WorldWideScience

Sample records for brittle cornea syndrome

  1. Brittle cornea syndrome: a case report and comparison with Ehlers Danlos syndrome.

    Science.gov (United States)

    Ramappa, Muralidhar; Wilson, M Edward; Rogers, R Curtis; Trivedi, Rupal H

    2014-10-01

    We report a 6-week-old white boy of nonconsanguineous parents who presented with bluish scleral discoloration, thin corneas, and progressive high myopia. A diagnosis of brittle cornea syndrome was confirmed by molecular analysis and prompt measures were taken to manage the condition. Long-term follow-up of children diagnosed with brittle cornea syndrome is important to minimize the risks of corneal rupture and for detecting late-onset systemic conditions. PMID:25266838

  2. Brittle Cornea Syndrome Associated with a Missense Mutation in the Zinc-Finger 469 Gene

    DEFF Research Database (Denmark)

    Christensen, Anne Elisabeth; Knappskog, Per Morten; Midtbø, Marit;

    2010-01-01

    Purpose: To investigate the diverse clinical manifestations, identify the causative mutation and explain the association with red hair in a family with brittle cornea syndrome (BCS). Methods: Eight family members in three generations underwent ophthalmic, dental, and general medical examination...... mapping with SNP markers, DNA sequencing, and MC1R genotyping. Results: At 42 and 48 years of age, respectively, both affected individuals were blind due to retinal detachment and secondary glaucoma. They had extremely thin and bulging corneas, velvety skin, chestnut colored hair, scoliosis, reduced BMD......, dental anomalies, hearing loss and minor cardiac defects. The morphologies of the skin biopsies were normal except that in some areas slightly thinner collagen fibrils were seen in one of the affected individuals. Molecular genetic analysis revealed a novel missense mutation of ZNF469, c.10016G>A that...

  3. A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome

    DEFF Research Database (Denmark)

    Porter, Louise F; Galli, Giorgio G; Williamson, Sally;

    2015-01-01

    Type 2 brittle cornea syndrome (BCS2) is an inherited connective tissue disease with a devastating ocular phenotype caused by mutations in the transcription factor PRDM5 hypothesised to exert epigenetic effects through histone and DNA methylation. Here we investigate clinical samples, including s...

  4. Brittle Faults

    Czech Academy of Sciences Publication Activity Database

    Caine, J.; Choudhuri, M.; Bose, N.; Mukherjee, S.; Misra, A.A.; Mathew, G.; Salvi, D.; Toro, B.; Pratt, B.R.; Dasgupta, S.; Nováková, Lucie

    Amsterdam: Elsevier, 2015 - (Mukherjee, S.), s. 79-106 ISBN 978-0-12-420152-1 Institutional support: RVO:67985891 Keywords : brittle shear zone * brittle tectonics * conjugate faults * faults * kinematic indicators Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  5. Regenerative approaches for the cornea.

    Science.gov (United States)

    Griffith, M; Alarcon, E I; Brunette, I

    2016-09-01

    The cornea is the transparent front part of the eye that transmits light to the back of the eye to generate vision. Loss of corneal transparency, if irreversible, leads to severe vision loss or blindness. For decades, corneal transplantation using human donor corneas has been the only option for treating corneal blindness. Despite recent improvement in surgical techniques, donor cornea transplantation remains plagued by risks of suboptimal optical results and visual acuity, immune rejection and eventually graft failure. Furthermore, the demand for suitable donor corneas is increasing faster than the number of donors, leaving thousands of curable patients untreated worldwide. Here, we critically review the state of the art of biomaterials for corneal regeneration. However, the lessons learned from the use of the cornea as a disease model will allow for extension of the biomaterials and techniques for regeneration of more complex organs such as the heart. PMID:27098482

  6. Fracture of brittle solids

    CERN Document Server

    Lawn, Brian

    1993-01-01

    This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent-ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials--to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the at...

  7. Synthetic cornea: biocompatibility and optics

    Science.gov (United States)

    Parel, Jean-Marie A.; Kaminski, Stefan; Fernandez, Viviana; Alfonso, E.; Lamar, Peggy; Lacombe, Emmanuel; Duchesne, Bernard; Dubovy, Sander; Manns, Fabrice; Rol, Pascal O.

    2002-06-01

    Purpose. Experimentally find a method to provide a safe surgical technique and an inexpensive and long lasting mesoplant for the restoration of vision in patients with bilateral corneal blindness due to ocular surface and stromal diseases. Methods. Identify the least invasive and the safest surgical technique for synthetic cornea implantation. Identify the most compatible biomaterials and the optimal shape a synthetic cornea must have to last a long time when implanted in vivo. Results. Penetrating procedures were deemed too invasive, time consuming, difficult and prone to long term complications. Therefore a non-penetrating delamination technique with central trephination was developed to preserve the integrity of Descemet's membrane and the anterior segment. Even though this approach limits the number of indications, it is acceptable since the majority of patients only have opacities in the stroma. The prosthesis was designed to fit in the removed tissue plane with its skirt fitted under the delaminated stroma. To improve retention, the trephination wall was made conical with the smallest opening on the anterior surface and a hat-shaped mesoplant was made to fit. The skirt was perforated in its perimeter to allow passage of nutrients and tissues ingrowths. To simplify the fabrication procedure, the haptic and optic were made of the same polymer. The intrastromal biocompatibility of several hydrogels was found superior to current clinically used PMMA and PTFE materials. Monobloc mesoplants made of 4 different materials were implanted in rabbits and followed weekly until extrusion occurred. Some remained optically clear allowing for fundus photography. Conclusions. Hydrogel synthetic corneas can be made to survive for periods longer than 1 year. ArF excimer laser photoablation studies are needed to determine the refractive correction potential of these mesoplants. A pilot FDA clinical trial is needed to assess the mesoplant efficacy and very long-term stability.

  8. Cornea procurement, preservation and transplantation

    International Nuclear Information System (INIS)

    Our experience on this subject is 40 years and we have seen the developments everywhere during this total period. Cornea procurement has been an unsurmountable problem in a large number of countries, mostly due to social and cultural reasons. The requirements for a simple eye bank to manage the supply for a local hospital are minimal. What is the most important is the donor base. In Sri Lanka nurtured in the traditions of Theravada Buddhism the donor base was easy to prepare. We had no difficulties with Christians and Hindus. For Muslims there are Fatwas in favour of donating eyes. But we always found them to be a reluctant group. But in predominantly Muslim countries, it is imperative that social workers should take up this issue, so those thousands may be helped. In all areas where attempts are made to procure comeas, it is important to have a day-and-night service available at short notice to collect any eyes offered. A trained technician with sterilised instruments to obtain eyes and blood sample must be available at a convenient location preferably in a large hospital. Even in places where the supply is infrequent, it is essential to have the readily-sterilised instruments to proceed to a donor site at short notice. To get eyes, general publicity in mass media alone is not sufficient. Such publicity makes people aware of the need for donor eyes and where a technician/doctor is available. What is more important is to canvass personally after a person has died For this purpose trained social workers may be employed, or the technician can do the motivation, as we do in Sri Lanka. Once eyes are removed, it is essential to pay careful attention to the appearance of the cadaver. It should not (and need not) cause any deformity as such event has a profound negative effect on the campaign. Many different preservation methods have been used over the years. Mc Carey-Kaufmann (MK) medium has been the standard for many years, and gives a life span of 4-5 days. The formula

  9. Construction of Tissue Engineering Artificial Cornea with Skin Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yan JIN

    2005-01-01

    @@ 1 Introduction The clinical need for an alternative to donor corneal tissue has encouraged much interests in recent years. An artificial cornea must fulfill the functions of the cornea it replaces. More recently, the idea of a bio-engineered cornea has risen. Corneal equivalents have been reconstructed by tissue engineering method. Aim of this study is to construct an artificial rabbit cornea by employing tissue engineering method and to determine if skin stem cells have a role in tissue engineered cornea construction.

  10. Effect of rare earths on cold brittleness and temper brittleness and temper brittleness of structural steels

    International Nuclear Information System (INIS)

    The following problems are discussed: the possibility to bind phosphorus in steel with rare-earth metals and concentrations of these metals; the effect produced on mechanical properties of steels at static and dynamic tests. The study has been made on the 35KhGS and 38KhS steels prone to reversible temper brittleness. It is shown that small practically adopted (up to 0.15%) additions of rare-earth metals to structural steels do not produce any significant effect on the position of cold brittleness threshold after improvement and additional embrittling tempering. Alloying Cr-Mn-Si steels with large additions of rare-earth metals (0.40 to O.65%) shifts the cold brittleness threshold of the improved steel by more than 100 deg C towards the region of low temperatures and practically eliminates its tendency to reversible temper brittleness. It has been established as a result of micro-X-ray spectrum studies that rare-earth metals do not produce alloying effect on the solid solution and do not enrich grain boundaries but can be found as a whole in nonmetallic inclusions. It is demonstrated that the main reason for the considerably lower cold brittleness threshold in the alloying with large additions of rare-earth metals lies in the fact that they bind phosphorus and its analogues into nonmetallic inclusions

  11. Soft matter: Brittle for breakfast

    Science.gov (United States)

    Vandewalle, Nicolas

    2015-10-01

    Crushing a brittle porous medium such as a box of cereal causes the grains to break up and rearrange themselves. A lattice spring model based on simple physical assumptions gives rise to behaviours that are complex enough to reproduce diverse compaction patterns.

  12. Alternative approach to fit irregular corneas

    OpenAIRE

    Espinosa Tomás, Julián; Pérez Rodríguez, Jorge; Mas Candela, David; Vázquez Ferri, Carmen; Illueca Contri, Carlos

    2010-01-01

    Comunicación presentada en 5th European Meeting on Visual and Physiological Optics (EMVPO), Stockholm, 22-24 August 2010. We propose a zonal Zernike fitting (combination of zonal and modal approaches) of corneal height data. It permits accurate analysis of the surface, diminishing the influence of smooth areas over irregular zones and vice versa. This fact will be of special interest in irregular corneas wavefront evaluation. This work has been supported by the Generalitat Valenciana pr...

  13. Decorin and biglycan of normal and pathologic human corneas

    Science.gov (United States)

    Funderburgh, J. L.; Hevelone, N. D.; Roth, M. R.; Funderburgh, M. L.; Rodrigues, M. R.; Nirankari, V. S.; Conrad, G. W.

    1998-01-01

    PURPOSE: Corneas with scars and certain chronic pathologic conditions contain highly sulfated dermatan sulfate, but little is known of the core proteins that carry these atypical glycosaminoglycans. In this study the proteoglycan proteins attached to dermatan sulfate in normal and pathologic human corneas were examined to identify primary genes involved in the pathobiology of corneal scarring. METHODS: Proteoglycans from human corneas with chronic edema, bullous keratopathy, and keratoconus and from normal corneas were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative immunoblotting, and immunohistology with peptide antibodies to decorin and biglycan. RESULTS: Proteoglycans from pathologic corneas exhibit increased size heterogeneity and binding of the cationic dye alcian blue compared with those in normal corneas. Decorin and biglycan extracted from normal and diseased corneas exhibited similar molecular size distribution patterns. In approximately half of the pathologic corneas, the level of biglycan was elevated an average of seven times above normal, and decorin was elevated approximately three times above normal. The increases were associated with highly charged molecular forms of decorin and biglycan, indicating modification of the proteins with dermatan sulfate chains of increased sulfation. Immunostaining of corneal sections showed an abnormal stromal localization of biglycan in pathologic corneas. CONCLUSIONS: The increased dermatan sulfate associated with chronic corneal pathologic conditions results from stromal accumulation of decorin and particularly of biglycan in the affected corneas. These proteins bear dermatan sulfate chains with increased sulfation compared with normal stromal proteoglycans.

  14. Protection of brittle film against cracking

    Science.gov (United States)

    Musil, J.; Sklenka, J.; Čerstvý, R.

    2016-05-01

    This article reports on the protection of the brittle Zrsbnd Sisbnd O film against cracking in bending by the highly elastic top film (over-layer). In experiments the Zrsbnd Sisbnd O films with different elemental composition and structure were used. Both the brittle and highly elastic films were prepared by magnetron sputtering using a dual magnetron. The brittle film easily cracks in bending. On the other hand, the highly elastic film exhibits enhanced resistance to cracking in bending. Main characteristic parameters of both the brittle and highly elastic films are given. Special attention is devoted to the effect of the structure (crystalline, amorphous) of both the brittle and highly elastic top film on the resistance of cracking of the brittle film. It was found that (1) both the X-ray amorphous and crystalline brittle films easily crack in bending, (2) the highly elastic film can have either X-ray amorphous or crystalline structure and (3) both the X-ray amorphous and crystalline, highly elastic top films perfectly protect the brittle films against cracking in bending. The structure, mechanical properties and optical transparency of the brittle and highly elastic sputtered Zrsbnd Sisbnd O films are described in detail. At the end of this article, the principle of the low-temperature formation of the highly elastic films is also explained.

  15. The morphology and thickness of cornea in patients with Marfan syndrome%马方综合征患者角膜形态及厚度的特点

    Institute of Scientific and Technical Information of China (English)

    刘秋平; 张广斌; 邵毅; 易敬林; 刘祖国; 谭叶辉; 陈伟; 毛祖红; 王乐

    2011-01-01

    Objective To search for the characteristics of MFS in corneal morphology and thickness. Methods Twenty-four patients (48 eyes) with MFS and 24 healthy age- and gender-matched volunteers (48 eyes) were recruited in this clinical prospective, and comparative series study. Firstly,biomicroscopic examination and Type-A ultrasonometry was conducted to search for ectopia lentis and axis length. Secondly, the corneal morphologic parameter[including the height of anterior and posterior surface,the centre corneal curvature, the mean astigmatism in the 3.0-mm central zone (Mean A), the mean simulated astigmatism (Sim A) , the mean keratometry in the 3.0-mm central zone (Mean K), the mean simulated keratometry (Sim K), the 3.0-mm zone irregularity (3.0ZI), the 5.0-mm zone irregularity (5.0ZI) ,corneal thickness index (CTI)] and thickness (at the central location and at eight midperipheral locations) were obtained by the the autorefractometer and the Orbscan Ⅱ Z corneal topography. Last, the statistics method including Crosstabs, One-way ANOVA, student-t test and discriminant analysis were applied and the correlations were established. Results There is no statistically significance between MFS group and control group in ages (38 ±7) and (37 ±8) years, gender (8/16) and (9/15), and axis length (23. 12 ±1.06) mm and (24. 26 ±2. 96) mm (age x2=0.091 ,P=0.763 ;gender t=0.324, axis length t=1.976,P >0.05). Flat cornea ratio (66. 7% and 12. 5%) and topography of the oval (25.0% and 16. 7%),irregular bow-shaped (41.7% and 37.5%) and irregular-shaped (12. 5% and 8. 3%) were increased significantly in patients with MFS. The corneal topography(MFS/control) showed that there are statistically significance in the thinnest thickness of cornea (489. 8 ± 42. 9) μm and (544. 8 ± 25.7) μm, Mean K (40.60±1.30) Dand (42.80± 1.40) D, Sim K (40.50±1.30) D and (42.80±1.20) D, Sim A(1.08 ± 0.86)D and (0.91 ±0.46) D, CTI 1.57±0.24 and 1.21 ±0.14, 3.0ZI (1.76±0.96) D and (1.54 ±0

  16. Fractal statistics of brittle fragmentation

    Directory of Open Access Journals (Sweden)

    M. Davydova

    2013-04-01

    Full Text Available The study of fragmentation statistics of brittle materials that includes four types of experiments is presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity is fractal and can be described by a power law. The original experimental technique allows us to measure, apart from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size and temporal (time interval quantities provides evidence of obeying scaling laws, which suggests the possibility of self-organized criticality in fragmentation.

  17. Evidence for herpes simplex viral latency in the human cornea.

    OpenAIRE

    Kaye, S. B.; Lynas, C.; Patterson, A.; Risk, J. M.; McCarthy, K.; Hart, C. A.

    1991-01-01

    Patients undergoing penetrating keratoplasty for prior herpes simplex keratitis (group A) and corneal disease unrelated to herpes simplex (group B) were investigated to assess whether the cornea is a site for herpes simplex viral latency. All patients were seropositive for herpes simplex viral antibody. Virus was isolated from the tear film postoperatively in one patient and on cocultivation from the cornea of another patient. Herpes simplex viral DNA, however, was detected in the corneas of ...

  18. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea.

    Science.gov (United States)

    Gao, Nan; Yan, Chenxi; Lee, Patrick; Sun, Haijing; Yu, Fu-Shin

    2016-05-01

    Diabetic peripheral neuropathy (DPN) often leads to neurotrophic ulcerations in the cornea and skin; however, the underlying cellular mechanisms of this complication are poorly understood. Here, we used post-wound corneal sensory degeneration and regeneration as a model and tested the hypothesis that diabetes adversely affects DC populations and infiltration, resulting in disrupted DC-nerve communication and DPN. In streptozotocin-induced type 1 diabetic mice, there was a substantial reduction in sensory nerve density and the number of intraepithelial DCs in unwounded (UW) corneas. In wounded corneas, diabetes markedly delayed sensory nerve regeneration and reduced the number of infiltrating DCs, which were a major source of ciliary neurotrophic factor (CNTF) in the cornea. While CNTF neutralization retarded reinnervation in normal corneas, exogenous CNTF accelerated nerve regeneration in the wounded corneas of diabetic mice and healthy animals, in which DCs had been locally depleted. Moreover, blockade of the CNTF-specific receptor CNTFRα induced sensory nerve degeneration and retarded regeneration in normal corneas. Soluble CNTFRα also partially restored the branching of diabetes-suppressed sensory nerve endings and regeneration in the diabetic corneas. Collectively, our data show that DCs mediate sensory nerve innervation and regeneration through CNTF and that diabetes reduces DC populations in UW and wounded corneas, resulting in decreased CNTF and impaired sensory nerve innervation and regeneration. PMID:27064280

  19. Awareness of Cornea Donation of Registered Tissue Donors in Nanjing

    Institute of Scientific and Technical Information of China (English)

    Ting Chu; Lin-nong Wang; Hao Yu; Ru-yang Zhang

    2013-01-01

    Objective To evaluate the current cornea donation awareness of tissue donors in the city of Nanjing,China. Methods Altogether 2000 registered tissue donors in the Red Cross Eye Bank of Nanjing by the end of 2010 and 2000 control residents of Nanjing in February to June 2011 were randomly selected to par-ticipate in our field questionnaire survey. The questionnaire consisted of questions regarding the understand-ing of cornea donation,the attitude toward cornea donation,and attitude toward legislation and free dona-tion. The awareness of cornea donation between the registered tissue donors and residents was compared. Related factors of the willingness to donate corneas and to become a tissue donor were evaluated with uni-variate and multiple logistic regression analysis. Results A total of 1867 (response rate: 93.4%) tissue donors and 1796 (response rate: 89.8%; ef-fective questionnaires: 1697) residents participated in this survey. For the questions about the knowledge of cornea donation,90.3% tissue donors (residents: 78.9%) knew that donated corneas could be used for transplantations; 71.2% tissue donors (residents: 47.6%) knew that the appearance would not be destroyed after cornea donation; 70.7% tissue donors (residents: 20.0%) knew the formalities to become a cornea do-nor. For attitude toward cornea donation,82.2% tissue donors (residents: 45.1%) were willing to donate corneas or eyeballs after death; 84.0% tissue donors (residents: 30.2%) had discussed with their families about donation; 85.1% tissue donors (residents: 24.8%) supported their families' or friends' cornea donation. For attitude toward legislation and free donation,88.3% tissue donors (residents: 61.3%) approved of legis-lation to regular cornea donation; 72.2% tissue donors (residents: 38.8%) thought that cornea or organ do-nation should be gratis. The difference between two groups was significant (P<0.001). However,some tissue donors did not know cornea donation well,some even opposed the

  20. Extracellular matrix alterations in human corneas with bullous keratopathy

    DEFF Research Database (Denmark)

    Ljubimov, A V; Burgeson, R E; Butkowski, R J; Couchman, J R; Wu, R R; Ninomiya, Y; Sado, Y; Maguen, E; Nesburn, A B; Kenney, M C

    1996-01-01

    PURPOSE. To uncover abnormalities of extracellular matrix (ECM) distribution in human corneas with pseudophakic and aphakic bullous keratopathy (PBK/ABK). METHODS. Indirect immunofluorescence with antibodies to 27 ECM components was used on frozen sections of 14 normal and 20 PBK/ABK corneas...

  1. Investigation of Friction-induced Damage to the Pig Cornea

    NARCIS (Netherlands)

    da Cruz Barros, Raquel; Van Kooten, Theo G.; Veeregowda, Deepak Halenahally

    2015-01-01

    Mechanical friction causes damage to the cornea. A friction measurement device with minimal intervention with the pig cornea tear film revealed a low friction coefficient of 0.011 in glycerine solution. Glycerine molecules presumably bind to water, mucins, and epithelial cells and therewith improve

  2. Refractive analysis of the human cornea through propagated fields

    OpenAIRE

    Illueca Contri, Carlos; Mas Candela, David; Pérez Rodríguez, Jorge; Pons Moreno, Álvaro Máximo; Artigas Verde, José María

    2000-01-01

    A new technique for analysing the optical quality of the human cornea is presented. Corneal maps are obtained through keratographies and then converted into phase maps. The propagated fields generated from this surface are plotted and studied. It is shown that any irregularity in the cornea affects the propagated field and the energy distribution at the focal plane. Simple applications are also indicated.

  3. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Czech Academy of Sciences Publication Activity Database

    Čejka, Čestmír; Čejková, Jitka

    2015-01-01

    Roč. 2015, Mar 11 (2015), s. 591530. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GA14-12580S Keywords : experimental autoimmune uveitis * eye sjogrens-syndrome * rabbit cornea * aldehyde dehydrogenase * uvb rays * glutathione-peroxidase * superoxide-dismutase * refractive-index * reactive oxygen * alkali-burn Subject RIV: FF - HEENT, Dentistry Impact factor: 3.516, year: 2014

  4. Fracturing and brittleness index analyses of shales

    Science.gov (United States)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable

  5. Customized Finite Element Modelling of the Human Cornea.

    Directory of Open Access Journals (Sweden)

    Irene Simonini

    Full Text Available To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK.Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea.Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP.Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK. Patient-specific models can be used as indicators of feasibility before performing the surgery.

  6. The anisotropic material constitutive models for the human cornea.

    Science.gov (United States)

    Li, Long-yuan; Tighe, Brian

    2006-03-01

    This paper presents an anisotropic analysis model for the human cornea. The model is based on the assumption that the fibrils in the cornea are organised into lamellae, which may have preferential orientation along the superior-inferior and nasal-temporal directions, while the alignment of lamellae with different orientations is assumed to be random. Hence, the cornea can be regarded as a laminated composite shell. The constitutive equation describing the relationships between membrane forces, bending moments, and membrane strains, bending curvatures are derived. The influences of lamella orientations and the random alignment of lamellae on the stiffness coefficients of the constitutive equation are discussed. PMID:16426861

  7. Changing pattern of utilization of human donor cornea in India

    Directory of Open Access Journals (Sweden)

    Varun Gogia

    2015-01-01

    Full Text Available Purpose: To review the changing pattern of donor, corneal utilization in an eye bank at a Tertiary Care Center in Northern India by analyzing the trend in the years 2003, 2008, and 2011. Methods: A retrospective review of eye bank records for 3 years (2003, 2008, and 2011 was performed at the National Eye Bank. Details including a clinical grade of donor cornea, indication of corneal transplantation (therapeutic or optical, type of procedure (penetrating or lamellar keratoplasty [LK], and clinical diagnosis of the graft recipients were recorded. Primary outcome measure was to observe any preference toward LK, judicious usage of donor corneal tissue, and impact of lamellar corneal transplant in the usage of donor corneas. Secondary outcomes included overall utilization rate and change in trend of indication for keratoplasty. Results: A total of 673, 745, and 864 corneas were retrieved in the years 2003, 2008, and 2011, respectively. The percentage of donor corneal utilization increased significantly over time with the rate being 65.08%, 70.06%, and 68.29%, respectively, in the years 2003, 2008, and 2011 (P = 0.014; however, this change was reflected only in the usage of nonoptical grade corneas and not for the optical grade corneas. There was an overall increase in lamellar corneal procedures for any clinical grade of cornea (P = 0.0019; number of Descemet's stripping automated endothelial keratoplasty (DSAEK procedures increased significantly (P < 0.001, particularly for pseudophakic corneal edema (PCE (P = 0.0085 and failed graft (P = 0.002. Significant increase in the utilization of nonoptical grade corneas was observed over the years (P = 0.005, though the utilization did not increase significantly for optical purposes viz., LK (P = 0.08. Conclusions: Utilization rate of donor corneas increased over the years, primarily due to increase in usage of nonoptical grade corneas for therapeutic purposes. There was a procedural shift toward DSAEK for

  8. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea

    OpenAIRE

    Boote, Craig; Hayes, Sally; Robert D. Young; Kamma-Lorger, Christina S.; Hocking, Paul M.; Elsheikh, Ahmed; Inglehearn, Chris F.; Ali, Manir; Meek, Keith M.

    2009-01-01

    In the cornea, the precise organisation of fibrillar collagen and associated proteoglycans comprising the stromal extracellular matrix plays a major role in governing tissue form and function. Recently, abnormal collagen alignment was noted in the misshapen corneas of mature chickens affected by the retinopathy, globe enlarged (rge) mutation. Here we further characterize corneal ultrastructural changes as the rge eye develops post-hatch. Wide-angle X-ray scattering disclosed alteration to dom...

  9. CORRECTION OF MYOPIA USING CORNEA SPARING LASIK (ABLATION ON FLAP)

    OpenAIRE

    Nikhilesh; Vikas; Atul; Sudha,; Chitra

    2015-01-01

    Cornea sparing lasik is useful tool allowing surgeons to preserve the posterior stroma. The study comprised of prospective evaluation of 17 eyes treated with CSL – Cornea Sparing Lasik at Mahatme Eye Bank Eye Hospital , N agpur India. Our results show that the laser ablation on the corneal flap is safe and effective procedure. The refractive , efficacy and safety outcomes were similar to those in routine Lasik ablation on posterior stroma.

  10. CORRECTION OF MYOPIA USING CORNEA SPARING LASIK (ABLATION ON FLAP

    Directory of Open Access Journals (Sweden)

    Nikhilesh

    2015-02-01

    Full Text Available Cornea sparing lasik is useful tool allowing surgeons to preserve the posterior stroma. The study comprised of prospective evaluation of 17 eyes treated with CSL – Cornea Sparing Lasik at Mahatme Eye Bank Eye Hospital , N agpur India. Our results show that the laser ablation on the corneal flap is safe and effective procedure. The refractive , efficacy and safety outcomes were similar to those in routine Lasik ablation on posterior stroma.

  11. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  12. Ultraviolet laser effects on the cornea

    Science.gov (United States)

    Zuclich, Joseph A.

    1990-07-01

    Ultraviolet radiation in the ambient environment or from artificial sources may pose both acute and chronic hazards to the skin and the ocular tissues. In general terrestrial conditions have evolved such that there are only narrow safety margins between ambient UV levels and exposure levels harmful to the human. Obvious examples of acute consequences ofUV overexposure are sunburn and snowblindness as well as analogous conditions induced by artificial sources such as the welder''s arc mercury vapor lamps and UV-emitting lasers. Further chronic UV exposure is strongly implicated as a causative agent in certain types of cataract and skin cancer. This presentation will summarize a number of specific cases where UV radiation affected the primate cornea. Data presented will include the action spectra for far- and near-UV induced ocular damage the pulsewidth and total energy dependencies of ocular thresholds studies of cumulative effects of repeated UV exposures and quantitative determinations of tissue repair or recovery rates. Depending on the exposure parameters utilized photochemical thermal or photoablative damage mechanisms may prevail. 1.

  13. Femtosecond lasers for microsurgery of cornea

    Energy Technology Data Exchange (ETDEWEB)

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  14. Precision grinding process development for brittle materials

    International Nuclear Information System (INIS)

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques

  15. Dating brittle tectonic movements with cleft monazite

    DEFF Research Database (Denmark)

    Berger, Alfons; Gnos, E.; Janots, E.; Whitehouse, M.; Soom, M.; Frei, Robert; Waight, Tod Earle

    2013-01-01

    phases. This allows the high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 Ma and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data, and...

  16. Glycosaminoglycans in the Human Cornea: Age-Related Changes

    Science.gov (United States)

    Pacella, Elena; Pacella, Fernanda; De Paolis, Giulio; Parisella, Francesca Romana; Turchetti, Paolo; Anello, Giulia; Cavallotti, Carlo

    2015-01-01

    AIM To investigate possible age-related changes in glycosaminoglycans (GAGs) in the human cornea. The substances today called GAGs were previously referred to as mucopolysaccharides. METHODS Samples of human cornea were taken from 12 younger (age 21 ± 1.2) and 12 older (age 72 ± 1.6) male subjects. Samples were weighed, homogenized, and used for biochemical and molecular analyses. All the quantitative results were statistically analyzed. RESULTS The human cornea appears to undergo age-related changes, as evidenced by our biochemical and molecular results. The total GAG and hyaluronic acid counts were significantly higher in the younger subjects than in the older subjects. The sulfated heavy GAGs, such as chondroitin, dermatan, keratan, and heparan sulfate, were lower in the younger subjects than in the older subjects. DISCUSSION GAGs of the human cornea undergo numerous age-related changes. Their quantity is significantly altered in the elderly in comparison with younger subjects. GAGs play an important role in age-related diseases of the human cornea. PMID:25674020

  17. Matrix metalloproteinase expression in excimer laser wounded rabbit corneas

    Science.gov (United States)

    Hahn, Taewon; Chamon, Wallace; Akova, Yonja; Stark, Walter J.; Stetler-Stevenson, William G.; Azar, Dimitri T.

    1994-06-01

    This study was performed to obtain information about matrix metalloproteinase (MMP) expression in excimer-wounded corneas and to determine whether MMPs expression correlates with the depth of the ablation. 6-mm excimer keratectomy (60 or 180 micrometers ) was performed using the 193-mm ArF excimer laser on 12 NZW rabbits. Corneas treated with mechanical epithelial debridement and untreated corneas served as controls. Rabbits were killed at 20 and 30 hr after laser ablation. Zymography after SDS extraction was performed on regenerated central epithelium and the central stroma to determine MMPs expression. We observed enzymatic activity of a 92 KDa band in the epithelium of excimer-ablated corneas but not in that following debridement wounds and untreated controls. The expression of the 92 KDa MMP was most pronounced with the deeper excimer ablation. A 72 KDa band of enzymatic activity present in the stroma of all treated and control eyes was also seen in the epithelium of excimer-ablated corneas. These proteolytic enzymes may play an important role in wound healing and remodelling after excimer keratectomy.

  18. Aspects of brittle failure assessment for RPV

    Energy Technology Data Exchange (ETDEWEB)

    Zecha, H.; Hermann, T.; Hienstorfer, W. [TUeV SUeD Energietechnik GmbH Baden-Wuerttemberg, Filderstadt (Germany); Schuler, X. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    This paper describes the process of pressurized thermal shock analysis (PTS) and brittle failure assessment for the reactor pressure vessel (RPV) of the nuclear power plants NECKAR I/II. The thermo-hydraulic part of the assessment provides the boundary conditions for the fracture mechanics analysis. In addition to the one dimensional thermo-hydraulic simulations CFD, analyses were carried out for selected transients. An extensive evaluation of material properties is necessary to provide the input data for a reliable fracture mechanics assessment. For the core weld and the flange weld it has shown that brittle crack initiation can be precluded for all considered load cases. For the cold and hot leg nozzle detailed linear-elastic and elasticplastic Finite Element Analyses (FEA) are performed to verify the integrity of the RPV. (orig.)

  19. Expression of Interleukin 1 Receptor Antagonist in Human Cornea

    OpenAIRE

    Heur, Martin; Shyam S. Chaurasia; Wilson, Steven E.

    2008-01-01

    The purpose of this study was to confirm the expression of interleukin-1 receptor antagonist (IL-1 Ra) in the human cornea. Four samples of human ex vivo corneal epithelium were obtained from patients undergoing photorefractive keratectomy. RT-PCR was performed using mRNA isolated from the corneal epithelium and oligo-dT primers. PCR was performed on the cDNA products using primers specific for human IL-1Ra. The PCR products were subcloned and sequenced. Human cornea sections were prepared fr...

  20. Overcoming brittleness through bioinspiration and -microarchitecture

    OpenAIRE

    Barthelat, Francois; Mirkhalaf, Mohammad; Dastjerdi, Ahmad

    2014-01-01

    The fracture of highly mineralized natural materials such as bone, teeth, or seashells is largely controlled by the interfaces they contain. These interfaces, relatively weak, deflect and guide cracks into configurations which eventually impede their propagation. As a result, weaker interfaces turn brittle minerals into tough materials which can deform and absorb energy from impacts. To explore these concepts in synthetic materials, we used a 3D laser-engraver to carve arrays of microcracks w...

  1. Psychiatric and social aspects of brittle asthma.

    OpenAIRE

    Garden, G M; Ayres, J.G.

    1993-01-01

    BACKGROUND--Many studies have shown that emotional factors play a part in asthma, but few have compared patients with differing severities of asthma. It was our impression that patients with "brittle" asthma (BA; more than 40% diurnal variation in peak flow on 15 or more days a month over a period of at least six months, and persistent symptoms despite multiple drug treatment) had greater psychosocial morbidity than asthmatic patients with less variable asthma. METHODS--Twenty patients with B...

  2. Fabrication of brittle materials -- current status

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  3. 1H high resolution magic angle spinning NMR spectroscopy of rabbit cornea

    Czech Academy of Sciences Publication Activity Database

    Saether, O.; Risa, O.; Čejková, Jitka; Krane, J.; Midelfart, A.

    Prague: organizing committee, 2002. s. 38. [International Symposium on Cornea and Contact Lenses.. 07.12.2002-10.12.2002, Prague] Institutional research plan: CEZ:AV0Z5039906 Keywords : cornea Subject RIV: FF - HEENT, Dentistry

  4. The transparent lens and cornea in the mouse and zebra fish eye

    OpenAIRE

    Greiling, Teri M.S.; Clark, John I.

    2007-01-01

    The lens and cornea combine to form a single optical element in which transparency and refraction are the fundamental biophysical characteristics required for a functional visual system. Although lens and cornea have different cellular and extracellular specializations that contribute to transparency and refraction, their development is closely related. In the embryonic mouse, the developing cornea and lens separate early. In contrast, zebra fish lens and cornea remain connected during early ...

  5. Effect of Seawater Soaking on Explosive Cornea Injury

    Institute of Scientific and Technical Information of China (English)

    Suihua Chen; Zhenping Huang; Lili Wang; Yuwen Lu; Yi Wang

    2002-01-01

    Objective: To observe the changes in corneal tissue after explosive corneal injury and the effect of seawater soaking on the healing of cornea after explosive injury with the help ofoptical microscope. Methods: Make 10 similar explosive injury models of rabbit′s eyeball using 10 adult greyrabbits. For each rabbit, both eyes are artificially injured through explosion; its right eye is the comparison eye and after the injury the left eye is soaked in seawater for 30 minutes.Conduct slit lamp examinations, fluorescein dyeing, and ultrasonic cornea thickness metering on the corneas at intervals, that is, before the injury, 1 , 2, 3, 4, 5, 7, 9, 12, 15days after the injury respectively. Examine the corneas under the optical microscope andmake comparisons.Results: The corneal thickness of the experiment eye becomes apparently thicker than thatof the comparison eye after the injury. The corneal clouding of the former apparentlyaggravates compared with the latter. The healing of corneal epithelium in the injured eye isslower compared with that in the comparison eye. Comparative examination under the opticalmicroscope shows: after the injury, the corneal tissue of the experiment eye changesdistinctly, its healing is delayed and the vascularization degree becomes high in cornealstroma.Conclusion: Scars and vascularization of various degrees will appear in corneal stroma afterexplosive injuries. Seawater soaking will have bad effects on the healing of the corneainjured in explosions.

  6. Xanthine oxidoreductase and xantine oxidase in human cornea

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Ardan, Taras; Filipec, M.; Midelfart, A.

    2002-01-01

    Roč. 17, - (2002), s. 755-760. ISSN 0213-3911 R&D Projects: GA ČR GA304/00/1635; GA ČR GV307/96/K226 Institutional research plan: CEZ:AV0Z5039906 Keywords : human cornea * xanthine oxidoreductase in situ Subject RIV: FF - HEENT, Dentistry Impact factor: 1.881, year: 2002

  7. Fracture of brittle materials under compression

    International Nuclear Information System (INIS)

    Kinetics of crack development in plates of brittle materials under uniaxial compression is studied by the calculated-experimental method. Failure diagrams for single sloping cracks as well as for the periodical system of parallel cracks with due regrd for curvikinearity of their trajectory are plotted using the method of singular integral equations. Effect of the crack interaction on the plate failure kinetics is estimated. The calculated data are compared with experimental results obtained on graphite ARW, zirconium carbide, soda-lime and acrylic glass sepcimens with atificial nothes

  8. Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Regnet, J. B.; Dimanov, A.; Guéguen, Y.

    2016-07-01

    Inelastic deformation can either occur with dilatancy or compaction, implying differences in porosity changes, failure and petrophysical properties. In this study, the roles of water as a pore fluid, and of temperature, on the deformation and failure of a micritic limestone (white Tavel limestone, porosity 14.7 per cent) were investigated under triaxial stresses. For each sample, a hydrostatic load was applied up to the desired confining pressure (from 0 up to 85 MPa) at either room temperature or at 70 °C. Two pore fluid conditions were investigated at room temperature: dry and water saturated. The samples were deformed up to failure at a constant strain rate of ˜10-5 s-1. The experiments were coupled with ultrasonic wave velocity surveys to monitor crack densities. The linear trend between the axial crack density and the relative volumetric strain beyond the onset of dilatancy suggests that cracks propagate at constant aspect ratio. The decrease of ultrasonic wave velocities beyond the onset of inelastic compaction in the semi-brittle regime indicates the ongoing interplay of shear-enhanced compaction and crack development. Water has a weakening effect on the onset of dilatancy in the brittle regime, but no measurable influence on the peak strength. Temperature lowers the confining pressure at which the brittle-semi-brittle transition is observed but does not change the stress states at the onset of inelastic compaction and at the post-yield onset of dilatancy.

  9. Phase field approximation of dynamic brittle fracture

    Science.gov (United States)

    Schlüter, Alexander; Willenbücher, Adrian; Kuhn, Charlotte; Müller, Ralf

    2014-11-01

    Numerical methods that are able to predict the failure of technical structures due to fracture are important in many engineering applications. One of these approaches, the so-called phase field method, represents cracks by means of an additional continuous field variable. This strategy avoids some of the main drawbacks of a sharp interface description of cracks. For example, it is not necessary to track or model crack faces explicitly, which allows a simple algorithmic treatment. The phase field model for brittle fracture presented in Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) assumes quasi-static loading conditions. However dynamic effects have a great impact on the crack growth in many practical applications. Therefore this investigation presents an extension of the quasi-static phase field model for fracture from Kuhn and Müller (Eng Fract Mech 77(18):3625-3634, 2010) to the dynamic case. First of all Hamilton's principle is applied to derive a coupled set of Euler-Lagrange equations that govern the mechanical behaviour of the body as well as the crack growth. Subsequently the model is implemented in a finite element scheme which allows to solve several test problems numerically. The numerical examples illustrate the capabilities of the developed approach to dynamic fracture in brittle materials.

  10. Permeability Evolution and Rock Brittle Failure

    Directory of Open Access Journals (Sweden)

    Sun Qiang

    2015-08-01

    Full Text Available This paper reports an experimental study of the evolution of permeability during rock brittle failure and a theoretical analysis of rock critical stress level. It is assumed that the rock is a strain-softening medium whose strength can be described by Weibull’s distribution. Based on the two-dimensional renormalization group theory, it is found that the stress level λ c (the ratio of the stress at the critical point to the peak stress depends mainly on the homogeneity index or shape parameter m in the Weibull’s distribution for the rock. Experimental results show that the evolution of permeability is closely related to rock deformation stages: the permeability has a rapid increase with the growth of cracks and their surface areas (i.e., onset of fracture coalescence point, and reaches the maximum at rock failure. Both the experimental and analytical results show that this point of rapid increase in permeability on the permeabilitypressure curve corresponds to the critical point on the stress-strain curve; for rock compression, the stress at this point is approximately 80% of the peak strength. Thus, monitoring the evolution of permeability may provide a new means of identifying the critical point of rock brittle fracture

  11. Research on basic characteristics of complex system brittleness

    Institute of Scientific and Technical Information of China (English)

    JIN Hong-zhang; GUO Jian; WEI Qi; LIN De-ming; LI Qi

    2004-01-01

    Tbe goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of complex system are also given in this paper.Otherwise, the qualitative description of complex system is presented at first. On the basis of analyzing the existing brittleness problems, linguistic description and mathematic description of brittleness are given as well. Three kinds of phenomena to judge brittleness of complex system are also given, based on catastrophe theory. Basic characteristics of brittleness are given on the basis of its mathematic description. Two critical point sets are defined by using catastrophe theory. The definition of brittleness and its related theory can serve the control of complex system, and provide theoretical basis for the design and control of complex system.

  12. The role of brittleness in fracture of concrete

    International Nuclear Information System (INIS)

    Based on the analysis of load-deflection curves of concrete, mortar and hcp during fracture tests, we introduce a brittleness parameter to describe the failure pattern, and try to explore how the fracture energy, strength and the brittleness are mutually interdependent. It is proposed in this contribution that for practical use or design of materials, all three properties strength, fracture energy and brittleness have to be taken into consideration. (orig.)

  13. Live imaging of newly formed lymphatic vessels in the cornea

    Institute of Scientific and Technical Information of China (English)

    Don Yuen; Xiufeng Wu; Alex C Kwan; Jeffrey LeDue; Hui Zhang; Tatiana Ecoiffier; Bronislaw Pytowski; Lu Chen

    2011-01-01

    Dear Editor,Lymphatic research denotes a field of new discovery and has experienced exponential growth in recent years [1-3].Though lymphatic dysfunction has been found in a broad spectrum of disorders from transplant rejection to cancer metastasis,to date,there is still little effective treatment for lymphatic diseases,so it is a field with urgent demand for new experimental approaches and therapeutic protocols.The cornea provides an ideal site for lymphatic research due to its accessible location,transparent nature,and alymphatic status under normal condition [2,4].Indeed,the use of this tissue for tumor angiogenesis research dates back to 1970s [5].Most recently,we have demonstrated that the cornea possesses a full range of plasticity in lymphatic formation and regression [6].An advanced technology for live imaging of lymphatic vessels in this tissue would therefore have widespread applications in biomedical research.

  14. Analysis of Cornea Transplant Tissue Rejection Delay in Mice Subjects

    Czech Academy of Sciences Publication Activity Database

    Valenta, Zdeněk; Svozílková, P.; Filipec, M.; Zvárová, Jana; Farghali, H.

    Berlin: Springer, 2004 - (Barreiro, J.; Martin-Sanchez, F.; Maojo, V.), s. 292-298. (Lecture Notes in Computer Science. 3337). ISBN 3-540-23964-2. [ISBMDA. International Symposium /5./. Barcelona (ES), 18.11.2004-19.11.2004] R&D Projects: GA ČR GP305/03/D130; GA MZd NI7531; GA MŠk LN00B107 Keywords : cornea transplant * immunosuppressant * hazard ratio Subject RIV: BB - Applied Statistics, Operational Research

  15. Ultrastructural changes in the developing chicken cornea following caffeine administration.

    OpenAIRE

    Bartel Hieronim; Tosik Dariusz; Kujawa-Hadryś Monika

    2010-01-01

    Caffeine is one of the most frequently consumed psychoactive substances. It has been known for many years that caffeine at high concentrations exerts harmful effects on both women's and laboratory animals' fertility, moreover it may impair normal development of many organs in the prenatal period. So far there have been few studies performed that demonstrate teratogenic effects of caffeine on structures of the developing eye, particularly the cornea. The aim of the study was to show ultrastruc...

  16. pH of organ-culture-stored corneas.

    Science.gov (United States)

    Lass, J H; Greiner, J V; Meneses, P; Morgan, D C; Medcalf, S K; Collie, D M; Skelnik, D L; Glonek, T

    1988-10-01

    Changes in intracorneal and storage-medium pH values of organ-culture-stored cat corneas were monitored over a 4-week period. The intracorneal pH was determined using the phosphorus-31 magnetic resonance spectroscopy (31P MRS) chemical shift of inorganic orthophosphate in conjunction with a standard pH titration curve. We incubated 32 adult cat corneas using two similar standard organ-culture methods, one with chondroitin sulfate (method 1) and the other without (method 2). Time-course data at 0, 1, 3 and 4 weeks of storage were used to calculate the rate of pH change. The intracorneal pH was not changed significantly for either organ-culture method; however, the storage-medium pH rate of change declined significantly for both methods (method 1, 0.15 pH units/week; method 2, 0.12 pH units/week). The difference between intracorneal and storage-medium pH values over time increased at a rate of 0.12 and 0.11 pH units/week for method 1 and method 2, respectively. The declining storage-medium pH in conjunction with the maintenance of intracorneal pH contributes to an increased metabolic demand on the cornea. PMID:3218477

  17. Ultrastructural changes in the developing chicken cornea following caffeine administration.

    Directory of Open Access Journals (Sweden)

    Bartel Hieronim

    2010-11-01

    Full Text Available Caffeine is one of the most frequently consumed psychoactive substances. It has been known for many years that caffeine at high concentrations exerts harmful effects on both women's and laboratory animals' fertility, moreover it may impair normal development of many organs in the prenatal period. So far there have been few studies performed that demonstrate teratogenic effects of caffeine on structures of the developing eye, particularly the cornea. The aim of the study was to show ultrastructural changes in the developing cornea, as the effect of caffeine administration to chicken embryos. The experimental materials were 26 chicken embryos from incubated breeding eggs. Eggs were divided into two groups: control (n=30 in which Ringer liquid was administrated, and experimental (n=30 in which teratogenic dose of caffeine 3.5mg/egg was given. In 36th hour of incubation solutions were given with cannula through hole in an egg shell directly onto amniotic membrane. After closing the hole with a glass plate and paraffine, eggs were put back to incubator. In 10th and 19th day of incubation corneas were taken for morphological analysis with a use of electron microscopy. Administration of caffeine during chicken development causes changes of collagen fibers of Bowman's membrane patterns and of the corneal stroma but it also changes proportion of amount of collagen fibers and of the stromal cells.

  18. Stratification of Antigen-presenting Cells within the Normal Cornea

    Directory of Open Access Journals (Sweden)

    Jared E. Knickelbein

    2009-11-01

    Full Text Available The composition and location of professional antigen presenting cells (APC varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP from the CD11c promoter (pCD11c in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 µm in length and traverse up 20 µm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c-CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class IIpCD11c-CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.

  19. Energy dispersive x-ray analysis of the cornea. Application to paraffin sections of normal and diseased corneas

    International Nuclear Information System (INIS)

    The distribution of chemical elements in the normal human cornea was studied by energy dispersive x-ray analysis and scanning electron microscopy of routinely prepared paraffin sections. Calcium, phosphorus, and sulfur were consistently present in quantities above background and varied in concentration regionally. Analysis of fresh-frozen tissue, an approximation of the in vivo state, gave a similar elemental profile to paraffin sections, except for the loss of diffusable electrolytes in the latter. After fixation, S was the most abundant element and was highest in Descemet's membrane. Corneas with granular, lattice, macular, and Fuchs endothelial dystrophies, band keratopathy, and spheroidal degeneration were also examined. Characteristic patterns of abnormal S and Ca distribution were found in each of the dystrophies. The relative proportions of Ca, P, and S gave diagnostic profiles for distinguishing band keratopathy and spheroidal degeneration

  20. National conference on brittle fracture of materials and structures

    International Nuclear Information System (INIS)

    The proceedings contain full texts of 28 contributions, out of which 10 fall within the INIS subject scope. These deal particularly with the effect of neutron radiation on the brittle fracture properties of structural steels used in nuclear facilities and with theoretical problems of brittle fracture of such steels in cyclic stress conditions. (Z.M.)

  1. Effect of substrate roughness on the contact damage of thin brittle films on brittle substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Mirko [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Institute for Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 23, 64287 Darmstadt (Germany); Borrero-Lopez, Oscar [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071, Badajoz (Spain); Hoffman, Mark, E-mail: mark.hoffman@unsw.edu.a [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Bendavid, Avi; Martin, Phil J. [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2010-07-01

    The effect of substrate and surface roughness on the contact fracture of diamond-like carbon coatings on brittle soda-lime glass substrates has been investigated. The average surface roughness (R{sub a}) of the examined samples ranged from 15 nm to 571 nm. Contact damage was simulated by means of spherical nanoindentation, and fracture was subsequently assessed by focused ion beam microscopy. It was found that, in the absence of sub-surface damage in the substrate, fracture occurs in the coating in the form of radial, and ring/cone cracks during loading, and lateral cracks during unloading. Increasing the surface roughness results in a decrease in the critical load for crack initiation during loading, and in the suppression of fracture modes during unloading from high loads. When sub-surface damage (lateral cracks) is present in the substrate, severe spalling takes place during loading, causing a large discontinuity in the load-displacement curve. The results have implications concerning the design of damage-tolerant coated systems consisting of a brittle film on a brittle substrate.

