WorldWideScience

Sample records for broad area diode

  1. V-shaped resonators for addition of broad-area laser diode arrays

    Science.gov (United States)

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  2. Holographic injection-locking of a broad-area laser diode via a photorefractive thin film device

    NARCIS (Netherlands)

    van Voorst, P.D.; de Wit, M.R.; Offerhaus, Herman L.; Tay, S.; Thomas, J.; Peyghambarian, N.; Boller, Klaus J.

    2007-01-01

    We demonstrate locking of a high power broad area laser diode to a single frequency using holographic feedback from a photorefractive polymer thin-film device for the first time. A four-wave mixing setup is used to generate feedback for the broad area diode at the wavelength of the single frequency

  3. 980 nm high brightness external cavity broad area diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2009-01-01

    We demonstrate of-axis spectral beam combining applied to a 980 nm high power broad area diode laser bar. The experiments yielded 9 W of optical power at 30 A of operating current and the measured M2 values of the combined beam from 12 emitters were 1.9 and 6.4 for the fast and the slow axis......, respectively. The slow axis beam quality was 5-6 times better than the value obtained from a single emitter in free running mode. A high brightness of 79 MW/cm2-str was achieved using this configuration. To our knowledge, this is the highest brightness level ever achieved from a broad area diode laser bar....

  4. Laser pumped light emitting diodes as broad area sources of coherent radiation

    Science.gov (United States)

    Rahman, Faiz; Sorel, Marc

    2006-08-01

    This paper describes the use of large area light emitting diodes, pumped with various laser sources, as extended area emitters of coherent radiation. The photon recycling takes place through the intermediary of electron hole pair formation and subsequent stimulated recombination. It is possible to generate both spontaneous and stimulated emission together and the two channels are then independent of each other. This allows the generation of a mixture of coherent and non-coherent radiation in any desired proportion. The technique described is a broad-band resonant process with diffusive feedback and can be used for generating non-collimated laser radiation for a variety of applications.

  5. A new approach to assymmetric feedback in a segmented broad area diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte; Petersen, Paul Michael

    2009-01-01

    We present the demonstration of a non-critical setup for asymmetric feedback in a segmented broad area diode laser. We compare the dependence of the beam quality on the position of the dispersive element for standard spectral beam combining and our new non-critical setup. We find that our new...... approach is significantly less critical to the position of the dispersive element. It is shown that we can displace the dispersive element by at least 50% of the focal length of the collimating lens away from the Fourier plane without compromising performance. Furthermore, our approach provides the same...

  6. Rational Chebyshev spectral transform for the dynamics of broad-area laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Javaloyes, J., E-mail: julien.javaloyes@uib.es [Universitat de les Illes Balears, C/Valldemossa, km 7.5, E-07122 Palma de Mallorca (Spain); Balle, S. [Institut Mediterrani d' Estudis Avançats, CSIC-UIB, E-07071 Palma de Mallorca (Spain)

    2015-10-01

    This manuscript details the use of the rational Chebyshev transform for describing the transverse dynamics of broad-area laser diodes and amplifiers. This spectral method can be used in combination with the delay algebraic equations approach developed in [1], which substantially reduces the computation time. The theory is presented in such a way that it encompasses the case of the Fourier spectral transform presented in [2] as a particular case. It is also extended to the consideration of index guiding with an arbitrary transverse profile. Because their domain of definition is infinite, the convergence properties of the Chebyshev rational functions allow handling the boundary conditions with higher accuracy than with the previously studied Fourier transform method. As practical examples, we solve the beam propagation problem with and without index guiding: we obtain excellent results and an improvement of the integration time between one and two orders of magnitude as compared with a fully distributed two dimensional model.

  7. Progress in increasing the maximum achievable output power of broad area diode lasers

    Science.gov (United States)

    Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2012-03-01

    High power broad area diode lasers provide the optical energy for all high performance laser systems, either directly or as pump sources for solid-state lasers. Continuous improvement is required in the peak achievable output power of these diode laser devices in order to enable performance improvements in full laser systems. In recent years, device technology has advanced to the point where the main limit to optical power is no longer device failure, but is instead power saturation due to various physical effects within the semiconductor device itself. For example, the combination of large optical cavity designs with advanced facet passivation means that facet failure is no longer the dominant limiting factor. Increases in the optical power therefore require firstly a clear identification of the limiting mechanisms, followed by design changes and material improvements to address these. Recent theoretical and experimental diagnostic studies at the Ferdinand-Braun-Institut have helped trace the saturation effects to three main effects: gain saturation, longitudinal-holeburning and current driven carrier leakage. Design changes based on these studies have enabled increases in the achievable emitted power density from broad area lasers. Recent experimental examples include ~100W from 100μm stripes under short-pulsed conditions, > 30W from 100μm stripes under quasi-continuous wave conditions and > 10W from 30μm stripes under continuous wave conditions. An overview of the results of the diagnostic studies performed at the FBH will be presented, and the design changes necessary to address the observed power saturation will be discussed.

  8. Spectral properties of a broad-area diode laser with off-axis external-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    . The intensity noise spectrum of the diode laser shows that the intensity noise is increased strongly by the external-cavity feedback. External-cavity modes are excited in the external cavity even in the off-axis configuration. The peak spacing of the intensity noise spectrum shows that single roundtrip external......Spectral properties, both the optical spectrum and the intensity noise spectrum, of a broad-area diode laser with off-axis external-cavity feedback are presented. We show that the optical spectrum of the diode laser system is shifted to longer wavelengths due to the external-cavity feedback......-cavity modes are excited. We believe that the four-wave mixing process in the broad-area diode laser is responsible for the establishment of the external-cavity mode....

  9. Near-diffraction-limited segmented broad area diode laser based on off-axis spectral beam combining

    DEFF Research Database (Denmark)

    Jensen, O.B.; Thestrup Nielsen, Birgitte; Andersen, Peter E.

    2006-01-01

    The beam quality of a 500-mu m-wide broad area diode laser with five active segments has been improved beyond the beam quality of the individual segments. The principle of this new laser system is based on off-axis feedback in combination with spectral beam combining. By using a double-feedback s...

  10. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most of the c......The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....

  11. Single-frequency operation of a broad-area laser diode by injection locking of a complex spatial mode via a double phase conjugate mirror

    NARCIS (Netherlands)

    van Voorst, P.D.; Offerhaus, Herman L.; Boller, Klaus J.

    2006-01-01

    We demonstrate what is believed to be the first phase-coherent locking of a high-power broad-area diode to a single-frequency master laser. We use photorefractive double phase conjugation to lock the diode in a selfoptimized complex spatial mode while the photorefractive crystal diffracts that

  12. Improvement of the beam quality of a diode laser with two active broad-area segments

    DEFF Research Database (Denmark)

    Chi, Mingjun; Thestrup, B.; Mortensen, J.L.

    2003-01-01

    The beam quality of a diode laser with two active segments was improved using an external cavity with collimating optics, a grating, and an output coupler. The beam quality of the output beam, which is the first-order diffractive beam from the grating, was improved by a factor of 2, and at least...

  13. 1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz

    Science.gov (United States)

    Jechow, Andreas; Raab, Volker; Menzel, Ralf; Cenkier, Michael; Stry, Sandra; Sacher, Joachim

    2007-09-01

    A novel unstable external cavity for a broad area laser diode is presented. The cavity is based on a V-shaped setup that improves the slow axis beam quality by coupling the internal modes of a gain guided laser diode. The novelty here is the compact unstable resonator design without lenses in direction of the slow axis. For frequency stabilisation and to narrow the line width of the laser diode emission a diffraction grating in a Littrow configuration is used. With this setup up to 1 W of near diffraction limited light with a beam quality of M2 ⩽ 1.3 and a line width of 1.7 MHz could be achieved. The external cavity laser was tunable over a range of 35 nm (FWHM) around the center wavelength of 976 nm.

  14. Innovation in Broad-Area Diode Laser Array Architecture: Coupling Grating-Confined Zigzag Modes for High Power, High Brightness Applications

    Science.gov (United States)

    2015-02-08

    schematic plot of our coherently combined angled-grating broad-area laser integrated on a s ingle chip. The laser cavity consists of two angled...carried out a 30 current distribution simu lation for a s ingle emitter. In the simulation model, all the interfaces contacting with BCB are set to

  15. 100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal.

    Science.gov (United States)

    Jechow, Andreas; Skoczowsky, Danilo; Menzel, Ralf

    2007-05-28

    A frequency stabilized single broad area laser in a V-shaped external cavity is used for Second Harmonic Generation (SHG) in a waveguide channel with dimensions of 3 mum x 5 mum x 10 mm of a PPMgO: LN crystal. A maximum coupling efficiency of 63% could be obtained. An optical output power of 100.4 mW of visible light at 488 nm could be generated with 265 mW of coupled infrared light. This results in a single pass conversion efficiency of 37.8%. No photorefractive damage or saturation effects were observed.

  16. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  17. Broadly Turnable Pump-Resonant Diode-Pumped CW PPLN OPO

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.J.; Bowers, Mark S.; Raymond, T.D.; Seamans, J.F.

    1999-04-29

    We have observed low threshold operation of a broadly tunable (2.18-3.4 µm) pump-resonant cw periodically poled lithium niobate (PPLN) optical parametric oscillator (OPO). When pumped at 806 nm with 410 mW from a custom-built diode laser the OPO generated 20 mW of idler output at 3.3 µm.

  18. Gain optimization method of a DQW superluminescent diode with broad multi-state emission

    KAUST Repository

    Dimas, Clara E.

    2010-01-01

    Optimizing gain through systematic methods of varying current injection schemes analytically is significant to maximize experimentally device yield and evaluation. Various techniques are used to calculate the amplified spontaneous emission (ASE) gain for light emitting devices consisting of single-section and multiple-sections of even length. Recently double quantum well (DQW) superluminescent diodes (SLD) have shown a broad multi-state emission due to mutlielectrodes of non-equal lengths and at high non-equal current densities. In this study, we adopt an improved method utilizing an ASE intensity ratio to calibrate a gain curve based on the sum of the measured ASE spectra to efficiently estimate the gain. Although the laser gain for GaAs/AlGaAs material is well studied, the ASE gain of SLD devices has not been systematically studied particular to further explain the multiple-state emission observed in fabricated devices. In addition a unique gain estimate was achieved where the excited state gain clamps prior to the ground state due to approaching saturation levels. In our results, high current densities in long sectioned active regions achieved sufficient un-truncated gain that show evidence of excited state emission has been observed.

  19. High-Performance 1.55-µm Superluminescent Diode Based on Broad Gain InAs/InGaAlAs/InP Quantum Dash Active Region

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2014-08-01

    We report on the high-performance characteristics from superluminescent diodes (SLDs) based on four-stack InAs/InGaAlAs chirped-barrier thickness quantum dash (Qdash) in a well structure. The active region exhibits a measured broad gain spectrum of 140 nm, with a peak modal gain of ~41 cm-1. The noncoated two-section gainabsorber broad-area and ridge-waveguide device configuration exhibits an output power of > 20 mW and > 12 mW, respectively. The corresponding -3-dB bandwidths span ~82 nm and ~72 nm, with a small spectral ripple of <; 0.2 dB, related largely to the contribution from dispersive height dash ensembles of the highly inhomogeneous active region. These C-L communication band devices will find applications in various cross-disciplinary fields of optical metrology, optical coherent tomography, etc.

  20. Large-area field emission diode for semiconductor annealing

    Science.gov (United States)

    Luches, A.; Nassisi, V.; Perrone, A.; Perrone, M. R.

    1981-03-01

    We report the characteristics of a low energy electron beam generator used for annealing of materials of interest as electron devices and photovoltaic cells. The high voltage pulser is a two-stage Marx circuit which supplies 10-50 kV pulses. A Blumlein line gives the pulses an almost square shape and a length of 50 ns. This short pulse is applied to a field emission diode. Various kinds of cathodes are used. They deliver electron pulses of up to 20 kA. Tungsten needles are used for small-area beams and blade arrays or graphite cathodes for large-area beams. Consequently, the beam diameter can vary from 2 to 120 mm with a good beam homogeneity. The anode is movable to vary the vacuum diode impedance and consequently the current-voltage characteristic of the electron beam. Energy densities varying from 0.1 to 100 J/cm 2 are obtained on the anode. The anode can be formed by a semiconductor monocrystalline wafer. We used crystalline silicon wafers covered by a thin (≈100 nm) layer of vacuum deposited near-noble and refractory metals. Under electron beam bombardment with discharge energy densities ranging from 0.4 to 10 J/cm 2, silicide formation is evident over all the annealed anodes. Metastable compounds are formed because of the fast heating and cooling rates. Silicon monocrystalline wafers, doped with 10 14-10 15 ions/cm 2 of B or P ions exhibit a complete recovery of their crystalline structure after a single discharge.

  1. Highly-reliable operation of 638-nm broad stripe laser diode with high wall-plug efficiency for display applications

    Science.gov (United States)

    Yagi, Tetsuya; Shimada, Naoyuki; Nishida, Takehiro; Mitsuyama, Hiroshi; Miyashita, Motoharu

    2013-03-01

    Laser based displays, as pico to cinema laser projectors have gathered much attention because of wide gamut, low power consumption, and so on. Laser light sources for the displays are operated mainly in CW, and heat management is one of the big issues. Therefore, highly efficient operation is necessitated. Also the light sources for the displays are requested to be highly reliable. 638 nm broad stripe laser diode (LD) was newly developed for high efficiency and highly reliable operation. An AlGaInP/GaAs red LD suffers from low wall plug efficiency (WPE) due to electron overflow from an active layer to a p-cladding layer. Large optical confinement factor (Γ) design with AlInP cladding layers is adopted to improve the WPE. The design has a disadvantage for reliable operation because the large Γ causes high optical density and brings a catastrophic optical degradation (COD) at a front facet. To overcome the disadvantage, a window-mirror structure is also adopted in the LD. The LD shows WPE of 35% at 25°C, highest record in the world, and highly stable operation at 35°C, 550 mW up to 8,000 hours without any catastrophic optical degradation.

  2. Thick and large area PIN diodes for hard X-ray astronomy

    CERN Document Server

    Ota, N; Sugizaki, M; Kaneda, M; Tamura, T; Ozawa, H; Kamae, T; Makishima, K; Takahashi, T; Tashiro, M; Fukazawa, Y; Kataoka, J; Yamaoka, K; Kubo, S; Tanihata, C; Uchiyama, Y; Matsuzaki, K; Iyomoto, N; Kokubun, M; Nakazawa, T; Kubota, A; Mizuno, T; Matsumoto, Y; Isobe, N; Terada, Y; Sugiho, M; Onishi, T; Kubo, H; Ikeda, H; Nomachi, M; Ohsugi, T; Muramatsu, M; Akahori, H

    1999-01-01

    Thick and large area PIN diodes for the hard X-ray astronomy in the 10-60 keV range are developed. To cover this energy range in a room temperature and in a low background environment, Si PIN junction diodes of 2 mm in thickness with 2.5 cm sup 2 in effective area were developed, and will be used in the bottom of the Phoswich Hard X-ray Detector (HXD), on-board the ASTRO-E satellite. Problems related to a high purity Si and a thick depletion layer during our development and performance of the PIN diodes are presented in detail.

  3. A two-stage series diode for intense large-area moderate pulsed X rays production.

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang

    2017-01-01

    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm(2) area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  4. Selective-area growth of periodic nanopyramid light-emitting diode arrays on GaN/sapphire templates patterned by multiple-exposure colloidal lithography.

    Science.gov (United States)

    Xiong, Zhuo; Wei, Tongbo; Zhang, Yonghui; Zhang, Xiang; Yang, Chao; Liu, Zhiqiang; Yuan, Guodong; Li, Jinmin; Wang, Junxi

    2017-03-17

    Gallium nitride-based nanopyramid light-emitting diodes are a promising technology to achieve highly efficient solid-state lighting and beyond. Here, periodic nanopyramid light-emitting diode arrays on gallium nitride/sapphire templates were fabricated by selective-area metalorganic chemical vapor deposition and multiple-exposure colloidal lithography. The electric field intensity distribution of incident light going through polystyrene microspheres and photoresist are simulated using finite-different time-domain method. Nitrogen as the carrier gas and a low V/III ratio (ratio of molar flow rate of group-V to group-III sources) are found to be important in order to form gallium nitride nanopyramid. In addition, a broad yellow emission in photoluminescence and cathodoluminescence spectra were observed. This phenomena showed the potential of nanopyramid light-emitting diodes to realize long wavelength visible emissions.

  5. High sensitivity Schottky junction diode based on monolithically grown aligned polypyrrole nanofibers: Broad range detection of m-dihydroxybenzene.

    Science.gov (United States)

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-07-30

    Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Spatially nondegenerate four-wave mixing in a broad area semiconductor laser: Modeling

    DEFF Research Database (Denmark)

    Jensen, Søren Blaaberg; Tromborg, Bjarne; Petersen, P. M.

    We present a numerical model of spatially nondegenerate four-wave mixing in a bulk broad area semiconductor laser with an external reflector and a spatial filter. The external reflector provides a feedback with an off-aixs direction of propagation. Such a configuration has experimentally been seen...... to improve the coherence of the output of a broad area laser. While the far-field of a broad area laser is often double-lobed. the reflector feeds only one of the lobes back into the cavity in the same angle as the emission angle. As our model assumes only four waves inside the cavity it consists of four...... coupled equations for the field components in the cavity and a rate equation is used to describe the carrier density of the semiconductor material. The interference pattern of the four field components inside the cavity induces a periodic spatial modulation of the carrier density and thus of the complex...

  7. Dynamic behaviors of a broad-area diode laser with lateral-mode-selected external feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    In this paper, we investigate the dynamics of a BAL with lateral-mode selected external feedback experimentally by measuring the far-field profile, intensity noise spectrum and time series of the output beam. The mode-selection is achieved by adjusting a stripe mirror at the pseudo far-field plan...

  8. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  9. Structure, stability, and spectra of lateral modes of a broad-area semiconductor laser

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Petersen, Paul Michael; Tromborg, Bjarne

    2007-01-01

    We present a theoretical analysis of the lateral modes of a broad-area semiconductor laser. The structure of the modes are classified into four categories and the modes are traced in the frequency versus pump rate diagram. It is shown how the branches of the frequency tuning curves for the differ......We present a theoretical analysis of the lateral modes of a broad-area semiconductor laser. The structure of the modes are classified into four categories and the modes are traced in the frequency versus pump rate diagram. It is shown how the branches of the frequency tuning curves...... for the different types of modes are interconnected and how the intensity profiles develop along the branches. The main result of the paper is the presentation of a small-signal stability analysis which identifies the saddle-node and Hopf bifurcation points on the mode tuning curves. For stable modes we derive...

  10. Enlargement of the inversionless lasing domain by using broad-area cavities

    CERN Document Server

    Mompart, J; Ahufinger, V; García-Ojalvo, J; Corbalán, R; Vilaseca, R

    2003-01-01

    We investigate analytically and numerically the role of diffraction in the operation of a broad-area inversionless laser in a cascade three-level configuration. Through a linear stability analysis of the trivial non-lasing solution and numerical integration of the corresponding Maxwell-Schroedinger equations, we show that off-axis emission allows stationary inversionless lasing over a cavity detuning range much larger than in small-aspect-ratio cavities and in conventionally inverted three-level lasers. In addition, we investigate inversionless lasing in a self-pulsing regime in the presence of diffraction, which leads to rich spatiotemporal dynamics.

  11. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    Science.gov (United States)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial

  12. Two-wave mixing in a broad-area semiconductor amplifier

    DEFF Research Database (Denmark)

    Chi, M.; Jensen, S.B.; Huignard, J.P.

    2006-01-01

    were obtained in the condition of small signal and the total intensity is far below the saturation intensity of the amplifier. The results show that when the amplifier is operated below transparency we obtain an increase in the optical gain, and when the amplifier is operated above transparency we......The two-wave mixing in the broad-area semiconductor amplifier was investigated, both theoretically and experimentally. In detail we investigated how the optical gain is affected by the presence of the two-wave mixing interference grating. In the experimental setup we are able to turn on and off...... the interference pattern in the semiconductor amplifier. This arrangement allows us to determine the two-wave mixing gain. The coupled-wave equations of two-wave mixing were derived based on the Maxwell’s wave equation and rate equation of the carrier density. The analytical solutions of the coupled-wave equations...

  13. The Global Evidence Mapping Initiative: scoping research in broad topic areas.

    Science.gov (United States)

    Bragge, Peter; Clavisi, Ornella; Turner, Tari; Tavender, Emma; Collie, Alex; Gruen, Russell L

    2011-06-17

    Evidence mapping describes the quantity, design and characteristics of research in broad topic areas, in contrast to systematic reviews, which usually address narrowly-focused research questions. The breadth of evidence mapping helps to identify evidence gaps, and may guide future research efforts. The Global Evidence Mapping (GEM) Initiative was established in 2007 to create evidence maps providing an overview of existing research in Traumatic Brain Injury (TBI) and Spinal Cord Injury (SCI). The GEM evidence mapping method involved three core tasks:1. Setting the boundaries and context of the map: Definitions for the fields of TBI and SCI were clarified, the prehospital, acute inhospital and rehabilitation phases of care were delineated and relevant stakeholders (patients, carers, clinicians, researchers and policymakers) who could contribute to the mapping were identified. Researchable clinical questions were developed through consultation with key stakeholders and a broad literature search. 2. Searching for and selection of relevant studies: Evidence search and selection involved development of specific search strategies, development of inclusion and exclusion criteria, searching of relevant databases and independent screening and selection by two researchers. 3. Reporting on yield and study characteristics: Data extraction was performed at two levels - 'interventions and study design' and 'detailed study characteristics'. The evidence map and commentary reflected the depth of data extraction. One hundred and twenty-nine researchable clinical questions in TBI and SCI were identified. These questions were then prioritised into high (n = 60) and low (n = 69) importance by the stakeholders involved in question development. Since 2007, 58 263 abstracts have been screened, 3 731 full text articles have been reviewed and 1 644 relevant neurotrauma publications have been mapped, covering fifty-three high priority questions. GEM Initiative evidence maps have a broad

  14. The Global Evidence Mapping Initiative: Scoping research in broad topic areas

    Directory of Open Access Journals (Sweden)

    Tavender Emma

    2011-06-01

    Full Text Available Abstract Background Evidence mapping describes the quantity, design and characteristics of research in broad topic areas, in contrast to systematic reviews, which usually address narrowly-focused research questions. The breadth of evidence mapping helps to identify evidence gaps, and may guide future research efforts. The Global Evidence Mapping (GEM Initiative was established in 2007 to create evidence maps providing an overview of existing research in Traumatic Brain Injury (TBI and Spinal Cord Injury (SCI. Methods The GEM evidence mapping method involved three core tasks: 1. Setting the boundaries and context of the map: Definitions for the fields of TBI and SCI were clarified, the prehospital, acute inhospital and rehabilitation phases of care were delineated and relevant stakeholders (patients, carers, clinicians, researchers and policymakers who could contribute to the mapping were identified. Researchable clinical questions were developed through consultation with key stakeholders and a broad literature search. 2. Searching for and selection of relevant studies: Evidence search and selection involved development of specific search strategies, development of inclusion and exclusion criteria, searching of relevant databases and independent screening and selection by two researchers. 3. Reporting on yield and study characteristics: Data extraction was performed at two levels - 'interventions and study design' and 'detailed study characteristics'. The evidence map and commentary reflected the depth of data extraction. Results One hundred and twenty-nine researchable clinical questions in TBI and SCI were identified. These questions were then prioritised into high (n = 60 and low (n = 69 importance by the stakeholders involved in question development. Since 2007, 58 263 abstracts have been screened, 3 731 full text articles have been reviewed and 1 644 relevant neurotrauma publications have been mapped, covering fifty-three high priority

  15. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    Science.gov (United States)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  16. A Broad-Area Method for the Diurnal Characterisation of Upwelling Medium Wave Infrared Radiation

    Directory of Open Access Journals (Sweden)

    Bryan Hally

    2017-02-01

    Full Text Available Fire detection from satellite sensors relies on an accurate estimation of the unperturbed state of a target pixel, from which an anomaly can be isolated. Methods for estimating the radiation budget of a pixel without fire depend upon training data derived from the location’s recent history of brightness temperature variation over the diurnal cycle, which can be vulnerable to cloud contamination and the effects of weather. This study proposes a new method that utilises the common solar budget found at a given latitude in conjunction with an area’s local solar time to aggregate a broad-area training dataset, which can be used to model the expected diurnal temperature cycle of a location. This training data is then used in a temperature fitting process with the measured brightness temperatures in a pixel, and compared to pixel-derived training data and contextual methods of background temperature determination. Results of this study show similar accuracy between clear-sky medium wave infrared upwelling radiation and the diurnal temperature cycle estimation compared to previous methods, with demonstrable improvements in processing time and training data availability. This method can be used in conjunction with brightness temperature thresholds to provide a baseline for upwelling radiation, from which positive thermal anomalies such as fire can be isolated.

  17. Evolution from modal to spatially incoherent emission of a broad-area VCSEL.

    Science.gov (United States)

    Mandre, Shyam K; Elsässer, Wolfgang; Fischer, Ingo; Peeters, Michael; Verschaffelt, Guy

    2008-03-31

    Broad-area vertical-cavity surface-emitting lasers (BA-VCSELs) can exhibit a state of spatially incoherent emission, as we recently reported in [M. Peeters et al., Opt. Express, 13, 9337 (2005)]. Here, we experimentally study the evolution of a BA-VCSEL under pulsed operation from well-defined modal emission with a multitude of transverse cavity modes to such spatially incoherent emission. The transition is studied using a high-speed intensified CCD camera and differential image analysis with which single-shot measurements of the imaged nearfield, farfield, spatial coherence, and spectral emission properties are acquired. This combination of experimental characterization tools allows for a detailed description of the BA-VCSEL's emission behavior, which is necessary for an in-depth understanding of the processes involved. We find the interplay between the thermal chirp and the build-up of a spatially distributed thermal lens to be decisive for the break-up of the global cavity modes.

  18. Design, fabrication and test of Load Bearing multilayer insulation to support a broad area cooled shield

    Science.gov (United States)

    Dye, S. A.; Johnson, W. L.; Plachta, D. W.; Mills, G. L.; Buchanan, L.; Kopelove, A. B.

    2014-11-01

    Improvements in cryogenic propellant storage are needed to achieve reduced or Zero Boil Off of cryopropellants, critical for long duration missions. Techniques for reducing heat leak into cryotanks include using passive multi-layer insulation (MLI) and vapor cooled or actively cooled thermal shields. Large scale shields cannot be supported by tank structural supports without heat leak through the supports. Traditional MLI also cannot support shield structural loads, and separate shield support mechanisms add significant heat leak. Quest Thermal Group and Ball Aerospace, with NASA SBIR support, have developed a novel Load Bearing multi-layer insulation (LBMLI) capable of self-supporting thermal shields and providing high thermal performance. We report on the development of LBMLI, including design, modeling and analysis, structural testing via vibe and acoustic loading, calorimeter thermal testing, and Reduced Boil-Off (RBO) testing on NASA large scale cryotanks. LBMLI uses the strength of discrete polymer spacers to control interlayer spacing and support the external load of an actively cooled shield and external MLI. Structural testing at NASA Marshall was performed to beyond maximum launch profiles without failure. LBMLI coupons were thermally tested on calorimeters, with superior performance to traditional MLI on a per layer basis. Thermal and structural tests were performed with LBMLI supporting an actively cooled shield, and comparisons are made to the performance of traditional MLI and thermal shield supports. LBMLI provided a 51% reduction in heat leak per layer over a previously tested traditional MLI with tank standoffs, a 38% reduction in mass, and was advanced to TRL5. Active thermal control using LBMLI and a broad area cooled shield offers significant advantages in total system heat flux, mass and structural robustness for future Reduced Boil-Off and Zero Boil-Off cryogenic missions with durations over a few weeks.

  19. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    KAUST Repository

    Myzaferi, A.

    2016-08-11

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a (202⎯⎯1) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  20. Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change.

    Science.gov (United States)

    Sieck, Mungla; Ibisch, Pierre L; Moloney, Kirk A; Jeltsch, Florian

    2011-05-03

    Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades.Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the scientific literature. It is particularly true that

  1. Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change

    Directory of Open Access Journals (Sweden)

    Moloney Kirk A

    2011-05-01

    Full Text Available Abstract Background Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades. Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Results Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. Conclusion The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the

  2. Control of the spatial emission structure of broad-area vertical-cavity surface-emitting lasers by feedback

    Energy Technology Data Exchange (ETDEWEB)

    Schulz-Ruhtenberg, M [Institut fuer Angewandte Physik, Westfaelische Wilhelms-Universitaet Muenster, Corrensstrasse 2/4, 48149 Muenster (Germany); Tanguy, Y; Ackemann, T [SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Huang, K F [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Jaeger, R, E-mail: thorsten.ackemann@strath.ac.u [Philips Technologie GmbH, U-L-M Photonics, Lise-Meitner-Str. 13, 89081 Ulm (Germany)

    2009-03-07

    The wave number of transverse spatial structures in broad-area vertical-cavity surface-emitting lasers (VCSELs) is controlled via frequency-selective feedback from an external self-imaging cavity in a broad range of wave numbers and emission frequencies. The selected states follow the dispersion curves of the free-running laser. A control range of about 2.5 {mu}m{sup -1} in spatial frequency space and 2.5 nm in emission wavelength was obtained for square VCSELs and of about 3 {mu}m{sup -1} and 8 nm for circular VCSELs having a different dispersion curve. By spatial filtering in Fourier space, the shape of the structures can also be controlled to some extent. It is argued that the feedback techniques are useful to 'probe' emission states of the free-running laser.

  3. On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers

    National Research Council Canada - National Science Library

    Zhao, Yunsong; Zhu, Lin

    2012-01-01

    Single mode operation of broad-area diode lasers, which is the key to obtain high power, high brightness sources, is difficult due to highly nonlinear materials and strong coupling between gain and index...

  4. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...

  5. Nonlinear gain amplification due to two-wave mixing in a broad-area semiconductor amplifier with moving gratings

    DEFF Research Database (Denmark)

    Chi, Mingjun; Huignard, J.-P.; Petersen, Paul Michael

    2008-01-01

    -wave equations of two-wave mixing are derived based on the Maxwell’s wave equation and rate equation of the carrier density. The analytical solutions of the coupled-wave equations are obtained in the condition of small signal when the total intensity is far below the saturation intensity of the amplifier......The two-wave mixing in a broad-area semiconductor amplifier with moving gratings is investigated theoretically, where a pump beam and a signal beam with different frequencies are considered, thus both a moving phase grating and a moving gain grating are induced in the amplifier. The coupled....... The results show that the optical gain of the amplifier is affected by both the moving phase grating and the moving gain grating, and there is energy exchange between the pump and signal beams. Depending on the moving direction of the gratings and the anti-guiding parameter, the optical gain may increase...

  6. Development of Highly Reliable Point Source Infrared Light-Emitting Diodes and Analysis Using a New Parameter of Dark Area Ratio

    Science.gov (United States)

    Kato, Toshihiro; Hobo, Kenji; Aikawa, Moritaka; Sone, Hidetoshi; Hirotani, Masumi; Harada, Haruyuki; Saka, Takashi

    2009-10-01

    Surface-emitting light-emitting diodes with a small opening, 150 µm in diameter, having an InGaAs-AlGaAs multi-quantum-well active layer were grown by metal-organic chemical vapor deposition. Their emission wavelength was approximately 850 nm. The manner of their degradation was investigated by operating the diodes for 10,000 h at room temperature, and high reliability was realized. By measuring the dark area and comparing it with output power, we show that the degradation mechanism differs from that of light-emitting diodes with a single GaAs layer. In light-emitting diodes with InGaAs-AlGaAs multi-quantum wells, the p-n junction functions well, despite initial degradation, and further degradation is suppressed.

  7. [Species-area relationship at different succession stages of monsoon evergreen broad-leaved forest in south subtropical area of Yunnan Province].

    Science.gov (United States)

    Liu, Wan-De; Su, Jian-Rong; Li, Shuai-Feng; Zhang, Zhi-Jun; Lang, Xue-Dong

    2011-02-01

    Based on the investigation data of monsoon evergreen broad-leaved forest at its different succession stages (primary, CP; 15 years of succession, CF; and 30 years of succession, CT) in Pu' er of Yunnan Province, this paper studied the species-area relationship of this forest at each succession stage. It was found that in the communities at each succession stage, the number of total species, trees, shrubs, and lianas had a significant correlation with sampling area, with the area explained over 94% of the total variation. The Z value of the total species (0.334) and trees (0.394) was the lowest at CT, whereas that of shrubs (0.437) and lianas (0.326) was the lowest at CF. No significant differences were observed in the intercepts of the species-area curve of total species, trees, shrubs, and lianas among different succession stages, but the coefficient of determination (R2) of the species-area curve of total species and lianas was the highest at CP. The richness of trees and shrubs at CF explained 99.9% of the variance of Z value, but the richness of total species, trees, shrubs, and lianas at CP and CT had no significant correlations with the Z value.

  8. White LEDs as broad spectrum light sources for spectrophotometry: demonstration in the visible spectrum range in a diode-array spectrophotometric detector.

    Science.gov (United States)

    Piasecki, Tomasz; Breadmore, Michael C; Macka, Mirek

    2010-11-01

    Although traditional lamps, such as deuterium lamps, are suitable for bench-top instrumentation, their compatibility with the requirements of modern miniaturized instrumentation is limited. This study investigates the option of utilizing solid-state light source technology, namely white LEDs, as a broad band spectrum source for spectrophotometry. Several white light LEDs of both RGB and white phosphorus have been characterized in terms of their emission spectra and energy output and a white phosphorus Luxeon LED was then chosen for demonstration as a light source for visible-spectrum spectrophotometry conducted in CE. The Luxeon LED was fixed onto the base of a dismounted deuterium (D(2) ) lamp so that the light-emitting spot was geometrically positioned exactly where the light-emitting spot of the original D(2) lamp is placed. In this manner, the detector of a commercial CE instrument equipped with a DAD was not modified in any way. As the detector hardware and electronics remained the same, the change of the deuterium lamp for the Luxeon white LED allowed a direct comparison of their performances. Several anionic dyes as model analytes with absorption maxima between 450 and 600 nm were separated by CE in an electrolyte of 0.01 mol/L sodium tetraborate. The absorbance baseline noise as the key parameter was 5 × lower for the white LED lamp, showing clearly superior performance to the deuterium lamp in the available, i.e. visible part of the spectrum. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of a process-based shallow landslide hazard model over a broad area in Central Italy

    Science.gov (United States)

    Gioia, Eleonora; Speranza, Gabriella; Ferretti, Maurizio; Godt, Jonathan W.; Baum, Rex L.; Marincioni, Fausto

    2015-01-01

    Process-based models are widely used for rainfall-induced shallow landslide forecasting. Previous studies have successfully applied the U.S. Geological Survey’s Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) model (Baum et al. 2002) to compute infiltration-driven changes in the hillslopes’ factor of safety on small scales (i.e., tens of square kilometers). Soil data input for such models are difficult to obtain across larger regions. This work describes a novel methodology for the application of TRIGRS over broad areas with relatively uniform hydrogeological properties. The study area is a 550-km2 region in Central Italy covered by post-orogenic Quaternary sediments. Due to the lack of field data, we assigned mechanical and hydrological property values through a statistical analysis based on literature review of soils matching the local lithologies. We calibrated the model using rainfall data from 25 historical rainfall events that triggered landslides. We compared the variation of pressure head and factor of safety with the landslide occurrence to identify the best fitting input conditions. Using calibrated inputs and a soil depth model, we ran TRIGRS for the study area. Receiver operating characteristic (ROC) analysis, comparing the model’s output with a shallow landslide inventory, shows that TRIGRS effectively simulated the instability conditions in the post-orogenic complex during historical rainfall scenarios. The implication of this work is that rainfall-induced landslides over large regions may be predicted by a deterministic model, even where data on geotechnical and hydraulic properties as well as temporal changes in topography or subsurface conditions are not available.

  10. Study of electron beam uniformity in large-area multi-aperture diode with arc plasma cathode

    Science.gov (United States)

    Kandaurov, I. V.; Kurkuchekov, V. V.; Trunev, Yu A.

    2017-05-01

    The use of plasma emission cathode in the conjunction with a multiple apertured electron optical system (EOS) is promising for the multi-MW class electron beams of a large cross-sectional area. In a multi-aperture source, the beam parameters could be raised simply due to increase of the number of apertures (i.e. an effective emission area), if a uniformity of the electron emission over a large-area plasma cathode is ensured. In the presented paper, the cross-sectional distribution of the emission current density was investigated using the X-ray diagnostic technique for two versions of the diode-type EOS, with electrodes performed as flat molybdenum “grids”. The first one had 241 apertures arranged hexagonally inside a circle with a diameter of 8.3 cm and the second had 499 apertures within a circle of 11.8cm diameter. The emission plasma is produced using a single arc-discharge plasma generator placed on the axis at 20 cm from the EOS. It was demonstrated that multi-aperture systems with a single on-axis plasma generator can be effectively employed to obtain large-area beams, even in the presence of the guiding magnetic field. All apertures are emitting in the 499-apertured EOS. The beam current density is quite uniform up to the radius 2.5cm and gradually decreases to the periphery.

