.; Sana, Hugues; Sabbi, Elena, E-mail: walborn@stsci.edu, E-mail: hsana@stsci.edu, E-mail: sabbi@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2015-08-10

    Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

  3. The proposals on cooperation to foreign centers of science on thermophysical properties of reactor materials in a broad band of pressure and temperatures realized at normal transient and emergency operation activity of nuclear power plants

    International Nuclear Information System (INIS)

    Fortov, V.E.

    1996-01-01

    The proposals on cooperation in the area of thermophysical properties of reactor materials in a broad band of pressure and temperature realized at normal transient and emergency operation activity of nuclear power plants are discussed. 1 fig

  4. Broad-band simulation of M7.2 earthquake on the North Tehran fault, considering non-linear soil effects

    Science.gov (United States)

    Majidinejad, A.; Zafarani, H.; Vahdani, S.

    2018-05-01

    The North Tehran fault (NTF) is known to be one of the most drastic sources of seismic hazard on the city of Tehran. In this study, we provide broad-band (0-10 Hz) ground motions for the city as a consequence of probable M7.2 earthquake on the NTF. Low-frequency motions (0-2 Hz) are provided from spectral element dynamic simulation of 17 scenario models. High-frequency (2-10 Hz) motions are calculated with a physics-based method based on S-to-S backscattering theory. Broad-band ground motions at the bedrock level show amplifications, both at low and high frequencies, due to the existence of deep Tehran basin in the vicinity of the NTF. By employing soil profiles obtained from regional studies, effect of shallow soil layers on broad-band ground motions is investigated by both linear and non-linear analyses. While linear soil response overestimate ground motion prediction equations, non-linear response predicts plausible results within one standard deviation of empirical relationships. Average Peak Ground Accelerations (PGAs) at the northern, central and southern parts of the city are estimated about 0.93, 0.59 and 0.4 g, respectively. Increased damping caused by non-linear soil behaviour, reduces the soil linear responses considerably, in particular at frequencies above 3 Hz. Non-linear deamplification reduces linear spectral accelerations up to 63 per cent at stations above soft thick sediments. By performing more general analyses, which exclude source-to-site effects on stations, a correction function is proposed for typical site classes of Tehran. Parameters for the function which reduces linear soil response in order to take into account non-linear soil deamplification are provided for various frequencies in the range of engineering interest. In addition to fully non-linear analyses, equivalent-linear calculations were also conducted which their comparison revealed appropriateness of the method for large peaks and low frequencies, but its shortage for small to

  5. Investigation of Relative Time Constant Influence of Inertial Part of Superheater on Quality of Steam Temperature Control Behind Boiler in Broad Band of Loading Variations

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2008-01-01

    Full Text Available The paper is devoted to computational investigation of influence relative time constant of an object which changes in broad band on quality of steam temperature control behind a boiler with due account of value of regulating action in the system with PI- and PID- regulator. The simulation has been based on a single-loop automatic control system (ACS. It has been revealed that the less value of the relative time constant of an object leads to more integral control error in system with PID- regulator while operating external ACS perturbation. Decrease of numerical value of relative time constant of an object while operating external perturbation causes decrease of relative time concerning appearance of maximum dynamic control error from common relative control time.

  6. Valence band electronic structure of Ho-doped La0.67Ca0.33MnO3 using ultra-violet photoemission spectroscopy

    Science.gov (United States)

    Rout, S. K.; Mukharjee, R. N.; Mishra, D. K.; Roul, B. K.; Sekhar, B. R.; Dalai, M. K.

    2017-05-01

    In this manuscript we report the valence band electronic structure of Ho doped La0.67Ca0.33MnO3 using ultraviolet photoemission spectroscopy. We compared the density of states of La0.67Ca0.33MnO3, La0.67Ca0.3Ho0.03MnO3 and La0.64Ho0.03Ca0.33MnO3 near the Fermi level at various temperatures. Significant amount of changes have been observed at higher temperatures (220 K and 300 K) where the near Fermi level density of states increases with Ho doping into La0.67Ca0.33MnO3 indicating the enhancement of magnitude of change in metallicity (conductivity).

  7. Fast broad-band photon detector based on quantum well devices and charge-integrating electronics for non-invasive FEL monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M., E-mail: matias.antonelli@elettra.eu; Cautero, G.; Sergo, R.; Castellaro, C.; Menk, R. H. [Elettra – Sincrotrone Trieste S.C.p.A., Trieste (Italy); Ganbold, T. [School in Nanotechnology, University of Trieste, Trieste (Italy); IOM CNR, Laboratorio TASC, Trieste (Italy); Biasiol, G. [IOM CNR, Laboratorio TASC, Trieste (Italy)

    2016-07-27

    The recent evolution of free-electron lasers has not been matched by the development of adequate beam-monitoring instrumentation. However, for both experimental and diagnostics purposes, it is crucial to keep such photon beams under control, avoiding at the same time the absorption of the beam and the possible destruction of the detector. These requirements can be fulfilled by utilizing fast and non-invasive photon detectors operated in situ, upstream from the experimental station. From this perspective, sensors based on Quantum Well (QW) devices can be the key to detecting ultra-short light pulses. In fact, owing to their high electron mobility, InGaAs/InAlAs QW devices operated at room temperature exhibit sub-nanosecond response times. Their direct, low-energy band gap renders them capable of detecting photons ranging from visible to X-ray. Furthermore, the 2D electron gas forming inside the QW is responsible for a charge amplification mechanism, which increases the charge collection efficiency of these devices. In order to acquire the signals produced by these QW sensors, a novel readout electronics has been developed. It is based on a high-speed charge integrator, which allows short, low-intensity current pulses to be read within a 50-ns window. The integrated signal is acquired through an ADC and the entire process can be performed at a 10-MHz repetition rate. This work provides a detailed description of the development of the QW detectors and the acquisition electronics, as well as reporting the main experimental results, which show how these tools are well suited for the realization of fast, broad-band beam monitors.

  8. A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    Science.gov (United States)

    van Oers, Pieter; Markoff, Sera; Uttley, Phil; McHardy, Ian; van der Laan, Tessel; Donovan Meyer, Jennifer; Connors, Riley

    2017-06-01

    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, ≲23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ˜1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.

  9. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold

    Science.gov (United States)

    Nuzhnyy, D.; Savinov, M.; Bovtun, V.; Kempa, M.; Petzelt, J.; Mayoral, B.; McNally, T.

    2013-02-01

    Composites of multiwalled carbon nanotubes with poly(ethylene terephthalate) (PET-MWCNT) with up to 3 vol% MWCNTs were prepared and characterized by broad-band AC conductivity and dielectric spectroscopy up to the infrared range using several techniques. A very low electrical percolation threshold of 0.07 vol% MWCNTs was revealed from the low-frequency conductivity plateau as well as from DC conductivity, whose values show the same critical power dependence on MWCNT concentration with the exponent t = 4.3. Above the plateau, the AC conductivity increases with frequency up to the THz range, where it becomes overlapped with the absorption of vibrational modes. The temperature dependence down to ˜5 K has shown semiconductor behaviour with a concentration-independent but weakly temperature-dependent small activation energy of ˜3 meV. The behaviour is compatible with the previously suggested fluctuation-induced tunnelling conductivity model through a thin (˜1 nm) polymer contact layer among the adjacent MWCNTs within percolated clusters. At higher frequencies, deviations from the simple universal conductivity behaviour are observed, indicating some distribution of energy barriers for an electron hopping mechanism.

  10. Comparison of broad band time series recorded parallel by FGI type interferometric water level and Lippmann type pendulum tilt meters at Conrad observatory, Austria

    Science.gov (United States)

    Ruotsalainen, Hannu; Papp, Gabor; Leonhardt, Roman; Ban, Dora; Szücs, Eszter; Benedek, Judith

    2016-04-01

    The Finnish Geodetic Institute (FGI) the progenitor of Finnish Geospatial Research Institute of NLS designed and built a 5.5m long prototype of interferometric water level tiltmeter (iWT) in early 2014. Geodetic and Geophysical Institute (GGI), Sopron, Hungary bought the instrument and started tilt measurement in August 2014 at the Conrad observatory (COBS), Austria to monitor geodynamical phenomena like microseisms, free oscillations of the Earth, earth tides, mass loading effects and crustal deformations in cooperation with Austrian Central Institute for Meteorology and Geodynamics (ZAMG) and the FGI. On the July 16 2015 a Lippmann-type 2D tilt sensor (LTS) was also installed by GGI on the 6 m long pier where iWT was set up previously. This situation opens a possibility to do broad band (from secular to seismic variations up to 15 Hz) geophysical signal analysis comparing the responses of long (several meters) and short (a few decimeters) base instruments implementing different physical principles (relative height change of a level surface and inclination change of the plumb line). The characteristics of the sensors are studied by the evaluation of the spectra of recorded signals dominated by microseisms. The iWT has internal interferometric calibration and it can be compared to Lippmanns tilt meter one. Both instruments show good long term ( > 1 day) stability when earth tides and ocean and air mass loading tilts are modelled.

  11. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.

    2012-03-01

    In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  12. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction

    Science.gov (United States)

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-01

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  13. JUDE: An Ultraviolet Imaging Telescope pipeline

    Science.gov (United States)

    Murthy, J.; Rahna, P. T.; Sutaria, F.; Safonova, M.; Gudennavar, S. B.; Bubbly, S. G.

    2017-07-01

    The Ultraviolet Imaging Telescope (UVIT) was launched as part of the multi-wavelength Indian AstroSat mission on 28 September, 2015 into a low Earth orbit. A 6-month performance verification (PV) phase ended in March 2016, and the instrument is now in the general observing phase. UVIT operates in three channels: visible, near-ultraviolet (NUV) and far-ultraviolet (FUV), each with a choice of broad and narrow band filters, and has NUV and FUV gratings for low-resolution spectroscopy. We have written a software package (JUDE) to convert the Level 1 data from UVIT into scientifically useful photon lists and images. The routines are written in the GNU Data Language (GDL) and are compatible with the IDL software package. We use these programs in our own scientific work, and will continue to update the programs as we gain better understanding of the UVIT instrument and its performance. We have released JUDE under an Apache License.

  14. Physically-Based Probabilistic Seismic Hazard Analysis Using Broad-Band Ground Motion Simulation: a Case Study for Prince Islands Fault, Marmara Sea

    Science.gov (United States)

    Mert, A.

    2016-12-01

    The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.

  15. DustPedia: Multiwavelength photometry and imagery of 875 nearby galaxies in 42 ultraviolet-microwave bands

    Science.gov (United States)

    Clark, C. J. R.; Verstocken, S.; Bianchi, S.; Fritz, J.; Viaene, S.; Smith, M. W. L.; Baes, M.; Casasola, V.; Cassara, L. P.; Davies, J. I.; De Looze, I.; De Vis, P.; Evans, R.; Galametz, M.; Jones, A. P.; Lianou, S.; Madden, S.; Mosenkov, A. V.; Xilouris, M.

    2018-01-01

    Aims: The DustPedia project is capitalising on the legacy of the Herschel Space Observatory, using cutting-edge modelling techniques to study dust in the 875 DustPedia galaxies - representing the vast majority of extended galaxies within 3000 km s-1 that were observed by Herschel. This work requires a database of multiwavelength imagery and photometry that greatly exceeds the scope (in terms of wavelength coverage and number of galaxies) of any previous local-Universe survey. Methods: We constructed a database containing our own custom Herschel reductions, along with standardised archival observations from GALEX, SDSS, DSS, 2MASS, WISE, Spitzer, and Planck. Using these data, we performed consistent aperture-matched photometry, which we combined with external supplementary photometry from IRAS and Planck. Results: We present our multiwavelength imagery and photometry across 42 UV-microwave bands for the 875 DustPedia galaxies. Our aperture-matched photometry, combined with the external supplementary photometry, represents a total of 21 857 photometric measurements. A typical DustPedia galaxy has multiwavelength photometry spanning 25 bands. We also present the Comprehensive & Adaptable Aperture Photometry Routine (CAAPR), the pipeline we developed to carry out our aperture-matched photometry. CAAPR is designed to produce consistent photometry for the enormous range of galaxy and observation types in our data. In particular, CAAPR is able to determine robust cross-compatible uncertainties, thanks to a novel method for reliably extrapolating the aperture noise for observations that cover a very limited amount of background. Our rich database of imagery and photometry is being made available to the community. Photometry data tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A37

  16. Growing Escherichia coli mutants deficient in riboflavin biosynthesis with non-limiting riboflavin results in sensitization to inactivation by broad-spectrum near-ultraviolet light (320-400 nm)

    International Nuclear Information System (INIS)

    Lloyd, R.E.; Rinkenberger, J.L.; Hug, B.A.; Tuveson, R.W.

    1990-01-01

    Two mutants of Escherichia coli unable to synthesize riboflavin were grown with limiting (2 μg ml -1 ) and non-limiting (10 μg ml -1 ) concentrations of riboflavin. These riboflavin auxotrophs when grown to exponential phase with non-limiting riboflavin are more sensitive to broad spectrum near-ultraviolet light (NUV, 320-400 nm) inactivation than when they are grown with limiting riboflavin. Exponential phase cells of the riboflavin auxotrophs grown with limiting riboflavin are sensitized when irradiated in saline supplemented with riboflavin. This suggests that extracellular riboflavin is important as a NUV sensitizer when intracellular levels of riboflavin are reduced. The concentration of riboflavin in crude extracts from exponentially growing cells correlates well with the sensitivity of these mutants to NUV inactivation. The level of riboflavin supplementation has little effect on the NUV sensitivity of the parental strain. (author)

  17. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy.

    Science.gov (United States)

    Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H

    2018-03-01

    Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.

  18. Efficient 1.54-μm emission through Eu2+ sensitization of Er3+ in thin films of Eu2+/Er3+ codoped barium strontium silicate under broad ultraviolet light excitation

    International Nuclear Information System (INIS)

    Li, Leliang; Zheng, Jun; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2015-01-01

    Thin films of Eu 2+ /Er 3+ codoped barium strontium silicate were deposited on a thermal oxide Si substrate by magnetron sputtering. Optical properties suggest that after a rapid annealing process, these films can lead to efficient Er 3+ emission at 1.54 μm with a lifetime of about 7.9 ms. Intense 1.54-μm light emission was achieved under broad ultraviolet light excitation through efficient energy transfer from Eu 2+ to Er 3+ . These results indicate that the Eu 2+ /Er 3+ thin films have potential applications as low cost and compact erbium doped waveguide amplifiers pumped by LEDs. - Highlights: • The Er 0.07 Eu 0.14 Sr 1.14 Ba 0.79 SiO 4 films are fabricated by magnetron sputtering. • Efficient energy transfer from Eu 2+ to Er 3+ ions by the dipole–dipole interaction. • Intense 1.54 μm emission is achieved under broad excitation spectrum. • The films have potential applications as low cost and compact EDWAs

  19. Time Series of SO2 Flux from Popocatépetl Volcano by an Ultra-Violet Camera with a Set of Different Band-Pass Filters

    Science.gov (United States)

    Schiavo, B.; Stremme, W.; Grutter, M.; Campion, R.; Rivera, C. I.; Inguaggiato, S.

    2017-12-01

    The measurement of SO2flux from active volcanoes are of great importance, for monitoring and hazard of volcanic activity, environmental impact and flux emissions related to changes of magmatic activity. Sulfur dioxide total flux from Popocatépetl volcano was determinad using a ultra-violet camera (or SO2 camera) with different band-pass filter. The flux is obteined from the product of the gas concentration over integrated the plume cross-section (slant column in molec/cm2 or ppm*m) and wind velocity data. Model of plume altitude and wind speed measurement are used to calculate a wind velocity, but a new method of sequential images is widely used in several years for this calculation. Volcanic plume measurements, for a total of about 60 days from from January to March 2017, were collected and utilized to generate the SO2 time series. The importance of monitoring and the time series of volcanic gas emissions is described and proven by many scientific studies. A time series of the Popocatépetl volcano will allow us to detect the volcanic gas as well as anomalies in volcanic processes and help to estimate the average SO2 flux of the volcano. We present a detailed description of the posterior correction of the dilution effect, which occurs due to a simplification of the radiative transfer equation. The correction scheme is especial applicable for long term monitoring from a permanent observation site. Images of volcanic SO2 plumes from the active Popocatépetl volcano in Mexico are presented, showing persistent passive degassing. The measurment are taken from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 m.a.s.l.), which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks. It is located north of the crater at 11 km distance. The data to calculate SO2 flux (t/d or kg/s) were recorded with the QSI UV camera and processed using Python scripts.

  20. Colloid bands in silver chloride induced by reactor irradiation at low temperature

    International Nuclear Information System (INIS)

    Atobe, K.; Okada, M.; Nakagawa, M.

    1978-01-01

    It is well known that no trapped electron center exists stably in irradiated silver chlorides even at low temperatures. On the other hand, irradiation by ultra-violet light at room temperature produces a broad absorption (colloid bands) on the long wavelength side of the fundamental absorption. In this report, it is shown that one of the colloid bands appears in undoped AgCl crystals by reactor irradiation at low temperature (20 K) and the other colloid band by thermal annealing after the irradiation. The relation between the bands, which correspond to two types of colloidal silver, is represented. (author)

  1. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    Science.gov (United States)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  2. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  3. Broad band tunable dye laser development

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Jung Bog; Kim, Sung Ho; Go, Do Kyung; Lim, Chang Hwan; Rho, Si Pyo; Song, Kyu Seok; Lee, Byung Cheol; Rhi, Jong Hoon; Han, Jae Min; Cha, Hyung Ki; Cha, Byung Hun; Jeong, Do Yung; Han, Jae Min; Jung, Yeu Chang; Im, Ho; Yoo, Choon Sun; Jung, Byung Ik; Seok, Gum Sook

    1992-12-01

    The technical goal and objectives are the development of a tunable laser which can be tuned from UV to near IR and commercialization for uses in various fields. Two kinds of resonators are developed. User can select one resonator and change into the other without changing other parts. GIM type has a linewidth of 5GHz which is able to be used usually, and SLM type is very narrow linewidth of less than 1GHz. Each system can have one or two amplifiers depending on output power or cost. High stability and safety, cost-down, and modules into about 30 components have been tried. We hope that this laser can help developments in researches of university, industry, and institute. (Author)

  4. Photoinactivation of Propionibacterium acnes by near-ultraviolet light

    International Nuclear Information System (INIS)

    Kjeldstad, B.

    1984-01-01

    Photodestruction of Propionibacterium acnes was investigated by broad-band near-ultraviolet light. The inactivation of the bacteria was found to be oxygen dependent, and without O 2 practically no photoinactivation occurred. D 2 O caused an increased inactivation (D 10 = 5 kJ/m 2 in D 2 O as compared to D 10 = 11 kJ/m 2 in normal water). Decreased temperature during illumination increased the ability to form colonies. The results are compared with corresponding results for other types of cells and the destruction mechanism is discussed. (orig.)

  5. An open labeled, comparative clinical study on efficacy and tolerability of oral minipulse of steroid (OMP alone, OMP with PUVA and broad / narrow band UVB phototherapy in progressive vitiligo

    Directory of Open Access Journals (Sweden)

    Rath Namita

    2008-01-01

    Full Text Available Background: Several modalities of treatment have been tried in vitiligo with varied results; however, Indian data on comparative studies of two or more therapies are limited. Aims: We compared different phototherapy methods with an oral steroid as an adjunct to determine the method with the best tolerability and efficacy. Methods: Eighty-six patients with progressive vitiligo were randomly assigned to different study groups according to a continuous selection method over a period of one year. Group 1 was given OMP + PUVA, group 2 OMP + UVB (NB, group 3 OMP + UVB (BB and group 4 was given OMP alone. Each patient was followed up for six months and then released from treatment. Clinical evaluation was made at the end of three and six months. Results: In group 1 (OMP + PUVA, marked improvement was seen in 18.51% while moderate improvement was seen in 66.66% of the patients. Marked improvement was seen in 37.03% in group 2 (OMP + NB-UVB while 44.44% had moderate improvement. In group 3 (OMP + BB UVB, 8.33% showed marked improvement while moderate improvement was seen in 25% of the patients. Marked and moderate improvement was seen in 5 and 10% of group 4 (OMP patients, respectively. Conclusions: Our study compared four treatment modalities in vitiligo patients, out of which oral minipulse of steroids (OMP only had an adjunct value and was not very effective by itself. Narrow band UVB has a definite edge over broad band UVB and should be preferred when both options are available. NB-UVB and PUVA showed comparable efficacy.

  6. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    Science.gov (United States)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  7. Ultraviolet Extensions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra. Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form. The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials. The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the

  8. Ultraviolet sterilization

    International Nuclear Information System (INIS)

    Schenck, G.O.

    1987-01-01

    Artificial ultraviolet radiation sources can supply bactericidal energy in such a high dosage that in less than a second a higher degree of disinfection is accomplished than by sun irradiation in hours. Bacteria, viruses, phages, and organic micropollutants can be degraded by photochemical wet combustion down to and below detection limits of organic carbon. There are no known ultraviolet-resistant microorganisms. There are limitations to ultraviolet treatment which can often be overcome by adequate technical measures. Unlike other water purification processes, ultraviolet irradiation only exterminates living organisms. The radiation must be able to penetrate to the objects of the kill; in a dose large enough to kill, and long enough to kill and prevent new growth. Contrary to filters, ultraviolet flow-through reactors do not restrict free flow significantly. In contrast to distillation, ultraviolet irradiation imposes no phase changes to the water. Used as a sequence in ultrapure water systems, maintenance requirements are virtually nonexistent; because of the absence of dissolved and particulate matter in purified water, mechanical cleaning of the photoreactor chambers is not essential. The process is highly economical; energy consumption is low and supervision minimal. 103 refs., 45 figs., 15 tabs

  9. Swelling and functional disorders of isolated liver mitochondria induced by ultraviolet light exposure

    International Nuclear Information System (INIS)

    Sayanagi, Hideaki

    1977-01-01

    Biochemical and morphological disruption of liver mitochondria exposed to ultraviolet light were discussed. The mitochondria was prepared from rat liver, and the suspension was exposed to a broad spectrum ultraviolet light. The ultraviolet exposure of isolated rat liver mitochondria prepared from group 1 (regular laboratory chow), caused the great acceleration of swelling of mitochondria and the loss of the ability to couple the phosphorylation with respiration chain. The irradiated mitochondria produced an increase of lipid peroxide which was proportional to the dose of ultraviolet energy. By the use of a difference spectra technic, the absorption bands of cytochrome b, c (c 1 ), and flavoprotein were found to decrease in absorption after ultraviolet exposure. However, mitochondrial suspension prepared from rat in group 2 (regular chow supplemented with 3 mg% riboflavin free form), 3 (with 3 mg% riboflavin tetrabutyrate), 4 (with 5 mg% glutathione (GSH)), provided some degree of protection against the above deleterious effects of ultraviolet radiation. The irradiation effects could be reduced in the irradiated mitochondrial suspension which was incubated with riboflavin and GSH respectively after exposure. Riboflavin B 2 tetrabutyrate was found to show the significant effect of anti-oxidation. Riboflavin free-form was also active in this respect but to a lesser extent. (auth.)

  10. Runs 800, 813, 842 and physics runs from 18.1.77 to 21.5.77, Development of a new set-up for working line measurements including a Fast Fourier Transform Spectrum Analyser and using weak beam excitiation with broad-band noise

    CERN Document Server

    Borer, J

    1977-01-01

    Runs 800, 813, 842 and physics runs from 18.1.77 to 21.5.77, Development of a new set-up for working line measurements including a Fast Fourier Transform Spectrum Analyser and using weak beam excitiation with broad-band noise

  11. Peripheral Quantitative Computed Tomography (pQCT), Broad Band Ultrasound Attenuation (BUA) and Speed of Sound (SOS) in a population of normal females aged from 8 to 20 years

    International Nuclear Information System (INIS)

    Bagni, B.; Corazzari, T.; Bagni, I.; Garuti, F.; Franceschetto, A.; Casolo, A.; Pansini, F.

    2002-01-01

    Aim: To evaluate, in a population of young healthy females aged from 8 to 20 years the bone mass peak (or density), the normal ranges versus age and menarche-age using two method: pQCT (peripheral Quantitative Computed Tomography) and ultrasound absorptiometry. Material and Methods: From 1998 to 2000 selective measurement of Bone Mineral Density (BMD) of trabecular bone at the ultradistal radius using pQCT, BUA (Broad Band Attenuation) and SOS ( Speed Of Sound) was carried out on 426 healthy females (aged from 8 to 20 years) in north Italy. BMD were measured using a single photon miniaturized tomographic scanner in the ultradistal radius, SOS and BUA were measured at the same time, using a water bath device obtaining parametric bidimensional images of BUA and SOS. The population studied refers to normal females free of bone metabolism alteration, in pre and post-pubertal status. Results: A normal range of BMD, BUA and SOS versus age and menarche age were established. A linear correlation was found between BUA and BMD measured with pQCT. SOS does not show any correlation with BMD. The pre-puberty and the post-puberty groups show statistically significant differences between SOS, BUA and BMD. We found the peak bone density (measured with pQCT) in the trabecular bone at the ultradistal radius at 15 years of age (mean menarche age of 10 years). The same position of the peak was found for BUA, for SOS the situation is not well defined. The analytical fitting of the data highlights a polynomial correlation of BMD vs. age, SOS vs. age, BUA vs. age. Conclusions: It appears that the sexual growth influences the position of peak bone density. The results obtained show a statistically significant correlation between BUA and BMD versus age, the menarche-age and the period of exposure of bone tissue to the oestrogen. After all, pQCT and ultrasound are useful techniques to evaluate bone density and structure also in a growing population. The results of this study shows the

  12. Near-ultraviolet radiation-induced damage using an actinic reticuloid strain as a possible sensitive model

    International Nuclear Information System (INIS)

    Kralli, A.

    1987-01-01

    The introduction to this thesis consists of a review of current concepts regarding the effects of ultraviolet radiation on living cells. Actinic reticuloid, a disease condition for which a near-ultraviolet radiation cellular sensitivity has been proposed as an underlying cause, is described. The experimental work, the broad aim of which is to expand existing knowledge of the effects of near-ultraviolet radiation that may lead to cell lethality, has centred upon the irradiation of a normal human skin fibroblast strain, GM730, and a strain derived from an actinic reticuloid patient, AR6LO. Parts 1 and 2 examine the effects of the irradiation on both normal and actinic fibroblast sensitivities to a range of ultraviolet wavelengths. The next two sections include observations on the protective effect of Trolox-C, a vitamin E analogue and the sensitization resulting from the replacement of the irradiation medium by a deuterated one, using both normal and actinic reticuloid fibroblasts. The final part examines broad-band near- and far-ultraviolet radiation induced membrane damage by the use of radioactively labelled rubidium as a potassium analogue. (author)

  13. Ultraviolet-B treatment for cutaneous lichen planus: our experience with 50 patients.

    Science.gov (United States)

    Pavlotsky, Felix; Nathansohn, Nir; Kriger, Grigory; Shpiro, Dorit; Trau, Henri

    2008-04-01

    Previous small reports suggested the role of ultraviolet (UV)-B in the management of cutaneous lichen planus. To summarize our experience with UVB in a relatively large study group looking specifically into predictive factors for complete response and the long-term relapse rates. A retrospective analysis of 50 patients with generalized cutaneous lichen planus, treated by broad or narrow band UVB. Seven and 43 patients were treated by broad and narrow band UVB, respectively. Complete response was achieved in 70% and 85% of those were still in remission after a median of 34.7 months. The complete response rate and the need for higher cumulative exposure doses were not influenced by sex, age, skin type, presence of additional diseases, failure of previous treatment or disease duration. This is a retrospective non-randomized analysis of a usually self-limiting disease. UVB is a safe and efficient treatment option for generalized cutaneous lichen planus.