  2. The brittleness model of complex system based on cellular automata

    Institute of Scientific and Technical Information of China (English)

    LIN De-ming; JIN Hong-zhang; LI Qi; WU Hong-mei

    2004-01-01

    Now the research on the complex system is a hot spot. Brittleness is one of the basic characteristics of a complex system. In a complex system, after one of subsystems is struck to be collapsed, the whole system will collapse. Meanwhile, cellular automata is a discrete dynamic system. When the rule is given, the cellular automata could be defined. Then it can imitate the complex action. Cellular automata is used to simulate the brittleness action in this study. Entropy was used to analyze the action and get the rule. Then,three normal brittleness models were given. The result shows that the brittleness of complex system is existent and in addition some important behavior mode of complex system brittleness has been achieved.

  3. Brittle and compaction creep in porous sandstone

    Science.gov (United States)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  4. [Alport's syndrome (author's transl)].

    Science.gov (United States)

    Huismans, H

    1978-05-01

    A case report is given of a 22-years old student (whose brother had Alport's syndrome) with recurrent central corneal swelling and paracentral erosions of the cornea of both eyes. Further signs of beginning Alport's syndrome in this case are disturbance of re-adaptation after dazzling (Mesoptometer) and paracentral scotomata in the visual fields. Remarkable was the small diameter of the disc in both eyes (1.37 mm). Local therapy was Scopolamin-eye-drops, Actihaemyl- and especially Cystein-Gel (2.4%). PMID:672101

  5. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas. PMID:27113863

  6. Atomic force microscopy analysis of human cornea surface after UV (λ=266 nm) laser irradiation

    Science.gov (United States)

    Spyratou, E.; Makropoulou, M.; Moutsouris, K.; Bacharis, C.; Serafetinides, A. A.

    2009-07-01

    Efficient cornea reshaping by laser irradiation for correcting refractive errors is still a major issue of interest and study. Although the excimer laser wavelength of 193 nm is generally recognized as successful in ablating corneal tissue for myopia correction, complications in excimer refractive surgery leads to alternative laser sources and methods for efficient cornea treatment. In this work, ablation experiments of human donor cornea flaps were conducted with the 4th harmonic of an Nd:YAG laser, with different laser pulses. AFM analysis was performed for examination of the ablated cornea flap morphology and surface roughness.

  7. CONSERVATION LAWS IN FINITE MICROCRACKING BRITTLE SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Wang Defa; Chen Yiheng; Fukui Takuo

    2005-01-01

    This paper addresses the conservation laws in finite brittle solids with microcracks.The discussion is limited to the 2-D cases. First, after considering the combination of the PseudoTraction Method and the indirect Boundary Element Method, a versatile method for solving multicrack interacting problems in finite plane solids is proposed, by which the fracture parameters (SIF and path-independent integrals) can be calculated with a desirable accuracy. Second, with the aid of the method proposed, the roles the conservation laws play in the fracture analysis for finite microcracking solids are studied. It is concluded that the conservation laws do play important roles in not only the fracture analysis but also the analysis of damage and stability for the finite microcracking system. Finally, the physical interpretation of the M-integral is discussed further.An explicit relation between the M-integral and the crack face area, I.e., M = GS, has been discovered using the analytical method, which can shed some light on the Damage Mechanics issues from a different perspective.

  8. Diffuse interface approach to brittle fracture

    International Nuclear Information System (INIS)

    We present a continuum model for the propagation of cracks and fractures in brittle materials. The components of the strain tensor ε are the fundamental variables. The evolution equations are based on a free energy that reduces to that of linear elasticity for small ε, and accounts for cracks through energy saturation at large values of ε. We regularize the model by including terms dependent on gradients of ε in the free energy. No additional fields are introduced, and then the whole dynamics is perfectly defined. We show that the model is able to reproduce basic facts in fracture physics, like the Griffith's dependence of the critical stress as a minus one half power of the crack length. In addition, regularization makes the results insensitive to the numerical mesh used, something not at all trivial in crack modeling. We present and example of the application of the model to predict the growth and curving of cracks in a non-trivial geometrical configuration. (author)

  9. Keratoglobus in the Rubinstein-Taybi syndrome.

    OpenAIRE

    Nelson, M. E.; Talbot, J F

    1989-01-01

    The case of a 20-year-old male with the Rubinstein-Taybi syndrome associated with unilateral acute corneal hydrops is presented. The initial findings were of keratoglobus, but after the corneal oedema had settled the cornea assumed a more conical contour. The relationship between keratoglobus, keratoconus, and acute hydrops is discussed.

  10. Candidate materials to prevent brittle fracture - (186)

    International Nuclear Information System (INIS)

    For heavy transport or dual purpose casks, selecting the appropriate materials for the body is a key decision. To get a Type B(U) approval, it is necessary to demonstrate that the mechanical strength of the material is good enough at temperature as low as -40 C so as to prevent the cask from any risk of brittle fracture in regulatory accident conditions. Different methods are available to provide such a demonstration and can lead to different choices. It should be noted also that the material compositions given by national or international standards display relatively wide tolerances and therefore are not necessarily sufficient to guarantee a required toughness. It is therefore necessary to specify to the fabricator the minimum value for toughness, and to verify it. This paper gives an overview of the different methods and materials that are used in several countries. Although the safety is strongly linked to the choice of the material, it is shown that many other parameters are important, such as the design, the fabrication process (multi layer, cast or forged body), the welding material and process, the ability to detect flaws, and the measured and/or calculated stress level, including stress concentration, in particular when bolts are used. The paper will show that relying exclusively on high toughness at low temperature does not necessarily deliver the maximum safety as compared with other choices. It follows that differences in approaches to licensing by different competent authorities may bias the choice of material depending on the country of application, even though B(U) licenses are meant to guarantee unilaterally a uniform minimum level of safety

  11. Reversible temper brittleness on tensile tests at room temperature

    International Nuclear Information System (INIS)

    Tensile tests were carried out on unnotched test pieces at room temperature and three strain rates: 2,5x10-4, 2,5x10-3 and 1,0x10-2 s-1 in a low alloy No-Cr-Mo steel to observe the variation in its mechanical properties with the occurrence of reversible temper brittleness. The brittle samples showed a sensitivity of 500C in a 48 hour heat treatment at 5000C. The tests showed that at the strain rate of 2,5x10-4 s-1 there are statistically significant differences between the elongations of the material in the brittle and the nonbrittle and regenerated states. A short review of reversible temper brittleness is given and a theory suggested for the mechanism

  12. Scattering mechanical performances for brittle bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    J. W. Qiao

    2014-11-01

    Full Text Available Scattering mechanical performances of brittle La- and Mg-based BMGs are found in the present study. Upon dynamic loading, there exist largely scattered fracture strengths even if the strain rates are under the same order, and the BMG systems are the same. The negative strain rate dependence for La- and Mg-based BMGs is obtained, i.e., a decreased fracture strength is dominating from quasi-static to dynamic compression. At cryogenic temperatures, distinguishingly low fracture strengths are available for these two brittle BMGs, and decreased tolerance to accommodate strains makes BMGs more and more brittle. It is concluded that the scattering mechanical performances of brittle BMGs should be carefully evaluated before actual applications.

  13. Validation of tissue quality parameters for donor corneas, designated for emergency cases: corneal graft survival

    NARCIS (Netherlands)

    W.J. Rijneveld; R. Wolff; H.J.M. Volker-Dieben; E. Pels

    2011-01-01

    Purpose: To validate tissue quality parameters for donor corneas designated for emergency grafting for corneal graft survival. Methods: In a longitudinal cohort follow-up study, 131 emergency penetrating grafts were studied. Grafts were performed with a pool of organ-cultured donor corneas designate

  14. Xanthelasmata, arcus corneae, and ischaemic vascular disease and death in general population: prospective cohort study

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Frikke-Schmidt, Ruth; Schnohr, Peter; Jensen, Gorm B; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2011-01-01

    To test the hypothesis that xanthelasmata and arcus corneae, individually and combined, predict risk of ischaemic vascular disease and death in the general population.......To test the hypothesis that xanthelasmata and arcus corneae, individually and combined, predict risk of ischaemic vascular disease and death in the general population....

  15. Use of Fourier-Domain Optical Coherence Tomography to Evaluate Anterior Stromal Opacities in Donor Corneas

    Directory of Open Access Journals (Sweden)

    Matthew R. Bald

    2013-01-01

    Full Text Available Purpose. To evaluate Fourier-domain optical coherence tomography (FD-OCT as an adjunct to traditional slit lamp examination of donor corneas with suspected Anterior Stromal Opacities. Methods. Seven corneas suspected of having anterior stromal opacities by slit lamp examination were evaluated with FD-OCT. Each cornea was evaluated to confirm the presence of opacity and, if present, the depth of opacity was measured. Results. The opacity depth ranged from 82 μm to 624 μm. The initial slit lamp impressions of five of the seven corneas were confirmed by OCT. In two corneas, the OCT findings were different from the initial slit lamp impressions. Slit lamp examination of the first cornea gave the impression of anterior stromal scarring, but OCT showed that the opacity was limited to the epithelium. Slit lamp examination of the second cornea suggested opacity limited to the epithelium, but OCT identified significant sub-Bowman's scarring. In all cases, the Eye Bank Technicians reported that the location and depth of corneal opacity were more sharply defined by OCT than by slit lamp. Conclusion. The high resolution of OCT makes it easier to determine the location of corneal opacities compared to slit lamp examinations. This enhanced visualization can improve decisions regarding transplant suitability of donor corneas.

  16. Increase in cellular concrete resistance to brittle fracture

    International Nuclear Information System (INIS)

    Considered are theoretical premises of decrease in cellular concrete resistance to brittle fracture at the expense of dispersed reinforcement. It is stated experimentally that the introduction of 3% asbestos fibers permits to increase the ultimate extensibility and strength during cellular concrete tension by 15-30% and to increase in unit rupture work 1.4-1.6 time more and therefore to decrease its brittleness

  17. Universal behaviour in compressive failure of brittle materials.

    Science.gov (United States)

    Renshaw, C E; Schulson, E M

    2001-08-30

    Brittle failure limits the compressive strength of rock and ice when rapidly loaded under low to moderate confinement. Higher confinement or slower loading results in ductile failure once the brittle-ductile transition is crossed. Brittle failure begins when primary cracks initiate and slide, creating wing cracks at their tips. Under little to no confinement, wing cracks extend and link together, splitting the material into slender columns which then fail. Under low to moderate confinement, wing crack growth is restricted and terminal failure is controlled by the localization of damage along a narrow band. Early investigations proposed that localization results from either the linkage of wing cracks or the buckling of microcolumns created between adjacent wing cracks. Observations of compressive failure in ice suggest a mechanism whereby localization initiates owing to the bending-induced failure of slender microcolumns created between sets of secondary cracks emanating from one side of a primary crack. Here we analyse this mechanism, and show that it leads to a closed-form, quantitative model that depends only on independently measurable mechanical parameters. Our model predictions for both the brittle compressive strength and the brittle-ductile transition are consistent with data from a variety of crystalline materials, offering quantitative evidence for universal processes in brittle failure and for the broad applicability of the model. PMID:11528475

  18. Intermittent single point machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E

    1999-12-07

    A series of tests were undertaken to explore diamond tool wear in the intermittent cutting of brittle materials, specifically silicon. The tests were carried out on a plain way No. 3 Moore machine base equipped as a flycutter with a motorized Professional Instruments 4R air bearing spindle. The diamond tools were made by Edge Technologies with known crystal orientation and composition and sharpened with either an abrasive or chemical process, depending on the individual test. The flycutting machine configuration allowed precise control over the angle at which the tool engages the anisotropic silicon workpiece. In contrast, the crystallographic orientation of the silicon workpiece changes continuously during on-axis turning. As a result, it is possible to flycut a workpiece in cutting directions that are known to be easy or hard. All cuts were run in the 100 plane of the silicon, with a slight angle deliberately introduced to ensure that the 100 plane is engaged in ''up-cutting'' which lengthens the tool life. A Kistler 9256 dynamometer was used to measure the cutting forces in order to gain insight into the material removal process and tool wear during testing. The dynamometer provides high bandwidth force measurement with milli-Newton resolution and good thermal stability. After many successive passes over the workpiece, it was observed that the cutting forces grow at a rate that is roughly proportional to the degradation of the workpiece surface finish. The exact relationship between cutting force growth and surface finish degradation was not quantified because of the problems associated with measuring surface finish in situ. However, a series of witness marks were made during testing in an aluminum sample that clearly show the development of wear flats on the tool nose profile as the forces grow and the surface finish worsens. The test results show that workpieces requiring on the order of two miles of track length can be made with low tool

  19. Brittle and semibrittle creep in a low porosity carbonate rock

    Science.gov (United States)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  20. Brittleness Generation Mechanism and Failure Model of High Strength Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The brittleness generation mechanism of high strength lightweight aggregate concrete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot,initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.

  1. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    Science.gov (United States)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  2. Correction of eye refraction by nonablative laser action on thermomechanical properties of cornea and sclera

    International Nuclear Information System (INIS)

    A new approach is proposed for correcting the eye refraction by controlled variation of the mechanical properties of the sclera and cornea upon nondestructive laser heating. Experimental ex vivo studies of rabbit and pig eyes show that laser-induced local denaturation of the sclera changes the refraction of the cornea by 3 diopters on the average, and the subsequent nondestructive irradiation of the cornea increases its plasticity, which leads to a further increase in its radius of curvature and a decrease in refraction down to 7 diopters.

  3. A time-delay calibrated method for cornea hysteresis and intraocular pressure measurement

    Science.gov (United States)

    Wang, Kuo-Jen; Tsai, Che-Liang; Wang, Wai; Hsu, Long; Hsu, Ken-Yuh

    2016-04-01

    The presence of cornea hysteresis (CH) in characterizing the intraocular pressure (IOP) of a human eye deteriorates the accuracy of IOP. To suppress CH, the pressure gauge of a tonometer must be located as close as possible to the cornea. However, this arrangement is unpractical because appropriate working distance to the cornea is required. In this paper, a time-delay calibrated (TDC) method is proposed to counteract the undesired effect of CH in characterizing the IOP. Employing this TDC method, the CH approaches to zero for most eyes measured.

  4. Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model.

    Science.gov (United States)

    Hashimoto, Yoshihide; Hattori, Shinya; Sasaki, Shuji; Honda, Takako; Kimura, Tsuyoshi; Funamoto, Seiichi; Kobayashi, Hisatoshi; Kishida, Akio

    2016-01-01

    The decellularized cornea has received considerable attention for use as an artificial cornea. The decellularized cornea is free from cellular components and other immunogens, but maintains the integrity of the extracellular matrix. However, the ultrastructure of the decellularized cornea has yet to be demonstrated in detail. We investigated the influence of high hydrostatic pressure (HHP) on the decellularization of the corneal ultrastructure and its involvement in transparency, and assessed the in vivo behaviour of the decellularized cornea using two animal transplantation models, in relation to remodelling of collagen fibrils. Decellularized corneas were prepared by the HHP method. The decellularized corneas were executed by haematoxylin and eosin and Masson's trichrome staining to demonstrate the complete removal of corneal cells. Transmission electron microscopy revealed that the ultrastructure of the decellularized cornea prepared by the HHP method was better maintained than that of the decellularized cornea prepared by the detergent method. The decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty using a rabbit model was stable and remained transparent without ultrastructural alterations. We conclude that the superior properties of the decellularized cornea prepared by the HHP method were attributed to the preservation of the corneal ultrastructure. PMID:27291975

  5. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, E.G.; Shelly, D.R.; Guyer, R.A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place. Copyright ?? 2011 by the American Geophysical Union.

  6. In the Initiation of Brittle Compressive Failure: Lessons From Ice

    Science.gov (United States)

    Renshaw, C. E.; Schulson, E. M.

    2001-12-01

    Brittle failure limits the compressive strength of rock and ice when rapidly loaded under low to moderate confinement. Higher confinement or slower loading results in ductile failure once the brittle-ductile transition is crossed. It is well established that the macroscopic brittle failure of rock, concrete and other brittle materials under compression is preceded by the initiation and sliding of microscopic primary cracks, creating wing cracks at their tips. In laboratory samples, microcracks begin to nucleate more or less uniformly throughout the sample at compressions equal to about 1/5 to 1/3 the terminal failure stress. Under little to no confinement, wing cracks extend and link together, splitting the material into slender columns which then fail. Under low to moderate confinement, wing crack growth is restricted and terminal failure is controlled by the localization of damage along discrete bands of intense damage inclined by approximately 30 degrees to the direction of the most compressive stress. Earlier investigators proposed that localization results from either the linkage of wing cracks or the buckling of microcolumns created between adjacent wing cracks. Observations of compressive failure in ice suggest a new mechanism whereby localization initiates due to the bending-induced failure of slender microcolumns created between sets of secondary cracks emanating from one side of a primary crack. Analysis of this mechanism leads to a closed-form, quantitative model that only depends on independently measureable mechanical parameters. We show that model predictions for both the brittle compressive strength and the brittle-ductile transition are consistent with data from a variety of crystalline materials.

  7. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    Science.gov (United States)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  8. The filtering, clear-cornea diathermal keratostomy: a minor Danish multicenter study

    DEFF Research Database (Denmark)

    Kessing, S.V.; Nissen, O.I.; Thygesen, J.; Flesner, P.; Otland, N.; Riise, P.

    2008-01-01

    PURPOSE: Is the new micropenetrating, clear-cornea procedure, intrastromal diathermal keratostomy (IDK), an alternative to the intricate "modern trabeculectomy"? METHODS: Prospective multicenter study. Four surgeons from 4 Danish eye departments attended an IDK course and subsequently decided whe...

  9. A role for smoothened during murine lens and cornea development.

    Directory of Open Access Journals (Sweden)

    Janet J Y Choi

    Full Text Available Various studies suggest that Hedgehog (Hh signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30 showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3 were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre did not affect ocular development, whereas deletion from ∼E9.5 (LeCre resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5-E12.5 in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs

  10. Cost Minimization Analysis of Precut Cornea Grafts in Descemet Stripping Automated Endothelial Keratoplasty.

    Science.gov (United States)

    Yong, Kai-Ling; Nguyen, Hai V; Cajucom-Uy, Howard Y; Foo, Valencia; Tan, Donald; Finkelstein, Eric A; Mehta, Jodhbir S

    2016-02-01

    Descemet stripping automated endothelial keratoplasty (DSAEK) is the most common corneal transplant procedure. A key step in the procedure is preparing the donor cornea for transplantation. This can be accomplished via 1 of 3 alternatives: surgeon cuts the cornea on the day of surgery, the cornea is precut ahead of time in an offsite facility by a trained technician, or a precut cornea is purchased from an eye bank. Currently, there is little evidence on the costs and effectiveness of these 3 strategies to allow healthcare providers decide upon the preferred method to prepare grafts.The aim of this study was to compare the costs and relative effectiveness of each strategy.The Singapore National Eye Centre and Singapore Eye Bank performed both precut cornea and surgeon-cut cornea transplant services between 2009 and 2013.This study included 110 subjects who received precut cornea and 140 who received surgeon-cut cornea. Clinical outcomes and surgical duration were compared across the strategies using the propensity score matching. The cost of each strategy was estimated using the microcosting and consisted of facility costs and procedural costs including surgical duration. One-way sensitivity analysis and threshold analysis were performed.The cost for DSAEK was highest for the surgeon-cut approach ($13,965 per procedure), followed by purchasing precut corneas ($12,659) and then setting up precutting ($12,421). The higher procedural cost of the surgeon-cut approach was largely due to the longer duration of the procedure (surgeon-cut = 72.54 minutes, precut = 59.45 minutes, P cut. Threshold analysis demonstrated that if the number of cases was below 31 a year, the strategy that yielded the lowest cost was purchasing precut cornea from eye bank. If there were more than 290 cases annually, the cheapest option would be to setup precutting facility.Our findings suggest that it is more efficient for centers that are performing a large number of cornea

  11. Hyperglycemia-induced abnormalities in rat and human corneas: the potential of second harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Gaël Latour

    Full Text Available BACKGROUND: Second Harmonic Generation (SHG microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea. METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily

  12. Taurine effect on cytogenetic lesions in the cornea of mice exposed to 9 Gev proton irradiation

    International Nuclear Information System (INIS)

    Possibilities of preventive measures and treatment of cytogenetic injuries in the mice cornea, subjected to proton irradiation at 9 Gev were studied. Taurine containing solution (TCS) was used as a radiomodifying agent. It is shown that TCS application enables to decrease aberrant mitoses level in cornea epithelium cells of mice. Antiactinic effect of the above agent is determined by its considerable action on mitotic delay

  13. Diabetic cornea wounds produce significantly weaker electric signals that may contribute to impaired healing

    OpenAIRE

    Yunyun Shen; Trisha Pfluger; Fernando Ferreira; Jiebing Liang; Navedo, Manuel F.; Qunli Zeng; Brian Reid; Min Zhao

    2016-01-01

    Wounds naturally produce electric signals which serve as powerful cues that stimulate and guide cell migration during wound healing. In diabetic patients, impaired wound healing is one of the most challenging complications in diabetes management. A fundamental gap in knowledge is whether diabetic wounds have abnormal electric signaling. Here we used a vibrating probe to demonstrate that diabetic corneas produced significantly weaker wound electric signals than the normal cornea. This was conf...

  14. [The value of methods for morphofunctional analysis of cornea in cataract surgery].

    Science.gov (United States)

    Borodina, N B; Kobzova, M V; Musaeva, G M

    2011-01-01

    The characteristics of morphofunctional status of cornea after extracapsular cataract extraction and phakoemulsification with IOL implantation (30 and 58 operations respectively) were analyzed in detail using up-to-date diagnostic techniques. The results of examination using developed algorithm including study of light transmission, refraction and protective function of cornea show advantage of microinvasive ultrasound technique of cataract surgery in terms of minimal impact on corneal structure, optical and biomechanical characteristics. PMID:22165096

  15. Screening human donor corneas during organ culture for the presence of guttae

    OpenAIRE

    Borderie, V; Sabolic, V.; Touzeau, O.; Scheer, S; Carvajal-Gonzalez, S.; Laroche, L.

    2001-01-01

    AIMS—To detect the presence of guttae by means of light microscopy during organ culture and to evaluate the influence of the presence of guttae in the donor tissue on transplantation outcome.
METHODS—Donor corneas were investigated for the presence of guttae by means of light microscopy at the end of organ culture. Recipient corneal buttons from patients with severe Fuchs' dystrophy and donor corneas with advanced guttae were first studied by light microscopy and subsequently by transmission ...

  16. Intrastromal Injection of China Painting Ink in Corneas of Male Rabbits: Clinical and Histological Study.

    Science.gov (United States)

    Alsmman Hassan, Alahmady Hamad; Abd Elhaliem Soliman, Nesreen Gamal-Eldeen

    2016-01-01

    Background. Many patients with corneal opacity or complicated cataract in blind eye ask for cosmoses. In this study we tried to investigate the staining of corneas of male rabbits by Rotring China painting ink and to study the histological changes. Method. 10 eyes of 10 male Baladi Egyptian rabbits were injected (0.1 mL) intrastromally in the cornea by the use of China painting ink (Rotring Tinta China) through insulin syringe (27-gauge needle) by single injection; clinical follow-up is for 6 months and lastly the rabbits were scarified and the stained eyes were enucleated for histological analysis. Results. Clinically the stain was stable in color and distribution in corneas with no major complications. Histological results of the stained rabbit corneas showed blackish pigmentation in the corneal stroma without any inflammatory cellular infiltration. Some fibroblast cells had pigment granules in their cytoplasm in the adjacent layers. Conclusion. Corneal staining by China painting ink is effective and safe in staining of male rabbits cornea; however further study in human corneas with longer follow-up period is advisable. PMID:27195146

  17. Intrastromal Injection of China Painting Ink in Corneas of Male Rabbits: Clinical and Histological Study

    Directory of Open Access Journals (Sweden)

    Alahmady Hamad Alsmman Hassan

    2016-01-01

    Full Text Available Background. Many patients with corneal opacity or complicated cataract in blind eye ask for cosmoses. In this study we tried to investigate the staining of corneas of male rabbits by Rotring China painting ink and to study the histological changes. Method. 10 eyes of 10 male Baladi Egyptian rabbits were injected (0.1 mL intrastromally in the cornea by the use of China painting ink (Rotring Tinta China through insulin syringe (27-gauge needle by single injection; clinical follow-up is for 6 months and lastly the rabbits were scarified and the stained eyes were enucleated for histological analysis. Results. Clinically the stain was stable in color and distribution in corneas with no major complications. Histological results of the stained rabbit corneas showed blackish pigmentation in the corneal stroma without any inflammatory cellular infiltration. Some fibroblast cells had pigment granules in their cytoplasm in the adjacent layers. Conclusion. Corneal staining by China painting ink is effective and safe in staining of male rabbits cornea; however further study in human corneas with longer follow-up period is advisable.

  18. Use of Fish Scale-Derived BioCornea to Seal Full-Thickness Corneal Perforations in Pig Models.

    Directory of Open Access Journals (Sweden)

    Shih-Cheng Chen

    Full Text Available The aim of this study was to test the use of BioCornea, a fish scale-derived collagen matrix for sealing full-thickness corneal perforations in mini-pigs. Two series of experiments were carried out in 8 Lan-Yu and 3 Göttingen mini-pigs, respectively. A 2mm central full thickness corneal perforation was made with surgical scissors and 2mm trephines. The perforations were sealed immediately by suturing BioCornea to the wounded cornea. The conditions of each patched cornea were followed-up daily for 3 or 4 days. Status of operated eyes was assessed with slit lamp examination or optical coherence tomography (OCT. Animals were sacrificed after the study period and the corneas operated were fixated for histological examination. Both OCT imaging and handheld slit lamp observations indicated that a stable ocular integrity of the perforated corneas was maintained, showing no leakage of aqueous humor, normal depth of anterior chamber and only mild swelling of the wounded cornea. Hematoxylin and eosin staining of the patched cornea showed no epithelial ingrowths to the perforated wounds and no severe leucocyte infiltration of the stroma. The fish scale-derived BioCornea is capable to seal full-thickness corneal perforation and stabilize the integrity of ocular anterior chamber in pre-clinic mini-pig models. BioCornea seems to be a safe and effective alternative for emergency treatment of corneal perforations.

  19. Polymicrobial Infection of the Cornea Due to Contact Lens Wear

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2016-04-01

    Full Text Available A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive for Pseudomonas aeruginosa; cultures from the contact lenses, lens solution and storage case of both eyes revealed Pseudomonas aeruginosa and Alcaligenes xylosoxidans. Polymerase chain reaction of the corneal scraping was positive for Acanthameoba. The topical antibiotics were changed with ones that both bacteria were sensitive to and anti-amoebic therapy was added. The patient had two recurrences following initial presentation despite intensive therapy. Keratitis occurred due to multiple pathogens; the relapsing course despite adequate therapy is potentially associated with this polymicrobial etiology.

  20. Collagen cross-linking: Strengthening the unstable cornea

    Directory of Open Access Journals (Sweden)

    Oren Tomkins

    2008-05-01

    Full Text Available Oren Tomkins, Hanna J GarzoziDepartment of Ophthalmology, Bnai Zion Medical Center, Haifa, IsraelAbstract: Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen crosslinking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls.Keywords: corneal cross-linking, corneal ectasia, keratoconus, stroma, cornea

  1. Cloudy corneas as an initial presentation of multiple myeloma

    Directory of Open Access Journals (Sweden)

    Sharma P

    2014-04-01

    Full Text Available Priyanka Sharma,1 Haifa A Madi,1 Richard Bonshek,2 Stephen J Morgan11Sunderland Eye Infirmary, Sunderland, UK; 2National Specialist Ophthalmic Pathology Service, Department of Histopathology, Manchester Royal Infirmary, Manchester, UKSummary: We report a case of previously unsuspected myeloma, presenting with cornea verticillata due to intracorneal paraprotein deposition.History: An 85-year-old female presented via her optician with a 4-month history of cloudy vision. She had undergone an uneventful bilateral phacoemulsification surgery 7 years earlier. Extensive spiraling corneal epithelial opacification was noted on slit-lamp examination. On further investigation, she was found to have a previously unsuspected low-grade multiple myeloma. We established the nature of the corneal deposits with corneal epithelial biopsy histopathology and electron microscopy. It is very rare for multiple myeloma to present in this fashion. Ophthalmologists should be aware that such a presentation may rarely be due to systemic multiple myeloma.Keywords: corneal crystals, multiple myeloma, crystalline keratopathy, vortex keratopathy

  2. Temperature control during diode laser welding in a human cornea

    Science.gov (United States)

    Rossi, Francesca; Matteini, Paolo; Pini, Roberto; Menabuoni, Luca

    2007-07-01

    Diode laser welding is a technique proposed in ophthalmic surgery to induce immediate sealing of clear corneal wounds. The welding effect is achieved irradiating the area, previously treated with a chromophore, by the use of a low power diode laser: the resulting thermal effect induces structural modifications in the stromal collagen, that welds upon cooling. We present a study on the temperature dynamics developing during welding in a human eye. An infrared thermocamera was used to measure the temperature variations on the surface of the cornea during clinical penetrating keratoplasty (corneal transplant). The experimental data were used as a starting point for a theoretical investigation of the temperature rising inside the ocular structures: we developed a mathematical model based on the bio-heat equation and solved by the use of the Finite Element Method (FEM). The predictive accuracy was verified by comparing the temperature post-processing description with the results obtained from the thermographic data. The model was then used to study the temperature rise and heat propagation inside the eye. Experimental results and model analysis indicated the occurrence of heat confinement during the treatment procedure and a modest enhancement of the temperature (reaching about 55°C inside the laser treated wound), thus evidencing the safety of the procedure in clinical applications.

  3. Micro-structural reliability design of brittle materials

    Czech Academy of Sciences Publication Activity Database

    Strnadel, B.; Byczanski, Petr

    2007-01-01

    Roč. 74, č. 11 (2007), s. 1825-1836. ISSN 0013-7944 R&D Projects: GA ČR(CZ) GA106/06/0646 Institutional research plan: CEZ:AV0Z30860518 Keywords : Cleavage strength * Brittle fracture * Fracture toughness Subject RIV: JJ - Other Materials Impact factor: 1.227, year: 2007 www.elsevier.com/locate/engfracmech

  4. Hugoniot elastic limits and compression parameters for brittle materials

    International Nuclear Information System (INIS)

    The physical properties of brittle materials are of interest because of the rapidly expanding use of these material in high-pressure and shock wave techology, e.g., geophysics and explosive compaction as well as military applications. These materials are characterized by unusually high sonic velocities, have large dynamic impedances and exhibit large dynamic yield strengths

  5. Scaling properties of crack branching and brittle fragmentation

    Directory of Open Access Journals (Sweden)

    Uvarov S.

    2011-01-01

    Full Text Available The present study is focused on the correlation of scaling properties of crack branching and brittle fragmentation with damage accumulation and a change in the fracture mechanism. The experimental results obtained from the glass fragmentation tests indicate that the size distribution of fragments has a fractal character and is described by a power law.

  6. Microscopic characteristics of different fracture modes of brittle rock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three types of rock specimens, three-point bending specimen, anti-symmetric four-point bending specimen and direct shearing specimen, were used to achieve Mode Ⅰ , Mode Ⅱ and mixed mode Ⅰ - Ⅱ fracture, respectively . Microscopic characteristics of the three fracture modes of brittle rock were studied by SEM technique in order to analyze fracture behaviors and better understand fracture mechanisms of different fracture modes of brittle rock. Test results show that the microscopic characteristics of different fracture modes correspond to different fracture mechanisms. The surface of Mode Ⅰ fracture has a great number of sparse and steep slip-steps with few tearing ridges and shows strong brittleness. In the surface of Mode Ⅱ fracture there exist many tearing ridges and densely distributed parallel slip-steps and it is attributed to the action of shear stress.The co-action of tensile and shear stresses results in brittle cleavage planes mixed with streamline patterns and tearing ridges in the surface of mixed mode Ⅰ - Ⅱ fracture. The measured Mode Ⅱ fracture toughness K Ⅱ c and mixed mode Ⅰ -Ⅱ fracture toughness Kmc are larger than Mode Ⅰ fracture toughness KⅠc. KⅡc is about 3.5times KI c, and KmC is about 1.2 times K Ⅰ c.

  7. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi

  8. Dislocation dynamics modelling of the ductile-brittle-transition

    Energy Technology Data Exchange (ETDEWEB)

    Hennecke, Thomas; Haehner, Peter, E-mail: thomas.hennecke@tu-bs.de, E-mail: peter.haehner@jrc.nl [European Commission, DG Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2009-07-15

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  9. Evaluation of the shape symmetry of bilateral normal corneas in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Fangjun Bao

    Full Text Available PURPOSE: To investigate the bilateral symmetry of the global corneal topography in normal corneas with a wide range of curvature, astigmatism and thickness values. DESIGN: Cross-Sectional Study. METHODS: Topography images were recorded for the anterior and posterior surfaces of 342 participants using a Pentacam. Elevation data were fitted to a general quadratic model that considered both translational and rotational displacements. Comparisons between fellow corneas of estimates of corneal shape parameters (elevation, radius in two main directions, Rx and Ry, and corresponding shape factors, Qx and Qy and corneal position parameters (translational displacements: x0, y0 and z0, and rotational displacements: α, β and γ were statistically analyzed. RESULTS: The general quadratic model provided average RMS of fit errors with the topography data of 1.7±0.6 µm and 5.7±1.3 µm in anterior and posterior corneal surfaces. The comparisons showed highly significant bilateral correlations with the differences between fellow corneas in Rx, Ry, Qx and Qy of anterior and posterior surfaces remaining insignificantly different from zero. Bilateral differences in elevation measurements at randomly-selected points in both corneal central and peripheral areas indicated strong mirror symmetry between fellow corneas. The mean geometric center (x0, y0, z0 of both right and left corneas was located on the temporal side and inferior-temporal side of the apex in anterior and posterior topography map, respectively. Rotational displacement angle α along X axis had similar distributions in bilateral corneas, while rotation angle β along Y axis showed both eyes tilting towards the nasal side. Further, rotation angle γ along Z axis, which is related to corneal astigmatism, showed clear mirror symmetry. CONCLUSIONS: Analysis of corneal topography demonstrated strong and statistically-significant mirror symmetry between bilateral corneas. This characteristic could help

  10. Effect of epithelial debridement on human cornea proteoglycans

    Directory of Open Access Journals (Sweden)

    Soriano E.S.

    2001-01-01

    Full Text Available Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each. Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.

  11. Trasplante de córnea Cornea transplant

    Directory of Open Access Journals (Sweden)

    A. Garralda

    2006-08-01

    Full Text Available La queratoplastia o trasplante de córnea es una de las técnicas quirúrgicas más antiguas de la oftalmología cuyas indicaciones son: 1 tectónicas, para preservar la anatomía e integridad corneal, 2 clínicas, para eliminar el tejido corneal inflamado en casos refractarios al tratamiento médico, 3 ópticas, para mejorar la agudeza visual y 4 cosméticas para mejorar el aspecto del ojo. El perfeccionamiento en la técnica y en el instrumental, así como en el tratamiento postoperatorio y en los medios de conservación del tejido donante han mejorado la supervivencia de los injertos realizados. El Modelo Pamplona de coordinación de trasplantes del Hospital Virgen del Camino (HVC está considerado como original y único en España, y en la logística de este programa se incluye el protocolo de detección y extracción de córneas así como el de queratoplastias.The keratoplasty, or corena transplant, is one of the oldest surgical techniques in opthalmology, whose indication are: 1 tectonic, in order to preserve corneal anatomy and integrity; 2 clinical, in order to eliminate the inflamed corneal tissue in cases refractory to medical treatment; 3 optical, in order to improve visual acuity; and 4 cosmetic, in order to improve the appearance of the eye. Improvements in technique and instruments, as well as in post-operative treatment and the means of preserving donated tissue, have improved survival of the grafts. The Pamplona Model of transplant coordination of the Virgen del Camino Hospital is considered to be original and unique in Spain. The logistics of this program include the protocol for detection and extraction of corneas as well as for keratoplasties.

  12. Brittle-to-ductile transition temperature in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bayu-Aji, Leonardus B. [School of Education, Universitas Pelita Harapan, M. H. Thamrin Boulevard, 15811 Tangerang (Indonesia); Pirouz, P. [Department of Materials Science and Engineering, Case Western Reserve University, 44106 Cleveland, Ohio (United States)

    2010-05-15

    Deformation experiments were conducted on monocrystalline InP by 4-point bend tests as well as by conventional and depth-sensing indentation (DSI) tests. Temperature ranges where the material exhibited a brittle or a ductile behavior were investigated with particular focus on the transition from one deformation mode to the other. The 4-point bend tests show that InP exhibits a sharp brittle-to-ductile transition (BDT) temperature within 5 between 350 and 355 C at a strain rate of 2.9 x 10{sup -5} s{sup -1}. The indentation BDT (IBDT) temperature is found to be significantly lower at {proportional_to}250 C. The difference of nearly 100 C between the two techniques is attributed to the hydrostatic component of the indentation stress field that suppresses fracture and shifts the transition to a lower temperature. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Potential of carnuba wax in ameliorating brittle fracture during tableting.

    Science.gov (United States)

    Uhumwangho, M U; Okor, R S; Adogah, J T

    2009-01-01

    Carnuba wax (as binder) forms hard tablets even at low compression load attributable to its high plasticity. The aim of the present study is to investigate its potential in ameliorating brittle fracture (i.e., lamination and capping) a problem often encountered during tableting. Granules of paracetamol (test drug) were made by triturating the drug powder with the melted wax or starch mucilage (20%w/v). Resulting granules were separated into different size fractions which were separately compressed into tablets with and without a centre hole (as in- built defect) using different compression loads. The tablets were evaluated for tensile strength and the data used to calculate the brittle fracture index (BFI), using the expression: BFI = 0.5(T/T(0)-1) where T0 and T are the tensile strength of tablets with and without a centre hole respectively. The BFI values were significantly lower (pload further ameliorated the brittle fracture tendency of the tablets. Using granules with the larger particle size (850microm) and applying the lowest unit of load (6 arbitrary unit on the load scale of the tableting machine) the BFI values were 0.03 (carnuba wax tablets) and 0.11 (maize starch tablets). When the conditions were reversed (i.e., a highest load, 8 units and the smallest particle size, 212microm) the BFI values now became 0.17 (carnuba wax tablets) and 0.26 (maize starch tablets). The indication is that the use of large granules and low compression loads to form tablets can further enhance the potential of carnuba wax in ameliorating brittle fracture tendency of tablets during their manufacture. PMID:19168422

  14. Constraint Effects at Brittle Fracture Initiation in Cast Ferritic Steel

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk; Kozák, Vladislav

    Ženeva : Hoggar, 2001, s. 245-250. ISBN 2-940130-14-0. [International Conference on Fracture and Damage Mechanics 2001. Miláno (IT), 18.09.2001-20.09.2001] R&D Projects: GA ČR GV101/96/K264; GA MŠk ME 303 Institutional research plan: CEZ:AV0Z2041904 Keywords : crack tip constraint * Q-parameter * brittle fracture Subject RIV: JG - Metallurgy

  15. Diabetic cornea wounds produce significantly weaker electric signals that may contribute to impaired healing.

    Science.gov (United States)

    Shen, Yunyun; Pfluger, Trisha; Ferreira, Fernando; Liang, Jiebing; Navedo, Manuel F; Zeng, Qunli; Reid, Brian; Zhao, Min

    2016-01-01

    Wounds naturally produce electric signals which serve as powerful cues that stimulate and guide cell migration during wound healing. In diabetic patients, impaired wound healing is one of the most challenging complications in diabetes management. A fundamental gap in knowledge is whether diabetic wounds have abnormal electric signaling. Here we used a vibrating probe to demonstrate that diabetic corneas produced significantly weaker wound electric signals than the normal cornea. This was confirmed in three independent animal models of diabetes: db/db, streptozotocin-induced and mice fed a high-fat diet. Spatial measurements illustrated that diabetic cornea wound currents at the wound edge but not wound center were significantly weaker than normal. Time lapse measurements revealed that the electric currents at diabetic corneas lost the normal rising and plateau phases. The abnormal electric signals correlated significantly with impaired wound healing. Immunostaining suggested lower expression of chloride channel 2 and cystic fibrosis transmembrane regulator in diabetic corneal epithelium. Acute high glucose exposure significantly (albeit moderately) reduced electrotaxis of human corneal epithelial cells in vitro, but did not affect the electric currents at cornea wounds. These data suggest that weaker wound electric signals and impaired electrotaxis may contribute to the impaired wound healing in diabetes. PMID:27283241

  16. Guidelines for safe design of shipping packages against brittle fracture

    International Nuclear Information System (INIS)

    In 1992, the ninth meeting of the Standing Advisory Group on the Safe Transport of Radioactive Materials recommended the publication of this TECDOC in an effort to promote the widest debate on the criteria for the brittle fracture safe design of transport packages. The published IAEA advice on the influence of brittle fracture on material integrity is contained in Appendix IX of the Advisory Material for the IAEA Regulations for the Safety Transport of Radioactive Material (1985 Edition, as amended 1990), Safety Series No. 37. This guidance is limited in scope, dealing only with ferritic steels in general terms. It is becoming more common for designers to specify materials other than austenitic stainless steel for packaging components. The data on ferritic steels cannot be assumed to apply to other metals, hence the need for further guidance on the development of relationships describing material properties at low temperatures. The methods described in this TECDOC will be considered by the Revision Panel for inclusion in the 1996 Edition of the IAEA Regulations for the Safe Transport of Radioactive Material and the supporting documents. If accepted by the Revision Panel, this advice will be a candidate for upgrading to a Safety Practice. In the interim period, this TECDOC offers provisional advice on brittle fracture evaluation. It is acknowledged that, at this stage, the views expressed do not necessarily reflect those of the governments of Member States or organizations under whose auspices this manuscript was produced. Refs and figs

  17. Bilateral cloudy cornea: is the usual suspect congenital hereditary endothelial dystrophy or stromal dystrophy?

    Science.gov (United States)

    Acar, Banu Torun; Bozkurt, Kansu Tahir; Duman, Erkan; Acar, Suphi

    2016-01-01

    We provide the diagnosis, treatment and follow-up period of a patient with cloudy cornea in both eyes from birth. A 4-year-old girl presented with blurring in both eyes. Penetrating keratoplasty (PK) was performed with the preliminary diagnosis of congenital hereditary endothelial dystrophy in June 2012. According to the pathology report for extracted host tissue, the Descemet's membrane (DM) and endothelium were healthy and diagnosis was reported to be congenital hereditary stromal dystrophy. Deep anterior lamellar keratoplasty was performed on the left eye. The DM was transparent at follow-up. Cornea transplantation is the only choice to provide visual rehabilitation in children with congenital cloudy cornea. However, it is known that the prognosis of traditional PK in the paediatric age group is not good. Therefore, when using alternative keratoplasty (deep anterior lamellar keratoplasty, Descemet's stripping automated endothelial keratoplasty) options, pathological examination of the host tissue should be made. PMID:27107055

  18. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo

    International Nuclear Information System (INIS)

    We demonstrate the use of phase-stabilized swept source optical coherence elastography (PhS-SSOCE) to assess the relaxation rate of deformation created by a focused air-pulse in tissue-mimicking gelatin phantoms of various concentrations and mouse corneas of different ages in vivo. The results show that the relaxation rate can be quantified and is different for gels with varying concentrations of gelatin and mouse corneas of different ages. The results indicate that gel phantoms with higher concentrations of gelatin as well as older mouse corneas have faster relaxation rates indicating stiffer material. This non-contact and non-invasive measurement technique utilizes low surface displacement amplitude (in µm scale) for tissue excitation and, therefore, can be potentially used to study the biomechanical properties of ocular and other sensitive tissues. (letter)

  19. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  20. Model of Mass and Heat Transfer during Vacuum Freeze-Drying for Cornea

    OpenAIRE

    Zou Huifen; Ye Sheng; Wang Dexi; Li Huixing; Cao Xiaozhen; Yan Lijun

    2012-01-01

    Cornea is the important apparatus of organism, which has complex cell structure. Heat and mass transfer and thermal parameters during vacuum freeze-drying of keeping corneal activity are studied. The freeze-drying cornea experiments were operated in the homemade vacuum freeze dryer. Pressure of the freeze-drying box was about 50 Pa and temperature was about −10°C by controlled, and operating like this could guarantee survival ratio of the corneal endothelium over the grafting normal. Theory a...

  1. Biochemistry of pro-oxidant and anti-oxidant enzymes in the rabbit cornea irradiated with UVB rays

    Czech Academy of Sciences Publication Activity Database

    Štípek, S.; Čejková, Jitka; Ardan, Taras; Crkovská, J.; Bhuiyan, F.; Andonová, Žaneta; Midelfart, A.

    Prague : organising committee, 2002. s. 34. [International Symposium on Cornea and Contact Lenses .. 07.12.2002-10.12.2002, Prague] R&D Projects: GA ČR GA304/96/0908; GA ČR GA304/00/1635 Institutional research plan: CEZ:MSM 111100001 Keywords : cornea Subject RIV: FF - HEENT, Dentistry

  2. Ductile-to-brittle transition in a low alloy steel

    International Nuclear Information System (INIS)

    The mechanical properties of pressure vessel steel (and above all its resistance to brittle fracture) are a decisive factor in the complex safety assessment of nuclear power plants. The monitoring of neutron induced embrittlement is provided using Charpy impact tests on standard V-notch specimens due to their small size. Material's ductile-to-brittle transition temperature (DBTT) can be easily characterised using this test. However, Charpy impact energy cannot be immediately used for safety assessment, since fracture toughness is required. Some empirical formulas have been developed, but no direct relationship was still found. When the specimens are tested in the ductile-to-brittle transition region, cleavage crack initiation is preceded by ductile crack growth giving a large scatter to the values of fracture toughness and/or Charpy impact energy. Even if the cleavage initiation and propagation in steels containing isolated spheroidic carbides are qualitatively well understood, no one from existing models can explain the sharp upturn in ductile-to-brittle transition region. In the present work, French tempered bainitic steel 16MND5 (considered as equivalent to the American standard A508 Cl.3) is studied: The large fractographic analysis of CT and Charpy specimens broken in the DBTT range is undertaken to account for the evolution of cleavage fracture mechanisms. In addition to classical scanning electron microscopy, transmission electron microscopy and EBSD technique are used in order to study the propagation of cleavage crack. The classical fracture mechanics using KIc or Jc concepts can hardly describe the unstable brittle fracture in the DBTT range. Hence, the local approach, which aims to predict the fracture of any structural component using local criteria, providing that the mechanical fields in the structure are known, is used. The probability of cleavage fracture in the DBTT range is predicted using the Beremin model based on weakest link theory, e.g. 2

  3. Cold brittleness of commercial iron-manganese alloys

    International Nuclear Information System (INIS)

    Using dilatometric, roentgenographic and metallographic methods the structure of Fe-(2-54%) Mn commercial alloys is studied. A phase diagram and a diagram of direct and reverse martensite transformations are plotted. It is found that the maximum quantity of E-martensite is formed in an alloy with 16% Mn. The alloy purity decrease leads to increasing the cold brittleness threshold and decreasing impact strength of all Fe-Mn alloys. Commercial alloys with the optimum manganese content (22-25%) are recommended for operation at cryogenic temperatures down to -160 deg C

  4. Crosslinked collagen-gelatin-hyaluronic acid biomimetic film for cornea tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Ren, Li, E-mail: psliren@scut.edu.cn; Wang, Yingjun, E-mail: imwangyj@163.com

    2013-01-01

    Cornea disease may lead to blindness and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents the crosslinked collagen (Col)-gelatin (Gel)-hyaluronic acid (HA) films developed by making use of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as the crosslinker. The test results on the physical and biological properties indicate that the CGH631 film (the mass ratio of Col:Gel:HA = 6:3:1) has appropriate optical performance, hydrophilicity and mechanical properties. The diffusion properties of the CGH631 film to NaCl and tryptophan are also satisfactory and the measured data are 2.43 Multiplication-Sign 10{sup -6} cm{sup 2}/s and 7.97 Multiplication-Sign 10{sup -7} cm{sup 2}/s, respectively. In addition, cell viability studies demonstrate that the CGH631 film has good biocompatibility, on which human corneal epithelial cells attached and proliferated well. This biocompatible film may have potential use in cornea tissue engineering. - Highlights: Black-Right-Pointing-Pointer Crosslinked collagen-gelatin-hyaluronic acid films were fabricated in this study. Black-Right-Pointing-Pointer The film had appropriate physical properties. Black-Right-Pointing-Pointer Diffusion coefficient of the film was comparable with the human cornea. Black-Right-Pointing-Pointer HCEC viability studies confirmed the biocompatibility of the film.