  11. Coaxial foilless diode

    Directory of Open Access Journals (Sweden)

    Long Kong

    2014-05-01

    Full Text Available A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  12. Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    2010-01-01

    Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope...

  13. Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diodes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Appel, J.; Sopori, B.; Ravindra, N. M.

    2009-02-01

    In this work, computer simulations are used to determine the influence of edge conditions on the overall performance of mesa diodes under dark and illuminated conditions. In particular, we examine the effect of edge shape on the I-V characteristics of the diode.

  14. An Active Broad Area Cooling Model of a Cryogenic Propellant Tank with a Single Stage Reverse Turbo-Brayton Cycle Cryocooler

    Science.gov (United States)

    Guzik, Monica C.; Tomsik, Thomas M.

    2011-01-01

    As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full

  15. Rapid broad area search and detection of Chinese surface-to-air missile sites using deep convolutional neural networks

    Science.gov (United States)

    Marcum, Richard A.; Davis, Curt H.; Scott, Grant J.; Nivin, Tyler W.

    2017-10-01

    We evaluated how deep convolutional neural networks (DCNN) could assist in the labor-intensive process of human visual searches for objects of interest in high-resolution imagery over large areas of the Earth's surface. Various DCNN were trained and tested using fewer than 100 positive training examples (China only) from a worldwide surface-to-air-missile (SAM) site dataset. A ResNet-101 DCNN achieved a 98.2% average accuracy for the China SAM site data. The ResNet-101 DCNN was used to process ˜19.6 M image chips over a large study area in southeastern China. DCNN chip detections (˜9300) were postprocessed with a spatial clustering algorithm to produce a ranked list of ˜2100 candidate SAM site locations. The combination of DCNN processing and spatial clustering effectively reduced the search area by ˜660X (0.15% of the DCNN-processed land area). An efficient web interface was used to facilitate a rapid serial human review of the candidate SAM sites in the China study area. Four novice imagery analysts with no prior imagery analysis experience were able to complete a DCNN-assisted SAM site search in an average time of ˜42 min. This search was ˜81X faster than a traditional visual search over an equivalent land area of ˜88,640 km2 while achieving nearly identical statistical accuracy (˜90% F1).

  16. A Novel Passive Millimeter Imager for Broad-Area Search - Final Report on Project PL09-NPMI-PD07 (PNNL-55180)

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R.; Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; Harris, Robert V.; Hall, Thomas E.; Hatchell, Brian K.; Knopik, Clint D.; Lechelt, Wayne M.; McMakin, Douglas L.; Mendoza, Albert; Severtsen, Ronald H.; Valdez, Patrick LJ

    2011-12-31

    This report describes research and development efforts toward a novel passive millimeter-wave (mm-wave) electromagnetic imaging device for broad-area search. It addresses the technical challenge of detecting anomalies that occupy a small fraction of a pixel. The purpose of the imager is to pinpoint suspicious locations for cuing subsequent higher-resolution imaging. The technical basis for the approach is to exploit thermal and polarization anomalies that distinguish man-made features from natural features.

  17. A wide area Bipolar Cascade Resonant Cavity Light Emitting Diode for a Hybrid Range-Intensity Sensor

    Science.gov (United States)

    Turner, Reginald J.

    Autonomous Ground Vehicles (AGV) will require high-speed, real-time three dimensional (3-D) image processing to navigate treacherous terrain in order to complete their assigned mission without a human in the loop. LIDAR scanners of the 3-D variety, provide the necessary area coverage for 3-D image processing, but lack the speed to deliver the collected data for real-time processing. A novel Hybrid Range-Intensity System (HRIS) has been proposed for imaging large swaths of area very rapidly. This system is comprised of two infrared cameras, an illumination source, a control and coordination system to position the cameras, and signal processing algorithms to extract the contour image of the scene. This dissertation focused on the development of an illuminator for the HRIS. This illuminator enables faster image rendering and reduces the potential of errors in return signal data, that could be generated from extremely rough terrain. Four major achievements resulted from this work, which advance the field of 3-D image acquisition. The first is that the TJ is an effective current spreading layer for LEDs with mesa width up to 140 mum and current densities of ˜ 1 x 106A/cm2. The TJ allows fabrication of an efficient illuminator, with required geometry for the HRIS to operate as a real-time 3-D imaging system. Secondly, a design for a Bipolar Cascade-Resonant Cavity Light Emitting Diode (BC-RCLED) has been accomplished, that will illuminate the FOV of the hybrid-ranged intensity system with a single sweep of the beam. This device is capable of producing ˜ 330 mW of output power. Additionally, from this work, key parameters for HRIS design were identified. Using a collection optic with a 15 cm diameter, an HRIS mounting height of 1.5 m, and a detector integration time of 330 msec, a SNR of 20 dB was achieved. Lastly, we demonstrated that the BC-RCLED designed for the HRIS can deliver sufficient energy to produce the required SNR. Also, through parametric analysis, we

  18. Austromonticola, a new genus of broad-nosed weevil (Coleoptera, Curculionidae, Entiminae from montane areas of New Zealand

    Directory of Open Access Journals (Sweden)

    Samuel D. J. Brown

    2017-10-01

    Full Text Available Austromonticola gen. n. is proposed for a group of eight New Zealand alpine broad-nosed weevil species, all of which are here described: A. atriarius sp. n. (type locality: Umbrella Mountains, Central Otago, A. caelibatus sp. n. (type locality: Ohau Range, Mackenzie, A. furcatus sp. n. (type locality: Old Man Range, Central Otago, A. inflatus sp. n. (type locality: Hawkdun Range, Central Otago, A. planulatus sp. n. (type locality: St Marys Range, Central Otago, A. postinventus sp. n. (type locality: Kirkliston Range, South Canterbury, A. mataura sp. n. (type locality: Mt Dick, Otago Lakes and A. rotundus sp. n. (type locality: Old Man Range, Central Otago. All species occur exclusively above 1000 m elevation in the mountains of Central Otago and South Canterbury in the South Island. A phylogeny of the genus, including six outgroups, was inferred from 33 morphological characters. It resolved the genus as monophyletic, and revealed two strongly supported clades within Austromonticola. DNA sequences of four gene regions were obtained from five species. Of these, the 3' end of COI proved to be the most suitable for the identification of specimens. Females of all species have diagnostic secondary sexual structures on the elytra and ventrites. These structures are hypothesised to have evolved to assist with oviposition in and beside cushion plants or by selection for structures to mitigate the costs to females of prolonged mating.

  19. Population Structure in the Model Grass Brachypodium distachyon Is Highly Correlated with Flowering Differences across Broad Geographic Areas

    Directory of Open Access Journals (Sweden)

    Ludmila Tyler

    2016-07-01

    Full Text Available The small, annual grass (L. Beauv., a close relative of wheat ( L. and barley ( L., is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS of natural variation can elucidate the genetic basis of complex traits but have been so far limited in by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS of 84 , seven , and three accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Over 90,000 high-quality single-nucleotide polymorphisms (SNPs distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the genome, which appears as a mosaic of -like and -like sequences. Analysis of more than 50,000 SNPs for the accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within populations. Our characterization elucidates genes underlying population differences, expands the germplasm resources available for , and illustrates the feasibility and limitations of GWAS in this model grass.

  20. Degradation Processes in High-Power Diode Lasers under External Optical Feedback

    DEFF Research Database (Denmark)

    Tomm, Jens. W.; Hempel, Martin; Petersen, Paul Michael

    2013-01-01

    The effect of moderate external feedback on the gradual degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is analyzed. Eventually the quantum well that actually experiences the highest total optical load remains unaffected by the aging, while severe impact...

  1. Theory of mind broad and narrow: reasoning about social exchange engages ToM areas, precautionary reasoning does not.

    Science.gov (United States)

    Ermer, Elsa; Guerin, Scott A; Cosmides, Leda; Tooby, John; Miller, Michael B

    2006-01-01

    Baron-Cohen (1995) proposed that the theory of mind (ToM) inference system evolved to promote strategic social interaction. Social exchange--a form of co-operation for mutual benefit--involves strategic social interaction and requires ToM inferences about the contents of other individuals' mental states, especially their desires, goals, and intentions. There are behavioral and neuropsychological dissociations between reasoning about social exchange and reasoning about equivalent problems tapping other, more general content domains. It has therefore been proposed that social exchange behavior is regulated by social contract algorithms: a domain-specific inference system that is functionally specialized for reasoning about social exchange. We report an fMRI study using the Wason selection task that provides further support for this hypothesis. Precautionary rules share so many properties with social exchange rules--they are conditional, deontic, and involve subjective utilities--that most reasoning theories claim they are processed by the same neurocomputational machinery. Nevertheless, neuroimaging shows that reasoning about social exchange activates brain areas not activated by reasoning about precautionary rules, and vice versa. As predicted, neural correlates of ToM (anterior and posterior temporal cortex) were activated when subjects interpreted social exchange rules, but not precautionary rules (where ToM inferences are unnecessary). We argue that the interaction between ToM and social contract algorithms can be reciprocal: social contract algorithms requires ToM inferences, but their functional logic also allows ToM inferences to be made. By considering interactions between ToM in the narrower sense (belief-desire reasoning) and all the social inference systems that create the logic of human social interaction--ones that enable as well as use inferences about the content of mental states--a broader conception of ToM may emerge: a computational model embodying

  2. Low-speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime.

    Science.gov (United States)

    Riechert, Falko; Craggs, Gordon; Meuret, Youri; Van Giel, Bart; Thienpont, Hugo; Lemmer, Uli; Verschaffelt, Guy

    2009-02-01

    We demonstrate low-speckle laser projection using a broad-area vertical-cavity surface-emitting laser (VCSEL) emitting at 840 nm wavelength as the illumination source. By driving the source in a nonmodal emission regime, we were able to achieve speckle contrast values as low as 3.5% in a realistic projection setup. This was done by driving the VCSEL with specific current pulses without using any additional or mechanically moving components to destroy the coherence of the laser beam. We quantitatively model the speckle contrast reduction based on polarization scrambling and the reduced temporal and spatial coherence of the VCSEL.

  3. Physics of failure investigation in high-power broad-area InGaAs-AlGaAs strained quantum well lasers

    Science.gov (United States)

    Sin, Yongkun; LaLumondiere, Stephen D.; Presser, Nathan; Foran, Brendan J.; Ives, Neil A.; Lotshaw, William T.; Moss, Steven C.

    2012-03-01

    Continued improvements in broad-area InGaAs-AlGaAs strained quantum well (QW) lasers have led to unprecedented performance characteristics in these lasers including optical output powers of over 20 W and power conversion efficiencies of over 70% under CW operation. Catastrophic optical mirror damage (COMD) is responsible for failures in (Al)GaAs QW lasers, but InGaAs-AlGaAs strained QW lasers with optimized facet passivation predominantly fail by catastrophic optical bulk damage (COBD). Since COBD is relatively a new failure type, it requires physics of failure investigation to understand its root causes and then develop COBD-free lasers for high reliability applications including potential satellite systems. We recently proposed a model for degradation mechanism responsible the COBD process and this paper further investigates the root causes of COBD in the lasers using various failure mode analysis techniques. We investigated reliability and degradation mechanism in MOCVD-grown broad-area InGaAs-AlGaAs strained QW single emitters. During entire accelerated life-tests of the lasers we studied, time resolved electroluminescence (TR-EL) techniques were employed to observe formation of a hot spot and subsequent formation and progression of dark spots and dark lines through windowed n-contacts.

  4. High brightness laser source based on polarization coupling of two diode lasers with asymmetric feedback

    DEFF Research Database (Denmark)

    Thestrup, B.; Chi, M.; Sass, B.

    2003-01-01

    In this letter, we show that polarization coupling and asymmetric diode-laser feedback can be used to combine two diode-laser beams with low spatial coherence into a single beam with high spatial coherence. The coupled laser source is based on two similar laser systems each consisting of a 1 mumx......200 mum broad area laser diode applied with a specially designed feedback circuit. When operating at two times threshold, 50% of the freely running system output power is obtained in a single beam with an M-2 beam quality factor of 1.6+/-0.1, whereas the M-2 values of the two freely running diode...... lasers are 29+/-1 and 34+/-1, respectively. (C) 2003 American Institute of Physics....

  5. The Fabrication and Characterization of Ni/4H-SiC Schottky Diode Radiation Detectors with a Sensitive Area of up to 4 cm2

    Directory of Open Access Journals (Sweden)

    Lin-Yue Liu

    2017-10-01

    Full Text Available Silicon carbide (SiC detectors of an Ni/4H-SiC Schottky diode structure and with sensitive areas of 1–4 cm2 were fabricated using high-quality lightly doped epitaxial 4H-SiC material, and were tested in the detection of alpha particles and pulsed X-rays/UV-light. A linear energy response to alpha particles ranging from 5.157 to 5.805 MeV was obtained. The detectors were proved to have a low dark current, a good energy resolution, and a high neutron/gamma discrimination for pulsed radiation, showing the advantages in charged particle detection and neutron detection in high-temperature and high-radiation environments.

  6. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm......High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality...

  7. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  8. Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving

    Science.gov (United States)

    Wang, Wei; Wang, Liang; Dai, Gaole; Deng, Wei; Zhang, Xiujuan; Jie, Jiansheng; Zhang, Xiaohong

    2017-10-01

    Organic field-effect transistors (OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm2 V-1 s-1, demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene (BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 × 10 cm2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed. By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm2 V-1 s-1 (average mobility 1.2 cm2 V-1 s-1) and 3.0 cm2 V-1 s-1 (average mobility 2.0 cm2 V-1 s-1), respectively. They both have a high on/off ratio ( I on/ I off) > 109. The performance can well satisfy the requirements for light-emitting diodes driving.

  9. Large area inkjet printing for organic photovoltaics and organic light emitting diodes using non-halogenated ink formulations

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; Coenen, M.J.J.; Slaats, M.W.L.; Groen, W.A.

    2014-01-01

    The transfer of laboratory scale solution processing of organic electronics to large area roll-to-roll production requires the use of up-scalable deposition techniques. Furthermore, industrial production demands the omission of halogenated and other harmful solvents. Here, the authors discuss large

  10. Improving Charge Injection via a Blade-Coating Molybdenum Oxide Layer: Toward High-Performance Large-Area Quantum-Dot Light-Emitting Diodes.

    Science.gov (United States)

    Zeng, Qunying; Xu, Zhongwei; Zheng, Congxiu; Liu, Yang; Chen, Wei; Guo, Tailiang; Li, Fushan; Xiang, Chaoyu; Yang, Yixing; Cao, Weiran; Xie, Xiangwei; Yan, Xiaolin; Qian, Lei; Holloway, Paul H

    2018-02-21

    A solution-processed molybdenum oxide (MoO x ) as the hole injection layer (HIL) by doctor-blade coating was developed to improve the efficiency and lifetime of red-emitting quantum-dot light-emitting diodes (QD-LEDs). It has been demonstrated that by adding isopropyl alcohol into the MoO x precursor during the doctor-blade coating process, the morphology, composition, and the surface electronic structure of the MoO x HIL could be tailored. A high-quality MoO x film with optimized charge injection was obtained, based on which all-solution-processed highly efficient red-emitting QD-LEDs were realized by using a low-cost doctor-blade coating technique under ambient conditions. The red QD-LEDs exhibited the maximum current efficiency and external quantum efficiency of 16 cd/A and 15.1%, respectively. Moreover, the lifetime of red devices initializing at 100 cd/m 2 was 3236 h under ambient conditions, which is about twice as long as those with a conventional poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) HIL. Large-area QD-LEDs with 4 in. emitting areas were fabricated with blade coating as well, which exhibit a high efficiency of 12.1 cd/A for red emissions. Our work paves a new way to the realization of efficient large-area QD-LEDs, and the processing and findings from this work can be expanded into next-generation lighting and flat-panel displays.

  11. An Evaluation of Light-Emitting Diode (LED) Traps at Capturing Phlebotomine Sand Flies (Diptera: Psychodidae) in a Livestock Area in Brazil.

    Science.gov (United States)

    Silva, F S; da Silva, A A; Rebêlo, J M M

    2016-05-01

    A study to evaluate the use of light-emitting diodes (LEDs) as an attractant for phlebotomine sand flies at two animal pens in a livestock area in Brazil was performed. Light-suction traps were operated overnight with the following light sources: green, blue, and incandescent (control) lights. In total, 22 individual collections were made at each site and 44 with each trap type. In total, 2,542 specimens belonging to 14 phlebotomine species were collected. The most abundant species in the light traps were Nyssomyia whitmani, Evandromyia evandroi, Micropygomyia goiana, Lutzomyia longipalpis, and Bichromomyia flaviscutellata Taking the two sites together, the green-LED light was the most attractive, followed by the blue and incandescent lights, and the difference between the green-LED and the control was statistically significant. Most species were green-biased at both sites, but some species-specific differences were observed. However, even with these differences, the standard incandescent light was outcompeted by LEDs. The green-LED-biased response observed in the present study, together with numerous advantages in favor of LEDs, suggests that the green-LED light source can be used as an effective substitute for the currently used incandescent bulb in monitoring traps for phlebotomine sand flies in Brazil. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...

  13. Non-contact measuring system in sinusoidal phase modulating interferometry using a laser diode

    Science.gov (United States)

    Pyo, Ki-Young; Lee, Geun-Young; Ryu, Weon-Jae; Kang, Young-June; Park, Nak-Kyu

    2005-12-01

    Recently, laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example Out-of-plane ESPI (Electronic Speckle Pattern Interferometry), In plane ESPI, Shearography and Holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact.

  14. Physics and Applications of Laser Diode Chaos

    CERN Document Server

    Sciamanna, Marc

    2015-01-01

    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.

  15. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  16. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2016-04-11

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.

  17. Continuous bottom temperature measurements in strategic areas of the Florida Reef Tract at the Broad Creek site, 1990 - 2006 (NODC Accession 0002786)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to document bottom seawater temperature in strategic areas of the Florida Reef Tract on a continuing basis and make that information...

  18. Coaxial foilless diode

    OpenAIRE

    Long Kong; QingXiang Liu; XiangQiang Li; ShaoMeng Wang

    2014-01-01

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode par...

  19. Diode and Diode Circuits, a Programmed Text.

    Science.gov (United States)

    Balabanian, Norman; Kirwin, Gerald J.

    This programed text on diode and diode circuits was developed under contract with the United States Office of Education as Number 4 in a series of materials for use in an electrical engineering sequence. It is intended as a supplement to a regular text and other instructional material. (DH)

  20. Predicting land use change on a broad area: Dyna-CLUE model application to the Litorale Domizio-Agro Aversano (Campania, South Italy

    Directory of Open Access Journals (Sweden)

    Stefania Pindozzi

    2017-06-01

    Full Text Available The long-standing awareness of the environmental impact of land-use change (LUC has led scientific community to develop tools able to predict their amount and to evaluate their effect on environment, with the aim supporting policy makers in their planning activities. This paper proposes an implementation of the Dyna-CLUE (Dynamic Conversion of Land Use and its Effects model applied to the Litorale Domizio-Agro Aversano, an area of Campania region, which needs interventions for environmental remediation. Future land use changes were simulated in two different scenarios developed under alternative strategies of land management: scenario 1 is a simple projection of the recent LUC trend, while scenario 2 hypothesises the introduction of no-food crops, such as poplar (Populus nigra L. and giant reed (Arundo donax L., in addition to a less impactful urban sprawl, which is one of the main issues in the study area. The overall duration of simulations was 13 years, subdivided into yearly time steps. CORINE land cover map of 2006 was used as baseline for land use change detection in the study area. Competition between different land use types is taken into account by setting the conversion elasticity, a parameter ranging from 0 to 1, according to their capital investment level. Location suitability for each land use type is based on logit model. Since no actual land use already exists for the alternative crops investigated in scenario 2, a suitability map realised through a spatial multicriteria decision analysis was used as a proxy for its land use pattern. The comparison of the land use in 2012 and scenario 1, evaluated through the application of Kappa statistics, showed a general tendency to expansion of built-up areas, with an increase of about 2400 ha (1.5% of the total surface, at the expense of agricultural land and those covered by natural vegetation. The comparison of the land use in 2012 and scenario 2 showed a less significant spread of built

  1. Single-frequency diode-pumped solid state lasers

    Science.gov (United States)

    Bollig, Christoph

    1997-11-01

    The work discussed in this thesis covers two broad areas: Novel techniques for the single-frequency operation of miniature, diode-pumped solid-state lasers and the high- power (i.e. multi-watt) operation of diode-bar end-pumped lasers in the eyesafe 2 μm wavelength region. A monolithic Nd-doped phosphate glass laser is described, in which unidirectional, hence single-frequency operation is enforced by the acousto-optic effect in the laser medium. The loss difference for the two counter- propagating waves relies on an acousto-optic self- feedback mechanism which can yield high loss differences even for very small diffraction efficiencies. Reliable single-frequency output is maintained indefinitely with an applied radio-frequency power of 0.2 W. Single- frequency output powers up to 30 mW for 400 mW of pump power are demonstrated. A technique is developed which facilitates reliable single-frequency operation of actively Q-switched lasers at repetition rates beyond the inverse lifetime of the upper laser level. Stable single-frequency operation of a Q-switched laser requires the initial establishment of a stable prelase which is free from spiking. Relying on the natural decay of spiking limits repetition rates and hence average power. Using feedback suppression of spiking, a Q-switched Nd:YAG laser is demonstrated which operates on a single frequency at repetition rates up to 25 kHz, with 88% of available cw power extracted. In the second part of this thesis, the high-power operation of diode-bar end-pumped solid-state lasers operating in the eyesafe 2 μm wavelength region is discussed. Efficient operation of a Tm:YAG laser end- pumped by a beam-shaped 20 W diode bar is demonstrated. At a mount temperature of 20oC an output beam of 4.1 W with M2 values of 1.2 and 1.4 in the orthogonal planes is obtained for 13.5 W of diode power incident on the rod. This laser is then used to intracavity-pump a Ho:YAG laser, which avoids the upconversion problems usually associated

  2. The 2010 Broad Prize

    Science.gov (United States)

    Education Digest: Essential Readings Condensed for Quick Review, 2011

    2011-01-01

    A new data analysis, based on data collected as part of The Broad Prize process, provides insights into which large urban school districts in the United States are doing the best job of educating traditionally disadvantaged groups: African-American, Hispanics, and low-income students. Since 2002, The Eli and Edythe Broad Foundation has awarded The…

  3. Broad ligament ectopic pregnancy

    OpenAIRE

    Rama C; Lepakshi G; Raju SN

    2015-01-01

    Pregnancy in the broad ligament is a rare form of ectopic pregnancy with a high risk of maternal mortality. Ultrasonography may help in the early diagnosis but mostly the diagnosis is established during surgery. We report the case of a patient with broad ligament ectopic pregnancy diagnosed intraoperatively. The patient had uneventful postoperative recovery.

  4. An all-silicon passive optical diode.

    Science.gov (United States)

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  5. Diode lasers: From laboratory to industry

    Science.gov (United States)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  6. Advanced laser diodes for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    VAWTER,GREGORY A.; MAR,ALAN; CHOW,WENG W.; ALLERMAN,ANDREW A.

    2000-01-01

    The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

  7. How does external feedback cause AlGaAs-based diode lasers to degrade?

    DEFF Research Database (Denmark)

    Hempel, Martin; Chi, Mingjun; Petersen, Paul Michael

    2013-01-01

    The effect of external feedback on the degradation of 808 nm emitting AlGaAs-based high-power broad-area diode lasers is studied. For this purpose, early stages of gradual degradation are induced by accelerated aging at high power levels. While the quantum well that actually experiences the highest...... total optical load remains unaffected, severe impact by point defects is observed on the cladding layers and the waveguide. Extended defects such as dislocations, however, are not observed in such early stages of degradation, which are accompanied by gradual power loss of a few percent only....

  8. An All-Silicon Passive Optical Diode

    OpenAIRE

    Fan, Li; Wang, Jian; Varghese, Leo T.; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M.; Qi, Minghao

    2011-01-01

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input pow...

  9. Comparison of Adult Mosquito Black-Light and Light-Emitting Diode Traps at Three Cowsheds Located in Malaria-Endemic Areas of the Republic of Korea.

    Science.gov (United States)

    Kim, Heung-Chul; Kim, Myung-Soon; Choi, Kwang-Shik; Hwang, Do-Un; Johnson, Jaree L; Klein, Terry A

    2017-01-01

    Adult mosquito surveillance and field trials evaluated selected commercially available ultraviolet black-light (BL) and light-emitting diode (LED) traps at three sites where vivax malaria is endemic from May to October 2015 in northwestern Republic of Korea. Collections totaled 283,929 adult mosquitoes (280,355 [98.74%] females and 3,574 [1.26%] males) comprising 17 species (including six members of the Anopheles Hyrcanus Group) belonging to six genera. The four most predominant female species collected were Aedes vexans nipponii (Theobald) (83.84%), followed by Anopheles Hyrcanus Group (13.66%), Culex pipiens Group (1.67%), and Culex tritaeniorhynchus Giles (0.54%). Overall, LED traps (188,125) collected significantly more female mosquitoes compared with BL traps (92,230; P = 0.0001, P < 0.05). Results from these field evaluations significantly enhance vector and disease surveillance efforts, especially for the primary vectors of malaria (Anopheles Hyrcanus Group) and Japanese encephalitis (Cx. tritaeniorhynchus). Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  10. Phosphor converted laser diode light source for endoscopic diagnostics

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    In order to provide light sources for endourology and on-site testing of the light source, we are developing a portable endoscope light source prototype based on a phosphor converted laser diode. A small emitting area from the phosphor material excited by a laser diode enables coupling...

  11. Distributed Bragg reflector Pb/sub 1/. sqrt. /sub x/Sn/sub x/SePb/sub 1/. sqrt. /sub x/. sqrt. /sub y/Eu/sub y/Sn/sub x/Se diode lasers with a broad single-mode tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Shani, Y.; Rosman, R.; Katzir, A.; Norton, P.; Tacke, M.; Preier, H.M.

    1988-06-01

    Distributed Bragg reflector Pb/sub 1/..sqrt../sub x/Sn/sub x/SePb/sub 1/..sqrt../sub x/..sqrt../sub y/Eu/sub y/Sn/sub x/Se double heterostructure stripe geometry diode lasers were fabricated using molecular-beam epitaxy. Single-mode cw operation at about 7.8 ..mu..m was obtained for heat-sink temperatures in the range 25--75 K. the single-mode continuous tuning range was 10 cm/sup -1/. Tuning the diodes via the injection current, a range of 24 cm/sup -1/ was completely covered with single-mode emission. The reason for this wide tuning range was mode hopping to lower frequencies rather than the usual hopping to higher frequencies

  12. Precise matching of diodes

    Science.gov (United States)

    Mclyman, W. T.

    1979-01-01

    Two circuit arrangements using ac and dc power source provide low-cost method for matching forward voltage drops of diodes and other semiconductors. Both circuits are simpler and less expensive than conventional, characteristic-curve tracers.

  13. Light-emitting Diodes

    Science.gov (United States)

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  14. Quasi-monolithic ring resonator for efficient frequency doubling of an external cavity diode laser

    Science.gov (United States)

    Skoczowsky, D.; Jechow, A.; Stürmer, H.; Poßner, T.; Sacher, J.; Menzel, R.

    2010-03-01

    A quasi-monolithic second-harmonic-generation ring resonator assembled with miniaturized components is presented. The ring contains a 10-mm-long bulk periodically poled lithium niobate crystal for second-harmonic generation, four plane mirrors and two gradient-index lenses. All parts are mounted on a glass substrate with an overall size of 19.5 mm×8.5 mm×4 mm. As pump source a broad-area laser diode operated in an external resonator with Littrow arrangement is utilized. This external cavity diode laser provides near diffraction limited, narrow-bandwidth emission with an optical output power of 450 mW at a wavelength of 976 nm. Locking of the diode laser emission to the resonance frequency of the ring cavity was achieved by an optical self-injection locking technique. With this setup more than 126 mW of diffraction-limited blue light at 488 nm could be generated. The opto-optical conversion efficiency was 28% and a wall plug efficiency better than 5.5% could be achieved.

  15. Silicon monolithic microchannel-cooled laser diode array

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, J. A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States); Freitas, B. L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States); Crawford, J. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States); Satariano, J. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States); Utterback, E. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States); DiMercurio, L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States); Cutter, K. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States); Sutton, S. [Lawrence Livermore National Laboratory, P.O. Box 808, L-482, Livermore, California 94551 (United States)

    2000-07-03

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm{sup 2} is achieved cw at an emission wavelength of {approx}808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics.

  16. The heteroisomeric diode

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Anthony N [Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588-0111 (United States); Billa, Ravi B [College of Engineering and Technology and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Balaz, Snjezana [Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588-0111 (United States); Brand, Jennifer I [College of Engineering and Technology and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Dowben, P A [Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska-Lincoln, Lincoln, NE 68588-0111 (United States)

    2004-03-17

    We have fabricated a new class of diode from two different polytypes of boron carbide. Diodes were fabricated by chemical vapour deposition from two different isomers of closo-dicarbadodecaborane: closo-1,2-dicarbadodecaborane (orthocarborane, C{sub 2}B{sub 10}H{sub 12}) and closo-1,7-dicarbadodecaborane (metacarborane, C{sub 2}B{sub 10}H{sub 12}), differing only by the carbon placement within the icosahedral cage. We find that the electronic structure (molecular orbitals) of these two isomer molecules and the resulting decomposition reflect the tendency of metacarborane to form an n-type semiconductor while orthocarborane is an effective source compound for a slightly p-type semiconducting boron carbide. The diodes of this novel class are effective solid state neutron detectors, and have a number of unique applications. (letter to the editor)

  17. Hyperchaos via X-Diode

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, A.; Cenys, A.

    1998-01-01

    A Chaos diode (X-diode) with a hysteric current-voltage characteristic has been used to generate hyperchaotic oscillations characterized with multiple positive Lyapunov exponents. The hyperchaotic oscillators comprise a X-diode in parallel with an M'th order LC loop (M.GE.4). Numerical simulations...

  18. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  19. Silicon Schottky Diode Safe Operating Area

    Science.gov (United States)

    Casey, Megan C.; Campola, Michael J.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Phan, Anthony M.; LaBel, Kenneth A.

    2016-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  20. Light-emitting diode.

    Science.gov (United States)

    Gold, Michael H

    2011-01-01

    Light-emitting diode (LED) photomodulation has become a recognized player in the world of lasers and light sources. It is used to treat a variety of clinical entities, including photorejuvenation, erythema-induced injury following laser and other cosmetic procedures, and acne vulgaris. Its use has increased and will increase further as our understanding of LED devices deepens. Copyright © 2011 S. Karger AG, Basel.

  1. Infrared diode lasers

    Science.gov (United States)

    Lo, Wayne

    1981-01-01

    This paper reviews the development of infrared diode lasers for automobile exhaust gas analysis and high resolution spectroscopy at the General Motors Research Laboratories. Advances in lead-salt crystal growth technology and laser fabrication techniques to achieve high temperature operation and wide frequency tuning range will be discussed. Recent developments in improving the long-term reliability of the laser will also be reviewed.

  2. Broad-Band Activatable White-Opsin.

    Directory of Open Access Journals (Sweden)

    Subrata Batabyal

    Full Text Available Currently, the use of optogenetic sensitization of retinal cells combined with activation/inhibition has the potential to be an alternative to retinal implants that would require electrodes inside every single neuron for high visual resolution. However, clinical translation of optogenetic activation for restoration of vision suffers from the drawback that the narrow spectral sensitivity of an opsin requires active stimulation by a blue laser or a light emitting diode with much higher intensities than ambient light. In order to allow an ambient light-based stimulation paradigm, we report the development of a 'white-opsin' that has broad spectral excitability in the visible spectrum. The cells sensitized with white-opsin showed excitability at an order of magnitude higher with white light compared to using only narrow-band light components. Further, cells sensitized with white-opsin produced a photocurrent that was five times higher than Channelrhodopsin-2 under similar photo-excitation conditions. The use of fast white-opsin may allow opsin-sensitized neurons in a degenerated retina to exhibit a higher sensitivity to ambient white light. This property, therefore, significantly lowers the activation threshold in contrast to conventional approaches that use intense narrow-band opsins and light to activate cellular stimulation.

  3. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  4. Cryogenic thermal diode heat pipes

    Science.gov (United States)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  5. Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials

    Science.gov (United States)

    Li, Nianbei; Ren, Jie

    2014-01-01

    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668

  6. Diode laser applications in urology

    Science.gov (United States)

    Sam, Richard C.; Esch, Victor C.

    1995-05-01

    Diode lasers are air-cooled, efficient, compact devices which have the potential of very low cost when produced in quantity. The characteristics of diode lasers are discussed. Their applications in interstitial thermal treatment of the prostate, and laser ablation of prostate tissues, will be presented.

  7. Light Emitting Diode (LED)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  8. Accurate diode behavioral model with reverse recovery

    Science.gov (United States)

    Banáš, Stanislav; Divín, Jan; Dobeš, Josef; Paňko, Václav

    2018-01-01

    This paper deals with the comprehensive behavioral model of p-n junction diode containing reverse recovery effect, applicable to all standard SPICE simulators supporting Verilog-A language. The model has been successfully used in several production designs, which require its full complexity, robustness and set of tuning parameters comparable with standard compact SPICE diode model. The model is like standard compact model scalable with area and temperature and can be used as a stand-alone diode or as a part of more complex device macro-model, e.g. LDMOS, JFET, bipolar transistor. The paper briefly presents the state of the art followed by the chapter describing the model development and achieved solutions. During precise model verification some of them were found non-robust or poorly converging and replaced by more robust solutions, demonstrated in the paper. The measurement results of different technologies and different devices compared with a simulation using the new behavioral model are presented as the model validation. The comparison of model validation in time and frequency domains demonstrates that the implemented reverse recovery effect with correctly extracted parameters improves the model simulation results not only in switching from ON to OFF state, which is often published, but also its impedance/admittance frequency dependency in GHz range. Finally the model parameter extraction and the comparison with SPICE compact models containing reverse recovery effect is presented.

  9. Emitron: microwave diode

    Science.gov (United States)

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  10. Nanowire resonant tunneling diodes

    Science.gov (United States)

    Björk, M. T.; Ohlsson, B. J.; Thelander, C.; Persson, A. I.; Deppert, K.; Wallenberg, L. R.; Samuelson, L.

    2002-12-01

    Semiconductor heterostructures and their implementation into electronic and photonic devices have had tremendous impact on science and technology. In the development of quantum nanoelectronics, one-dimensional (1D) heterostructure devices are receiving a lot of interest. We report here functional 1D resonant tunneling diodes obtained via bottom-up assembly of designed segments of different semiconductor materials in III/V nanowires. The emitter, collector, and the central quantum dot are made from InAs and the barrier material from InP. Ideal resonant tunneling behavior, with peak-to-valley ratios of up to 50:1 and current densities of 1 nA/μm2 was observed at low temperatures.

  11. The Broad Superintendents Academy, 2007

    Science.gov (United States)

    Broad Foundation, 2007

    2007-01-01

    The Broad Superintendents Academy is an executive training program that identifies and prepares prominent leaders--executives with experience successfully leading large organizations and a passion for public service--then places them in urban school districts to dramatically improve the quality of education for America's students. This brochure…

  12. Areas of Active Tectonic Uplift Are Sensitive to Small Changes in Fold Orientations within a Broad Zone of Left-lateral Transpression and Shearing, Dominican Republic and Haiti (Hispaniola)

    Science.gov (United States)

    Ambrosius, I.; Mann, P.

    2014-12-01

    Previous GPS studies have shown that the island of Hispaniola is a 250 km-wide zone of active, east-west, left-lateral shearing along two major strike-slip zones: the Septentrional-Oriente fault zone through the northern part of the island and the Enriquillo-Plantain Garden fault zone (EPGFZ) through the southern part of the island. The total interplate rate distributed on both faults is 21 mm/yr. Using a high-resolution DEM, we constructed fluvial channel profiles across transpression-related folds of late Miocene to recent age in the area of central and southern Dominican Republic and Haiti to determine controls of areas of relatively high, moderate, and slow uplift inferred from fluvial channel profiles. Fold axes in this area extend for 50-150 km and exhibit two different trends: 1) folds that occupy the area of the Sierra de Neiba-Chaine des Matheux north of the Enriquillo-Cul-de-Sac Valley and EPGFZ and folds that occupy the area of the Sierra de Bahoruco-Massif de la Selle all exhibit more east-west fold axes trending 110; 2) folds that occupy the area northwest of the EPGFZ in the western Chaine des Matheux and Sierra de Neiba all exhibit fold axes with more northwest trends of 125. River channel profiles show that the second group of more northwesterly-trending fold axes show relatively higher rates of tectonic uplift based on their convex-upward river profiles. Our interpretation for regional variations in river profiles and inferred uplift is that uplift is more pronounced on fold axes trending 15 degrees more to the northwest because their axes are more oblique to the interplate direction of east-west shearing. Longterm uplift rates previously measured from a stairstep of late Quaternary coral terraces at the plunging nose of the westernmost Chaine des Matheux have been previously shown to be occurring at a rate of 0.19 mm/yr. Onland exposures of Holocene corals are found only on one locality within the southern area of folds 30 km west of the epicenter

  13. Physical based Schottky barrier diode modeling for THz applications

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Michaelsen, Rasmus Schandorph

    2013-01-01

    temperature. The effects of barrier height lowering, nonlinear resistance from the EPI layer, and hot electron noise are all included for accurate characterization of the Schottky diode. To verify the diode model, measured I-V and C-V characteristics are compared with the simulation results. Due to the lack......In this work, a physical Schottky barrier diode model is presented. The model is based on physical parameters such as anode area, Ohmic contact area, doping profile from epitaxial (EPI) and substrate (SUB) layers, layer thicknesses, barrier height, specific contact resistance, and device...... of measurement data for noise behaviors, simulated noise temperature is compared with the experimental data found from the open literature....