  14. Near-ultraviolet radiation blocks SOS responses to DNA damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.A.; Eisenstark, A.

    1984-01-01

    Escherichia coli cells in which the recA promoter is fused to a lac structural gene, (Mu) Mud(Ap,lac)::rec, were irradiated with two far-ultraviolet light wavelengths (254 and 290 nm), selected monochromatic near-ultraviolet (NUV) wavelengths 313 nm, 334 nm, 365 nm, or broad band solar-UV (290-420 nm) from a solar simulator. Irradiation with the two far-ultraviolet wavelengths was followed by high yields of ..beta..-galactosidase, lambda prophage induction, and Weigle reactivation. These end points were not observed after irradiation with the selected NUV wavelengths or the broad spectrum solar-UV. Thus, neither broad spectrum solar-UV nor monochromatic NUV wavelengths resulted in the derepression of the recA promoter. Further, prior exposure of the cells either to the selected monochromatic NUV wavelengths or to solar-UV inhibited a) the induction of ..beta..-galactosidase by subsequent 254-nm radiation, b) subsequent 254-nm induction of lambda prophage, c) Weigle reactivation, and d) mutation frequency. These observations are consistent with the hypothesis that NUV blocks subsequent recA protease action.

  15. Solar ultraviolet hazards

    International Nuclear Information System (INIS)

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  16. Ultraviolet radiation

    International Nuclear Information System (INIS)

    Hawk, J.

    1986-01-01

    Ultraviolet radiation (UVR) from the sun or artificial sources is reflected or transmitted at the surface of the skin, about 5% of normally incident rays being directly reflected. The transmitted fraction is scattered, photochemically absorbed or dissipated as heat within the skin, or passes from it to contribute to the variable total amount of reflected and transmitted radiation. The UVR absorbers in skin are not definitely known, but DNA is a definite target and probably lipoprotein membranes, RNA, proteins, mucopolysaccharides, elastin and collagen. Photochemical or free radical damage to absorber or nearby organelles leads to pharmacological, ultrastructural, histological and clinical changes. Most frequent DNA damage is pyrimidine dimer formation, apparently inhibiting cell function and replication. This is largely enzymatically repaired in man in the dark by excision repair, post-replication repair and possible other enzymatic mechanisms, and at least in some organisms by light-induced photoreactivation repair. UVR exposure causes well recognized acute and chronic clinical syndromes in man. These are discussed in this paper

  17. Ultraviolet spectra of DA white dwarfs

    International Nuclear Information System (INIS)

    Nelan, E.P.

    1985-01-01

    Using the International Ultraviolet Explorer (IUE) satellite, observations of cool to moderately warm DA white dwarfs showed the presence of broad absorption features at lambda 1400 and 1600. The lambda 1600 feature is prominent for T/sub eff/ 0 K and the lambda 1400 feature is visible up to about T/sub eff/ = 18,000 0 K. Proposed mechanisms for absorption at lambda 1400 have included a Si V doublet, H 2 Lyman bands, and the Call ionization edge at lambda 1420. It was recently suggested that the lambda 1600 feature is due to the photoionization edge of Mg I at lambda 1625. None of these has been able to explain all of the observations without invoking some quite unconventional circumstances. On the basis of computer models, this thesis proposes that the absorption in both cases is due to perturbations of the energy level structure of neutral hydrogen atoms undergoing collisions. The lambda 1600 feature is due to absorption by the hydrogen quasi-molecule while that at lambda 1400 arises from a ground state transition of the hydrogen quasi-molecule ion

  18. Ultraviolet imaging of planetary nebulae with GALEX

    Science.gov (United States)

    Bianchi, Luciana; Thilker, David

    2018-05-01

    Over four hundred Galactic Planetary Nebulae (PNe) have been imaged by GALEX in two ultraviolet (UV) bands, far-UV (FUV, 1344-1786 Å, λ _{eff}= 1528 Å) and near-NUV (NUV, 1771-2831 Å, λ _{eff} = 2271 Å). We present examples of extended PNe, for which UV spectroscopy is also available, to illustrate the variety in UV morphology and color, which reflects ionization conditions. The depth of the GALEX imaging varies from flux ≈ 0.4/5× 10 ^{-18} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for exposures of the order of ˜ 100 seconds, typical of the survey with the largest area coverage, to ˜ 0.3/8.3× 10^{-19} ergs cm^{-2} s^{-1} Å^{-1} \\square ^'' -1} (FUV/NUV) for ˜ 1500 sec exposures, typical of the second largest survey (see Bianchi in Astrophys. Space Sci. 320:11, 2009; Bianchi et al. in Adv. Space Res. 53:900, 2014). GALEX broad-band FUV and NUV fluxes include nebular emission lines and in some cases nebular continuum emission. The sensitivity of the GALEX instrument and the low sky background, especially in FUV, enable detection and mapping of very faint ionization regions and fronts, including outermost wisps and bow shocks. The FUV-NUV color of the central star provides a good indication of its T_{eff}, because the GALEX FUV-NUV color is almost reddening-free for Milky Way type dust (Bianchi et al. in Astrophys. J. Suppl. Ser. 230:24, 2017; Bianchi in Astrophys. Space Sci. 335:51, 2011, Bianchi in Astrophys. Space Sci. 354:103, 2014) and it is more sensitive to hot temperatures than optical colors.

  19. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    International Nuclear Information System (INIS)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas

    2017-01-01

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  20. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas, E-mail: maialen.arrieta@obspm.fr [Laboratoire Univers et Theories, Observatoire de Paris, CNRS, Université Paris-Diderot, PSL Research University, Meudon (France)

    2017-12-08

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  1. The 2010 Broad Prize

    Science.gov (United States)

    Education Digest: Essential Readings Condensed for Quick Review, 2011

    2011-01-01

    A new data analysis, based on data collected as part of The Broad Prize process, provides insights into which large urban school districts in the United States are doing the best job of educating traditionally disadvantaged groups: African-American, Hispanics, and low-income students. Since 2002, The Eli and Edythe Broad Foundation has awarded The…

  2. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    Science.gov (United States)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  3. Survey of the variation in ultraviolet outputs from ultraviolet A sunbeds in Bradford.

    Science.gov (United States)

    Wright, A L; Hart, G C; Kernohan, E; Twentyman, G

    1996-02-01

    Concerns have been expressed for some time regarding the growth of the cosmetic suntanning industry and the potential harmful effects resulting from these exposures. Recently published work has appeared to confirm a link between sunbed use and skin cancer. A previous survey in Oxford some years ago demonstrated significant output variations, and we have attempted to extend and update that work. Ultraviolet A, UVB and blue-light output measurements were made on 50 sunbeds using a radiometer fitted with broad-band filters and detectors. A number of irradiance measurements were made on each sunbed within each waveband so that the uniformity of the output could also be assessed. UVA outputs varied by a factor of 3, with a mean of 13.5 mW/cm2; UVB outputs varied by a factor of 60, with a mean of 19.2 microW/cm2; and blue-light outputs varied by a factor of 2.5, with a mean of 2.5 mW/cm2. Outputs fall on average to 80% of the central value at either end of the sunbed. Facial units in sunbeds ranged in output between 18 and 45 mW/cm2. Output uniformity shows wide variation, with 16% of the sunbeds having an axial coefficient of variation > 10%. UVB output is highly tube-specific. Eyewear used in sunbeds should also protect against blue light.

  4. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  5. INFRARED AND ULTRAVIOLET SPECTRA OF METHANE DILUTED IN SOLID NITROGEN AND IRRADIATED WITH ELECTRONS DURING DEPOSITION AT VARIOUS TEMPERATURES

    International Nuclear Information System (INIS)

    Chin, Chih-Hao; Chen, Sian-Cong; Liu, Meng-Chen; Huang, Tzu-Ping; Wu, Yu-Jong

    2016-01-01

    We recorded the infrared and ultraviolet absorption spectra of CH 4 :N 2 matrix samples that underwent electron bombardment during deposition in the temperature range of 10–44 K. In contrast to a previous experiment on the IR spectroscopy of electron-bombarded icy samples, methyl and azide radicals became the main products upon electron bombardment during deposition; furthermore, reduced production of nitrile species was observed for deposition at 10 and 20 K. On the other hand, for deposition above 33 K, the observed bands of the radical species (such as methyl and azide) decreased, and bands of large nitriles appeared. This observation may suggest that radical species easily diffuse and recombine to form more complex molecules in solid nitrogen at higher temperatures. Further measurements of similar samples at 10–33 K in the UV region revealed the intense band of azide radicals at 272.5 nm and weak, broad, overlapping features of methyl and azide radicals in the 225–197 nm region. For deposition at 44 K, only a broad feature centered at 219.4 nm was observed, and the possible carriers of nitrile species were proposed based on the corresponding IR spectrum and theoretical predictions of excitation energy. This band is similar to the observed absorption feature of Pluto’s surface recorded by the Hubble telescope in terms of both band position and bandwidth. Our findings therefore further support the suggestion that complex nitrile species may exist on the surface of Pluto.

  6. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    International Nuclear Information System (INIS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd =0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91 +0.24 -0.22 , which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  7. The broad-band SEDs of four `hypervariable' AGN

    Science.gov (United States)

    Collinson, James S.; Ward, Martin J.; Lawrence, Andy; Bruce, Alastair; MacLeod, Chelsea L.; Elvis, Martin; Gezari, Suvi; Marshall, Philip J.; Done, Chris

    2018-03-01

    We present an optical-to-X-ray spectral analysis of four `hypervariable' AGN (HVAs) discovered by comparing Pan-STARRS data to that from the Sloan Digital Sky Survey over a 10 yr baseline (Lawrence et al.). There is some evidence that these objects are X-ray loud for their corresponding UV luminosities, but given that we measured them in a historic high state, it is not clear whether to take the high state or low state as typical of the properties of these HVAs. We estimate black hole masses based on Mg II and H α emission line profiles, and either the high- or low-state luminosities, finding mass ranges log (MBH/M⊙) = 8.2-8.8 and log (MBH/M⊙) = 7.9-8.3, respectively. We then fit energy-conserving models to the spectral energy distributions (SEDs), obtaining strong constraints on the bolometric luminosity and αOX. We compare the SED properties with a larger, X-ray selected AGN sample for both of these scenarios, and observe distinct groupings in spectral shape versus luminosity parameter space. In general, the SED properties are closer to normal if we assume that the low state is representative. This supports the idea that the large slow outbursts may be due to extrinsic effects (for example microlensing) as opposed to accretion rate changes, but a larger sample of HVAs is needed to be confident of this conclusion.

  8. Computer-aided design of broad band reflection type amplifiers

    DEFF Research Database (Denmark)

    Hammershaimb, Edgar; Jeppesen, Palle; Schjær-Jacobsen, Hans

    1974-01-01

    Microwave negative resistance reflection type amplifiers using stable transferred electron devices (TED's) are optimized by numerical optimization techniques programmed for an interactive graphic datascreen. The small signal impedance of packaged TED's is measured on an automatic network analyzer....... At the same time the impedance of unpackaged devices are obtained by on-line correction for the package parasitics. The microwave circuit chosen is a multiple slug coaxial cavity, that is modelled by sections of lossy transmission lines including step susceptances. The measured small signal impedance...... of the packaged TED's and the cavity model are used in a direct optimization procedure, in which the calculated minimum gain in the prescribed frequency range is progressively maximized by adjusting the lengths, characteristic impedances and positions of the slugs. The computed results are displayed...

  9. Molecular Electronic Angular Motion Transducer Broad Band Self-Noise

    Science.gov (United States)

    Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna

    2015-01-01

    Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502

  10. The ultraviolet variations of iota Cas

    Science.gov (United States)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  11. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    Science.gov (United States)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  12. Far ultraviolet spectrophotometry of BD +28 4211

    Science.gov (United States)

    Cook, Timothy A.; Cash, Webster; Green, James C.

    1991-01-01

    The results are reported of a November 1989 rocket flight which recorded a flux-calibrated spectrum of BD +28 4211 from 912 to 1150 A with 1A resolution. BD +28 4211, an SdO-type star, is commonly used as an ultraviolet calibration source in the IUE wavelength band. The present work extends the useful range of this standard shortward of Lyman-alpha. Since previous experiments show marked disparity, this study can be useful in determining a standard in the 912 to 1216 A band.

  13. Prenatal diagnosis of amniotic band syndrome

    Directory of Open Access Journals (Sweden)

    Laxmi Devi Padmanabhan

    2016-01-01

    Full Text Available Amniotic band can cause a broad spectrum of anomalies ranging from simple band constrictions to major craniofacial and visceral defects. It can cause significant neonatal morbidity. Accurate diagnosis will help in the management of the present pregnancy and in counseling with regard to future pregnancies. Here we report three cases of amniotic band syndrome detected in the prenatal period.

  14. Broad Bandwidth Meta-Material Antireflection Coatings for Measurement of the Cosmic Microwave Background

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop broad-band metamaterial antireflection (AR) coatings for the far-infrared and millimeter wave bands. The proposed coating technology could...

  15. Streetlights attract a broad array of beetle species

    Directory of Open Access Journals (Sweden)

    Bruno Augusto Souza de Medeiros

    2017-01-01

    Full Text Available Light pollution on ecosystems is a growing concern, and knowledge about the effects of outdoor lighting on organisms is crucial to understand and mitigate impacts. Here we build up on a previous study to characterize the diversity of all beetles attracted to different commonly used streetlight set ups. We find that lights attract beetles from a broad taxonomic and ecological spectrum. Lights that attract a large number of insect individuals draw an equally high number of insect species. While there is some evidence for heterogeneity in the preference of beetle species to different kinds of light, all species are more attracted to some light radiating ultraviolet. The functional basis of this heterogeneity, however, is not clear. Our results highlight that control of ultraviolet radiation in public lighting is important to reduce the number and diversity of insects attracted to lights. Keywords: Lighting, Coleoptera, Light pollution, Insects, Ultraviolet

  16. Broad spectrum bioactive sunscreens.

    Science.gov (United States)

    Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim

    2008-11-03

    The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm.

  17. Photodetector of ultraviolet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Branzari, V.; Vieru, T.; Manole, M.; Canter, V.

    2000-01-01

    The invention relates to photodetectors on base of semiconductors of ultraviolet radiation and may be used in optoelectronic system for determining the intensity and the dose of ultraviolet radiation emitted by the Sun or other sources. Summary of the invention consists in the fact that in the photodetector of ultraviolet radiation the superficial potential barrier is divided into two identical elements, electrically isolated each of the other, one of them being covered with a layer of transparent material for visible and infrared radiation and absorption the ultra violet radiation. The technical result consists in mutual compensation of visible and infrared components of the radiation spectrum

  18. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  19. The Frequency of Intrinsic X-Ray Weakness among Broad Absorption Line Quasars

    Science.gov (United States)

    Liu, Hezhen; Luo, B.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.

    2018-06-01

    We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes ({{{Γ }}}eff}={2.2}-0.9+0.9 and {1.9}-0.8+0.9) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.

  20. SN 2009bb: A PECULIAR BROAD-LINED TYPE Ic SUPERNOVA ,

    International Nuclear Information System (INIS)

    Pignata, Giuliano; Stritzinger, Maximilian; Phillips, M. M.; Morrell, Nidia; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; Soderberg, Alicia; Mazzali, Paolo; Anderson, J. P.; Folatelli, Gaston; Foerster, Francisco; Hamuy, Mario; Maza, Jose; Levesque, Emily M.; Rest, Armin

    2011-01-01

    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudobolometric light curve of SN 2009bb suggests that 4.1 ± 1.9 M sun of material was ejected with 0.22 ± 0.06 M sun of it being 56 Ni. The resulting kinetic energy is 1.8 ± 0.7 x 10 52 erg. This, together with an absolute peak magnitude of M B = -18.36 ± 0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for gamma-ray bursts (GRBs), we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of γ-ray instruments.

  1. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    Science.gov (United States)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  2. Ultraviolet radiation and immunosuppression.

    LENUS (Irish Health Repository)

    Murphy, G M

    2009-11-01

    Ultraviolet (UV) radiation is a complete carcinogen. The effects of UV radiation are mediated via direct damage to cellular DNA in the skin and suppression of image surveillance mechanisms. In the context of organ transplantation, addiction of drugs which suppress the immune system add greatly to the carcinogenicity of UV radiation. This review considers the mechanisms of such effects.

  3. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  4. Ultraviolet fire detector

    Science.gov (United States)

    Turnage, J. E.; Linford, R. M. F.; Cornish, S. D.

    1976-01-01

    System is capable of detecting ultraviolet light emitted by match size flame at distance of 10 ft. System is not affected by high energy or particulate radiation and is therefore particularly suited for applications around nuclear plants and X-ray equipment.

  5. Psoriasis and ultraviolet radiation

    International Nuclear Information System (INIS)

    Farber, E.M.; Nall, L.

    1993-01-01

    Prevention and detection screening programs as a public health service in curtailing the ever-increasing incidence of all forms of skin cancer are reviewed. The effect of solar and artificial ultraviolet radiation on the general population and persons with psoriasis is examined. 54 refs

  6. The Evolution of Spacelab Ultraviolet Astronomy Missions from OSS-3 through -7 to Astro-1

    Science.gov (United States)

    Gull, Theodore

    2018-01-01

    In the 1960s and 1970s, NASA was building towards a robust program in space astronomy. An evolutionary step from ground-based astronomy to space astronomy was human operation of space telescopes as astronomy in general evolved from astronomers directly at the telescope to application of computers and long distance communications to control to operate remote telescopes. Today ground-based telescopes and space observatories from cubesats to the Hubble Space Telescope and soon the James Webb Space Telescope are routinely operated remotely.In response to the Spacelab Announcement of Opportunity in the early 1980s, three ultraviolet experiments – the Hopkins Ultraviolet Telescope, the Ultraviolet Imaging Telescope and the Wisconsin Ultraviolet PhotoPolarimetry Experiment -- all instruments derived from multiple sounding rocket flights--were selected to fly as an integrated payload attached to a space shuttle. The justification for professional astronomers, both as Mission Specialists from the astronaut cadre and Payload Specialists from the instrument teams, was built to ensure key technical skills both of the science and the instruments. Bundled together as OSS-3 through -7 flights focused on Comet Halley, the experiments went through many changes and delays as a pathfinder for an anticipated series of attached astronomy payloads.By 1986, the five-flight mission had evolved into two missions, Astro-1 dedicated primarily to observe Halley’s Comet in early March 1986 and Astro-2 to fly about one year later. Due to the Challenger disaster 35 days before scheduled launch of Astro-1, the mission went through an initial cancellation and then re-scheduling once the instrument complement of Astro-1 was expanded to include Broad Band X-ray Telescope with emphasis on studying SN1987A. Ultimately Astro-1 flew in December 1990 partnered with an X-ray experiment focused on SN1987A.The nine-day mission was mostly successful despite multiple technical issues overcome by the NASA

  7. Alkali metal for ultraviolet band-pass filter

    Science.gov (United States)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  8. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations

    Science.gov (United States)

    Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare

    2018-06-01

    The vacuum ultraviolet (VUV) spectrum for CH2F2 from a new synchrotron study has been combined with earlier data and subjected to detailed scrutiny. The onset of absorption, band I and also band IV, is resolved into broad vibrational peaks, which contrast with the continuous absorption previously claimed. A new theoretical analysis, using a combination of time dependent density functional theory (TDDFT) calculations and complete active space self-consistent field, leads to a major new interpretation. Adiabatic excitation energies (AEEs) and vertical excitation energies, evaluated by these methods, are used to interpret the spectra in unprecedented detail using theoretical vibronic analysis. This includes both Franck-Condon (FC) and Herzberg-Teller (HT) effects on cold and hot bands. These results lead to the re-assignment of several known excited states and the identification of new ones. The lowest calculated AEE sequence for singlet states is 11B1 ˜ 11A2 expected; the onset of the 15.5 eV band shows a set of vibrational peaks, but the vibration frequency does not correspond to any of the photoelectron spectral (PES) structure and is clearly valence in nature. The routine use of PES footprints to detect Rydberg states in VUV spectra is shown to be inadequate. The combined effects of FC and HT in the VUV spectral bands lead to additional vibrations when compared with the PES.

  9. Very broad bandwidth klystron amplifiers

    Science.gov (United States)

    Faillon, G.; Egloff, G.; Farvet, C.

    Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.

  10. Vacuum ultraviolet synchrotron measurements of excitons in NaMgF{sub 3}:Yb{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Hughes-Currie, Rosa B. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); Ivanovskikh, Konstantin V. [ANK Service Ltd., PB 58, Novouralsk 624131, Sverdlovsk Region (Russian Federation); Ural Federal University, 19 Mira st., Ekaterinburg 620002 (Russian Federation); Reid, Michael F., E-mail: mike.reid@canterbury.ac.nz [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Wells, Jon-Paul R. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); Dodd-Walls Centre for Quantum and Photonic Technologies (New Zealand); Reeves, Roger J. [Department of Physics and Astronomy, University of Canterbury, PB 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Meijerink, Andries [Debye Institute, Utrecht University, P.O. Box 80 000, 3508 TA Utrecht (Netherlands)

    2016-01-15

    Results of a vacuum ultraviolet spectroscopic characterization of NaMgF{sub 3}:Yb{sup 2+} are presented. The material demonstrates emission features associated with self-trapped excitons and impurity-trapped excitons. The emission features noticeably overlap giving rise to a broad emission band from 17 000 to 35 000 cm{sup −1} at a sample temperature of 8 K. To identify the true profiles of the emission features we have used a deconvolution procedure. The deconvolution was possible due to the thermal quenching of self-trapped excitons at room temperature that allowed for direct observations of the impurity trapped exciton emission band. Energy transfer between host electronic excitations (excitons and e–h pairs) and Yb{sup 2+} ions leading to the formation of impurity-trapped excitons is evident from excitation spectra. - Highlights: • We present VUV emission and excitation spectra of NaMgF{sub 3}:Yb{sup 2+}. • Formation of free excitons leads to emission from intrinsic and extrinsic excitons. • We deconvolute the emission to separate the two overlapping exciton bands. • The excitation spectra show two mechanisms for forming impurity-trapped excitons.

  11. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  12. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    International Nuclear Information System (INIS)

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-01-01

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products

  13. The ultraviolet interstellar extinction curve in the Pleiades

    Science.gov (United States)

    Witt, A. N.; Bohlin, R. C.; Stecher, T. P.

    1981-01-01

    The wavelength dependence of ultraviolet extinction in the Pleiades dust clouds has been determined from IUE observations of HD 23512, the brightest heavily reddened member of the Pleiades cluster. There is evidence for an anomalously weak absorption bump at 2200 A, followed by an extinction rise in the far ultraviolet with an essentially normal slope. A relatively weak absorption band at 2200 A and a weak diffuse absorption band at 4430 A seem to be common characteristics of dust present in dense clouds. Evidence is presented which suggests that the extinction characteristics found for HD 23512 are typical for a class of extinction curves observed in several cases in the Galaxy and in the LMC.

  14. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    Energy Technology Data Exchange (ETDEWEB)

    Hardegree-Ullman, E. E. [New York Center for Astrobiology and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Gudipati, M. S.; Werner, M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Boogert, A. C. A. [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Lignell, H. [Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025 (United States); Allamandola, L. J. [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Stapelfeldt, K. R., E-mail: hardee@rpi.edu, E-mail: gudipati@jpl.nasa.gov [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States)

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.

  15. Quantitative analysis of UV excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting

    International Nuclear Information System (INIS)

    Fujiwara, Rei; Sano, Hiroyuki; Shimizu, Mikio; Kuwabara, Makoto

    2009-01-01

    A quantitative spectral analysis of the ultraviolet (UV) broad excitation bands, which are located in the range 300-400 nm, for red emissions at around 610 nm in Pr-doped CaTiO 3 , SrTiO 3 :Al and BaTiO 3 :Mg phosphors has been carried out using a peak fitting technique. The obtained results demonstrate that the UV broad band of CaTiO 3 :Pr consists of four primary excitation bands centered around 330, 335, 365 and 380 nm and those of both SrTiO 3 :Al and BaTiO 3 :Mg consist of three primary bands centered around 310, 345 and 370 nm. Based on the behavior patterns and the values of the respective primary excitation bands' parameters, i.e. center gravity (λ top ), maximum height (I max ) and full-width at half-maximum (FWHM), the UV-to-red relaxation processes in these titanate phosphors can be explained to be essentially the same, except for the existence of an additional relaxation pathway via electron-trap states in CaTiO 3 :Pr, which gives a characteristic shape of its UV excitation spectrum in the wavelength range of >360 nm

  16. Failure of supplementary ultraviolet radiation to enhance flower color under greenhouse conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R. M. [University of Vermont, Burlington, VT (United States)

    1990-03-15

    In order to determine whether the concentration of floral petal anthocyanin pigments could be increased, ultraviolet radiations in the UV-A and UV-B wavelength bands were presented to a variety of flowering plants to partly restore those wavelengths filtered out by greenhouse glass. In no tested plant did the supplementary ultraviolet radiation enhance floral anthocyanin content. Supplementary UV radiation has no economic value in greenhouse production of flowering plants. (author)

  17. An ultraviolet study of B[e] stars: evidence for pulsations, luminous blue variable type variations and processes in envelopes

    Science.gov (United States)

    Krtičková, I.; Krtička, J.

    2018-06-01

    Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.

  18. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    Full Text Available Photoluminescence (PL emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53–4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV to 400 (3.10 eV nm in step of 10 nm and the corresponding photoluminescence (PL emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC, the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation. Keywords: Photoluminescence spectra, Makrofol® DE 1-1, UV–vis spectrophotometry, Attenuation coefficient, Ultraviolet radiation

  19. Congenital Constriction Band Syndrome

    OpenAIRE

    Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh

    2008-01-01

    Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.

  20. Ultraviolet photovoltaics: Share the spectrum

    Science.gov (United States)

    Milliron, Delia J.

    2017-08-01

    Electrically controlled windows require power to switch between transparent and tinted states. Now, an ultraviolet light-harvesting solar cell can power smart windows without compromising their control over heat and light.

  1. Solar ultraviolet radiation cataract.

    Science.gov (United States)

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  2. Ultraviolet radiation and cyanobacteria.

    Science.gov (United States)

    Rastogi, Rajesh Prasad; Sinha, Rajeshwar P; Moh, Sang Hyun; Lee, Taek Kyun; Kottuparambil, Sreejith; Kim, Youn-Jung; Rhee, Jae-Sung; Choi, Eun-Mi; Brown, Murray T; Häder, Donat-Peter; Han, Taejun

    2014-12-01

    Cyanobacteria are the dominant photosynthetic prokaryotes from an ecological, economical, or evolutionary perspective, and depend on solar energy to conduct their normal life processes. However, the marked increase in solar ultraviolet radiation (UVR) caused by the continuous depletion of the stratospheric ozone shield has fueled serious concerns about the ecological consequences for all living organisms, including cyanobacteria. UV-B radiation can damage cellular DNA and several physiological and biochemical processes in cyanobacterial cells, either directly, through its interaction with certain biomolecules that absorb in the UV range, or indirectly, with the oxidative stress exerted by reactive oxygen species. However, cyanobacteria have a long history of survival on Earth, and they predate the existence of the present ozone shield. To withstand the detrimental effects of solar UVR, these prokaryotes have evolved several lines of defense and various tolerance mechanisms, including avoidance, antioxidant production, DNA repair, protein resynthesis, programmed cell death, and the synthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. This study critically reviews the current information on the effects of UVR on several physiological and biochemical processes of cyanobacteria and the various tolerance mechanisms they have developed. Genomic insights into the biosynthesis of MAAs and scytonemin and recent advances in our understanding of the roles of exopolysaccharides and heat shock proteins in photoprotection are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P.; Koskela, T.; Damski, J.; Supperi, A. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  4. Ultraviolet radiation: the eye

    International Nuclear Information System (INIS)

    Cesarini, J.P.; Sliney, D.H.