  5. Crosslinked collagen–gelatin–hyaluronic acid biomimetic film for cornea tissue engineering applications

    International Nuclear Information System (INIS)

    Cornea disease may lead to blindness and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents the crosslinked collagen (Col)–gelatin (Gel)–hyaluronic acid (HA) films developed by making use of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as the crosslinker. The test results on the physical and biological properties indicate that the CGH631 film (the mass ratio of Col:Gel:HA = 6:3:1) has appropriate optical performance, hydrophilicity and mechanical properties. The diffusion properties of the CGH631 film to NaCl and tryptophan are also satisfactory and the measured data are 2.43 × 10−6 cm2/s and 7.97 × 10−7 cm2/s, respectively. In addition, cell viability studies demonstrate that the CGH631 film has good biocompatibility, on which human corneal epithelial cells attached and proliferated well. This biocompatible film may have potential use in cornea tissue engineering. - Highlights: ► Crosslinked collagen–gelatin–hyaluronic acid films were fabricated in this study. ► The film had appropriate physical properties. ► Diffusion coefficient of the film was comparable with the human cornea. ► HCEC viability studies confirmed the biocompatibility of the film.

  6. Pathways and Mechanisms Underlying the Photophysics and Photochemistry of Riboflavin induced cornea crosslinking

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen

    In this talk, we will describe general pathways involved in the photophysics of a photosensitized process, which can lead to crosslinking due to light excitation of Riboflavin in the cornea. Furthermore, we will elucidate different aspects of reactions that can produce crosslinks, with respect to...

  7. Eye evolution: lens and cornea as an upgrade of animal visual system

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Kristýna; Kozmik, Zbyněk

    2008-01-01

    Roč. 19, č. 2 (2008), s. 71-81. ISSN 1084-9521 R&D Projects: GA AV ČR IAA500520604; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : eye * lens * cornea Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.528, year: 2008

  8. A structural model for the in vivo human cornea including collagen-swelling interaction.

    Science.gov (United States)

    Cheng, Xi; Petsche, Steven J; Pinsky, Peter M

    2015-08-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  9. Spectroscopic measurements and terahertz imaging of the cornea using a rapid scanning terahertz time domain spectrometer

    Science.gov (United States)

    Wen-Quan, Liu; Yuan-Fu, Lu; Guo-Hua, Jiao; Xian-Feng, Chen; Zhi-Sheng, Zhou; Rong-Bin, She; Jin-Ying, Li; Si-Hai, Chen; Yu-Ming, Dong; Jian-Cheng, Lv

    2016-06-01

    Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy (THz-TDS) system. A voice coil motor stage based optical delay line (VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length. The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content, and the measurement results show the consistence with the reported results, in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line (MDL). With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed. The two-term Debye relaxation model is employed to explain our experimental results, revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules. These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology. Project supported by the National Natural Science Foundation of China (Grant No. 61205101), the Shenzhen Municipal Research Foundation, China (Grant Nos. GJHZ201404171134305 and JCYJ20140417113130693), and the Marie Curie Actions-International Research Staff Exchange Scheme (IRSES) (Grant No. FP7 PIRSES-2013-612267).

  10. Pretreatment methods to improve nerve immunostaining in corneas from long-term fixed embryonic quail eyes

    Science.gov (United States)

    Barrett, J. E.; Wells, D. C.; Conrad, G. W.

    1999-01-01

    Pretreatment methods were used to improve neurofilament immunostaining in corneas from embryonic day 16 Japanese quail corneas that had been stored in fixative solution for several months. A sequential combination of the following three pretreatments: brief microwave heating in saline, followed by extraction with sodium dodecyl sulfate (SDS) at 37 degrees C, followed by digestion with hyaluronidase at 37 degrees C, produced significantly increased antibody staining of corneal neurofilament proteins, compared with embryonic corneas subjected to no prior pretreatments or to single or two-step protocols. After applying the sequence of all three pretreatments, darkest nerve staining and increased numbers of fine branches were observed, together with lower background staining. Thus, the result of applying the three-step pretreatment sequence is better than that of applying any of its component single pretreatments or even combinations of any two of them. These findings therefore suggest that each of these three pretreatments causes a unique effect, beneficial to immunostaining of neurofilament proteins, and that their individual effects are independent and additive. In addition to embryonic corneas, the three-step procedure also may be useful for immunostaining of nerves in other very delicate, highly-hydrated tissues containing an abundance of extracellular matrix.

  11. Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure.

    Science.gov (United States)

    Benoit, Aurélie; Latour, Gaël; Marie-Claire, Schanne-Klein; Allain, Jean-Marc

    2016-07-01

    The cornea, through its shape, is the main contributor to the eye׳s focusing power. Pathological alterations of the cornea strongly affect the eye power. To improve treatments, complex biomechanical models have been developed based on the architecture and mechanical properties of the collagen network in the stroma, the main layer of the cornea. However, direct investigations of the structure of the stroma, as well as its link to the mechanical response, remained limited. We propose here an original set up, associating nonlinear optical imaging and mechanical testing. By using polarization resolved Second Harmonic signals, we simultaneously quantified micrometer (orientation of the collagen lamellae) and nanometer (local disorder within lamellae) scale corneal organization. We showed that the organization of the lamellae changes along the stroma thickness. Then, we measured simultaneously the deformation on the epithelial side of the cornea and the reorientation of the collagen lamellae for increasing intraocular pressure levels, from physiological ones to pathological ones. We showed that the observed deformation is not correlated to initial orientation, but to the reorganization of the lamellae in the stroma. Our results, by providing a direct multi-scale observation, will be useful for the development of more accurate biomechanical models. PMID:26773650

  12. Shape of the anterior cornea : Comparison of height data from 4 corneal topographers

    NARCIS (Netherlands)

    de Jong, Tim; Sheehan, Matthew T.; Dubbelman, Michiel; Koopmans, Steven A.; Jansonius, Nomdo M.

    2013-01-01

    PURPOSE: To compare the ability of clinical corneal topographers to describe the shape of the anterior cornea for optical modeling. SETTING: University Medical Center Groningen, Groningen, Netherlands. DESIGN: Cross-sectional study. METHODS: The anterior corneal shape of healthy subjects was assesse

  13. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  14. Reparative regeneration of cornea at nanostructured biopolymer of hyaluronic acid application

    Directory of Open Access Journals (Sweden)

    V.N. Kanyukov

    2014-04-01

    Full Text Available ABSTRACT Purpose. Estimation of corneal reparative regeneration processes course at application of bioplastic material – nanostructured biopolymer of hyaluronic acid on the model of chemical (alkaline and acid cornea burn. Material and methods. Experimental modeling of cornea chemical burn was carried out on 36 rabbits (72 eyes. The study had two series of cornea burn: alkaline (18 rabbits – 36 eyes and acid (18 rabbits – 36 eyes corneal burns. In each of the series there was identified: an experimental group, which used the applique of bioplastic material «hyamatrix» according to the method of prof. V.N. Kanyukov and control one with Solcoseryl instillations. The clinical study included an examination of the eye anterior segment using the focus and side lighting and photographic recording. At the of period of 3, 7, 14, 30 and 90 days the animals were removed from the experiment for the light-optical, immunocytochemistry and electron microscopy studies. Results. At conducting «hyamatrix» application conjunctiva edema and injection, corneal edema were reversed faster that reduced neovascularization risk in the outcome of corneal alkaline burn. Morphological studies at different periods of the experiment made it possible to determine the sequence of processes from the moment of cornea chemical burns application until the completion of its restoration, which were different in the experimental and control groups. Symptoms of toxic effect of the damaged cells decay products were determined morphologically. Endothelial cells remained intact. The use of «hyamatrix» application allowed reducing the recovery time with the improvement of cornea reparative processes. Conclusion. 1. Application of bioplastic material to the cornea in the early stages of cornea injuries treatment (alkaline and acid burn reduces the severity of edema and hyperemia, and as a result reduces the exudative phase of inflammation. 2. As a result of clinical and

  15. Coexistence of ductile and brittle fracture in metals

    International Nuclear Information System (INIS)

    It is well known that semibrittle body-centered cubic (bcc) metals fail at low temperatures by cleavage that is preceded by crack tip deformation. Sinclair and Finnis proposed a mechanism by which crack tip deformation may be combined with brittle crack extension. In this model, edge dislocations are emitted from a crack tip on an inclined plane under pure mode I loading conditions. The authors propose a new mechanism of brittle fracture of semibrittle metals preceded by crack tip deformation by extending the model of Sinclair and Finnis and by incorporating experimental evidence on mixed mode crack propagation observed by transmission electron microscopy (TEM). They have shown experimentally that, even when the orientation of the dislocations in the plastic zone indicated pure mode III crack tip deformation, the crack opening displacement determined from the relative displacement of the crack flanks showed the presence of an additional mode I component. They have also shown that zigzag crack propagation observed in many metals can occur only if mode I cleavage is superimposed to mode II crack tip deformation

  16. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author)

  17. How plasticizer makes a ductile polymer glass brittle?

    Science.gov (United States)

    Zhao, Yue; Li, Xiaoxiao; Wang, Shi-Qing

    During uniaxial extension, a polymer glass of high molecular weight is ductile at high temperatures (still below Tg) and turns brittle when the temperature is sufficiently lowered. Incorporation of small-molecular additives to polymer glasses can speed up segmental relaxation considerably. The effect of such plasticization should be to make the polymers more ductile. We examined the effect of blending a few weight percent of either triphenyl phosphate (TPP) or a mineral oil to a commercial-grade PS and PMMA. Our Instron tests show that the plasticized PS is less ductile. Specifically, at 70 oC, the original PS is ductile at an extensional rate of 0.02 s-1 whereas the PS with 4 wt. % TPP turns brittle. Mechanical spectroscopic measurements show that the alpha relaxation time is shortened by more than two orders of magnitude with 4 wt. % TPP. On the other hand, such anomalous behavior did not occur in PMMA. We need to go beyond the conventional description to rationalize these results This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859).

  18. Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials

    Directory of Open Access Journals (Sweden)

    Xiaodan Ren

    2013-07-01

    Full Text Available Brittle materials such as rock and ceramic usually exhibit apparent increases of strength and toughness when subjected to dynamic loading. The reasons for this phenomenon are not yet well understood, although a number of hypotheses have been proposed. Based on dynamic fracture mechanics, the present work offers an alternate insight into the dynamic behaviors of brittle materials. Firstly, a single crack subjected to stress wave excitations is investigated to obtain the dynamic crack-tip stress field and the dynamic stress intensity factor. Second, based on the analysis of dynamic stress intensity factor, the fracture initiation sizes and crack size distribution under different loading rates are obtained, and the power law with the exponent of −2/3 is derived to describe the fracture initiation size. Third, with the help of the energy balance concept, the dynamic increase of material strength is directly derived based on the proposed multiple crack evolving criterion. Finally, the model prediction is compared with the dynamic impact experiments, and the model results agree well with the experimentally measured dynamic increasing factor (DIF.

  19. Large strain bulk deformation and brittle tough transitions in polyethylenes

    CERN Document Server

    Hillmansen, S

    2001-01-01

    Some tough, crystalline polymers can fail by fast brittle fracture. This thesis explores the role of ductile 'shear lips', which form at the fracture surface verges, in brittle-tough transitions. A new laboratory method was used to isolate this region, and to test its ability to draw rapidly, in polyethylenes. The test uses a conventional Charpy type specimen that is deeply notched and impact loaded in three-point bending by a single striker. The ligament, rapidly loaded in almost pure tension, first yields, and then necks down until failure. Initial results are encouraging and correlate well with the in-service performance. A fundamental study of large strain deformation, that avoids the complexity associated with impact tests, was then conducted with the aim of isolating the dominating influences that furnish a polymer with the ability to sustain rapid large strain deformation. True stress vs. true strain curves have been interpreted using the one dimensional spring dashpot model of Haward and Thackray (H-T...

  20. Interfacial sliding in fibrous brittle-matrix composites

    Science.gov (United States)

    Miles, Herbert Frederick, II

    Ceramic materials have desirable characteristics for use in high temperature applications, but due to their brittle nature they were avoided until the recent advent of ceramic matrix composites (CMCs) in which ceramic fibers are inserted into a ceramic matrix to toughen the material by retarding crack growth. This work investigates the role of sliding at interfaces in making brittle matrix composites (BMCs) more crack resistant. A two-dimensional study investigates the effects of roughness, toughness, and friction on the fracture behavior of BMCs. This study was then expanded to an axisymmetric study of a fiber engulfed by a crack. The results indicate that there are significant interaction effects between friction and the other parameters. To achieve 'long' sliding lengths, the magnitude of the interfacial critical energy release rate must be significantly less than the magnitude required to ensure crack deflection. The study then investigates the three-dimensional nature of a crack as it flows past a fiber. A computational analysis is performed to determine the crack propagation angle at a frictional interface. The computational results show good agreement with a novel experimental analysis using modified DCDC specimens. The experiments show, in real time, the propagation of a crack which is perpendicular to and intersects a frictional interface.

  1. The initiation of brittle faults in crystalline rock

    Science.gov (United States)

    Crider, Juliet G.

    2015-08-01

    Faults in the upper crust initiate from pre-existing (inherited) or precursory (early-formed) structures and typically grow by the mechanical interaction and linkage of these structures. In crystalline rock, rock architecture, composition, cooling, and exhumation influence the initiation of faults, with contrasting styles observed in plutonic rocks, extrusive igneous rocks, and foliated metamorphic rocks. Brittle fault growth in granitic rock is commonly controlled by the architecture of inherited joints or preexisting dikes. In basalt, abundant joints control the surface expression of faulting, and enhanced compliance due to abundant joints leads to folding and deformation asymmetry in the fault zone. Highly reactive mafic minerals likely become rapidly evolving fault rocks. In foliated metamorphic rocks, fault initiation style is strongly influenced by strength anisotropy relative to the principal stress directions, with fracturing favored when the foliation is aligned with the directions of principal stress. The continuity of micas within the foliation also influences the micromechanics of fault initiation. Brittle kink bands are an example of a strain-hardening precursory structure unique to foliated rock. Each of these fault initiation processes produces different initial fault geometry and spatial heterogeneity that influence such properties as fault permeability and seismogenesis.

  2. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway

    OpenAIRE

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Background: Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. Methods: To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of poly...

  3. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk; Adam Lejwoda; Przemyslaw Cieszkowski; Przemyslaw Libuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqvist's method for measurement of coating susceptibility to brittle cracking.

  4. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk; AdamLejwoda; PrzemyslawCieszkowski; PrzemyslawLibuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqyist's method for measurement of coating susceptibility to brittle cracking.

  5. Low-dose radiation effects on the evolution of chronic dystrophical processes in cornea and clouding of crystalline lens

    International Nuclear Information System (INIS)

    Low-dose radiation effects on the course of chronic dystrophical processes in cornea and the dynamics of crystalline lens clouding of involution age genesis are investigated in the patients participated in Chernobyl accident response. Examples of the concrete pathological cases are considered. It was stated that the above dose effects led to exacerbation of the chronic slack dystrophical processes in cornea and intensification of the development of cornea primary dystrophy. In a number of cases the intensification of development of crystalline lens clouding takes place resulted in the cataract for 2-3 years

  6. Transfer of mesenchymal stem cells and cyclosporine A on alkali-injured rabbit cornea using nanofiber scaffolds strongly reduces corneal neovascularization and scar formation.

    Science.gov (United States)

    Cejka, Cestmir; Cejkova, Jitka; Trosan, Peter; Zajicova, Alena; Sykova, Eva; Holan, Vladimir

    2016-09-01

    The aim of this study was to examine whether nanofiber scaffolds seeded with rabbit bone marrow mesenchymal stem cells (MSCs nanofibers) transferred onto the damaged corneal surface and covered with cyclosporine A (CsA)-loaded nanofiber scaffolds (CsA nanofibers) enable healing of the rabbit cornea injured with 1N NaOH. The healing of damaged corneas was examined morphologically, immunohistochemically and biochemically on day 24 after the injury. Compared to untreated injured corneas, where corneal ulceration or large corneal thinning or even perforation were developed, injured corneas treated with drug free nanofibers healed without profound disturbances in a majority of cases, although with fibrosis and scar formation. In injured corneas treated with CsA nanofibers or MSCs nanofibers, the development of scar formation was reduced. Best healing results were obtained with a combination of MSCs and CsA nanofibers (MSCs-CsA nanofibers). Corneas healed with highly restored transparency. Neovascularization highly expressed in untreated injured corneas and reduced in corneas treated with CsA nanofibers or MSCs nanofibers, was suppressed in corneas treated with MSCs-CsA nanofibers. The levels of matrix metalloproteinase 9, inducible nitric oxide synthase, interleukin 6, α-smooth muscle actin, tumor growth factor β and vascular endothelial growth factor were significantly decreased in these corneas as compared to untreated corneas, where the levels of the above mentioned markers were high. In conclusion, MSCs-CsA nanofibers were effective in the treatment of severe alkali-induced corneal injury. PMID:26797822

  7. Fracture statistics of brittle materials with intergranular cracks

    International Nuclear Information System (INIS)

    When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n-1, where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials

  8. Modeling Strain Rate Effect for Heterogeneous Brittle Materials

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; DONG Aiai; LI Jianchun

    2006-01-01

    Rocks are heterogeneous from the point of microstructure which is of significance to their dynamic failure behavior.Both the compressive and tensile strength of rock-like materials is regarded different from the static strength.The present study adopts smoothed particle hydrodynamics (SPH) which is a virtual particle based meshfree method to investigate strain rate effect for heterogeneous brittle materials.The SPH method is capable of simulating rock fracture,free of the mesh constraint of the traditional FEM and FDM models.A pressure dependent J-H constitutive model involving heterogeneity is employed in the numerical modeling.The results show the compressive strength increases with the increase of strain rate as well as the tensile strength,which is important to the engineering design.

  9. Meso-scopic deformation in brittle granular materials

    International Nuclear Information System (INIS)

    Compaction is the process of removing void-space from a porous material. In brittle particulate systems, the majority of densification is caused by particle fracture. This preliminary study aimed to investigate the differences in fracture behaviour between quasi-statically and shock loaded glass-microsphere beds. Macro-scale quasi-static (20 μm s−1) and dynamic compaction curves were measured that show subtle qualitative differences in stress-density space. Samples were recovered from a quasi-static and dynamic experiment at a similar order of stress. Differences in fracture behaviour were observed that may explain the differences in crush curves. Results suggest that the primary total-fracture process occurs relatively instantaneously at low stresses in the quasi-static regime. The sphere fracture process is slow relative to the stress-wave therefore causing a different fracture pattern in the shock regime.

  10. Quantitative comparisons of numerical models of brittle wedge dynamics

    Science.gov (United States)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  11. A combined analytical-experimental tensile test technique for brittle materials

    Science.gov (United States)

    Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1992-01-01

    A semiconventional tensile test technique is developed for impact ices and other brittle materials. Accurate results have been obtained on ultimate strength and modulus of elasticity in a refrigerated ice test. It is noted that the technique can be used to determine the physical properties of impact ices accreted inside icing wind tunnels or other brittle materials.

  12. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle int

  13. Tecnique for probabilistic calculation of brittle fracture of power plant pressure vessels

    International Nuclear Information System (INIS)

    Technique for probabilistic calculation of brittle fracture of power plant pressure vessels is presented. Effect of static spread in data on mechanical material properties, defect sizes and errors of nondestructive test means on the accuracy of brittle fracture time prediction is taken account of. Example of probabilistic calculation of nuclear reactor vessel fracture during its operation is given

  14. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy.

    Science.gov (United States)

    Cejkova, Jitka; Cejka, Cestmir; Trosan, Peter; Zajicova, Alena; Sykova, Eva; Holan, Vladimir

    2016-06-01

    In this study we tried to develop a new approach to suppress inflammation and neovascularization in the alkali-injured rabbit cornea. For this reason Cyclosporine A (CsA)-loaded electrospun nanofibers were transferred onto the ocular surface injured with alkali (0.25 N NaOH). Damaged corneas were divided into the following groups: untreated, treated with CsA eye drops, treated with nanofibers drug-free and treated with CsA-loaded nanofibers. Healthy rabbit corneas served as controls. Drug-free nanofibers and CsA-loaded nanofibers were transferred onto the damaged corneal surface immediately after the injury and sutured to conjunctiva. On day five after the injury the nanofibers were removed. The animals from all groups were sacrificed on day twelve after the injury. The extent of the inflammatory reaction and corneal healing were examined macroscopically, immunohistochemically and biochemically. The central corneal thickness was measured using an ultrasonic pachymeter. When compared with untreated injured corneas, injured corneas treated with drug-free nanofibers or injured corneas treated with CsA eye drops, the number of CD3-positive cells (T lymphocytes) and the production of pro-inflammatory cytokines were strongly reduced in corneas treated with CsA-loaded nanofibers, which was associated with the significantly decreased expression of matrix metalloproteinase 9, inducible nitric oxide synthase, vascular endothelial growth factor and active caspase-3. CsA-loaded nanofibers effectively suppressed corneal inflammation and corneal neovascularization. Central corneal thickness restored to levels before injury only in corneas treated with CsA-loaded nanofibers. Corneal transparency was highly restored in these corneas. It is suggested that the beneficial effect of CsA-loaded nanofibers was associated with the continuous release of CsA from nanofibers and continuous affection of damaged cornea by CsA. The suture of nanofibers to conjunctiva and the closed eyes

  15. Entertainment-education and recruitment of cornea donors: the role of emotion and issue involvement.

    Science.gov (United States)

    Bae, Hyuhn-Suhck

    2008-01-01

    This study examined the role of emotional responses and viewer's level of issue involvement to an entertainment-education show about cornea donation in order to predict intention to register as cornea donors. Results confirmed that sympathy and empathy responses operated as a catalyst for issue involvement, which emerged as an important intermediary in the persuasion process. Issue involvement also was found to be a common causal antecedent of attitude, subjective norm, and perceived behavioral control, the last two of which predict intentions unlike attitude, which does not. The revised path model confirmed that involvement directly influences intention. The findings of this study suggest that adding emotion and involvement in the Theory of Planned Behavior (TPB) enhances the explanatory power of the theory in predicting intentions, which indicates the possibility of combining the Elaboration Likelihood Model (ELM) and the TPB in the prediction of human behaviors. PMID:18307134

  16. Secondary Glaucoma Associated with Encircling Scleral Buckle Migration into the Cornea

    Directory of Open Access Journals (Sweden)

    Şengül Özdek

    2016-01-01

    Full Text Available Transmuscular migration of the encircling band through rectus muscles and straddling of the cornea has only been reported in a few cases previously in the literature. This rare condition has never been associated with glaucoma. In this report, we aimed to describe a unique case with transmuscular migration of encircling buckle as a probable cause of glaucoma. A 17-year-old female presented with transmuscular migration of buckle and high intraocular pressure (IOP. Limbal/corneal migration of the silicone band was thought to be the main reason for the IOP rise; therefore, scleral band removal was performed. One month after removal, the patient was free of glaucoma medications and IOP was within normal limits. The retina remained attached during all postoperative visits. Transmuscular migration of the encircling band through rectus muscles and straddling of the cornea may act as a trigger for glaucoma.

  17. Photodynamic therapy (ALA-PDT) in the treatment of pathological states of the cornea

    Science.gov (United States)

    Switka-Wieclawska, Iwona; Kecik, Tadeusz; Kwasny, Miroslaw; Graczyk, Alfreda

    2003-10-01

    Each year an increasing amount of research is published on the use of photodynamic therapy in medicine. The most recent research has focused mostly on the use of photosensitizer called vertoporphyrin (Visudyne) is the treatment of subretinal neovascularization in age-related macular degeneration (AMD) or myopia, following a substantial amount of ophthalmology research mostly experimental on the application of the method in diagnosis and treatment of some eye tumors. In the Department of Ophthalmology of Polish Medical University in Warsaw, PDT was used as supplementary method in a selected group of patients with chronic virus ulcer of the cornea and keratopathies. During the treatment 5-aminolevulinic acid (5-ALA) was applied in ointment form as a photosensitizer activated with light wave of 633 nm. It appears, on the basis of the results obtained, that photodynamic therapy (ALA-PDT) may become in the future a valuable supplement to the methods being used at the present treating pathological states of the cornea.

  18. A Method to Prepare a Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK) Graft Using Donor Corneas With Narrow Scleral Rims

    OpenAIRE

    Lin, Tzu-Yu; Hwang, Yih-Shiou; Ma, David Hui-Kang

    2015-01-01

    Abstract Donor corneas with narrow scleral rims are often disqualified for Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK), mainly because of fluid leak and low pressure when they are mounted onto an artificial anterior chamber (AAC). This report describes a novel method to tight-lock a donor cornea with a narrow scleral rim so that microkeratome cutting is possible, allowing a DSAEK procedure to be completed. A 50-year-old male suffering from Epstein–Barr virus (EBV) endothel...

  19. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    OpenAIRE

    Seunghun Lee; Jun Ho Lee; Jin Hyoung Park; Yeoreum Yoon; Wan Kyun Chung; Hungwon Tchah; Myoung Joon Kim; Ki Hean Kim

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. I...

  20. Transient postoperative vascular endothelial growth factor (VEGF)-neutralisation improves graft survival in corneas with partly regressed inflammatory neovascularisation

    OpenAIRE

    Bachmann, B. O.; Lütjen-Drecoll, Elke; F. Bock; Wiegand, S. J.; Hos, D.; Dana, R; Kruse, F. E.; Cursiefen, C.

    2009-01-01

    Background: High-risk keratoplasties are usually performed after an uninflamed and quiescent interval in corneas with partly regressed blood and lymphatic vessels. We analysed whether the inhibition of post-keratoplasty revascularisation in mice with partly regressed corneal vessels (“intermediate-risk”) improves graft survival. Methods: Three interrupted stromal sutures (11-0) in corneas of Balb/c mice (6–8 weeks old) were placed for 6 weeks. Six months after suture removal, penetrating k...

  1. Premalignant melanosis of the conjunctiva and the cornea in xeroderma pigmentosum.

    OpenAIRE

    Paridaens, A D; McCartney, A C; Hungerford, J. L.

    1992-01-01

    Xeroderma pigmentosum is a rare autosomal recessive dermatosis. The neoplastic changes in sunlight-exposed areas of the skin and eyes may be related to the impaired replication of ultraviolet radiation-damaged DNA. A 38-year-old Greek woman is reported with a mild form of xeroderma pigmentosum and primary acquired melanosis with atypia of her right limbal conjunctiva and cornea. The development of this precursor of conjunctival malignant melanoma in a xeroderma pigmentosum patient may support...

  2. Diabetic and non-diabetic human cornea and tear γ-glutamyl transpeptidase activity

    OpenAIRE

    Burnham, Jordan M; Sakhalkar, Monali; Langford, Marlyn P; Liang, Chanping; Redens, Thomas B.; Jain, Sushil K.

    2013-01-01

    Background Diabetes-related eye disease is due in part to oxidative stress. Gamma-glutamyl transpeptidase (GGT) is a γ-glutamyl cycle enzyme that protects against oxidative stress via glutathione recapture. This study investigates corneal and Schirmer tears GGT activity in diabetic and non-diabetic adults aged 50 to 83 years old. Methods GGT activity was determined by colorimetric assay on 50 corneas from 14 diabetic (without keratopathy) and 20 non-diabetic donors and on Schirmer type 1 test...

  3. Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy

    International Nuclear Information System (INIS)

    Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of [3H]glucosamine or [2-3H]mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal

  4. Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Midura, R.J.; Hascall, V.C.; MacCallum, D.K.; Meyer, R.F.; Thonar, E.J.; Hassell, J.R.; Smith, C.F.; Klintworth, G.K. (National Institute of Dental Research, Bethesda, MD (USA))

    1990-09-15

    Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of (3H)glucosamine or (2-3H)mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal.

  5. Activation of Master Autophagy Regulator TFEB During Systemic LPS Administration in the Cornea

    OpenAIRE

    Uchida, Kyoko; Unuma, Kana; Funakoshi, Takeshi; Aki, Toshihiko; Uemura, Koichi

    2014-01-01

    The involvement of autophagy in the cornea during the systemic inflammatory response elicited by intravenous administration of lipopolysaccharide (LPS) was investigated. Eight-week-old male Sprague-Dawley rats were injected i.v. with 15 mg/kg body weight LPS. RC4 rabbit corneal keratocytes were also used and treated with 100 ng/mL of tumor necrosis factor α (TNFα) and/or cycloheximide (CHX). The nuclear translocation of transcription factor EB (TFEB), the master transcriptional regulator for ...

  6. Hyperglycemia-induced abnormalities in rat and human corneas: the potential of second harmonic generation microscopy.

    OpenAIRE

    Latour, Gaël; Kowalczuk, Laura; Savoldelli, Michèle; Bourges, Jean-Louis; Plamann, Karsten; Behar-Cohen, Francine; Schanne-Klein, Marie-Claire

    2012-01-01

    BACKGROUND: Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then a...

  7. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea.

    Directory of Open Access Journals (Sweden)

    Hassan Alizadeh

    Full Text Available Free-living amoebae of the Acanthamoeba species are the causative agent of Acanthamoeba keratitis (AK, a sight-threatening corneal infection that causes severe pain and a characteristic ring-shaped corneal infiltrate. Innate immune responses play an important role in resistance against AK. The aim of this study is to determine if Toll-like receptors (TLRs on corneal epithelial cells are activated by Acanthamoeba, leading to initiation of inflammatory responses in the cornea. Human corneal epithelial (HCE cells constitutively expressed TLR1, TLR2, TLR3, TLR4, and TLR9 mRNA, and A. castellanii upregulated TLR4 transcription. Expression of TLR1, TLR2, TLR3, and TLR9 was unchanged when HCE cells were exposed to A. castellanii. IL-8 mRNA expression was upregulated in HCE cells exposed to A. castellanii. A. castellanii and lipopolysaccharide (LPS induced significant IL-8 production by HCE cells as measured by ELISA. The percentage of total cells positive for TLR4 was higher in A. castellanii stimulated HCE cells compared to unstimulated HCE cells. A. castellanii induced upregulation of IL-8 in TLR4 expressing human embryonic kidney (HEK-293 cells, but not TLR3 expressing HEK-293 cells. TLR4 neutralizing antibody inhibited A. castellanii-induced IL-8 by HCE and HEK-293 cells. Clinical strains but not soil strains of Acanthamoeba activated TLR4 expression in Chinese hamster corneas in vivo and in vitro. Clinical isolates but not soil isolates of Acanthamoeba induced significant (P< 0.05 CXCL2 production in Chinese hamster corneas 3 and 7 days after infection, which coincided with increased inflammatory cells in the corneas. Results suggest that pathogenic species of Acanthamoeba activate TLR4 and induce production of CXCL2 in the Chinese hamster model of AK. TLR4 may be a potential target in the development of novel treatment strategies in Acanthamoeba and other microbial infections that activate TLR4 in corneal cells.

  8. A Cornea Substitute Derived from Fish Scale: 6-Month Followup on Rabbit Model

    OpenAIRE

    Fei Yuan; Liyan Wang; Chien-Chen Lin; Cheng-Hung Chou; Lei Li

    2014-01-01

    A fish scale-derived cornea substitute (Biocornea) is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the ...

  9. Cornea and Ocular Surface Disease: Application of Cutting Edge Optometric Research

    OpenAIRE

    Robertson, Danielle M.; Alexander, Larry J.; Bonanno, Joseph A.; Fleiszig, Suzanne M. J.; McNamara, Nancy

    2014-01-01

    Clinician-scientists bridge the gap between basic research and patient care. At the 2012 Annual Meeting, a symposium highlighting the application of cutting edge optometric research within the anterior segment was held to present and discuss some of the recent basic scientific advances that will both shape and guide the development of future clinical care practices. This paper summarizes this work, bringing together four experts, all clinician-scientists in the field of cornea and ocular surf...

  10. Comparison of Scheimpflug imaging parameters between steep and keratoconic corneas of Caucasian eyes

    Science.gov (United States)

    Huseynova, Tukezban; Abdulaliyeva, Farah; Lanza, Michele

    2016-01-01

    Purpose To compare the keratometric and pachymetric parameters of healthy eyes with those affected by steep cornea and keratoconus (KC) using Scheimpflug camera. Setting Briz-L Eye Clinic, Baku, Azerbaijan. Design A cross-sectional study. Methods In this study, 49 KC (Amsler–Krumeich stage 1) eyes and 36 healthy eyes were enrolled. A complete ophthalmic evaluation and a Scheimpflug camera scan were performed in every eye included in the study. Tomographic parameters such as parameters from the front and back cornea, maximum keratometry reading (Kmax), corneal volume (CV), anterior chamber volume (ChV), anterior chamber depth (ACD), anterior chamber angle (AC angle), keratometric power deviation (KPD), maximum front elevation (Max FE), and maximum back elevation (Max BE), as well as pachymetric progression indices (PPI), Ambrosio relational thickness (ART), index of surface variance (ISV), index of vertical asymmetry (IVA), center keratoconus index (CKI), index of height asymmetry (IHA), index of height decentration (IHD), and radius minimum (RM) were collected and statistically compared between the two groups. Results PPI, ART, ISV, IVA, CKI, IHA, IHD, and RM parameter values were significantly different (Pastigmatism, between stage 1 keratoconic and normal Caucasian eyes with steep cornea. All other parameters such as K mean and Q values of the back corneal parameters, Max FE, Max BE, ACD, ChV, and CV showed significant differences between the groups (P<0.05 for all). Conclusion Scheimpflug imaging is able to detect corneal morphological differences between stage 1 KC eyes and healthy eyes with steep cornea, in Caucasians. PMID:27099469

  11. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas.

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    Full Text Available Atmospheric pressure cold plasma (APCP might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS that kill microorganisms without substantially affecting human cells.In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC was able to inhibit or prevent damage and cell death.Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds. Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h.These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant.

  12. Effects of Intracameral Injection of Lidocaine on The Cornea in A Rabbit Model. Scanning Electronmicroscopic Study

    OpenAIRE

    Ramadan, Wafaa S.

    2005-01-01

    Combined topical and intracameral anesthesia proved to be an alternative to peribulbar and retrobulbar anesthesia in cataract surgery especially in phacoemulsification approach.. So, in the present work the effect of intracameral injection of different concentrations of lidocaine on the structure of rabbit's cornea was studied using the freez-fracture technique and the scanning electron microscope . Fourteen baladi rabbits of both sexes weighing 2-3 kg.were used and divided into two groups ac...

  13. Donor cornea preparation in partial big bubble deep anterior lamellar keratoplasty

    OpenAIRE

    Lim L; Lim SW

    2014-01-01

    Li Lim,1 Samuel Wen Yan Lim21Corneal and External Eye Disease Service, Singapore National Eye Centre, 2Yong Loo Lin School of Medicine, National University of Singapore, SingaporeBackground: The purpose of this paper is to describe a technique of donor cornea preparation to ensure good graft-host apposition in incomplete big bubble deep anterior lamellar keratoplasty.Methods: Following a partial-thickness trephination, manual dissection and excision of corneal stroma was performed. Anwar'...

  14. Synthesis of type III collagen by fibroblasts from the embryonic chick cornea

    OpenAIRE

    1980-01-01

    Synthesis of collagen types I, II, III, and IV in cells from the embryonic chick cornea was studied using specific antibodies and immunofluorescence. Synthesis of radioactively labeled collagen types I and III was followed by fluorographic detection of cyanogen bromide peptides on polyacrylamide slab gels and by carboxymethylcellulose chromatography followed by disc gel electrophoresis. Type III collagen had been detected previously by indirect immunofluorescence in the corneal epithelial cel...

  15. Onset of ductility and brittleness in silicon nanowires mediated by dislocation nucleation

    International Nuclear Information System (INIS)

    Most studies show that materials at the nano-scale have different mechanical properties than in the bulk state. Semiconductors like silicon and germanium are brittle in the bulk state, but when their size is reduced to the nano-scale they appear to be ductile. Under tensile loading, we performed molecular dynamics simulations on silicon crystalline nanowires of different lengths. We present the details of the obtained mechanisms that led to ductility and brittleness. In the case of ductility, dislocation nucleation was observed with a signature of surface step formation on the surface and in the case of brittleness a cavity was formed after the distinct formation of a wedge-like shape on the surface. Interestingly, a common mechanism taking place behind ductility and brittleness is dislocation nucleation. We believe that the observed mechanisms reveal interesting information for understanding and explaining the size dependent brittle to ductile transition. (paper)

  16. Phacoemulsification in total white cataract with Stevens-Johnson syndrome

    OpenAIRE

    Vasavada Abhay; Dholakia Sheena

    2007-01-01

    Cataract surgery with Stevens-Johnson syndrome (S-J) is associated with a high incidence of complications and can worsen the primary disease. We report a case of phacoemulsification of a total, white cataract barely visible through the vascularized, keratinized cornea in the only seeing eye of a patient with S-J syndrome. We describe the intra-operative difficulties encountered during phacoemulsification and the surgical tools and techniques employed to overcome the surgical difficulties. The...

  17. Suppression of In Vivo Neovascularization by the Loss of TRPV1 in Mouse Cornea

    Directory of Open Access Journals (Sweden)

    Katsuo Tomoyose

    2015-01-01

    Full Text Available To investigate the effects of loss of transient receptor potential vanilloid receptor 1 (TRPV1 on the development of neovascularization in corneal stroma in mice. Blocking TRPV1 receptor did not affect VEGF-dependent neovascularization in cell culture. Lacking TRPV1 inhibited neovascularization in corneal stroma following cauterization. Immunohistochemistry showed that immunoreactivity for active form of TGFβ1 and VEGF was detected in subepithelial stroma at the site of cauterization in both genotypes of mice, but the immunoreactivity seemed less marked in mice lacking TRPV1. mRNA expression of VEGF and TGFβ1 in a mouse cornea was suppressed by the loss of TRPV1. TRPV1 gene ablation did not affect invasion of neutrophils and macrophage in a cauterized mouse cornea. Blocking TRPV1 signal does not affect angiogenic effects by HUVECs in vitro. TRPV1 signal is, however, involved in expression of angiogenic growth factors in a cauterized mouse cornea and is required for neovascularization in the corneal stroma in vivo.

  18. Safety of cornea and iris in ocular surgery with 355-nm lasers

    Science.gov (United States)

    Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel

    2015-09-01

    A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.

  19. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model.

    Science.gov (United States)

    Wu, Zheng; Zhou, Qiang; Duan, Haoyun; Wang, Xiaoran; Xiao, Jianhui; Duan, Hucheng; Li, Naiyang; Li, Chaoyang; Wan, Pengxia; Liu, Ying; Song, Yiyue; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong

    2014-01-01

    To construct an auto-tissue-engineered lamellar cornea (ATELC) for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05). Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3-, P63+, ABCG2+) compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63-, ABCG2-). Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5%) was significantly higher than that of ATELC-Static (2.13±1.46%, p0.05). Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function. PMID:24705327

  20. Maintaining the cornea and the general physiological environment in visual neurophysiology experiments.

    Science.gov (United States)

    Metha, A B; Crane, A M; Rylander, H G; Thomsen, S L; Albrecht, D G

    2001-08-30

    Neurophysiologists have been investigating the responses of neurons in the visual system for the past half-century using monkeys and cats that are anesthetized and paralyzed, with the non-blinking eyelids open for prolonged periods of time. Impermeable plastic contact lenses have been used to prevent dehydration of the corneal epithelium, which would otherwise occur in minutes. Unfortunately, such lenses rapidly introduce a variety of abnormal states that lead to clouding of the cornea, degradation of the retinal image, and premature termination of the experiment. To extend the viability of such preparations, a new protocol for maintenance of corneal health has been developed. The protocol uses rigid gas permeable contact lenses designed to maximize gas transmission, rigorous sterile methods, and a variety of methods for sustaining and monitoring the overall physiology of the animal. The effectiveness of the protocol was evaluated clinically by ophthalmoscopy before, during, and after the experiments, which lasted 8-10 days. Histopathology and quantitative histology were performed on the corneas following the experiment. Our observations showed that this protocol permits continuous contact lens wear without adversely affecting the corneas. Thus, it is possible to collect data 24 h each day, for the entire duration of the experiment. PMID:11513950

  1. A cornea substitute derived from fish scale: 6-month followup on rabbit model.

    Science.gov (United States)

    Yuan, Fei; Wang, Liyan; Lin, Chien-Chen; Chou, Cheng-Hung; Li, Lei

    2014-01-01

    A fish scale-derived cornea substitute (Biocornea) is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the peripheral Biocornea, the collagen fibrils were arranged in reticular fashion. Slit lamp examination showed that haze and an ulcer were not observed in all groups at 3 months postoperatively while all corneas with Biocornea were clear at both 3 months and 6 months postoperatively. The interface of Biocornea and stromal tissue were filled successfully and without observable immune cells at postoperative day 180. Moreover, the Biocornea was not dissolved and degenerated but remained transparent and showed no apparent fragmentation. Our study demonstrated that the Biocornea derived from fish scale as a good substitute had high biocompatibility and support function after a long-term evaluation. This revealed that the new approach of using Biocornea may yield an ideal artificial cornea substitute for long-term inlay placement. PMID:25089206

  2. A Cornea Substitute Derived from Fish Scale: 6-Month Followup on Rabbit Model

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2014-01-01

    Full Text Available A fish scale-derived cornea substitute (Biocornea is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the peripheral Biocornea, the collagen fibrils were arranged in reticular fashion. Slit lamp examination showed that haze and an ulcer were not observed in all groups at 3 months postoperatively while all corneas with Biocornea were clear at both 3 months and 6 months postoperatively. The interface of Biocornea and stromal tissue were filled successfully and without observable immune cells at postoperative day 180. Moreover, the Biocornea was not dissolved and degenerated but remained transparent and showed no apparent fragmentation. Our study demonstrated that the Biocornea derived from fish scale as a good substitute had high biocompatibility and support function after a long-term evaluation. This revealed that the new approach of using Biocornea may yield an ideal artificial cornea substitute for long-term inlay placement.

  3. Dose-dependent ultrastructural changes in rat cornea after oral methylphenidate administration

    International Nuclear Information System (INIS)

    Objective was to investigate dose-dependent ultrastructural changes in rat cornea after oral methylphenidate (Ritalin) administration. This study was conducted in the Dept. of Anatomy, Gazi University, Faculty of Medicine, Ankara between March and May 2005, with a total of 27 female prepubertal Wistar albino rats, divided into 3 different dose groups (5mg/kg, 10 mg/kg, 20 mg/kg) and their control groups. They were treated orally with methylphenidate and eye tissue was removed to process for electron microscopic studies. We observed that all cells and prominently basal cells of the corneal epithelium show dose-dependent degenerative changes such as apoptotic bodies, chromatin condensation and ondulation in their nuclei and crystolysis of the mitochondrion. In the stroma, the most evident finding was the increase of the collagen fiber. In addition to dose-dependent changes related to apoptotic process, which is chromatin condensation in their nuclei, electron dense material accumulation and percicellular edema in the cytoplasm were also seen. In the endothelial cell lines, disruption of the junctional complexes, vacuolization in the cell cytoplasms and crystolysis of the mitochondrion's with rough endoplasmic reticulum cisternae activity were observed. Ritalin is inducing an evident degeneration, especially in epithelium cells with increasing doses. Ultrastructural cell organelle composition degeneration with stromal fibrosis has negative effect on cornea dehydration. In light of these findings, we believe that the Ritalin treatment dose needed to be kept to a minimum to maintain healthy cornea ultrastructure and related physiology. (author)

  4. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model.

    Directory of Open Access Journals (Sweden)

    Zheng Wu

    Full Text Available To construct an auto-tissue-engineered lamellar cornea (ATELC for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05. Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3-, P63+, ABCG2+ compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63-, ABCG2-. Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5% was significantly higher than that of ATELC-Static (2.13±1.46%, p0.05. Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function.

  5. Changes in thickness of each layer of developing chicken cornea after administration of caffeine.

    Directory of Open Access Journals (Sweden)

    Hieronim Bartel

    2010-08-01

    Full Text Available The aim of the study was the presentation of changes in thickness of each layer of a developing cornea, that came into being under an influence of caffeine which was administered to chicken embryos. Research materials were 26 chicken embryos from breeding eggs that had been incubated. Breeding eggs were divided into two groups: control (n=30 in which Ringer liquid was given, and experimental (n=30 in which teratogenic dose of caffeine was administrated - 3.5 mg/egg. In 36th hour of incubation solutions were given with cannula through a hole in an egg shell directly onto amniotic membrane. After closing the hole with paraffin, eggs were put back into incubator. On 10th and 19th day of incubation corneas were taken for morphometric and morphological analysis. In experimental groups reduction of corneal thickness, thickening of corneal epithelium and corneal endothelium as well as Bowman's and Descemet's membranes, decrease of thickness of corneal stroma in comparison with the control group have been observed. Caffeine causes thickness changes of all layers and decreases the total thickness of a developing cornea.

  6. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    Science.gov (United States)

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt. PMID:24464723

  7. Quantifying the effect of milli-molar glucose concentration on thickness of rabbit cornea with optical coherence tomography

    Science.gov (United States)

    Ghosn, Mohamad G.; Leba, Michael; Vijayananda, Astha; Ansari, Rafat R.; Larin, Kirill V.

    2009-02-01

    The cornea contributes about 65% of the eye's ability to refract light. Thus, any fluctuation in corneal thickness can cause noticeable changes in vision. The presence of glucose molecules induces a driving force for water to leave the collagen fibrils in the cornea due to the concentration gradient created, thus changing its thickness. In this study, the effect of various milli-molar glucose concentrations on corneal thickness was explored using Optical Coherence Tomography. Whole rabbit eyes were placed in a specially designed dish while immersed in saline to ensure proper hydration of the eye. The cornea was imaged for 10 minutes. In 30 minute increments, a higher concentration of glucose was added, bringing the overall glucose concentration to 10, 15, 20, 25, and 30 mM. The thickness of the cornea was measured every 2 minutes. Ultimately, an inverse relationship was observed, indicating that the increase in glucose concentration yielded a decrease in the corneal thickness. From three separate experiments, the cornea experienced 8 +/- 1, 27 +/- 1, 44 +/- 3, 58 +/- 3, and 64 +/- 3 μm decrease in thickness from its starting value while exposed to 10, 15, 20, 25, and 30 mM solutions of glucose, respectively. This relationship provides insight on the physiological changes of the cornea as a result of different glucose concentrations. This could potentially be useful in monitoring blood-glucose levels through the eye.

  8. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    Science.gov (United States)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  9. Semi-brittle flow of granitoid fault rocks in experiments

    Science.gov (United States)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée.; Drury, Martyn

    2016-03-01

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have performed an experimental study on synthetic granitoid fault rocks exploring a broad parameter space (temperature, T = 300, 400, 500, and 600°C, confining pressure, Pc ≈ 300, 500, 1000, and 1500 MPa, shear strain rate, γṡ ≈ 10-3, 10-4, 10-5, and 10-6 s-1, to finite shear strains, γ = 0-5). The experiments have been carried out using a granular material with grain size smaller than 200 µm with a little H2O added (0.2 wt %). Only two experiments (performed at the fastest strain rates and lowest temperatures) have failed abruptly right after reaching peak strength (τ ~ 1400 MPa). All other samples reach high shear stresses (τ ~ 570-1600 MPa) then weaken slightly (by Δτ ~ 10-190 MPa) and continue to deform at a more or less steady state stress level. Clear temperature dependence and a weak strain rate dependence of the peak as well as steady state stress levels are observed. In order to express this relationship, the strain rate-stress sensitivity has been fit with a stress exponent, assuming γ˙ ∝ τn and yields high stress exponents (n ≈ 10-140), which decrease with increasing temperature. The microstructures show widespread comminution, strain partitioning, and localization into slip zones. The slip zones contain at first nanocrystalline and partly amorphous material. Later, during continued deformation, fully amorphous material develops in some of the slip zones. Despite the mechanical steady state conditions, the fabrics in the slip zones and outside continue to evolve and do not reach a steady state microstructure below γ = 5. Within the slip zones, the fault rock material progressively transforms from a crystalline solid to an amorphous material. We

  10. Brittle-tough transitions during crack growth in toughened adhesives

    Science.gov (United States)

    Thoules, Michael

    2008-03-01

    The use of structural adhesives in automotive applications relies on an effective understanding of their performance under crash conditions. In particular, there is considerable potential for mechanics-based modeling of the interaction between an adhesive layer and the adherends, to replace current empirical approaches to design. Since energy dissipation during a crash, mediated by plastic deformation of the structure, is a primary consideration for automotive applications, traditional approaches of fracture mechanics are not appropriate. Cohesive-zone models that use two fracture parameters - cohesive strength and toughness - have been shown to provide a method for quantitative mechanics analysis. Combined numerical and experimental techniques have been developed to deduce the toughness and strength parameters of adhesive layers, allowing qualitative modeling of the performance of adhesive joints. These techniques have been used to study the failure of joints, formed from a toughened adhesive and sheet metal, over a wide range of loading rates. Two fracture modes are observed: quasi-static crack growth and dynamic crack growth. The quasi-static crack growth is associated with a toughened mode of failure; the dynamic crack growth is associated with a more brittle mode of failure. The results of the experiments and analyses indicate that the fracture parameters for quasi-static crack growth in this toughened system are essentially rate independent, and that quasi-static crack growth can occur even at the highest crack velocities. Effects of rate appear to be limited to the ease with which a transition to dynamic fracture could be triggered. This transition appears to be stochastic in nature, and it does not appear to be associated with the attainment of any critical value for crack velocity or loading rate. Fracture-mechanics models exist in the literature for brittle-ductile transitions in rate-dependent polymers, which rely on rate dependent values of toughness

  11. Brittle thermoelectric semiconductors extrusion under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Origins of strength increase of brittle materials like thermoelectric (TE) semiconductors during plastic deformation under high external pressure are analyzed. TE material stressed state in the process of extrusion is reviewed. Plastic deformation of monocrystalline TE material billet produced by extrusion under sufficiently high external hydrostatic pressure is more uniform than under ordinary ambient pressure and can lead to crack free extruded TE material structure, crystallographic symmetry of which coincides with original billet one. Experimental device realized the scheme of extrusion under high hydrostatic pressure is described. Here extrusion are carrying out in compressed liquid medium. The developed device ensures the value of hydrostatic pressure up to 2 GPa and extrusion temperature interval 300--600 K. Properties of extruded Bi-Sb and Bi-Sb-Te single crystals are also reviewed. Possible application of presented method of extrusion under high hydrostatic pressure to form TE branches with highly accurate cross section for miniature TE coolers or generators is discussed. copyright 1995 American Institute of Physics

  12. Ductile streaks in precision grinding of hard and brittle materials

    Indian Academy of Sciences (India)

    V C Venkatesh; S Izman; S Sharif; T T Mon; M Konneh

    2003-10-01

    Ductile streaks produced during diamond grinding of hard and brittle materials have aided the subsequent process of polishing. Two novel techniques were used to study the formation of ductile mode streaks during diamond grinding (primary process) of germanium, silicon, and glass. In the first technique, aspheric surfaces were generated on Ge and Si at conventional speeds (5000 rpm). In the second technique, diamond grinding of plano surfaces on glass and Si surfaces using high speed (100,000 rpm) was carried out. Form accuracy, surface finish and ductile mode grinding streaks are discussed in this paper. It was found that resinoid diamond wheels gave more ductile streaks than metal-bonded wheels but better form accuracy was obtained with the latter. Ductile streaks were obtained more easily with pyrex rather than with BK 7 glass thus necessitating very little time for polishing. Ductile streaks appeared in abundance on germanium rather than silicon. Both the novel grinding techniques were used on CNC machining centres.