  14. Enhanced vbasis laser diode package

    Science.gov (United States)

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  15. A Single-Molecule Diode

    National Research Council Canada - National Science Library

    Mark Elbing; Rolf Ochs; Max Koentopp; Matthias Fischer; Carsten von Hänisch; Florian Weigend; Ferdinand Evers; Heiko B. Weber; Marcel Mayor; Mark A. Ratner

    2005-01-01

    ...-systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current-voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode...

  16. Light Emitting Diodes (LEDs)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  17. A broad-application microchannel-plate detector system for advanced particle or photon detection tasks large area imaging, precise multi-hit timing information and high detection rate

    CERN Document Server

    Jagutzki, O; Mergel, V; Schmidt-Böcking, H; Spielberger, L; Spillmann, U; Ullmann-Pfleger, K

    2002-01-01

    New applications for single particle and photon detection in many fields require both large area imaging performance and precise time information on each detected particle. Moreover, a very high data acquisition rate is desirable for most applications and eventually the detection and imaging of more than one particle arriving within a microsecond is required. Commercial CCD systems lack the timing information whereas other electronic microchannel plate (MCP) read-out schemes usually suffer from a low acquisition rate and complicated and sometimes costly read-out electronics. We have designed and tested a complete imaging system consisting of an MCP position readout with helical wire delay-lines, single-unit amplifier box and PC-controlled time-to-digital converter (TDC) readout. The system is very flexible and can detect and analyse position and timing information at single particle rates beyond 1 MHz. Alternatively, multi-hit events can be collected and analysed at about 20 kHz rate. We discuss the advantage...

  18. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  19. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (third report): spectroscopic imaging for broad-area and real-time componential analysis system against local unexpected terrorism and disasters

    Science.gov (United States)

    Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro

    2016-05-01

    The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.

  20. Light-emitting diodes in dermatology: stimulation of wound healing

    Directory of Open Access Journals (Sweden)

    Justyna Fryc

    2016-05-01

    Full Text Available Low-level light therapy (LLLT, which is sometimes included in phototherapy, is an effective therapeutic strategy to improve wound healing and reduce pain, inflammation and swelling. Nowadays, new sources of light, such as light-emitting diodes (LEDs with a broad range of wavelengths, are widely available. The biological effects promoted by LEDs are dependent on irradiation parameters, mainly wavelength and dose. This review article focuses on recent clinical trials using light-emitting diode low-level light therapy (LED-LLLT for enhancing wound healing. In this article, we also cover the mechanisms of action of LLLT on cells and tissues and highlight the importance of defining optimum LLLT parameters for stimulation of wound healing.

  1. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics.

    Science.gov (United States)

    Shin, Gunchul; Gomez, Adrian M; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C; Samineni, Vijay K; Mickle, Aaron D; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Tae-Il; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W; Ha, Jeong Sook; Bruchas, Michael R; Rogers, John A

    2017-02-08

    In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Measurement of atmospheric carbon dioxide and water vapor in built-up urban areas in the Gandhinagar-Ahmedabad region in India using a portable tunable diode laser spectroscopy system.

    Science.gov (United States)

    Roy, Anirban; Sharma, Neetesh Kumar; Chakraborty, Arup Lal; Upadhyay, Abhishek

    2017-11-01

    This paper reports open-path in situ measurements of atmospheric carbon dioxide at Gandhinagar (23.2156°N, 72.6369°E) and Ahmedabad (23.0225°N, 72.5714°E) in the heavily industrialized state of Gujarat in western India. Calibration-free second harmonic wavelength modulation spectroscopy (2f WMS) is used to carry out accurate and fully automated measurements. The mean values of the mole fraction of carbon dioxide at four locations were 438 ppm, 495 ppm, 550 ppm, and 740 ppm, respectively. These values are much higher than the current global average of 406.67 ppm. A 1 mW, 2004-nm vertical cavity surface-emitting laser is used to selectively interrogate the R16 transition of carbon dioxide at 2003.5 nm (4991.2585 cm-1). The 2f WMS signal corresponding to the gas absorption line shape is simulated using spectroscopic parameters available in the HITRAN database and relevant laser parameters that are extracted in situ from non-absorbing spectral wings of the harmonic signals. The mole fraction of carbon dioxide is extracted in real-time by a MATLAB program from least-squares fit of the simulated 2f WMS signal to the corresponding experimentally obtained signal. A 10-mW, 1392.54-nm distributed feedback laser is used at two of the locations to carry out water vapor measurements using direct absorption spectroscopy. This is the first instance of a portable tunable diode laser spectroscopy system being deployed in an urban location in India to measure atmospheric carbon dioxide and water vapor under varying traffic conditions. The measurements clearly demonstrate the need to adopt tunable diode laser spectroscopy for precise long-term monitoring of greenhouse gases in the Indian subcontinent.

  3. Laser Diode Beam Basics, Manipulations and Characterizations

    CERN Document Server

    Sun, Haiyin

    2012-01-01

    Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and  Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order...

  4. Mounting for diodes provides efficient heat sink

    Science.gov (United States)

    1964-01-01

    Efficient heat sink is provided by soldering diodes to metal support bars which are brazed to a ceramic base. Electrical connections between diodes on adjacent bars are made flexible by metal strips which aid in heat dissipation.

  5. Extremely stable temperature characteristics of 1550-nm band, p-doped, highly stacked quantum-dot laser diodes

    Science.gov (United States)

    Matsumoto, Atsushi; Akahane, Kouichi; Umezawa, Toshimasa; Yamamoto, Naokatsu

    2017-04-01

    We fabricated 1.55-µm band, broad-area, p-doped, 30-layer stacked quantum-dot (QD) laser diodes (LDs) grown on an InP(311)B substrate via a delta-doping method employing a strain compensation technique. We doped Be atoms to a depth of 5 nm from the bottom of each QD layer. The concentration of Be atoms doped in the InGaAlAs spacer layer was 1 × 1018 cm-3. We observed a strong photoluminescence emission and a relatively coherent surface of QDs using atomic force microscopy. In addition, we observed that the fabricated QD-LDs had extremely stable temperature characteristics, and a characteristic temperature T 0 of more than 2156 K was obtained.

  6. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  7. Towards substrate engineering of graphene-silicon Schottky diode photodetectors.

    Science.gov (United States)

    Selvi, Hakan; Unsuree, Nawapong; Whittaker, Eric; Halsall, Matthew P; Hill, Ernie W; Thomas, Andrew; Parkinson, Patrick; Echtermeyer, Tim J

    2018-02-01

    Graphene-silicon Schottky diode photodetectors possess beneficial properties such as high responsivities and detectivities, broad spectral wavelength operation and high operating speeds. Various routes and architectures have been employed in the past to fabricate devices. Devices are commonly based on the removal of the silicon-oxide layer on the surface of silicon by wet-etching before deposition of graphene on top of silicon to form the graphene-silicon Schottky junction. In this work, we systematically investigate the influence of the interfacial oxide layer, the fabrication technique employed and the silicon substrate on the light detection capabilities of graphene-silicon Schottky diode photodetectors. The properties of devices are investigated over a broad wavelength range from near-UV to short-/mid-infrared radiation, radiation intensities covering over five orders of magnitude as well as the suitability of devices for high speed operation. Results show that the interfacial layer, depending on the required application, is in fact beneficial to enhance the photodetection properties of such devices. Further, we demonstrate the influence of the silicon substrate on the spectral response and operating speed. Fabricated devices operate over a broad spectral wavelength range from the near-UV to the short-/mid-infrared (thermal) wavelength regime, exhibit high photovoltage responses approaching 106 V W-1 and short rise- and fall-times of tens of nanoseconds.

  8. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  9. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  10. Efficient broad color luminescence from InGaN/GaN single quantum-well nanocolumn crystals on Si (111) substrate

    Science.gov (United States)

    Zhang, Wei; Zhang, Xuehua; Wang, Yongjin; Hu, Fangren

    2017-10-01

    Nanocolumn InGaN/GaN single quantum well crystals were deposited on Si (111) substrate with nitrified Ga dots as buffer layer. Transmission electron microscopy image shows the crystals' diameter of 100-130 nm and length of about 900 nm. Nanoscale spatial phase separation of cubic and hexagonal GaN was observed by selective area electron diffraction on the quantum well layer. Raman spectrum of the quantum well crystals proved that the crystals were fully relaxed. Room temperature photoluminescence from 450 to 750 nm and full width at half maximum of about 420 meV indicate broad color luminescence covering blue, green, yellow and red emission, which is helpful for the fabrication of tunable optoelectronic devices and colorful light emitting diodes.

  11. Broad Area Wireless Networking Via High Altitude Platforms

    Science.gov (United States)

    2013-06-01

    Multiplexing ORS Operationally Responsive Space OSINT Open-Source Intelligence PTMP Point To Multi-Point PTP Point To Point QOS Quality Of...Intelligence (SIGINT), Measurement and Signature Intelligence (MASINT), Human Resources Intelligence (HUMINT), and Open-Source Intelligence ( OSINT ) [34

  12. Broad ion beam serial section tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, B., E-mail: b.winiarski@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Materials Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Gholinia, A. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Mingard, K.; Gee, M. [Materials Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thompson, G.E.; Withers, P.J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-01-15

    Here we examine the potential of serial Broad Ion Beam (BIB) Ar{sup +} ion polishing as an advanced serial section tomography (SST) technique for destructive 3D material characterisation for collecting data from volumes with lateral dimensions significantly greater than 100 µm and potentially over millimetre sized areas. Further, the associated low level of damage introduced makes BIB milling very well suited to 3D EBSD acquisition with very high indexing rates. Block face serial sectioning data registration schemes usually assume that the data comprises a series of parallel, planar slices. We quantify the variations in slice thickness and parallelity which can arise when using BIB systems comparing Gatan PECS and Ilion BIB systems for large volume serial sectioning and 3D-EBSD data acquisition. As a test case we obtain 3D morphologies and grain orientations for both phases of a WC-11%wt. Co hardmetal. In our case we have carried out the data acquisition through the manual transfer of the sample between SEM and BIB which is a very slow process (1–2 slice per day), however forthcoming automated procedures will markedly speed up the process. We show that irrespective of the sectioning method raw large area 2D-EBSD maps are affected by distortions and artefacts which affect 3D-EBSD such that quantitative analyses and visualisation can give misleading and erroneous results. Addressing and correcting these issues will offer real benefits when large area (millimetre sized) automated serial section BIBS is developed. - Highlights: • In this work we examine how microstructures can be reconstructed in three-dimensions (3D) by serial argon broad ion beam (BIB) milling, enabling much larger volumes (>250×250×100µm{sup 3}) to be acquired than by serial section focused ion beam-scanning electron microscopy (FIB-SEM). • The associated low level of damage introduced makes BIB milling very well suited to 3D-EBSD acquisition with very high indexing rates. • We explore

  13. Monolithic ring resonator with PPLN crystal for efficient cw SHG of 976 nm emitted by a diode laser

    Science.gov (United States)

    Skoczowsky, Danilo; Jechow, Andreas; Stürmer, Herbert; Poßner, Torsten; Stry, Sandra; Sacher, Joachim; Menzel, Ralf

    2009-02-01

    A new setup for efficient blue light generation that consists of two passively coupled optical resonators is presented. The first resonator is based on a broad area laser diode (BAL) in a Littrow external cavity with a special off-axis design. This external cavity diode laser provides more than 450 mW diffraction limited and narrow bandwidth emission at 976 nm. A compact cavity design with 40 mm length could be realized. The second resonator is a monolithic high finesse ring cavity containing a 10 mm bulk periodically poled lithium niobate (PPLN) crystal for resonant second harmonic generation. This ring resonator consists of four small mirrors with appropriate reflectivities and two GRIN lenses for stability reasons. All parts of this ring cavity are mounted monolithically on a glass substrate with a size of 19.5 mm x 8.5 mm. First experiments showed good passive matching of both cavities without any active closed-loop control. With this setup efficient SHG was achieved. A maximum optical output power of 70 mW blue light at 488 nm was obtained. The conversion efficiency was better than 15%.

  14. The 60 GHz IMPATT diode development

    Science.gov (United States)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  15. Tunable continuous wave single-mode dye laser directly pumped by a diode laser

    Science.gov (United States)

    Stefanska, D.; Suski, M.; Furmann, B.

    2017-04-01

    In this work, a tunable continuous wave single-mode ring dye laser (a modified version of Coherent model CR 699-21), directly optically pumped by an economy-class diode laser, has been set up. The laser was operated on Coumarin 498, and its generation profile covered part of the green spectral region not easily accessible in single-mode operation. The performance of the laser in both broad-band and single-mode operation regimes was studied. It was proved that optical pumping by diode lasers allows one to obtain single-mode operation of dye lasers that is sufficiently stable for high-resolution spectroscopy applications.

  16. Operational characteristics and analysis of the immersed-Bz diode on RITS-3.

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, Nichelle " Nicki" ; Oliver, Bryan Velten; Portillo, Salvador; Puetz, Elizabeth A.; Johnston, Mark D.; Welch, Dale Robert; Rose, David Vincent; Cooper, G.M. (AWE, Aldermaston, Reading, United Kingdom); McLean, John (AWE, Aldermaston, Reading, United Kingdom); Rovang, Dean Curtis; Maenchen, John Eric

    2006-02-01

    The immersed-B{sub z} diode is being developed as a high-brightness, flash x-ray radiography source. This diode is a foil-less electron-beam diode with a long, thin, needle-like cathode inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces bremsstrahlung. We report on an extensive series of experiments where an immersed-B{sub z} diode was fielded on the RITS-3 pulsed power accelerator, a 3-cell inductive voltage generator that produced peak voltages between 4 and 5 MV, {approx}140 kA of total current, and power pulse widths of {approx}50 ns. The diode is a high impedance device that, for these parameters, nominally conducts {approx}30 kA of electron beam current. Diode operating characteristics are presented and two broadly characterized operating regimes are identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous impedance collapse regime where the total diode current is in excess of the bipolar limit and up to the full accelerator current. The operating regimes are approximately separated by cathode diameters greater than {approx}3 mm for the nominal regime and less than {approx} 3 mm for the anomalous impedance collapse regime. This report represents a compilation of data taken on RITS-3. Results from key parameter variations are presented in the main body of the report and include cathode diameter, anode-cathode gap, and anode material. Results from supporting parameter variations are presented in the appendices and include magnetic field strength, prepulse, pressure and accelerator variations.

  17. High performance MIIM diode based on cobalt oxide/titanium oxide

    Science.gov (United States)

    Herner, S. B.; Weerakkody, A. D.; Belkadi, A.; Moddel, G.

    2017-05-01

    Optical rectennas for infrared energy harvesting commonly incorporate metal/double-insulator/metal diodes. Required diode characteristics include high responsivity and low resistance near zero bias with a sub-micron area, which have not been obtainable simultaneously. Diodes based on a new material set, Co/Co3O4/TiO2/Ti and an area of 0.071 μm2, provide a median maximum responsivity of 4.1 A/W, a median zero-bias responsivity of 1.2 A/W, and a median resistance of 14 kΩ. The highest performing diode has a maximum responsivity of 4.4 A/W, a zero-bias responsivity of 2.2 A/W, and a resistance of 18 kΩ.

  18. Microlens frames for laser diode arrays

    Science.gov (United States)

    Skidmore, J.A.; Freitas, B.L.

    1999-07-13

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

  19. Destructive Single-Event Failures in Diodes

    Science.gov (United States)

    Casey, Megan C.; Gigliuto, Robert A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Kim, Hak; Chen, Dakai; Phan, Anthony M.; LaBel, Kenneth A.

    2013-01-01

    In this summary, we have shown that diodes are susceptible to destructive single-event effects, and that these failures occur along the guard ring. By determining the last passing voltages, a safe operating area can be derived. By derating off of those values, rather than by the rated voltage, like what is currently done with power MOSFETs, we can work to ensure the safety of future missions. However, there are still open questions about these failures. Are they limited to a single manufacturer, a small number, or all of them? Is there a threshold rated voltage that must be exceeded to see these failures? With future work, we hope to answer these questions. In the full paper, laser results will also be presented to verify that failures only occur along the guard ring.

  20. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    OpenAIRE

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; TERASHITA, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by ir...

  1. Characterisation of Silicon Pad Diodes

    CERN Document Server

    Hodson, Thomas Connor

    2017-01-01

    Silicon pad sensors are used in high luminosity particle detectors because of their excellent timing resolution, radiation tolerance and possible high granularity. The effect of different design decisions on detector performance can be investigated nondestructively through electronic characterisation of the sensor diodes. Methods for making accurate measurements of leakage current and cell capacitance are described using both a standard approach with tungsten needles and an automated approach with a custom multiplexer and probing setup.

  2. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  3. Molecular diodes in optical rectennas

    Science.gov (United States)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  4. High power, high efficiency continuous-wave 808 nm laser diode arrays

    Science.gov (United States)

    Wang, Zhenfu; Li, Te; Yang, Guowen; Song, Yunfei

    2017-12-01

    The continuous-wave 100 W-class 808 nm laser diode arrays with extremely high power conversion efficiency of 68% were reported at the heatsink temperature of 25 °C. To the best of our knowledge, this was the highest power conversion efficiency at continuous-wave 106 W 808 nm laser diode array with 50% fill factor so far. An asymmetric broad waveguide epitaxial structure with very low internal optical loss of 0.5 cm-1 was presented. In order to improve the efficiency, various fill factor devices were studied. The 50 W laser diode array with 30% fill factoir and 1.0 mm cavity length demonstrated power conversion efficiency of 71% at heatsink temperature of 15 °C.

  5. Fundamental Studies of Jumping-Drop Thermal Diodes

    Science.gov (United States)

    2016-02-29

    injection and vacuum pumping (visible in Figure 2a inset). The opposing superhydrophilic surface (Figure 2b) consisted of copper wick sintered to a...sectional area as the diode (76 mm x 76 mm). The backside of the heater was wrapped with insulating rubber foam to minimize heat leakage. The cooling was...and heated, so there would be no jumping drops. Note that the heater plate and the insulating foam were removed from the images in Figure 4 (a) and

  6. Infusing Multiculturalism into the Curriculum Through Broad Themes

    Science.gov (United States)

    Stewart, William J.

    1978-01-01

    Appropriate curriculum development strategies can result in the organization of instructional objectives, content, and activities around broad themes and the students' real-life experiences. Four basic areas of living, with substantial culturally pluralistic elements, are family life, community life, human relations, and the American cultural…

  7. Selection of common bean to broad environmental adaptation in Haiti

    Science.gov (United States)

    Common bean (Phaseolus vulgaris L.) cultivars in Haiti need adaptation to a broad range of environments and resistance to the most important diseases such as Bean Golden Yellow Mosaic Virus. The Legume Breeding Program (LBP), a collaborative effort of the AREA project (USAID funded through IFAS/Univ...

  8. Electromagnetic wave analogue of electronic diode

    OpenAIRE

    Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...

  9. [The broad bean's syndrome in ancient Egypt].

    Science.gov (United States)

    Lippi, D

    1989-01-01

    The problem of broad bean's syndrome and lathyrism in ancient Greece has been deeply studied, with particular referrement to the hypothetic medica and mystical reasons of the Pythagoric order not to eat broad beans. It is impossible to prove Egyptian influence of Phythagora's precept, but we can, however, consider the hypothesis that they had noticed the potential deadly effect of broad beans' use, too, and wonder if their interduction had the same motivations.

  10. Microwave diode switchable metamaterial reflector/absorber

    Science.gov (United States)

    Xu, Wangren; Sonkusale, Sameer

    2013-07-01

    We embed diodes as active circuit elements within a metamaterial to implement a switchable metamaterial reflector/absorber at microwave frequencies. Diodes are placed in series with the unit cells of the metamaterial array. This results in just a pair of control lines to actively tune all the diodes in a metamaterial. Diodes can be tuned on and off to switch the function of the metamaterial between a perfect absorber and a reflector. The design, simulation, and experimental results of a switchable reflector/absorber in 2-6 GHz range are presented.

  11. A broad view of arsenic.

    Science.gov (United States)

    Jones, F T

    2007-01-01

    In the mind of the general public, the words "arsenic" and "poison" have become almost synonymous. Yet, As is a natural metallic element found in low concentrations in virtually every part of the environment, including foods. Mining and smelting activities are closely associated with As, and the largest occurrence of As contamination in the United States is near the gold mines of northern Nevada. Inhabitants of Bangladesh and surrounding areas have been exposed to water that is naturally and heavily contaminated with As, causing what the World Health Organization has described as the worst mass poisoning in history. Although readily absorbed by humans, most inorganic As (>90%) is rapidly cleared from the blood with a half-life of 1 to 2 h, and 40 to 70% of the As intake is absorbed, metabolized, and excreted within 48 h. Arsenic does not appreciably bioaccumulate, nor does it biomagnify in the food chain. The United States has for some time purchased more As than any other country in the world, but As usage is waning, and further reductions appear likely. Arsenic is used in a wide variety of industrial applications, from computers to fireworks. All feed additives used in US poultry feeds must meet the strict requirements of the US Food and Drug Administration Center for Veterinary Medicine (Rockville, MD) before use. Although some public health investigators have identified poultry products as a potentially significant source of total As exposure for Americans, studies consistently demonstrate that <1% of samples tested are above the 0.5 ppm limit established by the US Food and Drug Administration Center for Veterinary Medicine. Although laboratory studies have demonstrated the possibility that As in poultry litter could pollute ground waters, million of tons of litter have been applied to the land, and no link has been established between litter application and As contamination of ground water. Yet, the fact that <2% of the United States population is involved in

  12. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  13. The anomalous tides near Broad Sound

    Science.gov (United States)

    Middleton, Jason H.; Buchwald, V. T.; Huthnance, John M.

    Observations of tidal current and height, in conjunction with theoretical mathematical models are used to investigate the propagation of the tide near Broad Sound, a narrowing estuary situated on a wide section of continental shelf toward the southern end of the Great Barrier Reef. The observations indicate that the dense offshore reefs severely inhibit tidal flow, with the result that tides flood toward Broad Sound from the north and from the south, along the main lagoon. There is a local magnification of the semi-diurnal tides within Broad Sound itself. Models of flow across reefs confirm the effectiveness of dense, shallow, and broad reefs in acting as a barrier to the tide. The diffraction of tides through large gaps in the reef is modelled using conformal mapping techniques and with the inclusion of energy leakage, the diffraction model predicts magnification of the semi-diurnal tidal heights by a factor of about 4 and a phase lag of 3 h on the shelf near Broad Sound, these values being consistent with observation. The observed convergence of the tide close to, and within Broad Sound itself is consistent with the proximity of the semi-diurnal tidal period to the natural period for flow in Broad Sound, considered as a narrowing estuary. This results in further amplification, by an additional factor of about 1.5, so that the tides in Broad Sound are increased by a factor of between 5 and 6, altogether, compared with those elsewhere on the east Australian coast.

  14. Broad Prize: Do the Successes Spread?

    Science.gov (United States)

    Samuels, Christina A.

    2011-01-01

    When the Broad Prize for Urban Education was created in 2002, billionaire philanthropist Eli Broad said he hoped the awards, in addition to rewarding high-performing school districts, would foster healthy competition; boost the prestige of urban education, long viewed as dysfunctional; and showcase best practices. Over the 10 years the prize has…

  15. Broad Academy's Growing Reach Draws Scrutiny

    Science.gov (United States)

    Samuels, Christina A.

    2011-01-01

    Billionaire businessman Eli Broad, one of the country's most active philanthropists, founded the "Broad Superintendents Academy" in 2002 with an extraordinarily optimistic goal: Find leaders from both inside and outside education, train them, and have them occupying the superintendencies in a third of the 75 largest school districts--all in just…

  16. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, Mohammed Abdul

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  17. Diode pumped solid state lasers

    Science.gov (United States)

    Gluch, Richard P., Jr.

    1990-05-01

    I've come here today to share with you the experiences of an emerging company that has its hands around an emerging technology, and an interesting approach. And I'd like to make a few conmients today from a business aspect about the iaarketplace as they relate to our formulation of our market or business strategy. I'll share with you the direction on what the business strategy is and then trace with you some of the technical developments that are occurring at Laser Diode Products in St. Louis as they all relate directly to a customer requirernent.

  18. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    Science.gov (United States)

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  19. 11.72-sq cm Active-Area Wafer Interconnected PiN Diode Pulsed at 64 kA Dissipates 382 J and Exhibits an Action of 1.7 MA(sup 2)-s

    Science.gov (United States)

    2012-01-30

    Dev., Vol. 46, No. 3, pp. 485-491, 1999. [5] A. Agarwal, Q. Zhang, R. Callanan, C. Capell , A. Burk, M. O’Loughlin, J. Palmour, V. Temple, R...H. Ryu, A. Agarwal, C. Capell , and J. W. Palmour, “Large Area SiC Devices and Manufacturing Methods Therefor,” US Patent 6,514,779 B1, 2008. [9] OmniPulse Corp., www.omnipulsetechnology.com

  20. Microchip green laser sources: broad range of possibilities

    Science.gov (United States)

    Essaian, Stepan; Khaydarov, John; Slavov, Slav; Ter-Mikirtychev, Vartan; Gabrielyan, Gevorg; Keroopyan, Meruzhan; Soghomonyan, Suren

    2012-02-01

    Spectralus presents its progress in development of miniature, highly efficient, and versatile diode-pumped solid-state (DPSS) green laser source, based on a monolithic cavity microchip laser platform. The use of periodically poled MgO-doped Lithium Niobate (PPMgOLN) as the nonlinear frequency doubler together with gain material Nd3+:YVO4 allows obtaining a significant increase in the overall efficiency of the green microchip laser in comparison with other compact green laser source architectures with comparable output power. Originally, this laser source was designed to be part of the miniature and efficient RGB light source for microdisplay-based (LCOS, DLP or similar) mobile projector devices. Recently, we have extended range of operations for our original laser platform. In particular, we demonstrate the following: high peak power (>500mW), high average power (>200mW), broad temperature range of operation (-30°C - 60°C), and low noise CW operation (<0.5% RMS).

  1. Charge plasma diode - a novel device concept

    NARCIS (Netherlands)

    Rajasekharan, B.; Hueting, Raymond Josephus Engelbart; Salm, Cora; Hoang, T.; Schmitz, Jurriaan

    2008-01-01

    We propose a new device concept called charge plasma (CP) diode [1]. The diodes are with metal/silicided contacts of different workfunctions and thin intrinsic region in between. The workfunctions and layer thicknesses are chosen such that an electron plasma is formed on one side of the silicon body

  2. Graphene geometric diodes for terahertz rectennas

    Science.gov (United States)

    Zhu, Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-05-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10-15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current-voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion.

  3. Soliton transmission and supercontinuum generation in holey fiber using a diode pumped ytterbium fiber source

    OpenAIRE

    Price, Jonathan H.V.; Belardi, W.; Monro, T.M.; Malinowski, A.; Piper, A.; Richardson, D.J.

    2002-01-01

    We report linear dispersion compensation, soliton pulse formation, soliton compression, and ultra-broad supercontinuum generation in a holey fiber with anomalous dispersion at wavelengths above 800nm. The holey fiber was seeded with ultrashort pulses from a diode pumped, Ytterbium (Yb)-doped fiber source operating at 1.06µm. The results highlight the compatibility of the rapidly developing holey fiber technology with short pulse Yb-doped fiber lasers for wide application.

  4. Laser diode package with enhanced cooling

    Energy Technology Data Exchange (ETDEWEB)

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  5. Laser diode package with enhanced cooling

    Energy Technology Data Exchange (ETDEWEB)

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  6. Laser diode package with enhanced cooling

    Energy Technology Data Exchange (ETDEWEB)

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  7. Broadband light-emitting diode

    Science.gov (United States)

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  8. The application of diode laser in the treatment of oral soft tissues lesions. A literature review.

    Science.gov (United States)

    Ortega-Concepción, Daniel; Cano-Durán, Jorge A; Peña-Cardelles, Juan-Francisco; Paredes-Rodríguez, Víctor-Manuel; González-Serrano, José; López-Quiles, Juan

    2017-07-01

    Since its appearance in the dental area, the laser has become a treatment of choice in the removal of lesions in the oral soft tissues, due to the numerous advantages they offer, being one of the most used currently the diode laser. The aim of this review was to determine the efficacy and predictability of diode laser as a treatment of soft tissue injuries compared to other surgical methods. A literature review of articles published in PubMed/MEDLINE, Scopus and the Cochrane Library databases between 2007 and 2017 was performed. "Diode laser", "soft tissue", "oral cavity" and "oral surgery" were employed for the search strategy. Only articles published English or Spanish were selected. The diode laser is a minimally invasive technology that offers great advantages, superior to those of the conventional scalpel, such as reduction of bleeding, inflammation and the lower probability of scars. Its effectiveness is comparable to that of other types of lasers, in addition to being an option of lower cost and greater ease of use. Its application in the soft tissues has been evaluated, being a safe and effective method for the excision of lesions like fibromas, epulis fissuratum and the accomplishment of frenectomies. The diode laser can be used with very good results for the removal of lesions in soft tissues, being used in small exophytic lesions due to their easy application, adequate coagulation, no need to suture and the slightest inflammation and pain. Key words:Diode laser, soft tissues, oral cavity, oral surgery.

  9. Electrical and thermal finite element modeling of arc faults in photovoltaic bypass diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac; Quintana, Michael A.; Johnson, Jay

    2012-01-01

    Arc faults in photovoltaic (PV) modules have caused multiple rooftop fires. The arc generates a high-temperature plasma that ignites surrounding materials and subsequently spreads the fire to the building structure. While there are many possible locations in PV systems and PV modules where arcs could initiate, bypass diodes have been suspected of triggering arc faults in some modules. In order to understand the electrical and thermal phenomena associated with these events, a finite element model of a busbar and diode was created. Thermoelectrical simulations found Joule and internal diode heating from normal operation would not normally cause bypass diode or solder failures. However, if corrosion increased the contact resistance in the solder connection between the busbar and the diode leads, enough voltage potentially would be established to arc across micron-scale electrode gaps. Lastly, an analytical arc radiation model based on observed data was employed to predicted polymer ignition times. The model predicted polymer materials in the adjacent area of the diode and junction box ignite in less than 0.1 seconds.

  10. Measuring Prevention More Broadly, An Empirical...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Measuring Prevention More Broadly, An Empirical Assessment of CHIPRA Core Measures Differences in CHIP design and structure, across states and over time, may limit...

  11. Prospects for broadly protective influenza vaccines.

    Science.gov (United States)

    Treanor, John Jay

    2015-11-27

    The development of vaccines that could provide broad protection against antigenically variant influenza viruses has long been the ultimate prize in influenza research. Recent developments have pushed us closer to this goal, and such vaccines may now be within reach. This brief review outlines the current approaches to broadly protective vaccines, and the probable hurdles and roadblocks to achieving this goal. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Ltd.. All rights reserved.

  12. Spin dependent transport and recombination in organic lightemitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, George B.; Graeff, Carlos F.O. [Departamento de Fisica e Matematica, FFCLRP-Universidade de Sao Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto (Brazil); Nueesch, Frank; Zuppiroli, Libero [Laboratory of Optoelectronics of Molecular Materials, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland)

    2005-08-01

    Electrically Detected Magnetic Resonance (EDMR) was used to study a series of multilayer organic devices based on aluminum (III) 8-hydroxyquinoline (Alq{sub 3}). These devices were designed to identify the microscopic origin of different spin dependent process, i.e. hopping and exciton formation. For electroluminescent diode the EDMR signal can be decomposed in at least two gaussian components with peak-to-peak linewidth ({delta}H{sub PP}) of 1.6 mT and another with 2.0 mT to 3.4 mT. These components are dependent on the applied bias or current used during EDMR measurements. The narrower line was attributed to the exciton precursor cations, while the broad one to the anions. These attributions are supported by the investigation of unipolar diodes, where hopping process related to dication and dianion formation were observed. In this work it is found that the probability of singlet exciton formation during electroluminescency is smaller than 25%. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Diode pumped tunable dye laser

    Science.gov (United States)

    Burdukova, O.; Gorbunkov, M.; Petukhov, V.; Semenov, M.

    2017-03-01

    A wavelength-tunable dye laser pumped by blue laser diodes (λ =445 nm) in a 200 ns pulsed mode has been developed. We used a 3-mirror cavity with transverse excitation and total internal reflection of laser beam in the active element. Tuning curves for 8 dyes in benzyl alcohol were measured in the range of 506-700 nm. Four dyes have their tuning range more than 60 nm, which is comparable to the tuning ranges of other dye lasers pumped by more expensive sources. The output energy obtained at the generation maximum of both DCM and coumarin 540A dyes was approximately 130 nJ while the pump energy was 2400 nJ.

  14. A Portable Diode Array Spectrophotometer.

    Science.gov (United States)

    Stephenson, David

    2016-05-01

    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. © The Author(s) 2016.

  15. Quantum Dot Light Emitting Diode

    Energy Technology Data Exchange (ETDEWEB)

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  16. Quantum Dot Light Emitting Diode

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  17. A Diode Matrix model M792

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  18. Cern DD4424 ROM Diode Matrix

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  19. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  20. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  1. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser

    Science.gov (United States)

    Liu, Ying; Gao, Jie; Gao, Yan; XU, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    Introduction: To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Methods: Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm2; Group B: 2 W/CW (continuous mode), 166 J/cm2; Group C: 3W/CW, 250 J/cm2; and Group D: 4W/CW, 333 J/cm2. Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm2; and Group F: 2.0 W/CW, 166 J/cm2. The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. Results: The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusions: Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm2) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue. PMID:25606318

  2. Integrated diode circuits for greater than 1 THz

    Science.gov (United States)

    Schoenthal, Gerhard Siegbert

    The terahertz frequency band, spanning from roughly 100 GHz to 10 THz, forms the transition from electronics to photonics. This band is often referred to as the "terahertz technology gap" because it lacks typical microwave and optical components. The deficit of terahertz devices makes it difficult to conduct important scientific measurements that are exclusive to this band in fields such as radio astronomy and chemical spectroscopy. In addition, a number of scientific, military and commercial applications will become more practical when a suitable terahertz technology is developed. UVa's Applied Electrophysics Laboratory has extended non-linear microwave diode technology into the terahertz region. Initial success was achieved with whisker-contacted diodes and then discrete planar Schottky diodes soldered onto quartz circuits. Work at UVa and the Jet Propulsion Laboratory succeeded in integrating this diode technology onto low dielectric substrates, thereby producing more practical components with greater yield and improved performance. However, the development of circuit integration technologies for greater than 1 THz and the development of broadly tunable sources of terahertz power remain as major research goals. Meeting these critical needs is the primary motivation for this research. To achieve this goal and demonstrate a useful prototype for one of our sponsors, this research project has focused on the development of a Sideband Generator at 1.6 THz. This component allows use of a fixed narrow band source as a tunable power source for terahertz spectroscopy and compact range radar. To prove the new fabrication and circuit technologies, initial devices were fabricated and tested at 200 and 600 GHz. These circuits included non-ohmic cathodes, air-bridged fingers, oxideless anode formation, and improved quartz integration processes. The excellent performance of these components validated these new concepts. The prototype process was then further optimized to

  3. Change-Based Satellite Monitoring Using Broad Coverage and Targetable Sensing

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel Q.; Doubleday, Joshua R.; Doggett, Thomas

    2013-01-01

    A generic software framework analyzes data from broad coverage sweeps or general larger areas of interest. Change detection methods are used to extract subsets of directed swath areas that intersect areas of change. These areas are prioritized and allocated to targetable assets. This method is deployed in an automatic fashion, and has operated without human monitoring or intervention for sustained periods of time (months).

  4. NAMMA DIODE LASER HYGROMETER (DLH) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Diode Laser Hygrometer (DLH), a near-infrared spectrometer operating from aircraft platforms, was developed by NASA's Langley and Ames Research Centers. It...

  5. Diode Laser Ear Piercing: A Novel Technique.

    Science.gov (United States)

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  6. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart

    2007-01-01

    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  7. NAMMA DIODE LASER HYGROMETER (DLH) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Diode Laser Hygrometer (DLH) dataset uses the DLH, a near-infrared spectrometer operating from aircraft platforms, was developed by NASA's Langley and Ames...

  8. Photonic thermal diode based on superconductors

    Science.gov (United States)

    Ordonez-Miranda, Jose; Joulain, Karl; De Sousa Meneses, Domingos; Ezzahri, Younès; Drevillon, Jérémie

    2017-09-01

    A photonic thermal diode capitalizing on the strong contrast of Nb permittivity around its critical temperature separating its normal and superconducting states is proposed and analyzed in both the near- and far-fields. For a diode with terminals made of Nb and SiO2 and operating at temperatures 1 K and 8.7 K, the rectification factor is maximized to 71%, which occurs for the terminal separation distance of 59.9 μm and is among the highest values reported in the literature. For other terminal temperatures, the diode rectification factor takes smaller values, but can still be optimized with a different distance in the transition zone between the near and far fields driven by coherent effects. The rectification factor of the proposed diode can potentially be useful for the development of cryogenic radiative insulation and thermal logical gates.