    1996-01-01

    Under most conditions, the eye is well adapted to protect itself against ultraviolet radiation encountered in the outdoor environment as a result of the exposure geometry of the sun. Only when snow is on the ground does one experience acute effects of UV sunlight exposure (i.e. snow blindness, or photokeratitis). With regard to artificial sources, there are many occasions where one views bright light sources such as tungsten-halogen lamps, arc lamps and welding arcs. Such viewing is normally only momentary because of the aversion response to bright light and due to discomfort glare. However, such an aversion does not take place for germicidal lamps and other UV lamps which do not contain a strong visible component in their spectrum. The adverse effects from viewing such sources has been studied for decades and during the last two decades guidelines for limiting exposure to protect the eye have been developed. The guidelines were fostered to a large extent by the growing use of lasers and the quickly recognized hazard posed by viewing laser sources. (author)

  5. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P; Koskela, T; Damski, J; Supperi, A [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1997-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  6. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  7. ULTRAVIOLET TECHNOLOGY FOR FOOD PRESERVATION

    OpenAIRE

    Guedes, AMM; Novello, D; Mendes, GMD; Cristianini, M

    2009-01-01

    ULTRAVIOLET TECHNOLOGY FOR FOOD PRESERVATION This literature review article had as objective to gather information about ultraviolet (UV) technology utilization on the food industry, its effects and potential application. Aspects as the origin, concept and applications of the technology on the equipment industry and running mechanisms were approached. The application of UV radiation on food decontamination is still little used due its low penetration, but it is known that it can be easily app...

  8. X-ray spectra of PG quasars. II - the X-ray-ultraviolet excess of PG 1211 + 143

    International Nuclear Information System (INIS)

    Bechtold, J.; Czerny, B.; Elvis, M.; Fabbiano, G.; Green, R.F.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA; Kitt Peak National Observatory, Tucson, AZ)

    1987-01-01

    Observations of the quasar PG 1211 + 143 are presented and its continuum is modelled in terms of an accretion disk and an underlying power law. The X-ray spectrum in the Einstein imaging proportional counter band is well described by a power law with the very steep spectral index 2.2 + or - 0.4. The overall continuum spectral energy distribution can be described as a power law with alpha roughly 1.2 from the infrared to about 1 keV, with the optical, ultraviolet, and soft X-rays forming a large excess above this power law. If the soft X-ray excess is attributed to emission from a physically thin, optically thick accretion disk, then the implied accretion rate is super-Eddington, from which it is concluded that the application of this simple model is not valid. The observed broad-line ratios in PG 1211 + 143 imply broad-line cloud densities that are somewhat higher than those usually derived for quasars. 82 references

  9. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    Science.gov (United States)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  10. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    Science.gov (United States)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  11. Broad-Application Test Reactor

    International Nuclear Information System (INIS)

    Motloch, C.G.

    1992-05-01

    This report is about a new, safe, and operationally efficient DOE reactor of nuclear research and testing proposed for the early to mid- 21st Century. Dubbed the Broad-Application Test Reactor (BATR), the proposed facility incorporates a multiple-application, multiple-mission design to support DOE programs such as naval reactors and space power and propulsion, as well as research in medical, science, isotope, and electronics arenas. DOE research reactors are aging, and implementing major replacement projects requires long lead times. Primary design drivers include safety, low risk, minimum operation cost, mission flexibility, waste minimization, and long life. Scientists and engineers at the Idaho National Engineering Laboratory are evaluating possible fuel forms, structural materials, reactor geometries, coolants, and moderators

  12. Vacuum ultraviolet excited photoluminescence properties of Gd2O2CO3:Eu3+ phosphor

    Institute of Scientific and Technical Information of China (English)

    WANG Zhilong; WANG Yuhua; ZHANG Jiachi

    2008-01-01

    The Gd2O2CO3:Eu3+ with type-II structure phosphor was successfully synthesized via flux method at 400℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO32- host absorption and charge transfer (CT) of Gd3+-O2- were observed for Gd2O2CO3:Eu3+. Under 172 nm excitation, Gd2O2CO3:Eu3+ exhibited strong red emission with good color purity, indicating Eu3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu3+ excited by 172 nm for Gd2O2CO3:Eu3+ was about 5%. Gd2O2CO3:Eu3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.

  13. Dominant ultraviolet-blue photoluminescence of ZnO embedded into synthetic opal

    International Nuclear Information System (INIS)

    Abrarov, S.M.; Yuldashev, Sh.U.; Kim, T.W.; Lee, S.B.; Kwon, H.Y.; Kang, T.W.

    2005-01-01

    The temperature-dependent photoluminescence (PL) characteristics of zinc oxide (ZnO) embedded into the voids of synthetic opal were studied. ZnO was infiltrated into opal from aqueous solution with zinc nitrate precursor followed by thermal annealing. The PL spectra of the ZnO powder exhibit very high and broad emission peaks in the green region due to crystal defects, such as oxygen vacancies and zinc ion interstitials. In contrast to the PL spectra of ZnO powder, nanocrystals of ZnO embedded into the voids of FCC packed opal matrix exhibit dominant ultraviolet (UV)-blue and rapidly decreasing green PL emissions with decreasing temperature. The temperature-dependent PL characteristics show that the green band suppression in the ZnO nanocrystals is due to the influence of photonic crystal. The infiltration of nanoparticles into synthetic opal may be used for the fabrication of polycrystalline ZnO with dominant UV-blue PL. These results indicate that the luminescent materials embedded into photonic crystal may be promising for the fabrication of the RGB pixels in full-color displays

  14. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.; Jagger, J.

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315 to 405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis (''relaxed'' or rel - strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-uv fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similar to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-uv irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-uv-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay

  15. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    International Nuclear Information System (INIS)

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2011-01-01

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 ≤ z ≤ 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ∼0.1-5 μm spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  16. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ryan A.; Shemmer, Ohad [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Fan Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Plotkin, Richard M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Strauss, Michael A., E-mail: RyanLane@my.unt.edu, E-mail: ohad@unt.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  17. Key issues of ultraviolet radiation of OH at high altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing [State Key Laboratory of High Temperature Gasdynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  18. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  19. Future Directions in Ultraviolet Spectroscopy

    Science.gov (United States)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  20. Ultraviolet absorption detection of DNA in gels

    International Nuclear Information System (INIS)

    Mahon, A.R.

    1998-01-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled deoxyribonucleic acid (DNA) in agarose gels is presented. The technique is based on ultra-violet (UV) absorption by nucleotides. A deuterium lamp was used to illuminate regions of an electrophoresis gel. As DNA bands passed through the illuminated region of the gel the amount of UV light transmitted was reduced due to DNA absorption. Two detection systems were investigated. In the first system, synthetic chemical vapour deposition (CVD) diamond strip detectors were used to locate regions of DNA in the gels by detecting the transmitted light. CVD diamond has a high indirect band gap of 5.45 eV and is therefore sensitive to UV photons of wavelengths < 224 nm. A number of CVD diamond samples were characterised to investigate their suitability as detectors for this application. The detectors' quantum efficiency, UV response and time response were measured. DNA bands containing as little as 20 ng were detected by the diamond. In a second system, a deuterium lamp was used to illuminate individual sample lanes of an electrophoresis gel via an array of optical fibres. During electrophoresis the regions of DNA were detected with illumination at 260 nm, using a UV-sensitive charge coupled device (CCD). As the absorption coefficient of a DNA sample is approximately proportional to its mass, the technique is inherently quantitative. This system had a detection limit of 0.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. Using this detection technique, the DNA sample remains in its native state. The removal of carcinogenic dyes from the detection procedure greatly reduces associated biological hazards. (author)

  1. Ultrawide band gap amorphous oxide semiconductor, Ga–Zn–O

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Miyokawa, Norihiko; Sekiya, Takumi; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-09-01

    We fabricated amorphous oxide semiconductor films, a-(Ga{sub 1–x}Zn{sub x})O{sub y}, at room temperature on glass, which have widely tunable band gaps (E{sub g}) ranging from 3.47–4.12 eV. The highest electron Hall mobility ~ 7 cm{sup 2} V{sup −1} s{sup −1} was obtained for E{sub g} = ~ 3.8 eV. Ultraviolet photoemission spectroscopy revealed that the increase in E{sub g} with increasing the Ga content comes mostly from the deepening of the valence band maximum level while the conduction band minimum level remains almost unchanged. These characteristics are explained by their electronic structures. As these films can be fabricated at room temperature on plastic, this achievement extends the applications of flexible electronics to opto-electronic integrated circuits associated with deep ultraviolet region. - Highlights: • Incorporation of H/H{sub 2}O stabilizes the amorphous phase. • Ultrawide band gap (~ 3.8 eV) amorphous oxide semiconductor was fabricated. • The increase in band gap comes mostly from the deepening of the valence band maximum level. • Donor level is more likely aligned to the valence band maximum level.

  2. Ultraviolet-radiation-curable paints

    Energy Technology Data Exchange (ETDEWEB)

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  3. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  4. Ultraviolet spectrophotometry of three LINERs

    Science.gov (United States)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  5. Morphological Processing of Ultraviolet Emissions of Electrical Corona Discharge for Analysis and Diagnostic Use

    Science.gov (United States)

    Schubert, Matthew R.; Moore, Andrew J.

    2015-01-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore can have diagnostic utility.

  6. 78 FR 20119 - Broad Stakeholder Survey

    Science.gov (United States)

    2013-04-03

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0042] Broad Stakeholder Survey AGENCY... concerning the Broad Stakeholder Survey. DHS previously published this ICR in the Federal Register on August... across the Nation. The Broad Stakeholder Survey is designed to gather stakeholder feedback on the...

  7. Plasmonic enhancement of ultraviolet fluorescence

    Science.gov (United States)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been

  8. Ultraviolet observations of AM Herculis

    International Nuclear Information System (INIS)

    Tanzi, E.G.; Treves, A.; Milan Univ.; Sandford, M.C.W.; Willis, A.J.; Wilson, R.

    1980-01-01

    Seven ultraviolet spectra (1100-3200 Angstroem) of AM Her were obtained with the low resolution spectrometer of the IUE satellite. Strong emission features appear superimposed on a well defined continuum which is well fitted by a Fsub(lambda) D lambda -2 law. The observations are compared with the expectations from models of the source. (orig.) 891 WL/orig. 892 HIS

  9. Ultraviolet light and cutaneous lupus

    NARCIS (Netherlands)

    Bijl, Marc; Kallenberg, Cees G. M.

    2006-01-01

    Exposure to ultraviolet (UV) light is one of the major factors known to trigger cutaneous disease activity in (systemic) lupus erythematosus patients. UV light, UVB in particular, is a potent inducer of apoptosis. Currently, disturbed clearance of apoptotic cells is one of the concepts explaining

  10. Large area, surface discharge pumped, vacuum ultraviolet light source

    Science.gov (United States)

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  11. Ultraviolet Raman scattering from persistent chemical warfare agents

    Science.gov (United States)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  12. Absorption band Q model for the earth

    International Nuclear Information System (INIS)

    Anderson, D.L.; Given, J.W.

    1982-01-01

    Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. With a simple absorption band model it is possible to satisfy the shear sensitive data over a broad frequency range. The quality factor Q/sub s/(ω) is proportional to ω/sup α/ in the band and to ω and ω -1 at higher and lower frequencies, respectively, as appropriate for a relaxation mechanism with a spectrum of relaxation time. The parameters of the band are Q(min) = 80, α = 0.15, and width, 5 decades. The center of the band varies from 10 1 seconds in the upper mantle, to 1.6 x 10 3 seconds in the lower mantle. The shift of the band with depth is consistent with the expected effects of temperature, pressure and stress. High Q, regions of the mantle are attributed to a shift of the absorption band to longer periods. To satisfy the gravest fundamental spheroidal modes and the ScS data, the absorption band must shift back into the short-period seismic band at the base of the mantle. This may be due to a high temperature gradient or high shear stresses. A preliminary attempt is also made to specify bulk dissipation in the mantle and core. Specific features of the absorption band model are low Q in the body wave band at both the top and the base of the mantle, low Q for long-period body waves in the outer core, an inner core Q 2 that increases with period, and low Q/sub p//Q/sub s/ at short periods in the middle mantel. The short-period Q/sub s/ increases rapidly at 400 km and is relatively constant from this depth to 2400 km. The deformational Q of the earth at a period of 14 months is predicted to be 463

  13. Electron currents associated with an auroral band

    International Nuclear Information System (INIS)

    Spiger, R.J.; Anderson, H.R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed

  14. Electron currents associated with an auroral band

    Science.gov (United States)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  15. Ocular effects of ultraviolet radiation from 295 to 365 nm

    International Nuclear Information System (INIS)

    Pitts, D.G.; Cullen, A.P.; Hacker, P.D.

    1977-01-01

    A 5,000 watt Xe--Hg source and a double monochromator were used to produce 6.6 nm full band-pass ultraviolet (UV) radiation. Pigmented rabbit eyes were exposed to the 6.6 nm band-pass UV radiant energy in 5 nm steps from 295 to 320 nm and at random intervals above 320 nm. Corneal and lenticular damage was assessed and classified with a biomicroscope. Corneal threshold radiant exposure (Hc) rose very rapidly from 0.022 Jcm -2 at 300 nm to 10.99 Jcm -2 at 335 nm. Radiant exposures exceeding 2 x Hc resulted in irreversible corneal damage. Lenticular damage was limited to wavebands above 295 nm. The action spectrum for the lens began at 295 nm and extended to about 315 nm. Permanent lenticular damage occurred at radiant exposure levels approximately twice the threshold for lenticular radiant exposure. The importance in establishing both corneal and lenticular damage criteria is emphasized

  16. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev [School of Information and Communication Engineering, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gil-Ho [School of Information and Communication Engineering, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tandon, R P [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2007-11-28

    Ultraviolet photoconductivity in zinc oxide (ZnO) nanoneedles grown on the surface of a multilayer structure comprised of ZnO film (50 nm)/Zn layer (20 nm)/ZnO film (2 {mu}m) fabricated on a stainless steel substrate using an unbalanced magnetron sputtering technique is reported. It was observed that the multilayered structure with ZnO nanoneedles exhibited enhanced ultraviolet photoconductivity in comparison to the ZnO films that were without nanoneedles. The enhancement in the photoconductivity is attributed to the increase in the quantum yield of the photogenerated charge carriers due to the presence of nanoneedles. A successive slow photoresponse transient following after a fast rise is due to the establishment of equilibrium between the charge carriers in the conduction band and the trapping centers created due to the shallow defects in the ZnO film. The observed photoresponse is critically analyzed on the basis of trapping levels created by the oxygen species during the high pressure deposition of the ZnO multilayer. Results show the promise of ZnO nanostructures in ultraviolet detection applications. (fast track communication)

  17. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Kim, Gil-Ho; Sreenivas, K; Tandon, R P

    2007-01-01

    Ultraviolet photoconductivity in zinc oxide (ZnO) nanoneedles grown on the surface of a multilayer structure comprised of ZnO film (50 nm)/Zn layer (20 nm)/ZnO film (2 μm) fabricated on a stainless steel substrate using an unbalanced magnetron sputtering technique is reported. It was observed that the multilayered structure with ZnO nanoneedles exhibited enhanced ultraviolet photoconductivity in comparison to the ZnO films that were without nanoneedles. The enhancement in the photoconductivity is attributed to the increase in the quantum yield of the photogenerated charge carriers due to the presence of nanoneedles. A successive slow photoresponse transient following after a fast rise is due to the establishment of equilibrium between the charge carriers in the conduction band and the trapping centers created due to the shallow defects in the ZnO film. The observed photoresponse is critically analyzed on the basis of trapping levels created by the oxygen species during the high pressure deposition of the ZnO multilayer. Results show the promise of ZnO nanostructures in ultraviolet detection applications. (fast track communication)

  18. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    International Nuclear Information System (INIS)

    Brown, Peter J.

    2014-01-01

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10 13 cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia

  19. Ultraviolet extensions of particle physics

    DEFF Research Database (Denmark)

    Berthier, Laure Gaëlle

    The discovery of the Higgs boson in 2012 at the Large Hadron Collider completed the Standard Model field content. Many questions though remain unanswered by the Standard Model triggering a search for new physics. New physics could manifest itself at the Large Hadron Collider by the discovery of new...... particles. However, the lack of new resonances might suggest that these new particles are still out of reach which leaves us with few options. Two possibilities are explored in this thesis. The first is to study precision measurements which might indicate new physics as small deviations from the Standard...... are expressed as power series with missing higher order terms. We also show how to connect ultraviolet models of new physics to the Standard Model effective field theory and calculate bounds on them using the Standard Model effective field theory fit results. Finally, we study a nonrelativistic ultraviolet...

  20. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    Science.gov (United States)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  1. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  2. Lethal action of ultraviolet and visible (blue violet) radiations at defined wavelengths on human lymphoblastoid cells; action spectra and interaction sites

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, R.M.; Werfelli, P.; Moraes, E.C. (Institut Suisse de Recherches Experimentales sur le Cancer, Lausanne)

    1984-02-01

    The repair proficient human lymphoblastoid line (TK6) has been employed to construct an action spectrum for the lethal action of ultraviolet (UV) radiation in the range 254 to 434 nm and to examine possible interactions between longer (334, 365 and 405 nm) and shorter wavelength (254 and 313 nm) radiations. The action spectrum follows a DNA absorption spectrum fairly closely out to 360 nm. As in previously determined lethal action spectra for procaryotic and eucaryotic cell populations, there is a broad shoulder in the 334 to 405 nm region which could reflect the existence of either (a) a non-DNA chromophore or (b) a unique photochemical reaction in the DNA over this region. Pre-treatment with radiation at 334 or 365 nm causes either a slight sensitivity to (low fluences) or protection from (higher fluences) subsequent exposure to radiation at a shorter wavelength (254 or 313 nm). Pre-irradiation at a visible wavelength (405 nm) at all fluence levels employed sensitizes the populations to treatment with 254 or 313 nm radiations. These interactions will influence the lethal outcome of cellular exposure to broad-band radiation sources.

  3. Lethal action of ultraviolet and visible (blue violet) radiations at defined wavelengths on human lymphoblastoid cells; action spectra and interaction sites

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Werfelli, P.; Moraes, E.C.

    1984-01-01

    The repair proficient human lymphoblastoid line (TK6) has been employed to construct an action spectrum for the lethal action of ultraviolet (UV) radiation in the range 254 to 434 nm and to examine possible interactions between longer (334, 365 and 405 nm) and shorter wavelength (254 and 313 nm) radiations. The action spectrum follows a DNA absorption spectrum fairly closely out to 360 nm. As in previously determined lethal action spectra for procaryotic and eucaryotic cell populations, there is a broad shoulder in the 334 to 405 nm region which could reflect the existence of either (a) a non-DNA chromophore or (b) a unique photochemical reaction in the DNA over this region. Pre-treatment with radiation at 334 or 365 nm causes either a slight sensitivity to (low fluences) or protection from (higher fluences) subsequent exposure to radiation at a shorter wavelength (254 or 313 nm). Pre-irradiation at a visible wavelength (405 nm) at all fluence levels employed sensitizes the populations to treatment with 254 or 313 nm radiations. These interactions will influence the lethal outcome of cellular exposure to broad-band radiation sources. (author)

  4. Broad Prize: Do the Successes Spread?

    Science.gov (United States)

    Samuels, Christina A.

    2011-01-01

    When the Broad Prize for Urban Education was created in 2002, billionaire philanthropist Eli Broad said he hoped the awards, in addition to rewarding high-performing school districts, would foster healthy competition; boost the prestige of urban education, long viewed as dysfunctional; and showcase best practices. Over the 10 years the prize has…

  5. 77 FR 50144 - Broad Stakeholder Survey

    Science.gov (United States)

    2012-08-20

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0042] Broad Stakeholder Survey AGENCY... Information Collection Request: 1670-NEW. SUMMARY: The Department of Homeland Security (DHS), National... (Pub. L. 104-13, 44 U.S.C. Chapter 35). NPPD is soliciting comments concerning the Broad Stakeholder...

  6. 76 FR 34087 - Broad Stakeholder Survey

    Science.gov (United States)

    2011-06-10

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0027] Broad Stakeholder Survey AGENCY... Information Collection Request: 1670-NEW. SUMMARY: The Department of Homeland Security (DHS), National... (Pub. L. 104-13, 44 U.S.C. Chapter 35). NPPD is soliciting comments concerning the Broad Stakeholder...

  7. Thermoluminescent of induced calcite by gamma and ultraviolet radiation

    International Nuclear Information System (INIS)

    Lima, J.F. de.

    1987-01-01

    Samples of brazilian calcite, exposed to gamma radiation in laboratory and heated at constant rate of 2.7 0 C/s, showed three glow peaks at 150, 250 and 350 0 C in their thermoluminescent emission curves. The analysis of these peaks, using different models, indicated that they follow a second order kinetics; it has been obtained, for the activation energy, 1.3, 1.5 and 1.7 eV, and, for the pre-exponential factors, 8.1 x 10 14 , 6.8 x10 13 and 2.4 x 10 12 s -1 . Although the total thermoluminescent emission has stayed constant, the relative height of glow peaks has changed with the temperature of annealing in the range of 400 to 700 0 C. Exposed samples were also illuminated with ultraviolet light and the resultant curves showed partial or total bleaching or some glow peaks and the growth of peaks at lower temperatures. Samples of virgin calcite, submited to increasing exposures of gamma rays, showed a corresponding enhancement of the optical absorption bands in the range of 25000 to 47000 cm -1 A subsequent illumination of these samples with ultraviolet light produced a decrease of the optical absorption bands at the same range. (author) [pt

  8. Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands

    Directory of Open Access Journals (Sweden)

    I. Prudyus

    2014-12-01

    Full Text Available A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones.

  9. Amniotic constriction bands

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Amniotic band sequence URL of this page: //medlineplus.gov/ency/ ... birth. The baby should be delivered in a medical center that has specialists experienced in caring for babies ... or partial loss of function of a body part. Congenital bands affecting large parts of the body cause the ...

  10. NuSTAR reveals the Comptonizing corona of the broad-line radio galaxy 3C 382

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, D. R.; Bollenbacher, J. M. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Brenneman, L. W. [Harvard-Smithsonian CfA, 60 Garden Street MS-67, Cambridge, MA 02138 (United States); Madsen, K. K.; Baloković, M.; Harrison, F. A.; Walton, D. J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Boggs, S. E. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E.; Craig, W. W. [DTU SpaceNational Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Gandhi, P. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Lohfink, A. M. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Markwardt, C. B.; Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, D., E-mail: david.ballantyne@physics.gatech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-10-10

    Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year and found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of Γ=1.68{sub −0.02}{sup +0.03}, while the photon-index of the higher flux spectrum is Γ=1.78{sub −0.03}{sup +0.02}. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from kT{sub e} = 330 ± 30 keV in the low flux data to 231{sub −88}{sup +50} keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts ∼10% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe Kα line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.

  11. PAHs and the Diffuse Interstellar Bands. What have we Learned from the New Generation of Laboratory and Observational Studies?

    Science.gov (United States)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones, An extensive laboratory program has been developed at NASA Ames to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-W and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong V W radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral

  12. A near-infrared, optical, and ultraviolet polarimetric and timing investigation of complex equatorial dusty structures

    Science.gov (United States)

    Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.

    2018-05-01

    Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized

  13. Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires

    Science.gov (United States)

    Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.

    2007-12-01

    Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.

  14. Background Noise of the Aldeia da Serra Region (Portugal) from a temporary broad band network

    Science.gov (United States)

    Wachilala, Piedade; Borges, José; Caldeira, Bento; Bezzeghoud, Mourad

    2017-04-01

    In this study, we analyse seismic background noise to assess the effect of noise based on the detectability of a temporary network constituted by DOCTAR (Deep Ocean Test Array), who have been deployed in a period between 2011 and 2012 in Portugal mainland, and the Évora permanent seismic station. This network is constituted by 14 digital broadband stations (14 CMG-3ESP and one STS2 sensors) with a flat response between the 60 sec to 50 Hz, 24-bit and 120s to 60Hz respectively. The temporary network was operated in continuous recording mode (three-components) in a region located in the north of the region of Évora, within a radius of about 30 km around the village of Aldeia da Serra, region in which there is an important seismic activity in the context of Portugal mainland. We calculated power spectral densities of background noise for each station/component and compare them with high-noise model and low-noise model of Peterson (1993). We consider different for day and night local and for different periods of the year. Power spectral density estimates show moderate noise levels with all stations falling within the high and low bounds of Peterson (1993). Considering the results of the noise, we estimate the detection limit of each station and consequently the detectability of the network. From this information and taking in attention the events recorded during the period of DOCTAR operation we analyse the improvement promoted by this temporary network regarding the existent seismic networks to the local seismicity study. This work was partially supported by COMPETE 2020 program (POCI-01-0145-FEDER-007690 project). We acknowledge GFZ Potsdam for providing part of the data used in this study.

  15. Beam-based model of broad-band impedance of the Diamond Light Source

    Science.gov (United States)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  16. Beam-based model of broad-band impedance of the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    Victor Smaluk

    2015-06-01

    Full Text Available In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  17. Teleseismic SKS splitting beneath East Antarctica using broad-band stations around Soya Coast

    Science.gov (United States)

    Usui, Y.; Kanao, M.

    2006-12-01

    We observed shear wave splitting of SKS waves from digital seismographs that are recorded at 5 stations around Soya Coast in the Lutzow-Holm Bay, East Antarctica. Their recording systems are composed of a three-component broadband seismometer (CMG-40T), a digital recording unit and a solar power battery supply. The events used were selected from 1999 to 2004 and phase arrival times were calculated using the IASPEI91 earth model (Kennet, 1995). In general, we chose the data from earthquakes with m>6.0 and a distance range 85° < Δ < 130° for the most prominent SKS waves We used the methods of Silver and Chan (1991) for the inversion of anisotropy parameters and estimated the splitting parameters φ (fast polarization direction) and δt (delay time between split waves) assuming a single layer of hexagonal symmetry with a horizontal symmetry axis. The weighted averages of all splitting parameters (φ, δt) for each station are AKR (30±4, 1.30±0.2), LNG (58±6, 1.27±0.2), SKL (67±10, 0.94±0.2), SKV (40±6, 1.28±0.3) and TOT (52±8, 1.26±0.3), where the weights are inversely proportional to the standard deviations for each solution. As compared to typical delay times of SKS waves which show 1.2s (Silver and Chan 1991; Vinnik et al., 1992), the result shows generally the same value. In previous study, Kubo and Hiramatsu (1998) estimate the splitting parameter for Syowa station (SYO), where is located near our using stations in East Antarctica, and the results are (49±3, 0.70±0.1). Although it is consistent with our results for fast polarization direction, δt for our results are large relatively to those of SYO. The difference may be due to either different incident angle or more complex anisotropic structure. We found that fast polarization direction is systematically parallel to coast line in the Lutzow-Holm Bay, East Antarctica, which is consistent with NE-SW paleo compressional stress. The absolute plate motion based on the HS2-NUVEL1 (Gripp and Gordon, 1990), that may reflect the present horizontal mantle flow, shows the direction of N120°E and velocity of 1cm/yr in this study region. Since it doesn't coincide with fast polarization direction (the difference is about 50°~90°), we conclude that the mechanism of observed anisotropy is lattice preferred orientation of olivine along the mantle flow which caused NE-SW paleo compressional stress. In future works, we will accomplish the analysis assumed more complex anisotropy systems, such as a two layer model of azimuthal anisotropy, because we could find there is the possibility of azimuthal variations of the splitting parameters in a few station.