  13. BRITTLE BONES, UNBREAKABLE SPIRIT: OSTEOGENESIS IMPERFECTA: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Subhra Mandal

    2015-03-01

    Full Text Available Osteogenesis imperfecta (OI, Fragilitis Ossium or Brittle bone disease is a group of rare inherited disorders with a broad spectrum of clinical and genetic variability. It is characterized by fragile bones that are prone to fracture often from mild trauma or with no apparent cause. People with OI are born with defective connective tissue or without the ability to make it, usually because of a deficiency of Type1 collagen. Incidence of OI is estimated to be one per twenty thousand live births. Eight types of OI can be distinguished. Most cases are caused by mutations in the COL1A1 and COL1A2 genes. We have reported a special case of OI, probably belonging to Type III group. The subject visited the PMR (Physical Medicine & Rehabilitation OPD of Bankura Sammilani medical college (BSMC, Bankura ,West Bengal, India.. The details of etiology, diagnosis, genetic causes and treatment will be discussed in the study. Diagnosis of OI is based on clinical features and may be confirmed by collagen or DNA testing. There is no cure for OI. Our management is aimed at increasing over all bone strength to prevent fracture and maintain mobility. Nevertheless, life style modifications by adaptive equipments, oral drugs (Bisphosphonates and Intramedullary rod insertions, provide a significant degree of autonomy to OI patients.

  14. Scratch resistance of brittle thin films on compliant substrates

    International Nuclear Information System (INIS)

    There has been intensive interest in studying the behavior of hard and brittle thin films on compliant substrates under scratch action. The examples include sol-gel protective coatings on plastic optical lenses, safe windows, and flexible electronic devices and displays. Hard ceramic coatings have been widely used to prolong the life of cutting tools and biomedical implants. In this work, the scratch resistance of sol-gel coatings with different amount of colloidal silica on polycarbonate substrates was tested by the pencil scratch test following the ISO 15184 standard. The scratch failure was found to be tensile trailing cracking in the coating and substrate gouging. The indentation hardness, elasticity modulus and fracture toughness of the coatings were determined and correlated to the observed pencil scratch hardness. Based on the analysis, the main factors to improve the scratch resistance are the elasticity modulus, thickness and fracture toughness of the coatings. General consideration for the improvement of scratch resistance of hard coatings on compliant substrates was also discussed

  15. Validation of an endothelial roll preparation for Descemet Membrane Endothelial Keratoplasty by a cornea bank using "no touch" dissection technique.

    Science.gov (United States)

    Marty, Anne-Sophie; Burillon, Carole; Desanlis, Adeline; Damour, Odile; Kocaba, Viridiana; Auxenfans, Céline

    2016-06-01

    Descemet Membrane Endothelial Keratoplasty (DMEK) selectively replaces the damaged posterior part of the cornea. However, the DMEK technique relies on a manually-performed dissection that is time-consuming, requires training and presents a potential risk of endothelial graft damages leading to surgery postponement when performed by surgeons in the operative room. To validate precut corneal tissue preparation for DMEK provided by a cornea bank in order to supply a quality and security precut endothelial tissue. The protocol was a technology transfer from the Netherlands Institute for Innovative Ocular Surgery (NIIOS) to Lyon Cornea Bank, after formation in NIIOS to the DMEK "no touch" dissection technique. The technique has been validated in selected conditions (materials, microscope) and after a learning curve, cornea bank technicians prepared endothelial tissue for DMEK. Endothelial cells densities (ECD) were evaluated before and after preparation, after storage and transport to the surgery room. Microbiological and histological controls have been done. Twenty corneas were manually dissected; 18 without tears. Nineteen endothelial grafts formed a double roll. The ECD loss after cutting was 3.3 % (n = 19). After transportation 7 days later, we found an ECD loss of 25 % (n = 12). Three days after cutting and transportation, we found 2.1 % of ECD loss (n = 7). Histology found an endothelial cells monolayer lying on Descemet membrane. The mean thickness was 12 ± 2.2 µm (n = 4). No microbial contamination was found (n = 19). Endothelial roll stability has been validated at 3 days in our cornea bank. Cornea bank technicians trained can deliver to surgeons an ECD controlled, safety and ready to use endothelial tissue, for DMEK by "no touch" technique, allowing time saving, quality and security for surgeons. PMID:26934895

  16. Beals Syndrome

    Science.gov (United States)

    ... Boards & Staff Annual Report & Financials Contact Us Donate Marfan & Related Disorders What is Marfan Syndrome? What are ... the syndrome. How does Beals syndrome compare with Marfan syndrome? People with Beals syndrome have many of ...

  17. Reflectivity of the human cornea and its influence on the selection of a suitable light source for a low-cost tonometer

    Science.gov (United States)

    Han, Yanmei; Bryanston-Cross, Peter J.; Shaw, Keith; Hero, Mark

    2002-09-01

    This article introduces an experiment designed to investigate which wavelength of light is best reflected by the cornea. Results indicate that the human cornea reflects near-infrared or violet light more efficiently than it does bright visible light. Further, results indicate that at a wavelength of 580nm, the reflectivity of the cornea decreases to a minimum value of 37% given light incident on the cornea at an angle of 45 degree. A light source suitable for the detection of glaucoma has been selected based on these results, also taking into account the spectral response of a suitable photo-detector.

  18. Micromechanics of brittle faulting and cataclastic flow in Berea sandstone

    Science.gov (United States)

    Menéndez, Beatriz; Zhu, Wenlu; Wong, Teng-Fong

    1996-01-01

    The micromechanics of failure in Berea sandstone were investigated by characterizing quantitatively the evolution of damage under the optical and scanning electron microscopes. Three series of triaxial compression experiments were conducted at the fixed pore pressure of 10 MPa and confining pressures of 20, 50 and 260 MPa, respectively, corresponding to three different failure modes: shear localization with positive dilatancy, shear localization with relatively little dilatancy and distributed cataclastic flow. To distinguish the effect of non-hydrostatic stress from that of hydrostatic pressure, a fourth suite of hydrostatically loaded samples was also studied. Using stereological procedures, we characterized quantitatively the following damage parameters: microcrack density and its anisotropy, pore-size distribution, comminuted volume fraction and mineral damage index. In the brittle regime, shear localization did not develop until the post-failure stage, after the peak stress had been attained. The microcrack density data show that very little intragranular cracking occurred before the peak stress was attained. We infer that dilatancy and acoustic emission activity in the prefailure stage are primarily due to intergranular cracking, probably related to the shear rupture of lithified and cemented grain contacts. Near the peak stress, intragranular cracking initiates from grain contacts and this type of Hertzian fracture first develops in isolated clusters, and their subsequent coalescence results in shear localization in the post-failure stage. The very high density of intragranular microcracking and pronounced stress-induced anisotropy in the post-failure samples are the consequence of shear localization and compactive processes operative inside the shear band. In contrast, Hertzian fracture was a primary cause for shear-enhanced compaction and strain hardening throughout the cataclastic flow regime. Grain crushing and pore collapse seem to be most intense in

  19. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    Science.gov (United States)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  20. Corneal Collagen Cross-Linking with Hypoosmolar Riboflavin Solution in Keratoconic Corneas

    Directory of Open Access Journals (Sweden)

    Shaofeng Gu

    2014-01-01

    Full Text Available Purpose. To report the 12-month outcomes of corneal collagen cross-linking (CXL with a hypoosmolar riboflavin and ultraviolet-A (UVA irradiation in thin corneas. Methods. Eight eyes underwent CXL using a hypoosmolar riboflavin solution after epithelial removal. The corrected distance visual acuity (CDVA, manifest refraction, the mean thinnest corneal thickness (MTCT, and the endothelial cell density (ECD were evaluated before and 6 and 12 months after CXL. Results. The MTCT was 413.9 ± 12.4 μm before treatment and reduced to 381.1 ± 7.3 μm after the removal of the epithelium. After CXL, the thickness decreased to 410.3 ± 14.5 μm at the last follow-up. Before treatment, the mean K-value of the apex of the keratoconus corneas was 58.7 ± 3.5 diopters and slightly decreased (57.7 ± 4.9 diopters at 12 months. The mean CDVA was 0.54 ± 0.23 logarithm of the minimal angle of resolution before treatment and increased to 0.51 ± 0.21 logarithm at the last follow-up. The ECD was 2731.4 ± 191.8 cells/mm2 before treatment and was 2733.4 ± 222.6 cells/mm2 at 12 months after treatment. Conclusions. CXL with a hypoosmolar riboflavin in thin corneas seems to be a promising method for keratoconic eyes with the mean thinnest corneal thickness less than 400 μm without epithelium.

  1. Excitation by irritant chemical substances of sensory afferent units in the cat's cornea.

    Science.gov (United States)

    Belmonte, C; Gallar, J; Pozo, M A; Rebollo, I

    1991-01-01

    1. Single-unit electrical activity was recorded from thin myelinated sensory nerve fibres innervating the cornea of deeply anaesthetized cats. 2. Based on their responses to mechanical (calibrated von Frey hairs), chemical (10 mM-acetic acid and/or 616 mM-NaCl) and thermal (ice-cold or heat up to 51 degrees C) stimuli, corneal A delta fibres were classified as polymodal nociceptors (63%), high-threshold mechanoceptors (22%) and mechano-heat nociceptors (15%). Thin myelinated fibres responding only to cold were found in the limbus of the eye. 3. Application of 10 mM-acetic acid on the corneal surface for 30 s evoked in polymodal fibres a brisk discharge of impulses often followed by a low-frequency impulse activity. NaCl (616 mM) produced a more gradual and sustained firing response. 4. The responses of polymodal fibres to acid were proportional to extracellular pH values (pH range: 4.5-6.0). After sensitization to repeated heating, most mechano-heat units developed a sensitivity to acidic stimulation. 5. Topical 0.33 mM-capsaicin excited polymodal nociceptors of the cornea; 5 min after capsaicin about 15% of these fibres were inactivated to all subsequent stimuli. In the rest of the fibres, chemical and thermal sensitivity disappeared after 0.33-3.3 mM-capsaicin, but mechanosensitivity was preserved. 6. Corneal mechanoceptors and limbal cold receptors were not affected by capsaicin (up to 33 mM). 7. These experiments demonstrate that the cornea of the cat is innervated by polymodal as well as mechanoceptive A delta nociceptors. In polymodal nociceptive fibres, mechanical and chemical sensitivities appear to be subserved by separate transduction mechanisms. PMID:1890657

  2. Effects of Er:YAG lasers of different pulse widths on rabbit corneas

    Science.gov (United States)

    Lian, Jing-cai; Wang, Kang-sun

    1995-05-01

    Photorefractive keratectomy with 193 nm excimer laser has been used for the treatment of myopia. Because of its big size and hazards of toxic gas, a 2.94 micrometers Er:YAG laser had been suggested for this purpose. The aims of the present study was to investigate the thermal effects in the corneas after exposed to Er:YAG laser with different pulse widths. 14 New- Zealand white rabbits were divided into two groups. In the first group, the corneas were irradiated by a normal spiking mode Er:YAG laser with a pulse width of 150 microsecond(s) at the fluence of 585 approximately 697 mJ/cm2. In the second group, the corneas were exposed to a Q-switch mode of Er:YAG laser with a pulse width of 700 ns at the fluence of 524 approximately 562 mJ/cm2 and 700 approximately 850 mJ/cm2. The eyes were followed up 5 months and enucleated for histopathologic inspection 30 minutes, 2 weeks, 1, 2 and 5 months postoperatively. Corneal stromal hazes in the first group were more obvious than that in the second group. The most significant haze was observed two weeks after treatments and disappeared at two months. The adjacent thermal damage in the first group were much wider than that in the second group. To minimize the thermal and shock wave effect, the Q-switch mode Er:YAG laser with pulse width around 700 ns is recommended for corneal surgery.

  3. Polymer Reinforced, Non-Brittle, Light-Weight Cryogenic Insulation for Reduced Life Cycle Costs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to fabricate a composite aerogel foam. This material is designed to be impact resistant, non-brittle, non-water-retaining and...

  4. Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel

    Science.gov (United States)

    Lucantonio, Alessandro; Noselli, Giovanni; Trepat, Xavier; Desimone, Antonio; Arroyo, Marino

    Brittle materials fracture under tensile or shear stress. When stress attains a critical threshold, crack propagation becomes unstable and proceeds dynamically. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are radically modified when the material susceptible to cracking is bonded to a poroelastic medium, such as a hydrogel, a common situation in biological tissues. In particular, we show that the brittle material can fracture in compression and can resist cracking in tension, thanks to the hydraulic coupling with the hydrogel. In the case of multiple cracks, we find that localized fracture occurs when the permeability of the hydrogel is high, whereas decreased permeability leads to toughening by promoting multiple cracking. Our results may contribute to the understanding of fracture in biological tissues and provide inspiration for the design of tough, biomimetic materials.

  5. Methodology of thermal hydraulic analysis for substantiation of reactor vessel brittle fracture resistance

    International Nuclear Information System (INIS)

    Methodology of thermal hydraulic analysis for substantiation of reactor vessel brittle fracture resistance is presented in this article. This procedure was used during PTS study for SUNPP Unit 1 and represents generally accepted international approach.

  6. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  7. Brittle versus ductile behaviour of nanotwinned copper: A molecular dynamics study

    International Nuclear Information System (INIS)

    Nanotwinned copper (Cu) exhibits an unusual combination of ultra-high yield strength and high ductility. A brittle-to-ductile transition was previously experimentally observed in nanotwinned Cu despite Cu being an intrinsically ductile metal. However, the atomic mechanisms responsible for brittle fracture and ductile fracture in nanotwinned Cu are still not clear. In this study, molecular dynamics (MD) simulations at different temperatures have been performed to investigate the fracture behaviour of a nanotwinned Cu specimen with a single-edge-notched crack whose surface coincides with a twin boundary. Three temperature ranges are identified, indicative of distinct fracture regimes, under tensile straining perpendicular to the twin boundary. Below 1.1 K, the crack propagates in a brittle fashion. Between 2 K and 30 K a dynamic brittle-to-ductile transition is observed. Above 40 K the crack propagates in a ductile mode. A detailed analysis has been carried out to understand the atomic fracture mechanism in each fracture regime

  8. Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating

    Science.gov (United States)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2014-09-01

    The complex morphology of the apposition compound eyes of insects of many species provides them a wide angular field of view. This characteristic makes these eyes attractive for bioreplication as artificial sources of light. The cornea of a blowfly eye was conformally coated with a fluorescent thin film with the aim of achieving wide field-of-view emission. On illumination by shortwave-ultraviolet light, the conformally coated eye emitted visible light whose intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  9. Radiosensitivity of normal, regenerating and embryonic epithelium of the eye cornea in mice

    International Nuclear Information System (INIS)

    A quantitative cytogenetic study was performed with regard to the effect of X-rays on normal and regenerating epithelia of the eye cornea in adult and newborn C57Bl mice. The regenerating and embryonic epithelia were shown to be more stable than the normal epithelium in adult mice. This phenomenon was revealed in considerably shorter blocking of mitoses after irradiation and in lesser number of cells with chromosomal aberrations. The resultant data showed the radiosensitivity of the tissue with various functional states to have been determined by structural and metabolic features, rather than by proliferation intensity

  10. Proliferative activity of endotheliocytes of growing capillaries of the rabbit cornea

    Energy Technology Data Exchange (ETDEWEB)

    Gurina, O.Yu.; Mamontov, S.G.; Banin, V.V.

    1987-10-01

    The authors studied the intensity of DNA synthesis by cells of newly formed capillaries, growing in the rabbit cornea, after infliction of a silver nitrate burn and local application of colchicine. The intensity of capillary growth was investigated during stimulation and a combination of the burn with colchicine. Changes in activity of DNA synthesis by the endotheliocytes of newly formed capillaries during exposure throughout growth were also investigated. The intensity of cell proliferation was studied by measuring the incorporation of tritium-labelled thymidine into the endotheoiocyte nuclei.

  11. Comparison of Scheimpflug imaging parameters between steep and keratoconic corneas of Caucasian eyes

    Directory of Open Access Journals (Sweden)

    Huseynova T

    2016-04-01

    Full Text Available Tukezban Huseynova,1 Farah Abdulaliyeva,2 Michele Lanza3 1Briz-L Eye Clinic, 2National Ophthalmology Center, Baku, Azerbaijan; 3Second University of Naples, Caserta, Campania, Italy Purpose: To compare the keratometric and pachymetric parameters of healthy eyes with those affected by steep cornea and keratoconus (KC using Scheimpflug camera.Setting: Briz-L Eye Clinic, Baku, Azerbaijan.Design: A cross-sectional study.Methods: In this study, 49 KC (Amsler–Krumeich stage 1 eyes and 36 healthy eyes were enrolled. A complete ophthalmic evaluation and a Scheimpflug camera scan were performed in every eye included in the study. Tomographic parameters such as parameters from the front and back cornea, maximum keratometry reading (Kmax, corneal volume (CV, anterior chamber volume (ChV, anterior chamber depth (ACD, anterior chamber angle (AC angle, keratometric power deviation (KPD, maximum front elevation (Max FE, and maximum back elevation (Max BE, as well as pachymetric progression indices (PPI, Ambrosio relational thickness (ART, index of surface variance (ISV, index of vertical asymmetry (IVA, center keratoconus index (CKI, index of height asymmetry (IHA, index of height decentration (IHD, and radius minimum (RM were collected and statistically compared between the two groups.Results: PPI, ART, ISV, IVA, CKI, IHA, IHD, and RM parameter values were significantly different (P<0.05 between the KC and healthy eyes. There were no significant differences in K mean and Q values of the frontal corneal parameters, as well as in Kmax, AC angle, RM, back, and front astigmatism, between stage 1 keratoconic and normal Caucasian eyes with steep cornea. All other parameters such as K mean and Q values of the back corneal parameters, Max FE, Max BE, ACD, ChV, and CV showed significant differences between the groups (P<0.05 for all. Conclusion: Scheimpflug imaging is able to detect corneal morphological differences between stage 1 KC eyes and healthy eyes with

  12. Changes in thickness of each layer of developing chicken cornea after administration of caffeine.

    OpenAIRE

    Hieronim Bartel; Dariusz Tosik; Monika Kujawa-Hadryś

    2010-01-01

    The aim of the study was the presentation of changes in thickness of each layer of a developing cornea, that came into being under an influence of caffeine which was administered to chicken embryos. Research materials were 26 chicken embryos from breeding eggs that had been incubated. Breeding eggs were divided into two groups: control (n=30) in which Ringer liquid was given, and experimental (n=30) in which teratogenic dose of caffeine was administrated - 3.5 mg/egg. In 36th hour of incubati...

  13. Evaluation of the Interfacial Adhesion between Brittle Coating and Ductile Substrate by Cross-Sectional Indention

    Institute of Scientific and Technical Information of China (English)

    SUJian-yu; ZHANGKun; CHENGuang-nan

    2004-01-01

    The cross-sectional indentation method is extended to evaluate the interracial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interracial separation occurs due to the edge chipping of brittle coating. The comesponding models are established to elucidate interracial separation processes. This work further highlights the advantages and potential of this novel indentation method.

  14. Evaluation of the Interfacial Adhesion between Brittle Coating and Ductile Substrate by Cross-Secitional Indention

    Institute of Scientific and Technical Information of China (English)

    SU Jian-yu; ZHANG Kun; CHEN Guang-nan

    2004-01-01

    The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method.

  15. Nonadiabatic Study of Dynamic Electronic Effects during Brittle Fracture of Silicon

    OpenAIRE

    Theofanis, Patrick L.; Jaramillo-Botero, Andres; Goddard, William A.; Xiao, Hai

    2012-01-01

    It has long been observed that brittle fracture of materials can lead to emission of high energy electrons and UV photons, but an atomistic description of the origin of such processes has lacked. We report here on simulations using a first-principles-based electron force field methodology with effective core potentials to describe the nonadiabatic quantum dynamics during brittle fracture in silicon crystal. Our simulations replicate the correct response of the crack tip velocity to the thresh...

  16. Experimental study on the physical and chemical properties of the deep hard brittle shale

    OpenAIRE

    Jian Xiong; Xiangjun Liu; Lixi Liang; Yi Ding; Meng Lei

    2016-01-01

    In the hard brittle shale formation, rock composition, physical and chemical properties, mechanics property before and after interacting with fluid have direct relation with borehole problems, such as borehole wall collapse, mud loss, hole shrinkage. To achieve hard brittle shale micro-structure, physical–chemical properties and mechanics property, energy-dispersive X-ray diffraction (XRD), cation exchange capacity experiment and hardness test are conducted. The result of laboratory experimen...

  17. Hemolytic and cytotoxic effects of saponin like compounds isolated from Persian Gulf brittle star (Ophiocoma erinaceus)

    OpenAIRE

    Elaheh Amini; Mohammad Nabiuni; Javad Baharara; Kazem Parivar; Javad Asili

    2014-01-01

    Objective: To isolate and characterize the saponin from Persian Gulf brittle star (Ophiocoma erinaceus) and to evaluate its hemolytic and cytotoxic potential. Methods: In an attempt to prepare saponin from brittle star, collected samples were minced and extracted with ethanol, dichloromethane, n-buthanol. Then, concentrated n-butanol extract were loaded on HP-20 resin and washed with dionized water, 80% ethanol and 100% ethanol respectively. Subsequently, detection of saponin w...

  18. Development of a brittle fracture acceptance criterion for the International Atomic Energy Agency (IAEA)

    International Nuclear Information System (INIS)

    An effort has been undertaken to develop a brittle fracture acceptance criterion for structural components of nuclear material transportation casks. The need for such a criterion was twofold. First, new generation cask designs have proposed the use of ferritic steels and other materials to replace the austenitic stainless steel commonly used for structural components in transport casks. Unlike austenitic stainless steel which fails in a high-energy absorbing, ductile tearing mode, it is possible for these candidate materials to fail via brittle fracture when subjected to certain combinations of elevated loading rates and low temperatures. Second, there is no established brittle fracture criterion accepted by the regulatory community that covers a broad range of structural materials. Although the existing IAEA Safety Series number-sign 37 addressed brittle fracture, its the guidance was dated and pertained only to ferritic steels. Consultant's Services Meetings held under the auspices of the IAEA have resulted in a recommended brittle fracture criterion. The brittle fracture criterion is based on linear elastic fracture mechanics, and is the result of a consensus of experts from six participating IAEA-member countries. The brittle fracture criterion allows three approaches to determine the fracture toughness of the structural material. The three approaches present the opportunity to balance material testing requirements and the conservatism of the material's fracture toughness which must be used to demonstrate resistance to brittle fracture. This work has resulted in a revised Appendix IX to Safety Series number-sign 37 which will be released as an IAEA Technical Document within the coming year

  19. Brittle fracture resistance of anti-corrosive cladding on pressure vessel

    International Nuclear Information System (INIS)

    This paper reports the estimation of brittle fracture resistance of austenitic-ferritic anticorrosive cladding metal, produced by submerged arc welding with the use of strip electrodes. The dependence of impact toughness and temperature both in as produced condition and after the exposure to a neutron fluence together with the temperature dependence of cladding metal static crack resistance were determined. The transition from ductile to brittle condition for cladding metal was found to be typical for a ferritic-perlitic steel

  20. A new approach to rock brittleness and its usability at prediction of drillability

    Science.gov (United States)

    Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Yaralı, Olgay

    2016-07-01

    Rock brittleness is one of the most important issues in rock drilling and cutting. The relations between drillability and brittleness will assist engineers in excavation works. The demand for representative rock parameters related to planning of underground excavations is increasing, as these parameters constitute fundamental input for obtaining the most reliable cost and time estimates. In rock cutting mechanics, the effects of the rock and brittleness on the efficiency of drilling and excavation are examined by many researchers. In this study, 41 different rock types were tested in laboratory to investigate the relations between the drilling rate index and different brittleness values. Firstly, the relations defined in literature are tested. Strength tests are made according to International Society for Rock Mechanics standards. In addition Norwegian University of Science and Technology standards are used to determine drilling rate index. Then, a new brittleness index is proposed which is the arithmetic average of uniaxial compressive strength and tensile strength. Considering the regression analysis carried out, it was seen that the proposed formula showed good correlation for these samples handled in this study. As a result of this study, a high correlation is obtained between the proposed index and drilling rate index values (R:0.84). The results are found to be at least reliable as well as other brittleness equations given in literature.

  1. Influence of the He-Ne laser in different irradiation regimes on the cornea cells after ionizing irradiation

    International Nuclear Information System (INIS)

    A study was made on epithelium cells of the eye cornea in mices entering the first postradiation mitosis. The influence of laser rays acting in the course of each exposure during one and the same period of time, or continuously, or by pulses was compared. The effect of laser radiation was evaluated from the frequency of occurrence of cells with chromosomal aberrations, mitotic index, coefficient of mitosis phases. It has been established that pulse radiation of a helium-neon laser in a certain operation regime produces a sanitating effect on cells of eye cornea epithelium in white mice damaged by ionizing radiation. Cells being killed in the interphase were not revealed in epithelium of the eye cornea. It enables to conclude that the amount of aberrant mitoses decreases as a result of postradiation repair of cells damaged by ionizing radiation, but not as a result of their elimination

  2. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiehua [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China); Gao Chuan; Zhang Yansen [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wan Yizao, E-mail: yzwantju@yahoo.com [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072 (China); Research Institute of Composite Materials, Tianjin University, Tianjin 300072 (China)

    2010-01-01

    In order to investigate the potential use for bacterial cellulose (BC) as a novel artificial cornea replacement, BC/poly(vinyl alcohol) (BC/PVA) hydrogel composites were synthesized by freezing-thaw method. The BC/PVA composites were characterized by UV-Vis spectrophotometer (UV-Vis), X-ray diffraction (XRD), thermogravimetric (TG) analysis, mechanical property tests and scanning electron microscope (SEM) analyses. Our results showed that the resultant BC/PVA composites exhibited desirable properties as artificial cornea replacement biomaterial including high water content, high visible light transmittance and suitable UV absorbance, increased mechanical strength and appropriate thermal properties. Results of this work revealed that the BC/PVA composites exhibited some promising characteristics as artificial cornea composite material and may be improved further for its realistic applications.

  3. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus.

    Science.gov (United States)

    Aghamohammadzadeh, Hossein; Newton, Richard H; Meek, Keith M

    2004-02-01

    Many properties of connective tissues are governed by the organization of the constituent collagen. For example, the organization of collagen in the cornea and the limbus, where the cornea and sclera meet, is an important determinant of corneal curvature and hence of the eye's focusing power. We have used synchrotron X-ray scattering to map the orientation of the collagen fibrils throughout the human cornea, limbus, and adjacent sclera. We demonstrate a preferred orientation of collagen in the vertical and horizontal directions that is maintained to within about 1 mm from the limbus, where a circular or tangential disposition of fibrils occurs. The data are also used to map the relative distribution of both the total and the preferentially aligned collagen in different parts of the tissue, revealing considerable anisotropy. The detailed structural information provided is an important step toward understanding the shape and the mechanical properties of the tissue. PMID:14962385

  4. Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function

    DEFF Research Database (Denmark)

    Roos, Laura; Bertelsen, Birgitte; Harris, Pernille; Bygum, Anette; Jensen, Hanne; Grønskov, Karen; Tümer, Zeynep

    2015-01-01

    Background: Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is associated with homozygous or compound heterozygous mutations of the...... keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described. Case presentation: In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected...... individuals, hypotrichosis was found. KERA was screened for mutations using Sanger sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense variation...

  5. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial

    International Nuclear Information System (INIS)

    In order to investigate the potential use for bacterial cellulose (BC) as a novel artificial cornea replacement, BC/poly(vinyl alcohol) (BC/PVA) hydrogel composites were synthesized by freezing-thaw method. The BC/PVA composites were characterized by UV-Vis spectrophotometer (UV-Vis), X-ray diffraction (XRD), thermogravimetric (TG) analysis, mechanical property tests and scanning electron microscope (SEM) analyses. Our results showed that the resultant BC/PVA composites exhibited desirable properties as artificial cornea replacement biomaterial including high water content, high visible light transmittance and suitable UV absorbance, increased mechanical strength and appropriate thermal properties. Results of this work revealed that the BC/PVA composites exhibited some promising characteristics as artificial cornea composite material and may be improved further for its realistic applications.

  6. Assessing the viscoelasticity of green light induced CXL in the rabbit cornea by noncontact OCE and FEM

    Science.gov (United States)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Vantipalli, Srilatha; Aglyamov, Salavat R.; Wu, Chen; Liu, Chih-hao; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    The biomechanical properties of the cornea have a profound influence on its health and function. Rose bengal/green light corneal collagen cross-linking (RGX) has been proposed as an alternative to UV-A Riboflavin collagen cross-linking (UV-CXL) for treatment of keratoconus. However, the effects of RGX on the biomechanical properties of the cornea are not as well understood as UV-CXL. In this work, we demonstrate the feasibility of quantifying the viscoelasticity of the rabbit cornea before and after RGX using a noncontact method of phase-stabilized swept source optical coherence elastography (PhS-SSOCE) and finite element modeling (FEM). Viscoelastic FE models of the corneas were constructed to simulate the elastic wave propagation based on the OCE measurements. In addition, the effect of the fluid-structure interface (FSI) between the corneal posterior surface and aqueous humor on the elastic wave group velocity was also investigated. The effect of the FSI was first validated by OCE measurements and FEM simulations on contact lenses, and the OCE and FEM results were in good agreement. The Young's modulus of the rabbit cornea before RGX was assessed as E=80 kPa, and the shear viscosity was η=0.40 Pa•s at an intraocular pressure (IOP) of 15 mmHg. After RGX, the Young's modulus increased to E=112 kPa and shear viscosity decreased to η=0.37 Pa•s. Both the corneal OCE experiments and the FE simulations also demonstrated that the FSI significantly reduced the group velocity of the elastic wave, and thus, the FSI should be considered when determining the biomechanical properties of the cornea.

  7. Characterization of Ocular Iontophoretic Drug Transport of Ionic and Non-ionic Compounds in Isolated Rabbit Cornea and Conjunctiva.

    Science.gov (United States)

    Sekijima, Hidehisa; Ehara, Junya; Hanabata, Yusuke; Suzuki, Takumi; Kimura, Soichiro; Lee, Vincent H L; Morimoto, Yasunori; Ueda, Hideo

    2016-06-01

    Ocular iontophoresis (IP) in isolated rabbit cornea and conjunctiva was examined in terms of transport enhancement, tissue viability and integrity using electrophysiological parameters by the Ussing-type chamber technique. Lidocaine hydrochloride (LC, a cationic compound), sodium benzoate (BA, anionic compound), and fluorescein isothiocyanate labeled dextran (molecular weight 4400 Da, FD-4, hydrophilic large compound) were used as model permeants. Direct electric current was applied at 0.5-5.0 mA/cm(2) for the cornea and 0.5-20 mA/cm(2) for the conjunctiva for 30 min. LC and BA fluxes across the cornea and conjunctiva were significantly increased by the application of electric current up to 2.3- and 2.5-fold and 4.0- and 3.4-fold, respectively, and returned to their baseline level on stopping the current. Furthermore, a much higher increase by IP application was obtained for the FD-4 transport. The increased FD-4 flux in the conjunctiva returned to baseline on stopping the current, whereas the flux in the cornea was sustained at a higher level after stopping the current. The transepithelial electric resistance of the cornea and conjunctiva was lowered by electric current application but fully recovered after stopping the current up to 2.0 mA/cm(2) for the cornea and 10 mA/cm(2) for the conjunctiva, suggesting that the corneal and conjunctival viability and integrity are maintained even after application of these current densities. These results indicate that ocular IP may be a useful non-invasive technique to achieve drug delivery of hydrophilic large molecules into the eyes. PMID:27040754

  8. Nucleic acid-amplification testing for hepatitis B in cornea donors.

    Science.gov (United States)

    Fornés, Maria Gema; Jiménez, Maria Angustias; Eisman, Marcela; Gómez Villagrán, Jose Luis; Villalba, Rafael

    2016-06-01

    Careful donor selection and implementation of tests of appropriate sensitivity and specificity are of paramount importance for minimizing the risk of transmitting infectious diseases from donors to corneal allograft recipients. Reported cases of viral transmission with corneal grafts are very unusual. Nevertheless potential virus transmission through the engraftment cannot be ruled out. According to European Guideline 2006/17/EC, screening for antibodies for Hepatitis B core antigen (anti HBc) is mandatory, and when this test is positive, some criteria must be established before using corneas. Despite the continuous progress in screening tests, donors carrying an occult hepatitis B infection (OBI) can cause transplant-transmitted hepatitis B. To date, Nucleic Acid Testing (NAT) is not an obligatory assay in corneal tissue setting neither in our country nor in the rest of European countries. Herein, we report three cornea donors that were rejected with the diagnosis of OBI through the testing of sensitive NAT and the serological profile of Hepatitis B virus. The aim of this report is to emphasize the need to include NAT in new reviews of EU Tissues and Cells Directives in order to increase level of security in tissue donation as well as not to reject a high number of donors with isolated profile of anti HBc in geographical areas with high prevalence of Hepatitis B, that could be rejected without a true criterion of Hepatitis B infection. PMID:26685699

  9. Mass fabrication technique for polymeric replicas of arrays of insect corneas

    International Nuclear Information System (INIS)

    Motivated to develop a technique for producing many high-fidelity replicas for the sacrifice of a single biotemplate, we combined a modified version of the conformal-evaporated-film-by-rotation technique and electroforming to produce a master negative made of nickel from a composite biotemplate comprising several corneas of common blowflies. This master negative can function as either a mold for casting multiple replicas or a die for stamping multiple replicas. An approximately 250 nm thick nickel film was thermally deposited on an array of blowfly corneas to capture the surface features with high fidelity and then a roughly 60 μm thick structural layer of nickel was electroformed onto the thin layer to give it the structural integrity needed for casting or stamping. The master negative concurrently captured the spatial features of the biotemplate at length scales ranging from 200 nm to a few millimeters. Polymer replicas produced thereafter by casting did faithfully reproduce features of a few micrometers and larger in dimension.

  10. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  11. First application of laser welding in clinical transplantation of the cornea

    Science.gov (United States)

    Pini, Roberto; Menabuoni, Luca; Starnotti, Lorenzo

    2001-05-01

    After a 4-year-long pre-clinical experimentation carried out at first on enucleated eyes and then on animal models, we applied a new procedure of laser welding of the cornea on voluntary patients. The welding technique is based on controlled irradiation of the cornea by diode laser radiation (805 nm) operating at low power (60-90 mW) in association with a photoenhancing chromophore applied locally. The welding effect is very effective and selective, because it takes place only in the cut where chromophore is present, while the contiguous tissue remains completely untouched. In the clinical phase, this technique was firstly tested in corneal cuts of increasing length on 25 patients subjected to facoemulsification of the cataract, by both sclero-corneal and corneal tunnels, and to extracapsular cataract extraction by sclero-corneal and corneal cuts. As previously confirmed by histological analysis performed on animal samples, we observed in humans too an early and effective healing process, with a sensible reduction of the post-operatory astigmatism. Based on these positive results, we finally arrived at the first application of diode laser- assisted corneal welding to penetrating keratoplasty (corneal transplantation), where this technique has been employed as far as now in 3 cases to substitute the application of the continuous suture.

  12. The ultrastructural alterations in rat corneas with experimentally-induced diabetes mellitus

    International Nuclear Information System (INIS)

    To examine the ultrastructural changes of rat corneas in streptozotocin (STZ) induced diabetes mellitus and the and the follow-up insulin treatment. Sprague-Dawley type rats were used for experimental procedures during the period from January to April 2003 at Baskent University, Ankara, Turkey. Rats were studied in four groups: group 1: controls, group 2 sham controls (single dose IV sodium citrate); group 3 STZ-induced diabetes mellitus (Single dose 45mg/kg STZ intravenously), group 4: diabetes mellitus + insulin treatment (8U/day). We observed degenerative changes in the epithelial layer, stromal keratocytes and endothelial cells in diabetic group. In contrast, the corneal layers have revealed positive alterations in the insulin-treated group. The statistical analysis, showed significant narrowing in the epithelial layer in the diabetic group (p0.02), whereas thickening was observed in the epithelial basement membrane and Descemet's membrane (p=0.002). It was determined that that diabetes mellitus causes degenerative changes in cornea, which are positively influenced by short-term insulin treatment. (author)

  13. The Effect of Actinoquinol with Hyaluronic Acid in Eye Drops on the Optical Properties and Oxidative Damage of the Rabbit Cornea Irradiated with UVB Rays

    Czech Academy of Sciences Publication Activity Database

    Čejka, Čestmír; Luyckx, J.; Ardan, Taras; Pláteník, J.; Širc, Jakub; Michálek, Jiří; Čejková, Jitka

    2010-01-01

    Roč. 86, č. 6 (2010), s. 1294-1306. ISSN 0031-8655 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40500505 Keywords : cornea * UVB-irradiated cornea * UV rays Subject RIV: FF - HEENT, Dentistry Impact factor: 2.679, year: 2010

  14. An active artificial cornea with the function of inducing new corneal tissue generation in vivo-a new approach to corneal tissue engineering

    International Nuclear Information System (INIS)

    An active artificial cornea which can perform the function of inducing new cornea generation in vivo but does not need culture cells in vitro and which has similar optical and mechanical properties to those of the human cornea was constructed. An animal keratoplasty experiment using the artificial cornea as the implant showed that the animals' corneas could keep smooth surface and clear stroma postoperatively, and that the repopulation of the host's keratocytes, the degradation of the implant and new corneal tissue generation were completed at 5-6 months after surgery. Such an artificial cornea has several advantages over other corneal equivalents constructed in the typical way of tissue engineering: in having similar mechanical and optical properties to those of the human cornea and with no exogenetic cells, it can be used universally in different implantation surgeries without immunoreaction; it is easy to prepare and process into different shapes and sizes on a large scale, and suitable for long-distance transportation and long-term storage. All these characteristics make it a new approach to cornea tissue engineering having potential in many clinical applications

  15. Quantitative comparisons of analogue models of brittle wedge dynamics

    Science.gov (United States)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  16. Antiphospholipid Syndrome

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Antiphospholipid Syndrome Information Page Synonym(s): Hughes Syndrome Table of Contents ( ... research is being done? Clinical Trials What is Antiphospholipid Syndrome? Antiphospholipid syndrome (APS) is an autoimmune disorder caused ...

  17. New approaches for evaluation of brittle strength of reactor pressure vessels

    International Nuclear Information System (INIS)

    Based on the Master curve conception, condition of brittle strength is formulated for heterogeneous distribution of stress intensity factor along crack front and non-monotonic, non-isothermic loading. This formulation includes the elaborated procedure for taking into account the effects of shallow cracks and biaxial loading on fracture toughness. It is concluded as follows: (1) A condition of brittle strength is formulated for reactor pressure vessel with crack-like flaw in probabilistic statement. As the condition of brittle strength it is taken condition Pf f(bar) where Pf is fracture probability, and Pf(bar) is a given level of fracture probability. Formulation of this condition is based on the weakest link model and takes into account a variation of the stress intensity factor KI and KIC along the crack front. (2) Dependencies are proposed which allow to take into account the shallow crack effect and the biaxial loading effect on fracture toughness of reactor pressure vessel steels. (3) Using approaches presented in the present paper allows one to decrease conservatism and to increase adequacy of evaluations of brittle strength of reactor pressure vessels. Now these approaches have been included in Russian Standard on evaluation of brittle fracture of RPV of WWER type

  18. Ultraprecision machining of micro-structured functional surfaces on brittle materials

    International Nuclear Information System (INIS)

    Ultraprecision micro-structured functional surfaces on hard and brittle materials, e.g. ceramic and glass, are gaining increasing application in a range of areas such as engineering optics and semiconductor and biomedical products. However, due to their tendency of being damaged in brittle fracture in machining, it is challenging to achieve both a high surface finish and complex surface shapes. In this paper, ultraprecision machining of micro-structured functional surfaces on brittle materials by fast tool servo diamond turning is studied. A machining model has been developed to ensure ductile regime machining of the brittle material, in which the material is removed by both plastic deformation and brittle fracture, but the cracks produced are prevented from being extended into the finished surface. Based on the model, an iterative numerical method has been proposed to predict the maximum feed rate for producing crack-free micro-structured surfaces. Machining experiments on typical micro-structured functional surfaces have been carried out to validate the effectiveness of the proposed method for producing ultraprecision micro-structured functional surfaces

  19. Brittle fracture of T91 steel in liquid lead–bismuth eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Changqing, E-mail: Changqing.ye@ed.univ-lille1.fr; Vogt, Jean-Bernard, E-mail: jean-bernard.vogt@univ-lille1.fr; Proriol-Serre, Ingrid, E-mail: ingrid.proriol-serre@univ-lille1.fr

    2014-12-15

    Highlights: • Tempering temperature is important for LBE embrittlement occurrence. • Brittle behaviour in LBE evidenced by small punch test and fatigue test. • Brittle behaviour in low oxygen LBE observed for low loading rate. - Abstract: The mechanical behaviour of the T91 martensitic steel has been studied in liquid lead–bismuth eutectic (LBE) and in inert atmosphere. Several conditions were considered to point out the most sensitive embrittling factors. Smooth and notched specimens were employed for respectively monotonic and cyclic loadings. The present investigation showed that T91 appeared in general as a ductile material, and became brittle in the considered conditions only if at least tests were performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement of T91 in LBE. For the standard heat treatment condition, loading monotonically the T91 very slowly instead of rapidly in LBE resulted in brittle fracture. Also, under cyclic loading, the crack propagated in a brittle manner in LBE.

  20. Brittle Rock Modeling Approach and its Validation Using Excavation-Induced Micro-Seismicity

    Science.gov (United States)

    Ma, Chun-Chi; Li, Tian-Bin; Xing, Hui-Lin; Zhang, Hang; Wang, Min-Jie; Liu, Tian-Yi; Chen, Guo-Qing; Chen, Zi-Quan

    2016-08-01

    With improvements to the bonded-particle model, a custom indicator of crack intensity is introduced to grade rock fractures accurately. Brittle fracturing of rock mass is studied using the bonded-particle model; here, "brittle" refers to the process where more energy is released towards making particles collide and disperse, and hence results in the quick emergence of "chain cracks". Certain principles concerning how to construct brittle rock are then proposed. Furthermore, a modeling approach for brittle rocks based on the adaptive continuum/discontinuum (AC/DC) method is proposed to aid the construction of large-scale models of tunnel excavations. To connect with actual tunneling conditions, fundamental mechanical properties, the mechanism for brittle fracturing, the joint distribution, and the initial stress field are considered in the modeling approach. Results from micro-seismic monitoring of a tunnel excavation confirmed the suitability of this modeling approach to simulate crack behavior, and results show that simulated cracking exhibit similar trends (evolution, location, and intensity) with micro-seismic cracking.

  1. Global and local contributions to surface curva- ture of healthy corneas

    Directory of Open Access Journals (Sweden)

    Alan Rubin

    2012-12-01

    Full Text Available This paper demonstrates for several healthy eyes the application of a simple model to understanding local and global contributions to short-term variation in anterior and posterior corneal curvature. Multiple axial anterior and posterior corneal radii and central corneal thicknesses for the right eyes of 10 young subjects were determined over time using a rotating Scheimpflug camera (Oculus Pentacam. The axial radii were transformed to corneal powers, and also to curvatures that were referred to a mid-corneal surface such that local and global contributions to short-term variation could be analyzed quantitatively.When variation of the anterior and posterior corneal surfaces of several healthy eyes are studied in terms of curvatures (rather than powers it is the posterior surfaces that are more variable withthe global or macroscopic rather than local effects dominating. (Harris and Gillan found the same for an eye with mild keratoconus. This finding is opposite to that when variation is considered in terms of dioptric power where the anterior corneal surface usually appears more variable. Possible reasons for this finding includes firstly that the posterior corneal surface has to be measured through the air-tear interface and anterior corneal surface,and thus some uncertainty in measurements of the posterior surface may relate to this limitation. Secondly, no attempt was made here to mathematically align the multiple surfaces as determined per eye and thus we cannot be certain that precisely the same central corneal region was measured each time.Investigators need to carefully consider whether they are more interested in the optical or physical nature of variation in surfaces such as the cornea since studies of the optical effects require theanalysis to be performed in terms of dioptric powers and  symmetric dioptric power space whereas studies of physical variation in the topography of the cornea and the possible reasons for such variability

  2. Modeling of ultrashort pulsed laser irradiation in the cornea based on parabolic and hyperbolic heat equations using electrical analogy

    Science.gov (United States)

    Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.

    2014-03-01

    Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.

  3. Fibre optic spectrophotometry for the in vitro evaluation of ultraviolet radiation (UVR) spectral transmittance of rabbit corneas

    International Nuclear Information System (INIS)

    A fibre optic spectrophotometer front-end system for measuring corneas to overcome shortcomings associated with existing instruments was tested. The system allowed prompt measurement postmortem, minimizing beam pathlength to reduce the effects of scatter and unwanted refraction and eliminated optical interfaces and cuvette media. Rabbit corneas were excised immediately postmortem and placed on a detecting fibre optic coupled to an Ocean Optics spectrophotometer and illuminated by a deuterium–halogen source. The compact instrument with its small beam size allowed tissue profiling at test points across the corneal surface and efficient interchange for comparison of different tissues. This simplified system operation allowed rapid tissue altering to study induced changes on transmittance. The corneal transmittance data showed a consistent sharp cut-off at 320 nm in the ultraviolet radiation (UVR) spectrum, which decayed rapidly from postmortem swelling. Inter- and intra-corneal consistency was demonstrated by comparing data from different regions of the same cornea and those from opposite eyes. Changes to the spectra, particularly in the UVB below 300 nm, were evident when the corneal epithelium was removed, indicating that this layer is not the only corneal UVR filter. The new system reduced much of the variability associated with previous methods, as it rapidly measured corneal transmittance postmortem. Data are in broad agreement with published transmittance curves. The removal of the corneal epithelium revealed a substantial stromal contribution to the overall corneal UVR absorption, suggesting that corneas with pathologically or iatrogenically thinned stromas are less effective UVR blockers

  4. Collection, processing and testing of bone, corneas, umbilical cord blood and haematopoietic stem cells by European Blood Alliance members

    DEFF Research Database (Denmark)

    Närhi, M; Natri, O; Desbois, I;

    2013-01-01

    A questionnaire study was carried out in collaboration with the European Blood Alliance (EBA) Tissues and Cells (T&C) working group. The aim was to assess the level of involvement and commonality of processes on the procurement, testing and storage of bone, corneas, umbilical cord blood (UCB) and...

  5. Non-invasive sensor for determining functional characteristics of the cornea, device including said sensor and use thereof

    OpenAIRE

    Guimera Brunet, Antoni; Villa Sanz, Rosa; Gabriel Buguna, Gemma; Maldonado, Miguel José

    2010-01-01

    [EN] The invention relates to a sensor and a device including said sensor for non-invasively obtaining data that can be used to detennine the functional characteristics of the cornea, in particular to establish a correlation between the impedance to different frequencies and the penneability of the endothelium and the epithelium and the hydration level ofthe stroma.