  9. Bypass diode for a solar cell

    Science.gov (United States)

    Rim, Seung Bum [Palo Alto, CA; Kim, Taeseok [San Jose, CA; Smith, David D [Campbell, CA; Cousins, Peter J [Menlo Park, CA

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  10. Interferometry and Holography With Diode Laser Light

    CERN Document Server

    Lunazzi, Jose Joaquin

    2016-01-01

    We made an interferometric Michelson type setup and a simple holographic setup to demonstrate the feasibility of interferometric and holographic techniques by means of a diode laser. The laser was made by using a common diode available as a penlight element (less than R$ 15,00 value) and a simple stabilized 110 VCA- 3 VCC power supply. Interference fringes and holograms of small objects where obtained very similar to those of a helium-neon laser based setup.

  11. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  12. Light-emitting diodes - Their potential in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Naichia Gary; Wu, Chia-Hao [College of Applied Sciences, MingDao University, 369 Wen-Hua Road, Peetou, Changhua 52345 (China); Cheng, Ta Chih [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Hseuh-Fu Rd., Nei-Pu Hsiang, Pingtung 91201 (China)

    2010-10-15

    The rapid development of high brightness light-emitting diodes (LEDs) makes feasible the use of LEDs, among other light sources (such as laser, intense pulse light and other incoherent light systems), for medical treatment and light therapy. This paper provides a general review on red, green, blue, ultraviolet LED applications in photo rejuvenation and medical treatments of a variety of physical abnormalities, as well as the relief of stress, circadian rhythm disorders, and seasonal affective disorder. The review, concentrated in the papers published after 1990, intends to show that LEDs are well qualified to succeed its more energy demanding counterparts in the named areas and beyond. (author)

  13. Teaching the Broad, Interdisciplinary Impact of Evolution

    Science.gov (United States)

    Benson, David; Atlas, Pierre; Haberski, Raymond; Higgs, Jamie; Kiley, Patrick; Maxwell, Michael, Jr.; Mirola, William; Norton, Jamey

    2009-01-01

    As perhaps the most encompassing idea in biology, evolution has impacted not only science, but other academic disciplines as well. The broad, interdisciplinary impact of evolution was the theme of a course taught at Marian College, Indianapolis, Indiana in 2002, 2004, and 2006. Using a strategy that could be readily adopted at other institutions,…

  14. Giant Broad Line Regions in Dwarf Seyferts

    Indian Academy of Sciences (India)

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those ...

  15. BPW34 Commercial p-i-n Diodes for High-Level 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Ravotti, F; Moll, M; Saigne, F

    2008-01-01

    The BPW34 p-i-n diode was characterized at CERN in view of its utilization as radiation monitor at the LHC to cover the broad 1-MeV neutron equivalent fluence (Phieq) range expected for the LHC machine and experiments during operation. Electrical measurements for both forward and reverse bias were used to characterize the device and to understand its behavior under irradiation. When the device is powered forward, a sensitivity to fast hadrons for Phieq > 2 times1012 cm-2 has been observed. With increasing particle fluences the forward I- V characteristics of the diode shifts towards higher voltages. At Phieq > 3times1013 cm-2, the forward characteristic starts to bend back assuming a thyristor-like behavior. An explanation for this phenomenon is given in this article. Finally, detailed radiation-response curves for the forward bias-operation and annealing studies of the diode's forward voltage are presented for proton, neutron and gamma irradiation.

  16. Performance of the cold powered diodes and diode leads in the main magnets of the LHC

    CERN Document Server

    Willering, G P; Bajko, M; Bednarek, M; Bottura, L; Charifoulline, Z; Dahlerup-Petersen, K; Dib, G; D'Angelo, G; Gharib, A; Grand-Clement, L; Izquierdo Bermudez, S; Prin, H; Roger, V; Rowan, S; Savary, F; Tock, J-Ph; Verweij, A

    2015-01-01

    During quench tests in 2011 variations in resistance of an order of magnitude were found in the diode by-pass circuit of the main LHC magnets. An investigation campaign was started to understand the source, the occurrence and the impact of the high resistances. Many tests were performed offline in the SM18 test facility with a focus on the contact resistance of the diode to heat sink contact and the diode wafer temperature. In 2014 the performance of the diodes and diode leads of the main dipole bypass systems in the LHC was assessed during a high current qualification test. In the test a current cycle similar to a magnet circuit discharge from 11 kA with a time constant of 100 s was performed. Resistances of up to 600 μΩ have been found in the diode leads at intermediate current, but in general the high resistances decrease at higher current levels and no sign of overheating of diodes has been seen and the bypass circuit passed the test. In this report the performance of the diodes and in particular the co...

  17. Spatial response of synthetic microDiamond and diode detectors measured with kilovoltage synchrotron radiation.

    Science.gov (United States)

    Butler, Duncan J; Beveridge, Toby; Lehmann, Joerg; Oliver, Christopher P; Stevenson, Andrew W; Livingstone, Jayde

    2018-02-01

    To map the spatial response of four solid-state radiation detectors of types commonly used for radiotherapy dosimetry. PTW model 60016 Diode P, 60017 Diode E, 60018 Diode SRS, and 60019 microDiamond detectors were radiographed using a high resolution conventional X-ray system. Their spatial response was then investigated using a 0.1 mm diameter beam of 95 keV average energy photons generated by a synchrotron. The detectors were scanned through the beam while their signal was recorded as a function of position, to map the response. These 2D response maps were created in both the end-on and side-on orientations. The results show the location and size of the active region. End-on, the active area was determined to be centrally located and within 0.2 mm of the manufacturer's specified diameter. The active areas of the 60016 Diode P, 60017 Diode E, 60018 Diode SRS detectors are uniform to within approximately 5%. The 60019 microDiamond showed local variations up to 30%. The extra-cameral signal in the microDiamond was calculated from the side-on scan to be approximately 8% of the signal from the active element. The spatial response of four solid-state detectors has been measured. The technique yielded information about the location and uniformity of the active area, and the extra-cameral signal, for the beam quality used. © 2017 Commonwealth of Australia. Medical Physics © 2017 American Association of Physicists in Medicine. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission. Requests and enquiries concerning reproduction and rights should be directed in the first instance to John Wiley & Sons Ltd of The Atrium, Southern Gate, Chichester, West Sussex P019 8SQ UNITED KINGDOM; alternatively to ARPANSA.

  18. Outsmarting waveguide losses in thin-film light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Meerholz, K.; Mueller, D.C. [Muenchen Univ. (Germany). Chemistry Dept.

    2001-08-01

    Several attempts to overcome the problem of waveguide losses in light-emitting diodes (LEDs) have been made over past few years. This article summarizes the most important developments in this area and specifically highlights one attempt, achieved by Tsutsui et al. and published in the latest issue of Advanced Materials. (orig.)

  19. High-Power 1180-nm GaInNAs DBR Laser Diodes

    DEFF Research Database (Denmark)

    Aho, Antti T.; Viheriala, Jukka; Korpijarvi, Ville-Markus

    2017-01-01

    We report high-power 1180-nm GaInNAs distributed Bragg reflector laser diodes with and without a tapered amplifying section. The untapered and tapered components reached room temperature output powers of 655 mW and 4.04 W, respectively. The diodes exhibited narrow linewidth emission with side......-mode suppression ratios in the range of 50 dB for a broad range of operating current, extending up to 2 A for the untapered component and 10 A for the tapered component. The high output power is rendered possible by the use of a high quality GaInNAs-based quantum well gain region, which allows for lower strain...... and better carrier confinement compared with traditional GaInAs quantum wells. The development opens new opportunities for the power scaling of frequency-doubled lasers with emission at yellow-orange wavelengths....

  20. Diode-based microbolometer with performance enhanced by broadband metamaterial absorber.

    Science.gov (United States)

    Ma, Wei; Jia, Delin; Wen, Yongzheng; Yu, Xiaomei; Feng, Yun; Zhao, Yuejin

    2016-07-01

    This Letter reports a microbolometer integrated with a broadband metamaterial absorber (MMA) to enhance its performance, which contains series-connected silicon diodes as the temperature sensor. The broadband MMA is readily integrated into the device by introducing an array of different-sized square resonators on the silicon nitride structural layer, while the widened titanium interconnecting wires between individual diodes serve as the ground plane. In a comparative experiment, the broadband MMA was demonstrated to be superior to the ordinary silicon nitride absorber in a broad spectra range, especially in a long-wavelength IR regime, which directly leads to an increase in IR responsivity by 60%. More importantly, this enhancement in responsivity was achieved with no sacrifice of the response time due to the negligible thermal mass of the introduced resonator array.

  1. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    Science.gov (United States)

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; Terashita, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions. PMID:21991489

  2. Parallel evaluation of broad virus detection methods.

    Science.gov (United States)

    Modrof, Jens; Berting, Andreas; Kreil, Thomas R

    2014-01-01

    The testing for adventitious viruses is of critical importance during development and production of biological products. The recent emergence and ongoing development of broad virus detection methods calls for an evaluation of whether these methods can appropriately be implemented into current adventitious agent testing procedures. To assess the suitability of several broad virus detection methods, a comparative experimental study was conducted: four virus preparations, which were spiked at two different concentrations each into two different cell culture media, were sent to four investigators in a blinded fashion for analysis with broad virus detection methods such as polymerase chain reaction-electrospray ionization mass spectrometry (PCR-ESI/MS), microarray, and two approaches utilizing massively parallel sequencing. The results that were reported by the investigators revealed that all methods were able to identify the majority of samples correctly (mean 83%), with a surprisingly narrow range among the methods, that is, between 72% (PCR-ESI/MS) and 95% (microarray). In addition to the correct results, a variety of unexpected assignments were reported for a minority of samples, again with little variation regarding the methods used (range 20-45%), while false negatives were reported for 0-25% of the samples. Regarding assay sensitivity, the viruses were detected by all methods included in this study at concentrations of about 4-5 log10 quantitative PCR copies/mL, and probably with higher sensitivity in some cases. In summary, the broad virus detection methods investigated were shown to be suitable even for detection of relatively low virus concentrations. However, there is also some potential for the production of false-positive as well as false-negative assignments, which indicates the requirement for further improvements before these methods can be considered for routine use. © PDA, Inc. 2014.

  3. Atomization of broad specification aircraft fuels

    Science.gov (United States)

    Skifstad, J. G.; Lefebvre, A. H.

    1980-01-01

    The atomization properties of liquid fuels for the potential use in aircraft gas turbine engines are discussed. The significance of these properties are addressed with respect to the ignition and subsequent combustion behavior of the fuel spray/air mixture. It is shown that the fuel properties which affect the atomization behavior (viscosity, surface tension, and density) are less favorable for the broad specification fuels as compared to with those for conventional fuels.

  4. Phototoxic action of light emitting diode in the in vitro viability of Trichophyton rubrum.

    Science.gov (United States)

    Amorim, José Cláudio Faria; Soares, Betania Maria; Alves, Orley Araújo; Ferreira, Marcus Vinícius Lucas; Sousa, Gerdal Roberto; Silveira, Lívio de Barros; Piancastelli, André Costa Cruz; Pinotti, Marcos

    2012-01-01

    Trichophyton rubrum is the most common agent of superficial mycosis of the skin and nails causing long lasting infections and high recurrence rates. Current treatment drawbacks involve topical medications not being able to reach the nail bed at therapeutic concentrations, systemic antifungal drugs failing to eradicate the fungus before the nails are renewed, severe side effects and selection of resistant fungal isolates. Photodynamic therapy (PDT) has been a promising alternative to conventional treatments. This study evaluated the in vitro effectiveness of toluidine blue O (TBO) irradiated by Light emitting diode (LED) in the reduction of T. rubrum viability. The fungal inoculums' was prepared and exposed to different TBO concentrations and energy densities of Light emitting diode for evaluate the T. rubrum sensibility to PDT and production effect fungicidal after photodynamic treatment. In addition, the profiles of the area and volume of the irradiated fungal suspensions were also investigated. A small reduction, in vitro, of fungal cells was observed after exposition to 100 µM toluidine blue O irradiated by 18 J/cm² Light emitting diode. Fungicidal effect occurred after 25 µM toluidine blue O irradiation by Light emitting diode with energy density of 72 J/cm². The analysis showed that the area and volume irradiated by the Light emitting diode were 52.2 mm² and 413.70 mm³, respectively. The results allowed to conclude that Photodynamic therapy using Light emitting diode under these experimental conditions is a possible alternative approach to inhibit in vitro T. rubrum and may be a promising new treatment for dermatophytosis caused by this fungus.

  5. The development of monolithic alternating current light-emitting diode

    Science.gov (United States)

    Yeh, Wen-Yung; Yen, Hsi-Hsuan; Chan, Yi-Jen

    2011-02-01

    The monolithic alternating current light emitting diode (ACLED) has been revealed for several years and was regarded as a potential device for solid state lighting. In this study, we will discuss the characteristics, development status, future challenges, and ITRI's development strategy about ACLED, especially focusing on the development progress of the monolithic GaN-based Schottky barrier diodes integrated ACLED (SBD-ACLED). The SBD-ACLED design can not only improve the chip area utilization ratio but also provide much higher reverse breakdown voltage by integrating four SBDs with the micro-LEDs array in a single chip, which was regarded as a good on-chip ACLED design. According to the experimental results, higher chip efficiency can be reached through SBD-ACLED design since the chip area utilization ratio was increased. Since the principle and the operation condition of ACLED is quite different from those of the typical DCLED, critical issues for ACLED like the current droops, the flicker phenomenon, the safety regulations, the measurement standards and the power fluctuation have been studied for getting a practical and reliable ACLED design. Besides, the "AC LED application and research alliance" (AARA) lead by ITRI in Taiwan for the commercialization works of ACLED has also been introduced.

  6. Probing AGN Broad Line Regions With LAT Observations of FSRQs

    Energy Technology Data Exchange (ETDEWEB)

    Carson, Jennifer E.; Chiang, James; /SLAC; Bottcher, Markus; /Ohio U.

    2007-10-11

    The GLAST Large Area Telescope (LAT) is expected to detect gamma-ray emission from over a thousand active galaxies, many of which will be flat spectrum radio quasars (FSRQs). A commonly assumed ingredient of leptonic models of FRSQs is the contribution to the gamma-ray flux from external inverse-Compton (EIC) scattering of photons from the broad line region (BLR) material by relativistic electrons and positrons in the jet. Here we explore the effect of the BLR geometry on the high-energy emission from FSRQs.

  7. Characterization of InGaN/GaN light-emitting diodes with micro-hole arrayed indium-tin-oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yeu-Jent [Department of Electrical Engineering, Technology and Science Institute of Northern Taiwan, No. 2, Xueyuan Rd., Taipei 112, Taiwan (China); Wang, Jen-Cheng [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)

    2011-07-01

    We demonstrate that InGaN/GaN multiple quantum well light-emitting diodes (LEDs) with micro-hole arrayed indium-tin-oxide layers exhibit better performance and optoelectrical properties than do conventional LEDs. Under 20 mA injection current operation the room-temperature output power conversion efficiency and external quantum efficiency obtained by employing a micro-hole array on the top surface of the LED structure could be increased by 28.7% and 14.3%, respectively, over that of conventional broad area devices. The room temperature current-voltage characteristics of the LEDs showed the series resistance and leakage current to be related to the hole dimensions and etching depth, respectively. Interestingly, the leakage current of the transparent conductive layer was dominated by the contribution of the micro-hole side-wall, the number of etched micro-holes, and the wet-etching depth. We conclude that a well-designed micro-hole array structure fabricated using the wet etching process can indeed, not only significantly inhibit the leakage current of the indium-tin-oxide transparent conductive layer, but also enhance the external quantum efficiency and extraction efficiency over a broad temperature range.

  8. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    van Wanum, Maurice; Lebouille, Tom; Visser, Guido; van Vliet, Frank Edward

    2009-01-01

    Abstract In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are silicon, gallium arsenide and gallium nitride. The diodes in the diverse semiconductor technologies themselves are

  9. Destructive Single-Event Failures in Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Gigliuto, Robert A.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak; Chen, Dakai; LaBel, Kenneth A.

    2014-01-01

    This presentation contains test results for destructive failures in DC-DC converters. We have shown that Schottky diodes are susceptible to destructive single-event effects. Future work will be completed to identify parameter that determines diode susceptibility.

  10. Laser scanning laser diode photoacoustic microscopy system.

    Science.gov (United States)

    Erfanzadeh, Mohsen; Kumavor, Patrick D; Zhu, Quing

    2018-03-01

    The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.

  11. Diode laser and endoscopic laser surgery.

    Science.gov (United States)

    Sullins, Kenneth E

    2002-05-01

    Two functionally important differences exist between the diode laser and the carbon dioxide (CO2) laser (used more commonly in small animal surgery). Diode laser energy is delivered through a quartz fiber instead of being reflected through an articulated arm or waveguide. Quartz fibers are generally more flexible and resilient than waveguides and can be inserted through an endoscope for minimally invasive procedures. Laser-tissue interaction is the other significant difference. The CO2 laser is completely absorbed by water, which limits the effect to visible tissue. The diode wavelength is minimally absorbed by water and may affect tissue as deep as 10 mm below the surface in the free-beam mode. With proper respect for the tissue effect, these differences can be used to the advantage of the patient.

  12. Diode-side-pumped Alexandrite slab lasers.

    Science.gov (United States)

    Damzen, M J; Thomas, G M; Minassian, A

    2017-05-15

    We present the investigation of diode-side-pumping of Alexandrite slab lasers in a range of designs using linear cavity and grazing-incidence bounce cavity configurations. An Alexandrite slab laser cavity with double-pass side pumping produces 23.4 mJ free-running energy at 100 Hz rate with slope efficiency ~40% with respect to absorbed pump energy. In a slab laser with single-bounce geometry output power of 12.2 W is produced, and in a double-bounce configuration 6.5 W multimode and 4.5 W output in TEM 00 mode is produced. These first results of slab laser and amplifier designs in this paper highlight some of the potential strategies for power and energy scaling of Alexandrite using diode-side-pumped Alexandrite slab architectures with future availability of higher power red diode pumping.

  13. Semiconductor diode characterization for total skin electron irradiation.

    Science.gov (United States)

    Madrid González, O A; Rivera Montalvo, T

    2014-01-01

    In this paper, a semiconductor diode characterization was performed. The diode characterization was completed using an electron beam with 4 MeV of energy. The semiconductor diode calibration used irradiation with an electron beam in an ion chamber. "In vivo" dosimetry was also conducted. The dosimetry results revealed that the semiconductor diode was a good candidate for use in the total skin electron therapy (TSET) treatment control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  15. Energy level alignments and photocurrents in crystalline Si/organic semiconductor heterojunction diodes

    Science.gov (United States)

    Campbell, I. H.; Crone, B. K.

    2009-12-01

    We investigate electronic energy level alignment and photocurrent in crystalline silicon/organic/semitransparent metal heterojunction diodes. Optically thin films of poly[2-methoxy,5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), poly(9,9-dioctylfluorene) [PFO], pentacene (Pc), and C60 were deposited on n and p type Si wafers and diode structures were formed by depositing either a Au anode or Al cathode onto the organic film. The energy level alignment was assessed using built-in potential and capacitance-voltage measurements. In all cases, the results are consistent with near ideal vacuum energy level alignment between the organic and inorganic semiconductor. The diode current-voltage (I-V) characteristics are consistent with the electronic structure of the heterojunction interface. For n-Si/MEH-PPV/Au, the I-V curves are quantitatively described by an organic device model. For photocurrent measurements the diodes were illuminated through the semitransparent metal contact with optical wavelengths from 350-1100 nm. The photocurrent in the diode structure can be due to absorption either in the organic layer or Si substrate. For n-Si diodes, the 0 bias photocurrent is small with external quantum efficiencies (EQEs) less than 5×10-3 in all cases. The photocurrent is dominated by absorption in the organic layer for MEH-PPV, PFO, and C60 and by absorption in Si for Pc. For p-Si diodes, the 0 bias photocurrent is large with EQEs of ˜0.2 and is dominated by absorption in silicon for all organic layers. Both MEH-PPV and PFO form type I heterostructures with Si and photocurrent due to organic exciton dissociation is less efficient than in commonly used type II organic/organic heterostructures. Silicon/Pc and C60 heterojunctions are most likely type II with small valence (Pc) or conduction (C60) energy level differences. Surprisingly, no photocurrent was observed due to optical absorption in Pc most likely due to a chemical reaction between Pc and Si that prevented

  16. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric [Cree, Inc., Goleta, CA (United States)

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  17. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    Semiconductor nanowires (NWs) have emerged as a promising technology for future electronic and optoelectronic devices. Epitaxial growth of III-V materials on Si substrates have been demonstrated, allowing for low-cost production. As the lattice matching requirements are much less strict than...... is the tunnel (Esaki) diode, which provides a low-resistance connection between junctions. We demonstrate an InP-GaAs NW axial heterostructure with tunnel diode behavior. InP and GaAs can be readily n- and p-doped, respectively, and the heterointerface is expected to have an advantageous type II band alignment...

  18. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-05-01

    Metal Insulator Metal (MIM) diodes that work on fast mechanism of tunneling have been used in a number of very high frequency applications such as (Infra-Red) IR detectors and optical Rectennas for energy harvesting. Their ability to operate under zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF use is the requirement of a very thin oxide layer essential for the tunneling operation that requires sophisticated nano-fabrication processes. Another issue is that the reliability and stable performance of MIM diodes is highly dependent on the surface roughness of the metallic electrodes. Finally, comprehensive RF characterization has not been performed for MIM diodes reported in the literature, particularly from the perspective of their integration with antennas as well as their rectification abilities. In this thesis, various metal deposition methods such as sputtering, electron beam evaporation, and Atomic Layer Deposition (ALD) are compared in pursuit of achieving low surface roughness. It is worth mentioning here that MIM diodes realized through ALD method have been presented for the first time in this thesis. Amorphous metal alloy have also been investigated in terms of their low surface roughness. Zinc-oxide has been investigated for its suitability as a thin dielectric layer for MIM diodes. Finally, comprehensive RF characterization of MIM diodes has been performed in two ways: 1) by standard S-parameter methods, and 2) by investigating their rectification ability under zero bias operation. It is concluded from the Atomic Force Microscopy (AFM) imaging that surface roughness as low as sub 1 nm can be achieved reliably from crystalline metals such as copper and platinum. This value is comparable to surface roughness achieved from amorphous alloys, which are non

  19. Photon recycling semiconductor light-emitting diode

    Science.gov (United States)

    Guo, Xiaoyun; Graff, John W.; Schubert, E. F.; Karlicek, Robert F., Jr.

    2000-04-01

    A new white light emitting diode, the photon recycling semiconductor light emitting diode (PRS-LED) is demonstrated. The device consists of a GaInN/GaN LED emitting in the blue spectral range and an AlGaInP photon recycling semiconductor emitting at the complementary color. Thus the PRS-LED has two emission peaks, one in the blue and one in the amber wavelength range. The theoretical luminous performance of the PRS-LED exceeds 300 lm/W, higher than the performance of phosphor-based white LEDs.

  20. Broad-band semiconductor optical amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Ying [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)]. E-mail: yingding@red.semi.ac.cn; Kan Qiang [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Wang Junling [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Pan Jiaoqing [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhou Fan [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Chen Weixi [School of Physics, Peking University, Beijing 100871 (China); Wang Wei [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2007-01-15

    Broad-band semiconductor optical amplifiers (SOAs) with different thicknesses and thin bulk tensile-strained active layers were fabricated and studied. Amplified spontaneous emission (ASE) spectra and gain spectra of SOAs were measured and analyzed at different CW biases. A maximal 3 dB ASE bandwidth of 136 nm ranging from 1480 to 1616 nm, and a 3 dB optical amplifier gain bandwidth of about 90 nm ranging from 1510 to 1600 nm, were obtained for the very thin bulk active SOA. Other SOAs characteristics such as saturation output power and polarization sensitivity were measured and compared.

  1. Broad spectrum antibiotic compounds and use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Koglin, Alexander; Strieker, Matthias

    2016-07-05

    The discovery of a non-ribosomal peptide synthetase (NRPS) gene cluster in the genome of Clostridium thermocellum that produces a secondary metabolite that is assembled outside of the host membrane is described. Also described is the identification of homologous NRPS gene clusters from several additional microorganisms. The secondary metabolites produced by the NRPS gene clusters exhibit broad spectrum antibiotic activity. Thus, antibiotic compounds produced by the NRPS gene clusters, and analogs thereof, their use for inhibiting bacterial growth, and methods of making the antibiotic compounds are described.

  2. Crx broadly modulates the pineal transcriptome

    DEFF Research Database (Denmark)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use...... of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a > 2-fold down-regulation of 543 genes and a > 2-fold up......-regulation of 745 genes (p pineal glands of wild...

  3. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  4. Cryogenic thermometry with a common diode: type BAS16

    NARCIS (Netherlands)

    Rijpma, A.P.; ter Brake, Hermanus J.M.

    2006-01-01

    Cryogenic test experiments often require a large number of temperatures to be monitored. In order to reduce cost, we investigated the feasibility of low-cost common diodes. We chose the Philips BAS16 diode in a type SOT23 package. By means of Stycast 2850FT, these diodes were glued into alumina

  5. Array size and area impact on nanorectenna performance properties

    Science.gov (United States)

    Arsoy, Elif Gul; Durmaz, Emre Can; Shafique, Atia; Ozcan, Meric; Gurbuz, Yasar

    2017-02-01

    The metal-insulator-metal (MIM) diodes have high speed and compatibility with integrated circuits (IC's) making MIM diodes very attractive to detect and harvest energy for infrared (IR) regime of the electromagnetic spectrum. Due to the fact that small size of the MIM diodes, it is possible to obtain large volume of devices in same unit area. Hence, MIM diodes offer a feasible solution for nanorectennas (nano rectifiying antenna) in IR regime. The aim of this study is to design and develop MIM diodes as array format coupled with antennas for energy harvesting and IR detection. Moreover, varying number of elements which are 4x4, and 40x30 has been fabricated in parallel having 0.040, 0.065 and 0.080 μm2 diode area. For this work we have studied given type of material; Ti-HfO2-Ni, is used for fabricating MIM diodes as a part of rectenna. The effect of the diode array size is investigated. Furthermore, the effect of the array size is also investigated for larger arrays by applying given type of material set; Cr-HfO2-Ni. The fabrication processes in physical vapor deposition (PVD) systems for the MIM diodes resulted in the devices having high non-linearity and responsivity. Also, to achieve uniform and very thin insulator layer atomic layer deposition (ALD) was used. The nonlinearity 1.5 mA/V2 and responsivity 3 A/W are achieved for Ti-HfO2-Ni MIM diodes under low applied bias of 400 mV. The responsivity and nonlinearity of Cr-HfO2-Ni are found to be 5 A/W and 65 μA/V2, respectively. The current level of Cr-HfO2-Ni and Ti-HfO2-Ni is around μA range therefore corresponding resistance values are in 1-10 kΩ range. The comparison of single and 4x4 elements revealed that 4x4 elements have higher current level hence lower resistance value is obtained for 4x4 elements. The array size is 40x30 elements for Cr-HfO2-Ni type of MIM diodes with 40, 65 nm2 diode areas. By increasing the diode area, the current level increases for same size of array. The current level is

  6. Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system

    Science.gov (United States)

    Steele, T. R.; Gerstenberger, D. C.; Drobshoff, A.; Wallace, R. W.

    1991-01-01

    Broadly tunable and high-power operation of a Ti-doped sapphire laser is obtained with a diode-laser-pumped frequency-doubled Nd:YAG laser as the pump source. A maximum broadband (FWHM = 25 nm) output pulse energy of 720 microJ at 795 nm in a TEM00 mode is obtained for 1850 microJ of energy of 532-nm pump light. A minimum pulse duration of 7 nsec is obtained from a 40-mm-long cavity. With the use of an intracavity prism, the Ti:sapphire laser is tunable continuously over the 696-1000-nm spectral range (with three different mirror sets).

  7. Failure modes of large surface avalanche photo diodes in high-energy physics environments

    Science.gov (United States)

    Anzivino, G.; Bai, J.; Bencheikh, B.; Contin, A.; DeSalvo, R.; Fagen, S.; He, H.; Liu, L.; Lundin, M.; Madden, R. M.; Mondardini, M. R.; Szawlowski, M.; Wang, K.; Xia, X.; Yang, C.; Zhao, M.

    1999-06-01

    Large area avalanche photo diodes (APD), a new and very promising type of light detector, were tested at high gain on a beam line and suddenly failed. A detailed study of the failure modes showed that these devices, if used at low gain and with special care, may actually be used in high-energy physics environments and indicates the road of development toward radiation hard, large area APDs. No problem was found when APDs are operated in absence of highly ionizing particles.

  8. Crx broadly modulates the pineal transcriptome

    Science.gov (United States)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M.; Rohde, Kristian; Coon, Steven L.; Litman, Thomas; Rath, Martin F.; Møller, Morten; Klein, David C.

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. Here, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes (p pineal glands of wild-type animals; only eight of these were also day/night expressed in the Crx−/− pineal gland. However, in the Crx−/− pineal gland 41 genes exhibit differential night/day expression that is not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 upregulation. PMID:21797868

  9. Red/blue electroluminescence from europium-doped organic light emitting diodes

    Science.gov (United States)

    Hagen, Joshua A.; Li, Wayne X.; Grote, James G.; Steckl, Andrew J.

    2006-02-01

    Red/Blue emitting organic light emitting diodes (OLED) devices have been obtained using a Europium-doped organic emitting layer (NPB:Eu). The Eu-doped OLEDs emit in 2 color ranges: a broad blue (~420-500nm) band due to NPB emission and a narrow red peak at 620nm due to Eu emission. The red/blue devices achieve a brightness ~13x more intense than a similarly structured green (Alq 3) emitting OLED. These NPB:Eu emitting structures also reach a maximum efficiency of 0.2 cd/A at brightnesses above 100 cd/m2.

  10. Efficient deep-blue organic light-emitting diodes using double-emitting layer.

    Science.gov (United States)

    Seo, Ji Hoon; Seo, Bo Min; Lee, Seok Jae; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2012-04-01

    Efficient deep-blue organic light-emitting diodes were demonstrated using 1,4-tetranaphthalene doped in double-emitting layers (D-EMLs) consisting of 2-methyl-9,10-di(2-naphthyl)anthracene and 4'-(dinaphthalen-2-yl)-1,1'-binaphthyl as blue hosts. The device with D-EML exhibits good confinement of holes and electrons, as well as a broad recombination zone. The optimized device showed a peak current efficiency of 3.67 cd/A, a peak external quantum efficiency of 3.97%, and Commission Internationale de L'Eclairage coordinates of (0.16, 0.10).

  11. Diode-end-pumped Tm:GdVO4 laser operating at 1818 and 1915 nm

    CSIR Research Space (South Africa)

    Esser, MJD

    2009-10-01

    Full Text Available on an analysis of spectroscopic data. M.J.D. Esser et al. 2 Laser design In order to optimise the design of a high-power diode- pumped Tm:GdVO4 laser that fully utilises the broad emis- sion spectrum, a detailed spectroscopic study of the laser material... minimum [10]. This method of analysing a laser material for laser performance is com- plimentary to the “effective emission cross section” method used by other authors [2, 12]. The method used here pro- vides the laser designer with a clear indication...

  12. Neutron Detection Using Gadolinium-Based Diodes

    Science.gov (United States)

    2011-03-01

    T5 in the AFIT Standard Subcritical Graphite Pile. The diode was reverse-biased to 5V. The spectrum was collected over 600 seconds...the ultrasonic wire bonding process used in the 16 pin chip packages assembled by AFRL...seemingly innocuous cargo demands the development of innovative means for detecting the materials required to assemble a nuclear weapon. Table 1

  13. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27...

  14. Outcome of Diode Laser Cyclophotocoagulation in Neovascular ...

    African Journals Online (AJOL)

    Aim: To find out the short-term outcome of ciliary ablation with diode laser contact cyclophotocoagulation in Nigerians with neovascular glaucoma. Methods: The study is a retrospective, non-comparative, interventional case series. Demographic data, ocular and systemic history were obtained. Clinical examination included ...

  15. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  16. Diode Arrays and QA of Advanced Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Alonso N.; Calvo, Oscar, E-mail: gutierrezan@uthscsa.ed [Department of Radiation Oncology, Cancer Therapy and Research Center at the University of Texas Health Science Center, San Antonio TX 78229 (United States)

    2010-11-01

    Dosimetric verification of delivery for intensity-modulated radiotherapy (IMRT) treatment plans is critical to ensure accurate and safe patient treatments. Commonly, a point dose measurement using a calibrated ion chamber as well as a planar dose measurement using film was traditionally implemented for dosimetric quality assurance (QA) of treatment plans. However, new products have become commercially available in which both an absolute and coarse planar dose measurements can be acquired simultaneously by the use of an array of detectors-either ion chamber- or diode-based. Currently, two devices, MapCHECK and Delta{sup 4}, utilize diode technology for planar dose measurements with Delta{sup 4} implementing an orthogonal biplanar arrangement versus the common singular plane. Both devices have been thoroughly clinically characterized with more published experience in the literature available for the MapCHECK due to the novelty of Delta{sup 4}. In this review, an overview of basic diode dosimetry and both diode array systems is presented with an emphasis on our research and clinical experience of the Delta{sup 4}.

  17. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  18. SUMMARY ON BURNOUT IN VARACTOR DIODES

    Science.gov (United States)

    Some aspects of burnout in varactor diodes are briefly summarized. The mechanism in diffused silicon mesa units is described, and initial...experimental results in burnout and life testing of varactors are presented. It is concluded that the varactor is not burnout limited in normal environments. (Author)

  19. Light-Emitting Diodes: A Hidden Treasure

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  20. outcome of diode laser cyclophotocoagulation in neovascular ...

    African Journals Online (AJOL)

    Duke

    systemic history were obtained. Clinical examination included visual acuity, intraocular pressure, number of intraocular pressure-lowering medications and type of treatment administered at the time of NVG diagnosis. Treatment with diode laser cyclophotocoagulation was instituted. Short-term outcomes were observed and.

  1. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  2. Light-Emitting Diodes: Learning New Physics

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  3. Light-Emitting Diodes: Solving Complex Problems

    Science.gov (United States)

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  4. Achromatic optical diode in fiber optics

    CERN Document Server

    Berent, Michal; Vitanov, Nikolay V

    2013-01-01

    We propose a broadband optical diode, which is composed of one achromatic reciprocal quarter-wave plate and one non-reciprocal quarter-wave plate, both placed between two crossed polarizers. The presented design of achromatic wave plates relies on an adiabatic evolution of the Stokes vector, thus, the scheme is robust and efficient. The possible simple implementation using fiber optics is suggested.

  5. The Fuge Tube Diode Array Spectrophotometer

    Science.gov (United States)

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  6. Tunnel Diode Discriminator with Fixed Dead Time

    DEFF Research Database (Denmark)

    Diamond, J. M.

    1965-01-01

    A solid state discriminator for the range 0.4 to 10 V is described. Tunnel diodes are used for the discriminator element and in a special fixed dead time circuit. An analysis of temperature stability is presented. The regulated power supplies are described, including a special negative resistance...

  7. Visibly transparent metal oxide diodes prepared by solution processing

    Science.gov (United States)

    Chan, Kah-Yoong; Ng, Zi-Neng; Au, Benedict Wen-Cheun; Knipp, Dietmar

    2018-01-01

    Visibly transparent metal oxide diodes were fabricated using p-type doped zinc oxide on tin doped indium oxide coated substrates by sol-gel solution processing. The influence of various nitrogen doping concentration on the hole carrier concentration and the device operation of the diodes was investigated. The diodes exhibit high optical transmission in the visible spectra and high on/off ratios at low operating voltages. The operation is limited by the low hole carrier concentration, which affects the ideality factor and the series resistance of the diode. The influence of the carrier concentration on electronic properties of the diode will be discussed.

  8. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James

    2017-10-30

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  9. Ionic PN and PNP junctions -- Diodes and Transistors

    Science.gov (United States)

    Kalman, Eric; Vlassiouk, Ivan; Apel, Pavel; Siwy, Zuzanna

    2008-03-01

    There are well-known devices for controlling the transport of electrons, but very few control ions in a solution. We have prepared ionic diodes and transistors that function in a similar manner to their semiconductor analogues. Ionic PN junctions were created by surface patterning single conical nanopores in polymer films, so that the pore walls are split into two sections: one with positive charge, and the other with negative. These diodes can achieve rectification degrees of several hundreds. Ionic PNP junctions were created by surface patterning single double-conical nanopores in polymer films with tip diameter between 2 and 6 nm, so that the pore walls are split into three sections: the two areas near the large pore openings which are positively charged, while the center of the pore, near the pore tip, is negatively charged. This device works in a similar fashion to a semiconducting BJT transistor, and we show that we can control the electric potential chemically in a manner sufficient to gate the ion current through the device.

  10. Diode laser photocoagulation in PHACES syndrome hemangiomas: a case series

    Science.gov (United States)

    Romeo, U.; Russo, N.; Polimeni, A.; Favia, G.; Lacaita, M. G.; Limongelli, L.; Franco, S.