  18. Optimized Variational 1D Boussinesq Modelling for broad-band waves over flat bottom

    NARCIS (Netherlands)

    Lakhturov, I.; Adytia, D.; van Groesen, Embrecht W.C.

    The Variational Boussinesq Model (VBM) for waves above a layer of ideal fluid conserves mass, momentum, energy, and has decreased dimensionality compared to the full problem. It is derived from the Hamiltonian formulation via an approximation of the kinetic energy, and can provide approximate

  19. Broad Band Observations of Gravitationally Lensed Blazar during a Gamma-Ray Outburst

    Directory of Open Access Journals (Sweden)

    Julian Sitarek

    2016-09-01

    Full Text Available QSO B0218+357 is a gravitationally lensed blazar located at a cosmological redshift of 0.944. In July 2014 a GeV flare was observed by Fermi-LAT, triggering follow-up observations with the MAGIC telescopes at energies above 100 GeV. The MAGIC observations at the expected time of arrival of the trailing component resulted in the first detection of QSO B0218+357 in Very-High-Energy (VHE, >100 GeV gamma rays. We report here the observed multiwavelength emission during the 2014 flare.

  20. Installation of a very broad band borehole seismic station in Ferrara (Emilia)

    OpenAIRE

    Pesaresi, Damiano; Dall'Olio, Lorella; Rovelli, Antonio; Romanelli, Marco; Barnaba, Carla; Abu Zeid, Nasser

    2012-01-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the Italian agency devoted to monitor in real time the seismicity on the Italian territory. The seismicity in Italy is of course variable in time and space, being also very much dependant on local noise conditions. Specifically, monitoring seismicity in an alluvial basin like the Po one is a challenge, due to consistent site effects induced by soft alluvial deposits and bad coupling with the deep bedrock (Steidl et al., 1996). This...

  1. Coaxial Sensors For Broad-Band Complex Permittivity Measurements of Petroleum Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Folgeroe, K.

    1996-12-31

    This doctoral thesis verifies that dielectric spectroscopy and microwave permittivity measurements can be used to characterize petroleum liquids. It concentrates on developing sensors for three potential industrial applications: quality characterization of crude oil and petroleum fractions, monitoring of gas-hydrate formation in water-in-oil emulsions, and determination of water-content in thin liquid layers. The development of a permittivity measurement system for crude oil and petroleum fractions is described. As black oils have low dielectric constant and loss, the system must be very sensitive in order to measure the dielectric spectra and to distinguish oils of different permittivity. Such a system was achieved by combining impedance and scattering parameter measurements with appropriate permittivity calculation methods. The frequency range from 10 kHz to 6 GHz was found convenient for observing the main dispersion of the oils. All the oils had dielectric constants between 2.1 and 2.9 and dielectric loss below 0.01. The oils studied were samples of the feedstock for the cracker and coke processes at a petroleum refinery. This verifies that dielectric spectroscopy is a potential technique for on-line quality monitoring of the feedstock at petroleum refineries. Gas hydrates may cause major problems like clogging of pipelines. Dielectric spectroscopy is proposed as a means of monitoring the formation of gas hydrates in emulsions. It is found that open-ended coaxial probes fulfill the sensitivity requirements for such sensors. 312 refs., 87 figs., 20 tabs.

  2. Broad-band properties of the CfA Seyfert Galaxies. II - Infrared to millimeter properties

    Science.gov (United States)

    Edelson, R. A.; Malkan, M. A.; Rieke, G. H.

    1987-01-01

    IR and mm observations of the 48 Seyfert 1 and 2 galaxies (SG1s and SG2s) of the CfA sample (Huchra and Berg, 1987) are reported. Data obtained (1) in the NIR using the 1.55-m reflector at Stewart Observatory and the 3-m IRTF during 1984-1986, (2) in the FIR with IRAS, and (3) at 1.3 mm using the 12-m NRAO telescope at KPNO in June 1984 are presented in extensive tables and graphs and characterized in detail. None of the objects was detected at 1.3 mm, and the IR spectra of the SG2s are found to be significantly steeper (indicating thermal emission) than those of SG1s and QSOs (nonthermal emission). Turnover in the IR emission below 100 microns (in half of the objects detected at three or more IRAS wavelengths) is shown to be consistent with an accretion disk in dust-free SG1s and with unusually warm (35-65 K) dust in SG2s. It is inferred that a 60-100-micron cool excess is masking turnover in the other SGs, so that a general association of SG nuclei with strong star formation can be confirmed.

  3. Detecting Lamb waves with broad-band acousto-ultrasonic signals in composite structures

    Science.gov (United States)

    Kautz, Harold E.

    1992-01-01

    Lamb waves can be produced and detected in ceramic matrix composites (CMC) and metal matrix composites (MMC) plates using the acousto-ultrasonic configuration employing broadband transducers. Experimental dispersion curves of lowest symmetric and antisymmetric modes behave in a manner analogous to the graphite/polymer theoretical curves. In this study a basis has been established for analyzing Lamb wave velocities for characterizing composite plates. Lamb wave dispersion curves and group velocities were correlated with variations in axial stiffness and shear stiffness in MMC and CMC. For CMC, interfacial shear strength was also correlated with the first antisymmetric Lamb mode.

  4. Broad-band dielectric spectroscopy of tetragonal PLZT x/40/60

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Noujni, Dmitri; Veljko, Sergiy; Savinov, Maxim; Vaněk, Přemysl; Kamba, Stanislav; Petzelt, Jan; Kosec, M.

    2006-01-01

    Roč. 79, 6-7 (2006), s. 415-426 ISSN 0141-1594 R&D Projects: GA ČR(CZ) GA202/06/0403; GA ČR GA202/04/0993 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectrics * relaxors * dielectric behaviour * lattice dynamics dielectric spectroscopy * IR spectroscopy * THz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2006

  5. New solar broad-band hard X-ray spectrometer: first results

    Czech Academy of Sciences Publication Activity Database

    Fárník, František; Garcia, H.; Karlický, Marian

    2001-01-01

    Roč. 201, č. 2 (2001), s. 357-372 ISSN 0038-0938 R&D Projects: GA ČR GA205/00/1726; GA AV ČR IAA3003003; GA AV ČR IBS1003006; GA AV ČR KSK2043105; GA AV ČR IAA303108 Institutional research plan: CEZ:AV0Z1003909 Keywords : X-ray * spectrometer * solar flare * radio emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  6. Broad-band anti-reflection coupler for a : Si thin-film solar cell

    International Nuclear Information System (INIS)

    Lo, S.-S.; Chen, C.-C.; Garwe, Frank; Pertch, Thomas

    2007-01-01

    This work numerically demonstrates a new anti-reflection coupler (ARC) with high coupling efficiency in a Si substrate solar cell. The ARC in which the grating is integrated on a glass encapsulation and a three-layer impedance match layer is proposed. A coupling efficiency of 90% is obtained at wavelengths between 350 and 1200 nm in the TE and TM modes when the incident angle is less than 30 0 . In comparison with a 1μm absorber layer, the integrated absorption of an a-Si thin-film solar cell without a new ARC is doubled, at long wavelengths (750 nm ≤ λ ≤ 1200 nm), as calculated by FDTD method

  7. Broad-band Gausssian noise is most effective in improving motor performance and is most pleasant

    Directory of Open Access Journals (Sweden)

    Carlos eTrenado

    2014-02-01

    Full Text Available Modern attempts to improve human performance focus on stochastic resonance (SR. SR is a phenomenon in nonlinear systems characterized by a response increase of the system induced by a particular level of input noise. Recently, we reported that an optimum level of 0-15 Hz Gaussian noise applied to the human index finger improved static isometric force compensation. A possible explanation was a better sensorimotor integration caused by increase in sensitivity of peripheral receptors and/or of internal SR. The present study in 10 subjects compares SR effects in the performance of the same motor task and on pleasantness, by applying three Gaussian noises chosen on the sensitivity of the fingertip receptors (0-15 Hz mostly for Merkel receptors, 250-300 Hz for Pacini corpuscules and 0-300 Hz for all. We document that only the 0-300 Hz noise induced SR effect during the transitory phase of the task. In contrast, the motor performance was improved during the stationary phase for all three noise frequency bandwidths. This improvement was stronger for 0-300 Hz and 250-300 Hz than for 0-15 Hz noise. Further, we found higher degree of pleasantness for 0-300 Hz and 250-300 Hz noise bandwidths than for 0-15 Hz. Thus, we show that the most appropriate Gaussian noise that could be used in haptic gloves is the 0-300 Hz, as it improved motor performance during both stationary and transitory phases. In addition, this noise had the highest degree of pleasantness and thus reveals that the glabrous skin can also forward pleasant sensations. These new findings provide worthy information for neurorehabilitation.

  8. Realization of a broad band neutron spin filter with compressed, polarized 3He gas

    International Nuclear Information System (INIS)

    Surkau, R.; Otten, E.W.; Steiner, M.; Tasset, F.; Trautmann, N.

    1997-01-01

    The strongly spin dependent absorption of neutrons in nuclear spin polarized 3 -2pt vector He opens the possibility to polarize beams of thermal and epithermal neutrons. An effective 3 He neutron spin filter (NSF) requires high 3 He nuclear polarization as well as a filter thickness corresponding to a gas amount of the order of 1 bar l. We realized such a filter using direct optical pumping of metastable 3 He * atoms in a 3 He plasma at 1 mbar. Metastable exchange scattering transfers the angular momentum to the whole ensemble of 3 He atoms. At present 3 x 10 18 3 He-atoms/s are polarized up to 64%. Subsequent polarization preserving compression by a two stage compressor system enables to prepare NSF cells of about 300 cm 3 volume with 3 bar of polarized 3 He within 2 h. 3 He polarizations up to 53% were measured in a cell with a filter length of about 15 cm. By this cell a thermal neutron beam from the Mainz TRIGA reactor was polarized. A wavelength selective polarization analysis by means of Bragg scattering revealed a neutron polarization of 84% at a total transmission of 12% for a neutron wavelength of 1 A. (orig.)

  9. Statistical analysis concerning broad band measurements of radio frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Lubritto, C.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.; Petraglia, A.; Pinto, G.; Romano, G.

    2002-01-01

    Electromagnetic fields (EMF) actually represents one of the most common and the fastest growing environmental factors influencing human life. The care of the public community for the so called electromagnetic pollution is continually increasing because of the booming use of mobile phones over the past decade in business, commerce and social life. Moreover the incumbent third generation mobile systems will increase the use of all communication technologies, including fax, e-mail and Internet accesses. This extensive use has been accompanied by public debate about possible adverse effects on human health. In particular there are concerns related to the emission of radiofrequency radiation from the cellular phones and from base stations. Due to this very fast and wide development of cellular telephony more and more data are becoming available from monitoring, measuring and predicting electromagnetic fields as requested by the laws in order to get the authorization to install antenna and apparatus size of the database is such consistent that statistics have been carried out with a high degree of confidence: in particular in this paper statistical analysis has been focussed on data collected during about 1000 check measurements of electromagnetic field values performed by a private company in 167 different located in almost all Italian regions. One of the aim set consist in to find the most critical factors for the measurements, besides the field conformation: position in space, logistic conditions, technology employed, distance from the centre of the antenna, etc. The first step of the study deals with the building of a database fulfilled with information relevant to the measurements. In a second step, by means of appropriate statistical procedures, the electromagnetic field is evaluated and then the different measurement procedures are critically reviewed

  10. A compact planar multi-broad band monopole antenna for mobile devices

    Science.gov (United States)

    Zhong, Xiaoqing; Yao, Bin; Zheng, Qinhong; Yang, Jikong; Cao, Xiangqi

    2015-10-01

    A Multiple-frequency broadband planar monopole antenna is proposed in this Paper. The antenna is stimulated and numerically optimized by HFSS13.0 (High Frequency Structure Simulator). The size of it is 39mm×22mm×1.7mm. The antenna resonates at many frequencies. The parameter S112G(DCS1800 and PCS1900), 3G(UMTS), 4G(LTE2300 and LTE2500), ISM, WLAN. It is quiet appropriate for the present ultra-thin smart phones

  11. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    International Nuclear Information System (INIS)

    Kimlin, M.G.; Parisi, A.V.

    1999-01-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car. (author)

  12. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    Science.gov (United States)

    Kimlin, M. G.; Parisi, A. V.

    1999-04-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car.

  13. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    Science.gov (United States)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. A Compact Printed Quadruple Band-Notched UWB Antenna

    Directory of Open Access Journals (Sweden)

    Xiaoyin Li

    2013-01-01

    Full Text Available A novel compact coplanar waveguide- (CPW- fed ultrawideband (UWB printed planar volcano-smoke antenna (PVSA with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

  15. Ultraviolet divergences and supersymmetric theories

    International Nuclear Information System (INIS)

    Sagnotti, A.

    1984-09-01

    This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references

  16. Ultraviolet disinfection of potable water

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, R. L. [Metropolitan Water District of Southern California, Los Angeles, CA (United States)

    1990-06-15

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as well as the advantages and disadvantages of UV disinfection.

  17. Ultraviolet disinfection of potable water

    International Nuclear Information System (INIS)

    Wolfe, R.L.

    1990-01-01

    Because of upcoming surface and groundwater regulations regarding the control of microbiological and chemical contaminants, there is a need to evaluate the feasibility and effectiveness of ultraviolet (UV) radiation for primary disinfection of potable water supplies. Data is presented on microbicidal wavelengths of UV and distribution of energy output for low and medium-pressure arc lamps. Both systems were found to perform equally well for inactivating microorganisms, but each had distinct advantages in different applications. Approximate dosages for 90% inactivation of selected microorganisms by UV is presented in a table. Cost analysis for disinfection is presented in two tables as well as the advantages and disadvantages of UV disinfection

  18. Ultraviolet divergences of Einstein gravity

    International Nuclear Information System (INIS)

    Goroff, M.H.

    1986-01-01

    The author discuss a two-loop calculation showing that the S matrix of Einstein's theory of gravity contains nonrenormalizable ultraviolet divergences in four dimension. The author discusses the calculation in both background field and normal field theory. The author describes a new method for dealing with ghost fields in gauge theories by combining them with suitable extensions of the gauge fields in higher dimensions. The author shows how using subtracted integrals in the calculation of higher loop graphs simplifies the calculation in the background field method by eliminating the need for mixed counterterms. Finally, the author makes some remarks about the implications of the result for supergravity theories

  19. Ultraviolet laser technology and applications

    CERN Document Server

    Elliott, David L

    1995-01-01

    Ultraviolet Laser Technology and Applications is a hands-on reference text that identifies the main areas of UV laser technology; describes how each is applied; offers clearly illustrated examples of UV opticalsystems applications; and includes technical data on optics, lasers, materials, and systems. This book is unique for its comprehensive, in-depth coverage. Each chapter deals with a different aspect of the subject, beginning with UV light itself; moving through the optics, sources, and systems; and concluding with detailed descriptions of applications in various fields.The text enables pr

  20. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin; Guo, Huaihong; Yang, Teng; Zhang, Zhidong; Kumamoto, Yasuaki; Shen, Chih Chiang; Hsu, Yu Te; Li, Lain-Jong; Saito, Riichiro; Kawata, Satoshi

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  1. Proceedings of wide band gap semiconductors

    International Nuclear Information System (INIS)

    Moustakas, T.D.; Pankove, J.I.; Hamakawa, Y.

    1992-01-01

    This book contains the proceedings of wide band gap semiconductors. Wide band gap semiconductors are under intense study because of their potential applications in photonic devices in the visible and ultraviolet part of the electromagnetic spectrum, and devices for high temperature, high frequency and high power electronics. Additionally, due to their unique mechanical, thermal, optical, chemical, and electronic properties many wide band gap semiconductors are anticipated to find applications in thermoelectric, electrooptic, piezoelectric and acoustooptic devices as well as protective coatings, hard coatings and heat sinks. Material systems covered in this symposium include diamond, II-VI compounds, III-V nitrides, silicon carbide, boron compounds, amorphous and microcrystalline semiconductors, chalcopyrites, oxides and halides. The various papers addressed recent experimental and theoretical developments. They covered issues related to crystal growth (bulk and thin films), structure and microstructure, defects, doping, optoelectronic properties and device applications. A theoretical session was dedicated to identifying common themes in the heteroepitaxy and the role of defects in doping, compensation and phase stability of this unique class of materials. Important experimental milestones included the demonstrations of bright blue injection luminescence at room temperatures from junctions based on III-V nitrides and a similar result from multiple quantum wells in a ZnSe double heterojunction at liquid nitrogen temperatures

  2. Genome-wide comparison of ultraviolet and ethyl methanesulphonate mutagenesis methods for the brown alga Ectocarpus.

    Science.gov (United States)

    Godfroy, Olivier; Peters, Akira F; Coelho, Susana M; Cock, J Mark

    2015-12-01

    Ectocarpus has emerged as a model organism for the brown algae and a broad range of genetic and genomic resources are being generated for this species. The aim of the work presented here was to evaluate two mutagenesis protocols based on ultraviolet irradiation and ethyl methanesulphonate treatment using genome resequencing to measure the number, type and distribution of mutations generated by the two methods. Ultraviolet irradiation generated a greater number of genetic lesions than ethyl methanesulphonate treatment, with more than 400 mutations being detected in the genome of the mutagenised individual. This study therefore confirms that the ultraviolet mutagenesis protocol is suitable for approaches that require a high density of mutations, such as saturation mutagenesis or Targeting Induced Local Lesions in Genomes (TILLING). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Band parameters of phosphorene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)

  4. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  5. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  6. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  7. Studies of early effects of ultraviolet B irradiation on hairless mouse epidermis

    International Nuclear Information System (INIS)

    Olsen, W.M.

    1990-01-01

    The present study describes various early biochemical and cell kinetic aspects of the acute response of hairless epidermis with irradiation of narrow-banded wavelengths in the ultraviolet B region of the spectrum (280-320 nm), and their possible relationship to ultraviolet carcinogenicity. In vivo exposure of hairless mouse skin to a single dose of various narrow-banded wavelengths of ultraviolet B light demonstrated that 280, 290, 297 and 302 nm had a carcinogenic potency according to the tetrazolium test. No induction of DT-diaphorase was observed, which may signify that the actions of ultraviolet B light and chemical skin carcinogens differ at the cellular level, even though the nuclear effect on DNA may in principle be the same, e.g. mutation events, activation or amplication of oncogens, inhibition of anti-oncogens, etc. The early epidermal cell kinetic after a biologically relevant dose of ultraviolet B irradiation at a wavelength of 297 nm could be divided into two periods: the initial inhibition in the uptake of tritiated thymidine and the mitotic rate were followed by a long-lasting depression in the DNA synthesis rate combined with rapid cell proliferation. This shows that the acute vascular response (erythema and edema) to ultraviolet B lights is also associated with epidermal perturbations similar to the carcinogen-associated delay in cell cycle passage seen after chemical skin carcinogens like 7,12-dimethylbenz(α)anthracene and methylnitrosourea, as well as to the regenerative proliferation observed after chemical skin irritants like cantharidin. 93 refs., 6 figs

  8. Dose modeling in ultraviolet phototherapy

    International Nuclear Information System (INIS)

    Grimes, David Robert; Robbins, Chris; O'Hare, Neil John

    2010-01-01

    Purpose: Ultraviolet phototherapy is widely used in the treatment of numerous skin conditions. This treatment is well established and largely beneficial to patients on both physical and psychological levels; however, overexposure to ultraviolet radiation (UVR) can have detrimental effects, such as erythemal responses and ocular damage in addition to the potentially carcinogenic nature of UVR. For these reasons, it is essential to control and quantify the radiation dose incident upon the patient to ensure that it is both biologically effective and has the minimal possible impact on the surrounding unaffected tissue. Methods: To date, there has been little work on dose modeling, and the output of artificial UVR sources is an area where research has been recommended. This work characterizes these sources by formalizing an approach from first principles and experimentally examining this model. Results: An implementation of a line source model is found to give impressive accuracy and quantifies the output radiation well. Conclusions: This method could potentially serve as a basis for a full computational dose model for quantifying patient dose.

  9. Evolution of solar ultraviolet luminosity

    International Nuclear Information System (INIS)

    Zahnle, K.J.; Walker, J.C.G.

    1982-01-01

    In view of the major role of the sun in defining the properties of planetary atmospheres, their evolution cannot be fully understood outside the context of an evolving sun. The ultraviolet radiation is especially interesting because of its strong interaction with planetary atmospheres. We use astronomical observation of stars that are analogous to the sun in order to reconstruct a tentative account of the evolution of solar UV luminosity. A wealth of evidence indicates that the young sun was a much more powerful source of energetic particles and radiation than it is today. While on the main sequence, solar activity has declined as an inverse power law of age (between t -5 and t/sup -1.2/) as a consequence of angular momentum loss to the solar wind. Recent IUE satellite observations of premain sequence stars suggest that before the sun reached the main sequence (at an age of about 50 m.y.), it may have emitted as much as 10 4 times as much ultraviolet radiation (γ<2000 A) than it does today. These results could impact our understanding of the photochemistry and escape of constituents of primordial planetary atmospheres

  10. CSF oligoclonal banding - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy To use the ... 5 out of 5 Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous ...

  11. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  12. Laparoscopic gastric banding

    Science.gov (United States)

    ... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...

  13. Absolute linestrengths in the H2O2 nu6 band

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  14. Maps of ultraviolet radiation in Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2009-01-01

    Ultraviolet radiation (UV) has contributed relatively little energy to the solar spectrum; but is important, because it is biologically active. The software Surfer 8 has created maps designed of the territory of Costa Rica to assess the maximum levels of solar UV radiation on a horizontal plane. The data were used in creating the maps, were predicted at local noon in eighty-three locations scattered across the country, with a spectral atmospheric model which is physically established. The model has used as input data: the date and time, the location identified by latitude, longitude and height of land above sea level, the value of the vertical column ozone, surface albedo and atmospheric turbidity parameters. The estimate differs by 3% of the measurements made in situ, which agrees with the experimental data. The model has used the data estimation of UV radiation, clear sky conditions, which is the condition where you get the maximum energy possible in each locality. This is of fundamental importance when assessing the adverse effects on human health, leads the maximum intensity in this important solar spectrum band. A larger increase of 23% has presented in the UV radiation with altitude obtaining the hills and mountains the highest rates and places located at sea level and the lowest cost, the indices. The annual variation analysis has revealed an increase greater than 27% from the month of lowest UV radiation (December) and the month of greatest UV radiation (April). The issue is of particular interest because of the increasing number of people moving at different times of the year, altitudes over 2000 m altitude, in activities relating to tourism and employment. These individuals are significant increases in levels of UV solar radiation under conditions of clear skies. (author) [es

  15. Ultraviolet photodissociation dynamics of the benzyl radical.

    Science.gov (United States)

    Song, Yu; Zheng, Xianfeng; Lucas, Michael; Zhang, Jingsong

    2011-05-14

    Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy, , is ∼0.3. The P(E(T))s indicate the production of fulvenallene + H, which was suggested by recent theoretical studies. The H-atom product angular distribution is isotropic, with the anisotropy parameter β ≈ 0. The H/D product ratios from isotope labeling studies using C(6)H(5)CD(2) and C(6)D(5)CH(2) are reasonably close to the statistical H/D ratios, suggesting that the H/D atoms are scrambled in the photodissociation of benzyl. The dissociation mechanism is consistent with internal conversion of the electronically excited benzyl followed by unimolecular decomposition of the hot benzyl radical on the ground state.

  16. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus

    International Nuclear Information System (INIS)

    Ayres, T.R.; Moos, H.W.; Linsky, J.L.

    1981-01-01

    We present evidence that many of the weak features observed with the International Ultraviolet Explorer (IUE) in the far-ultraviolet (1150--2000 A) spectrum of the archetype red giant Arcturus (K2 III) are A--X fourth positive bands of carbon monoxide excited by chromospheric emissions of O I, C I, and H I. The appearance of fluorescent CO bands near the wavelengths of commonly used indicators of high-temperature (T>2 x 10 4 K) plasma, such as C II lambda1335 and C IV lambda1548, introduces a serious ambiguity in diagnosing the presence of hot material in the outer atmospheres of the cool giants by means of low-dispersion IUE spectra

  17. Band structure dynamics in indium wires

    Science.gov (United States)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  18. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  19. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  20. Dosimetry of narrow band UVB treatments

    International Nuclear Information System (INIS)

    Goode, D.H.; Mannering, D.M.

    1996-01-01

    Full text: For many years psoriasis has been treated with broad band UVB lamps. These lamps have a bell shaped spectrum which peaks at 305 nm and extends from 280 nm to 350 nm. However research with monochromatic UV radiation has shown that wavelengths between 300 nm and 320 nm are the most efficacious for clearing psoriasis while wavelengths below 305 nm are most effective for producing the undesirable side effect of erythema (sunburn). In response to these findings Philips developed a narrow band UVB tube in which a large fraction of the output was confined to a narrow peak (bandwidth 2.5 nm) situated at 311 nm. Christchurch Hospital replaced broad band UVB with narrow band treatments in August 1995 and as this required UV exposures to be substantially increased new protocols had to be developed. Three aspects needed to be addressed. These were translating the dose from broad band to narrow band for current patients, determining the initial dose for new patients and developing a formula for increasing subsequent exposures to both types of patient. To translate doses the spectral irradiance (μW/cm 2 /nm) that would fall on the patient was measured in both the old broad band and the new narrow band treatment units and from this UV doses were calculated. All doses were expressed in mJ/cm 2 of unweighted UV over the range 250 nm to 400 nm. The erythemal effectiveness of the two units were compared by using the CIE 1987 curve to express doses in terms of the equivalent exposure of monochromatic 297 nm radiation. It was found that an exposure of 3.96 mJ/cm 2 from the broad band FS40 tubes and 12.79 mJ/cm 2 from the narrow band TL/01 tubes were both equivalent to 1.00 mJ/cm 2 of monochromatic 297 nm radiation so when transferring patients all broad band doses needed to be increased by a factor of 3.2. Before transferring any patients this factor was confirmed by conducting two minimal erythema dose (MED) tests on a normal subject, one in each unit. For new patients a

  1. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bowyer, S.; Grewing, M.; California Univ., Berkeley; Tuebingen Universitaet, West Germany)

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations. 21 references

  2. ULTRAVIOLET-SELECTED FIELD AND PRE-MAIN-SEQUENCE STARS TOWARD TAURUS AND UPPER SCORPIUS

    International Nuclear Information System (INIS)

    Findeisen, K.; Hillenbrand, L.

    2010-01-01

    We have carried out a Galaxy Evolution Explorer (GALEX) Cycle 1 guest investigator program covering 56 deg 2 near the Taurus T association and 12 deg 2 along the northern edge of the Upper Scorpius OB association. We combined photometry in the GALEX far-ultraviolet and near-ultraviolet bands with data from the Two Micron All Sky Survey to identify candidate young (∼<100 Myr old) stars as those with an ultraviolet excess relative to older main-sequence stars. Follow-up spectroscopy of a partial sample of these candidates suggests five new members of Taurus, with 8-20 expected from additional observations, and five new members of Upper Scorpius, with three to six expected from additional observations. These candidate new members appear to represent a distributed, non-clustered population in either region, although our sample statistics are as of yet too poor to constrain the nature or extent of this population. Rather, our study demonstrates the ability of GALEX observations to identify young stellar populations distributed over a wide area of the sky. We also highlight the necessity of a better understanding of the Galactic ultraviolet source population to support similar investigations. In particular, we report a large population of stars with an ultraviolet excess but no optical indicators of stellar activity or accretion, and briefly argue against several interpretations of these sources.