  6. Keeping an Eye on Decellularized Corneas: A Review of Methods, Characterization and Applications

    Directory of Open Access Journals (Sweden)

    Andrew Hopkinson

    2013-07-01

    Full Text Available The worldwide limited availability of suitable corneal donor tissue has led to the development of alternatives, including keratoprostheses (Kpros and tissue engineered (TE constructs. Despite advances in bioscaffold design, there is yet to be a corneal equivalent that effectively mimics both the native tissue ultrastructure and biomechanical properties. Human decellularized corneas (DCs could offer a safe, sustainable source of corneal tissue, increasing the donor pool and potentially reducing the risk of immune rejection after corneal graft surgery. Appropriate, human-specific, decellularization techniques and high-resolution, non-destructive analysis systems are required to ensure reproducible outputs can be achieved. If robust treatment and characterization processes can be developed, DCs could offer a supplement to the donor corneal pool, alongside superior cell culture systems for pharmacology, toxicology and drug discovery studies.

  7. Keeping an eye on decellularized corneas: a review of methods, characterization and applications.

    Science.gov (United States)

    Wilson, Samantha L; Sidney, Laura E; Dunphy, Siobhán E; Rose, James B; Hopkinson, Andrew

    2013-01-01

    The worldwide limited availability of suitable corneal donor tissue has led to the development of alternatives, including keratoprostheses (Kpros) and tissue engineered (TE) constructs. Despite advances in bioscaffold design, there is yet to be a corneal equivalent that effectively mimics both the native tissue ultrastructure and biomechanical properties. Human decellularized corneas (DCs) could offer a safe, sustainable source of corneal tissue, increasing the donor pool and potentially reducing the risk of immune rejection after corneal graft surgery. Appropriate, human-specific, decellularization techniques and high-resolution, non-destructive analysis systems are required to ensure reproducible outputs can be achieved. If robust treatment and characterization processes can be developed, DCs could offer a supplement to the donor corneal pool, alongside superior cell culture systems for pharmacology, toxicology and drug discovery studies. PMID:24956084

  8. Some elementary mechanics of explosive and brittle failure modes in prestressed containments

    International Nuclear Information System (INIS)

    Fundamental concepts related to pneumatic pressurization and explosive behaviour of containment structures are reviewed. It is shown that explosive behaviour occurs whenever a pressure equal to the ultimate capacity of the structure is attained. The energy associated with hydraulic pressurization is bounded and shown to be orders of magnitude less than that associated with pneumatic pressurization. It is also shown that structural behaviour prior to attaining the ultimate load capacity is independent of the pressurized medium. The phenomenon of brittle fracture, as it relates to prestressed concrete containments, is explored. A theoretical technique of proportioning cross sections is developed to eliminate the possibility of catastrophic brittle tensile fractures. The possibility of brittle fractures being triggered by failure of some type of 'detail' is also examined. An attempt is made to identify the types of failures for which the state of the art may be inadequate to assess behaviour under overpressure conditions. (author)

  9. BRITTLE-DUCTILE TRANSITION OF PP/EPDM/ELASTOMERIC NANO-PARTICLE TERNARY BLENDS

    Institute of Scientific and Technical Information of China (English)

    Yan Xiao; Wen Cao; Ke Wang; Hong Tan; Qin Zhang; Rong-ni Du; Qiang Fu

    2006-01-01

    The brittle-ductile transition is a very important phenomenon for polymer toughening. Polypropylene (PP) is often toughened by using rubbers, e.g., ethylene-propylene diene monomer (EPDM) has often been used as a modifier. In this article, the toughening of PP by using a new kind of rubber, known as elastomeric nano-particle (ENP), and the brittleductile transition of PP/EPDM/ENP was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM contents. SEM experiment was carried out to investigate the etched and impact-fractured surfaces. ENP alone had no effect on the impact strength of PP, however, with the same EPDM content,PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and smaller interparticle distance in contrary to PP/EPDM binary blends, which promoted the brittle-ductile transition to occur earlier.

  10. Collagen Cross-linking in Keratoconus Patients with Thin Corneas: Short-Term Results

    Directory of Open Access Journals (Sweden)

    Nurullah Çağıl

    2012-10-01

    Full Text Available Pur po se: To study the effectiveness and safety of corneal collagen cross-linking with hypoosmolar riboflavin solution applied to keratoconus patients with thin corneas. Ma te ri al and Met hod: In this retrospective study, medical records of keratoconus patients planned for cross-linking surgery and having thinnest corneal thickness (TCT less than 400 μm after corneal epithelial removal were reviewed. There were 12 patients and 16 eyes in the study cohort. After the epithelium was removed, hypoosmolar solution was applied for 30 minutes and pachymetric measurements were taken. If corneal thickness became more than 400 μm, the cross-linking procedure was started; if not, hypoosmolar solution was continued until corneal thickness reached 400 μm. Maximum keratometry values (K Max, pachymetric measurements, uncorrected distance visual acuities (UDVA, and corrected distance visual acuities (CDVA were recorded. Comparison between preoperative measurements and measurements taken in sixth postoperative month were performed. Re sults: The mean TCT was 422.75±26.98 μm preoperatively (max: 450, min: 360. The mean TCT was reduced to 373.63±22.41 μm after epithelium was removed (max: 398, min: 325. There was a statistically significant difference between preoperative K max (62.62±5.09 and postoperative K max (61.55±5.80, (p=0.03. On the other hand, the difference between preoperative-postoperative UDVA (p=0.29 and preoperative-postoperative CDVA was not significant (p=058. There were no cases with significant corneal opacity or with any other complication. Dis cus si on: Corneal collagen cross-linking with hypoosmolar riboflavin solution in keratoconus patients with thin corneas is an effective procedure and can be considered as safe regarding preservation of visual acuities and absence of significant corneal opacity. (Turk J Ophthalmol 2012; 42: 316-20

  11. Amniotic membrane covering promotes healing of cornea epithelium and improves visual acuity after debridement for fungal keratitis

    Institute of Scientific and Technical Information of China (English)

    Bo; Zeng; Ping; Wang; Ling-Juan; Xu; Xin-Yu; Li; Hong; Zhang; Gui-Gang; Li

    2014-01-01

    AIM:To investigate the effect of amniotic membrane covering(AMC) on the healing of cornea epithelium and visual acuity for fungal keratitis after debridement.METHODS:Twenty fungal keratitis patients were divided into two groups randomly, the AMC group and the control group, ten patients each group. Both debridement of the infected cornea tissue and standard anti-fungus drugs treatments were given to every patients, monolayer amniotic membrane were sutured to the surface of the entire cornea and bulbar conjunctiva with 10-0 nylon suture for patients in the AMC group.The diameter of the ulcer was determined with slit lamp microscope and the depth of the infiltration was determined with anterior segment optical coherence tomography. Uncorrected visual acuity(UCVA) was tested before surgery and three month after healing of the epithelial layer. The healing time of the cornea epithelium, visual acuity(VA) was compared between the two groups using t- test.RESULTS:There was no statistical difference of the diameter of the ulcer, depth of the infiltration, height of the hypopyon and VA between the two groups beforesurgery(P >0.05). The average healing time of the AMC group was 6.89 ±2.98 d, which was statistically shorter than that of the control group(10.23±2.78d)(P <0.05).The average UCVA of the AMC group was 0.138 ±0.083,which was statistically better than that of the control group(0.053±0.068)(P <0.05).CONCLUSION:AMC surgery could promote healing of cornea epithelium after debridement for fungal keratitis and lead to better VA outcome.

  12. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas.

    Science.gov (United States)

    Yan, Chenxi; Gao, Nan; Sun, Haijing; Yin, Jia; Lee, Patrick; Zhou, Li; Fan, Xianqun; Yu, Fu-Shin

    2016-06-01

    Patients with diabetes mellitus often develop corneal complications and delayed wound healing. How diabetes might alter acute inflammatory responses to tissue injury, leading to delayed wound healing, remains mostly elusive. Using a streptozotocin-induced type I diabetes mellitus mice and corneal epithelium-debridement wound model, we discovered that although wounding induced marked expression of IL-1β and the secreted form of IL-1 receptor antagonist (sIL-1Ra), diabetes suppressed the expressions of sIL-1Ra but not IL-1β in healing epithelia and both in whole cornea. In normoglycemic mice, IL-1β or sIL-1Ra blockade delayed wound healing and influenced each other's expression. In diabetic mice, in addition to delayed reepithelization, diabetes weakened phosphatidylinositol 3-kinase-Akt signaling, caused cell apoptosis, diminished cell proliferation, suppressed neutrophil and natural killer cell infiltrations, and impaired sensory nerve reinnervation in healing mouse corneas. Local administration of recombinant IL-1Ra partially, but significantly, reversed these pathological changes in the diabetic corneas. CXCL10 was a downstream chemokine of IL-1β-IL-1Ra, and exogenous CXCL10 alleviated delayed wound healing in the diabetic, but attenuated it in the normal corneas. In conclusion, the suppressed early innate/inflammatory responses instigated by the imbalance between IL-1β and IL-1Ra is an underlying cause for delayed wound healing in the diabetic corneas. Local application of IL-1Ra accelerates reepithelialization and may be used to treat chronic corneal and potential skin wounds of diabetic patients. PMID:27109611

  13. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    Science.gov (United States)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  14. Estimating the mechanical properties of the brittle deformation zones at Olkiluoto

    International Nuclear Information System (INIS)

    In rock mechanics modelling to support repository design and safety assessment for the Olkiluoto site, it is necessary to obtain the relevant rock mechanics parameters, these being an essential pre-requisite for the modelling. The parameters include the rock stress state, the properties of the intact rock and the rock mass, and the properties of the brittle deformation zones which represent major discontinuities in the rock mass continuum. However, because of the size and irregularity of the brittle deformation zones, it is not easy to estimate their mechanical properties, i.e. their deformation and strength properties. Following Section 1 explaining the motivation for the work and the objective of the Report, in Sections 2 and 3, the types of fractures and brittle deformation zones that can be encountered are described with an indication of the mechanisms that lead to complex structures. The geology at Olkiluoto is then summarized in Section 4 within the context of this Report. The practical aspects of encountering the brittle deformation zones in outcrops, drillholes and excavations are described in Sections 5 and 6 with illustrative examples of drillhole core intersections in Section 7. The various theoretical, numerical and practical methods for estimating the mechanical properties of the brittle deformation zones are described in Section 8, together with a Table summarizing each method's advantages, disadvantages and utility in estimating the mechanical properties of the zones. We emphasise that the optimal approach to estimating the mechanical properties of the brittle deformation zones cannot be determined without a good knowledge, not only of each estimation method's capabilities and idiosyncrasies, but also of the structural geology background and the specific nature of the brittle deformation zones being characterized. Finally, in Section 9, a Table is presented outlining each method's applicability to the Olkiluoto site. A flowchart is included to

  15. Micromechanics-Based Permeability Evolution in Brittle Materials at High Strain Rates

    Science.gov (United States)

    Perol, Thibaut; Bhat, Harsha S.

    2016-08-01

    We develop a micromechanics-based permeability evolution model for brittle materials at high strain rates (≥ 100 s^{-1}). Extending for undrained deformation the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, we now relate the damage-induced strains to micro-crack aperture. We then use an existing permeability model to evaluate the permeability evolution. This model predicts both the percolative and connected regime of permeability evolution of Westerly Granite during triaxial loading at high strain rate. This model can simulate pore pressure history during earthquake coseismic dynamic ruptures under undrained conditions.

  16. A comparison study of Riboflavin/UV-A and Rose-Bengal/Green light cross-linking of the rabbit corneas using optical coherence elastography

    Science.gov (United States)

    Li, Jiasong; Singh, Manmohan; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Kazemi, Tina; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    The biomechanical properties of the cornea are critical factors which determine its health and subsequent visual acuity. Keratoconus is a structural degeneration of the cornea which can diminish vision quality. Riboflavin/UV-A corneal collagen cross-linking (UV-CXL) is an emerging treatment that increases the stiffness of the cornea and improves its ability to resist further degeneration. While UV-CXL has shown great promise for effective therapy of the keratoconus, there are concerns associated with the UV irradiation, such as keratocyte cytotoxicity. Rose-bengal/green light corneal collagen cross-linking (RGX) has been proposed as an alternative to UV-CXL. Because of the high absorbance of the rose-bengal dye at green wavelengths, the treatment time is significantly shorter than with UV-CXL. Moreover, because green light is used in lieu of UV irradiation, there are no cytotoxic side-effects. In this study, noncontact optical coherence elastography (OCE) was used to compare the outcomes of UV-CXL and RGX treatment in rabbit cornea. Low-amplitude (micrometer scale) elastic waves were induced by a focused air-pulse loading system. The elastic wave propagation was then imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. The changes in the viscoelasticity of the corneas were quantified by a previously developed modified Rayleigh Lamb frequency model. The depth-resolved micro-scale phase-velocity distribution in the cornea was used to reveal the depth-wise heterogeneity before and after both cross-linking techniques. Our results show that UV-CXL and RGX increased the stiffness of the corneas by ~54% and ~5% while reducing the viscosity by ~42% and ~17%, respectively. The depth-wise phase velocities showed that UV-CXL affected the anterior ~1/3 of the corneas, while RGX only affected the anterior ~1/7 of the corneas.

  17. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies.

    Science.gov (United States)

    Di Tommaso, Claudia; Bourges, Jean-Louis; Valamanesh, Fatemeh; Trubitsyn, Gregory; Torriglia, Alicia; Jeanny, Jean-Claude; Behar-Cohen, Francine; Gurny, Robert; Möller, Michael

    2012-06-01

    Cornea transplantation is one of the most performed graft procedures worldwide with an impressive success rate of 90%. However, for "high-risk" patients with particular ocular diseases in addition to the required surgery, the success rate is drastically reduced to 50%. In these cases, cyclosporin A (CsA) is frequently used to prevent the cornea rejection by a systemic treatment with possible systemic side effects for the patients. To overcome these problems, it is a challenge to prepare well-tolerated topical CsA formulations. Normally high amounts of oils or surfactants are needed for the solubilization of the very hydrophobic CsA. Furthermore, it is in general difficult to obtain ocular therapeutic drug levels with topical instillations due to the corneal barriers that efficiently protect the intraocular structures from foreign substances thus also from drugs. The aim of this study was to investigate in vivo the effects of a novel CsA topical aqueous formulation. This formulation was based on nanosized polymeric micelles as drug carriers. An established rat model for the prevention of cornea graft rejection after a keratoplasty procedure was used. After instillation of the novel formulation with fluorescent labeled micelles, confocal analysis of flat-mounted corneas clearly showed that the nanosized carriers were able to penetrate into all corneal layers. The efficacy of a 0.5% CsA micelle formulation was tested and compared to a physiological saline solution and to a systemic administration of CsA. In our studies, the topical CsA treatment was carried out for 14 days, and the three parameters (a) cornea transparency, (b) edema, and (c) neovascularization were evaluated by clinical observation and scoring. Compared to the control group, the treated group showed a significant higher cornea transparency and significant lower edema after 7 and 13 days of the surgery. At the end point of the study, the neovascularization was reduced by 50% in the CsA-micelle treated

  18. Morphological, Biochemical and Genetic Analysis of a Brittle Stalk Mutant of Maize Inserted by Mutator

    Institute of Scientific and Technical Information of China (English)

    FU Xue-qian; FENG Jing; YU Bin; GAO You-jun; ZHENG Yong-lian; YUE Bing

    2013-01-01

    Mutants on stalk strength are essential materials for the studies on the formation of plant cell wall. In this study, a brittle stalk mutant of maize, designated as Bk-x, was screened from a Mutator inserted mutant library. At the germination and early seedling stage, the mutant plants were indistinguishable from the normal ones. However, all of the plant organs were brittle after the 5th-leaf stage and remained brittle throughout the rest of the growing period. Microstructure observation showed that the cell wall in vascular bundle sheath of Bk-x was thinner than that in normal plants. The leaf mechanical strength in Bk-x was 77.9%of that in normal plants growing at Xishuangbanna (BN), Yunnan province and that was 61.7%in Wuhan (WH), Hubei Province, China. The proportion of cellulose was 12.3%in Bk-x, which was significantly lower than that in normal plants (26.7%), while the soluble sugar content was 36.1%in Bk-x, which is significantly higher than that in normal plants (12.4%). Genetic analysis using two F2 populations and one F2:3 families demonstrated that the trait of brittle stalk is controlled by a single recessive gene.

  19. Brittle fracture phase-field modeling of a short-rod specimen

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ivana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bishop, Joseph E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.

  20. Friction effect in supports on resistance to brittle fracture under three-point bending

    International Nuclear Information System (INIS)

    Quasistatic bending of the beam of elastic material with fixed supports with an account of possible slip in the points of support and then with an account of friciton in the supports is investigated analytically. The method presented permits to improve precision of the determination of mechanical properties of the materials in brittle state (ceramics, cast iron, cast aluminium alloys) at the bending test

  1. Rock Physics Model and Brittleness Index Calculation for Shale Gas Study in Jambi Basin, Indonesia

    Science.gov (United States)

    Fatkhan, Fatkhan; Fauzi, Inusa P.; Sule, Rachmat; Usman, Alfian

    2014-05-01

    Research about shale gas is often conducted in oil and gas industries since the demand of energy supply has increased recently. Indonesia is newly interested on researching, exploring and even producing shale gas. To seek prospects of shale gas play in an area, one needs to look into some of characteristics. This paper describes about rock physics model that is used to investigate a prospect zone of shale gas play by looking into percentage of TOC and brittleness index. Method used to modeling rock physics are as follows, first Hashin-Shtrikman bound is employed to estimate percentage of minerals, then inclusions are modeled by Kuster-Toksoz method and finally kerogens are calculated by Ciz and Shapiro's model. In addition, we compared between inclusion saturated by kerogen and water and inclusion filled up by only kerogen. Modulus Young is used to estimate brittleness index. Then in order to map and delineate brittle area, simultaneous seismic inversion method using pre stack data is employed to generate volume of P-wave, S-wave and density. Finally, these volumes are used to calculate Modulus Young value. Since the area of study has a very thick shale then the area is divided into four zones based on modulus shear and bulk values. The rock physics model shows that there are two zones having quartz-rich mineral and the inclusion saturated by water and kerogen. More over Modulus Young calculations show there are two zones having high values or more than 50%. The rock physics model can be used for predicting mineralogy leading into zones of prospect brittle shale. These zones are then correlated with brittleness index calculations. In addition, results show that the study area has a shale gas prospect for further exploration.

  2. Joubert Syndrome

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS NINDS Joubert Syndrome Information Page Table of Contents (click to ... Organizations Related NINDS Publications and Information What is Joubert Syndrome? Joubert syndrome is a rare brain malformation ...

  3. Marfan Syndrome

    Science.gov (United States)

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, ... fibrillin. A problem with the fibrillin gene causes Marfan syndrome. Marfan syndrome can be mild to severe, ...

  4. Social influence of a religious hero: the late Cardinal Stephen Kim Sou-hwan's effect on cornea donation and volunteerism.

    Science.gov (United States)

    Bae, Hyuhn-Suhck; Brown, William J; Kang, Seok

    2011-01-01

    This study examined the mediated influence of a celebrated religious hero in South Korea, Cardinal Stephen Kim, through two forms of involvement--parasocial interaction and identification--on intention toward cornea donation and volunteerism, and it investigated how the news media diffused of his death. A structural equation modeling analysis with a Web-based voluntary survey of more than 1,200 people in South Korea revealed a multistep social influence process, beginning with parasocial interaction with Cardinal Kim, leading to identification with him, which predicted intention toward cornea donation and volunteerism. Additional investigations found that news of Cardinal Kim's death diffused rapidly through media and interpersonal communication. Results of this study demonstrate that religious leaders who achieve a celebrity hero status can prompt public discussion of important issues rather quickly through extensive media coverage, enabling them to promote prosocial behavior and positively affect public health. PMID:21086210

  5. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  6. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries.

    Science.gov (United States)

    Cejka, Cestmir; Cejkova, Jitka

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown. PMID:25861412

  7. The Resin-Embedded Cornea Prepared Via Rapid Processing Protocol : A Good Histomorphometric Target for Clinical Investigation in Ophthalmology and Optometry

    OpenAIRE

    Cheah, Pike See; Mohidin, Norhani; Mohd Ali, Bariah; Maung, Myint; Latif, Azian Abdul

    2008-01-01

    This study illustrates and quantifies the changes on corneal tissue between the paraffin-embedded and resin-embedded blocks and thus, selects a better target in investigational ophthalmology and optometry via light microscopy. Corneas of two cynomolgus monkeys (Macaca fascicularis) were used in this study. The formalin-fixed cornea was prepared in paraffin block via the conventional tissue processing protocol (4-day protocol) and stained with haematoxylin and eosin. The glutaraldehyde-fixed c...

  8. Unilateral evisceration of an eye following cornea and lens perforation in a sulfur-crested cockatoo (Cacatua galerita)

    OpenAIRE

    CHRISTEN, C.; Richter, M.; Fischer, I.; Eule, C; Spiess, B M; Hatt, J M

    2006-01-01

    A 24-year old male sulfur-crested Cockatoo (Cacatua galerita) was presented with a subacute perforation of the cornea without involvement of the lens.The bird was treated conservatively and the eye remained quiescent up to a second traumatic corneal perforation associated with a lens capsule rupture 15 months later. Due to the second perforating trauma of an already blind eye involving the lens, evisceration of the eye was performed. Two months after surgery the cosmetic result was excellent....

  9. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    OpenAIRE

    Cestmir Cejka; Jitka Cejkova

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger...

  10. Collagen-immobilized poly(vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium.

    Science.gov (United States)

    Miyashita, Hideyuki; Shimmura, Shigeto; Kobayashi, Hisatoshi; Taguchi, Tetsushi; Asano-Kato, Naoko; Uchino, Yuichi; Kato, Masabumi; Shimazaki, Jun; Tanaka, Junzo; Tsubota, Kazuo

    2006-01-01

    The cornea is a transparent tissue of the eye, which is responsible for the refraction of incoming light. Both biological corneal equivalents and synthetic keratoprostheses have been developed to replace donor tissue as a means to restore vision. However, both designs have drawbacks in terms of stability and biocompatibility. Clinically available synthetic devices do not support an intact epithelium, which poses a risk of microbial infection or protrusion of the prosthesis. In the present study, type I collagen was immobilized onto poly(vinyl alcohol) (PVA-COL) as a possible artificial cornea scaffold that can sustain a functional corneal epithelium. Human and rabbit corneal epithelial cells were air-lift cultured with 3T3 feeder fibroblasts to form a stratified epithelial layer on PVA-COL. The epithelial sheet expressed keratin 3/12 differentiation markers, the tight junction protein occludin, and had characteristic microvilli structures on transmission electron microscopy. Functionally, the stratified epithelium contained normal glycogen levels, and an apical tight-junction network was observed to exclude the diffusion of horseradish peroxidase. Furthermore, the epithelium-PVA-COL composite was suturable in the rabbit cornea, suggesting the possibility of using PVA-COL as a biocompatible material for keratoprosthesis. PMID:16044431

  11. Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling

    Directory of Open Access Journals (Sweden)

    Day Robert C

    2011-09-01

    Full Text Available Abstract Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues.

  12. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Glucaric cornea

    International Nuclear Information System (INIS)

    The composition, structure and rheological properties of soluble sulphated polysaccharide Glucaric cornea from Brazilian red seaweeds were investigated. The main components of polysaccharide were 3,6-anhydrogalactose (24.7%) and galactose (64.6%). In addition, minor components as 6-O-methyl-galactose (8.5%), glucose (1.5%), xylose (0.7%) and sulfated groups (4.8%) were detected. Comparison between sulphates content determined by Ft-IR spectroscopy and micro elemental analysis was made. Data from 13C NMR and FT-IR provided evidence of sulphation in C-4 and C-6 of galactose. No gelation with 1.5, 2.0 and 3.0 % (w/v) aqueous solution was observed, even cooled up to 4 deg C. GPC indicated two majors polysaccharide fractions of Mpk 7.4 x 104 and 1.8 x 104 g/mol and a minor fraction of Mpk 2.1 x 106 g/mol. (author)

  13. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea.

    Science.gov (United States)

    Chang, Jin-Hong; Huang, Yu-Hui; Cunningham, Christy M; Han, Kyu-Yeon; Chang, Michael; Seiki, Motoharu; Zhou, Zhongjun; Azar, Dimitri T

    2016-01-01

    The cornea is transparent and avascular, and retention of these characteristics is critical to maintaining vision clarity. Under normal conditions, wound healing in response to corneal injury occurs without the formation of new blood vessels; however, neovascularization may be induced during corneal wound healing when the balance between proangiogenic and antiangiogenic mediators is disrupted to favor angiogenesis. Matrix metalloproteinases (MMPs), which are key factors in extracellular matrix remodeling and angiogenesis, contribute to the maintenance of this balance, and in pathologic instances, can contribute to its disruption. Here, we elaborate on the facilitative role of MMPs, specifically MMP-14, in corneal neovascularization. MMP-14 is a transmembrane MMP that is critically involved in extracellular matrix proteolysis, exosome transport, and cellular migration and invasion, processes that are critical for angiogenesis. To aid in developing efficacious therapies that promote healing without neovascularization, it is important to understand and further investigate the complex pathways related to MMP-14 signaling, which can also involve vascular endothelial growth factor, basic fibroblast growth factor, Wnt/β-catenin, transforming growth factor, platelet-derived growth factor, hepatocyte growth factor or chemokines, epidermal growth factor, prostaglandin E2, thrombin, integrins, Notch, Toll-like receptors, PI3k/Akt, Src, RhoA/RhoA kinase, and extracellular signal-related kinase. The involvement and potential contribution of these signaling molecules or proteins in neovascularization are the focus of the present review. PMID:26647161

  14. Advancement in polarimetric glucose sensing: simulation and measurement of birefringence properties of cornea

    Science.gov (United States)

    Malik, Bilal H.; Coté, Gerard L.

    2011-03-01

    Clinical guidelines dictate that frequent blood glucose monitoring in diabetic patients is critical towards proper management of the disease. Although, several different types of glucose monitors are now commercially available, most of these devices are invasive, thereby adversely affecting patient compliance. To this end, optical polarimetric glucose sensing through the eye has been proposed as a potential noninvasive means to aid in the control of diabetes. Arguably, the most critical and limiting factor towards successful application of such a technique is the time varying corneal birefringence due to eye motion artifact. We present a spatially variant uniaxial eye model to serve as a tool towards better understanding of the cornea's birefringence properties. The simulations show that index-unmatched coupling of light is spatially limited to a smaller range when compared to the index-matched situation. Polarimetric measurements on rabbits' eyes indicate relative agreement between the modeled and experimental values of corneal birefringence. In addition, the observed rotation in the plane of polarized light for multiple wavelengths demonstrates the potential for using a dual-wavelength polarimetric approach to overcome the noise due to timevarying corneal birefringence. These results will ultimately aid us in the development of an appropriate eye coupling mechanism for in vivo polarimetric glucose measurements.

  15. Development of a microfabricated artificial limbus with micropockets for cell delivery to the cornea

    International Nuclear Information System (INIS)

    The aim of this study was to develop a synthetic alternative to the human corneal limbus for use initially as an ex vivo model in which to study corneal stem cell function within a niche environment and ultimately to develop an implantable limbus for future clinical use. Microstereolithography was used for the fabrication of polyethylene glycol diacrylate (PEGDA) based rings on a macroscopic (1.2 cm) scale containing unique microfeatures (pockets) which were then modified with fibronectin to promote cell adhesion. These rings were designed to mimic the limbal area of the eye containing structures of the approximate size and shape of the stem cell microenvironments found in the palisades of Vogt. The attachment of rabbit limbal fibroblasts and rabbit limbal epithelial cells to the PEGDA rings was increased by pretreating the microfabricated structures with biotinylated fibronectin. Cell outgrowth from fibronectin coated microfabricated structures was 50% greater than from rings without structures or fibronectin coating. The cell loaded rings were then placed on an ex vivo wounded cornea model and the outgrowth of cells to form a multilayered epithelium was observed. We suggest this is a new approach to investigating limbal stem cells niches and the first steps towards a new approach for corneal regeneration. (paper)

  16. The use of glycerol-preserved corneas in the developing world

    Directory of Open Access Journals (Sweden)

    Feilmeier Michael

    2010-01-01

    Full Text Available Corneal opacity is the third leading cause of blindness in the developing world and encompasses a wide variety of infectious, inflammatory and degenerative eye diseases. Most caes of corneal blindness are treatable with partial or full-thickness keratoplasty, provided adequate corneal tissue and surgical skill is available. However, access to sight-restoring keratoplasty in developing countries is limited by the lack of developed eye banking networks and a critical shortage of tissue suitable for transplantation. Beyond the developed world, corneal transplantation using fresh corneal tissue (FCT is further hindered by unreliable storage and transportation facilities, unorganized distribution networks, the cost-prohibitive nature of imported tissue, unreliable compliance with medications and follow-up instructions and inadequate health and education services. Glycerol-preserved corneas overcome many of these limitations inherent to the use of FCT. As surgical innovation in lamellar corneal surgery expands the potential use of acellular corneal tissue, long-term preservation techniques are being revisited as a way to increase availability of corneal tissue to corneal surgeons throughout the developing world. Herein, we discuss the advantages of using and the applications for glycerol-preserved corneal tissue throughout the developing world.

  17. Predicting brittle zones in the Bakken Formation using well logs and seismic data

    Science.gov (United States)

    Beecher, Michael E.

    The oil-in-place estimate for the Bakken Formation has varied from 10 billion barrels in 1974 to 503 billion barrels in 1999. However, only a small fraction of this estimate is recoverable due to the formation having very low porosity and permeability. Implementation of hydraulic fracture stages along horizontal wells in the Bakken has been productive. Recently, identification of zones where the formation is brittle has been used to improve hydraulic fracture stimulation efficiency in an effort to improve production. The first goal for this thesis is to identify a correlation between brittleness and production data by using elastic moduli and normalized production values. The hypothesis for this study is that rock with a low Poisson's ratio and high Young's modulus will be more brittle and will ultimately produce a higher amount of oil than more ductile rock. The next goal was to create and test a method to identify brittle zones with high normalized production in a 3D seismic data set without well control using producing wells from outside the survey with dipole sonic logs from the Bakken Formation. Correlations between normalized production values and elastic moduli were subsequently identified. Cumulative first-four-months' production was found to have the best correlation to the elastic moduli. Correlations of normalized production values and Poisson's ratio showed that sections of the middle Bakken with low Poisson's ratio yield higher normalized production values. Correlations of Young's modulus and normalized production showed that middle Bakken zones with low Young's modulus have higher normalized production values. However, when using additional wells that were not used for well-to-3D seismic correlations, the correlation shows that higher Young's modulus yield higher normalized production. The correlation with additional wells best represented the data and agrees with the initial hypothesis. Brittle zones were mapped in a 3D seismic data set by

  18. Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression

    Science.gov (United States)

    Yang, Sheng-Qi; Huang, Yan-Hua; Ranjith, P. G.; Jiao, Yu-Yong; Ji, Jian

    2015-12-01

    Based on experimental results of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC^{2D}). Then, the validation of the simulated models were cross checked with the experimental results of brittle sandstone containing three parallel fissures under uniaxial compression. The simulated results agreed very well with the experimental results, including the peak strength, peak axial strain, and ultimate failure mode. Using the same micro-parameters, the numerical models containing a new geometry of three fissures are constructed to investigate the fissure angle on the fracture mechanical behavior of brittle sandstone under uniaxial compression. The strength and deformation parameters of brittle sandstone containing new three fissures are dependent to the fissure angle. With the increase of the fissure angle, the elastic modulus, the crack damage threshold, and the peak strength of brittle sandstone containing three fissures firstly increase and secondly decrease. But the peak axial strain is nonlinearly related to the fissure angle. In the entire process of deformation, the crack initiation and propagation behavior of brittle sandstone containing three fissures under uniaxial compression are investigated with respect to the fissure angle. Six different crack coalescence modes are identified for brittle sandstone containing three fissures under uniaxial compression. The influence of the fissure angle on the length of crack propagation and crack coalescence stress is evaluated. These investigated conclusions are very important for ensuring the stability and safety of rock engineering with intermittent structures.

  19. A short-term study of corneal collagen cross-linking with hypo-osmolar riboflavin solution in keratoconic corneas

    Institute of Scientific and Technical Information of China (English)

    Shao-Feng; Gu; Zhao-Shan; Fan; Li-Hua; Wang; Xiang-Chen; Tao; Yong; Zhang; Chun-Qin; Wang; Ya; Wang; Guo-Ying; Mu

    2015-01-01

    AIM: To report the 3mo outcomes of collagen crosslinking(CXL) with a hypo-osmolar riboflavin in thin corneas with the thinnest thickness less than 400 μm without epithelium.METHODS: Eight eyes in 6 patients with age 26.2±4.8y were included in the study. All patients underwent CXL using a hypo-osmolar riboflavin solution after its de-epithelization. Best corrected visual acuity, manifest refraction, the thinnest corneal thickness, and endothelial cell density were evaluated before and 3mo after the procedure.RESULTS: The mean thinnest thickness of the cornea was 408.5 ±29.0 μm before treatment and reduced to369.8 ±24.8 μm after the removal of epithelium. With the application of the hypo-osmolar riboflavin solution, the thickness increased to 445.0 ±26.5 μm before CXL and recover to 412.5 ±22.7 μm at 3mo after treatment, P =0.659). Before surgery, the mean K-value of the apex of the keratoconus corneas was 57.6 ±4.0 diopters, and slightly decreased(54.7±4.9 diopters) after surgery(P =0.085). Mean best-corrected visual acuity was 0.55 ±0.23 logarithm of the minimal angle of resolution, and increased to 0.53±0.26 logarithm after surgery(P =0.879).The endothelial cell density was 2706.4 ±201.6 cells/mm2 before treatment, and slightly decreased( 2641. 2 ±218.2 cells/mm2) at last fellow up(P =0.002).CONCLUSION: Corneal collagen cross-linking with a hypo-osmolar riboflavin in thin corneas seems to be a promising treatment. Further study should be done to evaluate the safety and efficiency of CXL in thin corneas for the long-term.

  20. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    Science.gov (United States)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  1. Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process

    Directory of Open Access Journals (Sweden)

    M. Ll. Maspoch

    2015-03-01

    Full Text Available The ductile-brittle transition behaviour of organo modified montmorillonite-based Poly(lactic acid films (PLA/o-MMT was analysed using the Essential Work of Fracture (EWF methodology, Small Punch Tests (SPT and Enthalpy relaxation analysis. While the EWF methodology could only be applied successfully to de-aged samples, small punch test (SPT was revealed as more effective for a mechanical characterization during the transient behaviour from ductile to brittle. According to differential scanning calorimetry (DSC results, physical aging at 30°C of PLA/o-MMT samples exhibited slower enthalpy relaxation kinetics as compared to the pristine polymer. Although all samples exhibited an equivalent thermodynamic state after being stored one week at 30°C, significant differences were observed in the mechanical performances. These changes could be attributed to the toughening mechanisms promoted by o-MMT.

  2. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    International Nuclear Information System (INIS)

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  3. Mechanical Properties Degradation at Room Temperature in ZRY-4 by Hydrogen Brittleness

    Directory of Open Access Journals (Sweden)

    Bertolino G.

    2002-01-01

    Full Text Available A hot rolled Zircaloy-4 alloy, annealed with a final cold rolling, presenting rounded grains, was studied. Hydrogen cathodic charge with a homogenization heat treatment was used to pre-charge the specimens with different hydrogen contents. Hydrogen embrittlement susceptibility analysis was held using J integral and J-R curve results from CT specimens (compact tension specimens tested at room temperature. As J IC values showed scatter, toughness was evaluated for deltaa = 1mm. Toughness clearly tended to decrease as hydrogen content increased abruptly for low H contents and gradually for high contents. A few specimens with high hydrogen content failed in brittle mode, or presented instability and posterior crack arrest. Fractographic observations showed that, despite the records had presented no signs of brittle fracture, certain specimens showed cleavage-like zones. More cleavage-like area percentage was present the higher the hydrogen content was.

  4. Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals

    International Nuclear Information System (INIS)

    Nanotwinned metals have opened exciting avenues for the design of high strength and high ductility materials. In this work, we investigate crack propagation along coherent twin boundaries in nanotwinned metals using molecular dynamics. Our simulations reveal that alternating twin boundaries exhibit intrinsic brittleness and ductility owing to the opposite crystallographic orientations of the adjoining twins. This is a startling consequence of the directional anisotropy of an atomically sharp crack along a twin boundary that favors cleavage in one direction and dislocation emission from the crack tip in the opposite direction. We further find that a blunt crack exhibits ductility in all cases albeit with very distinct deformation mechanisms and yield strength associated with intrinsically brittle and ductile coherent twin boundaries

  5. Study on subsurface-inclined crack propagation during machining of brittle crystal materials

    Science.gov (United States)

    Guo, Jiawen; Chen, Jianbin; Li, Jia; Fang, Qihong; Liu, Youwen

    2016-05-01

    There is an immense need to obtain high-quality surface and subsurface on brittle material owing to the advantage of its improved performance. Thus, in this paper, we proposed a mechanical and numerical study of fracture mechanics from the perspective of external loading and indentation geometry in brittle machining. Stress intensity factors are computed to analyze various impacts of external loading and indentation configuration on subsurface crack propagation. Results indicate that the main fracture mode for inclined crack is shear rather than opening and the apex angle of the indentation plays an important role in fracture behavior. As a certain external loading is exerted to the surface of the silicon, a large apex angle of indentation may lead to strong shielding effect on mode II crack propagation. A relationship between critical value of external loading to the crack propagation and the apex angle of the indentation is given in this paper that shows quantitative indication for suppression of crack growth.

  6. Application of percolation model on the brittle to ductile transition for polystyrene and polyolefin elastomer blends

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The percolation model was applied in the study of brittle to ductile transition (BDT of polystyrene (PS and polyolefin elastomer (POE blends. Based on the interparticle distance and percolation model, stress volume (Vs can be expressed by volume fraction (Vr and ratio of the diameter of stress volume and the diameter of the domain (S/d. The percolation threshold (Vsc varied from π/6 to 0.65. From the results of the Charpy impact strength of the blends, the percolation threshold for the brittle to ductile transition of PS/POE blend is 14 wt% POE, corresponding to Vsc~0.5, which is consistent with the calculated value of π/6. Morphology observations show that the percolation point is correlated with the phase inversion of the blend.

  7. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  8. Nonadiabatic study of dynamic electronic effects during brittle fracture of silicon.

    Science.gov (United States)

    Theofanis, Patrick L; Jaramillo-Botero, Andres; Goddard, William A; Xiao, Hai

    2012-01-27

    It has long been observed that brittle fracture of materials can lead to emission of high energy electrons and UV photons, but an atomistic description of the origin of such processes has lacked. We report here on simulations using a first-principles-based electron force field methodology with effective core potentials to describe the nonadiabatic quantum dynamics during brittle fracture in silicon crystal. Our simulations replicate the correct response of the crack tip velocity to the threshold critical energy release rate, a feat that is inaccessible to quantum mechanics methods or conventional force-field-based molecular dynamics. We also describe the crack induced voltages, current bursts, and charge carrier production observed experimentally during fracture but not previously captured in simulations. We find that strain-induced surface rearrangements and local heating cause ionization of electrons at the fracture surfaces. PMID:22400860

  9. Steadiness and stop of brittle fracture driven by the forces in different distances

    Institute of Scientific and Technical Information of China (English)

    和雪松; 李世愚; 滕春凯

    2005-01-01

    Based on the principle of fracture mechanics, the stop criterion of brittle fracture is proposed and the equation of minimal crack stop is given. By using the zero frequency Green function, the steadiness and stop of brittle fracture driven by the concentrated force and simple distributed forces in different locales are analyzed. The critical loading, unsteady boundary line and location of stop points under some typical conditions are calculated. The steady growth caused by the near forces is significant in interpreting the creep and the forming of some tectonics. Whereas the unsteady propagation caused by the forces in different distances from the crack is significant in interpreting the occurring and stop of earthquakes. It is suggested that the strong earthquakes may be the result of compound of the near-field and far-field forces. The results of this paper are also valuable for investigation of the mechanism of induced earthquake.

  10. Interim report of brittle-fracture impact studies: development of methodology

    International Nuclear Information System (INIS)

    A comprehensive methodology for characterizing the results of impact fracture of brittle waste forms is presented, and its use illustrated by application to available particle-size data obtained in impact tests of various materials. The respirable-size fraction and the total surface area of the fracture particulates are the major criteria for characterization. Particle-size distributions were all found to be characterized approximately by the two parameters of the lognormal probability function (the geometric mean diameter D/sub g/ and the geometric standard deviation sigma/sub g/). These results are explained in terms of the brittle-fracture process as it is described in the technical literature. The methodology appears promising both for standardized evaluation of the impact strength of various solid-waste compositions, either vitreous or crystalline, and for studying the deformation of canistered waste forms in scale-model tests

  11. Brittleness and elastic limit of iron-aluminium 40 at high strain rates

    International Nuclear Information System (INIS)

    Iron-aluminium 40 - a B2 ordered solid solution - was tensile tested to provide information on the brittleness of this alloy and its dependence on strain rate and temperature. For slow strain rates (0.34 per cent s-1) cleaved fracture prevails when temperature is kept below 400 deg. C, while a ductile rupture is observed, with an almost 100 per cent necking at higher temperatures. In this case, recrystallization occurs during the deformation. For higher strain rates - 335 per cent s-1), a ductility reduction - owed to intergranular fracture - precedes the brittle-ductile transition. This property may be bound to the peak on the yield stress temperature curve, which is itself connected to the ordered structure of this alloy. (author)

  12. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale

    Science.gov (United States)

    Perez Altimar, Roderick

    Brittleness is a key characteristic for effective reservoir stimulation and is mainly controlled by mineralogy in unconventional reservoirs. Unfortunately, there is no universally accepted means of predicting brittleness from measures made in wells or from surface seismic data. Brittleness indices (BI) are based on mineralogy, while brittleness average estimations are based on Young's modulus and Poisson's ratio. I evaluate two of the more popular brittleness estimation techniques and apply them to a Barnett Shale seismic survey in order to estimate its geomechanical properties. Using specialized logging tools such as elemental capture tool, density, and P- and S wave sonic logs calibrated to previous core descriptions and laboratory measurements, I create a survey-specific BI template in Young's modulus versus Poisson's ratio or alternatively lambdarho versus murho space. I use this template to predict BI from elastic parameters computed from surface seismic data, providing a continuous estimate of BI estimate in the Barnett Shale survey. Extracting lambdarho-murho values from microseismic event locations, I compute brittleness index from the template and find that most microsemic events occur in the more brittle part of the reservoir. My template is validated through a suite of microseismic experiments that shows most events occurring in brittle zones, fewer events in the ductile shale, and fewer events still in the limestone fracture barriers. Estimated ultimate recovery (EUR) is an estimate of the expected total production of oil and/or gas for the economic life of a well and is widely used in the evaluation of resource play reserves. In the literature it is possible to find several approaches for forecasting purposes and economic analyses. However, the extension to newer infill wells is somewhat challenging because production forecasts in unconventional reservoirs are a function of both completion effectiveness and reservoir quality. For shale gas reservoirs

  13. Kindler syndrome

    Directory of Open Access Journals (Sweden)

    Kaviarasan P

    2005-01-01

    Full Text Available Kindler syndrome is a rare autosomal recessive disorder associated with skin fragility. It is characterized by blistering in infancy, photosensitivity and progressive poikiloderma. The syndrome involves the skin and mucous membrane with radiological changes. The genetic defect has been identified on the short arm of chromosome 20. This report describes an 18-year-old patient with classical features like blistering and photosensitivity in childhood and the subsequent development of poikiloderma. The differential diagnosis of Kindler syndrome includes diseases like Bloom syndrome, Cockayne syndrome, dyskeratosis congenita, epidermolysis bullosa, Rothmund-Thomson syndrome and xeroderma pigmentosum. Our patient had classical cutaneous features of Kindler syndrome with phimosis as a complication.

  14. Study on the fragility of structure with several elements in its story. Part 1: structure with brittle elements

    International Nuclear Information System (INIS)

    The relationship among the fragility of element, that of story and that of system, is examined using the Monte Carlo simulation. In this study, 2-story models whose stories consist of 2 brittle elements are employed. Through the simulation, the feature of the failure of brittle elements is derived. From this results, 2 methods to evaluate the fragility of brittle element are presented. Also, a method to estimate the fragilities of the story and the system are presented. (author). 2 refs., 7 figs., 4 tabs

  15. Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder

    OpenAIRE

    Wu, B. Q.; Leath, P. L.

    1998-01-01

    The failure probabilities or the strength distributions of heterogeneous 1D systems with continuous local strength distribution and local load sharing have been studied using a simple, exact, recursive method. The fracture behavior depends on the local bond-strength distribution, the system size, and the applied stress, and crossovers occur as system size or stress changes. In the brittle region, systems with continuous disorders have a failure probability of the modified-Gumbel form, similar...

  16. A continuous-discontinuous approach to simulate fracture processes in quasi-brittle materials

    OpenAIRE

    Moonen, Peter; Carmeliet, Jan; Sluys, Bert

    2009-01-01

    Abstract A macroscopic framework for the simulation of failure processes in quasi-brittle materials is proposed. The framework employs the partition of unity (PU) concept and introduces a new cohesive zone model, capturing the transition between the initial continuum state and the final localized damage state. The model is generic in a sense that it allows extending most continuum models to a discontinuous framework in an efficient and robust way, hereby adding the effect of macro-...

  17. Ultrasonic detection of ductile-to-brittle transitions in free-cutting aluminum alloys

    Czech Academy of Sciences Publication Activity Database

    Nejezchlebová, J.; Seiner, Hanuš; Ševčík, Martin; Landa, Michal; Karlík, M.

    2015-01-01

    Roč. 69, January 2015 (2015), s. 40-47. ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : aluminum alloys * laser ultrasound * ductile-to-brittle * elastic constants * resonant ultrasound spectroscopy Subject RIV: BI - Acoustics Impact factor: 2.225, year: 2014 http://www.sciencedirect.com/science/article/pii/S0963869514001200

  18. Mechanical Properties of Brittle Materials and Their Single Fracture under Dynamic Loading

    OpenAIRE

    YASHIMA, Saburo; Kanda, Yoshiteru; Saito, Fumio; Sasaki, Toru; Iijima, Masayoshi; HASHIMOTO, Hitoshi

    1983-01-01

    The meaning of study on single particle crushing is recognized at which it is regarded the accumulation of single particle crushing as the comminution performed in practical operations stochastic phenomena. Especially, experimental data concerning the mechanical properties of brittle solids measured under dynamic loading are so far very few. Further, the experimental data concerning compressive strength, sphere compressive strength, fracture energy, new surface produced and fracture surface e...

  19. Investigation of the brittle fracture behavior of intermetallic Ti-Al-Si-Nd-alloys

    International Nuclear Information System (INIS)

    The object of this paper is the fracture behaviour of three Ti-Al-Si-Nb alloys. Fracture mechanical data are experimentally determined and their statistical properties are investigated. To describe the fracture process of disordered heterogeneous brittle materials a statistical model was developed, based on damage mechanics. With the aid of this model it was possible to attribute the fracture behaviour, the fracture mechanical data and their statistical properties to the microstructure of the materials studied. (orig.)

  20. Observations on the sub-critical growth and healing of microcracks in brittle ceramics

    International Nuclear Information System (INIS)

    Micro-cracking in brittle composites was monitored by measuring the temperature dependence of thermal diffusivity by the laser flash method. Depending upon the material system, micro-cracks can exhibit a time dependent growth or healing or a combination of both. A theoretical basis for these observations was established by analyzing the stability and nature of crack propagation of precursor micro-cracks in a spherical inclusion contained in an infinite matrix with different elastic properties

  1. Mechanical behavior of quasi-brittle materials under cyclic loadings : from virtual testing to structural simulations

    OpenAIRE

    Vassaux, Maxime

    2015-01-01

    Macroscopic mechanical behavior models are developed for their light computational costs, allowing the simulation of large structural elements, and the precise description of mechanical phenomena observed by the material at lower scales. Such constitutive models are here developed in the seismic solicitation framework, therefore implying cyclic alternate loadings at the material scale, and applied to civil engineering buildings, often made of concrete, or more generally of quasi-brittle mater...

  2. Pinch and swell structures: evidence for brittle-viscous behaviour in the middle crust

    Directory of Open Access Journals (Sweden)

    R. Gardner

    2015-04-01

    Full Text Available The flow properties of middle to lower crustal rocks are commonly represented by viscous flow. However, examples of pinch and swell structures found in a mid-crustal high strain zone at St. Anne Point (Fiordland, New Zealand suggest pinch and swell structures are initiated by brittle failure of the more competent layer in conjunction with material softening. On this basis we develop a flexible numerical model using brittle-viscous flow where Mohr–Coulomb failure is utilised to initiate pinch and swell structure development. Results show that pinch and swell structures develop in a competent layer in both Newtonian and non-Newtonian flow provided the competent layer has enough viscosity contrast and initially fails brittlely. The degree of material softening after initial failure is shown to impact pinch and swell characteristics with high rates of material softening causing the formation of thick necks between swells by limiting the successful localisation of strain. The flow regime and yielding characteristics of the matrix do not impact pinch and swell structure formation itself, so long as the matrix is less competent. To aid analysis of the structures and help derive the flow properties of rocks in the field, we define three stages of pinch and swell development and offer suggestions for measurements to be made in the field. Our study suggests that Mohr–Coulomb behaviour combined with viscous flow is an appropriate way to represent the heterogeneous rocks of the middle to lower crust. This type of mid-crustal rheological behaviour has significant influence on the localization of strain at all scales. For example, inclusion of Mohr–Coulomb brittle failure with viscous flow in just some mid-crustal layers within a crustal scale model will result in strain localisation throughout the whole crustal section allowing the development of through-going high strain structures from the upper crust into the middle and lower crust. This

  3. Oblique Powder Blasting for Three-dimensional Micromachining of Brittle Materials

    OpenAIRE

    Belloy, E.; Sayah, A.; Gijs, M. A. M.