    2014-01-01

    PHACES syndrome is a pediatric syndrome with cutaneous and extra-cutaneous manifestations, such as Posterior fossa defects, Hemangiomas, Arterial lesions, Cardiac abnormalities/aortic coarctation, Eye abnormalities and Sternal cleft. Facial hemangiomas affect the 75% of patients and may arise on the oral mucosa or perioral cutaneous regions. In this study we treated 26 Intraoral Haemangiomas (IH) and 15 Perioral Haemangiomas (PH) with diode laser photocoagulation using a laser of 800+/-10nm of wavelength. For IH treatment an optical fiber of 320 μm was used, and the laser power was set ted at 4 W (t-on 200 ms / t-off 400ms; fluence: 995 J/cm2). For PH treatment an optical fiber of 400 μm at the power of 5 W was used (t-on 100 ms / t-off 300 ms; fluence: 398 J/cm2). IH healed after one session (31%), the other (69%) after two sessions of Laser therapy. In each session, only a limited area of the PH was treated, obtaining a progressive improvement of the lesion. Diode laser photocoagulation is an effective option of treatment for IH and PH in patients affected by PHACE because of its minimal invasiveness. Moreover laser photocoagulation doesn't have side effects and can be performed repeatedly without cumulative toxicity. Nevertheless, more studies are required to evaluate the effectiveness of the therapy in mid and long time period.

  11. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    Science.gov (United States)

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  12. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    Science.gov (United States)

    Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-12-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  13. Against a Broad Definition of "Empathy"

    Directory of Open Access Journals (Sweden)

    Sarah Songhorian

    2015-04-01

    Full Text Available In this paper I will try to provide some arguments against a broad definition of “empathy”. Firstly, I will deal with attempts to define empathy as an umbrella concept. Then, I will try to point out the four main elements which contribute to the confusion that researchers in both the social and political as well as the scientific and philosophical domains face when dealing with empathy. In order to resolve this confusion, I suggest applying David Marr’s distinction to the field of empathy. Instead of providing an umbrella definition for empathy, which tries to account for all the data coming from different disciplines, I believe understanding that there are different levels of explanations and that different disciplines can contribute to each of them will provide a more detailed and less confused definition of empathy.

  14. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, dio...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications.......Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... lasers simultaneously offer tunability, high-power emission and compact size at fairly low cost. Therefore, diode lasers are increasingly preferred in important applications, such as photocoagulation, optical coherence tomography, diffuse optical imaging, fluorescence lifetime imaging, and terahertz...

  15. Room-temperature 2-μm GeSn P-I-N homojunction light-emitting diode for inplane coupling to group-IV waveguides

    Science.gov (United States)

    Chang, Chiao; Chang, Tai-Wei; Li, Hui; Cheng, Hung Hsiang; Soref, Richard; Sun, Greg; Hendrickson, Joshua R.

    2017-10-01

    We report the electroluminescence of a planar p-i-n diode based on an undoped GeSn layer where the p- and n-type electrodes are fabricated by using the CMOS process of ion implantation. The measurement shows a broad spectrum at a peak energy located below the bulk bandgap of Ge associated with indirect optical transition analyzed by taking into account composition- and strain-dependent modeling. This work provides an alternative approach to the fabrication of GeSn-based p-i-n light-emitting diodes as well as moving towards the integration with waveguided on-chip group IV photonic devices.

  16. Optical and structural properties of CuO nanofilm: Its diode application

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, Ibrahim Y. [Bingoel University, Faculty of Sciences and Arts, Department of Chemistry, 12000 Bingoel (Turkey); Guellue, O., E-mail: omergullu@gmail.co [Batman University, Faculty of Sciences and Arts, Department of Physics, 72060 Batman (Turkey)

    2010-03-04

    The high crystalline CuO nanofilms have been prepared by spin coating and annealing combined with a simple chemical method. The obtained films have been characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-vis (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy. Structural analysis results demonstrate that the single phase CuO on Si (1 0 0) substrate is of high a crystalline structure with a dominant in monoclinic (1 1 1) orientation. FT-IR results confirm the formation of pure CuO phase. UV-vis absorption measurements indicate that the band gap of the CuO films is 2.64 eV. The PL spectrum of the CuO films shows a broad emission band centered at 467 nm, which is consistent with absorption measurement. Also, Au/CuO/p-Si metal/interlayer/semiconductor (MIS) diodes have been fabricated. Electronic properties (current-voltage) of these structures were investigated. In addition, the interfacial state properties of the MIS diode were obtained. The interface-state density of the MIS diode was found to vary from 6.21 x 10{sup 12} to 1.62 x 10{sup 12} eV{sup -1} cm{sup -2}.

  17. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  18. SVSVGMKPSPRP: a broad range adhesion peptide.

    Science.gov (United States)

    Estephan, Elias; Dao, Jérôme; Saab, Marie-Belle; Panayotov, Ivan; Martin, Marta; Larroque, Christian; Gergely, Csilla; Cuisinier, Frédéric J G; Levallois, Bernard

    2012-12-01

    A combinatorial phage display approach was previously used to evolve a 12-mer peptide (SVSVGMKPSPRP) with the highest affinity for different semiconductor surfaces. The discovery of the multiple occurrences of the SVSVGMKPSPRP sequence in an all-against-all basic local alignment search tool search of PepBank sequences was unexpected, and a Google search using the peptide sequence recovered 58 results concerning 12 patents and 16 scientific publications. The number of patent and articles indicates that the peptide is perhaps a broad range adhesion peptide. To evaluate peptide properties, we conducted a study to investigate peptide adhesion on different inorganic substrates by mass spectrometry and atomic force microscopy for gold, carbon nanotubes, cobalt, chrome alloy, titanium, and titanium alloy substrates. Our results showed that the peptide has a great potential as a linker to functionalize metallic surfaces if specificity is not a key factor. This peptide is not specific to a particular metal surface, but it is a good linker for the functionalization of a wide range of metallic materials. The fact that this peptide has the potential to adsorb on a large set of inorganic surfaces suggests novel promising directions for further investigation. Affinity determination of SVSVGMKPSPRP peptide would be an important issue for eventual commercial uses.

  19. Characterisation of diode-connected SiGe BiCMOS HBTs for space applications

    Science.gov (United States)

    Venter, Johan; Sinha, Saurabh; Lambrechts, Wynand

    2016-02-01

    Silicon-germanium (SiGe) bipolar complementary metal-oxide semiconductor (BiCMOS) transistors have vertical doping profiles reaching deeper into the substrate when compared to lateral CMOS transistors. Apart from benefiting from high-speed, high current gain and low-output resistance due to its vertical profile, BiCMOS technology is increasingly becoming a preferred technology for researchers to realise next-generation space-based optoelectronic applications. BiCMOS transistors have inherent radiation hardening, to an extent predictable cryogenic performance and monolithic integration potential. SiGe BiCMOS transistors and p-n junction diodes have been researched and used as a primary active component for over the last two decades. However, further research can be conducted with diode-connected heterojunction bipolar transistors (HBTs) operating at cryogenic temperatures. This work investigates these characteristics and models devices by adapting standard fabrication technology components. This work focuses on measurements of the current-voltage relationship (I-V curves) and capacitance-voltage relationships (C-V curves) of diode-connected HBTs. One configuration is proposed and measured, which is emitterbase shorted. The I-V curves are measured for various temperature points ranging from room temperature (300 K) to the temperature of liquid nitrogen (77 K). The measured datasets are used to extract a model of the formed diode operating at cryogenic temperatures and used as a standard library component in computer aided software designs. The advantage of having broad-range temperature models of SiGe transistors becomes apparent when considering implementation of application-specific integrated circuits and silicon-based infrared radiation photodetectors on a single wafer, thus shortening interconnects and lowering parasitic interference, decreasing the overall die size and improving on overall cost-effectiveness. Primary applications include space-based geothermal

  20. Can small field diode correction factors be applied universally?

    Science.gov (United States)

    Liu, Paul Z Y; Suchowerska, Natalka; McKenzie, David R

    2014-09-01

    Diode detectors are commonly used in dosimetry, but have been reported to over-respond in small fields. Diode correction factors have been reported in the literature. The purpose of this study is to determine whether correction factors for a given diode type can be universally applied over a range of irradiation conditions including beams of different qualities. A mathematical relation of diode over-response as a function of the field size was developed using previously published experimental data in which diodes were compared to an air core scintillation dosimeter. Correction factors calculated from the mathematical relation were then compared those available in the literature. The mathematical relation established between diode over-response and the field size was found to predict the measured diode correction factors for fields between 5 and 30 mm in width. The average deviation between measured and predicted over-response was 0.32% for IBA SFD and PTW Type E diodes. Diode over-response was found to be not strongly dependent on the type of linac, the method of collimation or the measurement depth. The mathematical relation was found to agree with published diode correction factors derived from Monte Carlo simulations and measurements, indicating that correction factors are robust in their transportability between different radiation beams. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. Photovoltaic-module bypass-diode encapsulation. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-20

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  2. Treatment of Oral Leukoplakia with Diode Laser: a Pilot Study on Indian Subjects.

    Science.gov (United States)

    Kharadi, Usama A Rashid; Onkar, Sanjeev; Birangane, Rajendra; Chaudhari, Swapnali; Kulkarni, Abhay; Chaudhari, Rohan

    2015-01-01

    To evaluate the safety, convenience and effectiveness of 940nm diode laser for treatment of homogenous leukoplakia. Ten patients having homogenous leukoplakia which were diagnosed clinically were selected from an Indian dental educational institution for the study. Toludine blue staining was applied locally over the lesion. The area where there was increased uptake of stain was excised using a 940 nm EZLASE TM diode laser (BIOLASE-USA). Although various treatment modalities have been tried and the search continues for novel treatment modalities for complete removal of homogenous leukoplakia, from results of our preliminary pilot study it is clear that the use of 940 nm diode laser as a treatment modality for homogenous leukoplakia is a good substitute. Healing was perfect without any complication within a duration of 1 month. Pain intensity was also mild and absolutely zero on the VAS scale after 1 month follow up. 940 nm diode lasers are safe and can be effectively used as a treatment modality of homogenous leukoplakia, without any complication and without compromising health and oral function of patients. Considering recurrence factor, long term follow up for patients is a must.

  3. High-power diode laser versus electrocautery surgery on human papillomavirus lesion treatment.

    Science.gov (United States)

    Baeder, Fernando Martins; Santos, Maria Teresa Botti R; Pelino, Jose Eduardo Pelizon; Duarte, Danilo Antonio; Genovese, Walter Joao

    2012-05-01

    The use of high-power lasers has facilitated and improved human papillomavirus (HPV) treatment protocols and has also become very popular in recent years. This application has been more frequently used in hospitals, especially in gynecology. The present study aimed to evaluate the effects of high-power diode laser to remove oral lesions caused by HPV and the consequent effects on virus load following the wound tissue healing process compared with one of the most conventional surgical techniques involving electrocautery. Surgeries were performed on 5 patients who had 2 distinct lesions caused by HPV. All patients were submitted to both electrocautery and high-power diode laser. Following a 20-day period, when the area was healed, sample material was collected through curettage for virus load quantitative analysis.Observation verified the presence of virus in all the samples; however, surgeries performed with the laser also revealed a significant reduction in virus load per cell compared with those performed with electrocautery. The ease when handling the diode laser, because of the flexibility of its fibers and precision of its energy delivery system, provides high-accuracy surgery, which facilitates the treatment of large and/or multifocal lesions. The use of high-power diode laser is more effective in treatment protocols of lesions caused by HPV.

  4. Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data.

    Science.gov (United States)

    Thoma, Eben D; Shores, Richard C; Thompson, Edgar L; Harris, D Bruce; Thorneloe, Susan A; Varma, Ravi M; Hashmonay, Ram A; Modrak, Mark T; Natschke, David F; Gamble, Heather A

    2005-05-01

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. Environmental Protection Agency (EPA) has developed a ground-based optical remote-sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transform infrared spectroscopy (OP-FTIR) has been the primary technique for acquisition of pollutant concentration data used in this emission measurement method. For a number of environmentally important compounds, such as ammonia and methane, open-path tunable diode laser absorption spectroscopy (OP-TDLAS) is shown to be a viable alternative to Fourier transform spectroscopy for pollutant concentration measurements. Near-IR diode laser spectroscopy systems offer significant operational and cost advantages over Fourier transform instruments enabling more efficient implementation of the measurement strategy. This article reviews the EPA's fugitive emission measurement method and describes its multipath tunable diode laser instrument. Validation testing of the system is discussed. OP-TDLAS versus OP-FTIR correlation testing results for ammonia (R2 = 0.980) and methane (R2 = 0.991) are reported. Two example applications of tunable diode laser-based fugitive emission measurements are presented.

  5. Underwater Chaotic Lidar using Blue Laser Diodes

    Science.gov (United States)

    Rumbaugh, Luke K.

    The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal

  6. TCAD simulations for a novel single-photon avalanche diode

    Science.gov (United States)

    Jin, Xiangliang; Yang, Jia; Yang, Hongjiao; Tang, Lizhen; Liu, Weihui

    2015-03-01

    A single-photon avalanche diode (SPAD) device with P+-SEN junction, and a low concentration of N-type doping circular virtual guard-ring was presented in this paper. SEN layer of the proposed SPAD has high concentration of N-type doping, causing the SPAD low breakdown voltage (~14.26 V). What's more, an efficient and narrow (about 2μm) guard-ring of the proposed SPAD not only can withstand considerably higher electric fields for preventing edge breakdown, but also offers a little increment in fill factor compared with existing SPADs due to its small area. In addition, some Silvaco TCAD simulations have been done and verify characteristics and performance of the design in this work.

  7. Diode-coupled Ag nanoantennas for nanorectenna energy conversion

    Science.gov (United States)

    Osgood, Richard, III; Giardini, Stephen; Carlson, Joel; Fernandes, Gustavo E.; Kim, Jin Ho; Xu, Jimmy; Chin, Matthew; Nichols, Barbara; Dubey, Madan; Parilla, Philip; Berry, Joseph; Ginley, David; Periasamy, Prakash; Guthrey, Harvey; O'Hayre, Ryan; Buchwald, Walter

    2011-10-01

    Arrays of "nanorectennas" consist of diode-coupled nanoantennas with plasmonic resonances in the visible/near-infrared (vis/nir) regime, and are expected to convert vis/nir radiative power into useful direct current. We study plasmonic resonances in large format (~ 1 mm2 area) arrays, consisting of electron beam-patterned horizontal (e.g., parallel to the substrate) Ag lines patterned on ultrathin (afore-mentioned barrier layers and different metals for the ground plane, are experimentally characterized and compared to our conduction model. We observe ~ 1 mV signals from NiO-based nanorectenna arrays illuminated by 532 nm and 1064 nm laser pulses, and discuss the origin of these signals.

  8. Design of laser diode stable output system

    Science.gov (United States)

    Liu, Bo; Cao, Rui-ming

    2008-03-01

    High-stability output's system of laser diode is introduced in this paper. The system which is based on the MCU of MSP430 has been designed light power feedback loop and coller of TEC. It includes stable current, protecting circuit, light power feedback loop, temperature controlling, power display and so on. It is also able to control and show the power at the real time. The power could be set by botton too. The software of slow start up, slow close and the protecting relay are adopted by MCU. DRV592 is introduced as PWM driver to control the current of TEC. The duty cycle is generate by MCU. In order to control temperature, it is changed to influence the current of TEC. The power that is sampled by photodiode which is integrated in the laser diode is controlled by the micro-processing. The laser is monitored by voltage control circuit and current control circuit at the real time.

  9. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: JamesMcLeskey@rmc.edu [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  10. [Transcanalicular dacryocystorhinostomy with diode laser: complications].

    Science.gov (United States)

    Garcia, Eduardo Alonso; Cintra, Pedro Paulo Vivacqua Cunha

    2009-01-01

    To evaluate the complications of the use of diode laser in the treatment of acquired nasolacrimal obstruction. Forty four procedures (transcanalicular dacryocystorhinostomy with diode laser with bicanalicular silicone tube intubation and local anesthesia) where performed from February 2002 to November 2007 in 41 patients (3 bilaterally), 32 women and 9 men. The most common intraoperative complications were disability to pass the Crawford probe (13.6%) and the laser probe (11.3%). Regarding postoperative complications, epiphora was the event of higher frequency (15.9%) followed by the non-intentional silastic extrusion by the patient (11.3%). Intraoperative and postoperative complications rate were similar of others articles that demonstrated the same surgical technique (with same laser).

  11. African Journals Online: Humanities (broad subject range)

    African Journals Online (AJOL)

    Items 1 - 50 of 55 ... It focuses both on conceptual or theoretical approaches and case studies or essays demonstrating how advanced information technologies further scholarly .... Global Journal of Humanities is aimed at promoting reasearch in all areas of Humanities including philosophy, languages, linguistics, literature, ...

  12. Nanostructured Materials for Organic Light Emitting Diodes

    OpenAIRE

    Dinh, Nguyen Nang

    2010-01-01

    We have given an overview of the recent works on nanocomposites used for optoelectronic devices. From the review it is seen that a very rich publication has been issued regarding the nanostructured composites and nano-hybrid layers or heterojunctions which can be applied for different practical purposes. Among them there are organic light emitting diodes (OLED) and excitonic or organic solar cells (OSC). Our recent achievements on the use of nanocomposites for OLEDs were also presented. There...

  13. High-performance single nanowire tunnel diodes.

    Science.gov (United States)

    Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T

    2010-03-10

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.

  14. Dark pulse quantum dot diode laser.

    Science.gov (United States)

    Feng, Mingming; Silverman, Kevin L; Mirin, Richard P; Cundiff, Steven T

    2010-06-21

    We describe an operating regime for passively mode-locked quantum dot diode laser where the output consists of a train of dark pulses, i.e., intensity dips on a continuous background. We show that a dark pulse train is a solution to the master equation for mode-locked lasers. Using simulations, we study stability of the dark pulses and show they are consistent with the experimental results.

  15. A Treatment of Amblyopia Using Laser Diodes

    Science.gov (United States)

    Wang, Di; Wang, Yi-Ding; Liu, Bing-Chun

    2000-04-01

    We propose the treatment of amblyopia using yellow-green laser diodes. There are amblyopia children in excess of fifty million in the world. Because the causative agent of amblyopia hasn't been well understood,only roughly considered to be concerned with visual sense cell, optic nerve network and function of nerve center, no appropriate treatment is found up to date. The vision of person is determined by the center hollow region of retina, where there are three kinds of cone cell. The corresponding peak wavelength in absorption spectrum locates 447nm (blue light), 532nm (green light) and 565nm (yellow light), respectively. When stimulated by white light, excited degree of three kinds of cone cell are identical,or yellow-green light, to which person eye is most sensitive, will significantly takes effects. Therefore the yellow-green laser diode is suitable for treating amblyopia. The weak laser, namely laser power less than mW order of magnitude, shows curative by stimulating bion tissue. When stimulating light power density is less than 0.001W/cm, the compounding speed of nucleic acid DNA is significantly increased. The growth rate of cell, activity of enzyme, content of hemoglobin and the growth of blood vessel, are all increased. However, it's key to control the dose of light. When the dose transcend some value, a inhibition will occur. The little dose of weak laser treatment can be accumulated with a parabolic characteristics, that is the weak laser generate bion response stengthening gradually versus time. Then it will weaken gradually after the peak. When the treatment duration is longer than a certain time, a inhibition also takes place. A suggested theraphy is characterized by little dose and short treatment course. In a conclusion, the yellow-green laser diode should be used for the treatment of amblyopia. The little dose and short treatment couse are to be adopted. Key words:treatment amblyopia laser diode

  16. Arctic Change Information for a Broad Audience

    Science.gov (United States)

    Soreide, N. N.; Overland, J. E.; Calder, J.

    2002-12-01

    Demonstrable environmental changes have occurred in the Arctic over the past three decades. NOAA's Arctic Theme Page is a rich resource web site focused on high latitude studies and the Arctic, with links to widely distributed data and information focused on the Arctic. Included is a collection of essays on relevant topics by experts in Arctic research. The website has proven useful to a wide audience, including scientists, students, teachers, decision makers and the general public, as indicated through recognition by USA Today, Science magazine, etc. (http://www.arctic.noaa.gov) Working jointly with NSF and the University of Washington's Polar Science Center as part of the Study of Environmental Arctic Change (SEARCH) program, NOAA has developed a website for access to pan-Arctic time series spanning diverse data types including climate indices, atmospheric, oceanic, sea ice, terrestrial, biological and fisheries. Modest analysis functions and more detailed analysis results are provided. (http://www.unaami.noaa.gov/). This paper will describe development of an Artic Change Detection status website to provide a direct and comprehensive view of previous and ongoing change in the Arctic for a broad climate community. For example, composite metrics are developed using principal component analysis based on 86 multivariate pan-Arctic time series for seven data types. Two of these metrics can be interpreted as a regime change/trend component and an interdecadal component. Changes can also be visually observed through tracking of 28 separate biophysical indicators. Results will be presented in the form of a web site with relevant, easily understood, value-added knowledge backed by peer review from Arctic scientists and scientific journals.

  17. Feedback from Broad Absorption Line Quasars

    Science.gov (United States)

    Chartas, George; Saez, C.

    2008-03-01

    The fraction of the total bolometric energy released over an AGN's lifetime into the ISM and IGM in the form kinetic energy injection scales as the outflow velocity to the third power so we expect that powerful broad absorption line (BAL) quasars may have mass outflow rates that are large enough to influence significantly the formation of the host galaxy and to regulate the growth of the central black hole. One of the most promising radio quiet quasars for studying the properties of the outflow is the lensed BAL quasar APM 08279+5255. The large flux magnification by a factor of about 100 provided by the gravitational lens effect combined with the large redshift (z = 3.91) of the quasar have provided the highest S/N X-ray spectra of a quasar containing X-ray BALs. We present results from recent monitoring observations of APM 08279+5255. performed with the Suzaku, XMM-Newton and Chandra observatories. Significant variability of the X-ray BALs is detected on timescales as short as 4 days (proper time) implying launching radii of about 6 times the Schwarzschild radius. The fitted width of the X-ray absorption troughs imply a large gradient in the outflow velocity of the X-ray absorbers with projected outflow velocities of up to 0.5c. The notch-like shape of the detected X-ray BALs are similar to those produced in recent numerical simulations (i.e. Schurch & Done 2007) that include radiative transfer calculations through highly ionized X-ray absorbers outflowing at near relativistic velocities. We provide preliminary constraints of the outflows properties.

  18. Comparison between rad-hard standard float zone (FZ) and magnetic Czochralski (MCZ) silicon diodes in radiotherapy electron beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.C. dos; Goncalves, J.A.C.; Vasques, M.M.; Tobias, C.C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes; Neves-Junior, W.F.P.; Haddad, C.M.K. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Sociedade Beneficente de Senhoras; Harkonen, J. [Helsinki University of Technology (Denmark). Helsinki Inst. of Physics

    2010-07-01

    Full text. The use of semiconductor detectors has increased in radiotherapy practice since 1980s due to mainly their fast processing time, small sensitive volume and high relative sensitivity to ionizing radiation. Other major advantages of Si devices are excellent repeatability, good mechanical stability, high spatial resolution and the energy independence of mass collision stopping powers ratios (between silicon and water for electron beams with energy from 4 up to 20 MeV). However, ordinary silicon devices are very prone to radiation damage effects. In the last years, the development of radiation tolerant silicon detectors for High Energy Physics experiments has overcome this drawback. In this work we present the preliminary results obtained with a rad-hard epitaxial silicon diode as on-line clinical electron beam dosimeter. The diodes with 25 mm{sup 2} active area, were housed in a PMMA probe and connected, in a photovoltaic mode, to a Keithley 6517B electrometer. During all measurements, the diodes were held between PMMA plates, placed at Zref and centered in a radiation field of 10 cm x 10 cm, with the SSD kept at 100 cm. The devices dosimetric response was evaluated for 6, 9, 12, 15, 18 e 21 MeV electron beams from a Siemens KD 2 Radiotherapy Linear Accelerator, located at Sirio-Libanes Hospital. The radiation induced current in the diodes was registered as a function of the exposure time during 60 s for a fixed 300 MU. To study the short term repeatability, current signals were registered for the same radiation dose, for all energies. The dose-response of the diodes was achieved through the integration of the current signals as a function of the exposure time. The results obtained in the energy range of 6 up to 21 MeV evidenced that, for the same average dose rate of 5.0 cGy/s, the current signals are very stable and repeatable in both cases. For all energies, data shows good instantaneous repeatability with a percentage variation coefficient better than 2

  19. Broadly protective influenza vaccines: Redirecting the antibody response through adjuvation

    NARCIS (Netherlands)

    Cox, F.

    2016-01-01

    Influenza virus infections are responsible for significant morbidity worldwide and current vaccines have limited coverage, therefore it remains a high priority to develop broadly protective vaccines. With the discovery of broadly neutralizing antibodies (bnAbs) against influenza these vaccines

  20. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofisica de Canarias, Via Lactea S/N, La Laguna E-38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Munoz, J. A. [Departamento de Astronomia y Astrofisica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V. [Departamento de Fisica y Astronomia, Universidad de Valparaiso, Avda. Gran Bretana 1111, Valparaiso (Chile)

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s} = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.

  1. A novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Andersen, P. E.; Petersen, P.

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...... provides an almost diffraction limited output which is efficiently coupled into a 50 mum core diameter fiber. The optical power transmitted through the fiber is increased by a factor of six when the feedback is applied to the diode laser. 85 percent of the power from the freely running laser diode...... is extracted in a high-quality beam and 80 percent of the output power is extracted through the fiber. The power transmitted through tile fiber scales linearly with the power of the laser diode. which means that a laser diode emitting 1.7 W multi-mode radiation would provide 1 W of optical power through a 50...

  2. Analysis of photon recycling in light emitting diodes with nonuniform injection

    Science.gov (United States)

    Tsutsui, N.; Khmyrova, I.; Ryzhii, V.; Ikegami, T.

    2000-09-01

    We studied the effect of photon recycling in double heterostructure light emitting diodes (LEDs) with relatively small area contact providing nonuniform injection of electrons. A simple phenomenological model of the electron and photon transport in the LED is used to calculate the spatial distributions of electrons and output radiation as well as the external quantum efficiency as functions of device parameters. It is shown that photon recycling is the governing factor of the operation of LEDs with nonuniform injection.

  3. Noise equivalent circuit of a semiconductor laser diode

    OpenAIRE

    Harder, Christoph; Katz, Joseph; Margalit, S.; Shacham, J.; Yariv, A.

    1982-01-01

    The noise equivalent circuit of a semiconductor laser diode is derived from the rate equations including Langevin noise sources. This equivalent circuit allows a straightforward calculation of the noise and modulation characteristics of a laser diode combined with electronic components. The intrinsic junction voltage noise spectrum and the light intensity fluctuation of a current driven laser diode are calculated as a function of bias current and frequency.

  4. Antibacterial Effect of Diode Laser in Pulpectomy of Primary Teeth

    OpenAIRE

    Bahrololoomi, Zahra; Fekrazad, Reza; Shiva ZAMANINEJAD

    2017-01-01

    Introduction: Laser irradiation has been suggested as an adjunct to traditional methods of canal preparation but few studies are available on the antibacterial effect of diode laser in pulpectomy of primary teeth. The purpose of the present study is to investigate the antibacterial effect of diode laser in pulpectomy of primary teeth, in addition to define the optimal and harmless diode lasing conditions in the root canal.

  5. Diode-Assisted Buck-Boost Voltage-Source Inverters

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Teodorescu, Remus

    2009-01-01

    This paper proposes a number of diode-assisted buck-boost voltage-source inverters with a unique X-shaped diode-capacitor network inserted between the inverter circuitry and dc source for producing a voltage gain that is comparatively higher than those of other buck-boost conversion techniques......, a number of diode-assisted inverter variants can be designed with each having its own operational principle and voltage gain expression. For controlling them, a generic modulation scheme that can be used for controlling all diode-assisted variants with minimized harmonic distortion and component stress...

  6. Fast recovery SOI PiN diode with multiple trenches

    Science.gov (United States)

    Zhang, Long; Zhu, Jing; Zhao, Minna; Ding, Desheng; Chen, Jian; Sun, Weifeng

    2017-11-01

    In this paper, a 500V SOI PiN lateral diode is proposed and investigated by simulations and experiments. The proposed structure features multiple deep-oxide trenches (MDOT) arranged in the silicon region. Two DOTs (T1 and T2) locating in the i-layer help to block the cathode-anode voltage (VCA), allowing the diode to shorten its i-layer length. With a similar breakdown voltage (BV) of 560V, the i-layer length is shortened from 47 μm for the conventional diode to 21.9 μm for the proposed MDOT diode. The shortened i-layer leads to a reduced number of stored carriers in the i-layer. Another DOT (T3) is inserted at the anode region of proposed MDOT diode and shorted with P+ anode. T3 acts as a vertical field plate, reshaping the electric potential distribution at the anode region and accelerating the depletion during the reverse recovery process. Thanks to the decreased number of the stored carriers and the accelerated depletion, the reverse recovery time (trr) of the proposed MDOT diode (211 ns) can be decreased by 56.7% compared with the conventional diode (487 ns) at the forward current density of 400 A/cm2 at T = 300 K. The proposed MDOT diode exhibits a better trade-off between forward voltage drop (VF) and reverse recovery time (trr) than the conventional and other reported diodes.

  7. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    in conjunction with optical coherence tomography, two-photon microscopy or coherent anti-Stokes Raman scattering microscopy. In order to provide high-power green diode laser emission, nonlinear frequency conversion of state-of-the-art near-infrared diode lasers represents a necessary means. However, the obtained....... The underlying principle is spectral beam combining of multiple, comparable diode lasers with subsequent nonlinear frequency conversion. In the former approach multiple lasers are incoherently combined with an external optical component. With two 1062 nm tapered diode lasers and a reflecting volume Bragg grating...

  8. Dosimetric characteristics of a PIN diode for radiotherapy application.

    Science.gov (United States)

    Kumar, R; Sharma, S D; Philomina, A; Topkar, A

    2014-08-01

    The PIN diode developed by Bhabha Atomic Research Centre (BARC) was modified for its use as a dosimeter in radiation therapy. For this purpose the diode was mounted on a printed circuit board (PCB) and provided with necessary connections so that its response against irradiation can be recorded by a standard radiotherapy electrometer. The dosimetric characteristics of the diode were studied in Co-60 gamma rays as well as high energy X-rays. The measured sensitivity of this PIN diode is 4 nC/cGy which is about ten times higher than some commercial diode dosimeters. The leakage current from the diode is 0.04 nA. The response of the PIN diode is linear in the range of 20-1000 cGy which covers the full range of radiation dose encountered in radiotherapy treatments. The non-linearity of the diode response is 3.5% at 20 cGy and it is less than 1.5% at higher dose values. Its repeatability is within 0.5%. The angular response variation is about 5.6% within 6608 with respect to normal beam incidence. The response of the PIN diode at 6 and 18 MV X-rays varies within 2% with respect to its response at Co-60 gamma rays. The source to surface distance (SSD) dependence of the PIN diode was studied for Co-60 beam. It was found that the response of the diode decreases almost linearly relative to given dose for beams with constant collimator setting but increasing SSD (decreasing dose-rate). Within this study the diode response varied by about 2.5% between the maximum and minimum SSD. The dose-rate dependence of the PIN diode for 6 and 15 MV-rays was studied. The variation in response of diode for both energies in the studied dose range is less than 1%. The field size dependence of the PIN diode response is within 1% with respect to the response of ionisation chamber. These studies indicate that the characteristics of the PIN diode are suitable for use in radiotherapy dosimetry.

  9. Plasma-filled diode based on the coaxial gun

    Science.gov (United States)

    Zherlitsyn, A. A.; Kovalchuk, B. M.; Pedin, N. N.

    2012-10-01

    The paper presents the results of studies of a coaxial gun for a plasma-filled electron diode. Effects of the discharge channel diameter and gun current on characteristics of the plasma and pulse generated in the diode were investigated. The electron beam with maximum energy of ≥1 MeV at the current of ≈100 kA was obtained in the experiments with a plasma-filled diode. The energy of ≈5 kJ with the peak power of ≥100 GW dissipated in the diode.

  10. Comparative evaluation of diode laser ablation and surgical stripping technique for gingival depigmentation: A clinical and immunohistochemical study

    Science.gov (United States)

    Bakutra, Gaurav; Shankarapillai, Rajesh; Mathur, Lalit; Manohar, Balaji

    2017-01-01

    Introduction: There are various treatment modalities to remove the black patches of melanin pigmentation. The aim of the study is to clinically compare the diode laser ablation and surgical stripping technique for gingival depigmentation and to evaluate their effect on the histological changes in melanocyte activity. Materials and Methods: A total of 40 sites of 20 patients with bilateral melanin hyperpigmentation were treated with the surgical stripping and diode laser ablation technique. Change in Hedin index score, change in area of pigmentation using image analyzing software, pain perception, patient preference of treatment were recorded. All 40 sites were selected for immunohistochemical analysis using HMB-45 immunohistochemical marker. Results: At 12 months post-operative visit, in all sites, repigmentation was observed with different grades of Hedin index. Paired t-test, analysis of variance, and Chi-square tests were used for statistical analysis. Repigmentation in surgical stripping is significantly lesser compared to laser ablation. Lesser numbers of melanocytes were found on immunohistological examination at 12 months postoperatively. Comparison for patient preference and pain indices give statistically significant values for diode laser techniques. Conclusion: Gingival hyperpigmentation is effectively managed by diode laser ablation technique and surgical stripping method. In this study, surgical stripping technique found to be better compared to diode laser ablation. PMID:28539864

  11. Comparative evaluation of diode laser ablation and surgical stripping technique for gingival depigmentation: A clinical and immunohistochemical study.

    Science.gov (United States)

    Bakutra, Gaurav; Shankarapillai, Rajesh; Mathur, Lalit; Manohar, Balaji

    2017-01-01

    There are various treatment modalities to remove the black patches of melanin pigmentation. The aim of the study is to clinically compare the diode laser ablation and surgical stripping technique for gingival depigmentation and to evaluate their effect on the histological changes in melanocyte activity. A total of 40 sites of 20 patients with bilateral melanin hyperpigmentation were treated with the surgical stripping and diode laser ablation technique. Change in Hedin index score, change in area of pigmentation using image analyzing software, pain perception, patient preference of treatment were recorded. All 40 sites were selected for immunohistochemical analysis using HMB-45 immunohistochemical marker. At 12 months post-operative visit, in all sites, repigmentation was observed with different grades of Hedin index. Paired t-test, analysis of variance, and Chi-square tests were used for statistical analysis. Repigmentation in surgical stripping is significantly lesser compared to laser ablation. Lesser numbers of melanocytes were found on immunohistological examination at 12 months postoperatively. Comparison for patient preference and pain indices give statistically significant values for diode laser techniques. Gingival hyperpigmentation is effectively managed by diode laser ablation technique and surgical stripping method. In this study, surgical stripping technique found to be better compared to diode laser ablation.

  12. Inorganic-organic p-n heterojunction nanotree arrays for a high-sensitivity diode humidity sensor.

    Science.gov (United States)

    Wang, Ke; Qian, Xuemin; Zhang, Liang; Li, Yongjun; Liu, Huibiao

    2013-06-26

    Large-area and ordered arrays (16 cm(2)) of an inorganic-organic p-n heterojunction nanotree (NT) were successfully fabricated. The nanotree arrays consist of ZnO nanorods (NRs) as backbones and CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) NRs as branches. The sizes of CuTCNQ NRs can be tuned by the thickness of the Cu layer deposited on the surface of ZnO NR. The CuTCNQ/ZnO NT arrays displayed excellent diode nature and obvious size-dependent rectification ratios were observed. Moreover, the CuTCNQ/ZnO NT arrays were first applied for the fabrication of a diode-type humidity sensor, which displayed ultrahigh sensitivity and quick response/recovery properties at room temperature. The detection limitation of this new diode-type humidity sensor lowers to 5% relative humidity (RH).

  13. Monolithically integrated broad-band Mach-Zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics

    Science.gov (United States)

    Psarouli, A.; Salapatas, A.; Botsialas, A.; Petrou, P. S.; Raptis, I.; Makarona, E.; Jobst, G.; Tukkiniemi, K.; Sopanen, M.; Stoffer, R.; Kakabakos, S. E.; Misiakos, K.

    2015-01-01

    Protein detection and characterization based on Broad-band Mach-Zehnder Interferometry is analytically outlined and demonstrated through a monolithic silicon microphotonic transducer. Arrays of silicon light emitting diodes and monomodal silicon nitride waveguides forming Mach-Zehnder interferometers were integrated on a silicon chip. Broad-band light enters the interferometers and exits sinusoidally modulated with two distinct spectral frequencies characteristic of the two polarizations. Deconvolution in the Fourier transform domain makes possible the separation of the two polarizations and the simultaneous monitoring of the TE and the TM signals. The dual polarization analysis over a broad spectral band makes possible the refractive index calculation of the binding adlayers as well as the distinction of effective medium changes into cover medium or adlayer ones. At the same time, multi-analyte detection at concentrations in the pM range is demonstrated. PMID:26825114

  14. GaAs Substrates for High-Power Diode Lasers

    Science.gov (United States)

    Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt

    GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.