  3. Ultraviolet safety assessments of insect light traps.

    Science.gov (United States)

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  4. The effects of exogenous catalase on broad-spectrum near-UV (300-400nm) treated Escherichia coli cells

    International Nuclear Information System (INIS)

    Sammartano, L.J.; Tuveson, R.W.

    1984-01-01

    Catalase incorporated into plating medium protects against inactivation and mutagenesis by broad-spectrum near-ultraviolet wavelength (300-400nm) (NUV) radiation in strains of Escherichia coli. Plating medium containing catalase does not provide protection against inactivation by wavelengths in the FUV region. Catalase added to the cell suspension during or added immediately after NUV exposure also protects against inactivation. The protection provided by catalase suggests a possible role for hydrogen peroxide in the processes of inactivation and mutagenesis by broad-spectrum NUV. (author)

  5. The Ultraviolet Albedo of Ganymede

    Science.gov (United States)

    McGrath, Melissa; Hendrix, A.

    2013-10-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede’s stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede’s UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values. References Carlson, R. and 39 co-authors, Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: Results from Galileo’s initial orbit, Science, 274, 385-388, 1996. Eviatar, A., D. F. Strobel, B. C. Wolven, P. D. Feldman, M. A. McGrath, and D. J. Williams, Excitation of the Ganymede ultraviolet aurora, Astrophys. J, 555, 1013-1019, 2001. Feldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. Retherford, and B. C. Wolven, HST/STIS imaging of ultraviolet aurora on Ganymede, Astrophys. J, 535, 1085-1090, 2000. McGrath M. A., Lellouch E., Strobel D. F., Feldman P. D., Johnson R. E., Satellite Atmospheres, Chapter 19 in Jupiter: The Planet, Satellites and Magnetosphere, ed. F. Bagenal, T. Dowling, W. McKinnon, Cambridge University Press, 2004. McGrath M. A., Jia, Xianzhe; Retherford, Kurt; Feldman, Paul D.; Strobel, Darrell F.; Saur, Joachim, Aurora on Ganymede, J. Geophys. Res., doi: 10.1002/jgra.50122, 2013. Saur, J., S. Duling, S., L. Roth, P. D. Feldman, D. F. Strobel, K. D. Retherford, M. A. McGrath, A. Wennmacher, American Geophysical Union, Fall Meeting

  6. Hand protection from ultraviolet exposure

    International Nuclear Information System (INIS)

    Khazova, M.; O'Hagan, J.B.

    2006-01-01

    Full text of publication follows: A number of industrial applications and public services involve exposure to ultraviolet radiation (U.V.R.) from a variety of lamps and lasers, for example, in forensic examination, biological trans-illuminators, dentistry, laser material processing, microelectronics, etc. The proposed European Union Directive on Optical Radiation would place specific requirements on employers to provide adequate safety measures to reduce exposure to U.V.R., including gloves for hand protection. The selection of gloves should be based on a risk assessment and on the performance characteristics of the gloves for the task. However, current International and national standards do not describe evaluation procedures of disposable gloves for hand protection against non-ionising radiation. A methodology for assessment of the UV protection level for disposable gloves and a simple measurement protocol are proposed, based on a common approach with UV protection by clothing and sunscreens. Glove Ultraviolet Protection Factor is defined as a time-scale increase in exposure permitted for the hand protected by a glove with respect to an unprotected hand. However, the wide variety of U.V.R. sources and the real-life conditions of glove use (stretching and wetting the surface by liquids) bring substantial challenges to the assessment method. Our study of ∼ 50 samples of widely used disposable gloves made of different materials (nitrile, vinyl, latex and chloroprene) showed that for all tested gloves a change in U.V.R. attenuation with stretching is characteristic for the type of glove material and can be included as a scaling factor in the definition of U.V.R. protection. Glove material has a bigger effect on U.V.R. protection level than variations in the glove thickness or its colour. The following approaches are suggested to overcome the problem of variable U.V.R. sources: - Worst case scenario minimal protection level, most restrictive case - Application

  7. Hand protection from ultraviolet exposure

    Energy Technology Data Exchange (ETDEWEB)

    Khazova, M.; O' Hagan, J.B. [Health Protection Agency, Radiation Protection Division, Chilton, Did cot (United Kingdom)

    2006-07-01

    Full text of publication follows: A number of industrial applications and public services involve exposure to ultraviolet radiation (U.V.R.) from a variety of lamps and lasers, for example, in forensic examination, biological trans-illuminators, dentistry, laser material processing, microelectronics, etc. The proposed European Union Directive on Optical Radiation would place specific requirements on employers to provide adequate safety measures to reduce exposure to U.V.R., including gloves for hand protection. The selection of gloves should be based on a risk assessment and on the performance characteristics of the gloves for the task. However, current International and national standards do not describe evaluation procedures of disposable gloves for hand protection against non-ionising radiation. A methodology for assessment of the UV protection level for disposable gloves and a simple measurement protocol are proposed, based on a common approach with UV protection by clothing and sunscreens. Glove Ultraviolet Protection Factor is defined as a time-scale increase in exposure permitted for the hand protected by a glove with respect to an unprotected hand. However, the wide variety of U.V.R. sources and the real-life conditions of glove use (stretching and wetting the surface by liquids) bring substantial challenges to the assessment method. Our study of {approx} 50 samples of widely used disposable gloves made of different materials (nitrile, vinyl, latex and chloroprene) showed that for all tested gloves a change in U.V.R. attenuation with stretching is characteristic for the type of glove material and can be included as a scaling factor in the definition of U.V.R. protection. Glove material has a bigger effect on U.V.R. protection level than variations in the glove thickness or its colour. The following approaches are suggested to overcome the problem of variable U.V.R. sources: - Worst case scenario minimal protection level, most restrictive case - Application

  8. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Yang, Yi; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Cooke, Jeff; Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Olaes, Melanie; Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Baade, Dietrich [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoeflich, Peter [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Maund, Justyn [Department of Physics and Astronomy F39 Hicks Building, Hounsfield Road Sheffield, S3 7RH (United Kingdom); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.

  9. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    Science.gov (United States)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  10. A reliable Differentiation of Mucor from Aspergillus in Tissue Sections with Ultraviolet Illumination

    OpenAIRE

    Senba, Masachika; Toda, Takayoshi; Toda, Yumiko; Hokama, Seitetsu

    1989-01-01

    In tissue, hyphae of mucor are characteristically broad and infrequently septate. However, it may be difficult to distinguish mucor from aspergillus in tissue sections occasionally, because sometimes aspergillus septa are not detected with hematoxylin-eosin (HE), periodic acid Schiff (PAS ), and Grocott's methenamine silver (GMS). In a case, aspergillus septa can be seen under ultraviolet light. Specifically, structures of these septum were clear cut differences in the histological finding be...

  11. Galactic Astronomy in the Ultraviolet

    Science.gov (United States)

    Rastorguev, A. S.; Sachkov, M. E.; Zabolotskikh, M. V.

    2017-12-01

    We propose a number of prospective observational programs for the ultraviolet space observatory WSO-UV, which seem to be of great importance to modern galactic astronomy. The programs include the search for binary Cepheids; the search and detailed photometric study and the analysis of radial distribution of UV-bright stars in globular clusters ("blue stragglers", blue horizontal-branch stars, RR Lyrae variables, white dwarfs, and stars with UV excesses); the investigation of stellar content and kinematics of young open clusters and associations; the study of spectral energy distribution in hot stars, including calculation of the extinction curves in the UV, optical and NIR; and accurate definition of the relations between the UV-colors and effective temperature. The high angular resolution of the observatory allows accurate astrometric measurements of stellar proper motions and their kinematic analysis.

  12. Additive effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A xenon-mercury high pressure lamp and a double monochromator were used to produce ultraviolet (uv) radiation at 295 nm. Pigmented rabbit eyes were irradiated and evaluated by slitlamp biomicroscopy. Corneal threshold (Hc) was 0.05 J.cm-2 and lens threshold (hL) was 0.75 J.cm-2. Other eyes were irradiated with 2 Hc and evaluated from 4 to 24 h at 4 h intervals. Corneal damage was only greater than that expected from a single Hc exposure if the separation between the two Hc exposures did not exceed 8 h. The most repeatable and reliable corneal response to these levels of uv was the development of corneal epithelial granules

  13. Ultraviolet Spectrophotometry of VV Cephei

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1992-06-01

    Full Text Available The IUE archival spectra of VV Cephei were collected to investigate the eclipse nature in the ultraviolet. The temperature of the B star has been determined, as approximately 30000K, based on the flux distributions during egress. Light curves of VV Cephei were reduced from the spectrophotometry of the IUE archival spectra. Three light curves at the center wavelengths of 3250 Å, 2550 Å and 2850 Å have been analyzed by the modified Wilson and Devinney light curve program. The radii of the B star and M star were deduced to 0.05 and 0.22 of unit separation, respectively. The UV light curves show an evidence that the light was attenuated by the highly opaque atomsphere of the M star.

  14. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  15. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    Science.gov (United States)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  16. Band-to-band and inner shell excitation VIS-UV photoluminescence of quaternary InAlGaN alloys

    International Nuclear Information System (INIS)

    Fukui, K.; Naoe, S.; Okada, K.; Hamada, S.; Hirayama, H.

    2006-01-01

    Visible and ultraviolet photoluminescence and photoluminescence excitation spectra of quaternary InAlGaN alloys were measured. The excitation photon energy covers from band edge to 180 eV, near both nitrogen K (∝400 eV) and aluminium K (∝1.5 keV) inner shell energy region. From photoluminescence excitation spectra photoluminescence intensity per incident photon number varies in proportion to incident photon energy. This result implies that many conduction band electron - valence band hole pairs which are responsible for photoluminescence are produced by high energy excitation. Time resolved decay curves were also measured in the same energy region. No effect of high energy excitation on time resolved decay measurements suggests a role of indium on the photoluminescence mechanism in InAlGaN system. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Evidence for a Broad Autism Phenotype

    NARCIS (Netherlands)

    K. de Groot (Kristel); J.W. van Strien (Jan)

    2017-01-01

    textabstractThe broad autism phenotype implies the existence of a continuum ranging from individuals displaying almost no autistic traits to severely impaired diagnosed individuals. Recent studies have linked this variation in autistic traits to several domains of functioning. However, studies

  18. 33 CFR 117.921 - Broad River.

    Science.gov (United States)

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.921 Broad River. (a) The draw of the S170 bridge, mile 14.0 near Beaufort, shall open on signal if at least 24 hours notice is given. (b) The draw...

  19. Education and Broad Concepts of Agency

    Science.gov (United States)

    Winch, Christopher

    2014-01-01

    Drawing on recent debates about the relationship between propositional and practical knowledge, this article is concerned with broad concepts of agency. Specifically, it is concerned with agency that involves the forming and putting into effect of intentions over relatively extended periods, particularly in work contexts (called, for want of a…

  20. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  1. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    Science.gov (United States)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  2. Thermoluminescent behavior of diamond thin films exposed to ultraviolet radiation

    International Nuclear Information System (INIS)

    Barboza F, M.; Gastelum, S.; Melendrez, R.; Chernov, V.; Bernal, R.; Cruz V, C.; Brown, F.

    2002-01-01

    In this work the thermoluminescent properties of diamond thin films are discussed which are grown up through the chemical vapor method exposed to ultraviolet radiation of 200-280 nm. The films with thickness 3, 6, 9, 12, 180 and 500 microns were grown up using a precursor gas formed of H 2 -CH 4 -CO excited through microwave energy or hot filament.The structure and morphology of the films were examined through scanning electron microscopy, indicating the formation of different diamond polycrystal structures which depend on the type of heating of the precursor gas used as well as the film dimensions. In general, the brilliance curve depends on the sample and the wavelength of the irradiation ultraviolet light, however it presents clearly thermoluminescence bands in 148, 160, 272, 304, 320 and 324 C degrees. The maximum of the thermoluminescence efficiency is obtained for the case of sample exposure with light of 214 nm. The sample of 500 microns is what exhibits greater thermoluminescent efficiency of those studied samples. The thermoluminescent behavior in function of radiation dose presents regions of linearity and supra linearity for higher and small doses respectively. The disappearance of the thermoluminescent signal depends on the characteristics of the film and it can reach until a 30 % of loss before to reach the stability. (Author)

  3. Ultraviolet radiation effects on pigmentation in the cyanobacterium ''Phormidium uncinatum''

    International Nuclear Information System (INIS)

    Donkor, V.A.; Haeder, D.P.

    1997-01-01

    The Baikal strain of the cyanobacterium Phormidium uncinatum was found to possess the photosynthetic pigments chlorophyll a, carotenoids, phycocyanin and allophycocyanin, while the Tuebingen strain of Phormidium contained, in addition to these, the biliprotein phycoerythrin. Sucrose gradient centrifugation of the pigment extracts resulted in a separation of the phycobiliproteins into several bands, which according to their absorption and fluorescence properties, were identified as monomers, trimers and hexamers. With increasing UV-B irradiation the heavier aggregates were broken down into smaller components. Photobleaching of these accessory pigments also occurred. FPLC gel filtration analyses of the pigments also showed loss of heavier aggregates of the phycobilins and bleaching of the pigments. SDS-polyacrylamide gel electrophoresis of the sucrose gradient and FPLC fractions indicated loss of the biliproteins with increasing UV-B irradiation. The loss of the β- were more rapid than that of the α- subunits. Increasing levels of ultraviolet irradiation is therefore deleterious to these organism. (author)

  4. High performance organic ultraviolet photodetectors based on m-MTDATA

    Science.gov (United States)

    Zhao, Zhongli; Bai, Xiaofeng; Shang, Yubin; Yang, Jikai; Li, Baozeng; Song, De

    2018-02-01

    We demonstrate highly efficient organic ultraviolet photodetectors using 4,4',4'' -tris[3-methyl-pheny(phenyl) amino] triphenylamine (m-MTDATA) and aluminum Tris(8-Hydroxyquinolinate) Synonym Alq3). The optimized photodetector delivers a photocurrent of 1.40 mA/cm2 at10 V, corresponding to a response of 127 mA/W under an illumination of 375 nm UV light irradiation with an intensity of 10.5 mW/cm2 and a detectivity of 2.15×1011 cm Hz1/2 /W. The high response is attributed to the larger band offset at m-MTDATA/ Alq3 heterojunction, the suppression of radiative decay of m-MTDATA and efficient electron transfer from m-MTDATA to Alq3. The working mechanism of harvesting high performance is also discussed in detail.

  5. Ultraviolet photoluminescence in Gd-doped silica and phosphosilicate fibers

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-04-01

    Full Text Available Optical fiber lasers operating in the near infrared and visible spectral regions have relied on the spectroscopic properties of rare earth ions such as Yb3+, Er3+, Tm3+, Nd3+, and Sm3+. Here, we investigate Gd3+ doping in phosphosilicate and pure silica fibers using solution doping and sol-gel techniques, respectively, for potential applications in the ultraviolet. Photoluminescence spectra for optical fiber bundles and fiber preforms were recorded and compared. Emissions at 312 nm (phosphosilicate and 314 nm (pure silica were observed when pumping to the Gd3+ 6DJ, 6IJ, and 6PJ = 5/2, 3/2 energy levels. Oxygen deficient center was observed in solution doping sample with a wide absorption band centered at around 248 nm not affecting pumping to 6IJ states.

  6. Effect of ultraviolet light irradiation on amorphous carbon nitride films

    International Nuclear Information System (INIS)

    Zhang, M.; Nakayama, Y.

    1997-01-01

    The amorphous carbon nitride films were produced using electron cyclotron resonance nitrogen plasma with various mixtures of N 2 and CH 4 gases. The dependence of film structures on the nitrogen incorporation and the structural modifications of the film due to ultraviolet (UV) light irradiation were investigated using infrared and UV-VIS spectroscopy. It is found that UV irradiation results in the decrease of CH bonding, increase of CC and CN double bonding in the film and increase of the optical band gap of the film. It appears that both bond removal and reordering have taken place as a result of UV irradiation. The structural modifications due to nitrogen incorporation and UV light irradiation are explained by a cluster model. copyright 1997 American Institute of Physics

  7. The ultraviolet spectrum of OCS from first principles

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht; Johnson, Matthew Stanley; McBane, G.C.

    2012-01-01

    Global three dimensional potential energy surfaces and transition dipole moment functions are calculated for the lowest singlet and triplet states of carbonyl sulfide at the multireference configuration interaction level of theory. The first ultraviolet absorption band is then studied by means...... of quantum mechanical wave packet propagation. Excitation of the repulsive 2 (1)A' state gives the main contribution to the cross section. Excitation of the repulsive 1 (1)A" state is about a factor of 20 weaker at the absorption peak (E(ph) ˜ 45,000 cm(-1)) but becomes comparable to the 2 (1)A' state...... degenerate with the 2 (1)A' state in the Franck-Condon region. The structure observed in the low energy tail of the spectrum is caused by excitation of quasi-bound bending vibrational states of the 2 (1)A' and 1 (1)A" electronic states. The absorption cross sections agree well with experimental data...

  8. Thin film optical coatings for the ultraviolet spectral region

    Science.gov (United States)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  9. Band gap tuning of amorphous Al oxides by Zr alloying

    Energy Technology Data Exchange (ETDEWEB)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Borca, C. N.; Piamonteze, C. [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rechendorff, K.; Nielsen, L. P.; Almtoft, K. P. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Gudla, V. C.; Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs-Lyngby (Denmark)

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearly as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.

  10. Stratospheric ozone, ultraviolet radiation and climate change

    International Nuclear Information System (INIS)

    Boucher, O.

    2008-01-01

    It is well known that an overexposure to ultraviolet radiation is associated with a number of health risks such as an increased risk of cataracts and skin cancers. At a time when climate change is often blamed for all our environmental problems, what is the latest news about the stratospheric ozone layer and other factors controlling ultraviolet radiation at the surface of the Earth? Will the expected changes in the chemical composition of the atmosphere and changes in our climate increase or decrease the risk for skin cancer? This article investigates the role of the various factors influencing ultraviolet radiation and presents the latest knowledge on the subject. (author)

  11. Ultraviolet safety assessments of insect light traps

    OpenAIRE

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315?400?nm), ?black-light,? electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV ?Black-light? ILTs were measured at...

  12. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris

    2013-01-01

    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  13. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  14. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    1999-01-01

    ...+) PL intensity under below gap excitation. Photoluminescence excitation (PLE) studies revealed that oxygen/carbon introduces a broad below gap PLE band, which provides an efficient pathway for E(3+) excitation...

  15. Ultraviolet Phototherapy Management of Moderate-to-Severe Plaque Psoriasis: An Evidence-Based Analysis.

    Science.gov (United States)

    2009-01-01

    target the immune defects of the disease, is usually reserved for patients with contraindications and those failing or unresponsive to treatments with traditional immunosuppressants or phototherapy. Treatment plans are based on a long-term approach to managing the disease, patient's expectations, individual responses and risk of complications. The treatment goals are several fold but primarily to: 1) improve physical signs and secondary psychological effects,2) reduce inflammation and control skin shedding,3) control physical signs as long as possible, and to4) avoid factors that can aggravate the condition.Approaches are generally individualized because of the variable presentation, quality of life implications, co-existent medical conditions, and triggering factors (e.g. stress, infections and medications). Individual responses and commitments to therapy also present possible limitations. PHOTOTHERAPY: Ultraviolet phototherapy units have been licensed since February 1993 as a class 2 device in Canada. Units are available as hand held devices, hand and foot devices, full-body panel, and booth styles for institutional and home use. Units are also available with a range of ultraviolet A, broad and narrow band ultraviolet B (BB-UVB and NB-UVB) lamps. After establishing appropriate ultraviolet doses, three-times weekly treatment schedules for 20 to 25 treatments are generally needed to control symptoms. The literature search strategy employed keywords and subject headings to capture the concepts of 1) phototherapy and 2) psoriasis. The search involved runs in the following databases: Ovid MEDLINE (1996 to March Week 3 2009), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2009 Week 13), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. Parallel search strategies were developed for the remaining databases. Search results were limited to human and English-language published

  16. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  17. Environment and health: 3. Ozone depletion and ultraviolet radiation

    International Nuclear Information System (INIS)

    De Gruijl, F.R.; Van der Leun, J.C.

    2000-01-01

    Ultraviolet radiation from the sun is responsible for a variety of familiar photochemical reactions, including photochemical smog, bleaching of paints and decay of plastics. Conjugated bonds in organic molecules such as proteins and DNA absorb the UV radiation, which can damage these molecules. By a fortunate evolutionary event, the oxygen produced by photosynthesis forms a filter in the outer reaches of our atmosphere that absorbs the most energetic and harmful UV radiation, with wavelengths below 240 nm (in the UVC band [wavelength 100-280 nm]). In the process, the oxygen molecules split up and recombine to form ozone (Fig. 1). This ratified ozone layer (spread out between 10 and 50 Ion in the stratosphere but only 3 mm thick were it compressed at ground level) in turn efficiently absorbs UV radiation of higher wavelengths (tip to about 310 nm). A part of the UV radiation in the UVB band (wavelength 280-315 nm) still reaches ground level and is absorbed in sufficient amounts to have deleterious effects on cells. The less energetic radiation in the UVA band (wavelength 315-400 nm, bordering the visible band [wavelength 400-800 nm]) is not absorbed by ozone and reaches ground level without much attenuation through a clear atmosphere (i.e., no clouds, no air pollution). Although not completely innocuous, the UVA radiation in sunlight is much less photochemically active and therefore generally less harmful than UVB radiation. Life on earth has adapted itself to the UV stress, particularly UVB stress, fbr example by forming protective UV-absorbing surface layers, by repairing cell damage or by replacing damaged cells entirely. Human skin shows all of these adaptive features. Our eyes are less well adapted, but dicy, are shielded by the brows and by squinting. (author)

  18. Photodetector of ultra-violet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Vieru, T.; Coseac, V.; Chirita, F.

    1999-01-01

    The invention relates to photodetectors on the semiconductors base, in particular, to photodetectors of ultra-violet radiation and can be used in the optoelectronics systems for determining the intensity and dose of ultraviolet radiation emitted by the Sun and other sources. In the structure of the photodetector of ultraviolet radiation with a superficial potential barrier formed of semiconductors A 3 B 5 with the prohibited power width Eg 1 , solid solutions thereof with the prohibited power width Eg 2 and SnO 2 or ITO, in the semiconductors A 3 B 5 at a surface distance less than the absorption length of the visible radiation it is formed an isotype heterojunction between the semiconductors A 3 B 5 and solid solutions thereof with the prohibited power width Eg 2 > Eg 1 . The technical result consists in manufacturing of a photodetector sensitive solely to the ultraviolet radiation

  19. Outdoor ultraviolet exposure of children and adolescents

    International Nuclear Information System (INIS)

    Diffey, B.L.; Gibson, C.J.

    1996-01-01

    The weekday and weekend outdoor ultraviolet exposure of young people from primary and secondary schools in three geographically distinct regions of England was determined over a 3-month period in summer. Ultraviolet exposure was measured using personal film badges worn by each young person and time spent outdoors, in hourly intervals, assessed using exposure records. In each area a class of 9-10 year-old children from a primary school and a class of 14-15-year-old adolescents from a secondary school took part, giving a total of 180 subjects. We found that primary school children received higher outdoor ultraviolet exposure than young people in secondary schools, and geographical differences in exposure could not be accounted for solely by differences in ambient ultraviolet. There was little difference between the exposure of males and females. Children and adolescents did not behave as homogeneous groups with regard to exposure. (Author)

  20. Ultraviolet light - nature's own disinfection process

    Energy Technology Data Exchange (ETDEWEB)

    Munkeberg, T [Thorolf Gregersen a/s, Oslo (Norway)

    1978-05-18

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m/sup 3/ /hr, though there is no reason why this should not be increased.

  1. Ultraviolet light - nature's own disinfection process

    International Nuclear Information System (INIS)

    Munkeberg, T.

    1978-01-01

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m 3 /hr, though there is no reason why this should not be increased. (JIW)

  2. Inactivation of mitochondrial ATPase by ultraviolet light

    International Nuclear Information System (INIS)

    Chavez, E.; Cuellar, A.

    1984-01-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation

  3. Stability and Transient Effects in Ultraviolet Filaments

    National Research Council Canada - National Science Library

    Niday, Thomas

    2004-01-01

    .... Much of the work in this field has been done with infrared pulses; however, it has been proposed that ultraviolet pulses have the advantage that longer pulse lengths can be used, thereby delivering more energy...

  4. PMMA Wettability Caused by Ultraviolet Radiation

    OpenAIRE

    Dehtjars, J; Lancere, L; Poļaka, N; Soudnikovich, A; Tjuļkins, F; Valters, V

    2010-01-01

    The article is targeted to explore ultraviolet radiation (UV) influence on PMMAf or eye prostheses. UV beingt he Sun lightc omponenta nd could effect PMMA surface that in turn contributesi nteractionw ith tear. PMMA wettabilityw as poweredb y UV.

  5. Ultraviolet treatment on high performance filaments

    International Nuclear Information System (INIS)

    Gu Huang

    2005-01-01

    Quartz, Kevlar, carbon, and glass filaments were irradiated by ultraviolet ray with various periods. Tensile strength of the treated fibres was tested and analyzed, and the outward appearance of the treated filaments was shown

  6. Broad line regions in Seyfert-1 galaxies

    International Nuclear Information System (INIS)

    Groningen, E. van.

    1984-01-01

    To reproduce observed emission profiles of Seyfert galaxies, rotation in an accretion disk has been proposed. In this thesis, the profiles emitted by such an accretion disk are investigated. Detailed comparison with the observed profiles yields that a considerable fraction can be fitted with a power-law function, as predicted by the model. The author analyzes a series of high quality spectra of Seyfert galaxies, obtained with the 2.5m telescope at Las Campanas. He presents detailed analyses of two objects: Mkn335 and Akn120. In both cases, strong evidence is presented for the presence of two separate broad line zones. These zones are identified with an accretion disk and an outflowing wind. The disk contains gas with very high densities and emits predominantly the lower ionization lines. He reports on the discovery of very broad wings beneath the strong forbidden line 5007. (Auth.)

  7. Fourier evaluation of broad Moessbauer spectra

    International Nuclear Information System (INIS)

    Vincze, I.

    1981-01-01

    It is shown by the Fourier analysis of broad Moessbauer spectra that the even part of the distribution of the dominant hyperfine interaction (hyperfine field or quadrupole splitting) can be obtained directly without using least-square fitting procedures. Also the odd part of this distribution correlated with other hyperfine parameters (e.g. isomer shift) can be directly determined. Examples for amorphous magnetic and paramagnetic iron-based alloys are presented. (author)

  8. Fourier evaluation of broad Moessbauer spectra

    International Nuclear Information System (INIS)

    Vincze, I.

    1981-09-01

    It is shown by the Fourier analysis of broad Moessbauer spectra that the even part of the distribution of the dominant hyperfine interaction (hyperfine field or quadrupole splitting) can be obtained directly without using least-square fitting procedures. Also the odd part of this distribution correlated with other hyperfine parameters (e.g. isomer shift) can be directly determined. Examples covering the case of amorphous magnetic and paramagnetic iron-based alloys are presented. (author)

  9. Vacuum-Ultraviolet Photovoltaic Detector.

    Science.gov (United States)

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  10. Human exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Bernhardt, J.H.; Matthes, R.