    2001-01-01

    We present oblique powder blasting as a three-dimensional micromachining technology for brittle materials. Powder blasting is a microfabrication process, based on the use of a pressurised air beam containing eroding Al2O3 particles. By varying the angle of incidence of the incoming particles to a substrate, covered by a mask, one can exploit the oblique slopes of micropatterned holes and mask underetching phenomena to generate new options for three-dimensional microstructuring. We have identi...

  4. Pinch and swell structures: evidence for brittle-viscous behaviour in the middle crust

    Science.gov (United States)

    Gardner, R.; Piazolo, S.; Daczko, N.

    2015-04-01

    The flow properties of middle to lower crustal rocks are commonly represented by viscous flow. However, examples of pinch and swell structures found in a mid-crustal high strain zone at St. Anne Point (Fiordland, New Zealand) suggest pinch and swell structures are initiated by brittle failure of the more competent layer in conjunction with material softening. On this basis we develop a flexible numerical model using brittle-viscous flow where Mohr-Coulomb failure is utilised to initiate pinch and swell structure development. Results show that pinch and swell structures develop in a competent layer in both Newtonian and non-Newtonian flow provided the competent layer has enough viscosity contrast and initially fails brittlely. The degree of material softening after initial failure is shown to impact pinch and swell characteristics with high rates of material softening causing the formation of thick necks between swells by limiting the successful localisation of strain. The flow regime and yielding characteristics of the matrix do not impact pinch and swell structure formation itself, so long as the matrix is less competent. To aid analysis of the structures and help derive the flow properties of rocks in the field, we define three stages of pinch and swell development and offer suggestions for measurements to be made in the field. Our study suggests that Mohr-Coulomb behaviour combined with viscous flow is an appropriate way to represent the heterogeneous rocks of the middle to lower crust. This type of mid-crustal rheological behaviour has significant influence on the localization of strain at all scales. For example, inclusion of Mohr-Coulomb brittle failure with viscous flow in just some mid-crustal layers within a crustal scale model will result in strain localisation throughout the whole crustal section allowing the development of through-going high strain structures from the upper crust into the middle and lower crust. This localization then has a significant

  5. Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff

    OpenAIRE

    Zhu, W.; Baud, P.; Vinciguerra, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Wong, T

    2011-01-01

    An understanding of how tuff deforms and fails is of importance in the mechanics of volcanic eruption as well as geotechnical and seismic applications related to the integrity of tuff structures and repositories. Previous rock mechanics studies have focused on the brittle strength. We conducted mechanical tests on nominally dry and water-saturated tuff samples retrieved from the Colli Albani drilling project, in conjunction with systematic microstructural observations on the deformed samples ...

  6. Numerical Study on Crack Propagation in Brittle Jointed Rock Mass Influenced by Fracture Water Pressure

    OpenAIRE

    Yong Li; Hao Zhou; Weishen Zhu; Shucai Li; Jian Liu

    2015-01-01

    The initiation, propagation, coalescence and failure mode of brittle jointed rock mass influenced by fissure water pressure have always been studied as a hot issue in the society of rock mechanics and engineering. In order to analyze the damage evolution process of jointed rock mass under fracture water pressure, a novel numerical model on the basis of secondary development in fast Lagrangian analysis of continua (FLAC3D) is proposed to simulate the fracture development of jointed rock mass u...

  7. Effect of rock microfabric on the brittle failure process of rocks

    Czech Academy of Sciences Publication Activity Database

    Přikryl, R.; Lokajíček, Tomáš; Klíma, Karel

    2006-01-01

    Roč. 8, - (2006), ---. ISSN 1029-7006. [European Geosciences Union General Assembly. 02.04.2006-07.04.2006, Vienna] R&D Projects: GA ČR GA205/04/0088; GA ČR GA205/06/0906 Institutional research plan: CEZ:AV0Z30130516 Keywords : rock microfabric * brittle fracturing Subject RIV: DB - Geology ; Mineralogy http://www.cosis.net/abstracts/EGU06/06876/EGU06-J-06876.pdf

  8. Model inspired by population genetics to study fragmentation of brittle plates

    OpenAIRE

    Gomes, M. A. F.; VIVIANE M. DE OLIVEIRA

    2006-01-01

    We use a model whose rules were inspired by population genetics, the random capability growth model, to describe the statistical details observed in experiments of fragmentation of brittle platelike objects, and in particular the existence of (i) composite scaling laws, (ii) small critical exponents \\tau associated with the power-law fragment-size distribution, and (iii) the typical pattern of cracks. The proposed computer simulations do not require numerical solutions of the Newton's equatio...

  9. Contact lens fitting in a patient with Alport syndrome and posterior polymorphous corneal dystrophy: a case report

    OpenAIRE

    Juliana Maria da Silva Rosa; Marcelo Vicente de Andrade Sobrinho; César Lipener

    2016-01-01

    ABSTRACT Alport Syndrome is a hereditary disease that is caused by a gene mutation and affects the production of collagen in basement membranes; this condition causes hemorrhagic nephritis associated with deafness and ocular changes. The X-linked form of this disease is the most common and mainly affects males. Typical ocular findings are dot-and-fleck retinopathy, anterior lenticonus, and posterior polymorphous corneal dystrophy. Some cases involving polymorphous corneal dystrophy and cornea...

  10. Experimental study on the physical and chemical properties of the deep hard brittle shale

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2016-03-01

    Full Text Available In the hard brittle shale formation, rock composition, physical and chemical properties, mechanics property before and after interacting with fluid have direct relation with borehole problems, such as borehole wall collapse, mud loss, hole shrinkage. To achieve hard brittle shale micro-structure, physical–chemical properties and mechanics property, energy-dispersive X-ray diffraction (XRD, cation exchange capacity experiment and hardness test are conducted. The result of laboratory experiments indicates that, clay mineral and quartz is dominated in mineral composition. In clay mineral, illite and illite/semectite mixed layers are abundant and there is no sign of montmorillonite. Value of cation exchange capacity (CEC ranges from 102.5–330 mmol/kg and average value is 199.56 mmol/kg. High value of CEC and content of clay mineral means hard brittle shale has strong ability of hydration. The image of XRD shows well developed micro-cracks and pores, which make rock failure easily, especially when fluid invades rock inside. Shale sample soaked with anti-high temperature KCL drilling fluid on shorter immersing time has stronger strength, whereas shale sample soaked with plugging and film forming KCL drilling fluid on longer immersing time has stronger strength.

  11. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  12. Fracture-mode map of brittle coatings: Theoretical development and experimental verification

    Science.gov (United States)

    He, Chong; Xie, Zhaoqian; Guo, Zhenbin; Yao, Haimin

    2015-10-01

    Brittle coatings, upon sufficiently high indentation load, tend to fracture through either ring cracking or radial cracking. In this paper, we systematically study the factors determining the fracture modes of bilayer material under indentation. By analyzing the stress field developed in a coating/substrate bilayer under indentation in combination with the application of the maximum-tensile-stress fracture criterion, we show that the fracture mode of brittle coatings due to indentation is determined synergistically by two dimensionless parameters being functions of the mechanical properties of coating and substrate, coating thickness and indenter tip radius. Such dependence can be graphically depicted by a diagram called 'fracture-mode map', whereby the fracture modes can be directly predicated based on these two dimensionless parameters. Experimental verification of the fracture-mode map is carried out by examining the fracture modes of fused quartz/cement bilayer materials under indentation. The experimental observation exhibits good agreement with the prediction by the fracture-mode map. Our finding in this paper may not only shed light on the mechanics accounting for the fracture modes of brittle coatings in bilayer structures but also pave a new avenue to combating catastrophic damage through fracture mode control.

  13. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  14. Final report of experimental laboratory-scale brittle fracture studies of glasses and ceramics

    International Nuclear Information System (INIS)

    An experimental program was conducted to characterize the fragments generated when brittle glasses and ceramics are impacted. The direct application of the results is to radioactive waste forms for which the effects of accidental impacts must be known or predictable. Two major measurable experimental responses used for characterization of these effects are (1) the size distribution of the fragments, including the sizes that are respirable, and (2) the increase in surface area of the brittle test specimen. This report describes the glass and ceramic materials characterized, the procedures and techniques used for the characterization of size distributions and surface areas, and the results of the two key responses of the impact tests. Five alternative methods of determining size distributions were compared. Also examined were the effects of diametral and axial specimen impact configurations and the use of mechanical stops to eliminate secondary crushing during testing. Microscopic characterizations of Pyrex and SRL 131 simulated waste glass and SYNROC fragments were also performed. Preliminary correlations of impact energy with key size-distribution parameters, fragment surface areas, and respirable fines were proposed as useful for future verification and for use with modeling and scale-up studies of brittle fracture of larger realistic waste forms. The impact fragments of all specimens could be described by lognormal size distributions

  15. Slip energy barriers in aluminum and implications for ductile versus brittle behavior

    CERN Document Server

    Sun, Y; Sun, Yuemin; Kaxiras, Efthimios

    1996-01-01

    We conisder the brittle versus ductile behavior of aluminum in the framework of the Peierls-model analysis of dislocation emission from a crack tip. To this end, we perform first-principles quantum mechanical calculations for the unstable stacking energy $\\gamma_{us}$ of aluminum along the Shockley partial slip route. Our calculations are based on density functional theory and the local density approximation and include full atomic and volume relaxation. We find that in aluminum $\\gamma_{us} = 0.224$ J/m$^2$. Within the Peierls-model analysis, this value would predict a brittle solid which poses an interesting problem since aluminum is typically considered ductile. The resolution may be given by one of three possibilites: (a) Aluminum is indeed brittle at zero temperature, and becomes ductile at a finite temperature due to motion of pre-existing dislocations which relax the stress concentration at the crack tip. (b) Dislocation emission at the crack tip is itself a thermally activated process. (c) Aluminum is...

  16. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    Science.gov (United States)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  17. Stress localization in BCC polycrystals and its implications on the probability of brittle fracture

    International Nuclear Information System (INIS)

    Highlights: → Intergranular stress distributions in a bainitic steel. → Comparison of local mean stress field with neutron diffraction results. → Application of the local stress distribution in a brittle fracture model. - Abstract: The evaluation of the reliability of pressure vessels in nuclear plants relies on the evaluation of failure probability models. Micromechanical approaches are of great interest to refine their description, to better understand the underlying mechanisms leading to failure, and finally to improve the prediction of these models. The main purpose of this paper is to introduce the stress heterogeneities arising within the polycrystal in a probabilistic modeling of brittle fracture. Stress heterogeneities are evaluated from Finite-Element simulations performed on a large number of Statistical Volume Elements. Results are validated both on the measured averaged behavior and on the averaged stresses measured by neutron diffraction in five specific orientations. A probabilistic model for brittle fracture is then presented accounting for the carbide distribution and the stress distribution evaluated previously inside an elementary volume V0. Results are compared to a 'Beremin type' approach, assuming a homogeneous stress state inside V0.

  18. Final report of experimental laboratory-scale brittle fracture studies of glasses and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L.J.; Mecham, W.J.; Reedy, G.T.; Steindler, M.J.

    1982-10-01

    An experimental program was conducted to characterize the fragments generated when brittle glasses and ceramics are impacted. The direct application of the results is to radioactive waste forms for which the effects of accidental impacts must be known or predictable. Two major measurable experimental responses used for characterization of these effects are (1) the size distribution of the fragments, including the sizes that are respirable, and (2) the increase in surface area of the brittle test specimen. This report describes the glass and ceramic materials characterized, the procedures and techniques used for the characterization of size distributions and surface areas, and the results of the two key responses of the impact tests. Five alternative methods of determining size distributions were compared. Also examined were the effects of diametral and axial specimen impact configurations and the use of mechanical stops to eliminate secondary crushing during testing. Microscopic characterizations of Pyrex and SRL 131 simulated waste glass and SYNROC fragments were also performed. Preliminary correlations of impact energy with key size-distribution parameters, fragment surface areas, and respirable fines were proposed as useful for future verification and for use with modeling and scale-up studies of brittle fracture of larger realistic waste forms. The impact fragments of all specimens could be described by lognormal size distributions.

  19. Visual pigments, oil droplets, lens, and cornea characterization in the whooping crane (Grus americana)

    Science.gov (United States)

    Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.

    2014-01-01

    Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane, Grus americana (Gruiformes: Gruidae). G. americana (an endangered species) is one of only two North American crane species and represents a large, long-lived bird where ultraviolet sensitivity may be degraded by chromatic aberrations and entrance of ultraviolet light into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate if the ocular media (i.e., the lens and cornea) absorbs UV light. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, while the cone visual pigments λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2), and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cutoff wavelength (λcut) values similarly fell within ranges recorded from other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type), and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system, although based on the λmax of the SWS1 visual pigment (404 nm) may also have some ability for UV sensitivity.

  20. Mineralocorticoid hormone signaling regulates the 'epithelial sodium channel' in fibroblasts from human cornea.

    Science.gov (United States)

    Mirshahi, M; Mirshahi, S; Golestaneh, N; Nicolas, C; Mishal, Z; Lounes, K C; Hecquet, C; Dagonet, F; Pouliquen, Y; Agarwal, M K

    2001-01-01

    We investigated the regulation of sodium absorption by steroid hormones in embryologically diverse cells from the human eye. A cell extract from human corneal fibroblasts was positive for both the epithelial sodium channel (ENaC) and the mineralocorticoid receptor (MCR) as 82- to 85-kD and 102-kD bands, respectively, by the Western blot technique. In fluorescent, confocal and electron microscopy, the MCR was revealed as a nucleocytoplasmic protein, whereas the ENaC was almost exclusively membrane bound; both appeared aligned along actin filaments of corneal keratocytes, and both were widely colocalized in various cell types of human cornea in situ. Following reverse transcription and amplification of total RNA isolated from corneal fibroblasts, the ENaC and MCR genes in the PCR product were evident as predicted bands of 520 and 843 bp, respectively, whose sequence exhibited 100% identity with those from known human sources. The multiplication of corneal fibroblasts was influenced by both the MCR-specific antagonist RU 26752 and the natural hormone aldosterone, and these steroids also stimulated protein phosphorylation. In quantitative PCR, both the basal and aldosterone-induced levels of ENaC were diminished by the MCR-specific antagonist ZK 91587. Consequently, the ocular sodium channel appears to be regulated by steroid signalling in cells of diverse embryological origins, contrary to the existing notions where (a) this process would be limited exclusively to the epithelial cells and (b) ocular sodium transport would be regulated via the Na(+)-K(+)-ATPase in the basolateral membrane. PMID:11114599

  1. Effect of topical fluoroquinolones on the expression of matrix metalloproteinases in the cornea

    Directory of Open Access Journals (Sweden)

    O'Brien Terrence P

    2003-10-01

    Full Text Available Abstract Background Matrix metalloproteinases play an important role in extracellular matrix deposition and degradation. Based on previous clinical observations of corneal perforations during topical fluoroquinolone treatment, we decided to evaluate the comparative effects of various fluoroquinolone eye drops on the expression of matrix metalloproteinases (MMPs in cornea. Methods Eighty female Lewis rats were divided into two experimental groups: intact and wounded corneal epithelium. Uniform corneal epithelial defects were created in the right eye with application of 75% alcohol in the center of the tissue for 6 seconds. The treatment groups were tested as follows: 1 Tear drops: carboxymethylcellulose sodium 0.5 % (Refresh, Allergan; 2 Ciprofloxacin 0.3% (Ciloxan, Alcon; 3 Ofloxacin 0.3%(Ocuflox, Allergan; 4 Levofloxacin 0.5%(Quixin, Santen. Eye drops were administered 6 times a day for 48 hours. Rats were sacrificed at 48 hours. Immunohistochemical analysis and zymography were conducted using antibodies specific to MMPs-1, 2, 8 and 9. Results MMP-1, MMP-2, MMP-8 and MMP-9 expression were detected at 48 hrs in undebrided corneal epithelium groups treated with the topical fluoroquinolones. No statistical difference was observed in quantitative expression of MMPs among ciprofloxacin 0.3%, ofloxacin 0.3%, levofloxacin 0.5%. When the artificial tear group and the fluoroquinolone groups with corneal epithelial defect were compared, increased expression of MMPs was observed as a result of the wound healing process. However, the fluoroquinolone treated group exhibited high statistically significantly levels of MMPs expression. Conclusions Our study provides preliminary evidence that topical application of fluoroquinolone drugs can induce the expression of MMP-1, MMP-2, MMP-8 and MMP-9 in the undebrided corneal epithelium compared to artificial tear eye drops.

  2. Effect of biaxial versus coaxial microincision cataract surgery on optical quality of the cornea

    Directory of Open Access Journals (Sweden)

    Tamer Fahmy Eliwa

    2015-01-01

    Full Text Available Context: Visual function is determined by a combination of the cornea, which has a larger effect and internal aberrations generated by the intraocular lens and those induced by the surgery. These corneal refractive changes are related to the location and size of the corneal incision. The smaller the incision, the lower the aberrations and the better the optical quality. Aims: To compare the effect of uneventful coaxial versus biaxial microincision cataract surgery (MICS on the corneal aberrations. Settings and Design: Retrospective interventional nonrandomized comparative case study comprised 40 eyes of 36 patients with primary senile cataract. Subjects and Methods: They were divided into two groups: Group I (20 eyes had operated by biaxial MICS and Group II (20 eyes had operated by coaxial MICS. Each group were assessed by corneal topography and wavefront analysis over 6 mm pupil size preoperatively and 1-month postoperatively. Statistical Analysis Used: Statistical analysis was performed using SPSS for Windows (version 17.0.1, SPSS, Inc.. The paired t-test was used to compare the mean values of corneal aberrations preoperatively and 1-month postoperatively in each group. Results: There was a significant increase in trefoil and quatrefoil in biaxial MICS (P = 0.063, 0.032 respectively while other aberrations insignificantly changed. The coaxial MICS showed a significant increase in root mean square (RMS of total high order aberrations (HOAs (P = 0.02 and coma (0.028, but not the others. In comparison to each other, there was the insignificant difference as regards astigmatism, RMS of individual and total HOAs. Conclusions: Coaxial and biaxial MICS are neutral on corneal astigmatism and aberrations.

  3. Rheology of Pure Glasses and Crystal Bearing Melts: from the Newtonian Field to the Brittle Onset

    Science.gov (United States)

    Cordonnier, B.; Caricchi, L.; Pistone, M.; Castro, J. M.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The brittle-ductile transition remains a central question of modern geology. If rocks can be perceived as a granular flow on geological time-scale, their behavior is brittle in dynamic areas. Understanding rock failure conditions is the main parameter in mitigating geological risks, more specifically the eruptive style transitions from effusive to explosive. If numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. here we present results obtained under torsion and uni-axial compression on both pure glasses and crystal bearing melts. We characterized the brittle onset of two phases magmas from 0 to 65% crystals. The strain-rates span a 5 orders magnitude range, from the Newtonian flow to the Brittle field (10-5 - 100 s-1). We particularly emphasize the time dependency of the measured rheology. The materials tested are a borosilicate glass from the National Bureau of Standards, a natural sample from Mt Unzen volcano and a synthetic sample. The lattest is an HPG8 melt with 7% sodium mole excess. The particles are quasi-isometric corundum crystalschosen for their shape and integrity under the stress range investigated. The crystal fraction ranges from 0 to 0.65. Concerning pure magmas, we recently demonstrated that the material passes from a Newtonian to a non-Nemtonian behavior with increasing strain-rate. This onset can mostly be explained by viscous-heating effects. However, for even greater strain-rates, the material cracks and finally fail. The brittle onset is here explained with the visco-elastic theory and corresponds to a Deborah number greater than 10-2. Concerning crystal bearing melts the departure from the Newtonian state is characterized by two effects: a shear-thinning and a time weakening effect. The first one is instantaneous and loading-unloading cyclic tests suggest an elastic contribution of the crystal network. The second one

  4. Deciphering the brittle evolution of SW Norway through a combined structural, mineralogical and geochronological approach

    Science.gov (United States)

    Scheiber, Thomas; Viola, Giulio; Fredin, Ola; Zwingmann, Horst; Wilkinson, Camilla Maya; Ganerød, Morgan

    2016-04-01

    SW Norway has experienced a complex brittle history after cessation of the Caledonian orogeny, and the recent discoveries of major hydrocarbon reserves in heavily fractured and weathered basement offshore SW Norway has triggered a renewed interest in understanding this complex tectonic evolution. In this contribution we present results from a multidisciplinary study combining lineament analysis, field work, paleo-stress inversion, mineralogical characterization and radiometric dating in the Bømlo area of SW Norway in order to develop a tectonic model for the brittle evolution of this important region. The study area mainly consists of the Rolvsnes granodiorite (U-Pb zircon age of ca. 466 Ma), which is devoid of penetrative ductile deformation features. The first identified brittle faults are muscovite-bearing top-to-the-NNW thrusts and E-W striking dextral strike-slip faults decorated with stretched biotite. These are mechanically compatible and are assigned to the same NNW-SSE transpressional regime. Ar-Ar muscovite and biotite dates of ca. 450 Ma (Late Ordovician) indicate fault activity in the course of a Taconian-equivalent orogenic event. During the subsequent Silurian Laurentia-Baltica collision variably oriented, lower-grade chlorite and epidote-coated faults formed in response to a ENE-WSW compressional stress regime. A large number of mainly N-S striking normal faults consist of variably thick fault gouge cores with illite, quartz, kaolinite, calcite and epidote mineralizations, accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges and zones of altered granodiorite constrain deformation ranging from the Permian to the Late Jurassic, indicating a long history of crustal extension where faults were repeatedly activated. In addition, a set of ca. SW-NE striking faults associated with alteration zones give Cretaceous dates, either representing a young phase of NW-SE extension or reactivation of previously formed

  5. Transition from cataclastic flow to aseismic brittle failure in Carrarra marble

    Science.gov (United States)

    Walker, E.; Schubnel, A.; Thompson, B.; Fortin, J.; Nasseri, M.; Young, R.

    2004-12-01

    Interest in the brittle-ductile transition has increased considerably in recent years, in large part due to the fact that the maximum depth of seismicity corresponds to a transition in the crust and in the upper mantle from seismogenic brittle failure to aseismic cataclastic flow, i.e. from localized to homogeneous deformation. The mechanics of the transition depends both on some extrinsic variable (state of solid stress, pore pressure, temperature, fluid chemistry and strain rate) and intrinsic parameters (crack and dislocation density, modal composition of the rock or porosity for example). In the present study, two triaxial experiments were performed on Carrara marble at room temperature. The rock samples were first deformed in the cataclastic domain (up to ˜5% axial strain) until they exhibited severe damage accumulation, i.e. wavespeed attenuation. Damaged samples were then brought back at constant differential stress into the the brittle field by solely reducing the effective mean stress. Throughout both experiments, compressional wave velocities were measured along several raypaths. Acoustic Emissions, when any, were monitored and localized after testing. A complete 2 minutes failure recordings of failure (12 channels at 10MHz sampling frequency) was also obtained using ESG's Hyperion gigarecorder during one of the experiment. Our new set of data shows that during cataclastic deformation, elastic wave velocities show large variations, but only a small degree of elastic anisotropy when compared to what is generally observed in typical brittle materials such as granite or sandstones. After sufficient damage accumulation and when reducing the mean stress, both samples exhibited a fast acceleration in axial strain. Tertiary creep was followed by the nucleation of a brittle failure. Observed differential stress drops during rupture propagation were of the order of 150 MPa. Although failure occurred with large slip and stress drop, only very few AEs could be

  6. The role of fluids on the brittle-ductile transition in the crust

    Science.gov (United States)

    Hirth, Greg; Beeler, Nick

    2015-04-01

    To characterize stress and deformation style at the base of the seismogenic zone we investigate how the mechanical properties of fluid-rock systems respond to variations in temperature and strain rate. The role of fluids on the processes responsible for the brittle-ductile transition in quartz-rich rocks has not been explored at experimental conditions where the kinetic competition between microcracking and viscous flow is similar to that expected in the Earth. Our initial analysis of this competition suggests that the effective pressure law for sliding friction should not work as effectively near the brittle-ductile transition (BDT) as it does at shallow conditions. Our motivation comes from three observations. First, extrapolation of quartzite flow laws indicates the brittle-ductile transition (BDT) occurs at ~300 °C at geologic strain rates for conditions where fault strength is controlled by a coefficient of friction of ~0.6 with a hydrostatic pore-fluid pressure gradient. Second, we suggest that the preservation of relatively high stress microstructures indicates that the effective stress law must sometimes evolve rapidly near the BDT. There is abundant evidence for the presence of fluids during viscous deformation of mylonites (e.g., recrystallization and redistribution of micas, dissolution and reprecipitation of quartz). The relatively high viscous stresses inferred from these microstructures are incompatible with the standard effective stress relationship. A similar "paradox" is evident at experimental conditions where viscous creep is studied in the laboratory. In this case, the presence of fluid (which should produce low effective stress) does not promote localized brittle failure, even though these experiments are conducted under undrained conditions. Third, experiments on partially molten rocks illustrate viscous creep behavior during both drained compaction and undrained triaxial deformation tests, even though the melt pressure approaches or equals

  7. Brittle fracture at beam-to-column connection during earthquake; Kosei kyokyaku ramen gukakubu no jishinji zeiseika hakai

    Energy Technology Data Exchange (ETDEWEB)

    Miki, C.; Aizawa, T.; Anami, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-04-21

    During the Great Hanshin-Awaji Earthquake, brittle fracture was caused at beam-to-column connection of P75 steel pier. In this study, concerning the brittle fracture at P75 pier, simulations of brittle fracture at beam-to-column connection are carried out by using large scale specimens simulating the P75 beam-to-column joint. Some improved specimens which include ribs at corners of connection are also used. As a result, there is a high possibility that brittle fracture is caused at corner of connection where there is a high strain concentration. Shapes of the damages characteristic in the experiment using the reinforcing model studied in this study were buckling on the web near the rib end and cracks generated from near the rib. 11 refs., 23 figs., 4 tabs.

  8. Static and fatigue failure of quasi brittle materials at a V-notch using a Dugdale model

    OpenAIRE

    Murer, S.; Leguillon, D.

    2009-01-01

    Abstract The prediction of crack nucleation at stress concentration points in brittle and quasi-brittle materials may generally rely on either an Irwin-like criterion, involving a critical value of the generalized stress intensity factor of the singularity associated to the stress concentration, or on cohesive zone models. Leguillon's criterion enters the first category and combines an energy condition and a stress one. Thanks to matched asymptotics procedures, the associated numer...

  9. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea.

    Science.gov (United States)

    Ho, Leona T Y; Harris, Anthony M; Tanioka, Hidetoshi; Yagi, Naoto; Kinoshita, Shigeru; Caterson, Bruce; Quantock, Andrew J; Young, Robert D; Meek, Keith M

    2014-09-01

    This study investigated changes in collagen fibril architecture and the sulphation status of keratan sulphate (KS) glycosaminoglycan (GAG) epitopes from central to peripheral corneal regions. Freshly excised adult bovine corneal tissue was examined as a function of radial position from the centre of the cornea outwards. Corneal thickness, tissue hydration, hydroxyproline content, and the total amount of sulphated GAG were all measured. High and low-sulphated epitopes of keratan sulphate were studied by immunohistochemistry and quantified by ELISA. Chondroitin sulphate (CS) and dermatan sulphate (DS) distributions were observed by immunohistochemistry following specific enzyme digestions. Electron microscopy and X-ray fibre diffraction were used to ascertain collagen fibril architecture. The bovine cornea was 1021±5.42 μm thick at its outer periphery, defined as 9-12 mm from the corneal centre, compared to 844±8.10 μm at the centre. The outer periphery of the cornea was marginally, but not significantly, more hydrated than the centre (H=4.3 vs. H=3.7), and was more abundant in hydroxyproline (0.12 vs. 0.06 mg/mg dry weight of cornea). DMMB assays indicated no change in the total amount of sulphated GAG across the cornea. Immunohistochemistry revealed the presence of both high- and low-sulphated epitopes of KS, as well as DS, throughout the cornea, and CS only in the peripheral cornea before the limbus. Quantification by ELISA, disclosed that although both high- and low-sulphated KS remained constant throughout stromal depth at different radial positions, high-sulphated epitopes remained constant from the corneal centre to outer-periphery, whereas low-sulphated epitopes increased significantly. Both small angle X-ray diffraction and TEM analysis revealed that collagen fibril diameter remained relatively constant until the outer periphery was reached, after which fibrils became more widely spaced (from small angle x-ray diffraction analysis) and of larger diameter

  10. Influence of the static strain ageing on the ductile-to-brittle transition in C-Mn steel

    International Nuclear Information System (INIS)

    Ferritic steels for industrial structures have a brittle-ductile transition toughness and impact energy with temperature. Their resistance to the brittle fracture plays an essential role in the safety certification of industrial structures. Nowadays, the performance and the durability are key issues for major players such as EDF. In these approaches ductile-to-brittle transition toughness and impact energy, toughness is predicted from resilience. Several previous studies have shown that the probability of cleavage fracture can be adequately described in brittle plateau by a local approach to fracture. However, these studies assume that the material does not undergo strain aging, which is rarely relevant for low carbon steels and low calmed down. The work consisted firstly to characterize the behavior and secondly to propose a robust and explicit modeling of the observed phenomena. Characterization consisted of performing tensile tests between -150 C and 20 C for several strain rates. A model able to simulate the static aging is identified by implementing an appropriate and systematic strategy. Impact resistance test allows us to build the curve of ductile-to-brittle transition of the material for different conditions to understand and observe the influence of static strain aging on the failure. Finally, the modeling of the brittle fracture has been described for all experimental conditions tested using the model developed and identified in the previous section to predict the transition for different material conditions. (author)

  11. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jun [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Sun, Jianguo [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University (China); Hong, Jiaxu [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Wang, Wentao [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Wei, Anji [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Le, Qihua [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Xu, Jianjiang, E-mail: jianjiang-xu@163.com [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China)

    2015-05-01

    Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. - Highlights: • T-style keratoprosthesis was designed and prepared based on a PHEMA hydrogel. • Selective surface modifications effectively regulated cells' selective adhesion. • T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with host tissues.

  12. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs

    International Nuclear Information System (INIS)

    Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. - Highlights: • T-style keratoprosthesis was designed and prepared based on a PHEMA hydrogel. • Selective surface modifications effectively regulated cells' selective adhesion. • T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with host tissues

  13. Cushing's Syndrome

    Science.gov (United States)

    ... Cushing's syndrome, also called hypercortisolism , is a rare endocrine disorder caused by chronic exposure of the body's tissues ... removing the tumor while minimizing the chance of endocrine deficiency or long-term ... for Cushing's Syndrome Clinical Trials ...

  14. Turner Syndrome

    Science.gov (United States)

    Turner syndrome is a genetic disorder that affects a girl's development. The cause is a missing or incomplete ... t work properly. Other physical features typical of Turner syndrome are Short, "webbed" neck with folds of skin ...

  15. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These ... doctors agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  16. Asperger syndrome

    Science.gov (United States)

    Asperger syndrome is often considered a high functioning form of autism. It can lead to difficulty interacting socially, repeat behaviors, and clumsiness. Asperger syndrome is a part of the larger developmental disorder ...

  17. Pseudoaminopterin syndrome.

    Science.gov (United States)

    Kraoua, Lilia; Capri, Yline; Perrin, Laurence; Benmansour, Abdelmajjid; Verloes, Alain

    2012-09-01

    Pseudoaminopterin syndrome or aminopterin syndrome-like sine aminopterin (ASSA syndrome--OMIM 600325] is a rare autosomal recessive syndrome defined by characteristic dysmorphic features, skeletal defects, limb anomalies, cryptorchidism, and growth retardation. The syndrome owes its name to the fact that patients resemble the children exposed to aminopterin or to methotrexate, two dihydrofolate reductase inhibitors used for chemotherapy, or as an abortificient in early pregnancy. Ten patients have been described with pseudoaminopterin syndrome. Their phenotype is variable, and differs from the phenotype resulting from folic acid deprivation, leading to the notion that the pathogenesis may be more complex than simple vitamin deficiency. We report on an Algerian patient with pseudoaminopterin syndrome, review the previously reported cases and confirm that pseudoaminopterin syndrome does not result from a detectable contiguous gene imbalance as high resolution CGH array was normal in this child. PMID:22811276

  18. Usher Syndrome

    Science.gov (United States)

    Usher syndrome is an inherited disease that causes serious hearing loss and retinitis pigmentosa, an eye disorder ... hearing and vision. There are three types of Usher syndrome: People with type I are deaf from ...

  19. Turner Syndrome

    Science.gov (United States)

    Turner syndrome is a genetic disorder that affects a girl's development. The cause is a missing or ... t work properly. Other physical features typical of Turner syndrome are Short, "webbed" neck with folds of ...

  20. Proteus Syndrome

    Science.gov (United States)

    ... Gift Stock Gift Sunshine Society Contact Privacy Policy Proteus Syndrome Definition Common Signs Diagnostic Criteria (I have ... NIH to go with this criteria) Glossary Videos Proteus Syndrome is a condition which involves atypical growth ...

  1. Learning about Marfan Syndrome

    Science.gov (United States)

    ... genetic terms used on this page Learning About Marfan Syndrome What is Marfan syndrome? What are the ... Syndrome Additional Resources for Marfan Syndrome What is Marfan syndrome? Marfan syndrome is one of the most ...

  2. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn.

    Directory of Open Access Journals (Sweden)

    Lin Yao

    Full Text Available The aim of this study was to investigate the effects of subconjunctivally administered mesenchymal stem cells (MSCs on corneal wound healing in the acute stage of an alkali burn. A corneal alkali burn model was generated by placing a piece of 3-mm diameter filter paper soaked in NaOH on the right eye of 48 Sprague-Dawley female rats. 24 rats were administered a subconjunctival injection of a suspension of 2×10(6 MSCs in 0.1 ml phosphate-buffered saline (PBS on day 0 and day 3 after the corneal alkali burn. The other 24 rats were administered a subconjunctival injection of an equal amount of PBS as a control. Deficiencies of the corneal epithelium and the area of corneal neovascularization (CNV were evaluated on days 3 and 7 after the corneal alkali burn. Infiltrated CD68(+ cells were detected by immunofluorescence staining. The mRNA expression levels of macrophage inflammatory protein-1 alpha (MIP-1α, tumor necrosis factor-alpha (TNF-α, monocyte chemotactic protein-1 (MCP-1 and vascular endothelial growth factor (VEGF were analyzed using real-time polymerase chain reaction (real-time PCR. In addition, VEGF protein levels were analyzed using an enzyme-linked immunosorbent assay (ELISA. MSCs significantly enhanced the recovery of the corneal epithelium and decreased the CNV area compared with the control group. On day 7, the quantity of infiltrated CD68(+ cells was significantly lower in the MSC group and the mRNA levels of MIP-1α, TNF-α, and VEGF and the protein levels of VEGF were also down-regulated. However, the expression of MCP-1 was not different between the two groups. Our results suggest that subconjunctival injection of MSCs significantly accelerates corneal wound healing, attenuates inflammation and reduces CNV in alkaline-burned corneas; these effects were found to be related to a reduction of infiltrated CD68(+ cells and the down-regulation of MIP-1α, TNF-α and VEGF.

  3. Alagille syndrome.

    OpenAIRE

    Krantz, I D; Piccoli, D A; Spinner, N B

    1997-01-01

    Alagille syndrome (OMIM 118450) is an autosomal dominant disorder associated with abnormalities of the liver, heart, eye, skeleton, and a characteristic facial appearance. Also referred to as the Alagille-Watson syndrome, syndromic bile duct paucity, and arteriohepatic dysplasia, it is a significant cause of neonatal jaundice and cholestasis in older children. In the fully expressed syndrome, affected subjects have intrahepatic bile duct paucity and cholestasis, in conjunction with cardiac ma...

  4. THE VISCOUS TO BRITTLE TRANSITION IN CRYSTAL- AND BUBBLE-BEARING MAGMAS

    Directory of Open Access Journals (Sweden)

    Mattia ePistone

    2015-11-01

    Full Text Available The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K and high-pressure (200 MPa conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1. During the experiments bubbles are deformed (i.e. capillary number are in excess of 1 enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65 and bubble volume fractions (0.09 to 0.12. The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44 promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a potential sudden transition to brittle behaviour, which could result in an explosive volcanic eruption.

  5. Hemolytic and cytotoxic effects of saponin like compounds isolated from Persian Gulf brittle star (Ophiocoma erinaceus

    Directory of Open Access Journals (Sweden)

    Elaheh Amini

    2014-10-01

    Full Text Available Objective: To isolate and characterize the saponin from Persian Gulf brittle star (Ophiocoma erinaceus and to evaluate its hemolytic and cytotoxic potential. Methods: In an attempt to prepare saponin from brittle star, collected samples were minced and extracted with ethanol, dichloromethane, n-buthanol. Then, concentrated n-butanol extract were loaded on HP-20 resin and washed with dionized water, 80% ethanol and 100% ethanol respectively. Subsequently, detection of saponin was performed by foaming property, fourier transform infrared spectroscopy and hemolytic analysis on thin layer chromatography. The cytotoxic activity on HeLa cells was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazoliumbromide (MTT assay and under invert microscopy. Results: The existence of saponin in Ophiocoma erinaceus were approved by phytochemical method. The presence of C-H bond, C-O-C and OH in fourier transform infrared spectrum of fraction 80% ethanol is characteristic feature in the many of saponin compounds. Hemolytic assay revealed HD 50 value was 500 µg/mL. MTT assay exhibited that saponin extracted in IC50 value of 25 µg/mL inducsd potent cytotoxic activity against HeLa cells in 24 h and 12.5 µg/mL in 48 h, meanwhile in lower concentration did not have considerable effect against HeLa cells. Conclusions: These findings showed that only 80% ethanol fraction Persian Gulf brittle star contained saponin like compounds with hemolytic activity which can be detected simply by phytochemical that can be appreciable for future anticancer research.

  6. Effect of impurities on the high-temperature brittleness of commercial grade beryllium

    International Nuclear Information System (INIS)

    The variation in the hot-ductility of as-extruded beryllium has been studied, first of all, as a function of the temperature and of the rate of application of the tractive force. At 600 deg. C intergranular brittle fractures were observed. The presence of a Portevin-Le Chatelier phenomenon in the region where the ductility decreases has made it possible for us to connect this brittleness with an impurity-dislocation interaction. Secondly, the influence has been studied of various thermal treatments on the ductility at 600 deg. C, on the presence of the Portevin-Le Chatelier phenomenon, on the aspect of the fracture and on the formation of a face-centred cubic product (a = 6.07 A) whose presence is accompanied by an improvement in the ductility. We show the existence of a correlation between these different parameters. The use of an electronic probe micro-analyser and of X-rays has made it possible to show that the role of the three main impurities is of prime importance in the mechanism of the hot-brittleness of commercial grade beryllium, the iron in solution being responsible for the impurity-dislocation interaction, the aluminium and the silicon being present in the form of a ternary Be-Al-Si eutectic with a melting point of 430 deg. C. As a result of suitable thermal treatments the iron migrates towards the liquid phase of the eutectic, situated at the grain boundaries, and forms a face-centred cubic Be-Al-Fe compound with a = 6.07 A. This has two consequences: the matrix becomes more liable to deformation and the liquid phase disappears to give way to a high melting point compound. These two effects result, in a notable improvement in the hot-ductility of commercial grade beryllium. (author)

  7. Experiments on buoyancy-driven crack around the brittle-ductile transition

    Science.gov (United States)

    Sumita, Ikuro; Ota, Yukari

    2011-04-01

    We report the results of laboratory experiments exploring how a buoyancy-driven liquid-filled crack migrates within a viscoelastic medium whose rheology is around the brittle-ductile transition. To model such medium, we use a low concentration agar, which has a small yield stress and a large yield strain (deformation) when it fractures. We find that around the transition, the fluid migrates as a hybrid of a diapir (head) and a dyke (tail). Here the diapir is a bulged crack in which fracturing occurs at its tip and closes at its tail to form a dyke. A small amount of fluid is left along its trail and the fluid decelerates with time. We study how the shape and velocity of a constant volume fluid change as two control parameters are varied; the agar concentration ( C) and the density difference Δρ between the fluid and the agar. Under a fixed Δρ, as C decreases the medium becomes ductile, and the trajectory and shape of the fluid changes from a linearly migrating dyke to a meandering or a bifurcating dyke, and finally to a diapir-dyke hybrid. In this transition, the shape of the crack tip viewed from above, changes from blade-like to a cusped-ellipse. A similar transition is also observed when Δρ increases under a fixed C, which can be interpreted using a force balance between the buoyancy and the yield stress. Our experiments indicate that cracks around the brittle-ductile transition deviates from those in an elastic medium by several ways, such as the relaxation of the crack bulge, slower deceleration rate, and velocity becoming insensitive to medium rheology. Our experiments suggest that the fluid migrates as a diapir-dyke hybrid around the brittle-ductile transition and that fluid migration of various styles can coexist at the same depth, if they have different buoyancy.

  8. Improved small punch testing and parameter identification of ductile to brittle materials

    International Nuclear Information System (INIS)

    Minimal invasive material testing is of special interest, when only small amounts of material are available or the material degradation of structural components in service has to be evaluated. The disc-shaped specimens used in the small punch test are small enough for local material sampling but representative for characterizing the macroscopic material behaviour. A small punch test device was developed which enables the testing of materials in the whole range from ductile to brittle failure and from ambient temperature down to −190 °C in a unique experimental set-up. The specimens are not clamped as usually in the small punch test. This is crucial for brittle fracture behaviour with little or without plastic deformation. The measured load displacement curve of the punch represents the non-linear response of the material due to elastic–plastic deformation. It contains relevant information about true material parameters, which can be made accessible by solving the inverse problem. Thus, plastic yield curves and Weibull parameters were identified by combining finite element simulations with non-linear optimization techniques. Examples for measured load displacement curves and related results of parameter identification are shown for a pressure vessel steel and a laser welded joint. The results obtained from the small punch test are verified by data from standard specimen tests. - Highlights: • Improved small punch test suited for the whole range of ductile to brittle materials. • Minimal invasive determination of true material parameters by means of numerical simulations. • Temperature dependent yield curve parameters were identified using a response surface approach. • Estimation of Weibull parameters of cleavage fracture for steels at low temperatures

  9. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    Science.gov (United States)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a

  10. An experimental study on semi-brittle and plastic rheology of Panzhihua gabbro

    Institute of Scientific and Technical Information of China (English)

    何昌荣; 周永胜; 桑祖南

    2003-01-01

    We have carried out a systematic experimental study on semi-brittle and plastic deformation of fine-grained Panzhihua gabbro under dry condition with temperature range of 700-1100℃, confining pressure of 450-500 MPa, and strain rate of 1×10-4-3.1×10-6 s-1, using a triaxial testing system with a Griggs type solid medium pressure vessel. In terms of the parameters in the flow law and microstructure after deformation, the rate-dependent deformation can be categorized into three modes: (i) In temperature range of 700-800℃, the deformation is accommodated by semi-brittle flow, with activation energy Q = 612 ± 12 kJ/mol, and stress exponent n = 14.6. The deformation in microscopic scale corresponds to the dislocation glide accompanied with microfracturing. (ii) In temperature range of 900-950℃, the predominant deformation mechanisms in this phase are mechanical twinning and dislocation glide, with activation energy Q =720 ± 61 kJ/mol, and stress exponent n = 6.4. (iii) In temperature range of 1000-1150℃, the major deformation mechanisms are dislocation glide and dislocation climb with minor processes of partial melting, with activation energy Q = 699 ± 55 kJ/mol and stress exponent n = 4.1. The microstructure and deformation mechanism of our experiments are comparable to the results of clinopyroxene and diabase as observed in previous studies. The flow stress of a mafic lower crust is calculated based on the rheological parameters of dry fine-grained gabbro, which implies that a lower curst with mafic granulite may be brittle, and it is possible to fracture and produce frictional slips. This may be an important implication for earthquake nucleation in the lower crust.

  11. Cushing Syndrome

    Science.gov (United States)

    ... links Share this: Page Content What is Cushing’s syndrome? Cushing’s syndrome is a condition that occurs when the body’s ... medication or as a result of a tumor, Cushing’s syndrome can develop. Many factors influence whether this happens, ...

  12. Dumping Syndrome

    Science.gov (United States)

    ... Disease Organizations​​ (PDF, 341 KB)​​​​​ Alternate Language URL Dumping Syndrome Page Content On this page: What is ... Nutrition Points to Remember Clinical Trials What is dumping syndrome? Dumping syndrome occurs when food, especially sugar, ...

  13. Process diagnostics for precision grinding brittle materials in a production environment

    International Nuclear Information System (INIS)

    Precision grinding processes are steadily migrating from research laboratory environments into manufacturing production lines as precision machines and processes become increasingly more commonplace throughout industry. Low-roughness, low-damage precision grinding is gaining widespread commercial acceptance for a host of brittle materials including advanced structural ceramics. The development of these processes is often problematic and requires diagnostic information and analysis to harden the processes for manufacturing. This paper presents a series of practical precision grinding tests developed and practiced at Lawrence Livermore National Laboratory that yield important information to help move a new process idea into production

  14. Cleavage Fracture of Brittle Semiconductors from the Nanometer to the Centimeter Scale

    OpenAIRE

    Wasmer, Kilian; Ballif, Christophe; Gassilloud, Rémy; Pouvreau, Cédric; Rabe, Rodolfo; Michler, Johann; Breguet, Jean-Marc; Solletti, Jean-Marie; Karimi, Ayat; Schulz, Daniel; Schulz, D; Wasmer, K; Ballif, C.; Pouvreau, C.; Rabe, R.

    2005-01-01

    The objective of this paper is to present the fundamental phenomena occurring during the scribing and subsequent fracturing process usually performed when preparing surfaces of brittle semiconductors. In the first part, an overview of nano-scratching experiments of different semiconductor surfaces (InP, Si and GaAs) is given. It is shown how phase transformation can occur in Si under a diamond tip, how single dislocations can be induced in InP wafers and how higher scratching load of GaAs waf...

  15. A damage model with non-convex free energy for quasi-brittle materials

    CERN Document Server

    François, Marc Louis Maurice

    2010-01-01

    A state coupling between the hydrostatic (volumetric) and deviatoric parts of the free energy is introduced in a damage mechanics model relevant for the quasi-brittle materials. It is shown that it describes the large dilatancy of concrete under compression and the different localization angles and damage levels in tension and compression. A simple isotropic description is used, although similar ideas can be extended to anisotropic damage. The model is identified with respect to tensile and compression tests and validated on bi-compression and bi-tension. Fully written in three dimensions under the framework of thermodynamics of irreversible processes, it allows further developments within a finite element code.