  15. Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator

    Science.gov (United States)

    2013-03-01

    passes immedi- ately into an optical element known as a beam twister . A beam twister consists of an array of microlenses that correct the fast-axis...diode lineshapes. In practice, the VBG is mounted on a rotation stage as seen in Figure 6 and placed between the beam twister and fiber launch optics

  16. Diode laser welding in microvascular applications

    Science.gov (United States)

    Reali, Umberto M.; Gelli, Riccardo; Giannotti, Vanni; D'Anna, M.; Pini, Roberto; Toncelli, F.; Vanni, U.

    1994-12-01

    In this work we report our experiences on diode laser-assisted end-to-end microvascular anastomosis performed on femoral arteries and veins of rats and rabbits at very low laser power (30 - 40 mW). In the course of our trials we approached laser anastomosis with a reduced number of permanent stays to decrease foreign body reaction. Recently we demonstrated the possibility to perform anastomosis without supporting stays. Significant improvements in comparison with traditional procedures were also furnished by histology examination, which showed a better healing process in LAMA cases.

  17. Constructing Diodes and Transistors for Ultracold Atoms

    Science.gov (United States)

    Pepino, Ronald; Cooper, John; Anderson, Dana; Holland, Murray

    2008-05-01

    The ultracold atom-optical analogy to electronic systems is presented, along with the master equation formalism that is applied to this novel physical context of system-reservoir interactions. The proposed formalism lends itself quite readily to not only the study of atomtronic systems, but also transport properties of ultracold atoms in optical lattices. We demonstrate how these systems can be configured so that they emulate the behavior of the electronic diode, field effect transistor (FET), and bipolar junction transistor (BJT). The behavior of simple logic gates: namely, the AND and OR gates are follow as direct consequences of the atomtronic BJTs.

  18. Wheat Under LED's (Light Emitting Diodes)

    Science.gov (United States)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  19. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu

    2015-01-01

    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  20. Method for partially coating laser diode facets

    Science.gov (United States)

    Dholakia, Anil R. (Inventor)

    1990-01-01

    Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.

  1. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  2. Using New Media to Reach Broad Audiences

    Science.gov (United States)

    Gay, P. L.

    2008-06-01

    The International Year of Astronomy New Media Working Group (IYA NMWG) has a singular mission: To flood the Internet with ways to learn about astronomy, interact with astronomers and astronomy content, and socially network with astronomy. Within each of these areas, we seek to build lasting programs and partnerships that will continue beyond 2009. Our weapon of choice is New Media. It is often easiest to define New Media by what it is not. Television, radio, print and their online redistribution of content are not New Media. Many forms of New Media start as user provided content and content infrastructures that answer that individual's creative whim in a way that is adopted by a broader audience. Classic examples include Blogs and Podcasts. This media is typically distributed through content specific websites and RSS feeds, which allow syndication. RSS aggregators (iTunes has audio and video aggregation abilities) allow subscribers to have content delivered to their computers automatically when they connect to the Internet. RSS technology is also being used in such creative ways as allowing automatically updating Google-maps that show the location of someone with an intelligent GPS system, and in sharing 100 word microblogs from anyone (Twitters) through a single feed. In this poster, we outline how the IYA NMWG plans to use New Media to reach target primary audiences of astronomy enthusiasts, image lovers, and amateur astronomers, as well as secondary audiences, including: science fiction fans, online gamers, and skeptics.

  3. Spectral control of diode lasers using external waveguide circuits

    NARCIS (Netherlands)

    Oldenbeuving, Ruud

    2013-01-01

    We investigated spectral control of diode lasers using external waveguide circuits. The purpose of this work is to investigate such external control for providing a new class of diode lasers with technologically interesting properties, such as a narrow spectral bandwidth and spectrally tunable

  4. Comparing the 810nm Diode Laser with Conventional Surgery in ...

    African Journals Online (AJOL)

    ... with the diode laser required less infiltration anaesthesia, had reduced bleeding during and after surgery, rapid postoperative haemostasis, elimination of the need for sutures and an improved postoperative comfort and healing. Keywords: Diode laser, conventional surgery, orthodontics, Laser therapy, laser surgery ...

  5. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  6. Diode pumped solid-state laser oscillators for spectroscopic applications

    Science.gov (United States)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  7. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    Wanum, M. van; Lebouille, T.T.N.; Visser, G.C.; Vliet, F.E. van

    2009-01-01

    In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are Silicon, Gallium Arsenide and Gallium Nitride. The diodes in the diverse semiconductor technologies themselves are close in

  8. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    Science.gov (United States)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  9. Digital control of diode laser for atmospheric spectroscopy

    Science.gov (United States)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  10. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  11. Defect-induced infrared electroluminescence from radial GaInP/AlGaInP quantum well nanowire array light- emitting diodes

    Science.gov (United States)

    Hussain, Laiq; Karimi, Mohammad; Berg, Alexander; Jain, Vishal; Borgström, Magnus T.; Gustafsson, Anders; Samuelson, Lars; Pettersson, Håkan

    2017-12-01

    Radial GaInP/AlGaInP nanowire array light-emitting diodes (LEDs) are promising candidates for novel high-efficiency solid state lighting due to their potentially large strain-free active emission volumes compared to planar LEDs. Moreover, by proper tuning of the diameter of the nanowires, the fraction of emitted light extracted can be significantly enhanced compared to that of planar LEDs. Reports so far on radial growth of nanowire LED structures, however, still point to significant challenges related to obtaining defect-free radial heterostructures. In this work, we present evidence of optically active growth-induced defects in a fairly broad energy range in vertically processed radial GaInP/AlGaInP quantum well nanowire array LEDs using a variety of complementary experimental techniques. In particular, we demonstrate strong infrared electroluminescence in a spectral range centred around 1 eV (1.2 μm) in addition to the expected red light emission from the quantum well. Spatially resolved cathodoluminescence studies reveal a patchy red light emission with clear spectral features along the NWs, most likely induced by variations in QW thickness, composition and barriers. Dark areas are attributed to infrared emission generated by competing defect-assisted radiative transitions, or to trapping mechanisms involving non-radiative recombination processes. Possible origins of the defects are discussed.

  12. Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

    KAUST Repository

    Davis, Nathaniel J. L. K.

    2017-01-24

    Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.

  13. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...... lighting is that the high efficiency can be obtained at high light lumen levels in a single element emitter and thus less light sources are required to achieve a desired light level. Furthermore, the high directionality of the generated light from laser diodes increases the energy savings in many...... applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting...

  14. Stacked, Filtered Multi-Channel X-Ray Diode Array

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, Lawrence P. [National Security Technologies, LLC; Dutra, Eric C. [National Security Technologies, LLC; Raphaelian, Mark; Compton, Steven [Lawrence Livermore National Laboratory; Jacoby, Barry [Lawrence Livermore National Laboratory

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilities to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.

  15. Linear diode laser bar optical stretchers for cell deformation

    Science.gov (United States)

    Sraj, Ihab; Marr, David W.M.; Eggleton, Charles D.

    2010-01-01

    To investigate the use of linear diode laser bars to optically stretch cells and measure their mechanical properties, we present numerical simulations using the immersed boundary method (IBM) coupled with classic ray optics. Cells are considered as three-dimensional (3D) spherical elastic capsules immersed in a fluid subjected to both optical and hydrodynamic forces in a periodic domain. We simulate cell deformation induced by both single and dual diode laser bar configurations and show that a single diode laser bar induces significant stretching but also induces cell translation of speed diode laser bar configuration, however, can be used to both stretch and optically trap cells at a fixed position. The net cell deformation was found to be a function of the total laser power and not the power distribution between single or dual diode laser bar configurations. PMID:21258483

  16. Diode laser application in soft tissue oral surgery.

    Science.gov (United States)

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. The diode laser can be used as a modality for oral soft tissue surgery.

  17. Space Qualification of Laser Diode Arrays

    Science.gov (United States)

    Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

    2005-01-01

    Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

  18. Low level diode laser accelerates wound healing.

    Science.gov (United States)

    Dawood, Munqith S; Salman, Saif Dawood

    2013-05-01

    The effect of wound illumination time by pulsed diode laser on the wound healing process was studied in this paper. For this purpose, the original electronic drive circuit of a 650-nm wavelength CW diode laser was reconstructed to give pulsed output laser of 50 % duty cycle and 1 MHz pulse repetition frequency. Twenty male mice, 3 months old were used to follow up the laser photobiostimulation effect on the wound healing progress. They were subdivided into two groups and then the wounds were made on the bilateral back sides of each mouse. Two sessions of pulsed laser therapy were carried along 15 days. Each mice group wounds were illuminated by this pulsed laser for 12 or 18 min per session during these 12 days. The results of this study were compared with the results of our previous wound healing therapy study by using the same type of laser. The mice wounds in that study received only 5 min of illumination time therapy in the first and second days of healing process. In this study, we found that the wounds, which were illuminated for 12 min/session healed in about 3 days earlier than those which were illuminated for 18 min/session. Both of them were healed earlier in about 10-11 days than the control group did.

  19. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  20. White organic light-emitting diodes with fluorescent tube efficiency.

    Science.gov (United States)

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  1. Broad issues to consider for library involvement in bioinformatics.

    Science.gov (United States)

    Geer, Renata C

    2006-07-01

    The information landscape in biological and medical research has grown far beyond literature to include a wide variety of databases generated by research fields such as molecular biology and genomics. The traditional role of libraries to collect, organize, and provide access to information can expand naturally to encompass these new data domains. This paper discusses the current and potential role of libraries in bioinformatics using empirical evidence and experience from eleven years of work in user services at the National Center for Biotechnology Information. Medical and science libraries over the last decade have begun to establish educational and support programs to address the challenges users face in the effective and efficient use of a plethora of molecular biology databases and retrieval and analysis tools. As more libraries begin to establish a role in this area, the issues they face include assessment of user needs and skills, identification of existing services, development of plans for new services, recruitment and training of specialized staff, and establishment of collaborations with bioinformatics centers at their institutions. Increasing library involvement in bioinformatics can help address information needs of a broad range of students, researchers, and clinicians and ultimately help realize the power of bioinformatics resources in making new biological discoveries.

  2. Transistors and tunnel diodes enabled by large-scale MoS2 nanosheets grown on GaN

    Science.gov (United States)

    San Yip, Pak; Zou, Xinbo; Cho, Wai Ching; Wu, Kam Lam; Lau, Kei May

    2017-07-01

    We report growth, fabrication, and device results of MoS2-based transistors and diodes implemented on a single 2D/3D material platform. The 2D/3D platform consists of a large-area MoS2 thin film grown on SiO2/p-GaN substrates. Atomic force microscopy, scanning electron microscopy, and Raman spectroscopy were used to characterize the thickness and quality of the as-grown MoS2 film, showing that the large-area MoS2 nanosheet has a smooth surface morphology constituted by small grains. Starting from the same material, both top-gated MoS2 field effect transistors and MoS2/SiO2/p-GaN heterojunction diodes were fabricated. The transistors exhibited a high on/off ratio of 105, a subthreshold swing of 74 mV dec-1, field effect mobility of 0.17 cm2 V-1 s-1, and distinctive current saturation characteristics. For the heterojunction diodes, current-rectifying characteristics were demonstrated with on-state current density of 29 A cm-2 and a current blocking property up to -25 V without breakdown. The reported transistors and diodes enabled by the same 2D/3D material stack present promising building blocks for constructing future nanoscale electronics.

  3. Social Cognition, Social Skill, and the Broad Autism Phenotype

    Science.gov (United States)

    Sasson, Noah J.; Nowlin, Rachel B.; Pinkham, Amy E.

    2013-01-01

    Social-cognitive deficits differentiate parents with the "broad autism phenotype" from non-broad autism phenotype parents more robustly than other neuropsychological features of autism, suggesting that this domain may be particularly informative for identifying genetic and brain processes associated with the phenotype. The current study…

  4. A Cointegration And Error Correction Approach To Broad Money ...

    African Journals Online (AJOL)

    This study considered the stability of broad money demand function in Nigeria using data for 1970 to 2004. The study applied the Cointegration and error correction approach The Johansen Cointegration test shows that long run equilibrium relationship exists between broad money demand and its determinants. While the ...

  5. Broad-scale consequences of land management: Columbia basin example.

    Science.gov (United States)

    Richard W. Haynes; Thomas M. Quigley

    2001-01-01

    Integrating management actions to consistently achieve broad ecological and socioeconomic goals is a challenge largely unmet. The presumed or real conflict between these goals establishes a forum for debate. Broad measures are needed to describe tradeoffs, trends in conditions under varying management scenarios, and a transparent science underpinning. The Interior...

  6. Boot Camp for Education CEOs: The Broad Foundation Superintendents Academy

    Science.gov (United States)

    Jehlen, Alain

    2012-01-01

    The Broad Foundation Superintendents Academy is the most prominent and most controversial training institute for school chiefs. The Academy is the flagship program of the Eli and Edythe Broad Foundation, the smallest of a triumvirate of corporate foundations that are at the heart of the billionaire campaign to remake public education in the image…

  7. Low-cost photoacoustic imaging systems based on laser diode and light-emitting diode excitation

    Directory of Open Access Journals (Sweden)

    Qingkai Yao

    2017-07-01

    Full Text Available Photoacoustic imaging, an emerging biomedical imaging modality, holds great promise for preclinical and clinical researches. It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission. In order to generate photoacoustic signal efficiently, bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization. As an alternative, the miniaturized semiconductor laser system has the advantages of being inexpensive, compact, and robust, which makes a significant effect on production-forming design. It is also desirable to obtain a wavelength in a wide range from visible to near-infrared spectrum for multispectral applications. Focussing on practical aspect, this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.

  8. A practical guide to handling laser diode beams

    CERN Document Server

    Sun, Haiyin

    2015-01-01

    This book offers the reader a practical guide to the control and characterization of laser diode beams.  Laser diodes are the most widely used lasers, accounting for 50% of the global laser market.  Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens.  The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams.  The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth meas...

  9. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  10. Influence of Preparation Conditions on Electrical Properties of the Al/Alq3/Si Diode Structures

    Directory of Open Access Journals (Sweden)

    Irina ČERNIUKĖ

    2013-12-01

    Full Text Available Hybrid organic-inorganic diode structures, Al/Alq3/n-Si and Al/Alq3/p-Si based on thin films of tris(8-hydroxyquinoline aluminum (Alq3 have been investigated. The Alq3 films were evaporated in vacuum and spin coated onto patterned areas of crystalline n- and p-type Si substrates with chemically removed native SiO2 layer. Current-voltage characteristics of the diode structures demonstrated improved rectification property compared to similar Al/n-Si and Al/p-Si device structures. Increased barrier height values (0.90 eV ÷ 1.1 eV and 0.77 eV ÷ 0.91 eV for the Al/Alq3/n-Si and Al/Alq3/p-Si device structures, respectively certified presence of an interface dipole induced by the organic interlayer. Non-ideal behavior of forward current-voltage characteristics has been explained assuming non-uniformity of barrier height, presence of interface states, and influence of the organic film on diode series resistance and space charge limited current. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2733

  11. Solar-energy conversion and light emission in an atomic monolayer p-n diode.

    Science.gov (United States)

    Pospischil, Andreas; Furchi, Marco M; Mueller, Thomas

    2014-04-01

    The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.

  12. Hair structures are effectively altered during 810 nm diode laser hair epilation at low fluences.

    Science.gov (United States)

    Trelles, Mario A; Urdiales, Fernándo; Al-Zarouni, Marwan

    2010-03-01

    Diode lasers with high fluence and cooling technology are effective at removing unwanted hair but are also associated with discomfort and morbidity, especially when treating dark or tanned skins. Thirty patients with skin phototypes IV and V (range: 23-62 years of age; average: 39 years) underwent a single hair removal treatment using a new diode laser (810 nm) technology that incorporates low fluence but very high average power. The treatment technique employed multiple, in-motion, repetitive laser passes on a 100 cm(2) area of the skin. A 5mm punch biopsy was carried out before and after a single treatment. Tissue samples were harvested and stained with haematoxylin-eosin. The physical integrity of hair follicles was altered with inflammatory infiltrate, hair shaft detachment from its sheath, and perifollicular oedema, related to incipient necrosis. Low fluence but high average power diode laser technology yields significant changes in hair structure and architecture in patients with dark skin types. The procedure caused low levels of discomfort and was well tolerated.

  13. Inverse I-V Injection Characteristics of ZnO Nanoparticle-Based Diodes.

    Science.gov (United States)

    Mundt, Paul; Vogel, Stefan; Bonrad, Klaus; von Seggern, Heinz

    2016-08-10

    Simple Al/ZnO(NP)/Au diodes produced by spin coating of ZnO nanoparticle dispersions (ZnO(NP)) on Al/Al2O3 and Au substrates and subsequent Au deposition have been investigated to understand electron injection properties of more complex devices, incorporating ZnO(NP) as injection layer. Inverse I-V characteristics have been observed compared to conventional Al/ZnO(SP)/Au diodes produced by reactive ion sputtering of ZnO. SEM micrographs reveal that the void-containing contact of ZnO(NP) with the bottom Al electrode and the rough morphology of the top Au electrode are likely to be responsible for the observed injection and ejection probabilities of electrons. A simple tunneling model, incorporating the voids, explains the strongly reduced injection currents from Al whereas the top electrode fabricated by vapor deposition of Au onto the nanoparticle topology adopts the inverse ZnO(NP) morphology leading to enlarged injection areas combined with Au-tip landscapes. These tips in contrast to the smooth sputtered ZnO(SP) lead to electric field enhancement and strongly increased injection of electrons in reverse direction. The injected charge piles up at the barrier generated by voids between ZnO(NP) and the bottom electrode forcing a change in the barrier shape and therefore allowing for higher ejection rates. Both effects in combination explain the inverse I-V characteristic of nanoparticle based diodes.

  14. Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes

    Science.gov (United States)

    Xu, Liujun; Jiang, Chaoran; Shang, Jin; Wang, Ruizhe; Huang, Jiping

    2017-11-01

    Manipulating thermal conductivities at will plays a crucial role in controlling heat flow. By developing an effective medium theory including periodicity, here we experimentally show that nonuniform media can exhibit quasi-uniform heat conduction. This provides capabilities in proposing Janus thermal illusion and illusion thermal rectification. For the former, we study, via experiment and theory, a big periodic composite containing a small periodic composite with circular or elliptic particles. As a result, we reveal the Janus thermal illusion that describes the whole periodic system with both invisibility illusion along one direction and visibility illusion along the perpendicular direction, which is fundamentally different from the existing thermal illusions for misleading thermal detection. Further, the Janus illusion helps to design two different periodic systems that both work as thermal diodes but with nearly the same temperature distribution, heat fluxes and rectification ratios, thus being called illusion thermal diodes. Such thermal diodes differ from those extensively studied in the literature, and are useful for the areas that require both thermal rectification and thermal camouflage. This work not only opens a door for designing novel periodic composites in thermal camouflage and heat rectification, but also holds for achieving similar composites in other disciplines like electrostatics, magnetostatics, and particle dynamics.

  15. Treatment of presumed iris melanoma in dogs by diode laser photocoagulation: 23 cases.

    Science.gov (United States)

    Cook, Cynthia S.; Wilkie, David A.

    1999-01-01

    A semiconductor diode laser was used to cause remission of isolated presumed iris melanoma in 23 dogs. All cases presented as unilateral areas of raised iris hyperpigmentation, ranging in size from 2x 3 mm to 4x12 mm. Cases were treated using a diode laser delivery system through either an operating microscope adapter (OMA) or a laser indirect ophthalmoscope (LIO) with a 20D lens. Laser treatment was delivered 'to effect' using power ranging from 80 to 1000 mW and cumulative durations up to 14 min, 31 s (14:31). Immediate shrinkage of the mass was noted following treatment. Five cases required more than one laser treatment with three eyes receiving two treatments and two eyes receiving three treatments. Follow-up from the last laser treatment ranged from 6 months to 4.5 years during which time the lesions exhibited no enlargement. Minor complications related to laser treatment were seen, including: dyscoria, iris hyperpigmentation, and corneal edema due to collateral hyperthermia. Glaucoma and cataract formation were not observed. Non-invasive diode laser photocoagulation appears to be a safe and effective method of treatment for isolated, pigmented iris masses in dogs.

  16. Pulse Shape Characterization of Silicon Diodes for HGCal with data from Beam Test at CERN

    CERN Document Server

    De Silva, Malinda

    2016-01-01

    The High Luminosity phase of the LHC (starting operation in 2025) will provide unprecedented instantaneous and integrated luminosity, with 25 ns bunch crossing intervals and up to 140 pileup events. A challenge is to provide excellent physics performance in such a harsh environment to fully exploit the HL-LHC potentialities and explore new physics frontiers. In this context, the High Granularity Calorimeter is the detector designed to provide electromagnetic and hadronic energy coverage and reconstruction in the forward direction of the upgraded CMS. In April 2016 and June 2016, a set of 36 diodes were tested in order to understand various characteristics of its performance, in order to use them in the upgraded HG Calorimeter. Here, the silicon diodes were mounted onto a test bench at CERN’s beam test area and exposed to electron showers. Data received from these diodes were acquired and analysed separately. The objective of this report is to show the variation of Time Rise, Time Over Threshold with various...

  17. Thin-film GaN Schottky diodes formed by epitaxial lift-off

    Science.gov (United States)

    Wang, Jingshan; Youtsey, Chris; McCarthy, Robert; Reddy, Rekha; Allen, Noah; Guido, Louis; Xie, Jinqiao; Beam, Edward; Fay, Patrick

    2017-04-01

    The performance of thin-film GaN Schottky diodes fabricated using a large-area epitaxial lift-off (ELO) process is reported in this work. Comparison of the device characteristics before and after lift-off processing reveals that the Schottky barrier height remains unchanged by the liftoff processing and is consistent with expectations based on metal-semiconductor work function differences, with a barrier height of approximately 1 eV obtained for Ni/Au contacts on n- GaN. However, the leakage current in both reverse and low-forward-bias regimes is found to improve significantly after ELO processing. Likewise, the ideality factor of the Schottky diodes also improves after ELO processing, decreasing from n = 1.12-1.18 before ELO to n = 1.04-1.10 after ELO. A possible explanation for the performance improvement obtained for Schottky diodes after substrate removal by ELO processing is the elimination of leakage paths consisting of vertical leakage along threading dislocations coupled with lateral conduction through the underlying n+ buffer layer that is removed in the ELO process. Epitaxial liftoff with GaN may enable significant improvement in device performance and economics for GaN-based electronics and optoelectronics.

  18. Current transport mechanisms in mercury cadmium telluride diode

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Li, Qing; He, Jiale; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); He, Kai; Lin, Chun [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-08-28

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  19. Performance of EPI diodes as dosimeters for photon beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thais C. dos; Bizetto, Cesar A., E-mail: ccbueno@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Neves-Junior, Wellington F.P.; Haddad, Cecilia M.K. [Hospital Sirio Libanes (HSL), Sao Paulo, SP (Brazil); Goncalves, Josemary A.C.; Bueno, Carmen C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Universidade Catolica de Sao Paulo (PUC-SP), SP (Brazil)

    2011-07-01

    In this work we present the preliminary results about the performance of an epitaxial (EPI) diode as on-line dosimeter for photon beam radiotherapy. The diode used was processed at University of Hamburg on n-type 75 {mu}m thick epitaxial silicon layer grown on a highly doped n-type 300 {mu}m thick Czochralski (Cz) silicon substrate. The measurements were performed with a diode which not received any type of pre-dose. In order to use this device as a dosimeter, it was enclosed in a black polymethylmethacrylate (PMMA) probe. The diode was connected to an electrometer Keithley 6517B in the photovoltaic mode. During all measurements, the diode was held between PMMA plates, placed at 10.0 cm depth and centered in a radiation field of 10 x 10 cm{sup 2}, with the source-to-surface distance (SSD) kept at 100 cm. The short-term repeatability was measured with photon beams of 6 and 18 MV energy by registering five consecutive current signals for the same radiation dose. The current signals induced showed good instantaneous repeatability of the diode, characterized by a smallest coefficient of variation (CV) of 0.21%. Furthermore, the dose-response curves of the diode were quite linear with the highest charge sensitivity achieved of 5.0 {mu}C/Gy. It worth noting that still remains to be investigated the pre-dose influence on epitaxial silicon diode response in radiotherapy photon beam dosimetry, the long term stability and the radiation hardness of these diodes for absorbed doses higher than that investigated in this work. All these studies are under way. (author)

  20. Quaternary InGaAsSb Thermophotovoltaic Diodes

    Energy Technology Data Exchange (ETDEWEB)

    MW Dashiell; JF Beausang; H Ehsani; GJ Nichols; DM Depoy; LR Danielson; P Talamo; KD Rahner; EJ Brown; SR Burger; PM Foruspring; WF Topper; PF Baldasaro; CA Wang; R Huang; M Connors; G Turner; Z Shellenbarger; G Taylor; J Li; R Martinelli; D Donetski; S Anikeev; G Belenky; S Luryi

    2006-03-09

    In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} thermophotovoltaic (TPV) diodes were grown lattice-matched to GaSb substrates by Metal Organic Vapor Phase Epitaxy (MOVPE) in the bandgap range of E{sub G} = 0.5 to 0.6eV. InGaAsSb TPV diodes, utilizing front-surface spectral control filters, are measured with thermal-to-electric conversion efficiency and power density of {eta}{sub TPV} = 19.7% and PD =0.58 W/cm{sup 2} respectively for a radiator temperature of T{sub radiator} = 950 C, diode temperature of T{sub diode} = 27 C, and diode bandgap of E{sub G} = 0.53eV. Practical limits to TPV energy conversion efficiency are established using measured recombination coefficients and optical properties of front surface spectral control filters, which for 0.53eV InGaAsSb TPV energy conversion is {eta}{sub TPV} = 28% and PD = 0.85W/cm{sup 2} at the above operating temperatures. The most severe performance limits are imposed by (1) diode open-circuit voltage (VOC) limits due to intrinsic Auger recombination and (2) parasitic photon absorption in the inactive regions of the module. Experimentally, the diode V{sub OC} is 15% below the practical limit imposed by intrinsic Auger recombination processes. Analysis of InGaAsSb diode electrical performance vs. diode architecture indicate that the V{sub OC} and thus efficiency is limited by extrinsic recombination processes such as through bulk defects.

  1. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  2. Two-Tone Intermodulation in Diode Mixers,

    Science.gov (United States)

    1986-09-30

    PAOC(Vhn DO1 Entered) J6 4 Pr -’,4. *J *4~-444 4 *~ 4 P*. * 44*44 . J. *o. PREFACE The author wishes to thank R. M. Gowin for assistance with the...fabrica- tion of the mixers, W. A. Garber for measuring the diode C/ V characteristic, and M. McColl, W. A. Johnson, and F. L. Vernon for reading and...current 1%.’, and capacitive charge Q( V ’) are given by the well-known • "expressions ’-:jex q.’Y 7 KTI I’ 1 0exp(6 V ) (i) Q, ,= -2 C. I - V / ~ 𔃼(2) where

  3. Contact Whiskers for Millimeter Wave Diodes

    Science.gov (United States)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  4. Smart medical diode lasers: fantasy becoming reality

    Science.gov (United States)

    Soltz, Barbara A.

    1995-05-01

    Design principles and rules are currently being formulated for building intelligent machines for `factories of the future'. The intelligent machine is one which has control functions that resemble the `brain', `eyes' and other anthropomorphic substitutes for the skilled expert. These skills are related to the expert's knowledge and abilities to plan complex actions and to detect errors with a continual upgrade of machine understanding. A craft related language enables a high level of communication between the system and the operator. These same capabilities can be embodied in a medical laser system. This paper will define the key characteristics of a smart medical laser and will describe the advantages of an intelligent system based on diode laser technology. System control functions and software architecture will be explained and the main subsystems highlighted.

  5. Tunable diode laser optogalvanic spectroscopy of molecules

    Science.gov (United States)

    Webster, C. R.; Menzies, R. T.

    1983-01-01

    The laser optogalvanic (LOG) technique for studying molecular spectra has been extended for the first time to the infrared wavelength region. Portions of the NH3 nu-2 band at 9.5 microns and the NO2 nu-3 band at 6.2 microns have been recorded at Doppler-limited resolution using CW tunable diode lasers to probe dc electrical discharges in pure NH3 and an NO2/He gas mixture. Using adjustable electrode positions and an orthogonal geometry between the probe laser and the discharge axis, two contributions to the optogalvanic signal are identified: one which corresponds to an increase in discharge impedance and is seen only for irradiation of the negative glow region; and a second which corresponds to a decrease in discharge impedance and is seen for irradiation of all other discharge regions.

  6. Low-cost laser diode array

    Science.gov (United States)

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  7. Light-emitting diodes for analytical chemistry.

    Science.gov (United States)

    Macka, Mirek; Piasecki, Tomasz; Dasgupta, Purnendu K

    2014-01-01

    Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

  8. A Flexible Blue Light-Emitting Diode Based on ZnO Nanowire/Polyaniline Heterojunctions

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2013-01-01

    Full Text Available An organic/inorganic light-emitting diode (LED consisting of n-type vertically aligned ZnO nanowires (NWs and p-type proton acid doped polyaniline (PANi is reported. The device was fabricated on flexible indium-tin-oxide (ITO coated polyethylene terephthalate (PET substrate. A broad blue light emission band ranging from 390 nm to 450 nm was observed in the electroluminescence (EL spectra of the device, which was related to the interface recombination of electrons in the conduction band of ZnO NWs and holes in the polaron level of PANi. The turn-on voltage of the device is ~3.5 V, lower than most of ZnO NWs based LED devices. In combination with the easy fabrication, flexibility, low power consumption, and mechanical robustness, this novel device is very promising in the application of blue LEDs.

  9. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth

    KAUST Repository

    Shen, Chao

    2016-08-25

    III-nitride LEDs are fundamental components for visible-light communication (VLC). However, the modulation bandwidth is inherently limited by the relatively long carrier lifetime. In this letter, we present the 405 nm emitting superluminescent diode (SLD) with tilted facet design on semipolar GaN substrate, showing a broad emission of ∼9 nm at 20 mW optical power. Owing to the fast recombination (τ<0.35 ns) through the amplified spontaneous emission, the SLD exhibits a significantly large 3-dB bandwidth of 807 MHz. A data rate of 1.3 Gbps with a bit-error rate of 2.9 × 10 was obtained using on-off keying modulation scheme, suggesting the SLD being a high-speed transmitter for VLC applications.

  10. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    Directory of Open Access Journals (Sweden)

    Fengbing Wu

    2012-01-01

    Full Text Available We have investigated the feasibility of employing quantum dot (QD phosphor-based light-emitting diodes (LEDs in aviation applications that request Night Vision Imaging Systems (NVIS compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nanocrystal QDs can be tailored by varying the nanocrystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  11. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  12. Improved performance of Schottky diodes on pendeoepitaxial gallium nitride

    Science.gov (United States)

    Zheleva, T.; Derenge, M.; Ewing, D.; Shah, P.; Jones, K.; Lee, U.; Robins, L.

    2008-09-01

    We designed experiments to investigate the role of dislocation density on the performance of Schottky diodes fabricated on a GaN material grown conventionally and by pendeo-epitaxy. Devices of varying geometries were fabricated on low defect density GaN regions grown selectively via pendeo-epitaxy. In addition, corresponding devices were fabricated on the conventional GaN material with a high density of dislocations. Schottky diodes fabricated on pendeo-material showed nearly two orders of magnitude lower leakage current and displayed improved ideality factor, while diodes built on a conventional material displayed nonideal characteristics.

  13. A transient model of a cesium-barium diode

    Energy Technology Data Exchange (ETDEWEB)

    Luke, J.R.; El-Genk, M.S.

    1995-01-01

    In this work a transient model of a Cs-Ba diode is developed, and a series of experiments is performed using a diode equipped with Langmuir probes. The Langmuir probe data show that the electron energy distribution is non-Maxwellian at low discharge currents, indicating the presence of an electron beam from the emitter. Experimental results also showed that the plasma properties are non-homogeneous across the 1 mm diode gap; the electron temperature and plasma potential were higher near the emitter and the plasma density was higher near the collector. Experimental evidence is presented to show that the discharge contracts to a filament below the maximum thermal emission current.

  14. The all boron carbide diode neutron detector: Comparison with theory

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A.N. [Department of Physics and Astronomy, Behlen Laboratory of Physics, University of Nebraska, P.O. Box 880111, Lincoln, NE 68588-0111 (United States); Nebraska Center for Materials and Nanoscience, 116 Brace Laboratory, University of Nebraska, P.O. Box 880111, Lincoln, NE 68588-0111 (United States); College of Engineering, N245 Walter Scott Engineering Center, 17th Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States); Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States); Dowben, P.A. [Department of Physics and Astronomy, Behlen Laboratory of Physics, University of Nebraska, P.O. Box 880111, Lincoln, NE 68588-0111 (United States) and Nebraska Center for Materials and Nanoscience, 116 Brace Laboratory, University of Nebraska, P.O. Box 880111, Lincoln, NE 68588-0111 (United States)]. E-mail: pdowben@unl.edu; Balkir, S. [Nebraska Center for Materials and Nanoscience, 116 Brace Laboratory, University of Nebraska, P.O. Box 880111, Lincoln, NE 68588-0111 (United States); Department of Electrical Engineering, College of Engineering, 237N Walter Scott Engineering Center, 17th Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States); Schemm, Nathan [Nebraska Center for Materials and Nanoscience, 116 Brace Laboratory, University of Nebraska, P.O. Box 880111, Lincoln, NE 68588-0111 (United States); Department of Electrical Engineering, College of Engineering, 237N Walter Scott Engineering Center, 17th Vine Street, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)] (and others)

    2006-11-25

    A boron carbide diode detector, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theory. Small deviations from the model calculations occur due to the detection efficiencies of the {sup 10}B capture products Li plus {alpha} sum signal differing somewhat from expectation in the thin diodes. The performance of the all boron carbide neutron detector does depart from the behavior of devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector), as is expected.

  15. High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension

    Science.gov (United States)

    Li, Juntao; Xiao, Chengquan; Xu, Xingliang; Dai, Gang; Zhang, Lin; Zhou, Yang; Xiang, An; Yang, Yingkun; Zhang, Jian

    2017-02-01

    This paper presents the design and fabrication of an etched implant junction termination extension (JTE) for high-voltage 4H-SiC PiN diodes. Unlike the conventional JTE structure, the proposed structure utilizes multiple etching steps to achieve the optimum JTE concentration range. The simulation results show that the etched implant JTE method can improve the blocking voltage of SiC PiN diodes and also provides broad process latitude for parameter variations, such as implantation dose and activation annealing condition. The fabricated SiC PiN diodes with the etched implant JTE exhibit a highest blocking voltage of 4.5 kV and the forward on-state voltage of 4.6 V at room temperature. These results are of interest for understanding the etched implant method in the fabrication of high-voltage power devices. Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (No. 2014A05011) and the Special Foundation of President of China Academy of Engineering Physics (No. 2014-1-100).

  16. Investigation on light emission in light-emitting diodes constructed with n-ZnO and p-Si nanowires.

    Science.gov (United States)

    Kim, Kwangeun; Moon, Taeho; Kim, Sangsig

    2011-07-01

    The light emission was investigated in light-emitting diodes (LEDs) constructed with n-ZnO and p-Si nanowires (NWs). ZnO NWs were synthesized by thermal chemical vapor deposition and Si NWs were formed by crystallographic wet etching of a Si wafer. The LEDs were fabricated using the NWs via dielectrophoresis (DEP) and direct transfer methods. The DEP method enabled to align the ZnO NW at the position that led to p-n heterojunction diodes by crossing with the transferred Si NW. The I-V curve of the p-n heterojunction diode showed the well-defined current-rectifying characteristic, with a turn-on voltage of 3 V. The electroluminescence spectrum in the dark showed the strong emission at approximately 385 nm and the broad emission centered at approximately 510 nm, at a forward bias of 30 V. Under the illumination of 325-nm-wavelength light, the luminescence intensity at 385 nm was dramatically enhanced, compared to that in the dark, probably due to the electric-field-induced enhancement of luminescence.

  17. Design of Metamaterial Surfaces with Broad-band Absorbance

    OpenAIRE

    Wu, Chihhui; Shvets, Gennady

    2011-01-01

    A simple design paradigm for making broad-band ultra-thin plasmonic absorbers is introduced. The absorber's unit cell is composed of sub-units of various sizes, resulting in nearly 100% absorbance at multiple adjacent frequencies and high absorbance over a broad frequency range. A simple theoretical model for designing broad-band absorbers is presented. It uses a single-resonance model to describe the optical response of each sub-unit and employs the series circuit model to predict the overal...

  18. Preliminary evaluation of discomfort glare from organic light-emitting diode and edge-lit light-emitting diode lighting panels.

    Science.gov (United States)

    Mou, Xi; Freyssinier, Jean Paul; Narendran, Nadarajah; Bullough, John D

    2017-05-01

    The organic light-emitting diode (OLED) is an area light source, and its primary competing technology is the edge-lit light-emitting diode (LED) panel. Both technologies are similar in shape and appearance, but there is little understanding of how people perceive discomfort glare (DG) from area sources. The objective of this study was to evaluate the DG of these two technologies under similar operating conditions. Additionally, two existing DG models were compared to evaluate the correlation between predicted values and observed values. In an earlier study, we found no statistically significant difference in human response in terms of DG between OLED and edge-lit LED panels when the two sources produced the same luminous stimulus. The range of testing stimulus was expanded to test different panel luminances at three background illuminations. The results showed no difference in perceived glare between the panels, and, as the background illumination increased, the perceived glare decreased. In other words, both appeared equally glary beyond a certain luminance and background illumination. We then compared two existing glare models with the observed values and found that one model showed a good estimation of how humans perceive DG. That model was further modified to increase its power.