    1987-01-01

    Ultraviolet radiation is that part of the electromagnetic spectrum located between the softest ionizing radiation and visible radiation. The lower limit of 100 nm is equivalent to photon energies of 12.4 eV, which corresponds approximately to the limit for the production of ionization in biologically important materials. A historical subdividing of the UV-region takes some of the biological effects into account. In this arrangement the range 400-315 nm, the so-called black light region, is called UV-A. In this wavelength region, fluorescence can be induced in many substances. UV-B covers the range 315-280 nm (the skin erythemal region). Most of the biologically active and potentially harmful UV from the sun reaching the surface of the earth is part of this spectral region. UV-C includes the radiation of wavelengths less than 280 nm (the germicidal region). It should be noted that this classification is somewhat arbitrary, and today it is more usual to evaluate the biological effectiveness of the whole UV-range from 200 to 400 nm

  11. Unintentional exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Sliney, D.H.

    1987-01-01

    To evaluate the risks from unintentional exposure to ultraviolet radiation (UVR), and to consider hazard control regulation, one must face first the problem of their state of scientific knowledge and the public's perception of UVR. Few people in the general public would question the health benefits of sunlight. Many flock to the beaches each summer to develop a healthy tan. Since the 1920's scientists have recognized that most of the benefits--and risks--of sunlight exposure result from the UVR present in sunlight. Dermatologists warn sunbathers to avoid exposure or protect themselves against the intense midday UVR or risk skin cancer. A growing number of scientists warn of hazards to the eye if UVR--perhaps even shorter visible wavelengths--are not filtered by lenses. In addition to any intentional exposure for health or cosmetic purposes, many people are also exposed to UVR without being aware of it or without their intent to be exposed. Outdoor workers are exposed to sunlight, many industrial workers (e.g., welders) are exposed to UVR from arc sources, some UVR penetrates clothing, and people indoors are exposed to UVR from artificial lighting

  12. Dermal damage from ultraviolet radiation

    International Nuclear Information System (INIS)

    Kligman, L.H.

    1988-01-01

    Ultraviolet (UV) radiation is increasingly recognized as the cause of a vast number of changes in the skin of humans and animals. These include alterations at the molecular, cellular, tissue and systematic levels. In the recent past, much has been learned about the immediate effects in skin of acute UV exposure (i.e. sunburn) with its epidermal cell death, inflammation and vasolidation. With chronic exposure, many of the clinical and histologic effects can be seen only after decades. Visually, these are hyper- and hypopigmented macules, dry scaly, wrinkled skin with a variety of benign, pre-malignant and malignant neoplasms. All epidermal in origin, they lead, inexorably in humans, to the appearance the authors described as photo-aged. Underlying many of these visible manifestations are drastic changes in the dermis. These relate chiefly to destruction of mature collagen, with a compensatory overproduction of reticulin fibers, hyperplasia of elastic fibers eventuating in elastosis, increased levels of the glycosaminoglycans (GAGs) comprising the ground substance and changes in the microvasculature. First described in actinically damaged humans, systematic investigation required an animal model

  13. Masks for extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y.

    1998-01-01

    In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed

  14. Ultraviolet complete dark energy model

    Science.gov (United States)

    Narain, Gaurav; Li, Tianjun

    2018-04-01

    We consider a local phenomenological model to explain a nonlocal gravity scenario which has been proposed to address dark energy issues. This nonlocal gravity action has been seen to fit the data as well as Λ -CDM and therefore demands a more fundamental local treatment. The induced gravity model coupled with higher-derivative gravity is exploited for this proposal, as this perturbatively renormalizable model has a well-defined ultraviolet (UV) description where ghosts are evaded. We consider a generalized version of this model where we consider two coupled scalar fields and their nonminimal coupling with gravity. In this simple model, one of the scalar field acquires a vacuum expectation value (VEV), thereby inducing a mass for one of the scalar fields and generating Newton's constant. The induced mass however is seen to be always above the running energy scale thereby leading to its decoupling. The residual theory after decoupling becomes a platform for driving the accelerated expansion under certain conditions. Integrating out the residual scalar generates a nonlocal gravity action. The leading term of which is the nonlocal gravity action used to fit the data of dark energy.

  15. Influence of near ultraviolet light on microorganisms

    International Nuclear Information System (INIS)

    Fraikin, G.Y.A.; Rubin, L.B.

    1980-01-01

    Our results and the recent literature data on the biological action of near ultraviolet light (300-380 nm) are examined in the review. Factual material is presented on the principles governing the manifestation of the following effects of near ultraviolet light in microorganisms: inactivation, delayed growth, photoreactivation, photoprotection, photoinduced sporulation (in fungi), and carotene synthesis. The mature and possible mechanisms of the effects examined are discussed

  16. Ultraviolet colors of subdwarf O stars

    International Nuclear Information System (INIS)

    Wesselius, P.R.

    1978-01-01

    The group of subdwarf O stars consisting of field stars and some central stars of old planetary nebulae does occupy an interesting place in the HR diagram. Greenstein and Sargent (1974) have tried to establish this place, and conclude that especially the hottest ones need ultraviolet data to improve the values of effective temperature and absolute luminosity. The author therefore observed some twenty sdO stars in the far ultraviolet using the spectrophotometer in the Netherlands' satellite ANS. (Auth.)

  17. Extreme Ultraviolet Explorer Bright Source List

    Science.gov (United States)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  18. Ultraviolet photoelectron spectroscopy of transient species

    International Nuclear Information System (INIS)

    Leeuw, D.M. de.

    1979-01-01

    Transient species are studied in the isolation of the gas phase using ultraviolet photoelectron spectroscopy (PES). A description of the equipment used and a discussion of some theoretical topics, which play a role in the interpretation of PE spectra, are given. Koopmans' theorem, Hartree-Fock-Slater (HFS) calculations and the sum rule are discussed. A versatile ultraviolet PE spectrometer, designed specifically for this purpose, has been built and the construction and performance of this instrument are described. (Auth.)

  19. Ultraviolet Behavior of N = 8 Supergravity

    International Nuclear Information System (INIS)

    Dixon, Lance J.

    2010-01-01

    In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.

  20. Effects of ultraviolet light irradiation on several isozymes in Helicoverpa armigera adults

    International Nuclear Information System (INIS)

    Meng Jianyu; Zhang Changyu; Lei Chaoliang

    2012-01-01

    The effects of ultraviolet (UV)light stress on esterase, peroxidases (POX ), and catalase (CAT) isozymes in Helicoverpa armigera (Hiiber) adults were studied by isozyme eleetrophoresis. When exposed to UV light irradiation, zymogram of esterase isozyme changed mainly in number and activity of isozyme. After 30 min and 60 min exposure, the intensity of isozyme bands E4, E9 and El0 were enhanced, E2 and E8 were weakened. The bands E1, E5, E7 and Ell disappeared after UV light irradiation, while E3 and E6 newly emerged. At the longest exposure time (90 min), the intensity of isozyme bands E4 and E9 was enhanced, while the intensity of E2 and E8 was weakened. The bands E1, E5 and E7 disappeared after UV light irradiation, whereas E3 and E6 newly emerged. The intensity of POX band P5 was enhanced in adults following the exposure to UV light for 30, 60, 90 minutes. The intensity of CAT band C1 was enhanced in adults following the exposure to UV light for 30, 60, 90 minutes, but that of band C2 was weakened after 30 min and 90 min exposure in comparison with the control

  1. Unusual broad-line Mg II emitters among luminous galaxies in the baryon oscillation spectroscopic survey

    International Nuclear Information System (INIS)

    Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.

    2014-01-01

    Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions with levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.

  2. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    Science.gov (United States)

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  3. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  4. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Chuang, K.-J.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ip, W.-H., E-mail: yujung@usc.edu [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  5. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H 2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H 2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H 2 versus H 2 seeded in He), and the optical properties of the window used (MgF 2 versus CaF 2 ). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H 2 molecular emission ranges.

  6. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    Science.gov (United States)

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  7. Infrared to near-ultraviolet optical response for zigzag-edge silicene nanoribbons under the irradiation of an external electromagnetic field

    Science.gov (United States)

    Liao, Wenhu; Bao, Hairui; Zhang, Xincheng; Zuo, Min; Yang, Hong

    2018-01-01

    We investigate theoretically the width-dependent electronic structure and optical spectrum for intrinsic zigzag-edge silicene nanoribbons with N silicon atoms of the A and B sublattice ( N-ZSiNRs) under the irradiation of an external electromagnetic field at low temperatures. Based on the method of the tight-binding approximation, we have derived a width-dependent dispersion relation and wave function for N-ZSiNRs under the hard-wall boundary condition. By way of the dipole-transition theorem for semiconductors, both the 8- and 16-ZSiNRs have been observed to exhibit broad values (0.30-3.20 eV) of optical conductivity, dielectric function and electron energy loss spectrum in the range of infrared to near-ultraviolet. The optical spectra for 8- and 16-ZSiNRs have been manifested to be transitions between the valence and conduction bands with the same subband indices, as well as the resonances between the edge state and bulk state subbands, while the optical transitions among the different indexed bulk subbands should be forbidden owing to the non-conserved momentum. The obtained results are believed to be of importance in exploring new effects and optoelectronic applications of the silicene-based electron devices.

  8. 76 FR 62309 - Implementing a Nationwide, Broadband, Interoperable Public Safety Network in the 700 MHz Band

    Science.gov (United States)

    2011-10-07

    ... the 700 MHz Band AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: In this... spectrum of the 700 MHz band. The Commission dismissed the request, but clarified that a reasonably broad... personnel including, but not limited to, activities of police, fire and medical emergency first responders...

  9. Ultraviolet resources over Northern Eurasia.

    Science.gov (United States)

    Chubarova, Natalia; Zhdanova, Yekaterina

    2013-10-05

    We propose a new climatology of UV resources over Northern Eurasia, which includes the assessments of both detrimental (erythema) and positive (vitamin D synthesis) effects of ultraviolet radiation on human health. The UV resources are defined by using several classes and subclasses - UV deficiency, UV optimum, and UV excess - for 6 different skin types. To better quantifying the vitamin D irradiance threshold we accounted for an open body fraction S as a function of effective air temperature. The spatial and temporal distribution of UV resources was estimated by radiative transfer (RT) modeling (8 stream DISORT RT code) with 1×1° grid and monthly resolution. For this purpose special datasets of main input geophysical parameters (total ozone content, aerosol characteristics, surface UV albedo, UV cloud modification factor) have been created over the territory of Northern Eurasia. The new approaches were used to retrieve aerosol parameters and cloud modification factor in the UV spectral region. As a result, the UV resources were obtained for clear-sky and mean cloudy conditions for different skin types. We show that the distribution of UV deficiency, UV optimum and UV excess is regulated by various geophysical parameters (mainly, total ozone, cloudiness and open body fraction) and can significantly deviate from latitudinal dependence. We also show that the UV optimum conditions can be simultaneously observed for people with different skin types (for example, for 4-5 skin types at the same time in spring over Western Europe). These UV optimum conditions for different skin types occupy a much larger territory over Europe than that over Asia. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ultraviolet photometry from the orbiting astronomical observatory. XX. The ultraviolet extinction bump

    International Nuclear Information System (INIS)

    Savage, B.D.

    1975-01-01

    Interstellar extinction curves over the wavelength region 1800--3600 A are presented for 36 stars. The stars have E (B-V) in the range 0.03 to 0.55, and are mostly confined to the brighter OB associations distributed along the plane of the Galaxy. Every extinction curve exhibits a broad extinction bump peaking near 2175 A (4.6 μ -1 ). The position of the peak and the profile of the feature appear remarkably constant among the sample of stars. With only a few exceptions, E (lambda)-3320, a measure of the strength of the feature, correlates very well with E (B-V), implying that the bump has an interstellar rather than a circumstellar origin. The observation that the bump position and shape are constant, or very nearly constant, places severe restrictions on the grain geometrical parameters if the feature is to be explained by classical scattering theory employing bulk optical constants. In fact, the restrictions are so severe that an alternate explanation seems to be required unless the dust grains that exist in widely separated regions of space and under very different physical conditions have nearly identical size and shape distributions. Three extinction curves that extend to 1100 A are also presented. These curves show the same general extinction characteristics reported earlier. The curve for 22 Sco provides another example of a star that is []physically associated with nebulosity and that also has abnormally low far-ultraviolet extinction. We have searched the extinction curves for fine structure such as abrupt slope changes or new diffuse interstellar features. Unfortunately, there is no convincing evidence for such structure over the interval 1800--3600 A. (auth)

  11. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.

    2016-01-01

    minimum changes non-linearly as well.Fitting of the energy band gap values resulted in a bowing parameter of 2 eV. The band gap bowing of themixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction bandminimum of anodized Al2O3.......The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths...... was estimated based on the Miescattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on Zr content deviatesfrom linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxide with Zrcontent of 21.9%. With increasing Zr content, the conduction band...

  12. The broad utility of Trizac diamond tile

    Science.gov (United States)

    Gagliardi, John I.; Romero, Vincent D.; Sventek, Bruce; Zu, Lijun

    2017-10-01

    Sample finishing data from a broad range of materials — glasses, sapphire, silicon carbide, silicon, zirconium oxide, lithium tantalate, and flooring materials — are shown effectively processed with Trizact™ Diamond Tile (TDT). This data should provide the reader with an understanding of what to expect when using TDT on hard to grind or brittle materials. Keys to maintaining effective TDT pad wear rates, and therefore cost effect and stable processes, are described as managing 1) the proper lubricant flow rate for glasses and silicon-type materials and 2) the conditioning particle concentration for harder-to-grind materials

  13. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    Science.gov (United States)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  14. Photodegradation of aniline by goethite doped with boron under ultraviolet and visible light irradiation

    International Nuclear Information System (INIS)

    Liu, Guanglong; Liao, Shuijiao; Zhu, Duanwei; Liu, Linghua; Cheng, Dongsheng; Zhou, Huaidong

    2011-01-01

    Highlights: → Goethite modified by boron was prepared by sol-gel method in presence of boron acid at the low temperature. → B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. → The results showed that semiconductor photocatalytic reaction mechanism should exist in the process of aniline degradation with goethite and B-goethite as photocatalyst. -- Abstract: In the present study, goethite and goethite doped with boron (B-goethite) were employed to detect the presence or absence of semiconductor photocatalytic reaction mechanism in the reaction systems. B-goethite was prepared by sol-gel method in presence of boron acid in order to improve its photocatalystic efficiency under the ultraviolet and visible light irradiation. The optical properties of goethite and B-goethite were characterized by ultraviolet and visible absorption spectra and the result indicated that B-goethite has slight red shift in the band gap transition beside their stronger light absorption compared with pristine goethite. Degradation of aniline was investigated in presence of goethite and B-goethite in aqueous solution. It was found that the B-goethite photocatalyst exhibited enhanced ultraviolet and visible light photocatalytic activity in degradation of aniline compared with the pristine goethite. The photocatalytic degradation mechanism of B-goethite was discussed.

  15. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Brittany E. [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Road, Tempe, AZ 85281 (United States)

    2017-08-01

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV; 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.

  16. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    Science.gov (United States)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  17. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  18. Detection Range Estimation of UV Spectral Band Laser Radar

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available Recently, has come into existence an interest in the systems operating in the ultra-violet (UF band of wavelengths, which use other spectral information (coefficients of reflection or radiation in UF range about location objects, than laser systems in the visible, near or average infrared bands. Thus, a point is not only to receive additional (in another spectral range information on location objects. Laser radiation in the UF spectral band of 0.315 – 0.4 microns is safer than laser radiation with the wavelengths of 0.38 – 1.4 microns.The work presents a comparative estimation of the detection systems range of laser radars in the UV and visible spectral bands for the following wavelengths of radiation:- UF band: 0.266 microns (the fourth harmonic of YAG-laser activated by neodymium ions, 0.308 microns (the XeCl-excimer laser, 0.355 microns (the third harmonic of YAG-laser activated by neodymium ions;- visible band: 0.532 microns (the second harmonic of YAG-laser activated by neodymium ions.Results of calculations show that for the horizontal pathway in the terrestrial atmosphere at the selected radiation wavelengths a detection range is in the range of 2510m – 5690 m.The maximum range of detection corresponds to the visible spectral band. A sweep range decreases with transition to the UF band. This is caused by the fact that with transition to the UF band there is a rise of atmosphere attenuation (generally, because of absorption by ozone, this effect being smoothed by reducing background radiation.In the UF band a wavelength of 0.355 microns is the most acceptable. For this wavelength a detection range is about 1,5 times less (in comparison with the visible band of 0.532 microns. However, this is the much more eye-safe wavelength. With transition to the UV band a detection range decreases not that much and can be compensated by changing parameters of transmitting or receiving channels of laser radar.

  19. gamma-induced modification on optical band gap of CR-39 SSNTD

    International Nuclear Information System (INIS)

    Zaki, M.F.

    2010-01-01

    effect of gamma irradiation on optical absorption of nuclear track detectors like CR-39 was studied at different absorbed doses using ultraviolet-visible (UV-VIS)spectroscopy. the existence of the peaks, their shifting and broadening as a result of gamma irradiation has been discussed. the width of the tail of localized states in the band gap (E u )was evaluated using the Urbach edge method. finally the indirect and direct band gap in pristine and gamma irradiated CR-39 have been determined. the values of indirect band gap have been found to be lower than the corresponding values of direct band gap. a decrease in the optical energy gap with increasing the gamma absorbed dose can be discussed on the basis of gamma-irradiation-induced defects in the CR-39. the correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39.

  20. Noise exposure in marching bands

    Science.gov (United States)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  1. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  2. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  3. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  4. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  5. Mutations induced by ultraviolet light

    International Nuclear Information System (INIS)

    Pfeifer, Gerd P.; You, Young-Hyun; Besaratinia, Ahmad

    2005-01-01

    The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA

  6. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-01

    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  7. Broad ion beam serial section tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, B., E-mail: b.winiarski@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Materials Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Gholinia, A. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Mingard, K.; Gee, M. [Materials Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thompson, G.E.; Withers, P.J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-01-15

    Here we examine the potential of serial Broad Ion Beam (BIB) Ar{sup +} ion polishing as an advanced serial section tomography (SST) technique for destructive 3D material characterisation for collecting data from volumes with lateral dimensions significantly greater than 100 µm and potentially over millimetre sized areas. Further, the associated low level of damage introduced makes BIB milling very well suited to 3D EBSD acquisition with very high indexing rates. Block face serial sectioning data registration schemes usually assume that the data comprises a series of parallel, planar slices. We quantify the variations in slice thickness and parallelity which can arise when using BIB systems comparing Gatan PECS and Ilion BIB systems for large volume serial sectioning and 3D-EBSD data acquisition. As a test case we obtain 3D morphologies and grain orientations for both phases of a WC-11%wt. Co hardmetal. In our case we have carried out the data acquisition through the manual transfer of the sample between SEM and BIB which is a very slow process (1–2 slice per day), however forthcoming automated procedures will markedly speed up the process. We show that irrespective of the sectioning method raw large area 2D-EBSD maps are affected by distortions and artefacts which affect 3D-EBSD such that quantitative analyses and visualisation can give misleading and erroneous results. Addressing and correcting these issues will offer real benefits when large area (millimetre sized) automated serial section BIBS is developed. - Highlights: • In this work we examine how microstructures can be reconstructed in three-dimensions (3D) by serial argon broad ion beam (BIB) milling, enabling much larger volumes (>250×250×100µm{sup 3}) to be acquired than by serial section focused ion beam-scanning electron microscopy (FIB-SEM). • The associated low level of damage introduced makes BIB milling very well suited to 3D-EBSD acquisition with very high indexing rates. • We explore

  8. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    International Nuclear Information System (INIS)

    Yao Risheng; Li Manman; Deng Shengsong; Hu Huajia; Wang Huai; Li Fenghe

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  9. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  10. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  11. Development of high resolution vacuum ultraviolet beam line at Indus-1 synchrotron source

    International Nuclear Information System (INIS)

    Shukla, R.P.; Das, N.C.; Udupa, D.V.; Saraswathy, P.; Sunanda, K.; Jha, S.N.; Shastri, Aparna; Singh, Paramjeet; Mallick, Manika; Mishra, A.P.; Sahoo, N.K.; Sinha, A.K.; Bhatt, S.; Sahni, V.C.

    2005-07-01

    High resolution vacuum ultraviolet beamline at Indus-1 450 MeV synchrotron source has been developed for carrying out absorption spectral studies of atoms and molecules. The beamline consists of three major parts i.e. a focusing optical system, an absorption cell and a high resolution 6.65 m vacuum ultraviolet spectrometer in Eagle mount. The wavelength range of the spectrometer is from 700 A to 2000 A and the resolution of the spectrometer is 0.01 A. Using the synchrotron source Indus-1, the absorption spectra of oxygen, ammonia and carbon disulphide have been recorded at the wavelength band of 1750 A, 1881 A and 3100 A respectively. Details of different aspects of design and development of the high resolution VUV beamline are described in this report. (author)

  12. Ultraviolet Sensing by Al-doped ZnO Thin Films

    International Nuclear Information System (INIS)

    Rashid, A.R.A.; Menon, P.S.; Shaari, S.

    2011-01-01

    We report the fabrication and characterization of an ultraviolet photoconductive sensing by using Al-doped ZnO films. Undoped ZnO, 1 at.% and 2 at% of Al were prepared on quartz glass by sol gel method with annealing temperature of 500 degree Celsius for 1 hour. The presence of spherical shaped nanoparticles were detected for undoped ZnO by using FESEM. The absorption edge shifted to a lower wavelength by doping with Al and excitonic peak can be observed. The band gap values increased by adding Al. I-V curves reveal an improvement in electrical properties when the samples are illuminated by ultraviolet (UV) light with a wavelength of 365 nm. At 1 at.% of Al, the film have a larger increment in photocurrent response when illuminated with UV light compared to undoped ZnO and 2 at.% Al. The thin films have a longer recovery time than response time. (author)

  13. Photoelectron spectroscopy an introduction to ultraviolet photoelectron spectroscopy in the gas phase

    CERN Document Server

    Eland, J H D

    2013-01-01

    Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectronspectroscopy in the Gas Phase, Second Edition Photoelectron Spectroscopy: An Introduction to Ultraviolet PhotoelectronSpectroscopy in the Gas Phase, Second Edition aims to give practical approach on the subject of photoelectron spectroscopy, as well as provide knowledge on the interpretation of the photoelectron spectrum. The book covers topics such as the principles and literature of photoelectron microscopy; the main features and analysis of photoelectron spectra; ionization techniques; and energies from the photoelectron spectra. Also covered in the book are topics suc as photoelectron band structure and the applications of photoelectron spectroscopy in chemistry. The text is recommended for students and practitioners of chemistry who would like to be familiarized with the concepts of photoelectron spectroscopy and its importance in the field.

  14. Spectrophotometry of six broad absorption line QSOs

    Science.gov (United States)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  15. Study on broad beam heavy ion CT

    International Nuclear Information System (INIS)

    Ohno, Yumiko; Kohno, Toshiyuki; Sasaki, Hitomi; Nanbu, S.; Kanai, Tatsuaki

    2003-01-01

    To achieve the heavy ion radiotherapy more precisely, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. From a heavy ion CT image, we can directly obtain the 2-D distribution of the electron density in a sample. For this purpose, we have developed a broad beam heavy ion CT system. The electron density was obtained using some kinds of solutions targets. Also the dependence of the spatial resolution on the target size and the kinds of beams was estimated in this work using cylinders targets of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. (author)

  16. Broad Ligament Haematoma Following Normal Vaginal Delivery.

    Science.gov (United States)

    Ibrar, Faiza; Awan, Azra Saeed; Fatima, Touseef; Tabassum, Hina

    2017-01-01

    A 37-year-old, patient presented in emergency with history of normal vaginal delivery followed by development of abdominal distention, vomiting, constipation for last 3 days. She was para 4 and had normal vaginal delivery by traditional birth attendant at peripheral hospital 3 days back. Imaging study revealed a heterogeneous complex mass, ascites, pleural effusion, air fluid levels with dilatation gut loops. Based upon pelvic examination by senior gynaecologist in combination with ultrasound; a clinical diagnosis of broad ligament haematoma was made. However, vomiting and abdominal distention raised suspicion of intestinal obstruction. Due to worsening abdominal distention exploratory laparotomy was carried out. It was pseudo colonic obstruction and caecostomy was done. Timely intervention by multidisciplinary approach saved patient life with minimal morbidity.

  17. A broad view of model validation

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1989-10-01

    The safety assessment of a nuclear waste repository requires the use of models. Such models need to be validated to ensure, as much as possible, that they are a good representation of the actual processes occurring in the real system. In this paper we attempt to take a broad view by reviewing step by step the modeling process and bringing out the need to validating every step of this process. This model validation includes not only comparison of modeling results with data from selected experiments, but also evaluation of procedures for the construction of conceptual models and calculational models as well as methodologies for studying data and parameter correlation. The need for advancing basic scientific knowledge in related fields, for multiple assessment groups, and for presenting our modeling efforts in open literature to public scrutiny is also emphasized. 16 refs

  18. The ultraviolet telescope on the Astron satellite

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1987-01-01

    On 23 March 1983 in the USSR, the Astron astrophysical satellite, with the largest ultraviolet telescope (the UVT) in the world (main mirror diameter 80 cm) and a set of X-ray instruments on board was placed in a high-apogee orbit. The design of the ultraviolet telescope and the results of some of the observations carried out with it are described here. The X-ray instruments are discussed in a separate article. The ultraviolet telescope on the Astron astrophysical satellite is a result of the joint efforts of scientists and engineers at the Crimean Astrophysical Observatory (Academy of Sciences of the USSR), the Byurakan Astrophysical Observatory (Academy of Sciences of the Armenian USSR), and several industrial enterprises in our country. The Laboratoire d'Astronomie Spatiale (CNRS, Marseille, France) played a large role in building the spectrometer for the UVT

  19. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    International Nuclear Information System (INIS)

    Pettini, M.; Boksenberg, A.

    1985-01-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references

  20. Modelling and Display of the Ultraviolet Sky

    Science.gov (United States)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  1. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang; Deng, Rui; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Wang, Qingxiao; Han, Yu; Wu, Tao; Liu, Lei

    2014-01-01

    at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014

  2. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  3. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 1

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We present new broad-band optical and near-infrared (0.44-2.2 μm) flux density and polarization measurements of a sample of 71 Seyfert galaxies and three broad-line radio galaxies. We confirm the results of earlier studies which show that the polarization of Seyferts is generally low in the V-band and at longer wavelengths, but in the B-band somewhat higher polarizations are commonly found. After correction has been made for the effects of stellar dilution, we find that Seyfert 2 nuclei are probably more highly polarized than Seyfert 1's. The small sample of Seyfert 2's selected using the 'warm' IRAS colour criterion tend to be more highly polarised than those selected by optical techniques. (author)

  4. Molecular geometry in the ultraviolet absorption spectra

    International Nuclear Information System (INIS)

    Albuquerque, S.F. de; Monteiro, L.S.; Adamis, L.M.B.; Baltar, M.C.P.; Silva, R.M. da

    1977-01-01

    The ultraviolet absorption spectra may be sensibly affected by steric effects. These effects can cause a lot of difficulties and unexpected changes in spectrum. The most general source of such difficulties is steric inhibition of resonance. In addition to this, ultraviolet epectra may be markedly changed by steric factors which change the positions of dipoles in the molecule with respect to each other and by the interaction of nonconjugated chromophores suitably located in space. We have studied in detail each of these effects presenting a lot of usual and importants examples in Organic Chemistry. Others relevants subjects were not considerated in this present work [pt

  5. Disinfection of drinking water by ultraviolet light

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It is no longer mandatory that a given residue of chlorine is present in drinking water and this has led to interest in the use of ultraviolet radiation for disinfection of water in large public waterworks. After a brief discussion of the effect of ultraviolet radiation related to wavelength, the most usual type of irradiation equipment is briefly described. Practioal considerations regarding the installation, such as attenuation of the radiation due to water quality and deposits are presented. The requirements as to dose and residence time are also discussed and finally it is pointed out that hydraulic imperfections can reduce the effectiveness drastically. (JIW)Ψ

  6. Nanoscale freestanding gratings for ultraviolet blocking filters

    Energy Technology Data Exchange (ETDEWEB)

    van Beek, J.T.; Fleming, R.C.; Hindle, P.S.; Prentiss, J.D.; Schattenburg, M.L. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Ritzau, S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-11-01

    Ultraviolet (UV) blocking filters are needed for atomic flux imaging in environments where high levels of ultraviolet radiation are present. Freestanding gratings are a promising candidate for UV filtering. They have a high aspect ratio ({approximately}13), narrow ({approximately}40 nm) slots, and effectively block UV radiation. The grating fabrication process makes use of several etching, electroplating, and lithographic steps and includes an optional step to plug pinholes induced by particles during processing. Gratings were successfully manufactured and tested. Measured UV transmissions of {approximately}10{sup {minus}5} and particle transmissions of {approximately}10{percent} are in agreement with theoretical predictions. {copyright} {ital 1998 American Vacuum Society.}

  7. Quartz glass behavior at ultraviolet spectrum region

    International Nuclear Information System (INIS)

    Braga, A.F.B.; Barbosa, L.C.; Evora, C.A.P.D.