  16. Understanding brittle deformation at the Olkiluoto site. Literature compilation for site characterization and geological modelling

    International Nuclear Information System (INIS)

    The present report arose from the belief that geological modelling at Olkiluoto, Finland, where an underground repository for spent nuclear fuel is at present under construction, could be significantly improved by an increased understanding of the phenomena being modelled, in conjunction with the more sophisticated data acquisition and processing methods which are now being introduced. Since the geological model is the necessary basis for the rock engineering and hydrological models, which in turn provide the foundation for identifying suitable rock volumes underground and for demonstrating longterm safety, its scientific basis is of critical importance. As a contribution to improving this scientific basis, the literature on brittle deformation in the Earth's crust has been reviewed, and key references chosen and arranged, with the particular geology of the Olkiluoto site in mind. The result is a compilation of scientific articles, reports and books on some of the key topics, which are of significance for an improved understanding of brittle deformation of hard, crystalline rocks, such as those typical for Olkiluoto. The report is subdivided into six Chapters, covering (1) background information, (2) important aspects of the fabric of intact rock, (3) fracture mechanics and brittle microtectonics, (4) fracture data acquisition and processing, for the statistical characterisation and modelling of fracture systems, (5) the characterisation of brittle deformation zones for deterministic modelling, and (6) the regional geological framework of the Olkiluoto site. The Chapters are subdivided into a number of Sections, and each Section into a number of Topics. The citations are mainly collected under each Topic, embedded in a short explanatory text or listed chronologically without comment. The systematic arrangement of Chapters, Sections and Topics is such that the Table of Contents can be used to focus quickly on the theme of interest without the necessity of looking

  17. Hydrogen effect on tendency to brittle fracture of welded joints in WWER-1000 reactor vessels

    International Nuclear Information System (INIS)

    Hydrogen effect on tendency to brittle fracture of varions welded joint zones under a 12 MPa pressure, at operatting temperatures, various deformation rates and hydrogen concentrations has been studied. Welded joints of shrouds 4535X295 mm in diameter of 15Kh2NMFA steel have been investigated. It has been found that for raising resistance to hydrogen embrittlement of WWER type reactor vessels it is reasonable to decrease a detrimental impurities content (antimony, tin, arsenic, zinc lead) in the base metal and welding wire. To prevent reactor vessel damages due to hydrogen embrittlement steelaustenite internal surface cladding is reqUired

  18. Brittle versus ductile deformation as the main control of the deep fluid circulation in continental crust

    Science.gov (United States)

    Violay, Marie; Madonna, Claudio; Burg, Jean-Pierre

    2016-04-01

    The Japan Beyond-Brittle Project (JBBP) and the Taupo Volcanic Zone-Deep geothermal drilling project in New Zealand (TVZ-DGDP) proposed a new concept of engineered geothermal development where reservoirs are created in ductile rocks. This system has several advantages including (1) a simpler design and control of the reservoir due to homogeneous rock properties and stress states in the ductile domain ,(2) possible extraction of supercritical fluids (3) less probability for induced earthquakes. However, it is at present unknwon what and how porosity and permeability can be engineered in such environments. It has been proposed that the magmatic chamber is surrounded by a hot and ductile carapace through which heat transfer is conductive because the plastic behaviour of the rock will close possible fluid pathways. Further outward, as temperature declines, the rock will encounter the brittle-ductile transition with a concomitant increase in porosity and permeability. The thickness of the conduction-dominated, ductile boundary zone between the magmatic chamber and the convecting geothermal fluid directly determines the rate of heat transfer. To examine the brittle to ductile transition in the context of the Japanese crust, we conducted deformation experiments on very-fine-grain granite in conventional servocontrolled, gas-medium triaxial apparatus (from Paterson instrument). Temperature ranged from 600° C to 1100° C and effective confining pressure from 100 to 150 MPa. Dilatancy was measured during deformation. The method consisted in monitoring the volume of pore fluid that flows into or out of the sample at constant pore pressure. Permeability was measured under static conditions by transient pressure pulse method. Mechanical and micro-structural observations at experimental constant strain rate of 10‑5 s‑1 indicated that the granite was brittle and dilatant up to 900 ° C. At higher temperatures the deformation mode becomes macroscopically ductile, i

  19. Micro mechanical analysis of the coupling between damage and permeability of brittle rocks

    International Nuclear Information System (INIS)

    This paper presents a coupled model for anisotropic damage and permeability variation in brittle rocks by micro-macro approach. The material damage is represented by space distribution of microcracks (crack orientation, crack length and crack aperture). The evolution of damage is determined from a crack propagation criterion. Effective properties of damaged material are studied using micro mechanical considerations. By using Darcy law for macroscopic fluid flow and assuming laminar flow inside microcracks, the total permeability of the cracked material is obtained by a volume averaging procedure taking into account crack aperture distribution in each orientation in the space. (authors)

  20. Effect of alloying elements on tendency to reversible temper brittleness of low alloy welds

    International Nuclear Information System (INIS)

    Results of assessing the role of impurity and alloying elements contained in multicomponent (Cr-Ni-Mo system) weld in development of embrittlement during decelerated cooling after tempering to treat for stress-relieve are given as well as of establishing basic concentration and time-temperature regularities of this process. Cr-Mn-Ni-Mo system wires were used in experiments. Quantitative relation between temperature level of transition to brittle state of welds and elements contents affecting embrittlement has been determined. Parametric dependence revealed permits to assess with high confidence cold resistance of Cr-Ni-Mo welds at this stage of choosing the weld material composition, welding and thermal treatment conditions

  1. Modeling and mesoscopic damage constitutive relation of brittle short-fiber-reinforced composites

    Institute of Scientific and Technical Information of China (English)

    刘洪秋; 梁乃刚; 夏蒙棼

    1999-01-01

    Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description,damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.

  2. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode

    OpenAIRE

    Wagner, J. G.; Schmidtke, D. W.; Quinn, C P; Fleming, T F; Bernacky, B.; Heller, A.

    1998-01-01

    The performance of an amperometric biosensor, consisting of a subcutaneously implanted miniature (0.29 mm diameter, 5 × 10−4 cm2 mass transporting area), 90 s 10–90% rise/decay time glucose electrode, and an on-the-skin electrocardiogram Ag/AgCl electrode was tested in an unconstrained, naturally diabetic, brittle, type I, insulin-dependent chimpanzee. The chimpanzee was trained to wear on her wrist a small electronic package and to present her heel for capillary blood samples. In five sets o...

  3. A Case of Brown-McLean Syndrome

    Directory of Open Access Journals (Sweden)

    Gökçen Gökçe

    2013-10-01

    Full Text Available A 89-year-old man with a history of cataract surgery ten years ago presented to our ophthalmology department with blurred vision. On ophthalmic examination, best-corrected visual acuity was 20/50 in the right eye and 20/32 in the left. Slit lamp examination revealed bilateral symmetrical peripheral corneal oedema, advanced at the inferior part of the cornea in both eyes. Considering clinical and confocal microscopy findings, a diagnosis of Brown-McLean Syndrome (BMS was made. BMS is a rare condition that may developed after cataract surgery, and it can be easily overlooked or misdiagnosed. Our report points to this rare syndrome and we tried to emphasis the importance of BMS considering it in the differential diagnosis of refractory peripheral corneal oedema developed in pseudophakic patients. (Turk J Ophthalmol 2013; 43: 365-7

  4. Systematic infrared ablations with the mark III FEL at 2.94 μm in the chicken cornea

    International Nuclear Information System (INIS)

    Previous studies with the free electron laser have only assessed the corneal tissue response in ex vivo models. This is the first free electron laser investigation that has examined the clinical and histologic response of the cornea in vivo. Methods. The Mark III free electron laser was tuned to 2.94 μm for a total of 212 separate in vivo 1 mm spot ablations at varied fluences (0.4-2.04 J/cm2), repetition rates (1-15 Hz), and number of pulses (1-32). Also, 22 separate in vivo central scanning patterns were performed. Results. For the in vivo chicken cornea, the threshold of ablation is approximately 0.64 J/cm2 at a repetition rate of 10 Hz. Clinical biomicroscopy and light microscopy revealed parameter-dependent collateral damage (10-40) μm) induced by laser energy. Wound healing following free electron laser ablation exhibits patterns similar to those seen in excimer laser anterior keratectomy, including increased epithelial thickness, new collagen deposition, increased numbers of keratocytes, and patterns congruent with attempted profiles of myopic ablation. Conclusions. With further study, continued parameter adjustment, and refined delivery schemes, the potential for marked improvement and possible application appears promising

  5. Quantitative & qualitative analysis of endothelial cells of donor cornea before & after penetrating keratoplasty in different pathological conditions

    Directory of Open Access Journals (Sweden)

    Aruna K.R. Gupta

    2016-01-01

    Full Text Available Background & objectives: Endothelial cells of the donor cornea are known to be affected quantitatively and qualitatively in different pathological conditions after penetrating keratoplasty (PK and this has direct effect on the clarity of vision obtained after PK. This study was undertaken to analyze the qualitative and quantitative changes in donor endothelial cells before and after PK in different pathological conditions. Methods: A prospective investigational analysis of 100 consecutive donor corneas used for penetrating keratoplasty between June 2006 and June 2008, was conducted. The patients were evaluated on the first day, at the end of first week, first month, third and six months and one year. Results: A decrease was observed in endothelial cell count in all pathological conditions. After one year of follow up the loss was 33.1 per cent in corneal opacity, 45.9 per cent in acute infective keratitis (AIK, 58.5 per cent in regrafts, 28.5 per cent in pseudophakic bullous keratopathy (PBK, 37 per cent in descemetocele, 27 per cent in keratoconus and 35.5 per cent in aphakic bullous keratopathy (ABK cases. Interpretation & conclusions: The endothelial cell loss was highest in regraft cases which was significant (P<0.05, while the least endothelial cell loss was seen in keratoconus cases. The cell loss was associated with increase in coefficient of variation (CV, i.e. polymegathism and pleomorphism. Inspite of this polymegathism and pleomorphism, the clarity of the graft was maintained.

  6. Gaussian process prediction of the stress-free configuration of pre-deformed soft tissues: Application to the human cornea.

    Science.gov (United States)

    Businaro, Elena; Studer, Harald; Pajic, Bojan; Büchler, Philippe

    2016-04-01

    Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. One constraint of this technique is that the shape of soft tissues acquired in-vivo is deformed by the physiological loads. Accurate simulations require determining the existing stress in the tissues or their stress-free configurations. This process is time consuming, which is a limitation to the dissemination of numerical planning solutions to clinical practice. In this study, we propose a method to determine the stress-free configuration of soft tissues using a Gaussian process (GP) regression. The prediction relies on a database of pre-calculated results to enable real time predictions. The application of this technique to the human cornea showed a level of accuracy five to ten times higher than the accuracy of the topographic device used to obtain the patients' anatomy; results showed that for almost all optical indices, the predicted curvature error did not exceed 0.025D, while the wavefront aberration percentage error did not overcome 5%. In this context, we believe that GP models are suitable for predicting the stress free configuration of the cornea and can be used in planning tools based on patient-specific finite element simulations. Due to the high level of accuracy required in ophthalmology, this approach is likely to be appropriate for other applications requiring the definition of the relaxed shape of soft tissues. PMID:26920075

  7. Behaviour of glutathione in the cornea epithelium of cattle and rabbits under the influence of infrared radiation

    International Nuclear Information System (INIS)

    After creating a keratitis photoelectrica by means of a mercury/quartz analysis lamp, the concentration of GSH (glutathion, reduced) and GSSG (glutathion, oxidised) in the cornea epithelium of cattle and of rabbits at different times after irradiation was determined. The question of whether ultraviolet radiation considerably influences the GSH/GSSG quotient before the keratitis photoelectrica is fully formed morphologically, could be answered as follows: There is no considerable change in the GSH/GSSG quotient during the first 7-10 hours after the irradiation. Then, when there is, also morphologically, a keratitis photoelectrica, the GSH/GSSG quotient is doubled. The linkage of the GSH/GSSG system and hexosephosphatshunt via the NADP/NADPH system leads us to the conclusion that irradiation does not cause any direct changes in the GSH/GSSG system. Only when the cornea epithelium visably disintegrates an increased reduction of the glutathion occurs, like in several other damaging influences. Thus the found increase of the GSH/GSSG quotient 7-10 hours after ultraviolet irradiation might be unspecific. (orig./AJ)

  8. Quantitative & qualitative analysis of endothelial cells of donor cornea before & after penetrating keratoplasty in different pathological conditions

    Science.gov (United States)

    Gupta, Aruna K.R.; Gupta, Roopam K.R.

    2016-01-01

    Background & objectives: Endothelial cells of the donor cornea are known to be affected quantitatively and qualitatively in different pathological conditions after penetrating keratoplasty (PK) and this has direct effect on the clarity of vision obtained after PK. This study was undertaken to analyze the qualitative and quantitative changes in donor endothelial cells before and after PK in different pathological conditions. Methods: A prospective investigational analysis of 100 consecutive donor corneas used for penetrating keratoplasty between June 2006 and June 2008, was conducted. The patients were evaluated on the first day, at the end of first week, first month, third and six months and one year. Results: A decrease was observed in endothelial cell count in all pathological conditions. After one year of follow up the loss was 33.1 per cent in corneal opacity, 45.9 per cent in acute infective keratitis (AIK), 58.5 per cent in regrafts, 28.5 per cent in pseudophakic bullous keratopathy (PBK), 37 per cent in descemetocele, 27 per cent in keratoconus and 35.5 per cent in aphakic bullous keratopathy (ABK) cases. Interpretation & conclusions: The endothelial cell loss was highest in regraft cases which was significant (P<0.05), while the least endothelial cell loss was seen in keratoconus cases. The cell loss was associated with increase in coefficient of variation (CV), i.e. polymegathism and pleomorphism. Inspite of this polymegathism and pleomorphism, the clarity of the graft was maintained. PMID:27121519

  9. Analysis of two precipitation methods on the yield, structural features and activity of sulfated polysaccharides from Gracilaria cornea (Rhodophyta

    Directory of Open Access Journals (Sweden)

    Ricardo Basto Souza

    2015-03-01

    Full Text Available The global demand for natural products from seaweeds has increased worldwide; however, no description of the use of isoamly alcohol (IAA for obtaining of sulfated polysaccharides (SPs has been reported. We investigated the efficiency of two precipitation methods (M in obtaining SPs from the red seaweed Gracilaria cornea. SPs enzymatically isolated were concentrated with cetylpyridinium chloride (M I or IAA (M II and extracts were examined with regard to their yield, structural features and in vitro effects on the activated partial thromboplastin time (APTT using normal human plasma and standard heparin (193 IU mg-1. Yield difference reached 12.99%. Quantitative determination of sulfate was similar between the two methods (̴ 26%, but extracts revealed different pattern on charge density by agarose gel electrophoresis. Whereas both extracts revealed as agarocolloids, alternative M II was also efficient for lipids, proteins and nucleic acids according to the infrared analysis. Extracts had virtually no effect on APPT (1.95 and 2 IU mg-1 for M I and M II, respectively. The results revealed IAA as an alternative solvent for obtaining SPs from the red seaweed G. cornea, depending on the industry’ usage criterion.

  10. Nature-Derived Aloe Vera Gel Blended Silk Fibroin Film Scaffolds for Cornea Endothelial Cell Regeneration and Transplantation.

    Science.gov (United States)

    Kim, Do Kyung; Sim, Bo Ra; Khang, Gilson

    2016-06-22

    The goal of this study was to fabricate an appropriate replacement for cadaveric corneas to overcome a shortage of cadaveric corneas for transplantation. In this study, we fabricated transparent ultrathin film scaffolds with nature-derived aloe vera (AV) gel and silk fibroin (SF) for corneal endothelial cells (CECs). The scaffolds were subjected to analysis of transparency and contact angle using field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy to determine their physical and chemical properties. FESEM images revealed that the critical morphology of CECs was formed on the AV gel in the blend with SF rather than in the scaffold with SF alone. The cell proliferation, phenotype, and specific gene marker expressions for CECs were determined by MTT assays, immunofluorescence, and reverse transcription polymerase chain reactions. Incorporation of a small amount of AV gel increased the cell viability and maintained its functions well. The scaffolds were easily handled for transplantation into rabbit eyes with small incisions and examined by their transparency after transplantation and histological staining. The scaffolds attached to the surface of the corneal stroma and integrated with surrounding corneal tissue without a significant inflammatory reaction. These results indicate that AV blended SF film scaffolds might be a suitable substitute for alternative corneal grafts for transplantation. PMID:27243449

  11. The tricho-rhino-phalangeal syndrome revisited

    International Nuclear Information System (INIS)

    The tricho-rhino-phalangeal syndrome (TRPS) is a rare congenital disorder, characterized by (1) a peculiar and somewhat pear-shaped nose, (2) sparse and brittle scalp hair, and (3) radiographic evidence of coneshaped epiphyses of the hands. On the basis of clinical, radiographic and genetic criteria, two subtypes (type I and II) are discerned. We describe an intermediate 'hybrid' variant of the TRPS in a patient with clinical and radiographic features of TRPS type I, but with a clearly abnormal karyotype, consistent with TRPS type II. The radiographic findings of the syndrome are reviewed, with particular emphasis on the cone-shaped epiphyses in the hands, the changes in the coxo-femoral joints and the atypical appearance of the pubic symphysis. (orig.)

  12. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  13. Research on Ultrasonic Vibration Grinding of the Hard and Brittle Materials

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-hong; HAN Jie-cai; ZHANG Yu-min; ZUO Hong-bo; ZHANG Xue-jun

    2006-01-01

    It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker wear and tear of grinding tools, lower efficiency and so on. Ultrasonic vibration grinding (UVG) which combines ultrasonic machining and grinding emerged as a developing and promising technique in recent years. In this paper, experimental studies on UVG were conducted on several kinds of hard and brittle material by altering processing parameters such as vibration frequency and its amplitude, diamond abrasive grit size, cutting depth, feeding speed and rotary speed of tools. The experimental results show that alteration in any of above mentioned parameters will bring effects on the processed surface finish of these materials. Of them, the diamond abrasive grit size has the greatest. Moreover, conventional grinding experiments were also carried out on these materials. By comparison, it was found that the UVG is superior to the conventional method in terms of the ground surface quality, the working efficiency and the wear rate of tools.

  14. Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique

    Indian Academy of Sciences (India)

    M Rahman; A Senthil Kumar; H S Lim; K Fatima

    2003-10-01

    Recent developments in grinding have opened up new avenues for finishing of hard and brittle materials with nano-surface finish, high tolerance and accuracy. Grinding with superabrasive wheels is an excellent way to produce ultraprecision surface finish. However, superabrasive diamond grits need higher bonding strength while grinding, which metal-bonded grinding wheels can offer. Truing and dressing of the wheels are major problems and they tend to glaze because of wheel loading. When grinding with superabrasive wheels, wheel loading can be avoided by dressing periodically to obtain continuous grinding. Electrolytic inprocess dressing (ELID) is the most suitable process for dressing metal-bonded grinding wheels during the grinding process. Nano-surface finish can be achieved only when chip removal is done at the atomic level. Recent developments of ductile mode machining of hard and brittle materials show that plastically deformed chip removal minimizes the subsurface damage of the workpiece. When chip deformation takes place in the ductile regime, a defect-free nano-surface is possible and it completely eliminates the polishing process. ELID is one of the processes used for atomic level metal removal and nano-surface finish. However, no proper and detailed studies have been carried out to clarify the fundamental characteristics for making this process a robust one. Consequently, an attempt has been made in this study to understand the fundamental characteristics of ELID grinding and their influence on surface finish.

  15. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    Science.gov (United States)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. PMID:24784833

  16. KrF excimer laser precision machining of hard and brittle ceramic biomaterials

    International Nuclear Information System (INIS)

    KrF excimer laser precision machining of porous hard–brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse ⋅ J cm−2) and 0.048 µm/(pulse ⋅ J cm−2), while their threshold fluences are individually 0.72 and 1.5 J cm−2. The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard–brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. (paper)

  17. An approach to scaling size effect on strength of quasi-brittle biomedical materials.

    Science.gov (United States)

    Lei, Wei-Sheng; Su, Peng

    2016-09-01

    Two-parameter Weibull statistics is commonly used for characterizing and modeling strength distribution of biomedical materials and its size dependence. The calibrated scale parameter and shape factor are usually sensitive to specimen size. Since Weibull statistics is subject to the weakest link postulate, this work proposed to directly resort to the weakest-link formulation for the cumulative failure probability to characterize size effect on strength distribution of quasi-brittle biomedical materials. As a preliminary examination, the approach was assessed by two sets of published strength data. It shows that the resultant expression for the cumulative probability follows either Weibull distribution or other type of distributions. The calibrated model parameters are independent of specimen size, so they can be used to transfer strength distribution from one set of specimens to another set of specimens with geometrical similarity under same loading mode. These initial results motivate a more comprehensive validation of the proposed approach to proceed via a larger set of case studies covering different quasi-brittle biomedical materials over a wider range of size variation. PMID:27266476

  18. Brittle Creep Failure, Critical Behavior, and Time-to-Failure Prediction of Concrete under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yingchong Wang

    2015-01-01

    Full Text Available Understanding the time-dependent brittle deformation behavior of concrete as a main building material is fundamental for the lifetime prediction and engineering design. Herein, we present the experimental measures of brittle creep failure, critical behavior, and the dependence of time-to-failure, on the secondary creep rate of concrete under sustained uniaxial compression. A complete evolution process of creep failure is achieved. Three typical creep stages are observed, including the primary (decelerating, secondary (steady state creep regime, and tertiary creep (accelerating creep stages. The time-to-failure shows sample-specificity although all samples exhibit a similar creep process. All specimens exhibit a critical power-law behavior with an exponent of −0.51 ± 0.06, approximately equal to the theoretical value of −1/2. All samples have a long-term secondary stage characterized by a constant strain rate that dominates the lifetime of a sample. The average creep rate expressed by the total creep strain over the lifetime (tf-t0 for each specimen shows a power-law dependence on the secondary creep rate with an exponent of −1. This could provide a clue to the prediction of the time-to-failure of concrete, based on the monitoring of the creep behavior at the steady stage.

  19. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience

    Science.gov (United States)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-06-01

    This paper analyzes the mechanical behavior of the unstable Mt. Toc slope before the 1963 catastrophic collapse, considering both the measured data (surface displacements and microseismicity) and the updated geological model of the prehistoric rockslide. From February 1960 up to 9 October 1963, the unstable mass behaved as a brittle-ductile `mechanical system,' characterized by remarkable microseismicity as well as by considerable surface displacements (up to 4-5 m). Recorded microshocks were the result of progressive rock fracturing of distinct resisting stiff parts made up of intact rock (indentations, undulations, and rock bridges). The main resisting stiff part was a large rock indentation located at the NE extremity of the unstable mass that acted as a mechanical constraint during the whole 1960-1963 period, inducing a progressive rototranslation toward the NE. This large constraint failed in autumn 1960, when an overall slope failure took place, as emphasized by the occurrence of the large perimetrical crack in the upper slope. In this circumstance, the collapse was inhibited by a reblocking phenomenon of the unstable mass that had been previously destabilized by the first reservoir filling. Progressive failure of localized intact rock parts progressively propagated westwards as a consequence of the two further filling-drawdown cycles of the reservoir (1962 and 1963). The characteristic brittle-ductile behavior of the Vajont landslide was made possible by the presence of a very thick (40-50 m) and highly deformable shear zone underlying the upper rigid rock mass (100-120 m thick).

  20. Brittle-ductile transition for nuclear applications in contact with mercury

    International Nuclear Information System (INIS)

    In this work is studied the mercury embrittlement of austenitic stainless steel 316L and ferritic-martensitic steel T91 at ambient temperature in carrying out tensile tests on CCT (Center Cracked Tension) specimens at solicitation velocities between 1.67*10-8 and 6.67*10-3 m.s-1. The results reveal that these two steels are sensitive to mercury embrittlement. A ductile-brittle transition of the steel 316L in contact to mercury in terms of the deformation velocity is observed. The early beginnings of such a transition are visible too on the steel T91 in the experiment conditions. On a some range of the solicitation velocity, the presence of mercury modifies the plastic behaviour of the material in inhibiting the nucleation-growth of the cavities. For these two steels in contact with mercury, in the area of velocities for which a brittle rupture is observed, it appears that the fracture is produced by de-cohesion of shear bands. (O.M.)

  1. Visco-poroelastic damage model for brittle-ductile failure of porous rocks

    Science.gov (United States)

    Lyakhovsky, Vladimir; Zhu, Wenlu; Shalev, Eyal

    2015-04-01

    The coupling between damage accumulation, dilation, and compaction during loading of sandstones is responsible for different structural features such as localized deformation bands and homogeneous inelastic deformation. We distinguish and quantify the role of each deformation mechanism using new mathematical model and its numerical implementation. Formulation includes three different deformation regimes: (I) quasi-elastic deformation characterized by material strengthening and compaction; (II) cataclastic flow characterized by damage increase and compaction; and (III) brittle failure characterized by damage increase, dilation, and shear localization. Using a three-dimensional numerical model, we simulate the deformation behavior of cylindrical porous Berea sandstone samples under different confining pressures. The obtained stress, strain, porosity changes and macroscopic deformation features well reproduce the laboratory results. The model predicts different rock behavior as a function of confining pressures. The quasi-elastic and brittle regimes associated with formation of shear and/or dilatant bands occur at low effective pressures. The model also successfully reproduces cataclastic flow and homogeneous compaction under high pressures. Complex behavior with overlap of common features of all regimes is simulated under intermediate pressures, resulting with localized compaction or shear enhanced compaction bands. Numerical results elucidate three steps in the formation of compaction bands: (1) dilation and subsequent shear localization, (2) formation of shear enhanced compaction band, and (3) formation of pure compaction band.

  2. Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression

    Science.gov (United States)

    Amann, Florian; Button, Edward Alan; Evans, Keith Frederick; Gischig, Valentin Samuel; Blümel, Manfred

    2011-07-01

    The mechanical behavior of clay shales is of great interest in many branches of geo-engineering, including nuclear waste disposal, underground excavations, and deep well drilling. Observations from test galleries (Mont Terri, Switzerland and Bure, France) in these materials have shown that the rock mass response near the excavation is associated with brittle failure processes combined with bedding parallel shearing. To investigate the brittle failure characteristics of the Opalinus Clay recovered from the Mont Terri Underground Research Laboratory, a series of 19 unconfined uniaxial compression tests were performed utilizing servo-controlled testing procedures. All specimens were tested at their natural water content with loading approximately normal to the bedding. Acoustic emission (AE) measurements were utilized to help quantify stress levels associated with crack initiation and propagation. The unconfined compression strength of the tested specimens averaged 6.9 MPa. The crack initiation threshold occurred at approximately 30% of the rupture stress based on analyzing both the acoustic emission measurements and the stress-strain behavior. The crack damage threshold showed large variability and occurred at approximately 70% of the rupture stress.

  3. Dislocation dynamics modelling of brittle-ductile transitions in BCC metals

    Energy Technology Data Exchange (ETDEWEB)

    Tarleton, E.; Roberts, S.; Novokshanov, R. [Oxford Univ., Dept. of Materials (United Kingdom)

    2007-07-01

    Full text of publication follows: Bend tests on single crystals of BCC metals (Tungsten, Iron and Iron Chromium alloys) show the brittle ductile transition temperature of a pre-cracked specimen under 4 point bending decreases by around 10 K for each order of magnitude decrease in strain rate. At higher temperatures or lower strain rates large numbers of dislocations are produced which are able to shield the crack from the external loading. This increased plasticity in the region of the crack tip can delay or even prevent brittle fracture meaning the specimen is ductile. These experiments have been modelled using a 2D dislocation dynamics code which simulates the nucleation and motion of dislocations around a loaded crack, and their effect of the crack-tip stress intensity factor. At high simulated temperatures or low simulated loading rates, dislocations can shield the crack tip sufficiently to prevent fracture. The model gives excellent agreement between predicted and experimental value of BDT temperatures and the variation with loading rate. However this good agreement occurs only the slip direction is at 70 degrees to the crack plane, rather than the 45 degree angle imposed by the crystallography of the real test specimens. 3D modelling of a crack is currently being performed to see if cross slip can account for an effective slip plane angle close to 70 degrees. (authors)

  4. Brittle and semibrittle behaviours of a carbonate rock: Influence of water and temperature

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Regnet, J. B.; Dimanov, A.; Guéguen, Y.

    2016-04-01

    Inelastic deformation can either occur with dilatancy or compaction, implying differences in porosity changes, failure and petrophysical properties. In this study, the roles of water as a pore fluid, and of temperature, on the deformation and failure of a micritic limestone (white Tavel limestone, porosity 14.7%) were investigated under triaxial stresses. For each sample, a hydrostatic load was applied up to the desired confining pressure (from 0 MPa up to 85 MPa) at either room temperature or at 70°C. Two pore fluid conditions were investigated at room temperature: dry and water saturated. The samples were deformed up to failure at a constant strain rate of ˜10-5s-1. The experiments were coupled with ultrasonic wave velocity surveys to monitor crack densities. The linear trend between the axial crack density and the relative volumetric strain beyond the onset of dilatancy suggests that cracks propagate at constant aspect ratio. The decrease of ultrasonic wave velocities beyond the onset of inelastic compaction in the semibrittle regime indicate the ongoing interplay of shear-enhanced compaction and crack development. Water has a weakening effect on the onset of dilatancy in the brittle regime, but no measurable influence on the peak strength. Temperature lowers the confining pressure at which the brittle-semibrittle transition is observed but does not change the stress states at the onset of inelastic compaction and at the post-yield onset of dilatancy.

  5. Superior room-temperature ductility of typically brittle quasicrystals at small sizes.

    Science.gov (United States)

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-01-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ∼4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals-dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices. PMID:27515779

  6. Electromagnetic and neutron emissions from brittle rocks failure: Experimental evidence and geological implications

    Indian Academy of Sciences (India)

    A Carpinteri; G Lacidogna; O Borla; A Manuello; G Niccolini

    2012-02-01

    It has been observed energy emission in the form of electromagnetic radiation, clearly indicating charge redistribution, and neutron bursts, necessarily involving nuclear reactions, during the failure process of quasi-brittle materials such as rocks, when subjected to compression tests. The material used is Luserna stone, which presents a very brittle behaviour during compression failure. The observed phenomenon of high-energy particle emission, i.e., electrons and neutrons, can be explained in the framework of the superradiance applied to the solid state, where individual atoms lose their identity and become part of different plasmas, electronic and nuclear. Since the analysed material contains iron, it can be conjectured that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. These complex phenomenologies are confirmed by Energy Dispersive X-ray Spectroscopy (EDS) tests conducted on Luserna stone specimens, and found additional evidences at the Earth’s Crust scale, where electromagnetic and neutron emissions are observed just in correspondence with major earthquakes. In this context, the effects of piezonuclear reactions can be also considered from a geophysical and geological point of view.

  7. Breaking new ground in the mind: an initial study of mental brittle transformation and mental rigid rotation in science experts.

    Science.gov (United States)

    Resnick, Ilyse; Shipley, Thomas F

    2013-05-01

    The current study examines the spatial skills employed in different spatial reasoning tasks, by asking how science experts who are practiced in different types of visualizations perform on different spatial tasks. Specifically, the current study examines the varieties of mental transformations. We hypothesize that there may be two broad classes of mental transformations: rigid body mental transformations and non-rigid mental transformations. We focus on the disciplines of geology and organic chemistry because different types of transformations are central to the two disciplines: While geologists and organic chemists may both confront rotation in the practice of their profession, only geologists confront brittle transformations. A new instrument was developed to measure mental brittle transformation (visualizing breaking). Geologists and organic chemists performed similarly on a measure of mental rotation, while geologists outperformed organic chemists on the mental brittle transformation test. The differential pattern of skill on the two tests for the two groups of experts suggests that mental brittle transformation and mental rotation are different spatial skills. The roles of domain general cognitive resources (attentional control, spatial working memory, and perceptual filling in) and strategy in completing mental brittle transformation are discussed. The current study illustrates how ecological and interdisciplinary approaches complement traditional cognitive science to offer a comprehensive approach to understanding the nature of spatial thinking. PMID:23440527

  8. Peculiarities of influence of molybdenum silicon and manganese on tempering stability and resistance to brittle fractures of pearlitic steels

    International Nuclear Information System (INIS)

    The effect of alloying degree of α-solid solution of thermally strengthened low- and medium-carbon pearlitic steels by molybdenum, silicon and manganese on their resistance to softening under conditions of high tempering and on resistance to brittle fracture is studied. It is shown that the critical content of molybdenum in solid solution of low-carbon pearlitic steels constitutes 0.2 ... 0.3%. The presence in solid solution of more than 0.4% molybdenum results in a considerable decrease in brittle fracture resistance. The critical content of manganese and silicon in solid solution of low- and medium-carbon steel the exceeding of which leads to a noticeable decrease in the steel brittle fracture resistance, depends considerably on the steel structural state

  9. Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition

    Science.gov (United States)

    Schubnel, A.; Walker, E.; Thompson, B. D.; Fortin, J.; Guéguen, Y.; Young, R. P.

    2006-09-01

    Two triaxial compression experiments were performed on Carrara marble at high confining pressure, in creep conditions across the brittle-ductile transition. During cataclastic deformation, elastic wave velocity decrease demonstrated damage accumulation (microcracks). Keeping differential stress constant and reducing normal stress induced transient creep events (i.e., fast accelerations in strain) due to the sudden increase of microcrack growth. Tertiary creep and brittle failure followed as damage came close to criticality. Coalescence and rupture propagation were slow (60-200 seconds with ~150 MPa stress drops and millimetric slips) and radiated little energy in the experimental frequency range (0.1-1 MHz). Microstructural analysis pointed out strong interactions between intra-crystalline plastic deformation (twinning and dislocation glide) and brittle deformation (microcracking) at the macroscopic level. Our observations highlight the dependence of acoustic efficiency on the material's rheology, at least in the ultrasonic frequency range, and the role played by pore fluid diffusion as an incubation process for delayed failure triggering.

  10. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium.

    Science.gov (United States)

    Uchino, Yuichi; Shimmura, Shigeto; Miyashita, Hideyuki; Taguchi, Tetsushi; Kobayashi, Hisatoshi; Shimazaki, Jun; Tanaka, Junzo; Tsubota, Kazuo

    2007-04-01

    Poly(vinyl alcohol) (PVA) is a biocompatible, transparent hydrogel with physical strength that makes it promising as a material for an artificial cornea. In our previous study, type I collagen was immobilized onto PVA (PVA-COL) as a possible artificial cornea scaffold that can sustain a functional corneal epithelium. The cellular adhesiveness of PVA in vitro was improved by collagen immobilization; however, stable epithelialization was not achieved in vivo. To improve epithelialization in vivo, we created an amniotic membrane (AM)-immobilized polyvinyl alcohol hydrogel (PVA-AM) for use as an artificial cornea material. AM was attached to PVA-COL using a tissue adhesive consisting of collagen and citric acid derivative (CAD) as a crosslinker. Rabbit corneal epithelial cells were air-lift cultured with 3T3 feeder fibroblasts to form a stratified epithelial layer on PVA-AM. The rabbit corneal epithelial cells formed 3-5 layers of keratin-3-positive epithelium on PVA-AM. Occludin-positive cells were observed lining the superficial epithelium, the gap-junctional protein connexin43-positive cells was localized to the cell membrane of the basal epithelium, while both collagen IV were observed in the basement membrane. Epithelialization over implanted PVA-AM was complete within 2 weeks, with little inflammation or opacification of the hydrogel. Corneal epithelialization on PVA-AM in rabbit corneas improved over PVA-COL, suggesting the possibility of using PVA-AM as a biocompatible hybrid material for keratoprosthesis. PMID:16924609

  11. Comparison of the in vitro anticollagenase efficacy of homologous serum and plasma on degradation of corneas of cats, dogs, and horses.

    Science.gov (United States)

    Conway, Emily D; Stiles, Jean; Townsend, Wendy M; Weng, Hsin-Yi

    2016-06-01

    OBJECTIVE To compare the anticollagenase efficacy of fresh feline, canine, and equine serum and plasma on in vitro corneal degradation. SAMPLE Grossly normal corneas from recently euthanized dogs, cats, and horses and fresh serum and plasma from healthy dogs, cats, and horses. PROCEDURES Serum and plasma were pooled by species and used for in vitro experiments. Corneas were collected and stored at -80°C. Sections of cornea were dried, weighed, and incubated in saline (0.9% NaCl) solution with clostridial collagenase and homologous fresh serum or plasma. Corneal degradation was assessed as the percentage of corneal weight loss and hydroxyproline concentration, compared with results for positive and negative control samples. RESULTS Homologous fresh serum and plasma significantly reduced the percentage of corneal weight loss, compared with results for positive control samples. No significant difference was found in percentage of corneal weight loss between incubation with serum or plasma for feline, canine, and equine corneas. Canine serum and plasma significantly reduced hydroxyproline concentrations, whereas inclusion of feline and equine serum or plasma did not, compared with results for positive control samples. Hydroxyproline concentrations were moderately correlated with percentage of corneal weight loss for feline samples and weakly correlated for equine samples, but they were not correlated for canine samples. CONCLUSIONS AND CLINICAL RELEVANCE In this study, the anticollagenase efficacy of fresh feline, canine, and equine serum was not different from that of plasma. Plasma should be an acceptable substitute for serum in the topical treatment of keratomalacia. PMID:27227501

  12. Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Vejražka, M.; Pláteník, J.; Štípek, S.

    2004-01-01

    Roč. 39, - (2004), s. 1537-1543. ISSN 0531-5565 R&D Projects: GA ČR GA304/03/0419 Institutional research plan: CEZ:AV0Z5039906; CEZ:AV0Z5008914 Keywords : aging * cornea Subject RIV: FF - HEENT, Dentistry Impact factor: 2.880, year: 2004

  13. The oxidant/antioxidant imbalance appearing in the cornea after UVB rays is more pronounced in eyes where microbes were isolated

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka

    New Mexico : CORNEA, 2000, s. 109. [International Congress of Eye Research /14./. New Mexico (US), 15.10.2000-20.10.2000] R&D Projects: GA ČR GV307/96/K226; GA MZd NG16; GA ČR GA304/00/1635 Institutional research plan: CEZ:AV0Z5039906 Subject RIV: FF - HEENT, Dentistry

  14. Application of Multivariete Analysis on High-Resolution Magic Angle Spinning (HR-MAS) 1H NMR Spectra of Rabbit Cornea

    Czech Academy of Sciences Publication Activity Database

    Tessem, M. B.; Bathen, T. F.; Čejková, Jitka; Midelfart, A.

    Basel: Karger, 2004. s. 67. ISSN 0030-3747. [EVER 2004 (European Association for Vision and Eye Research). 24.09.2004-27.09.2004, Vilamoura] R&D Projects: GA ČR GA304/03/0419 Keywords : rabbit cornea Subject RIV: FF - HEENT, Dentistry

  15. Enhanced Wound Healing, Kinase and Stem Cell Marker Expression in Diabetic Organ-Cultured Human Corneas Upon MMP-10 and Cathepsin F Gene Silencing

    OpenAIRE

    Saghizadeh, Mehrnoosh; Epifantseva, Irina; Hemmati, David M.; Ghiam, Chantelle A.; Brunken, William J; Ljubimov, Alexander V

    2013-01-01

    Adenovirus-driven shRNA silencing of select proteinases upregulated in diabetic corneas restored normal wound healing time, the expression of diabetes-altered markers including limbal stem cell markers, and patterns of activated EGFR and Akt in human diabetic corneal organ cultures. The maximum effect was obtained combining proteinase shRNA with c-met overexpression.

  16. A Raman scattering and FT-IR spectroscopic study on the effect of the solar radiation in Antarctica on bovine cornea

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Murakami, Naoki; Yoshikiyo, Keisuke; Takahashi, Tetsuya; Yamamoto, Naoyuki

    2010-01-01

    The Raman scattering and FT-IR spectra of the corneas, transported to the Syowa station in Antarctica and exposed to the solar radiation of the mid-summer for four weeks, were studied to reveal that type IV collagen involved in corneas were fragmented. The amide I and III Raman bands were observed at 1660 and 1245 cm -1, respectively, and the amide I and II infrared bands were observed at 1655 and 1545 cm -1, respectively, for original corneas before exposure. The background of Raman signals prominently increased and the ratio of amide II infrared band versus amide I decreased by the solar radiation in Antarctica. The control experiment using an artificial UV lamp was also performed in laboratory. The decline rate of the amide II/amide I was utilized for estimating the degree of fragmentation of collagen, to reveal that the addition of vitamin C suppressed the reaction while the addition of sugars promoted it. The effect of the solar radiation in Antarctica on the corneas was estimated as the same as the artificial UV lamp of four weeks (Raman) or one week (FT-IR) exposure.

  17. Irradiation of the rabbit cornea with UVB rays stimulates the expression of nitric oxide synthases-generated nitric oxide and the formation of cytotoxic nitrogen-related oxidants

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Ardan, Taras; Andonova, Janetta; Zídek, Zdeněk

    2005-01-01

    Roč. 20, - (2005), s. 467-473. ISSN 0213-3911 R&D Projects: GA ČR GA304/03/0419 Institutional research plan: CEZ:AV0Z5008914 Keywords : UVB rays * Reactive nitrogen species * Cornea Subject RIV: FF - HEENT, Dentistry Impact factor: 2.023, year: 2005

  18. Ultraprecision, high stiffness CNC grinding machines for ductile mode grinding of brittle materials

    Science.gov (United States)

    McKeown, Patrick A.; Carlisle, Keith; Shore, Paul; Read, R. F.

    1990-10-01

    Under certain controlled conditions it is now possible to machine brittle materials such as glasses and ceramics using single or multi-point diamond tools (grinding), so that material is removed by plastic flow, leaving crack-free surfaces. This process is called 'shear' or 'ductile' mode grinding. It represents a major breakthrough in modern manufacturing engineering since it promises to enable: - complex optical components, both transmission and reflecting to be generated by advanced CNC machines with very little (or even zero) subsequent polishing. - complex shaped components such as turbine blades, nozzle guide vanes, etc. to be finish machined after near net shape forming, to high precision in advanced ceramics such as silicon nitride, without inducing micro-cracking and thus lowering ultimate rupture strength and fatigue life. Ductile mode "damage free" grinding occurs when the volume of materials stressed by each grit of the grinding wheel is small enough to yield rather than exhibit brittle fracture, i.e. cracking. In practice, this means maintaining the undeformed chip thickness to below the ductile-brittle transition value; this varies from material to material but is generally in the order of 0.1 pm or 100 nm, (hence the term "nanogrinding" is sometimes used) . Thus the critical factors for operating successfully in the ductile regime are machine system accuracy and dynamic stiffness between each grit and the workpiece. In detail this means: (i) High precision 'truing' of the diamond grits, together with dressing of the wheel bond to ensure adequate ' openness'; (ii) Design and build of the grinding wheel spindle with very high dynamic stiffness; error motions, radial and axial, must be considerably less than 100 nfl. (iii) Design and build of the workpiece carriage motion system with very high dynamic stiffness; error motions, linear or rotary, must be well within 100 nm. (iv) Smooth, rumble-free, high-stiffness servo-drives controlling the motions

  19. Capsules with evolving brittleness to resist the preparation of self-healing concrete

    Directory of Open Access Journals (Sweden)

    Gruyaert, E.

    2016-09-01

    Full Text Available Capsules for self-healing concrete have to possess multifunctional properties and it would be an enormous advantage in the valorization process when they could also be mixed in. Therefore, we aimed to develop capsules with evolving brittleness. Capsules with high initial flexibility were prepared by adding a plasticizer to an ethyl cellulose matrix. During hardening of the concrete, the plasticizing agent should leach out to the moist environment yielding more brittle capsules which break upon crack appearance. The tested capsules could easily be mixed in during concrete production. However, incompatibility issues between the capsule wall and the inner polymeric healing agent appeared. Moreover, the capsules became insufficiently brittle and the bond strength to the cementitious matrix was too weak. Consequently, multilayer capsules were tested. These capsules had a high impact resistance to endure concrete mixing and were able to break upon crack formation.Las cápsulas para la auto-reparación del hormigón tienen que poseer propiedades multifuncionales. Una enorme ventaja en el proceso para su valorización se obtendría si aquellas pudieran resistir con éxito el mezclado. Por lo tanto, nos propusimos desarrollar cápsulas cuya fragilidad evoluciona. Cápsulas con una alta flexibilidad inicial se prepararon mediante la adición de un plastificante a una matriz de etil celulosa. Durante el endurecimiento del hormigón, el agente plastificante debe filtrarse hacia el medio ambiente húmedo produciendo cápsulas más frágiles que se rompen con el surgimiento de fisuras. Las cápsulas pudieron ser fácilmente mezcladas durante la producción de hormigón. Sin embargo, aparecieron problemas de incompatibilidad entre la pared de la cápsula y el agente de curación polimérico interior. Por otra parte, las cápsulas se comportaron insuficientemente frágiles y con una baja adherencia hacia la matriz cementicia. En consecuencia, se probaron las c

  20. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception

    Science.gov (United States)

    Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences

  1. Slip transfer across fault discontinuities within granitic rock at the brittle-ductile transition

    Science.gov (United States)

    Nevitt, J. M.; Pollard, D. D.; Warren, J. M.

    2011-12-01

    Fault mechanics are strongly influenced by discontinuities in fault geometry and constitutive differences between the brittle and ductile regions of the lithosphere. This project uses field observations, laboratory analysis and numerical modeling to investigate deformational processes within a contractional step at the brittle-ductile transition, and in particular, how slip is transferred between faults via ductile deformation across the step. The Bear Creek field area (central Sierra Nevada, CA) is comprised of late Cretaceous biotite-hornblende granodiorite and experienced a period of faulting at the brittle-ductile transition. Abundant echelon faults in Bear Creek, some of which were seismically active, provide many textbook examples of contractional steps, which are characterized by well-developed ductile fabrics. The occurrence of hydrothermal alteration halos and hydrothermal minerals in fracture fill documents the presence of water, which we suggest played a weakening role in the constitutive behavior of the granodiorite. Furthermore, the mechanism that accomplishes slip transfer in contractional steps appears to be related to water-enhanced ductile deformation. We focus our investigation on Outcrop SG10, which features a 10cm thick aplite dike that is offset 0.45m through a contractional step between two sub-parallel left-lateral faults. Within the step, the aplite undergoes dramatic thinning (stretch ~1/10) and the granodiorite is characterized by a well-developed mylonitic foliation, in which quartz and biotite plastically flow around larger grains of feldspars, hornblende and opaque minerals. Electron backscatter diffraction (EBSD) analysis gives a more quantitative depiction of the active micromechanics and reveals how slip is accommodated at the crystal scale throughout the step. We use Abaqus, a commercial finite element software, to test several constitutive laws that may account for the deformation observed both macro- and microscopically throughout

  2. Evaluation of the ductile-to-brittle transition temperature in steel low carbon

    International Nuclear Information System (INIS)

    The aim of this study was evaluated the The aim of this study was evaluated the ductile-to-brittle transition temperature (DBTT) by five different methods: lateral expansion, shear fracture appearance, the average between lower and upper-shelf, load diagram and master curve using instrumented Charpy tests with total impact energy was 300 J and the impact velocity was 5.12 m/s. The Charpy specimens were 10 x 10 x 55 mm according to ASTM E-23. The load diagram showed one approach to measure when shear fractures become 50 %. Quantitative fractographic analyses of Charpy specimens reveal a certain proportion of ductile fracture even if the Charpy test is conducted at low temperatures, below the transition temperature. The ductile fracture area situated next to the notch was correlated to fracture energy for all temperatures. In the transition temperature range, fracture energy and the ductile area had a large scatter. A model for ductile -to-brittle fracture mode transition has been developed. Master curve was applied and one direction results were good.transition temperature (DBTT) by five different methods: lateral expansion, shear fracture appearance, the average between lower and upper-shelf, load diagram and master curve using instrumented Charpy tests with total impact energy was 300 J and the impact velocity was 5.12 m/s. The Charpy specimens were 10 x 10 x 55 mm according to ASTM E-23. The load diagram showed one approach to measure when shear fractures become 50 %. Quantitative fractographic analyses of Charpy specimens reveal a certain proportion of ductile fracture even if the Charpy test is conducted at low temperatures, below the transition temperature. The ductile fracture area situated next to the notch was correlated to fracture energy for all temperatures. In the transition temperature range, fracture energy and the ductile area had a large scatter. A model for ductile -to-brittle fracture mode transition has been developed. Master curve was applied

  3. Are magma chamber boundaries brittle or ductile? Rheological insights from thermal stressing experiments

    Science.gov (United States)

    Browning, John; Meredith, Philip G.; Gudmundsson, Agust; Lavallée, Yan; Drymoni, Kyriaki

    2015-04-01

    Rheological conditions at magma chamber boundaries remain poorly understood. Many field observations of deeply-eroded and well-exposed plutons, for example Slaufrudalur and Geitafell in SE Iceland, exhibit a sharp transition between what may have been a partially or fully molten magma chamber and its surrounding brittle host rock. Some studies have suggested a more gradual change in the rheological properties of chamber boundaries, marked by a ductile halo, which is likely to exert a significant impact on their rheological response. Understanding the state and rheological conditions of magma-rock interface and interaction is essential for constraining chamber-boundary failure conditions leading to dyke propagation, onset of volcanic eruption as well as caldera fault formation. We present results from a series of thermal stressing experiments in which we attempt to recreate the likely conditions at magma-chamber boundaries. Cores of volcanic material (25 mm diameter x 65 mm long) were heated to magmatic temperatures under controlled conditions in a horizontal tube furnace (at atmospheric pressure) and then held at those temperatures over variable dwell times. At the maximum temperatures reached, the inner part of the samples undergoes partial melting whilst the outer part remains solid. After cooling the brittle shells commonly exhibit axial, fissure-like fractures with protruded blobs of solidified melt. This phenomenon is interpreted as being the result of volume expansion during partial melting. The internal melt overpressure generates fluid-driven fractures analogous to filter-pressing textures or on a large scale, dykes. We complement our observations with acoustic emission and seismic velocity data obtained from measurements throughout the experiments. These complementary data are used to infer the style and timescale of fracture formation. Our results pinpoint the temperature ranges over which brittle fractures form as a result of internal melt overpressure

  4. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.

    Directory of Open Access Journals (Sweden)

    Jérôme Delroisse

    Full Text Available Next generation sequencing (NGS technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric and mammal (ciliary classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic

  5. Urofacial syndrome

    Directory of Open Access Journals (Sweden)

    Kamal F Akl

    2012-01-01

    Full Text Available The urofacial syndrome is characterized by functional obstructive uropathy asso-ciated with an inverted smile. The importance of the subject is that it sheds light, not only on the muscles of facial expression, but also on the inheritance of voiding disorders and lower urinary tract malformations. We report a 10-year-old-male patient who had the urofacial syndrome. Early diagnosis of the urofacial syndrome is important to avoid upper urinary tract damage and renal failure.

  6. Waardenburg syndrome.

    OpenAIRE

    Read, A P; Newton, V E

    1997-01-01

    Auditory-pigmentary syndromes are caused by physical absence of melanocytes from the skin, hair, eyes, or the stria vascularis of the cochlea. Dominantly inherited examples with patchy depigmentation are usually labelled Waardenburg syndrome (WS). Type I WS, characterised by dystopia canthorum, is caused by loss of function mutations in the PAX3 gene. Type III WS (Klein-Waardenburg syndrome, with abnormalities of the arms) is an extreme presentation of type I; some but not all patients are ho...