  19. Titanium-dioxide nanotube p-n homojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Alivov, Yahya, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu; Ding, Yuchen; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: y.alivov@colorado.edu, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2014-12-29

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO{sub 2}) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO{sub 2} nanotubes p-n homojunction. This TiO{sub 2}:N/TiO{sub 2}:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of −5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  20. The oomycete broad-host-range pathogen Phytophthora capsici.

    Science.gov (United States)

    Lamour, Kurt H; Stam, Remco; Jupe, Julietta; Huitema, Edgar

    2012-05-01

    Phytophthora capsici is a highly dynamic and destructive pathogen of vegetables. It attacks all cucurbits, pepper, tomato and eggplant, and, more recently, snap and lima beans. The disease incidence and severity have increased significantly in recent decades and the molecular resources to study this pathogen are growing and now include a reference genome. At the population level, the epidemiology varies according to the geographical location, with populations in South America dominated by clonal reproduction, and populations in the USA and South Africa composed of many unique genotypes in which sexual reproduction is common. Just as the impact of crop loss as a result of P. capsici has increased in recent decades, there has been a similar increase in the development of new tools and resources to study this devastating pathogen. Phytophthora capsici presents an attractive model for understanding broad-host-range oomycetes, the impact of sexual recombination in field populations and the basic mechanisms of Phytophthora virulence. Kingdom Chromista; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Phytophthora; Species capsici. Symptoms vary considerably according to the host, plant part infected and environmental conditions. For example, in dry areas (e.g. southwestern USA and southern France), infection on tomato and bell or chilli pepper is generally on the roots and crown, and the infected plants have a distinctive black/brown lesion visible at the soil line (Fig. 1). In areas in which rainfall is more common (e.g. eastern USA), all parts of the plant are infected, including the roots, crown, foliage and fruit (Fig. 1). Root infections cause damping off in seedlings, whereas, in older plants, it is common to see stunted growth, wilting and, eventually, death. For tomatoes, it is common to see significant adventitious root growth just above an infected tap root, and the stunted plants, although severely compromised, may not die

  1. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  2. An all MMIC Replacement for Gunn Diode Oscillators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to replace the Gunn Diode Oscillators (GDOs) in NASA?s millimeter- and submillimeter-wave sensing instruments. Our new solution will rely on modern and...

  3. Effect of different diode laser powers in photodynamic therapy

    CSIR Research Space (South Africa)

    Maduray, K

    2010-09-01

    Full Text Available This preliminary photodynamic therapy study investigated the effect of different diode laser powers (mW) for the activation of two photosensitizers (AlTSPc, aluminum tetrasulfonatedphthalocyanine and ZnTSPc, zinc tetrasulfonatedphthalocyanine...

  4. Differential Diode Laser Sensor for High-Purity Oxygen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact portable sensor for determining the purity of oxygen concentrations near 100 percent is proposed based on differential absorption of two beams from a diode...

  5. Silver-Rutile Schottky Diode Fabricated on Oxidized Titanium Foil

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarpour, Saeedeh; Purahmad, Mohsen, E-mail: s.rahbarpour@ee.kntu.ac.ir, E-mail: m.purahmad@ee.kntu.ac.ir [Electrical Engineering Department, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The fabrication and characterization of a gas sensing Ag-TiO2 Schottky diode are reported. The fabricated Ag-TiO2-Ti structure, formed by sintering silver nanoparticles on the thermally oxidized titanium foil, demonstrated I-V characteristics of a typical Schottky diode at elevated temperatures up to 500 deg. C. The I-V characteristics of these devices strongly depended on the concentration level of the reducing gas contaminants in the surrounding atmosphere. The samples performed like high-barrier Schottky diodes in clean air, while behaved as ohmic contacts in highly reducing atmospheres. Different concentration levels of the examined alcohol vapours could increase the reverse current of the diodes up to 5 orders of magnitude. The measured electronic features of the device were described via an energy band diagram model.

  6. Evaluation of light-emitting diode beacon light fixtures.

    Science.gov (United States)

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  7. Active stabilization of a diode laser injection lock

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  8. Unmanned Aerial Vehicle Diode Laser Sensor for Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, lightweight, and low power diode laser sensor will be developed for atmospheric methane detection on small unmanned aerial vehicles (UAVs). The physical...

  9. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  10. Active graphene–silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  11. Diode lasers for direct application by utilizing a trepanning optic for remote oscillation welding of aluminum and copper

    Science.gov (United States)

    Fritsche, Haro; Müller, Norbert; Ferrario, Fabio; Fetissow, Sebastian; Grohe, Andreas; Hagen, Thomas; Steger, Ronny; Katzemaikat, Tristan; Ashkenasi, David; Gries, Wolfgang

    2017-02-01

    We report the first direct diode laser module integrated with a trepanning optic for remote oscillation welding. The trepanning optic is assembled with a collimated DirectProcess 900 laser engine. This modular laser is based on single emitters and beam combiners to achieve fiber coupled modules with a beam parameter product or BPP design consists in vertically stacking several diodes in the fast axis which leads to a rectangular output of about 100 W with BPP of design principle provides the option to adapt the wavelength configuration to match a broad set of applications, from the UV to the visible and to the far IR depending on the commercial availability of laser diodes. This opens numerous additional applications like laser pumping, scientific and medical applications, as well as materials processing applications such as cutting and welding of copper aluminum or steel. Furthermore, the module's short lead lengths enable very short pulses. Integrated with electronics, the module's pulse width can be adjusted from micro-seconds to cw mode operation by simple software commands. An optical setup can be directly attached instead of a fiber to the laser module thanks to its modular design. This paper's experimental results are based on a trepanning optic attached to the laser module. Alltogether the setup approximately fits in a shoe box and weighs less than 20 kg which allows for direct mounting onto a 3D-gantry system. The oscillating weld performance of the 500 W direct diode laser utilizing a novel trepanning optic is discussed for its application to aluminum/aluminum and aluminum/copper joints.

  12. Broad Spectrum Sanitizing Wipes with Food Additives Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcide proposes to develop novel multipurpose non-toxic sanitizing wipes that are aqueous based, have shelf life of 3-5 years, have broad spectrum microbicidal...

  13. Investigation of temperature feedback signal parameters during neoplasms treatment by diode laser radiation

    Science.gov (United States)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Semyashkina, Yulia V.

    2016-04-01

    Dynamics of temperature signal in operation area and laser power at nevus, papilloma, and keratoma in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and with temperature feedback (APC) mode are presented. Feedback allows maintaining temperature in the area of laser treatment at a preset level by regulating power of diode laser radiation (automatic power control). Temperature in the area of laser treatment was controlled by measuring the amplitude of thermal radiation, which occurs when tissue is heated by laser radiation. Removal of neoplasm was carried out in CW mode with laser radiation average power of 12.5+/-0.5 W; mean temperature in the area of laser treatment was 900+/-10°C for nevus, 800+/-15°C for papilloma, and 850+/-20°C for keratoma. The same laser radiation maximal power (12.5 W) and targeted temperature (900°C) were set for nevus removal in APC mode. The results of investigation are real time oscillograms of the laser power and temperature in the area of laser treatment at neoplasms removal in two described above modes. Simultaneously with the measurement of laser power and the temperature in the area of laser treatment video recording of surgeon manipulations was carried out. We discuss the correlation between the power of the laser radiation, the temperature in the area of laser treatment and consistency of surgeon manipulation. It is shown that the method of removal (excision with or without traction, scanning) influences the temperature in the area of laser treatment. It was found, that at removal of nevus with temperature feedback (APC) mode to achieve comparable with CW mode temperature in the area of laser treatment (900+/-10°C) 20-50% less laser power is required. Consequently, removing these neoplasms in temperature feedback mode can be less traumatic than the removal in CW mode.

  14. Spectral beam combining of diode lasers with high efficiency

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2012-01-01

    Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation.......Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation....

  15. Performance of a pump system for diode-pumped lasers

    Science.gov (United States)

    Stratan, Aurel; Fenic, Constantin G.; Dabu, Razvan V.; Herisanu, Nicolae A.; Luculescu, C.; Sporea, Dan G.; Dumitru, Gabriel; Iordache, Gheorghe

    1998-07-01

    We have developed a laser-diode pump system for continuous-wave end-pumping of Nd:YAG lasers. The pump system includes a pair of 1 W diode-arrays mounted in coaxial enclosures, a driver unit and the pump optics. The array wavelength was temperature tuned to achieve the maximum absorption of the pump radiation in the Nd:YAG crystal. The characteristics of the pump system are presented and the pump-beam profile is investigated.

  16. Stacked, filtered multi-channel X-ray diode array

    Energy Technology Data Exchange (ETDEWEB)

    MacNeil, Lawrence [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Dutra, Eric [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Raphaelian, Mark [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Compton, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jacoby, Barry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  17. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    Science.gov (United States)

    2016-07-25

    standard processing and stepper alignment for a bias current of only 2 mA. The small VCSEL can be coupled to multimode or single mode waveguides, and...mounting on silicon. The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used a lithographic

  18. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  19. Organic light emitting diode with surface modification layer

    Energy Technology Data Exchange (ETDEWEB)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  20. Laser diodes for sensing applications: adaptive cruise control and more

    Science.gov (United States)

    Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian

    2005-02-01

    Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.

  1. Active Stabilization of a Diode Laser Injection Lock

    OpenAIRE

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  2. Active graphene?silicon hybrid diode for terahertz waves

    OpenAIRE

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene?silicon hybrid film. The di...

  3. Technical improvements in diode-laser-assisted skin welding

    Science.gov (United States)

    Chiarugi, C.; Martini, L.; Borgognoni, L.; Reali, Umberto M.; Gori, F.; Pini, Roberto; Toncelli, F.

    1996-01-01

    We performed diode-laser assisted skin welding on Wistar rats by using a sodium hyaluronate gel mixed with Indocyanine Cadio-green (ICG) as photoenhancing chromophore. Laser treatment was accomplished with a 'side' irradiation technique, taking advantage of the fact that diode laser radiation at 810 nm is well transmitted by tissue on distances of some millimeters. Clinical and histological results were compared with those of conventionally sutured wounds.

  4. The broad line region of AGN: Kinematics and physics

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2006-01-01

    Full Text Available In this paper a discussion of kinematics and physics of the Broad Line Region (BLR is given. The possible physical conditions in the BLR and problems in determination of the physical parameters (electron temperature and density are considered. Moreover, one analyses the geometry of the BLR and the probability that (at least a fraction of the radiation in the Broad Emission Lines (BELs originates from a relativistic accretion disk.

  5. The Broad Line Region of AGN: Kinematics and Physics

    OpenAIRE

    Popović L.Č.

    2006-01-01

    In this paper a discussion of kinematics and physics of the Broad Line Region (BLR) is given. The possible physical conditions in the BLR and problems in determination of the physical parameters (electron temperature and density) are considered. Moreover, one analyses the geometry of the BLR and the probability that (at least) a fraction of the radiation in the Broad Emission Lines (BELs) originates from a relativistic accretion disk.

  6. A Flight-like Integrated Circulator for Broad Area Cooling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future instruments and platforms for NASA space applications will require increasingly sophisticated thermal control technology, and cryogenic applications will...

  7. Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective

    Science.gov (United States)

    Allen, Craig D.; Savage, Melissa; Falk, Donald A.; Suckling, Kieran F.; Swetnam, Thomas W.; Schulke, Todd; Stacey, Peter B.; Morgan, Penelope; Hoffman, Martos; Klingel, Jon T.

    2002-01-01

    The purpose of this paper is to promote a broad and flexible perspective on ecological restoration of Southwestern (U.S.) ponderosa pine forests. Ponderosa pine forests in the region have been radically altered by Euro-American land uses, including livestock grazing, fire suppression, and logging. Dense thickets of young trees now abound, old-growth and biodiversity have declined, and human and ecological communities are increasingly vulnerable to destructive crown fires. A consensus has emerged that it is urgent to restore more natural conditions to these forests. Efforts to restore Southwestern forests will require extensive projects employing varying combinations of young-tree thinning and reintroduction of low-intensity fires. Treatments must be flexible enough to recognize and accommodate: high levels of natural heterogeneity; dynamic ecosystems; wildlife and other biodiversity considerations; scientific uncertainty; and the challenges of on-the-ground implementation. Ecological restoration should reset ecosystem trends toward an envelope of “natural variability,” including the reestablishment of natural processes. Reconstructed historic reference conditions are best used as general guides rather than rigid restoration prescriptions. In the long term, the best way to align forest conditions to track ongoing climate changes is to restore fire, which naturally correlates with current climate. Some stands need substantial structural manipulation (thinning) before fire can safely be reintroduced. In other areas, such as large wilderness and roadless areas, fire alone may suffice as the main tool of ecological restoration, recreating the natural interaction of structure and process. Impatience, overreaction to crown fire risks, extractive economics, or hubris could lead to widespread application of highly intrusive treatments that may further damage forest ecosystems. Investments in research and monitoring of restoration treatments are essential to refine

  8. Performance improvement of indoor positioning using light-emitting diodes and an image sensor for light-emitting diode communication

    Science.gov (United States)

    Hossen, Md. Sazzad; Park, Youngil; Kim, Ki-Doo

    2015-04-01

    Light-emitting diodes (LEDs) are expected to replace existing lighting technologies in the near future because of the potential dual function of LED light (i.e., wireless communication and lighting) in the context of visible light communication (VLC). We propose a highly precise indoor positioning algorithm using lighting LEDs, an image sensor, and VLC. In the proposed algorithm, three LEDs transmit their three-dimensional coordinate information, which is received and demodulated by a single image sensor at an unknown position. The unknown position is then calculated from the geometrical relations of the LED images created on the image sensor plane. We describe the algorithm in detail. A simulation of the proposed algorithm is presented in this paper. We also compare the performance of this algorithm with that of our previously proposed algorithm. The comparison indicates significant improvement in positioning accuracy because of the simple algorithmic structure and low computational complexity. This technique does not require any angular measurement, which is needed in the contemporary positioning algorithms using LEDs and image sensor. The simulation results show that the proposed system can estimate the unknown position to an accuracy of 0.001 m inside the approximate positioning area when the pixel value is >3000.

  9. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  10. Molecular beam epitaxial growth and characterization of AlN nanowall deep UV light emitting diodes

    Science.gov (United States)

    Liu, Xianhe; Zhao, Songrui; Le, Binh Huy; Mi, Zetian

    2017-09-01

    We have demonstrated large area AlN nanowall light emitting diodes grown on a sapphire substrate, which operate at 214 nm. Through detailed temperature-dependent and power-dependent photoluminescence measurements and rate equation analysis, a relatively high internal quantum efficiency (˜60%) was derived for AlN nanowall structures at room-temperature. A consistent blueshift in the emission wavelengths was measured with decreasing nanowall widths due to the reduced tensile strain distribution. The devices exhibit excellent current-voltage characteristics, including a turn-on voltage of 7 V and current densities of >170 A/cm2 at 12 V.

  11. Carbonization of a radicular cyst using fiber-optic diode laser: a case report

    Science.gov (United States)

    Kafas, Panagiotis; Kalfas, Sotirios

    2008-01-01

    A female patient, 51 years old, complaint of painful swelling on the anatomical area of the upper left lateral incisor. The diagnosis of radicular cyst was confirmed histo-pathologically. Nowadays, radicular cysts may be treated using conventional root canal methods or surgical apicectomy. The possible soft-laser reaction to radicular cysts after contact application has not been investigated. We present an in vitro case of a diagnosed radicular cyst which carbonized after contact application of diode laser. The need for future clinical trials will be essential to prove the sensitivity of this procedure in humans. PMID:18713459

  12. Carbonization of a radicular cyst using fiber-optic diode laser: a case report.

    Science.gov (United States)

    Kafas, Panagiotis; Kalfas, Sotirios

    2008-08-19

    A female patient, 51 years old, complaint of painful swelling on the anatomical area of the upper left lateral incisor. The diagnosis of radicular cyst was confirmed histo-pathologically. Nowadays, radicular cysts may be treated using conventional root canal methods or surgical apicectomy. The possible soft-laser reaction to radicular cysts after contact application has not been investigated. We present an in vitro case of a diagnosed radicular cyst which carbonized after contact application of diode laser. The need for future clinical trials will be essential to prove the sensitivity of this procedure in humans.

  13. MMIC Replacement for Gunn Diode Oscillators

    Science.gov (United States)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  14. Dead Time of Single Photon Avalanche Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: lorenzo.neri@ct.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, I-95125, Catania (Italy); Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy); Tudisco, S. [INFN Laboratori Nazionali del Sud, via S.Sofia 62, I-95125, Catania (Italy); Musumeci, F.; Scordino, A. [Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy); Fallica, G.; Mazzillo, M. [ST-Microelectronics, stradale Primosole 50, I-95100, Catania (Italy); Zimbone, M. [Universita degli Studi di Catania, via S.Sofia 64, I-95123, Catania (Italy)

    2011-06-15

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10{sup 7}cps using a device with 0.97{mu}s total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  15. Modeling of diode pumped nanoparticle gas laser

    Science.gov (United States)

    Yang, Xu; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2017-05-01

    The hybrid gas phase and solid state laser shows its inherent advantages in heat management and high efficiency and compactness, with DPAL becoming a perfect example. However, this kind of laser is limited by concern, for example, narrow absorption linewidth and a series of problems resulting from chemical reactions. As a matter of fact, Prof. Krupke proposed some hybrid gas phase and solid state lasers before DPAL, while they were chemically unfavored. As a newest type of hybrid gas phase and solid state laser, diode pumped nanoparticle gas laser (DPNGL) is a potential candidate in high power laser field. We put forward a rate equation model for Yb3+ doped nanoparticle gas laser, and scattering of nanoparticles at the nano scale is included in this model. In addition, modifications of fluorescence lifetime and laser emission and pump absorption cross section are coupled into this model. Some vital factors are simulated and discussed. The results obtained from the modeling show that the influence of scattering is weak, and the Yb3+ concentration is not necessarily high to achieve a good laser performance. The results are sufficiently positive for DPNGL to be a promising high power laser.

  16. Design of drive circuit of laser diode

    Science.gov (United States)

    Ran, Yingying; Huang, Xuegong; Xu, Xiaobin

    2016-10-01

    Aiming at the difficult problem of high precision frequency stabilization of semiconductor laser diode, the laser frequency control is realized through the design of the semiconductor drive system. Above all, the relationship between the emission frequency and the temperature of LD is derived theoretically. Then the temperature corresponding to the stable frequency is obtained. According to the desired temperature stability of LD, temperature control system is designed, which is composed of a temperature setting circuit, temperature gathering circuit, the temperature display circuit, analog PID control circuit and a semiconductor refrigerator control circuit module. By sampling technology, voltage of platinum resistance is acquired, and the converted temperature is display on liquid crystal display. PID analog control circuit controls speed stability and precision of temperature control. The constant current source circuit is designed to provide the reference voltage by a voltage stabilizing chip, which is buffered by an operational amplifier. It is connected with the MOSFET to drive the semiconductor laser to provide stable current for the semiconductor laser. PCB circuit board was finished and the experimental was justified. The experimental results show that: the design of the temperature control system could achieve the goal of temperature monitoring. Meanwhile, temperature can be stabilized at 40°C +/- 0.1°C. The output voltage of the constant current source is 2 V. The current is 35 mA.

  17. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies

    Directory of Open Access Journals (Sweden)

    Zhiqing Zhang

    2016-11-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection causes acquired immune deficiency syndrome (AIDS, a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.

  18. Antibacterial Effect of Diode Laser in Pulpectomy of Primary Teeth

    Science.gov (United States)

    Bahrololoomi, Zahra; Fekrazad, Reza; Zamaninejad, Shiva

    2017-01-01

    Introduction: Laser irradiation has been suggested as an adjunct to traditional methods of canal preparation but few studies are available on the antibacterial effect of diode laser in pulpectomy of primary teeth. The purpose of the present study is to investigate the antibacterial effect of diode laser in pulpectomy of primary teeth, in addition to define the optimal and harmless diode lasing conditions in the root canal. Methods: A total of 125 single rooted primary teeth were selected. After traditional canal cleaning, they were divided in 2 groups. Sixty-five specimens after culturing of Enterococcus faecalis into the canals, were divided in 3 groups: (1) traditional canal cleaning with 0.5% NaOCl irrigation, (2) method of group 1+ 1.5 W diode laser (980 nm, pulse), (3) without treatment (5 specimens). Then the specimens were cultured and after colony counting under light microscope, were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests. For 60 specimens, temperature rise of apical and cervical parts of the external root surface were measured using 2 thermocouple type K, when radiating a 1.5 W diode laser into the canal. Results: In the first experiment, the diode laser group showed tmost reduction in bacterial count. And in the second experiment, the mean temperature rise of external root surface was less than the threshold of periodontal ligament (PDL) damage. Conclusion: Diode laser with a power output of 1.5 W, is effective in reduction of E. faecalis bacterial count without damaging periodontal structures.

  19. High brightness diode lasers controlled by volume Bragg gratings

    Science.gov (United States)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  20. Antibacterial Effect of Diode Laser in Pulpectomy of Primary Teeth.

    Science.gov (United States)

    Bahrololoomi, Zahra; Fekrazad, Reza; Zamaninejad, Shiva

    2017-01-01

    Introduction: Laser irradiation has been suggested as an adjunct to traditional methods of canal preparation but few studies are available on the antibacterial effect of diode laser in pulpectomy of primary teeth. The purpose of the present study is to investigate the antibacterial effect of diode laser in pulpectomy of primary teeth, in addition to define the optimal and harmless diode lasing conditions in the root canal. Methods: A total of 125 single rooted primary teeth were selected. After traditional canal cleaning, they were divided in 2 groups. Sixty-five specimens after culturing of Enterococcus faecalis into the canals, were divided in 3 groups: (1) traditional canal cleaning with 0.5% NaOCl irrigation, (2) method of group 1+ 1.5 W diode laser (980 nm, pulse), (3) without treatment (5 specimens). Then the specimens were cultured and after colony counting under light microscope, were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests. For 60 specimens, temperature rise of apical and cervical parts of the external root surface were measured using 2 thermocouple type K, when radiating a 1.5 W diode laser into the canal. Results: In the first experiment, the diode laser group showed tmost reduction in bacterial count. And in the second experiment, the mean temperature rise of external root surface was less than the threshold of periodontal ligament (PDL) damage. Conclusion: Diode laser with a power output of 1.5 W, is effective in reduction of E. faecalis bacterial count without damaging periodontal structures.

  1. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    Science.gov (United States)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  2. The influence of mounting and thermal strains on defects disclose during ageing test for laser diodes for 808nm and 880nm bands

    Science.gov (United States)

    Dabrowska, E.; Kozłowska, A.; Teodorczyk, M.; Zawistowska, J.; Sobczak, G.; Malag, A.

    2013-07-01

    The quality of the die bonding is critical to the operation and reliability of the laser diodes since it can affect the electrical, thermal, and optical properties of the device. We investigated the effect of mounting induced strain and defects on the performance of high power laser. In this paper measurements of the temperature distribution, the spontaneous emission spectrum and the electroluminescence along the cavity of quantum well lasers are presented. The electro-optical parameters of the high output power laser diodes, such as emission wavelength, output power, threshold current, slope efficiency, and operating lifetime are presented too. In the experiment, high power diode lasers emitting in 808 nm and 880 nm- range are investigated. We have observed that defect lines tend to create in areas where temperature gradients were observed in thermovision measurements.

  3. Shareholder, stakeholder-owner or broad stakeholder maximization

    DEFF Research Database (Denmark)

    Mygind, Niels

    2004-01-01

    including the shareholders of a company. Although it may be the ultimate goal for Corporate Social Responsibility to achieve this kind of maximization, broad stakeholder maximization is quite difficult to give a precise definition. There is no one-dimensional measure to add different stakeholder benefits...... not traded on the mar-ket, and therefore there is no possibility for practical application. Broad stakeholder maximization instead in practical applications becomes satisfying certain stakeholder demands, so that the practical application will be stakeholder-owner maximization un-der constraints defined...

  4. Fluorescence-based Broad Dynamic Range Viscosity Probes.

    Science.gov (United States)

    Dragan, Anatoliy; Graham, August E; Geddes, Chris D

    2014-03-01

    We introduce two new fluorescent viscosity probes, SYBR Green (SG) and PicoGreen (PG), that we have studied over a broad range of viscosity and in collagen solutions. In water, both dyes have low quantum yields and excited state lifetimes, while in viscous solvents or in complex with DNA both parameters dramatically (300-1000-fold) increase. We show that in log-log scale the dependence of the dyes' quantum yield vs. viscosity is linear, the slope of which is sensitive to temperature. Application of SG and PG, as a fluorescence-based broad dynamic range viscosity probes, to the life sciences is discussed.

  5. Rare case of giant broad ligament fibroid with myxoid degeneration

    Directory of Open Access Journals (Sweden)

    R R Godbole

    2012-01-01

    Full Text Available Giant fibroids are known to arise from the uterus, although very rarely from extra-uterine sites. Among extra-uterine fibroids, broad ligament fibroids generally achieve enormous size and generally present with pressure symptom like bladder and bowel dysfunction. Myxoid degeneration is a rare complication of benign fibroid, where presence of cystic changes mimics the metastatic malignant ovarian tumor. We report a case of true broad ligament fibroid measured about 13 kg. This case is reported for its rarity and the diagnostic difficulties in differentiating malignant ovarian tumor and benign fibroid with myxoid degeneration.

  6. An extremely broad band metamaterial absorber based on destructive interference.

    Science.gov (United States)

    Sun, Jingbo; Liu, Lingyun; Dong, Guoyan; Zhou, Ji

    2011-10-24

    We propose a design of an extremely broad frequency band absorber based on destructive interference mechanism. Metamaterial of multilayered SRRs structure is used to realize a desirable refractive index dispersion spectrum, which can induce a successive anti-reflection in a wide frequency range. The corresponding high absorptance originates from the destructive interference of two reflection waves from the two surfaces of the metamaterial. A strongly absorptive bandwidth of almost 60 GHz is demonstrated in the range of 0 to 70 GHz numerically. This design provides an effective and feasible way to construct broad band absorber in stealth technology, as well as the enhanced transmittance devices. © 2011 Optical Society of America

  7. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  8. Tribotronic Tuning Diode for Active Analog Signal Modulation.

    Science.gov (United States)

    Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin

    2017-01-24

    Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.

  9. Wavelength-Agile External-Cavity Diode Laser for DWDM

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  10. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  11. Violet Laser Diode Enables Lighting Communication.

    Science.gov (United States)

    Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru

    2017-09-05

    Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y3Al5O12:Ce3+ (YAG:Ce) or Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

  12. Plant Growth Under Light Emitting Diode Irradiation.

    Science.gov (United States)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I concluded that the P_{ rm r} form of phytochrome-A and the phytochrome cycling rate mediate responses. In tomato, increased amounts of Phytochrome-A prevented stem elongation and caused chlorophyll accumulation in LED light.

  13. Environmental setting, water budget, and stream assessment for the Broad Run watershed, Chester County, Pennsylvania

    Science.gov (United States)

    Cinotto, Peter J.; Reif, Andrew G.; Olson, Leif E.

    2005-01-01

    . Assessment of fluvial-geomorphic conditions included large-scale mapping of stream classes within the Broad Run watershed and in-depth study of three representative stream reaches also within the Broad Run watershed. Based on the total distance of all stream reaches classified within the Broad Run watershed, 61 percent were classified as C-class, 14 percent as E-class, 13 percent as B-class, 5 percent as F-class, 4 percent as undifferentiated B- and F-class, 2 percent as G-class, and less than 1 percent as A-class. The map of stream classes indicates that the Broad Run watershed currently has no large-scale areas of stream impairment and that, generally, the stream is not entrenched and the main branch of the Broad Run has an available, functioning flood plain. Smaller tributary streams, however, showed signs of localized entrenchment due to site-specific influences such as natural stream-channel evolution, localized channelization, localized contraction due to road and driveway crossings, and (or) increased localized runoff. For example, one small reach along a tributary channel was observed to become entrenched due to runoff originating from a new housing development. Entrenched stream reaches are merely located by large-scale mapping and require individual assessment to determine potential causes of entrenchment and (or) future restorative actions. Three in-depth geomorphic study sites showed that the Broad Run can currently be considered graded or in a state of dynamic equilibrium. The sites did, however, identify certain vulnerabilities to future changes within the watershed. These vulnerabilities included disruption of the present sediment supply, including both increases and (or) reductions in the current sediment loads within the Broad Run; increases in both magnitude and duration of storm-water runoff; encroachment of development onto present flood-plain areas, and (or) alterations to riparian zones. Assessment of stream-quality conditions includ

  14. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    Science.gov (United States)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  15. Long-throated flumes and broad-crested weirs

    NARCIS (Netherlands)

    Bos, M.G.

    1985-01-01

    Vital for water management are structures that can measure the flow in a wide variety of channels. Chapter 1 introduces the long-throated flume and the broad-crested weir; it explains why this family of structures can meet the boundary conditions and hydraulic demands of most measuring

  16. Extra Ovarian Serous Cystadenocarcinoma in the Broad Ligament ...

    African Journals Online (AJOL)

    The embryonic remnants of the gonadal ridge and the genital duct apparatus, the Mullerian apparatus, remain atretic throughout the life of a woman. The definitive organs arising from these, the Ovary, Fallopian tubes, Uterus, Cervix and the Broad ligaments share common coelomic origin. Epithelial metaplasia in any of ...

  17. Development of a Broad-Spectrum Antiviral Agent with Activity ...

    African Journals Online (AJOL)

    Development of a Broad-Spectrum Antiviral Agent with. Activity Against Herpesvirus Replication .... deviation. The data were analyzed by SPSS software, version 16. Significant differences (p <. 0.01) between groups were determined using unpaired Student's t-test. RESULTS. Cytotoxic and optimum drug concentrations.

  18. Broad-band spectrophotometry of HAT-P-32 b

    DEFF Research Database (Denmark)

    Mallonn, M.; Bernt, I.; Herrero, E.

    2016-01-01

    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previou...

  19. Silver Nanoparticles with Broad Multiband Linear Optical Absorption

    KAUST Repository

    Bakr, Osman M.

    2009-07-06

    A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.

  20. Post abortal broad ligament. abscess: report of a case

    African Journals Online (AJOL)

    infrequently with endotoxic shock, pelvic abscess, anaemia. cervical incompetence, chronic pelvic pain, ectopic pregnancy and infertility. Deaths from unsafe abortions are principally attributed to haemorrhage, anaemia, sepsis and renal failure. 7'8. Broad ligament abscess is rare. lntraligamentous haematoma is however ...

  1. Broadly neutralizing antibodies against HIV-1: templates for a vaccine

    NARCIS (Netherlands)

    van Gils, Marit J.; Sanders, Rogier W.

    2013-01-01

    The need for an effective vaccine to prevent the global spread of human immunodeficiency virus type 1 (HIV-1) is well recognized. Passive immunization and challenge studies in non-human primates testify that broadly neutralizing antibodies (BrNAbs) can accomplish protection against infection. In

  2. Three Broad Parental Feeding Styles and Young Children's Snack Intake

    Science.gov (United States)

    Boots, Samantha B.; Tiggemann, Marika; Corsini, Nadia

    2017-01-01

    Objective: The aim of this study was to identify broad overarching feeding styles that parents may use and their effects on pre-school-aged children's healthy and unhealthy snack intake. Design: Cross sectional study Methods: Mothers (n = 611) of children aged 2-7 years (mean age 3.9 years) completed an online survey assessing parent-feeding…

  3. Broad-band spectrophotometry of HAT-P-32 b

    DEFF Research Database (Denmark)

    Mallonn, M.; Bernt, I.; Herrero, E.

    2016-01-01

    Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36...

  4. Children and trauma : a broad perspective on exposure and recovery

    NARCIS (Netherlands)

    Alisic, E.

    2011-01-01

    The purpose of this dissertation was to generate a broad overview of children’s exposure to and recovery from trauma in order to promote theory building and the design of prevention and intervention activities. First, a general population study was conducted in 1770 primary school children. They

  5. Development of a Broad-Spectrum Antiviral Agent with Activity ...

    African Journals Online (AJOL)

    Purpose: To evaluate the broad-spectrum antiviral activity of peptide H9 (H9) in vitro in order to gain insight into its underlying molecular mechanisms. Method: Antiviral activity against Herpes simplex virus type 1 (HSV-1) was determined using thiazolyl blue (MTT) assay. Polymerase Chain Reaction (PCR) was employed to ...

  6. Formulation of a complementary food fortified with broad beans ...

    African Journals Online (AJOL)

    Sixty percent of mothers did not provide bean-based food for their children, with the most frequently reported reason being lack of knowledge of its nutrient value for young children. To a typical complementary food of barley-maize porridge, 10, 20 and 30% of cereal was replaced by processed broad beans (Vicia faba), ...

  7. Implementation of Broad-Based Black Economic Empowerment in ...

    African Journals Online (AJOL)

    The institution of Broad-Based Black Economic Empowerment (BBBEE) has had an impact on the economy in South Africa. Due to its extensive reliance on government procurement, BBBEE has had a substantial influence on the construction industry in terms of transformation imperatives. Although much has been ...

  8. The X-ray side of the Broad Line Region

    Science.gov (United States)

    Costantini, E.

    2017-10-01

    The broad line region (BLR) is very different from an idealised spherical region of gas in motion around the central black hole. Using traditional optical/UV data, different geometries, sometimes contrasting with each other, have been recently explored. The broad line emitting clouds however, do also emit in the X-rays. This emitting gas constitute the energetic portion of the same clouds emitting the UV (Costantini et al. 2007, 2010). Here we present a unique study, using broad line region data of the bright Seyfert1 Mrk509 (Kaastra et al. 2011), taken simultaneously by XMM-Newton RGS, HST-COS and XMM-Newton OM-Grism (Costantini et al. 2016). We use a synthetic, physically motivated, model to fit the multi-wavelength data. The results point to part of the emission (possibly disk-like) coming near the black hole, highlighted by highly-ionized lines. In addition, a larger scale height component, clearly confined by the dust sublimation radius, is characterised by lower ionization ions emission (a bowl-like geometry; Goad et al. 2012). It is the first time that the X-rays provide crucial constraints in the geometrical description of the broad line region.

  9. 48 CFR 2035.71 - Broad agency announcements.

    Science.gov (United States)

    2010-10-01

    ... CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 2035.71 Broad agency announcements. (a..., approaches, or concepts demonstrated by the proposal. (2) Overall scientific, technical, or economic merits... unique combinations of these which are integral factors for achieving the proposal objectives. (4) The...

  10. Socioeconomic evaluation of broad-scale land management strategies.

    Science.gov (United States)

    Lisa K. Crone; Richard W. Haynes

    2001-01-01

    This paper examines the socioeconomic effects of alternative management strategies for Forest Service and Bureau of Land Management lands in the interior Columbia basin. From a broad-scale perspective, there is little impact or variation between alternatives in terms of changes in total economic activity or social conditions in the region. However, adopting a finer...

  11. Discharge ratio of the broad-crested weir flowin the low head area КОЭФФИЦИЕНТ РАСХОДА ВОДОСЛИВА С ШИРОКИМ ПОРОГОМВ ОБЛАСТИ МАЛЫХ НАПОРОВ

    Directory of Open Access Journals (Sweden)

    Medzveliya Manana Levanovna

    2013-04-01

    Full Text Available The authors consider the influence of the Reynolds number on the discharge ratio of the broad-crested weir. The authors provide an overview of their experiment in thearticle. They provide the equation that takes account of each factor of influence, including H — pressure over the broad-crested weir, P — weir height above the bottom, v — liquid velocity, ρ — liquid density, μ — dynamic viscosity, g — superficial tension, σ — gravity acceleration, q — per-unit weir flow, B — width of the weir, L — length of the weir. Superficial tension and liquid density values have minor differences for different fluids.A broad-crested weir flow was organized in the rectangular tray (6,000×100×200. The flow had the following dimensions: weir length L = 40 mm, weir height P = 50 mm, weir width B = 100 mm. The findings of the experiment have proven that the increase in the Reynolds number causes the increase in the broad-crested weir flow discharge ratio (at the pre-set relative pressure and it approaches the constant value at Re ≈ 2000.Рассмотрен вопрос о влиянии числа Рейнольдса на коэффициент расхода водослива с широким порогом. Показано, что коэффициент расхода водослива увеличивается с ростом числа Рейнольдса (при заданном относительном напоре, приближаясь к постоянному значению при Re ≈ 2000.

  12. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  13. Artificial light at night confounds broad-scale habitat use by migrating birds

    Science.gov (United States)

    McLaren, James D.; Buler, Jeffrey J.; Schreckengost, Tim; Smolinsky, Jaclyn A.; Boone, Matthew; van Loon, E. Emiel; Dawson, Deanna K.; Walters, Eric L.

    2018-01-01

    With many of the world's migratory bird populations in alarming decline, broad-scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light-polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi-year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly-lit sources. This finding implies broad-scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high-quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations.