    1990-01-01

    Melted quartz ingots were produced from raw materials of different sources. Behavior studies of these three different quartz glass were made at the eletromagnetic spectrum ultraviolet region. The atomic absorption spectroscopy was used as an analysis technique of the alkaline, transition and aluminum metal traces. It was found that the alkaline, transition and aluminum metals impurities present a great influence on the melted quartz spectral behavior at the ultraviolet region. It was stated that measurments at this spectrum region constitute an important characterization technique to natural quartz as well as melted quartz. (author) [pt

  8. ESA innovation rescues Ultraviolet Observatory

    Science.gov (United States)

    1995-10-01

    Astrophysicist Freeman J. Dyson from the Institute for Advanced Studies in Princeton characterizes IUE as "A little half-meter mirror sitting in the sky, unnoticed by the public, pouring out results". By use of the IUE satellite, astronomers obtain access to the ultraviolet radiation of celestial bodies in unique ways not available by any other means, neither from the ground nor by any other spacecraft currently in orbit. IUE serves a wide community of astronomers all over Europe, the United States and many other parts of the world. It allows the acquisition of critical data for fundamental studies of comets and their evaporation when they approach the Sun, of the mechanisms driving the stellar winds which make many stars lose a significant fraction of their mass (before they die slowly as White Dwarfs or in sudden Supernova explosions), as well as in the search to understand the ways in which black holes possibly power the violent nuclei of Active galaxies. One year ago the project was threatened with termination and serious concern was expressed by astronomers about the potential loss of IUE's capabilities, as a result of NASA not continuing to operate the spacecraft. Under the leadership of ESA, the three Agencies involved in the operations of IUE (ESA, NASA and the United Kingdom's Particle Physics and Astronomy Research Council, PPARC), reviewed the operations agreements of the Project. A minor investment allowing the implementation of modern management and engineering techniques as well as a complete revision of the communication infrastructure of the project and continuous improvements in efficiency in the ESA management, also taking advantage of today's technologies, both in computing and communications, have made it possible to continue IUE operations within the financial means available, with ESA taking up most of NASA's share in the operations. According to Dr. Willem Wamsteker, ESA's Dutch IUE Project Scientist, "it was a extremely interesting

  9. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    Science.gov (United States)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  10. Wide band ENDOR spectrometer

    International Nuclear Information System (INIS)

    Mendonca Filho, C.

    1973-01-01

    The construction of an ENDOR spectrometer operating from 0,5 to 75 MHz within a single band, with ore Klystron and homodine detection, and no fundamental changes on the electron spin resonance spectrometer was described. The ENDOR signal can be detected both by amplitude modulation of the frequency field, or direct detection of the ESR output, which is taken to a signal analyser. The signal-to-noise ratio is raised by averaging rather than filtering avoiding the use of long time constants, providing natural line widths. The experimental apparatus and the spectra obtained are described. A discussion, relating the ENDOR line amplitudes with the experimental conditions is done and ENDOR mechanism, in which there is a relevant presence of cross relaxation is proposed

  11. Electronic band structure

    International Nuclear Information System (INIS)

    Grosso, G.

    1986-01-01

    The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work

  12. Estimation of hourly ultraviolet solar irradiance in the semi-arid northeast region of Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ricardo C. de; Tiba, Chigueru [Dept. de Energia Nuclear da Univ. Federal de Pernambuco, Recife, Pernambuco (Brazil)

    2008-07-01

    Two computational codes, SPCTRAL2 and SMARTS2, were used for estimating ultraviolet solar irradiance in a locality of the semi-arid region of the Northeast of Brazil. The softwares presented simplicity of use, precision and relative ease in obtaining the input variables: zenith angle, atmospheric pressure in relation to sea level, relative humidity of the air, amount of precipitable water, total ozone and the aerosol optic depths (AOD). All these variables are measured in conventional meteorological stations, except for the aerosol optic depth. The AOD was measured with an apparatus that was constructed with a narrow band LED sensor, centered in 555nm which measures the monochromatic radiation transmission through the terrestrial atmosphere, which can be described by Beer's law. The measurements for obtaining the AOD were carried out during the months of December, 2006 and January, 2007 for Pesqueira-PE (Longitude -36.77 and Latitude 8.4 ) semi-arid region of Pernambuco, at intervals of 10 and 10 minutes, simultaneously. The ultraviolet solar irradiation was measured with a TURV (Total Ultraviolet Radiometer) Eppley Pyranometer on a minute scale. The computational simulations with SPCTRAL2 and SMARTS2 were made considering the following cases: (a) obtention of daily AOD, or be it, coming from the linear extrapolation of all the data along the day (b) obtention of hourly AOD, or be it the linearization by parts (piecewise). In the first case, the results of the simulations of ultraviolet solar irradiance and ultraviolet radiation index show an error of 4% and 13% for solar midday, and 78% at end of afternoon, when compared with the values measured with the TURV pyranometer. These results were significantly improved when using the AOD obtained on hourly bases: an error of 6.7 % for solar midday, a maximum error of 10% between 11 and 13 h, a maximum error of 20% between 10 and 14h and finally a maximum error of 30% between 9 and 15h. (orig.)

  13. Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure

    International Nuclear Information System (INIS)

    Wang, Zhiyuan; Wang, Xiaoxin; Liu, Jifeng

    2014-01-01

    Solar-blind ultraviolet (UV) detection refers to photon detection specifically in the wavelength range of 200 nm–320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. The most commonly used solid state devices for this application are wide band gap (WBG) semiconductor photodetectors (Eg > 3.5 eV). However, WBG semiconductors are difficult to grow and integrate with Si readout integrated circuits (ROICs). In this paper, we design a nanophotonic metal-oxide-semiconductor structure on Si for solar-blind UV detectors. Instead of using semiconductors as the active absorber, we use Sn nano-grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between the metal and the n-type Si region upon UV excitation. Moreover, the transported hot electron has an excess kinetic energy >3 eV, large enough to induce impact ionization and generate another free electron in the conduction band of n-Si. This process doubles the quantum efficiency. On the other hand, the large metal/oxide interfacial energy barrier (>3.5 eV) also enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, ∼75% UV absorption and hot electron excitation can be achieved within the mean free path of ∼20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. The simple geometry of the Sn nano-gratings and the MOS structure make it easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices. (paper)

  14. Crx broadly modulates the pineal transcriptome

    DEFF Research Database (Denmark)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of micro......Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use......-type animals; only eight of these were also day/night expressed in the Crx-/- pineal gland. However, in the Crx-/- pineal gland 41 genes exhibited differential night/day expression that was not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also...... influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 up-regulation....

  15. Solar ultraviolet radiation in a changing climate

    Science.gov (United States)

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  16. Habitat impact on ultraviolet reflectance in moths

    Czech Academy of Sciences Publication Activity Database

    Zapletalová, Lenka; Zapletal, Michal; Konvička, Martin

    2016-01-01

    Roč. 45, č. 5 (2016), s. 1300-1305 ISSN 0046-225X R&D Projects: GA ČR(CZ) GA14-33733S Institutional support: RVO:60077344 Keywords : Lepidoptera * ultraviolet reflectance * mimicry Subject RIV: EH - Ecology, Behaviour Impact factor: 1.601, year: 2016

  17. Characterization of ethanol concentrations at ultraviolet wavelength ...

    African Journals Online (AJOL)

    This paper presents the measurement of optical absorption spectrum for different concentrations of ethanol at ultraviolet wavelength. Ethanol absorption spectrum was measured using portable spectroscopy setup from Avantes. It consists of Balanced Deuterium Halogen light source and spectrometer. The light source can ...

  18. Ultraviolet spectra of Mg in liquid helium

    International Nuclear Information System (INIS)

    Moriwaki, Y.; Morita, N.

    1999-01-01

    Emission and absorption spectra of Mg atoms implanted in liquid helium have been observed in the ultraviolet region. We have presented a model of exciplex formation of Mg-He 10 and found that this model is more suitable for understanding the dynamics in the 3s3p 1 P→3s 21 S transition than the bubble model. (orig.)

  19. Combined ultraviolet studies of astronomical sources

    Science.gov (United States)

    Baliunas, S. L.; Dupree, A. K.; Elvis, M.; Huchra, J. P.; Kenyon, S.; Raymond, J. C.

    1986-01-01

    Topics addressed include: Cygnus Loop; P Cygni profiles in dwarf novae; YY Gem; nova shells; HZ Herculis; activity cycles in cluster giants; Alpha Ori; metal deficient giant stars; ultraviolet spectra of symbiotic stars detected by the Very Large Array; time variability in symbiotic stars; blue galaxies; and quasistellar objects with X-ray spectra.

  20. The impact of ultraviolet radiation on timber

    International Nuclear Information System (INIS)

    Dawson, B.

    1993-01-01

    Photochemical degradation of timber, the outcome of exposure of timber to ultraviolet radiation, is a light induced chemical and physical decay. Timber is a collection of dead wood cells. Impacts of radiation on the growing tree are therefore outside the scope of this paper, which is primarily concerned with timber as a material. (author). 5 refs. 2 figs

  1. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  2. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878... tanning. (a) Identification. An ultraviolet lamp for tanning is a device that is a lamp (including a fixture) intended to provide ultraviolet radiation to tan the skin. See § 1040.20 of this chapter. (b...

  3. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  4. Final Report: Spectral Analysis of L-shell Data in the Extreme Ultraviolet from Tokamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lepson, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jernigan, J. Garrett [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-05

    We performed detailed analyses of extreme ultraviolet spectra taken by Lawrence Livermore National Laboratory on the National Spherical Torus Experiment at Princeton Plasma Physics Laboratory and on the Alcator CKmod tokamak at the M.I.T. Plasma Science and Fusion Center. We focused on the emission of iron, carbon, and other elements in several spectral band pass regions covered by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We documented emission lines of carbon not found in currently used solar databases and demonstrated that this emission was due to charge exchange.

  5. Development of a free-electron laser user facility for the extreme ultraviolet

    International Nuclear Information System (INIS)

    Newnam, B.E.

    1987-01-01

    A free-electron laser user facility for scientific experimentation in the extreme ultraviolet is being developed at Los Alamos. A series of laser oscillators and amplifiers, driven by a single, rf linear accelerator, will generate broadly tunable, picosecond-pulse, coherent radiation from 1 nm to 400 nm. The design and output parameters of this facility are described, comparison with synchrotron radiation sources is made, and recent progress in developing the three primary components (electron beam, undulator, and resonator mirrors) is reviewed, and various categories of scientific applications are indicated

  6. Spectroscopic observations in the visible and near ultraviolet of a laser-produced plasma

    International Nuclear Information System (INIS)

    Zago, A.; Tondello, G.

    1985-01-01

    The emission from a plasma produced by laser focusing on plane targets of the elements Be, B, C and N has been observed in the visible and near ultraviolet. The spectra have been recorded mainly with an optical multichannel analyser allowing great sensitivity of detection. Both continua and line emission have been analysed in terms of plasma properties. Very broad lines of the type Δn = 1 appear prominent in the spectrum and, through their Stark broadening, the electron density of the plasma has been derived

  7. Spectroscopic observations in the visible and near ultraviolet of a laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A.; Tondello, G.

    1985-01-11

    The emission from a plasma produced by laser focusing on plane targets of the elements Be, B, C and N has been observed in the visible and near ultraviolet. The spectra have been recorded mainly with an optical multichannel analyser allowing great sensitivity of detection. Both continua and line emission have been analysed in terms of plasma properties. Very broad lines of the type ..delta..n = 1 appear prominent in the spectrum and, through their Stark broadening, the electron density of the plasma has been derived.

  8. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  9. Study of Ultraviolet Emission Spectra in ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Y. M. Lu

    2013-01-01

    Full Text Available Photoluminescence (PL of ZnO thin films prepared on c-Al2O3 substrates by pulsed laser deposition (PLD are investigated. For all samples, roomtemperature (RT spectra show a strong band-edge ultraviolet (UV emission with a pronounced low-energy band tail. The origin of this UV emission is analyzed by the temperature dependence of PL spectra. The result shows that the UV emission at RT contains different recombination processes. At low temperature donor-bound exciton (D0X emission plays a major role in PL spectra, while the free exciton transition (FX gradually dominates the spectrum with increasing temperatures. It notes that at low temperature an emission band (FA appears in low energy side of D0X and FX and can survive up to RT. Further confirmation shows that the origin of the band FA can be attributed to the transitions of conduction band electrons to acceptors (e, A0, in which the acceptor binding energy is estimated to be approximately 121 meV. It is concluded that at room temperature UV emission originates from the corporate contributions of the free exciton and free electrons-to-acceptor transitions.

  10. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    Science.gov (United States)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  11. Physical processes and sedimentation on a broad, shallow bank

    Science.gov (United States)

    Murray, S. P.; Hsu, S. A.; Roberts, H. H.; Owens, E. H.; Crout, R. L.

    1982-02-01

    An integrated study of the meteorology, physical oceanography, sedimentationand coastal morphology on the broad, shallow Miskito Bank off the eastern coast of Nicaragua has uncovered systematic interrelationships between driving forces. Bank geometry and sedimentologic environments on the Bank. Extremely high rainfall results from an interaction between meteorological processes over the Bank and topographic effects along the coast. Both acoustic and radio sounding of the lower atmosphere have documented the feedback between convective plumes, inversion layers and the incessant rainfall, which brings three times more freshwater and 15 times more sediment down to a unit length of coast than on the U.S. Atlantic shore. The resultant brackish, turbid coastal water moves as a highly organized band of water parallel to the coast. Seaward of this coastal boundary layer, offshore water from the Caribbean Current rides up on the Bank and provides an environment ideal for carbonate production. A zone of fine-grained terrigenous sediment underlying the coastal boundary current merges abruptly into a smooth carbonate plain covering most of the surface of the Bank. These central Bank carbonates are composed primarily of the disintegration products of prolific calcareous green algae. A trend of high relief, luxuriant coral reef growth is aligned along the steep dropoff at the Bank edge, a zone of observed upwelling of cooler and saltier basin water. A threefold southerly increase in wave energy at the shoreline due to the decreasing width of the shallow shelf results in wave-dominated coastal morphologies in the south compared to fluvial domination in the north and a systematic change from straight, linear bars and beaches in the north to rhythmic topography in the south.

  12. Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: Origin and temperature dependence of the blue and orange emissions

    OpenAIRE

    Chao, Y; Houlton, A; Horrocks, BR; Hunt, MRC; Poolton, NRJ; Yang, J; Šiller, L

    2006-01-01

    The origin and stability of luminescence are critical issues for Si nanocrystals which are intended for use as biological probes. The optical luminescence of alkyl-monolayer-passivated silicon nanocrystals was studied under excitation with vacuum ultraviolet photons (5.1–23 eV). Blue and orange emission bands were observed simultaneously, but the blue band only appeared at low temperatures (8.7 eV). At 8 K, the peak wavelengths of the emission bands were 430±2 nm (blue) and 600±2 nm (orange)....

  13. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofisica de Canarias, Via Lactea S/N, La Laguna E-38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Munoz, J. A. [Departamento de Astronomia y Astrofisica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V. [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avda. Gran Bretana 1111, Valparaiso (Chile)

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  14. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  15. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  16. Validation, automatic generation and use of broad phonetic transcriptions

    NARCIS (Netherlands)

    Bael, Cristophe Patrick Jan Van

    2007-01-01

    Broad phonetic transcriptions represent the pronunciation of words as strings of characters from specifically designed symbol sets. In everyday life, broad phonetic transcriptions are often used as aids to pronounce (foreign) words. In addition, broad phonetic transcriptions are often used for

  17. Effect of ultraviolet exposure on mitochondrial respiratory system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K [Kurume Univ., Fukuoka (Japan). School of Medicine

    1975-09-01

    To find the photodynamic effect of ultraviolet light on the mitochondrial respiratory chain, mitochondria were obtained from rat livers, and the suspension was exposed to an extensive ultraviolet light. The oxygen consumption was measured polarographically with a Clark oxygen electrode. The effect of ultraviolet exposure on the five states of respiratory control (Chance and Williams), the P/O ratio, and the respiratory control index in mitochondria was discussed. The ultraviolet light with a dose of 9.6 x 10/sup 6/ erg/cm/sup 2/ caused the oxidative phosphorylation in mitochondria to uncouple. The 2nd phosphorylation site of the respiratory chain was susceptible to ultraviolet exposure. The stimulation of latent ATPase activity in mitochondria following exposure was observed by increasing exposure of ultraviolet light. However, DNP-stimulated ATPase was found to be stable in activity. The uncoupling of the respiratory chain by ultraviolet exposure was not detected if the mitochondrial suspension was preincubated with bovine serum albumin before exposure. The changes in light absorption of the mitochondrial suspension were followed at 520 nm after exposure. A close correlation was found between the ultraviolet exposure and swelling in mitochondria. But, the reversing contraction was observed by adding ATP to the swelled mitochondria. The peroxide compound was formed in mitochondria irradiated with ultraviolet light. The amount of compounds formed was dependent on the radiant energy of ultraviolet light. The possible mechanisms involved in the photodynamic effect of ultraviolet light to the mitochondrial respiration system were discussed.

  18. Energy band dispersion in photoemission spectra of argon clusters

    International Nuclear Information System (INIS)

    Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.

    2011-01-01

    Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.

  19. Report from the banding lab

    Science.gov (United States)

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  20. Spectra of γ rays feeding superdeformed bands

    International Nuclear Information System (INIS)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-01-01

    The spectrum of γrays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding γrays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by ∼30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the γ cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed

  1. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  2. Wavelength characteristics of chirped quantum dot superluminescent diodes for broad spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyung-Chul; Park, Hong-Lee [Yonsei University, Seoul (Korea, Republic of); You, Young-Chae [Sungkyunkwan University, Suwon (Korea, Republic of); Han, Il-Ki [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2006-04-15

    A chirped InAs quantum dot superluminescent diode both with and without a In{sub 0.15}Ga{sub 0.85}As cap layer was fabricated for a broad-band spectrum. This study shows that the cap layer reduces strain and operates as a carrier capturer and that carriers excited by lattice heating also affect the radiative recombination in the quantum dots (QDs) as well as the cap layer through the characteristic temperature (T{sub 0}). In addition, by surveying peaks of each QD layers, the characteristics of carriers in QDs, such as band-filling effect and the thermal effect, were analyzed, in QDs, and a more effective method for creating a wider spectrum is proposed.

  3. Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.

    Science.gov (United States)

    Tousey, R; Limansky, I

    1972-05-01

    A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.

  4. Thermoluminescence of KI:Eu2+ Stimulated by Ultraviolet Irradiation at Different Temperatures

    International Nuclear Information System (INIS)

    Aguirre de Carcer, I.; Jaque, F.; Townsend, P.D.

    1999-01-01

    The thermoluminescence (TL) of KI:Eu 2+ after ultraviolet (254 nm) irradiation at different temperatures from -40 deg. C to +40 deg. C has been studied. Two main glow peaks and some minor features have been identified on the thermoluminescence glow curves. Irradiating at low temperature gives a strong peak at γ5 deg. C and a less pronounced one at 230 deg. C. The TL glow peak emission spectra were analysed as consisting of the addition of several Gaussian shaped emission bands. The position of the Gaussian peaks, and their widths, are coincident with divalent europium emission at different sites of the KI:Eu 2+ system. A new emission band centred at 3.05 eV, 0.16 eV FWHM for Eu 2+ has been observed from the TL emission spectra. The changes in the spectral distribution of the TL emission with irradiation temperature are discussed. (author)

  5. Characterization of ten microsatellite loci in the Broad-tailed hummingbird (Selasphorus platycercus)

    Science.gov (United States)

    Oyler-McCance, Sara J.; Fike, Jennifer A.; Talley-Farnham, Tiffany; Engelman, Tena; Engelman, Fred

    2011-01-01

    The Broad-tailed Hummingbird (Selaphorus platycercus) breeds at higher elevations in the central and southern Rockies, eastern California, and Mexico and has been studied for 8 years in Rocky Mountain National Park, Colorado. Questions regarding the relatedness of Broad-tailed Hummingbirds banded together and then recaptured in close time proximity in later years led us to isolate and develop primers for 10 polymorphic microsatellite loci. In a screen of 25 individuals from a population in Rocky Mountain National Park, the 10 loci were found to have levels of variability ranging from two to 16 alleles. No loci were found to depart from linkage disequilibrium, although two loci revealed significant departures from Hardy–Weinberg equilibrium. These 10 microsatellite loci will be applicable for population genetic analyses, investigation of mating systems and relatedness, and may help gain insight into the migration timing and routes for this species.

  6. Dual-band infrared camera

    Science.gov (United States)

    Vogel, H.; Schlemmer, H.

    2005-10-01

    Every year, numerous accidents happen on European roads due to bad visibility (fog, night, heavy rain). Similarly, the dramatic aviation accidents of year 2001 in Milan and Zurich have reminded us that aviation safety is equally affected by reduced visibility. A dual-band thermal imager was developed in order to raise human situation awareness under conditions of reduced visibility especially in the automotive and aeronautical context but also for all transportation or surveillance tasks. The chosen wavelength bands are the Short Wave Infrared SWIR and the Long Wave Infrared LWIR band which are less obscured by reduced visibility conditions than the visible band. Furthermore, our field tests clearly show that the two different spectral bands very often contain complementary information. Pyramidal fusion is used to integrate complementary and redundant features of the multi-spectral images into a fused image which can be displayed on a monitor to provide more and better information for the driver or pilot.

  7. MoS2-InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity.

    Science.gov (United States)

    Yang, Jaehyun; Kwak, Hyena; Lee, Youngbin; Kang, Yu-Seon; Cho, Mann-Ho; Cho, Jeong Ho; Kim, Yong-Hoon; Jeong, Seong-Jun; Park, Seongjun; Lee, Hoo-Jeong; Kim, Hyoungsub

    2016-04-06

    We introduce an amorphous indium-gallium-zinc-oxide (a-IGZO) heterostructure phototransistor consisting of solution-based synthetic molybdenum disulfide (few-layered MoS2, with a band gap of ∼1.7 eV) and sputter-deposited a-IGZO (with a band gap of ∼3.0 eV) films as a novel sensing element with a broad spectral responsivity. The MoS2 and a-IGZO films serve as a visible light-absorbing layer and a high mobility channel layer, respectively. Spectroscopic measurements reveal that appropriate band alignment at the heterojunction provides effective transfer of the visible light-induced electrons generated in the few-layered MoS2 film to the underlying a-IGZO channel layer with a high carrier mobility. The photoresponse characteristics of the a-IGZO transistor are extended to cover most of the visible range by forming a heterojunction phototransistor that harnesses a visible light responding MoS2 film with a small band gap prepared through a large-area synthetic route. The MoS2-IGZO heterojunction phototransistors exhibit a photoresponsivity of approximately 1.7 A/W at a wavelength of 520 nm (an optical power of 1 μW) with excellent time-dependent photoresponse dynamics.

  8. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  9. An Ultraviolet Optical Wireless Sensor Network in Multi-scattering Channels

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-10-01

    Networks of wirelessly communicating sensors are a promising technology for future data-gathering systems in both civilian and military applications including medical and environmental monitoring and surveillance, home security and industry. Optical wireless communication is a potential solution for the links, particularly thanks to the small and lightweight hardware and low power consumption. A noteworthy feature of optical wireless communication at ultraviolet wavelengths is that scattering of radiation by atmospheric particles is significant, so that the backscattering of light by these particles can function as a vehicle of communication as if numerous tiny reflecting mirrors were placed in the atmosphere. Also, almost no solar radiation penetrates the atmosphere in this spectral band, which is hence called the solar blind ultraviolet spectrum, so that very large field-of-view receivers can be used. In this paper we present a model of a non-line-of-sight (NLOS) optical wireless sensor network operating in the solar blind ultraviolet spectrum. The system feasibility is evaluated and found to facilitate miniature operational sensor networks. The problem of multi-access interference is addressed and the possibility of overcoming it using WDM diversity methods is investigated.

  10. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang

    2014-03-27

    We report the observation of ultraviolet photoluminescence and electroluminescence in indium-doped SnO2 thin films with modified "forbidden" bandgap. With increasing indium concentration in SnO 2, dominant visible light emission evolves into the ultraviolet regime in photoluminescence. Hybrid functional first-principles calculations demonstrate that the complex of indium dopant and oxygen vacancy breaks "forbidden" band gap to form allowed transition states. Furthermore, undoped and 10% indium-doped SnO2 layers are synthesized on p-type GaN substrates to obtain SnO2-based heterojunction light-emitting diodes. A dominant visible emission band is observed in the undoped SnO 2-based heterojunction, whereas strong near-ultraviolet emission peak at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014 American Chemical Society.

  11. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Jones, Nykola C., E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Zhang, Teng [Department of Physics and Astronomy, University of Uppsala, Uppsala (Sweden); and others

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  12. Broad Frequency LTCC Vertical Interconnect Transition for Multichip Modules and System on Package Applications

    Science.gov (United States)

    Decrossas, Emmanuel; Glover, Michael D.; Porter, Kaoru; Cannon, Tom; Mantooth, H. Alan; Hamilton, M. C.

    2013-01-01

    Various stripline structures and flip chip interconnect designs for high-speed digital communication systems implemented in low temperature co-fired ceramic (LTCC) substrates are studied in this paper. Specifically, two different transition designs from edge launch 2.4 millimeter connectors to stripline transmission lines embedded in LTCC are discussed. After characterizing the DuPont (sup trademark) 9K7 green tape, different designs are proposed to improve signal integrity for high-speed digital data. The full-wave simulations and experimental data validate the presented designs over a broad frequency band from Direct Current to 50 gigahertz and beyond.

  13. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  14. Contact lens disinfection by ultraviolet light

    International Nuclear Information System (INIS)

    Dolman, P.J.; Dobrogowski, M.J.