  14. Comparison of PA imaging by narrow beam scanning and one-shot broad beam excitation

    Science.gov (United States)

    Xia, Jinjun; Wei, Chen-Wei; Huang, Lingyun; Pelivanov, I. M.; O'Donnell, Matthew

    2011-03-01

    Current systems designed for deep photoacoustic (PA) imaging typically use a low repetition rate, high power pulsed laser to provide a ns-scale pulse illuminating a large tissue volume. Acoustic signals recorded on each laser firing can be used to reconstruct a complete 2-D (3-D) image of sources of heat release within that region. Using broad-beam excitation, the maximum frame rate of the imaging system is restricted by the pulse repetition rate of the laser. An alternate illumination approach is proposed based on fast scanning by a low energy (~ 1 mJ) high repetition rate (up to a few kHz) narrow laser beam (~1 mm) along the tissue surface over a region of interest. A final PA image is produced from the summation of individual PA images reconstructed at each laser beam position. This concept can take advantage of high repetition rate fiber lasers to create PA images with much higher frame rates than current systems, enabling true real-time integration of photoacoustics with ultrasound imaging. As an initial proof of concept, we compare conventional broad beam illumination to a scanned beam approach in a simple model system. Two transparent teflon tubes with diameters of 1.6 mm and 0.8 mm were filled with ink having an absorption coefficient of 5 cm-1. These tubes were buried inside chicken breast tissue acting as an optical scattering medium. They were separated by 3 mm or 10 mm to test spatial and contrast resolution for the two scan formats. The excitation wavelength was 700 nm. The excitation source is a traditional OPO pumped by a Q-switched Nd:YAG laser with doubler. Photoacoustic images were reconstructed using signals from a small, scanned PVDF transducer acting as an acoustic array. Two different illumination schemes were compared: one was 15 mm x 10 mm in cross section and acted as the broad beam; the other was 5 mm x 2 mm in cross section (15 times smaller than the broad beam case) and was scanned over an area equivalent to broad beam illumination

  15. Four channel Laser Firing Unit using laser diodes

    Science.gov (United States)

    Rosner, David, Sr.; Spomer, Edwin, Sr.

    1994-01-01

    This paper describes the accomplishments and status of PS/EDD's (Pacific Scientific/Energy Dynamics Division) internal research and development effort to prototype and demonstrate a practical four channel laser firing unit (LFU) that uses laser diodes to initiate pyrotechnic events. The LFU individually initiates four ordnance devices using the energy from four diode lasers carried over the fiber optics. The LFU demonstrates end-to-end optical built in test (BIT) capabilities. Both Single Fiber Reflective BIT and Dual Fiber Reflective BIT approaches are discussed and reflection loss data is presented. This paper includes detailed discussions of the advantages and disadvantages of both BIT approaches, all-fire and no-fire levels, and BIT detection levels. The following topics are also addressed: electronic control and BIT circuits, fiber optic sizing and distribution, and an electromechanical shutter type safe/arm device. This paper shows the viability of laser diode initiation systems and single fiber BIT for typing military applications.

  16. A novel physical parameter extraction approach for Schottky diodes

    Science.gov (United States)

    Wang, Hao; Chen, Xing; Xu, Guang-Hui; Huang, Ka-Ma

    2015-07-01

    Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in this paper. By employing a set of analytical formulas, this approach extracts all of the necessary physical parameters of the diode chip in a unique way. It then extracts the package parasitic parameters with a curve-fitting method. To validate the proposed approach, a model HSMS-282c commercial Schottky diode is taken as an example. Its physical parameters are extracted and used to simulate the diode’s electrical characteristics. The simulated results based on the extracted parameters are compared with the measurements and a good agreement is obtained, which verifies the feasibility and accuracy of the proposed approach. Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1230112).

  17. Practical applications of the diode in dental practice

    Science.gov (United States)

    Moldoveanu, Lucia E.; Odor, Alin A.

    2016-03-01

    Introduction: The use of lasers has become a practice in modern periodontology and it is a fact that the use of diodes in the dental office can bring a real benefit in periodontal surgery. Material and method: These case reports describe few of various soft tissue procedures that were performed with diode laser 940 nm (Epic 10, Biolase Inc., USA). Discussions: There are a few immediate benefits of the intervention: the "periodontal bandage" belongs to the patient, the procedure is painless, performed under a superficial anesthesia and the psychological impact on the patient, as well as the acceptance, are superior to conventional methods of dentistry. Conclusions: Diode lasers at the level of periodontium have become a significant part of the dentistry, reducing the patient's stress and giving satisfaction to practitioners as well.

  18. Diodes Schottky diamant fonctionnant à 200°C

    OpenAIRE

    Monflier, Richard; Isoird, Karine; Cazarre, Alain; Tasselli, Josiane; Servel, Alexandra; ACHARD, Jocelyn; Eon, David; Valdivia Birnbaum, Maria José

    2016-01-01

    International audience; Les caractéristiques courant-tension jusqu'à 200 °C de diodes Schottky diamant verticales et pseudo-verticales réalisées dans le cadre du projet DIAMONIX2 sont présentées dans cet article. Sur les différents échantillons testés le taux de fonctionnalité est supérieur à 75 % et atteint même 100 % pour l'un d'entre eux. Pour les diodes verticales la densité de courant atteint 488 A/cm2 à 200 °C et pour les diodes pseudo-verticales une densité de courant supérieure à 1000...

  19. Maximum time-dependent space-charge limited diode currents

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-01-15

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  20. Graphene-based vertical-junction diodes and applications

    Science.gov (United States)

    Choi, Suk-Ho

    2017-09-01

    In the last decade, graphene has received extreme attention as an intriguing building block for electronic and photonic device applications. This paper provides an overview of recent progress in the study of vertical-junction diodes based on graphene and its hybrid systems by combination of graphene and other materials. The review is especially focused on tunnelling and Schottky diodes produced by chemical doping of graphene or combination of graphene with various semiconducting/ insulating materials such as hexagonal boron nitrides, Si-quantum-dots-embedded SiO2 multilayers, Si wafers, compound semiconductors, Si nanowires, and porous Si. The uniqueness of graphene enables the application of these convergence structures in high-efficient devices including photodetectors, solar cells, resonant tunnelling diodes, and molecular/DNA sensors.

  1. Quantum tunnelling and charge accumulation in organic ferroelectric memory diodes

    Science.gov (United States)

    Ghittorelli, Matteo; Lenz, Thomas; Sharifi Dehsari, Hamed; Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.; Kovács-Vajna, Zsolt M.; de Leeuw, Dago M.; Torricelli, Fabrizio

    2017-06-01

    Non-volatile memories--providing the information storage functionality--are crucial circuit components. Solution-processed organic ferroelectric memory diodes are the non-volatile memory candidate for flexible electronics, as witnessed by the industrial demonstration of a 1 kbit reconfigurable memory fabricated on a plastic foil. Further progress, however, is limited owing to the lack of understanding of the device physics, which is required for the technological implementation of high-density arrays. Here we show that ferroelectric diodes operate as vertical field-effect transistors at the pinch-off. The tunnelling injection and charge accumulation are the fundamental mechanisms governing the device operation. Surprisingly, thermionic emission can be disregarded and the on-state current is not space charge limited. The proposed model explains and unifies a wide range of experiments, provides important design rules for the implementation of organic ferroelectric memory diodes and predicts an ultimate theoretical array density of up to 1012 bit cm-2.

  2. Radiation Damage in Si Diodes from Short, Intense Ion Pulses

    Science.gov (United States)

    de Leon, S. J.; Ludewigt, B. A.; Persaud, A.; Seidl, P. A.; Schenkel, T.

    2017-10-01

    The Neutralized Drift Compression Experiment (NDCX-II) at Berkeley Lab is an induction accelerator studying the effects that concentrated ion beams have on various materials. Charged particle radiation damage was the focus of this research - we have characterized a series of Si diodes using an electrometer and calibrated the diodes response using an 241Am alpha source, both before and after exposing the diodes to 1 MeV He ions in the accelerator. The key part here is that the high intensity pulses from NDCX-II (>1010 ions/cm2 per pulse in accelerators, fusion energy experiments and space applications and results from short pulses can inform models of radiation damage evolution. This work was supported by the Office of Science of the US Department of Energy under contract DE-AC0205CH11231.

  3. Monolithic watt-level millimeter-wave diode-grid frequency tripler array

    Science.gov (United States)

    Hwu, R. J.; Luhmann, N. C., Jr.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.

    1988-01-01

    In order to provide watt-level CW output power throughout the millimeter and submillimeter wave region, thousands of solid-state diodes have been monolithically integrated using a metal grid to produce a highly efficient frequency multiplier. Devices considered include GaAs Schottky diodes, thin MOS diodes, and GaAs Barrier-Intrinsic-N(+)diodes. The performance of the present compact low-cost device has been theoretically and experimentally validated.

  4. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  5. Large-Area Vacuum Ultraviolet Sensors

    Science.gov (United States)

    Aslam, Shahid; Franz, David

    2012-01-01

    Pt/(n-doped GaN) Schottky-barrier diodes having active areas as large as 1 cm square have been designed and fabricated as prototypes of photodetectors for the vacuum ultraviolet portion (wavelengths approximately equal 200 nm) of the solar spectrum. In addition to having adequate sensitivity to photons in this wavelength range, these photodetectors are required to be insensitive to visible and infrared components of sunlight and to have relatively low levels of dark current.

  6. Properties of a radiation-induced charge multiplication region in epitaxial silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lange, J., E-mail: joern.lange@desy.d [Institute for Experimental Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Becker, J.; Fretwurst, E.; Klanner, R.; Lindstroem, G. [Institute for Experimental Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2010-10-01

    Charge multiplication (CM) in p{sup +}n epitaxial silicon pad diodes of 75, 100 and 150{mu}m thickness at high voltages after proton irradiation with 1 MeV neutron equivalent fluences in the order of 10{sup 16} cm{sup -2} was studied as an option to overcome the strong trapping of charge carriers in the innermost tracking region of future Super-LHC detectors. Charge collection efficiency (CCE) measurements using the Transient Current Technique (TCT) with radiation of different penetration (670, 830, 1060 nm laser light and {alpha}-particles with optional absorbers) were used to locate the CM region close to the p{sup +}-implantation. The dependence of CM on material, thickness of the epitaxial layer, annealing and temperature was studied. The collected charge in the CM regime was found to be proportional to the deposited charge, uniform over the diode area and stable over a period of several days. Randomly occurring micro-discharges at high voltages turned out to be the largest challenge for operation of the diodes in the CM regime. Although at high voltages an increase of the TCT baseline noise was observed, the signal-to-noise ratio was found to improve due to CM for laser light. Possible effects on the charge spectra measured with laser light due to statistical fluctuations in the CM process were not observed. In contrast, the relative width of the spectra increased in the case of {alpha}-particles, probably due to varying charge deposited in the CM region.

  7. Radio frequency diodes and circuits fabricated via adhesion lithography (Conference Presentation)

    Science.gov (United States)

    Georgiadou, Dimitra G.; Semple, James; Wyatt-Moon, Gwenhivir; Anthopoulos, Thomas D.

    2016-09-01

    The commercial interest in Radio Frequency Identification (RFID) tags keeps growing, as new application sectors, spanning from healthcare to electronic article surveillance (EAS) and personal identification, are constantly emerging for these types of electronic devices. The increasing demand for the so-called "smart labels" necessitates their high throughput manufacturing, and indeed on thin flexible substrates, that will reduce the cost and render them competitive to the currently widely employed barcodes. Adhesion Lithography (a-Lith) is a novel patterning technique that allows the facile high yield fabrication of co-planar large aspect ratio (<100,000) metal electrodes separated by a sub-20 nm gap on large area substrates of any type. Deposition of high mobility semiconductors from their solution at low, compatible with plastic substrates, temperatures and application of specific processing protocols can dramatically improve the performance of the fabricated Schottky diodes. It will be shown that in this manner both organic and inorganic high speed diodes and rectifiers can be obtained, operating at frequencies much higher than the 13.56 MHz benchmark, currently employed in passive RFID tags and near filed communications (NFC). This showcases the universality of this method towards fabricating high speed p- and n-type diodes, irrespective of the substrate, simply based on the extreme downscaling of key device dimensions obtained in these nanoscale structures. The potential for scaling up this technique at low cost, combined with the significant performance optimisation and improved functionality that can be attained through intelligent material selection, render a-Lith unique within the field of plastic electronics.

  8. Diode laser vaporisation of the prostate vs. diode laser under cold irrigation: A randomised control trial.

    Science.gov (United States)

    Pillai, Ravisankar G; Al Naieb, Ziad; Angamuthu, Stephen; Mundackal, Tintu

    2014-12-01

    To compare the perioperative morbidity and early follow-up after diode laser vaporisation of the prostate (LVP) and its modification, diode laser under cold irrigation (LUCI) in patients with symptomatic benign prostatic hyperplasia, as the main disadvantages of LVP are the postoperative pain, dysuria and storage urinary symptoms. This was a single-centre prospective randomised control trial in which 100 patients were randomised to receive LVP (50) or LUCI (50) from June 2011 until July 2012. LUCI is similar to LVP except that it is done under normal irrigation with saline at 4 °C instead of saline at room temperature. The primary outcome measures were the International Prostate Symptom Score (IPSS), IPSS-Dysuria, a pain scale (PS), maximum flow rate (Q max), a quality-of-life (QoL) score and the postvoid residual urine volume (PVR) after 1 month, then the IPSS, Q max, QoL, and PVR at 3 and 12 months. Secondary outcomes included intraoperative surgical variables, e.g., the decline in core temperature, bleeding, peri- and postoperative morbidity. The baseline characteristics of both groups were similar. For the primary outcome measures, there was a statistically significant difference between the groups in all variables except Q max after 1 month, in favour of LUCI. The mean (SD) IPSS at 1 month in the LVP group was 8.97 (1.68), statistically significantly different from that after LUCI, of 6.89 (1.5) (P  0.05). LUCI is a good modification for reducing the pain, dysuria and storage symptoms associated with LVP. The procedure appears to be safe, with no significant decrease in core temperature in either group.

  9. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  10. Management of chronic generalized periodontitis using diode laser

    Directory of Open Access Journals (Sweden)

    Santosh Dixit

    2016-01-01

    Full Text Available The aim of this study was to evaluate the effect of a diode laser with nonsurgical periodontal therapy on chronic periodontitis. The patient, a 37-year-old female, with chronic periodontitis reported to the private dental clinic. Her health history indicated that she had good general health. The periodontal examination included a gingival index and complete periodontal probing depth with William's graduated probe. She was treated with 940 nm diode laser and scaling and root planning. Assessment was done after 6 months following laser therapy; the probing depths improved; gain in clinical attachment levels; no inflammation; the tissue tone was good, showing increased stippling.

  11. High power, diode pumped Er:YAG for dentistry

    Science.gov (United States)

    Hagen, C.; Heinrich, A.; Nussbaumer, B.

    2011-03-01

    Pantec Medical Laser presents a diode pumped Er:YAG laser for dental and hard tissue applications. The diode pumped laser is practically maintenance free and ensures reliable operation over several thousand hours. The high repetition rate with up to 15 W average output power, allows treatments otherwise not feasible with low repetition rate, lamp pumped Er:YAG systems. The variable pulse duration of 10 to 200 μs combined with the good beam quality ensures precise and fast treatment. First results on enamel ablation as well as the power scalability of the technology to 200 mJ and 30 W average power are also shown.

  12. Three-phase bridge rectifiers with freewheeling diodes

    CERN Document Server

    Hausler, M

    1973-01-01

    Freewheeling diodes are used in controlled rectifiers working in one quadrant only in order to reduce the reactive power and the d.c.- voltage ripple. In addition the freewheeling diodes allow a higher d.c.-current at low d.c.-voltages. The mean value of the freewheeling current depends on the d.c.-current, the load, and the stray-reactance of the rectifier transformer. This paper describes how the freewheeling current can be determined with these parameters. Results for some typical cases are shown in diagrams. (2 refs).

  13. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  14. Read-only holographic versatile disc system using laser diode

    Science.gov (United States)

    Horimai, Hideyoshi; Tan, Xiaodi

    2006-05-01

    A Read-only Holographic Versatile Disc (HVD-ROM) system, using a laser diode for high capacity and high data transfer rates storage system, is proposed. With the collinear technologies' unique configuration the optical pickup can be designed as small as a DVD's, and can be placed on one side of the disc. With the HVD's special structure, the system can servo the focus/tracking and locate reading/writing address. The experiments and theoretical studies suggest that a laser diode is very suitable as a light source of our HVD-ROM system.

  15. System and method for high power diode based additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2018-01-02

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  16. Management of gingival hyperpigmentation by semiconductor diode laser.

    Science.gov (United States)

    Gupta, Geeti

    2011-09-01

    Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile). Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO(2) laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  17. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  18. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    Science.gov (United States)

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  19. Integrated digital metamaterials enables ultra-compact optical diodes.

    Science.gov (United States)

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2015-04-20

    We applied nonlinear optimization to design integrated digital metamaterials in silicon for unidirectional energy flow. Two devices, one for each polarization state, were designed, fabricated, and characterized. Both devices offer comparable or higher transmission efficiencies and extinction ratios, are easier to fabricate, exhibit larger bandwidths and are more tolerant to fabrication errors, when compared to alternatives. Furthermore, each device footprint is only 3μm × 3μm, which is the smallest optical diode ever reported. To illustrate the versatility of digital metamaterials, we also designed a polarization-independent optical diode.

  20. Generation conditions of CW Diode Laser Sustained Plasma

    Science.gov (United States)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  1. Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy

    Science.gov (United States)

    Glenar, David A.; Jennings, Donald E.; Nadler, Shacher

    1990-01-01

    A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.

  2. Daily check of the electron beams with a diode system

    Energy Technology Data Exchange (ETDEWEB)

    Pilette, P. [Hospital Civil de Charleroi (Belgium). Centre for Radiotherapy

    1995-12-01

    A fast systems to check all the accelerator beams on a daily basis has been developed. A cheap home-made detector, based on non-medical diodes (type 1N5408), has been used since July 1992 to verify all the electron beams every day. The relative energy and Top-cGy correspondence is verified with one single irradiation of less than 1 minute by 6 diodes fixed in a polystyrene phantom. The principle of construction, software implementation and results are presented.

  3. Diode laser-based detection in liquid chromatography and capillary electrophoresis.

    NARCIS (Netherlands)

    Mank, A.J.G.; Lingeman, H.; Gooijer, C.

    1996-01-01

    Detection techniques involving diode lasers are increasingly of interest in separation science, Diode lasers are small and inexpensive and have a very stable output. However, diode lasers emitting at wavelengths shorter than 635 nm are not commercially available. This seriously limits the

  4. Estimating p-n Diode Bulk Parameters, Bandgap Energy and Absolute Zero by a Simple Experiment

    Science.gov (United States)

    Ocaya, R. O.; Dejene, F. B.

    2007-01-01

    This paper presents a straightforward but interesting experimental method for p-n diode characterization. The method differs substantially from many approaches in diode characterization by offering much tighter control over the temperature and current variables. The method allows the determination of important diode constants such as temperature…

  5. Modeling of Light Emission Spectra Measured on Silicon Nanometer-Scale Diode-Antifuses

    NARCIS (Netherlands)

    Akil, N.A.; Houtsma, V.E.; Le Minh, P.; Holleman, J.; Zieren, V.; de Mooij, D.; Woerlee, P.H.; van den Berg, Albert; Wallinga, Hans

    2000-01-01

    Electroluminescence (EL) spectra of nanoscale diodes formed after gate-oxide breakdown of n+-polysilicon/oxide/p+-substrate metal–oxide–semiconductor capacitors were measured in reverse and forward bias. The nanoscale diodes, called diode antifuses, are created by the formation of a small link

  6. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    Science.gov (United States)

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  7. Control Areas

    Data.gov (United States)

    Department of Homeland Security — This feature class represents electric power Control Areas. Control Areas, also known as Balancing Authority Areas, are controlled by Balancing Authorities, who are...

  8. Accessible ecology: synthesis of the long, deep, and broad.

    Science.gov (United States)

    Peters, Debra P C

    2010-10-01

    Large volumes of data have been collected to document the many ways that ecological systems are responding to changing environmental drivers. A general buy-in on solutions to these problems can be reached only if these and future data are made easily accessible to and understood by a broad audience that includes the public, decision-makers, and other scientists. A developing framework for synthesis is reviewed that integrates three main strategies of ecological research (long-term studies; short-term, process-based studies; and broad-scale observations) with derived data products and additional sources of knowledge. This framework focuses on making data from multiple sources and disciplines easily understood by many, a prerequisite for finding synthetic solutions and predicting future dynamics in a changing world. Published by Elsevier Ltd.

  9. Flow characteristics at trapezoidal broad-crested side weir

    Directory of Open Access Journals (Sweden)

    Říha Jaromír

    2015-06-01

    Full Text Available Broad-crested side weirs have been the subject of numerous hydraulic studies; however, the flow field at the weir crest and in front of the weir in the approach channel still has not been fully described. Also, the discharge coefficient of broad-crested side weirs, whether slightly inclined towards the stream or lateral, still has yet to be clearly determined. Experimental research was carried out to describe the flow characteristics at low Froude numbers in the approach flow channel for various combinations of in- and overflow discharges. Three side weir types with different oblique angles were studied. Their flow characteristics and discharge coefficients were analyzed and assessed based on the results obtained from extensive measurements performed on a hydraulic model. The empirical relation between the angle of side weir obliqueness, Froude numbers in the up- and downstream channels, and the coefficient of obliqueness was derived.

  10. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....... of the multilayer is found to agree extraordinarily well with theory (assuming an interface roughness of 4.5 Angstrom), while the agreement for the gold film is less, The overall performance of the supermirror is superior to that of gold, extending the band of reflection at least a factor of 2.8 beyond...

  11. Antibiofilm Peptides: Potential as Broad-Spectrum Agents

    OpenAIRE

    Pletzer, Daniel; Hancock, Robert E. W.

    2016-01-01

    The treatment of bacterial diseases is facing twin threats, with increasing bacterial antibiotic resistance and relatively few novel compounds or strategies under development or entering the clinic. Bacteria frequently grow on surfaces as biofilm communities encased in a polymeric matrix. The biofilm mode of growth is associated with 65 to 80% of all clinical infections. It causes broad adaptive changes; biofilm bacteria are especially (10- to 1,000-fold) resistant to conventional antibiotics...

  12. Broad spectrum antiangiogenic treatment for ocular neovascular diseases.

    Directory of Open Access Journals (Sweden)

    Ofra Benny

    2010-09-01

    Full Text Available Pathological neovascularization is a hallmark of late stage neovascular (wet age-related macular degeneration (AMD and the leading cause of blindness in people over the age of 50 in the western world. The treatments focus on suppression of choroidal neovascularization (CNV, while current approved therapies are limited to inhibiting vascular endothelial growth factor (VEGF exclusively. However, this treatment does not address the underlying cause of AMD, and the loss of VEGF's neuroprotective can be a potential side effect. Therapy which targets the key processes in AMD, the pathological neovascularization, vessel leakage and inflammation could bring a major shift in the approach to disease treatment and prevention. In this study we have demonstrated the efficacy of such broad spectrum antiangiogenic therapy on mouse model of AMD.Lodamin, a polymeric formulation of TNP-470, is a potent broad-spectrum antiangiogenic drug. Lodamin significantly reduced key processes involved in AMD progression as demonstrated in mice and rats. Its suppressive effects on angiogenesis, vascular leakage and inflammation were studied in a wide array of assays including; a Matrigel, delayed-type hypersensitivity (DTH, Miles assay, laser-induced CNV and corneal micropocket assay. Lodamin significantly suppressed the secretion of various pro-inflammatory cytokines in the CNV lesion including monocyte chemotactic protein-1 (MCP-1/Ccl2. Importantly, Lodamin was found to regress established CNV lesions, unlike soluble fms-like tyrosine kinase-1 (sFlk-1. The drug was found to be safe in mice and have little toxicity as demonstrated by electroretinography (ERG assessing retinal and by histology.Lodamin, a polymer formulation of TNP-470, was identified as a first in its class, broad-spectrum antiangiogenic drug that can be administered orally or locally to treat corneal and retinal neovascularization. Several unique properties make Lodamin especially beneficial for ophthalmic

  13. Flow structure in front of the broad-crested weir

    Directory of Open Access Journals (Sweden)

    Zachoval Zbyněk

    2015-01-01

    Full Text Available The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.

  14. Alloyed semiconductor nanocrystals with broad tunable band gaps.

    Science.gov (United States)

    Pan, Daocheng; Weng, Ding; Wang, Xiaolei; Xiao, Qiangfeng; Chen, Wei; Xu, Chuanlai; Yang, Zhengzhong; Lu, Yunfeng

    2009-07-28

    Nearly monodisperse alloyed (CuInS2)x(ZnS)1-x nanocrystals with cubic and hexagonal phases were successfully synthesized for the first time, and the band gaps of these alloyed nanocrystals can be tuned in the broad range of 1.5 to 3.7 eV by changing the ratio of CuInS2 to ZnS.

  15. The Broad Autism Phenotype Questionnaire: Prevalence and Diagnostic Classification

    OpenAIRE

    Sasson, Noah J.; Lam, Kristen S. L.; Childress, Debra; Parlier, Morgan; Daniels, Julie L.; Piven, Joseph

    2013-01-01

    The Broad Autism Phenotype Questionnaire (BAPQ; Hurley et al, 2007) was administered to a large community-based sample of biological parents of children with autism (PCAs) and comparison parents (CPs) (n = 1692). Exploratory factor analysis and internal consistency parameters confirmed a robust three factor structure of the BAPQ, corresponding to the proposed aloof, pragmatic language and rigidity subscales. Based upon the distribution of BAP features in the general population, new normative ...

  16. Broad-Based Search for New and Practical Superconductors

    Science.gov (United States)

    2014-10-31

    AFRL-OSR-VA-TR-2014-0296 BROAD-BASED SEARCH FOR NEW AND PRACTICAL SUPERCONDUCTORS Richard Greene MARYLAND UNIV COLLEGE PARK Final Report 10/31/2014...New and Practical Superconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0603 5c. PROGRAM ELEMENT NUMBER MURI FY09 6. AUTHOR(S...grant. Many new superconductors were discovered, most with transition temperatures (Tc) below 10K. One noteworthy discovery was the superconductivity

  17. Fatigue failure of materials under broad band random vibrations

    Science.gov (United States)

    Huang, T. C.; Lanz, R. W.

    1971-01-01

    The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.

  18. Nutritional and technological characteristics of new broad bean flaked products.

    Science.gov (United States)

    Senesi, E; Duranti, M; Gervasini, M; Bertolo, G; Rizzolo, A

    1988-01-01

    The effects of the technological processes (soaking in water or alkaline solutions, drying, puree preparation) and the supplementation with maize flour on the nutritional value and on the organoleptic characteristics of broad bean (Vicia faba, L. major) flakes have been studied. Protein content was not affected by technological process. The addition of maize flour decreased the protein content of the final product depending on the amount of the maize flour added. Amino acid composition showed a decrease of tryptophan due to technological processing. Supplementation with maize flour improved the amino acid pattern and, except for tryptophan, the amount of essential amino acids in the flakes supplemented with 25% or more maize flour well compared with the provisional pattern by F.A.O. In vitro digestibility trials did not evidence significant changes due to technological processes or to integration of broad beans with maize flour. Broad bean toxic factors (vicine and convicine glycosides) were only slightly affected by the alkaline treatment of the flakes. Glycosides content decreased with the increasing supplementation with maize flour but the relationship was not linear. The organoleptic tests were positive for texture and taste, whereas the appearance of the products should be improved.

  19. Extreme Variability in a Broad Absorption Line Quasar

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Daniel; Jun, Hyunsung D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Steidel, Charles C. [California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Arav, Nahum; Chamberlain, Carter [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Glikman, Eilat, E-mail: daniel.k.stern@jpl.nasa.gov [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2017-04-20

    CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.

  20. Broad-Band Analysis of Polar Motion Excitations

    Science.gov (United States)

    Chen, J.

    2016-12-01

    Earth rotational changes, i.e. polar motion and length-of-day (LOD), are driven by two types of geophysical excitations: 1) mass redistribution within the Earth system, and 2) angular momentum exchange between the solid Earth (more precisely the crust) and other components of the Earth system. Accurate quantification of Earth rotational excitations has been difficult, due to the lack of global-scale observations of mass redistribution and angular momentum exchange. The over 14-years time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) have provided a unique means for quantifying Earth rotational excitations from mass redistribution in different components of the climate system. Comparisons between observed Earth rotational changes and geophysical excitations estimated from GRACE, satellite laser ranging (SLR) and climate models show that GRACE-derived excitations agree remarkably well with polar motion observations over a broad-band of frequencies. GRACE estimates also suggest that accelerated polar region ice melting in recent years and corresponding sea level rise have played an important role in driving long-term polar motion as well. With several estimates of polar motion excitations, it is possible to estimate broad-band noise variance and noise power spectra in each, given reasonable assumptions about noise independence. Results based on GRACE CSR RL05 solutions clearly outperform other estimates with the lowest noise levels over a broad band of frequencies.

  1. Toward inkjet printing of small molecule organic light emitting diodes

    NARCIS (Netherlands)

    Gorter, H.; Coenen, M.J.J.; Slaats, M.W.L.; Ren, M.; Lu, W.; Kuijpers, C.J.; Groen, W.A.

    2013-01-01

    Thermal evaporation is the current standard for the manufacture of small molecule organic light emitting diodes (smOLEDs), but it requires vacuum process, complicated shadow masks and is inefficient in material utilization, resulting in high cost of ownership. As an alternative, wet solution

  2. Vertical III-nitride thin-film power diode

    Science.gov (United States)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  3. Computer-Assisted Experiments with a Laser Diode

    Science.gov (United States)

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The "h/e" ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a…

  4. Gallium-Nitride-Based Light-Emitting Diodes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Gallium-Nitride-Based Light-Emitting Diodes: 2014 Nobel Prize in Physics. Kota V R M Murali Vinayak Bharat Naik Deepanjan Datta. General Article Volume 20 Issue 7 July 2015 pp 605-616 ...

  5. Frequency Support from OWPPs connected to HVDC via Diode Rectifiers

    DEFF Research Database (Denmark)

    Saborío-Romano, Oscar; Bidadfar, Ali; Göksu, Ömer

    This paper presents a study assessing the actual capability of an offshore wind power plant (offshore WPP, OWPP) to provide frequency support (FS) to an onshore network, when connected through a high-voltage direct-current (HVDC) link having a diode rectifier (DR) offshore terminal and a voltage...

  6. Characteristics of CoPc/CdS hybrid diode device

    Indian Academy of Sciences (India)

    Ag contact metal deposited on CoPc by e-beam evaporation and glass/ITO/CdS/ CoPc/Ag structures were fabricated. Rectification ratio, ideality factor, barrier height and junction parameters of the devices were determined. It is shown that device has diode characteristics with the ideality factor (n) of 4.8, rectification ratio of ...

  7. Fabrication and characterization of the charge-plasma diode

    NARCIS (Netherlands)

    Rajasekharan, B.; Hueting, Raymond Josephus Engelbart; Salm, Cora; van Hemert, T.; Wolters, Robertus A.M.; Schmitz, Jurriaan

    2010-01-01

    We present a new lateral Schottky-based rectifier called the charge-plasma diode realized on ultrathin silicon-oninsulator. The device utilizes the workfunction difference between two metal contacts, palladium and erbium, and the silicon body. We demonstrate that the proposed device provides a low

  8. A new configuration for multilevel converters with diode clamped topology

    DEFF Research Database (Denmark)

    Nami, A.; Zare, F.; Ledwich, G.

    2008-01-01

    points in this type of converter is dc-voltage control. In this paper, a novel multi output dc-dc converter connected to a diode clamped topology is presented. This converter, for a given duty cycles, is able to regulate the capacitor voltage to provide an appropriate input voltage for NPC regardless...

  9. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...

  10. comparing the 810nm diode laser with conventional surgery in ...

    African Journals Online (AJOL)

    David Ofori-Adjei

    2013-09-01

    Sep 1, 2013 ... SUMMARY. Aim: To compare the use of the 810nm diode laser with conventional surgery in the management of soft tissue mucogingival problems associated with orthodontic treatment. Methods: Orthodontic patients requiring different soft tissue surgical procedures were randomly assigned to.

  11. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  12. Simulation tools for pinched-electron-beam radiographic diodes

    Directory of Open Access Journals (Sweden)

    Stanley Humphries

    2006-02-01

    Full Text Available We describe capabilities of an integrated software suite to simulate pinched-electron-beam diodes for pulsed radiography. In contrast to other reported work using particle-in-cell methods, we employ a ray-tracing code (Trak with advanced capabilities for modeling beam-generated magnetic fields. Ray tracing is a direct approach to a steady-state solution and involves less work than a particle-in-cell calculation. The second software component, GamBet, is a new Monte Carlo code for radiation transport that incorporates effects of the complex electric and magnetic fields at the radiation target. The ray-tracing approach exhibits good convergence in calculations for the diode geometry of the compact radiography (CRAD program at Lawrence Livermore National Laboratory. With a 1.5 MV, 30 ns driver, we predict that the diode can produce a beam with axial length ∼1  mm that generates isotropic bremsstrahlung radiation exceeding 1 rad at 1 m. The ray-tracing procedure encounters convergence problems when applied to the rod-pinch geometry, a configuration used in several pulsed radiographic machines. We observe a fundamental difference in the nature of electron orbits in the two diodes. There is an increased chance for particle-orbit feedback in the rod pinch, so that equilibrium solutions are sensitive to small changes in emission characteristics.

  13. Quantum thermal rectification to design thermal diodes and transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, Karl; Ezzahri, Younes; Ordonez-Miranda, Jose [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We study in this article how heat can be exchanged between two-level systems, each of them being coupled to a thermal reservoir. Calculations are performed solving a master equation for the density matrix using the Born-Markov approximation. We analyse the conditions for which a thermal diode and a thermal transistor can be obtained as well as their optimisation.

  14. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  15. Mode locking and spatiotemporal chaos in periodically driven Gunn diodes

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Feldberg, Rasmus; Knudsen, Carsten

    1990-01-01

    Numerical simulation is applied to study the highly nonlinear-dynamic phenomena that can arise in Gunn diodes by interaction between the internally generated domain mode and an external microwave signal. By adjusting the time of domain formation and the speed of propagation, the internal oscillat...

  16. Five-level Z-source diode-clamped inverter

    DEFF Research Database (Denmark)

    Gao, F.; Loh, Poh Chiang; Blaabjerg, Frede

    2010-01-01

    This study proposes a five-level Z-source diode-clamped inverter designed with two intermediate Z-source networks connected between the dc input sources and rear-end inverter circuitry. By partially shorting the Z-source networks, new operating states not previously reported for two-level Z...

  17. Diode laser irradiation increases microtensile bond strength of dentin

    Directory of Open Access Journals (Sweden)

    Rafael Massunari MAENOSONO

    2015-01-01

    Full Text Available Laser irradiation after the immediate application of dentin bonding systems (DBSs and prior to their polymerization has been proposed to increase bond strength. The objective of this study was to evaluate the effect of diode laser irradiation (λ = 970 nm on simplified DBSs through microtensile bond strength tests. Forty healthy human molars were randomly distributed among four groups (n = 10 according to DBSs used [Adper™ SingleBond 2 (SB and Adper™ EasyOne (EO], and the respective groups were irradiated with a diode laser (SB-L and EO-L. After bonding procedures and composite resin build-ups, teeth were stored in deionized water for 7 days and then sectioned to obtain stick-shaped specimens (1.0 mm2. The microtensile test was performed at 0.5 mm/min, yielding bond strength values in MPa, which were evaluated by two-way ANOVA followed by Tukey’s test (p < 0.05 for individual comparisons. For both adhesive systems, diode laser irradiation promoted significant increases in bond strength values (SB: 33.49 ± 6.77; SB-L: 43.69 ± 8.15; EO: 19.67 ± 5.86; EO-L: 29.87 ± 6.98. These results suggest that diode laser irradiation is a promising technique for achieving better performance of adhesive systems on dentin.

  18. Role of diode lasers in oro-facial pain management.

    Science.gov (United States)

    Javed, F; Kellesarian, S V; Romanos, G E

    2017-01-01

    With the increasing use of low level laser therapy (LLLT) in clinical dentistry, the aim of the present study was to assess the effectiveness of diode lasers in the management of orofacial pain. Indexed databases were searched without language and time restrictions up to and including July 2016 using different combinations of the following key words: oral, low level laser therapy, dental, pain, diode lasers, discomfort and analgesia. From the literature reviewed it is evident that LLLT is effective compared to traditional procedures in the management of oro-facial pain associated to soft tissue and hard tissue conditions such as premalignant lesions, gingival conditions and dental extractions. However, it remains to be determined which particular wavelength will produce the more favorable and predictable outcome in terms of pain reduction. It is highly recommended that further randomized control trials with well-defined control groups should be performed to determine the precise wavelengths of the diode lasers for the management of oro-facial pain. Within the limits of the present review, it is concluded that diode lasers therapy is more effective in the management of oro-facial pain compared to traditional procedures.

  19. Tuning the colour of white polymer light emitting diodes

    NARCIS (Netherlands)

    Kok, M.M. de; Sarfert, W.; Paetzold, R.

    2010-01-01

    Colour tuning of white polymer light emitting diode (LED) light sources can be attained by various methods at various stages in the production process of the lamps and/or by the design of the active material incorporated in the LEDs. In this contribution we will describe the methods and discuss the

  20. The Light-Emitting Diode as a Light Detector

    Science.gov (United States)

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…