    1989-01-01

    A 253.7-nm ultraviolet light with an intensity of 1,100 microW/cm2 was tested for its germicidal activity against contact lenses and storage solutions contaminated with various corneal pathogens. The exposure time necessary to reduce a concentration of organisms from 10(6)/ml to less than 10/ml was 30 seconds for Staphylococcus aureus, 60 seconds for Pseudomonas aeruginosa, and 84 seconds for Candida albicans. The time necessary to sterilize a suspension of 10(4)/ml Acanthamoeba polyphaga was less than three minutes with this technique. Four brands of soft contact lenses were exposed to ultraviolet light for over eight hours without changing their appearance, comfort, or refraction

  15. Effective polycrystalline sensor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    S.Yu. Pavelets

    2017-10-01

    Full Text Available Deposition of special thin layers with high and low resistance in space charge region of surface barrier photoconverters based on the p-Cu1.8S/n-CdS structure leads to a sufficient increase in photosensitivity and decrease in dark tunneling-recombination current. Highly efficient and stable polycrystalline photoconverters of ultraviolet radiation based on polycrystalline CdS have been obtained. Electrical and photoelectric properties have been investigated, and the main operational parameters of ultraviolet sensors have been adduced. The reasons for high stability of the parameters inherent to the p-Cu1.8S/n-CdS sensors are as follows: the absence of impurity components additionally doped to the barrier structure and stability of the photocurrent photoemission component.

  16. Subdwarf ultraviolet excesses and metal abundances

    International Nuclear Information System (INIS)

    Carney, B.W.

    1979-01-01

    The relation between stellar ultraviolet excesses and abundances is reexamined with the aid of new data, and an investigation is made of the accuracy of previous abundance analyses. A high-resolution echellogram of the subdwarf HD 201891 is analyzed to illustrate some of the problems. Generally, the earliest and latest analytical techniques yield consistent results for dwarfs. New UBV data yield normalized ultraviolet excesses, delta (U-B)/sub 0.6/, which are compared to abundances to produce a graphical relation that may be used to estimate [Fe/H] to +- 0.2 dex, given UBV colors accurate to +- 0.01 mag. The relation suggests a possible discontinuity between the halo and old-disk stars

  17. Cosmetic and medical applications of ultraviolet radiation

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1987-01-01

    The social desirability of a tanned skin is apparent and many people associate a bronzed body with good health and a sense of well-being. In Northern Europe and America the lack of long periods of sunshine has led to the establishment of the suntanning industry where artificial sources of ultraviolet radiation emitting almost entirely in the UV-A region supplement sunlight exposure

  18. Ultraviolet stability in euclidean scalar field theories

    Energy Technology Data Exchange (ETDEWEB)

    Benfatto, G; Cassandro, M; Gallavotti, G; Nicolo, F; Olivieri, E; Presutti, E; Scacciatelli, E [Rome Univ. (Italy). Istituto di Matematica; Rome Univ. (Italy). Istituto di Fisica)

    1980-01-01

    We develop a technique for reducing the problem of the ultraviolet divergences and their removal to a free field problem. This work is an example of a problem to which a rather general method can be applied. It can be thought as an attempt towards a rigorous version (in 2 or 3 space-time dimensions) of the analysis of the structure of the functional integrals, the underlying mechanism being essentially the same as in Glimms approach.

  19. Ultraviolet signals in birds are special.

    OpenAIRE

    Hausmann, Franziska; Arnold, Kathryn E; Marshall, N Justin; Owens, Ian P F

    2003-01-01

    Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a si...

  20. Impurity study of TMX using ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  1. Minimal length uncertainty relation and ultraviolet regularization

    Science.gov (United States)

    Kempf, Achim; Mangano, Gianpiero

    1997-06-01

    Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.

  2. SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS

    NARCIS (Netherlands)

    ESKES, H; SAWATZKY, GA

    1991-01-01

    The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following

  3. The Ultraviolet Index: a useful tool.

    Science.gov (United States)

    Kinney, J P; Long, C S

    2000-09-01

    The Ultraviolet Index was developed in the United States in 1994 following successful use of ultraviolet (UV) alerts in other countries. This daily National Weather Service prediction is a calculation which integrates five data elements to yield the amount of UV radiation impacting the surface (1m2) at solar noon in 58 of the largest US population centers. This simple numeric prediction is then categorized by the Environmental Protection Agency into five "exposure levels" with protective actions recommended for each level. This information is disseminated through the media. Daily reminders seem to affect awareness and behavior in Canada, but US surveys indicate the need for better understanding through educational graphics. Comparing the UV Index to a precipitation prediction has merit in that it links a familiar daily prediction with implied appropriate protective measures. Graphics link the ideas that "when it rains it pours and when it shines it radiates." Beginning in schools, camps, and dermatology meetings, using the rain/shine analogy, a wider exposure to the Ultraviolet Index is proposed.

  4. Cross-linking of L5 protein to 5 S RNA in rat liver 60-S subunits by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Terao, K.; Uchiumi, T.; Ogata, K.

    1980-01-01

    After rat liver 60-S ribosomal subunits were irradiated with ultraviolet light at 254 nm, they were treated with EDTA and then subjected to sucrose density-gradient centrifugation to isolate 5 S RNA-protein complex. When 5 S RNA-protein was analyzed by SDS-acrylamide gel electrophoresis which dissociated noncovalent 5 S RNA-protein, two protein bands were observed. The one showed a slower mobility than the protein band (L5) of 5 S RNA-protein from non-irradiated 60 S subunit and the other showed the same mobility as L5 protein. Since the former band was shown to be specific to ultraviolet-irradiation, it was considered as cross-linked 5 S RNA-protein. After the two protein bands were iodinated with 125 I, labeled protein was extracted and treated with RNAase. Thereafter, it was analyzed by two-dimensional acrylamide gel electrophoresis, followed by autoradiography. The results indicate that the protein component of cross-linked 5 S RNA-protein is L5 protein (ribosomal protein); these proteins are designated according to the proposed uniform nomenclature. (Auth.)

  5. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  6. Ultraviolet reflectance spectroscopy measurements of planetary materials and their analogs

    Science.gov (United States)

    Hibbitts, C.; Stockstill-Cahill, K.

    2017-12-01

    The compositions of airless solar system objects tell us about the origin and evolutionary processes that are responsible for the current state of our solar system and that shape our environment. Spacecraft have obtained UV reflectance measurements of the surfaces of Mercury, the Moon, asteroids, comets, icy satellites, and Pluto from which composition is being inferred. Most minerals absorb in the UV making studying surface composition both informative but also challenging [e.g. 1]. The UV region is sensitive to atomic and molecular electronic absorptions such as the ligand-metal charge transfer band that is present in oxides and silicates and the conduction band at vacuum UV wavelengths. Unfortunately, limited laboratory reflectance measurements in the ultraviolet hampers the interpretation of some of these planetary UV reflectance datasets. However, several laboratory efforts have been developed [e.g. 2,3] to fill the need for laboratory UV measurements. These are difficult measurements to make, being complicated by the absorptive nature of the atmosphere, requiring measurements to be conducted under vacuum or over very short path lengths of a N2-purged system. Also, the lack of a widely accepted UV diffuse reflectance standard is problematic. At the JHU-APL, bidirectional UV reflectance measurements are obtained under vacuum from 140 nm to 570 nm. Sample temperature can be controlled from 100K to 600K, which enables the study of the interaction of water ice and other volatiles with the refractory samples. Results from our laboratory research include the development of a correlation between the spectral nature of the OMCT band and the abundance of iron in low water content lunar analog glasses [3]. Also, the spectral signature of water in the UV has been investigated. While water-ice has a known strong absorption feature near 180 nm [e.g. 4], adsorbed molecular and disassociatively adsorbed OH apparently are not optically active in this spectral region [5]. We

  7. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation

  8. Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/

    International Nuclear Information System (INIS)

    Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.

    1988-01-01

    The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals

  9. Ultraviolet spectrophotometry of 2A 1822--371: A bulge on the accretion disk

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.

    1982-01-01

    The X-ray source 2A 1822--371 has been observed with the IUE satellite over an 8 hour period. Long and short wavelength exposures of duration 45 or 60 minutes were alternated in order to resolve the 5.57 hr photometric modulation of the star. The data provide evidence that the shape of the 5.57 hr modulation evolves smoothly with energy between extremes defined by the optical and X-ray curves. The far-UV light curve is more deeply modulated than the X-ray light curve. The combined ultraviolet and the UBV band optical data can be fitted with a single blackbody of temperature 2.7 x 10 4 K, or an optically thick disk model with parameters T/sub asterisk/ = 1.2 x 10 5 K and R/sub out//R/sub in/approx.30. A single power-law model does not adequately represent the continuum. There is evidence of absorption due to the 2200 A interstellar feature whose depth requires a color excess, E(B--V)approx.0.1, with 3 sigma upper and lower bounds of 0.29 and 0.01. Emission lines of C IV 1550 A and N V 1240 A are detected in the UV spectrum. The work of Mason et al. and White et al. suggests that the optical and ultraviolet emission arises in an accretion disk, whereas the X-radiation is emitted from a scattering cloud that envelopes a central compact object. In the present paper, the 5.57 hr optical, X-ray and ultraviolet modulation of 2A 1822--371 is intrepreted as the result of partial occultation of the emitting region by a comparison star and a bulge on the outer accretion disk. X-ray heating of the bulge will probably also contribute to the modulation at optical and ultraviolet wavelengths

  10. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  11. Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560

    Science.gov (United States)

    Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.

    2018-04-01

    In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29 - 30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.

  12. The 3 micron ice band

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Bult, C.E.P.M. van de

    1984-01-01

    Ever since it was proposed that H 2 O could be a dominant constituent of interstellar grains, its detection, or lack thereof, has played a large role in theories of grains and their evolution. It now appears possible to provide a basic theoretical structure for the evolution of grains in molecular clouds based on current observational evidence and laboratory experiments on the ice band. Both band strengths and shapes can be reasonably predicted by grain models. (U.K.)

  13. Superdeformed bands in 130Ce

    International Nuclear Information System (INIS)

    Paul, E.S.; Semple, A.T.; Boston, A.J.; Joss, D.T.; Nolan, P.J.; Shepherd, S.L.

    1997-01-01

    Four superdeformed bands have been assigned to 130 Ce following a high-statistics γ-ray study using the EUROGAM II spectrometer. The strongest band exhibits two distinct backbends which, in one scenario, may be interpreted as crossings between high-j N = 6 neutron orbitals (νi 13/2 ) and low-j N = 4 orbitals (νd 3/2 ) in an unpaired system. (author)

  14. Dipole Bands in 196Hg

    International Nuclear Information System (INIS)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-01-01

    High spin states in 196 Hg have been populated in the 198 Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  15. Theoretical studies on band structure and optical properties of 3C-SiC by FPLAPW

    International Nuclear Information System (INIS)

    Xu, P.; Xie, C.; Xu, F.; Pan, H.

    2004-01-01

    Full text: SiC has attracted more interests because of its great technological importance in microelectronic and photoelectronic devices. We have studied the band structure and optical properties of 3C-SiC by using a Full Potential Linearized Augmented Plane Waves (FPLAPW) method. The partial density of states (DOS) of Si and C atoms as well as the band structure of 3C-SiC are presented. The calculated band gap is 1.30eV, which is much less than the experimental value. It is attributed to a deficiency of the local density theory. The imaginary part of the dielectric function has been obtained directly from the band structure calculation. With the band gap correction, the real part of the dielectric function has been derived from the imaginary part by Kramers Kronig (K-K) dispersion relationship. The calculated results are in good agreement with the results measured by Petalas et al. by using ultraviolet spectroscopic ellipsometry in the photon energy range of 5eV-10eV. The band-to-band transition can be identified from the critical points exhibited in the calculated dielectric function, which is consistent with the experimental results of Petalas et al. The refractive index, extinction coefficient and reflectivity have also been calculated from obtained dielectric function, which are in agreement with the experimental results of Logothetidis and Lambrecht

  16. Spectroscopic observation of the middle ultraviolet earth albedo by S-520-4 rocket and mesospheric ozone density profile

    International Nuclear Information System (INIS)

    Suzuki, Katsuhisa; Ogawa, Toshihiro.

    1982-01-01

    The ozone Hartey absorption band in the middle ultraviolet range is commonly adopted for the ozone measurement by rocket and satellite observations. In Japan, since 1965 the ozone absorption in the solar ultraviolet radiation has been observed by rocket-borne uv photometers. On the other hand the spectroscopic measurements of the scattered solar ultraviolet radiation from the terrestrial atmosphere will be performed by the EXOS-C satellite which will be launched in 1984. We tested the spectrometer for this satellite experiment by S-520-4 rocket launched on 5 September 1981. This instrument observed the scattered radiation of 2500 A -- 3300 A and the visible earth albedo of 4030 A. The spectrometer is consisted of a concave grating and has about 10 A wavelength resolution. A photomultiplier having a Cs-Te photocathode is used as a uv detector. The visible albedo is measured by a photometer consisting of an interference filter and a phototube. We estimated the atmospheric ozone profile, comparing the uv spectrum obtained by this experiment with the model calculations. The estimated ozone density profile higher than 30 km altitude has good agreement with the profile obtained by the previous uv photometer experiments at Uchinoura. There are differences between the observed spectrum and the calculated one in = 3100 A. We can explain them by the effect of Mie scattering and the uv stray light. In the present experiment we could successfully test the functions of the instrument in the space. rocket, spectrometer, solar ultraviolet radiation, earth albedo, ozone (author)

  17. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Park, Peom [Ajou Univ., Suwon (Korea, Republic of)

    2001-12-15

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 {mu}W {center_dot} s/cm{sup 2}Win in 30 second relative to ultraviolet dose in time.

  18. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Park, Peom

    2001-01-01

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 μW · s/cm 2 Win in 30 second relative to ultraviolet dose in time

  19. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  20. Lattice dynamics and broad-band dielectric properties of the KTaO.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Glinšek, S.; Nuzhnyy, Dmitry; Petzelt, Jan; Malič, B.; Kamba, Stanislav; Bovtun, Viktor; Kempa, Martin; Skoromets, Volodymyr; Kužel, Petr; Gregora, Ivan; Kosec, M.

    2012-01-01

    Roč. 111, č. 10 (2012), "104101-1"-"104101-6" ISSN 0021-8979 R&D Projects: GA ČR GD202/09/H041; GA ČR GAP204/12/0232 Institutional research plan: CEZ:AV0Z10100520 Keywords : IR spectroscopy * incipient ferroelectrics * phonons * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.210, year: 2012

  1. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Evamaria Stütz

    2012-03-01

    Full Text Available Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism, oxygen consumption (respiration and impedance (morphology of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water was tested with monolayers of L6 cells (rat myoblasts. The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+ can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  2. Low Temperature Broad Band Dielectric Spectroscopy of Multiferroic Bi6Fe2Ti3O18 Ceramics

    Directory of Open Access Journals (Sweden)

    Lisińska-Czekaj A.

    2016-09-01

    Full Text Available In the present research the tool of broadband dielectric spectroscopy was utilized to characterize dielectric behavior of Bi6Fe2Ti3O18 (BFTO Aurivillius-type multiferroic ceramics. Dielectric response of BFTO ceramics was studied in the frequency domain (Δν=0.1Hz – 10MHz within the temperature range ΔT=-100°C – 200°C. The Kramers-Kronig data validation test was employed to validate the impedance data measurements and it was found that the measured impedance data exhibited good quality justifying further analysis. The residuals were found to be less than 1%, whereas the “chi-square” parameter was within the range χ2~10−7−10−5. Experimental data were analyzed using the circle fit of simple impedance arc plotted in the complex Z”-Z’ plane (Nyquist plot. The total ac conductivity of the grain boundaries was thus revealed and the activation energy of ac conductivity for the grain boundaries was calculated. It was found that activation energy of ac conductivity of grain boundaries changes from EA=0.20eV to EA=0.55eV while temperature rises from T=-100°C up to T=200°C. On the base of maxima of the impedance semicircles (ωmτm=1 the relaxation phenomena were characterized in terms of the temperature dependence of relaxation times and relevant activation energy was calculated (EA=0.55eV.

  3. The broad-band X-ray spectrum of IC 4329A from a joint NuSTAR/Suzaku observation

    DEFF Research Database (Denmark)

    Brenneman, L. W.; Madejski, G.; Fuerst, F.

    2014-01-01

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku andNuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found...... also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than justNuSTAR alone: Ecut = 186±14 keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate...

  4. The broad band spectral properties of SgrA* . The fate of the dusty object approaching the center

    Czech Academy of Sciences Publication Activity Database

    Eckart, A.; Muzic, K.; Yazici, S.; Sabha, N.; Shahzamanian, B.; Witzel, G.; Moser, L.; García-Marín, M.; Valencia-S, M.; Jalali, B.; Bremer, M.; Straubmeier, C.; Rauch, C.; Buchholz, R. M.; Kunneriath, Devaky; Moultaka, J.

    2013-01-01

    Roč. 84, č. 3 (2013), s. 618-621 ISSN 0037-8720. [X-ray astronomy: towards the next 50 years!. Milano, 01.10.2012-05.10.2012] Institutional support: RVO:67985815 Keywords : galaxy center * infrared stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. A broad-band (0.2-8 MHz) multiple-harmonic VITROVAC-filled acceleration structure

    Energy Technology Data Exchange (ETDEWEB)

    Ausset, P.; Charruau, G.; De Menezes, D.; Fougeron, C. [Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Etzkorn, F.J.; Papureanu, S.; Schnase, A.; Meuth, H. [Forschungszentrum Juelich GmbH (Germany)

    1994-12-31

    Higher or multiple-harmonic acceleration drives in synchrotrons are desirable, when passing the transition point, applying stochastic cooling on a bunched beam, or for many other longitudinal beam manipulations, as bunch stretching or compression. As proof-of-principle, virtually arbitrary, digitally synthesized voltage waveforms, employing contents up to fourth harmonic in the range 0.2-8 MHz, could be generated at the gap of one single (symmetric re-entrant) cavity, filled with discs of the novel ferritic amorphous metal VITROVAC of VAC, Hanau. A 10 kW amplifier produces voltages in the kV-range. As relevant examples, we achieved a flat-top waveform suitable for the transition (+27 deg, 10{sup -3} max. error), a fourth-order flattened bucket for bunched-beam cooling, and a harmonic bucket with linear restoring force. The compact cavity system should be well suited for any proton or heavy ion device operating in this frequency range, and therapy-oriented rings. (author). 9 refs., 6 figs.

  6. A broad-band (0.2-8 MHz) multiple-harmonic VITROVAC-filled acceleration structure

    International Nuclear Information System (INIS)

    Ausset, P.; Charruau, G.; De Menezes, D.; Fougeron, C.; Etzkorn, F.J.; Papureanu, S.; Schnase, A.; Meuth, H.

    1994-01-01

    Higher or multiple-harmonic acceleration drives in synchrotrons are desirable, when passing the transition point, applying stochastic cooling on a bunched beam, or for many other longitudinal beam manipulations, as bunch stretching or compression. As proof-of-principle, virtually arbitrary, digitally synthesized voltage waveforms, employing contents up to fourth harmonic in the range 0.2-8 MHz, could be generated at the gap of one single (symmetric re-entrant) cavity, filled with discs of the novel ferritic amorphous metal VITROVAC of VAC, Hanau. A 10 kW amplifier produces voltages in the kV-range. As relevant examples, we achieved a flat-top waveform suitable for the transition (+27 deg, 10 -3 max. error), a fourth-order flattened bucket for bunched-beam cooling, and a harmonic bucket with linear restoring force. The compact cavity system should be well suited for any proton or heavy ion device operating in this frequency range, and therapy-oriented rings. (author). 9 refs., 6 figs

  7. Metal oxide-based gas sensor and microwave broad-band measurements: an innovative approach to gas sensing

    International Nuclear Information System (INIS)

    Jouhannaud, J; Rossignol, J; Stuerga, D

    2007-01-01

    We outline the development of a gas sensor using microwave technology (0.3 MHz to 3 GHz). The sensor is a coaxial structure into which is introduced a sensitive material. An electromagnetic field (microwave), sent out through the sensor by a vectorial network analyzer, solicits the sensitive material exposed to a gas. The observed variation in the sensor response is due to the variation in the adsorption of this gas. SrTiO 3 , demonstrated to be the highly sensitive to water vapour, is exposed to different gases (saturated vapour of water, ethanol and toluene). The response of the sensor is quantitative and typical for each gas. This method of measurement leads to the development of an alternative to the current gas sensor

  8. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    Science.gov (United States)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E external magnetic field, we show that due to the fast variation of other quantities, its signature in the Power Distribution Spectrum (PDS) is significantly suppressed and only when the duration of the burst is few times longer than the oscillation period it can be detected, otherwise either it is confused with the Poisson noise or with intrinsic variations of the emission. Therefore, low significant oscillations observed in the PDS of GRB 090709a are most probably due to a precessing magnetic field.

  9. CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window

    Energy Technology Data Exchange (ETDEWEB)

    Čermák, P., E-mail: cermak@fmph.uniba.sk [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava (Slovakia); Chomet, B. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France); Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Ferrieres, L.; Denet, S.; Lecocq, V. [Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Vasilchenko, S. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Laboratory of Molecular Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Science, 1 Academician Zuev Square, 634021 Tomsk (Russian Federation); Mondelain, D.; Kassi, S.; Campargue, A. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Myara, M.; Cerutti, L.; Garnache, A. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France)

    2016-08-15

    The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10{sup −11} cm{sup −1}) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm{sup −1} around 4300 cm{sup −1} together with a powerful (∼5 mW) TEM{sub 00} diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.

  10. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, Kouhei; Sasaki, Yuji C. [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Nishijima, Masaki; Inoue, Yoshihisa [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yagi, Naoto [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-10-15

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (△E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  11. CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window.

    Science.gov (United States)

    Čermák, P; Chomet, B; Ferrieres, L; Vasilchenko, S; Mondelain, D; Kassi, S; Campargue, A; Denet, S; Lecocq, V; Myara, M; Cerutti, L; Garnache, A

    2016-08-01

    The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10(-11) cm(-1)) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm(-1) around 4300 cm(-1) together with a powerful (∼5 mW) TEM00 diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.

  12. Thermal management of magnetic focussing horns used in the narrow and broad band neutrino beams at the AGS

    International Nuclear Information System (INIS)

    Leonhardt, W.; Carroll, A.; Monaghan, R.

    1987-01-01

    Operation of the AGS Neutrino Horns and their internal and external targets takes place in an environment of high voltage, severe shock and vibration, and high radiation. To insure reliable operation, energy from Joulean heating and the proton beam interaction must be dissipated to keep component temperatures at the lowest levels practical. This has been accomplished by carefully choosing component materials and providing dedicated air and water cooling systems to transfer the 6 kW of heat efficiently and safely to the environment. This paper describes how the rigid horn and target thermal design constraints were satisfied, and provides some record of the current operating experience

  13. Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3

    Science.gov (United States)

    Heidrich, K.; Schäfer, W.; Schreiber, M.; Söchtig, J.; Trendel, G.; Treusch, J.; Grandke, T.; Stolz, H. J.

    1981-11-01

    Optical spectra of CsPbCl3 and CsPbBr3 have been measured in the range from 2 to 10 eV and have been combined with ultraviolet-photoemission-spectroscopy (UPS)-measurements at 21.1 and 40.8 eV. A quantitative band calculation is presented, which takes into account anion-anion interaction as well as electronic states of the Cs+ ion. The prominent features of earlier band models and measurements are reestablished through our measurements and calculations, namely that the valence band consists of anionic p functions and Pb 6s functions, the lowest conduction band being Pb 6p type, and the lowest gap occuring at the R point of the Brillouin zone. Inclusion of a further (Cs 6s-type) conduction band, however, is necessary to bring the calculated joint density of states into agreement with vacuum-ultraviolet optical spectra. The calculated densities of states of the valence bands are in quantitative agreement with those deduced from our UPS measurements.

  14. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Science.gov (United States)

    Tandon, S. N.; Subramaniam, Annapurni; Girish, V.; Postma, J.; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Hutchings, J.; Ghosh, S. K.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Leahy, D.; Mahesh, P. K.; Mohan, R.; Nagabhushana, S.; Pati, A. K.; Kameswara Rao, N.; Sreedhar, Y. H.; Sreekumar, P.

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300-1800 Å), and the other for the near-ultraviolet (NUV) channel (2000-3000 Å) and the visible (VIS) channel (3200-5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  15. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S. N. [Inter-University Center for Astronomy and Astrophysics, Pune (India); Subramaniam, Annapurni; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Mahesh, P. K. [Indian Institute of Astrophysics, Koramangala II Block, Bangalore-560034 (India); Girish, V. [ISRO Satellite Centre, HAL Airport Road, Bangalore 560017 (India); Postma, J.; Leahy, D. [University of Calgary, 2500 University Drive NW, Calgary, Alberta Canada (Canada); Hutchings, J. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Ghosh, S. K., E-mail: purni@iiap.res.in [National Centre for Radio Astrophysics, Pune (India); and others

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  16. Ultraviolet air disinfection for protection against influenza

    International Nuclear Information System (INIS)

    Riley, R.L.

    1977-01-01

    Three converging lines of evidence support the belief that it may be possible, under appropriate circumstances, to interrupt the airborne transmission of influenza by ultraviolet (UV) air disinfection. These lines of evidence are: (a) that influenza is airborne; (b) that UV irradiation of the upper air of a room can provide safe and effective disinfection of air in the lower part of the room; and (c) that epidemic spread of airborne viral infections in humans can be prevented if the population under consideration remains in the UV-protected environment

  17. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy.

    Science.gov (United States)

    Tenne, D A; Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Katiyar, R S; Cantarero, A; Soukiassian, A; Vaithyanathan, V; Haeni, J H; Tian, W; Schlom, D G; Choi, K J; Kim, D M; Eom, C B; Sun, H P; Pan, X Q; Li, Y L; Chen, L Q; Jia, Q X; Nakhmanson, S M; Rabe, K M; Xi, X X

    2006-09-15

    We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

  18. Ultraviolet Flux Variation of Epsilon Aurigae

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1990-06-01

    Full Text Available The eighteen ultraviolet light curves of Epsilon Aurigae have been plotted using the integrated fluxes reduced from the 233 IUE low dispersion spectra taken between 1978 and 1986. The times of contacts and depth of eclipse have been determined from the light curves at the wavelength from 2550 Å to 3050 Å. The UV light curves show two brightenings during the totality, the downward slope of the variation from the second to the third contacts, and asymmetry of the eclipse light curve. The two selected spectra note that the energy density distribution is not changed between the totality of the eclipse and out-of-eclipse.

  19. Dynamical structure of extreme ultraviolet macrospicules

    Science.gov (United States)

    Karovska, Margarita; Habbal, Shadia Rifai

    1994-01-01

    We describe the substructures forming the macrospicules and their temporal evolution, as revealed by the application of an image enhancement algorithm to extreme ultraviolet (EUV) observations of macrospicules. The enhanced images uncover, for the first time, the substructures forming the column-like structures within the macrospicules and the low-lying arches at their base. The spatial and temporal evolution of macrospicules clearly show continuous interaction between these substructures with occasional ejection of plasma following a ballistic trajectory. We comment on the importance of these results for planning near future space observations of macrospicules with better temporal and spatial resolution.

  20. Impact of Ultraviolet Light on Vitiligo.

    Science.gov (United States)

    Singh, Rasnik K

    2017-01-01

    Vitiligo is a disorder of the melanocytes that results in a dynamic spectrum of skin depigmentation. Its etiology is complex and multifactorial, with data supporting several different hypotheses. Given its prominent phenotype, vitiligo has a significant negative impact on quality of life. Coupled with the chronic and incurable nature of the disease, this presents a formidable treatment challenge. Several treatment modalities have been instituted over the years, with varying efficacy. This chapter focuses on the use of ultraviolet light in vitiligo as an established therapeutic option.