  7. Sweet Syndrome

    OpenAIRE

    Kasapçopur, Özgür; Sever, Lale; Çalışkan, Salim; Kodakoğlu, Ramazan; Mat, Cem; Kaner, Gültekin; Arısoy, Nil

    1996-01-01

    Sweet syndrome is a vasculitis characterized with fever leucocytosis neutrophilia and dermal neutrophilic infiltration In children Sweet syndrome usually occurs with secondary to infection and in adults to malignancy We report a Sweet syndrome in a five years old girl with respiratory infections otitis dactylitis long lasting fever and cutaneous rash A neutrophilic dermal infiltration is noted in cutaneous biopsy These signs have disappeared with corticosteroid treatment In conclusion Sweet s...

  8. Revesz syndrome

    Directory of Open Access Journals (Sweden)

    Dayane Cristine Issaho

    2015-04-01

    Full Text Available Revesz syndrome is a rare variant of dyskeratosis congenita and is characterized by bilateral exudative retinopathy, alterations in the anterior ocular segment, intrauterine growth retardation, fine sparse hair, reticulate skin pigmentation, bone marrow failure, cerebral calcification, cerebellar hypoplasia and psychomotor retardation. Few patients with this syndrome have been reported, and significant clinical variations exist among patients. This report describes the first Brazilian case of Revesz syndrome and its ocular and clinical features.

  9. Metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gogia Atul

    2006-02-01

    Full Text Available The Metabolic syndrome is a widely prevalent and multi-factorial disorder. The syndrome has been given several names, including- the metabolic syndrome, the insulin resistance syndrome, the plurimetabolic syndrome, and the deadly quartet. With the formulation of NCEP/ATP III guidelines, some uniformity and standardization has occurred in the definition of metabolic syndrome and has been very useful for epidemiological purposes. The mechanisms underlying the metabolic syndrome are not fully known; however resistance to insulin stimulated glucose uptake seems to modify biochemical responses in a way that predisposes to metabolic risk factors. The clinical relevance of the metabolic syndrome is related to its role in the development of cardiovascular disease. Management of the metabolic syndrome involves patient-education and intervention at various levels. Weight reduction is one of the main stays of treatment. In this article we comprehensively discuss this syndrome- the epidemiology, pathogenesis, clinical relevance and management. The need to do a comprehensive review of this particular syndrome has arisen in view of the ever increasing incidence of this entitiy. Soon, metabolic syndrome will overtake cigarette smoking as the number one risk factor for heart disease among the US population. Hardly any issue of any primary care medical journal can be opened without encountering an article on type 2 diabetes, dyslipidemia or hypertension. It is rare to see type 2 diabetes, dyslipidemia, obesity or hypertension in isolation. Insulin resistance and resulting hyperinsulinemia have been implicated in the development of glucose intolerance (and progression to type 2 diabetes, hypertriglyceridemia, hypertension, polycystic ovary yndrome, hypercoagulability and vascular inflammation, as well as the eventual development of atherosclerotic cardiovascular disease manifested as myocardial infarction, stroke and myriad end organ diseases. Conversely

  10. Brugada syndrome

    Directory of Open Access Journals (Sweden)

    Bockeria O.L.

    2015-03-01

    Full Text Available Brugada syndrome is characterized by sudden death associated with one of several ECG patterns including incomplete right bundle-branch block and ST-segment elevation in the anterior precordial leads. According to the ECG patterns there are three types of Brugada syndrome. Brugada syndrome is genetically determined and has an autosomal dominant pattern of transmission in about 50% of familial cases. Nowadays implantation of cardioverter-defibrillator is the only proven method of sudden cardiac death prevention.

  11. Velocardiofacial syndrome.

    OpenAIRE

    Pike, A. C.; Super, M.

    1997-01-01

    Velocardiofacial syndrome is a syndrome of multiple anomalies that include cleft palate, cardiac defects, learning difficulties, speech disorder and characteristic facial features. It has an estimated incidence of 1 in 5000. The majority of cases have a microdeletion of chromosome 22q11.2. The phenotype of this condition shows considerable variation, not all the principal features are present in each case. Identification of the syndrome can be difficult as many of the anomalies are minor and ...

  12. Numerical simulation of dynamic brittle fracture of pipeline steel subjected to DWTT using XFEM-based cohesive segment technique

    Directory of Open Access Journals (Sweden)

    Reza H. Talemi

    2016-03-01

    Full Text Available In the past several numerical studies have addressed the ductile mode of fracture propagation. However, the brittle mode of pipeline failure has not received as much attention yet. The main objective of this study is to predict brittle fracture behaviour of API X70 pipeline steel by means of a numerical approach. To this end, the eXtended Finite Element Method (XFEM-based cohesive segment technique is used to model Drop Weight Tear Test (DWTT of X70 pipeline steel at -100°C. In this model the dynamic stress intensity factor and crack velocity are calculated at the crack tip at each step of crack propagation.

  13. Sheehan syndrome

    Science.gov (United States)

    Postpartum hypopituitarism; Postpartum pituitary insufficiency; Hypopituitarism Syndrome ... Malee MP. Pituitary and adrenal disorders in pregnancy. In: Gabbe ... Problem Pregnancies . 6th ed. Philadelphia, PA: Elsevier Mosby; ...

  14. Mucous membrane grafting for the post-Steven-Johnson syndrome symblepharon: A case report

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Das

    2011-01-01

    Full Text Available An 18-year-old woman was referred with late sequelae of chloroquine-induced Steven-Johnson syndrome. At the time of presentation, the symblepharon was involving the upper lids to almost the whole of the cornea, and part of the lower bulbar conjunctiva with the lower lid bilaterally. Other ocular examinations were not possible due to the symblepharon. B-scan ultrasonography revealed acoustically clear vitreous, normal chorioretinal thickness, and normal optic nerve head, with an attached retina. Conjunctivo-corneal adhesion released by superficial lamellar dissection of the cornea. Ocular surface reconstruction was carried out with a buccal mucous membrane. A bandage contact lens was placed over the cornea followed by the symblepharon ring to prevent further adhesion. The mucosal graft was well taken up along with corneal re-epithelization. Best corrected visual acuity of 20/120 in both sides after 1 month and 20/80 after 3 months was achieved and maintained till the 2.5-year follow-up.

  15. What Is Down Syndrome?

    Science.gov (United States)

    ... NDSS Home » Down Syndrome » What Is Down Syndrome? What Is Down Syndrome? In every cell in the ... chromosome 21 causes the characteristics of Down syndrome. What Causes Down Syndrome? Regardless of the type of ...

  16. Marfan Syndrome (For Teens)

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Marfan Syndrome KidsHealth > For Teens > Marfan Syndrome Print A ... a genetic disorder called Marfan syndrome. What Is Marfan Syndrome? Marfan syndrome is named after Antoine Marfan, ...

  17. Down Syndrome: Eye Problems

    Science.gov (United States)

    ... En Español Read in Chinese What causes Down syndrome? Down syndrome is caused by a duplication of all ... in persons with Down syndrome. How common is Down syndrome? The frequency of Down syndrome is approximately 1 ...

  18. Proteus Syndrome Foundation

    Science.gov (United States)

    ... Gift Stock Gift Sunshine Society Contact Privacy Policy Proteus Syndrome Foundation The Proteus Syndrome Foundation , a 501c3 ... 1 Trial with ARQ 092 in Proteus Syndrome Proteus Syndrome Patient Registry The Proteus Syndrome Foundation Contact ...

  19. Scattered radiation dose to radiologist's cornea, thyroid and gonads while performing some x-ray fluoroscopic investigations

    International Nuclear Information System (INIS)

    The mankind has been immensely benefited from discovery of X-ray and it has found wide spread application in diagnosis and treatment. Radiation is harmful and can produce somatic and genetic effects in the exposed person. International Commission on Radiation Protection (ICRP) has recommended a system of dose limitation based on principle of ALARA. All the efforts should be made to keep the radiation dose to the radiation worker as low as possible. Fluoroscopy gives maximum dose to the patient and staff and hence we have attempted to quantify the scattered radiation dose to the cornea, thyroid and gonads of the radiologist performing fluoroscopic examinations such as barium meal, barium swallow, barium enema, myelography, histerosalpingography and fracture reduction. Thermoluminescence dosimetry (TLD) method using CaSO4:Dy TLD disc was employed for these measurements. Use of lead apron has reduced the dose to radiologist's gonad. (author). 3 refs., 4 tabs

  20. Resilience and Brittleness in a Nuclear Emergency Response Simulation: Focusing on Team Coordination Activity

    International Nuclear Information System (INIS)

    The current work presents results from a cognitive task analysis (CTA) of a nuclear disaster simulation. Audio-visual records were collected from an emergency room team composed of individuals from 26 different agencies as they responded to multiple scenarios in a simulated nuclear disaster. This simulation was part of a national emergency response training activity for a nuclear power plant located in a developing country. The objectives of this paper are to describe sources of resilience and brittleness in these activities, identify cues of potential improvements for future emergency simulations, and leveraging the resilience of the emergency response System in case of a real disaster. Multiple CTA techniques were used to gain a better understanding of the cognitive dimensions of the activity and to identify team coordination and crisis management patterns that emerged from the simulation training. (authors)

  1. The role of microcracking on the crack growth resistance of brittle solids and composites

    International Nuclear Information System (INIS)

    A set of numerical analyses of crack growth was preformed to elucidate the influence of microcracking on the fracture behavior of microcracking brittle solids and composites. The random nucleation, orientation and size effects of discrete nucleating microcracks and resulting interactions are fully accounted for in a hybrid finite element model. The results obtained from the finite element analysis are compared with the continuum description of the microcracking. Although continuum description can provide a reasonable estimation of shielding, it fails to resolve the details of micromechanism of toughening resulting from microcracking, since not every shielding event during the course of crack extension corresponds to an increase in the R-curve. Moreover, as seen in the composite cases, the local events leading to toughening behavior may not be associated with the microcracking even in the presence of a large population of microcracks

  2. Nominally brittle cracks in inhomogeneous solids: From microstructural disorder to continuum-level scale

    Science.gov (United States)

    Barés, Jonathan; Barlet, Marina; Rountree, Cindy; Barbier, Luc; Bonamy, Daniel

    2014-11-01

    We analyze the intermittent dynamics of cracks in heterogeneous brittle materials and the roughness of the resulting fracture surfaces by investigating theoretically and numerically crack propagation in an elastic solid of spatially-distributed toughness. The crack motion split up into discrete jumps, avalanches, displaying scale-free statistical features characterized by universal exponents. Conversely, the ranges of scales are non-universal and the mean avalanche size and duration depend on the loading microstructure and specimen parameters according to scaling laws which are uncovered. The crack surfaces are found to be logarithmically rough. Their selection by the fracture parameters is formulated in term of scaling laws on the structure functions measured on one-dimensional roughness profiles taken parallel and perpendicular to the direction of crack growth.

  3. A MIXED MODE FRACTURE CRITERION BASED ON THE MAXIMUM TANGENTIAL STRESS IN BRITTLE INCLUSION

    Institute of Scientific and Technical Information of China (English)

    Ji Changjiang; Li Zhonghua; Sun Jun

    2005-01-01

    A closed-form solution for predicting the tangential stress of an inclusion located in mixed mode Ⅰ and Ⅱ crack tip field was developed based on the Eshelby equivalent inclusion theory. Then a mixed mode fracture criterion, including the fracture direction and the critical load, was established based on the maximum tangential stress in the inclusion for brittle inclusioninduced fracture materials. The proposed fracture criterion is a function of the inclusion fracture stress, its size and volume fraction, as well as the elastic constants of the inclusion and the matrix material. The present criterion will reduce to the conventional one as the inclusion having the same elastic behavior as the matrix material. The proposed solutions are in good agreement with detailed finite element analysis and measurement.

  4. Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials

    Directory of Open Access Journals (Sweden)

    Jamile Salim Fuina

    2010-12-01

    Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.

  5. The Pore Collapse “Hot-Spots” Model Coupled with Brittle Damage for Solid Explosives

    Directory of Open Access Journals (Sweden)

    L. R. Cheng

    2014-01-01

    Full Text Available This paper is devoted to the building of a numerical pore collapse model with “hot-spots” formation for the impacted damage explosives. According to damage mechanical evolution of brittle material, the one-dimensional elastic-viscoplastic collapse model was improved to incorporate the impact damage during the dynamic collapse of pores. The damage of explosives was studied using the statistical crack mechanics (SCRAM. The effects of the heat conduction and the chemical reaction were taken into account in the formation of “hot-spots.” To verify the improved model, numerical simulations were carried out for different pressure states and used to model a multiple-impact experiment. The results show that repeated weak impacts can lead to the collapse of pores and the “hot-spots” may occur due to the accumulation of internal defects accompanied by the softening of explosives.

  6. A dimensional analysis approach to fatigue in quasi-brittle materials

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2009-10-01

    Full Text Available In this study, a generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth is proposed in order to highlight and explain the deviations from the classical power-law equations used to characterize the fatigue behaviour of quasi-brittle materials. According to this theoretical approach, the microstructural-size (related to the volumetric content of fibres in fibre-reinforced concrete, the crack-size, and the size-scale effects on the Paris’ law and the Wöhler equation are presented within a unified mathematical framework. Relevant experimental results taken from the literature are used to confirm the theoretical trends and to determine the values of the incomplete self-similarity exponents. All these information are expected to be useful for the design of experiments, since the role of the different dimensionless numbers governing the phenomenon of fatigue is herein elucidated.

  7. Morphological study of elastic-plastic-brittle transitions in disordered media.

    Science.gov (United States)

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-10-01

    We use a spring lattice model with springs following a bilinear elastoplastic-brittle constitutive behavior with spatial disorder in the yield and failure thresholds to study patterns of plasticity and damage evolution. The elastic-perfectly plastic transition is observed to follow percolation scaling with the correlation length critical exponent ν≈1.59, implying the universality class corresponding to the long-range correlated percolation. A quantitative analysis of the plastic strain accumulation reveals a dipolar anisotropy (for antiplane loading) which vanishes with increasing hardening modulus. A parametric study with hardening modulus and ductility controlled through the spring level constitutive response demonstrates a wide spectrum of behaviors with varying degree of coupling between plasticity and damage evolution. PMID:25375508

  8. An investigation of safety aspects of operating the end-shields in a brittle condition

    International Nuclear Information System (INIS)

    Published data on radiation embrittlement of 3.5% Ni steels (material for RAPP-1, RAPP-2 and MAPP-1 end shields - with charpy V notch value of 2.074 gm at -1010C) indicates that the nil ductility transition temperature rise would be of the order of 2050C to 2600C at the end of 30 year reactor life, against earlier figure of around 1200C. Surveillance programme on radiation embrittlement of the end-shields is being conducted to get an idea of the actual condition of the material at any required time. A study has been made to investigate safety aspects of operating the end shields in 'Brittle condition' of the material under the presently designed operating conditions. This study is based on the concept of crack arrest approach (employing fracture analysis diagram; FAD and linear elastic fracture mechanics (using possible correlation between Ksub(Ic) and CVN values). (author)

  9. Stress-driven local-solution approach to quasistatic brittle delamination

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Thomas, M.; Panagiotopoulos, Ch.

    2015-01-01

    Roč. 22, April (2015), s. 645-663. ISSN 1468-1218 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : unilateral adhesive contact * brittle limit * rate-independent processes Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://ac.els-cdn.com/S1468121814001242/1-s2.0-S1468121814001242-main.pdf?_tid=858ed642-d4c1-11e5-95d4-00000aacb35d&acdnat=1455636514_256ad6f368e89062d783bce2ac1f9a02

  10. Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids

    International Nuclear Information System (INIS)

    Molecular-dynamics simulations of fracture in systems akin to metallic glasses are observed to undergo embrittlement due to a small change in interatomic potential. This change in fracture toughness, however, is not accompanied by a corresponding change in flow stress. Theories of brittle fracture proposed by Freund and Hutchinson indicate that strain rate sensitivity is the controlling physical parameter in these cases. A recent theory of viscoplasticity in this class of solids by Falk and Langer further suggests that the change in strain rate sensitivity corresponds to a change in the susceptibility of local shear transformation zones to applied shear stresses. A simple model of these zones is developed in order to quantify the dependence of this sensitivity on the interparticle potential. copyright 1999 The American Physical Society

  11. Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Falk, M.L. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    1999-09-01

    Molecular-dynamics simulations of fracture in systems akin to metallic glasses are observed to undergo embrittlement due to a small change in interatomic potential. This change in fracture toughness, however, is not accompanied by a corresponding change in flow stress. Theories of brittle fracture proposed by Freund and Hutchinson indicate that strain rate sensitivity is the controlling physical parameter in these cases. A recent theory of viscoplasticity in this class of solids by Falk and Langer further suggests that the change in strain rate sensitivity corresponds to a change in the susceptibility of local shear transformation zones to applied shear stresses. A simple model of these zones is developed in order to quantify the dependence of this sensitivity on the interparticle potential. {copyright} {ital 1999} {ital The American Physical Society}

  12. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    Science.gov (United States)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  13. Modelling of the plasticity and brittle failure of the irradiated bainitic steels

    International Nuclear Information System (INIS)

    Low alloy steels are used in various equipments of nuclear reactors. Subjected to neutron irradiation produced during the operation of reactors, these materials exhibit significant changes in their microstructure, especially with the formation of radiation defects as interstitial loops, void clusters and precipitates. These defects in interactions with dislocations lead to a hardening and embrittlement which are directly related to the received dose and neutron flux. The plastic behaviour of non-irradiated low alloy bainitic steels has been the object of several modelling based on observations from experiments and atomistic simulations. Some of them result from thesis supported by EDF and CEA, which describe different strategies for the micro-mechanical modelling of brittle failure. Improvements in this work come from the integration of new physical characteristics and the attention paid to the representativeness of the microstructure: whereas realistic microstructures in terms of morphology and crystal orientations have been adopted, a dislocation density based constitutive model in the large deformation framework is used to describe crystal plasticity. This choice is justified by the need to take into account, in the constitutive modelling, the interactions between dislocations and irradiation defects under severe loading conditions. The plasticity laws have been implemented in the finite elements code ZeBuLoN in order to perform computations of polycrystalline aggregates. Such aggregates are representative volume elements. They thus provide the database required for the application of brittle failure models to structures. This multi-scale character confers to the modelling the status of 'micro-mechanical local approach of failure'. (author)

  14. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility

    Science.gov (United States)

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J.

    2015-02-01

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  15. A graphene meta-interface for enhancing the stretchability of brittle oxide layers

    Science.gov (United States)

    Won, Sejeong; Jang, Jae-Won; Choi, Hyung-Jin; Kim, Chang-Hyun; Lee, Sang Bong; Hwangbo, Yun; Kim, Kwang-Seop; Yoon, Soon-Gil; Lee, Hak-Joo; Kim, Jae-Hyun; Lee, Soon-Bok

    2016-02-01

    Oxide materials have recently attracted much research attention for applications in flexible and stretchable electronics due to their excellent electrical properties and their compatibility with established silicon semiconductor processes. Their widespread uptake has been hindered, however, by the intrinsic brittleness and low stretchability. Here we investigate the use of a graphene meta-interface to enhance the electromechanical stretchability of fragile oxide layers. Electromechanical tensile tests of indium tin oxide (ITO) layers on polymer substrates were carried out with in situ observations using an optical microscope. It was found that the graphene meta-interface reduced the strain transfer between the ITO layer and the substrate, and this behavior was well described using a shear lag model. The graphene meta-interface provides a novel pathway for realizing flexible and stretchable electronic applications based on oxide layers.Oxide materials have recently attracted much research attention for applications in flexible and stretchable electronics due to their excellent electrical properties and their compatibility with established silicon semiconductor processes. Their widespread uptake has been hindered, however, by the intrinsic brittleness and low stretchability. Here we investigate the use of a graphene meta-interface to enhance the electromechanical stretchability of fragile oxide layers. Electromechanical tensile tests of indium tin oxide (ITO) layers on polymer substrates were carried out with in situ observations using an optical microscope. It was found that the graphene meta-interface reduced the strain transfer between the ITO layer and the substrate, and this behavior was well described using a shear lag model. The graphene meta-interface provides a novel pathway for realizing flexible and stretchable electronic applications based on oxide layers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05412e

  16. [A case of Richner-Hanhart syndrome (tyrosinosis with ocular, cutaneous and mental manifestations].

    Science.gov (United States)

    Goddé-Jolly, D; Larregue, M; Roussat, B; Van Effenterre, G

    1979-01-01

    A case of Richner-Hanhart syndrom with tyrosinemia is being reported. The diagnosis was suggested from clinical manifestations of this syndrom : superficial opacities of the cornea in an infant preceeding hyperkeratosis of the palms and soles and mild mental retardation. It has been confirmed by the high levels of blood tyrosine. The introduction of a diet low in tyrosine and alanine has lead to a rapid improvement and finally a complete cure of the ophthalmological and dermatological symptoms. The normal metabolism of tyrosine is recalled as well as the specific metabolic aberration responsable for this syndrom (deficiency of cytosol tyrosine amino-transferase). This case is being compared with those which have been previously reported. PMID:34642

  17. Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Ravinder K. Gupta, Ritu Gupta, Sunil Dutt Sharma

    2006-10-01

    Full Text Available Turner Syndrome is one of the important chromosomal disorders characterised by loss (total or part ofsex chromosome. The manifestations being peripheral edema, short stature, extra skin fold, webbing ofneck, renal and cardiovascular anomalies, sexual infantilism, learning disability etc. We present here aone month female baby who had classical features of Turner Syndrome. The karyotape analysis wasconsistent with the diagnosis.

  18. Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Akcan AB.

    2013-06-01

    Full Text Available Turner syndrome is an important cause of short stature in girls and primer amenorrhea in young women that is usually caused by loss of part or all of an X chromosome. This topic will review the clinical manifestations, diagnosis and management of Turner syndrome.

  19. Tourette Syndrome.

    Science.gov (United States)

    Look, Kathy

    Tourette Syndrome has a history of being misdiagnosed or undiagnosed due to its unusual and complex symptoms. This paper describes: the symptoms of Tourette Syndrome; its etiology; age of onset; therapeutic methods, such as drug therapy, psychotherapy, diet control, and hypnosis; educational implications; and employment prospects. Several…

  20. Antiphospholipid syndrome

    DEFF Research Database (Denmark)

    Cervera, Ricard; Piette, Jean-Charles; Font, Josep;

    2002-01-01

    To analyze the clinical and immunologic manifestations of antiphospholipid syndrome (APS) in a large cohort of patients and to define patterns of disease expression.......To analyze the clinical and immunologic manifestations of antiphospholipid syndrome (APS) in a large cohort of patients and to define patterns of disease expression....

  1. Proteus syndrome

    Directory of Open Access Journals (Sweden)

    George Renu

    1993-01-01

    Full Text Available A case of proteus syndrome in a 20 year old male is repoted. Hemihypertrophy, asymmetric megalodactyly, linear epidermal naevus, naevus flammeus, angiokeratoma, lymphangioma circumscriptum, thickening of the palms and soles, scoliosis and varicose veins were present. There are only few reports of these cases in adults. The syndrome has not been reported from India.

  2. Burnout Syndrome

    OpenAIRE

    Panova, Gordana; Panov, Nenad; Stojanov, H; Sumanov, Gorgi; Panova, Blagica; Stojanovski, Angel; Nikolovska, Lence; Jovevska, Svetlana; Trajanovski, D; Asanova, D

    2013-01-01

    Introduction: Increasing work responsibilities, allocation of duties, loss of energy and motivation in everyday activities, emotional exhaustion, lack of time for themselves, insuffi cient time for rest and recreation, dissatisfaction in private life. All these symptoms can be cause of Burnout Syndrome. Aim: To see the importance of this syndrome, the consequences of job dissatisfaction, the environment, family and expression in drastic chan...

  3. Poland syndrome

    Directory of Open Access Journals (Sweden)

    Chandra Madhur Sharma

    2014-01-01

    Full Text Available Poland′s syndrome is a rare congenital condition, characterized by the absence of the sternal or breastbone portion of the pectoralis major muscle, which may be associated with the absence of nearby musculoskeletal structures. We hereby report an 8-year-old boy with typical features of Poland syndrome, the first documented case from Uttar Pradesh, India.

  4. Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Sanjeev K. Digra, Deep Aman Singh, Vikram Gupta, Ghanshyam Saini

    2004-10-01

    Full Text Available We report a 11 year old boy and his father both Noonan’s. Noonan syndrome occurs in 1 out of 2000live births. Short stature, webbing of neck, pectus carinatum or pectus excavatum, hypertelorismcubitus valgus, epicanthus, downward slanted palpebral fissures, ptosis, microganthia and earabnormalities are the common features of Noonan syndrome.

  5. Bloom's Syndrome

    Science.gov (United States)

    ... Niemann-Pick Disease, Type A Spinal Muscular Atrophy Tay-Sachs Disease Usher Syndrome, Type 1F and Type III ... Niemann-Pick Disease, Type A Spinal Muscular Atrophy Tay-Sachs Disease Usher Syndrome, Type 1F and Type III ...

  6. Ductile-brittle transition behavior of V-4Cr-4Ti irradiated in the dynamic helium charging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Nowicki, L.J.; Busch, D.E. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objective of this work is to determine the effect of simultaneous displacement damage and dynamically charged helium on the ductile-brittle transition behavior of V-4Cr-4Ti specimens irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE).

  7. A composite material model for investigation of micro-fracture mechanism of brittle rock subjected to uniaxial compression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A two-phase model of rock was proposed in order to investigate the mechanism of brittle fracture due to uniaxial compression, in which rock was considered to be a composite material consisting of hard grains and colloids. The stress state in colloid region near grains was calculated using Finite Element Metnod ( FEM). The influence of the tensile stresses on the crack initiation and failure process of brittle rock subjected to uniaxial compression was investigated by numerical experiments. The FE results show that tensile stresses are induced easily in the neighboring area of hard grains with the maximum value near grain boundaries. The distribution of tensile stresses depends on the relative position of hard grains. The cracks initiated just near the boundary area of hare grains, which was governed by tensile stress. These results dearly reveal the micro-fracture mechanism of brittle rock loaded by uniaxial compression. It can be concluded that the failure mode of brittle rock under uniaxial compression is still tensile fracture from the point view of microstructure. However,since the wide colloid region is still under compressive stress state, further propagation of boundary, cracks through this region obviously needs more external load, thus causing the uniaxial compressive strength of rock much higher than its tensile strength obtained via Brazilian (splitting) experiment.

  8. Micromechanics of failure in brittle geomaterials. Final technical report (for 7/1/1994 - 8/31/2000)

    International Nuclear Information System (INIS)

    The overall objective was to provide a fundamental understanding of brittle failure processes in porous and compact geomaterials. This information is central to energy-related programs such as oil and gas exploration/production, reservoir engineering, drilling technology, geothermal energy recovery, nuclear waste isolation, and environmental remediation. The effects of key parameters such as grain boundary structure and cementation, damage state, and load path on the deformation and failure model of brittle geomaterials are still largely unknown. The research methodology emphasized the integration of experimental rock mechanical testing, quantitative microscopy, and detailed analysis using fracture mechanics, continuum plasticity theory, and numerical methods. Significant progress was made in elucidating the micromechanics of brittle failure in compact crystalline rocks, as well as high-porosity siliciclastic and carbonate rocks. Substantial effort was expended toward applying a new quantitative three-dimensional imaging technique to geomaterials and for developing enhanced image analysis capabilities. The research is presented under the following topics: technique for imaging the 3-D pore structure of geomaterials; mechanics of compressive failure in sandstone; effect of water on compressive failure of sandstone; micromechanics of compressive failure: observation and model; and the brittle-ductile transition in porous carbonate rocks

  9. Analysis of intergranular crack propagation in brittle polycrystals with a generalized finite element method and network algorithm

    NARCIS (Netherlands)

    Shabir, Z.; Van der Giessen, E.; Duarte, C.A.; Simone, A.

    2009-01-01

    Two different approaches to intergranular crack propagation in brittle polycrystals are contrasted. Crack paths resulting from a method that allows a detailed description of the stress field within a polycrystal are compared to cracks dictated by topological considerations. In the first approach, a

  10. Understanding brittle deformation at the Olkiluoto site. Literature Supplement 2010: an Update of Posiva Working Report 2006-25

    International Nuclear Information System (INIS)

    Posiva Working Report 2006-25 arose from the belief that geological modelling at Olkiluoto, Finland, where an underground repository for spent nuclear fuel is at present under construction, could be significantly improved by an increased understanding of the phenomena being modelled, in conjunction with the more sophisticated data acquisition and processing methods which are now being introduced. Since the geological model is the necessary basis for the rock engineering and hydrological models, which in turn provide the foundation for identifying suitable rock volumes underground and for demonstrating long-term safety, its scientific basis is of critical importance. As a contribution to improving this scientific basis, the literature on brittle deformation in the Earth's crust was reviewed up to and including year 2005. The result was a compilation of scientific articles, reports and books on some of the key topics of significance for an improved understanding of brittle deformation of hard, crystalline rocks, particularly heterogeneous migmatitic and metamorphic rocks like those that make up the Olkiluoto bedrock. The present report is a supplement to WR 2006-25, covering the 5-year period 2006-2010, with some key earlier references and an Annotated Bibliography. The present report is subdivided into five chapters, listing recent literature on (1) background subjects and basic principles, (2) the fabric of Olkiluoto-type intact rock (gneisses, migmatites, fault rocks), (3) formation and characteristics of brittle deformation features (fracture mechanics, brittle microtectonics), (4) fracture data acquisition and processing (statistical characterisation and modelling of fracture systems), and (5) the characterisation of brittle deformation zones (for deterministic and dynamic modelling), corresponding to the first five chapters of the earlier report

  11. Kounis syndrome.

    Science.gov (United States)

    Ntuli, P M; Makambwa, E

    2015-10-01

    Kounis syndrome is characterised by a group of symptoms that manifest as unstable vasospastic or non-vasospastic angina secondary to a hypersensitivity reaction. It was first described by Kounis and Zavras in 1991 as the concurrence of an allergic response with an anaphylactoid or anaphylactic reaction and coronary artery spasm or even myocardial infarction. Since then, this condition has evolved to include a number of mast cell activation disorders associated with acute coronary syndrome. There are many triggering factors, including reactions to multiple medications, exposure to radiological contrast media, poison ivy, bee stings, shellfish and coronary stents. In addition to coronary arterial involvement, Kounis syndrome comprises other arterial systems with similar physiologies, such as mesenteric and cerebral circulation resulting in ischaemia/infarction of the vital organs. The incidence of this condition is difficult to establish owing to the number of potential instigating factors and its relatively infrequent documentation in the literature.We report the case of an HIV-negative 39-year-old man with no coronary risk factors or family history of premature coronary artery disease, who developed Kounis syndrome after the administration of fluoroquinolone for dysuria. However, to the best of our knowledge,no data on the incidence and prevalence of Kounis syndrome in South Africa have ever been reported in the literature. The recent understanding of Kounis syndrome has led to the condition being classified into three syndrome variants. PMID:26636160

  12. Poly (ε-caprolactone nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea

    Directory of Open Access Journals (Sweden)

    Bakhshandeh H

    2011-07-01

    Full Text Available Haleh Bakhshandeh1, Masoud Soleimani2, Saied Shah Hosseini3, Hassan Hashemi3, Iman Shabani4, Abbas Shafiee5, Amir Houshang Behesht Nejad6, Mohammad Erfan1, Rassoul Dinarvand7, Fatemeh Atyabi71Department of Pharmaceutics, School of Pharmacy, Shaheed Beheshti Medical University, Tehran, Iran; 2Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran; 3Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran; 4Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran; 5Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran; 6Ophthalmology Department, Tehran University of Medical Sciences, Tehran, Iran; 7Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: The study aimed to fabricate and characterize a 2-part artificial cornea as a substitute for penetrating keratoplasty in patients with corneal blindness. The peripheral part of the artificial cornea consisted of plasma-treated electrospun poly (ε-caprolactone (PCL nanofibers, which were attached to a hydrogel disc of polyvinyl alcohol (PVA as a central optical part. The physical properties of the prepared artificial cornea, including morphology, mechanical properties, light transmittance, and contact angle, were assessed. Cell attachment and proliferation studies were performed on rabbit limbal stem cells. The SEM image of the polymeric system showed that the peripheral part formed a highly porous scaffold that could facilitate tissue biointegration. Assessment of the mechanical properties of the peripheral nanofibrous part and the hydrogel optical part showed suitable elasticity. Young’s modulus values of the electrospun PCL skirt and PVA hydrogel core were 7.5 and 5.3 MPa, respectively, which is in line with the elasticity range of natural human cornea (0.3–7 MPa. The light transmittance of the central part was >85

  13. HYDROLETHALUS SYNDROME

    Directory of Open Access Journals (Sweden)

    Aradhana

    2013-06-01

    Full Text Available INTRODUCTION: Hydrolethalus Syndrome (HLS is a rare lethal genetic syndrome, recognized as a consequence of a study on Meckle syndrome in Finland .1 HLS is characterized by multiple developmental defects of fetus which include fetal hydrocephalus, agenesis of corpus callosum, absent midline structures of brain, Cleft lip and cleft palate, defective lobulation of lungs, micrognathia and very characteristic abnormality of polydactyly. About 80% of patients have polydactyly, in hands it is postaxial and preaxial in feet with duplicated big toe. A highly characteristic hallux duplex is seen in almost no other situation .2 Club feet is also common.

  14. Neuroacanthocytosis Syndromes

    Directory of Open Access Journals (Sweden)

    Walker Ruth H

    2011-10-01

    Full Text Available Abstract Neuroacanthocytosis (NA syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis and progressive degeneration of the basal ganglia. NA syndromes are exceptionally rare with an estimated prevalence of less than 1 to 5 per 1'000'000 inhabitants for each disorder. The core NA syndromes include autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome which have a Huntington´s disease-like phenotype consisting of a choreatic movement disorder, psychiatric manifestations and cognitive decline, and additional multi-system features including myopathy and axonal neuropathy. In addition, cardiomyopathy may occur in McLeod syndrome. Acanthocytes are also found in a proportion of patients with autosomal dominant Huntington's disease-like 2, autosomal recessive pantothenate kinase-associated neurodegeneration and several inherited disorders of lipoprotein metabolism, namely abetalipoproteinemia (Bassen-Kornzweig syndrome and hypobetalipoproteinemia leading to vitamin E malabsorption. The latter disorders are characterized by a peripheral neuropathy and sensory ataxia due to dorsal column degeneration, but movement disorders and cognitive impairment are not present. NA syndromes are caused by disease-specific genetic mutations. The mechanism by which these mutations cause neurodegeneration is not known. The association of the acanthocytic membrane abnormality with selective degeneration of the basal ganglia, however, suggests a common pathogenetic pathway. Laboratory tests include blood smears to detect acanthocytosis and determination of serum creatine kinase. Cerebral magnetic resonance imaging may demonstrate striatal atrophy. Kell and Kx blood group antigens are reduced or absent in McLeod syndrome. Western blot for chorein demonstrates absence of this protein in red blood cells of chorea-acanthocytosis patients. Specific genetic testing is possible in all NA syndromes

  15. Brittle-to-viscous behaviour of quartz gouge in shear experiments

    Science.gov (United States)

    Richter, Bettina; Stunitz, Holger; Heilbronner, Renée

    2016-04-01

    In order to study the microstructure development across the brittle-viscous transition and to derive the corresponding flow laws, we performed shear experiments on quartz gouge in a Griggs-type deformation apparatus. The starting material is a crushed quartz single crystal (sieved grain size temperatures between 500 ° C and 1000 ° C at confining pressures of 0.5 GPa, 1.0 GPa or 1.5 GPa. Four strain-rate-stepping experiments were conducted at strain rates between ˜2.5 x 10‑6 s‑1 and ˜2.5 x 10‑4 s‑1. Other experiments were conducted at constant strain rates of ˜2.5 x 10‑6 s‑1, ˜2.5 x 10‑5 s‑1, ˜2.5 x 10‑4 s‑1 and ˜2.5 x 10‑3 s‑1. At high confining pressure, the strength of the samples decreases with increasing temperature for all strain rates. The largest decrease occurred between 650 ° C and 700 ° C at shear strain rates of ˜2.5 x 10‑5 s‑1. At the same time, the pressure dependence of strength is positive for T ≤ 650 ° C while an inverse pressure dependence is observed at T > 650 ° C. For T temperature, from 700-1000 ° C it shows a strong temperature dependence. Between 650 ° C and 700 ° C at shear strain rates of ˜2.5 x 10‑5 s‑1 a change in the deformation process occurs from one dominated by cataclastic flow to one dominated by crystal plasticity. The microstructure reveals a less abrupt transition in terms of operating processes, because brittle and viscous processes are equally active around 650 ° C. With increasing temperature the volume fraction of recrystallised grains increases, and at 900 ° C - 1000 ° C recrystallisation is nearly complete at strains of γ ˜ 3. The crystallographic preferred orientation of the c-axis evolves from a random distribution at low temperatures towards two peripheral maxima at intermediate temperatures. At high temperatures the c-axis show a single Y-maximum. At high temperature, the stress exponent is n = 2.1 ± 0.2. The activation energy Q is 193 ± 12 kJ/mol at strain rates

  16. Failure processes in soft and quasi-brittle materials with nonhomogeneous microstructures

    Science.gov (United States)

    Spring, Daniel W.

    Material failure pervades the fields of materials science and engineering; it occurs at various scales and in various contexts. Understanding the mechanisms by which a material fails can lead to advancements in the way we design and build the world around us. For example, in structural engineering, understanding the fracture of concrete and steel can lead to improved structural systems and safer designs; in geological engineering, understanding the fracture of rock can lead to increased efficiency in oil and gas extraction; and in biological engineering, understanding the fracture of bone can lead to improvements in the design of bio-composites and medical implants. In this thesis, we numerically investigate a wide spectrum of failure behavior; in soft and quasi-brittle materials with nonhomogeneous microstructures considering a statistical distribution of material properties. The first topic we investigate considers the influence of interfacial interactions on the macroscopic constitutive response of particle reinforced elastomers. When a particle is embedded into an elastomer, the polymer chains in the elastomer tend to adsorb (or anchor) onto the surface of the particle; creating a region in the vicinity of each particle (often referred to as an interphase) with distinct properties from those in the bulk elastomer. This interphasial region has been known to exist for many decades, but is primarily omitted in computational investigations of such composites. In this thesis, we present an investigation into the influence of interphases on the macroscopic constitutive response of particle filled elastomers undergoing large deformations. In addition, at large deformations, a localized region of failure tends to accumulate around inclusions. To capture this localized region of failure (often referred to as interfacial debonding), we use cohesive zone elements which follow the Park-Paulino-Roesler traction-separation relation. To account for friction, we present a new

  17. Estudo comparativo entre duas plataformas para realização de Lasik personalizado para correção de miopia e astigmatismo: Alcon CustomCornea® versus Bausch & Lomb Zyoptix® Wavefront-Guided Lasik for low to moderate myopia: CustomCornea® versus Zyoptix®

    Directory of Open Access Journals (Sweden)

    Telma Pereira Barreiro

    2009-08-01

    Full Text Available OBJETIVO: Comparar os resultados obtidos após o Lasik personalizado utilizando duas plataformas diferentes. MÉTODOS: Estudo prospectivo, randomizado com 50 pacientes míopes submetidos a cirurgia refrativa em ambos os olhos. Foram selecionados para o estudo, pacientes com equivalente esférico semelhante entre os olhos. Todos foram submetidos a Lasik bilateral e simultâneo, sendo que um olho foi operado pela plataforma CustomCornea® e o outro pela Zyoptix®. Acuidade visual sem e com correção, refração dinâmica e estática, medida das aberrações oculares, teste de sensibilidade ao contraste foram realizados no período pré-operatório e pós-operatório de 1, 3 e 6 meses. RESULTADOS: No período pré-operatório a média do equivalente esférico era de -3,29 ± 1,56 D no grupo CustomCornea® e de -3,22 ± 1,50 D no Zyoptix® (p=0,267. No sexto mês de pós-operatório, a média do equivalente esférico no grupo CustomCornea® era de -0,077 ± 0,23 D e -0,282 ± 0,30 D no Zyoptix® (p 20/20 foi alcançada em 86% dos olhos no grupo CustomCornea® e 70% no grupo Zyoptix® (p=0,094. Nenhum paciente perdeu duas ou mais linhas da melhor acuidade visual corrigida. Cem por cento dos olhos CustomCornea® e 88% dos Zyoptix® ficaram entre ± 0,50 D da emetropia (p=0,014*. Melhora da sensibilidade ao contraste em todas as frequências espaciais testadas foi observada em ambos os grupos. A aberração esférica apresentou aumento em ambos os grupos, porém este foi estatisticamente maior na plataforma Zyoptix® (pPURPOSE: To compare the visual and clinical outcomes of Wavefront-guided laser in situ keratomileusis (Lasik with Alcon CustomCornea® and Zyoptix® systems. METHODS: A prospective, randomized, masked and bilateral study was conducted. Fifty patients with preoperative spherical equivalent ranging from -1.00 to -6.50 D were enrolled for customized ablation in both eyes. All of them were submitted to Lasik CustomCornea® treatment in one

  18. Brittle-ductile shear zone formation in the McKim Limestone: eastern Monument Upwarp, Utah

    Science.gov (United States)

    Seyum, S.; Pollard, D. D.

    2011-12-01

    The McKim Limestone is part of a regressive, marine sedimentary sequence of strata that was deposited in the Pennsylvanian to Permian periods. It is well-exposed across large portions of Raplee anticline and Comb monocline; a pair of kilometer-scale folds that mark the Monument Upwarp of the Colorado Plateau in southeastern Utah. Two conjugate sets of echelon vein arrays, with complementary echelon pressure solution seam arrays, occur as bed-perpendicular, systematic deformation features in the 1-3 m thick McKim Limestone unit. Based on large vein to vein array angles, large vein aperture to length ratios, and the presence of vein-perpendicular pressure solution seams, these structures are interpreted to have developed within localized, brittle-ductile shear zones. Topics of debate among structural geologists regarding the formation mechanism of echelon veins include the initiation mode of vein segments (tensile or shear), the relative age between shear zone initiation and vein formation, the interpretation of strain within a shear zone, and the development of sigmoidal veins as being indicative of rotation. These concepts often are founded on geometric observations and kinematic models of deformation (e.g. simple shear) that are independent of the constitutive properties of the rock, are not constrained by the equations of motion, and do not honor the boundary conditions on the vein surfaces. Here we show a more realistic representation of brittle-ductile shear zone formation by introducing numerical models that consider the mechanical properties of limestone, are constrained by the equations of motion, and explicitly define the vein surfaces and their boundary conditions. The commercial finite element software, Abaqus FEA, is used to investigate the deformed geometry of model echelon vein arrays as a function of the remotely applied stress, the initial geometry of the vein arrays, and the constitutive properties of the solid. These geometric patterns are compared

  19. Developing an Experimental Simulation Method for Rock Avalanches: Fragmentation Behavior of Brittle Analogue Material

    Science.gov (United States)

    Thordén Haug, Øystein; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2013-04-01

    Gravitational mass movement on earth and other planets show a scale dependent behavior, of which the physics is not fully understood. In particular, the runout distance for small to medium sized landslides (volume transport of loose granular material down a chute. Though such granular avalanche models provide important insights into avalanche dynamics, they imply that the material fully disintegrate instantaneously. Observations from nature, however, suggests that a transition from solid to "liquid" occurs over some finite distance downhill, critically controlling the mobility and energy budget of the avalanche. Few experimental studies simulated more realistically the material failing during sliding and those were realized in a labscale centrifuge, where the range of volumes/scales is limited. To develop a new modeling technique to study the scale dependent runout behavior of rock avalanches, we designed, tested and verified several brittle materials allowing fragmentation to occur under normal gravity conditions. According to the model similarity theory, the analogue material must behave dynamically similar to the rocks in natural rock avalanches. Ideally, the material should therefore deform in a brittle manner with limited elastic and ductile strains up to a certain critical stress, beyond which the material breaks and deforms irreversibly. According to scaling relations derived from dimensional analysis and for a model-to-prototype length ratio of 1/1000, the appropriate yield strength for an analogue material is in the order of 10 kPa, friction coefficient around 0.8 and stiffness in the order of MPa. We used different sand (garnet, quartz) in combination with different matrix materials (sugar, salt, starch, plaster) to cement it. The deformation behavior and strength of the samples was tested using triaxial compression tests at atmospheric confining pressures. Proper material properties were obtained using well-sorted, well-rounded, medium grained quartz

  20. Brittle Solvers: Lessons and insights into effective solvers for visco-plasticity in geodynamics

    Science.gov (United States)

    Spiegelman, M. W.; May, D.; Wilson, C. R.

    2014-12-01

    Plasticity/Fracture and rock failure are essential ingredients in geodynamic models as terrestrial rocks do not possess an infinite yield strength. Numerous physical mechanisms have been proposed to limit the strength of rocks, including low temperature plasticity and brittle fracture. While ductile and creep behavior of rocks at depth is largely accepted, the constitutive relations associated with brittle failure, or shear localisation, are more controversial. Nevertheless, there are really only a few macroscopic constitutive laws for visco-plasticity that are regularly used in geodynamics models. Independent of derivation, all of these can be cast as simple effective viscosities which act as stress limiters with different choices for yield surfaces; the most common being a von Mises (constant yield stress) or Drucker-Prager (pressure dependent yield-stress) criterion. The choice of plasticity model, however, can have significant consequences for the degree of non-linearity in a problem and the choice and efficiency of non-linear solvers. Here we describe a series of simplified 2 and 3-D model problems to elucidate several issues associated with obtaining accurate description and solution of visco-plastic problems. We demonstrate that1) Picard/Successive substitution schemes for solution of the non-linear problems can often stall at large values of the non-linear residual, thus producing spurious solutions2) Combined Picard/Newton schemes can be effective for a range of plasticity models, however, they can produce serious convergence problems for strongly pressure dependent plasticity models such as Drucker-Prager.3) Nevertheless, full Drucker-Prager may not be the plasticity model of choice for strong materials as the dynamic pressures produced in these layers can develop pathological behavior with Drucker-Prager, leading to stress strengthening rather than stress weakening behavior.4) In general, for any incompressible Stoke's problem, it is highly advisable to

  1. Piriformis syndrome

    Science.gov (United States)

    ... Wallet sciatica; Hip socket neuropathy; Pelvic outlet syndrome; Low back pain - piriformis ... medical help immediately if: You have sudden severe pain in your lower back or legs, along with muscle weakness or numbness ...

  2. Rett syndrome

    Science.gov (United States)

    An infant with Rett syndrome usually has normal development for the first 6 to 18 months. Symptoms range from ... of social engagement Ongoing, severe constipation and gastroesophageal reflux (GERD ) Poor circulation that can lead to cold ...

  3. Gardner Syndrome

    Science.gov (United States)

    ... syndromes. For more information, talk with an assisted reproduction specialist at a fertility clinic. How common is ... detected X-ray or computed tomography (CT or CAT) scan of the small bowel if adenomas are ...

  4. Piriformis Syndrome

    Science.gov (United States)

    ... syndrome occurs when this muscle presses on your sciatic nerve (the nerve that goes from your spinal cord ... cause the piriformis muscle to press against the sciatic nerve, such as sitting, walking up stairs or running. ...

  5. Marfan Syndrome

    Science.gov (United States)

    ... caved-in look. He also wore glasses for myopia (say: my-OH-pee-uh), or nearsightedness, which ... syndrome, this "glue" is weaker than normal. This causes changes in many systems of the body, but ...

  6. Aase syndrome

    Science.gov (United States)

    ... a provider who has experience treating anemias. A bone marrow transplant may be necessary if other treatment fails. ... counseling is recommended if you have a family history of this syndrome and wish to become pregnant.

  7. Hunter syndrome

    Science.gov (United States)

    ... to your health care provider for more information. Bone marrow transplant has been tried for the early-onset form, ... to have children and who have a family history of Hunter syndrome. Prenatal testing is available. Carrier ...

  8. Hurler syndrome

    Science.gov (United States)

    ... to your health care provider for more information. Bone marrow transplant has been used in several people with this ... Call your provider if: You have a family history of Hurler syndrome and are considering having children ...

  9. [Heptopulmonary syndrome].

    Science.gov (United States)

    Cuadrado, Antonio; Díaz, Ainhoa; Iruzubieta, Paula; Salcines, José Ramón; Crespo, Javier

    2015-01-01

    Hepatopulmonary syndrome is characterized by the presence of liver disease, pulmonary vascular dilatations, and arterial hypoxemia. It is usually associated with cirrhosis of any origin, but has been described in other liver diseases, both acute and chronic, and not always associated with portal hypertension. The gold standard method to detect pulmonary vascular dilations is contrast enhancement echocardiography with saline and is essential for the diagnosis of hepatopulmonary syndrome. These dilatations reflect changes in the pulmonary microvasculature (vasodilatation, intravascular monocyte accumulation, and angiogenesis) and induce a ventilation/perfusion mismatch, or even true intrapulmonary shunts, which eventually trigger hypoxemia. This syndrome worsens patients' prognosis and impairs their quality of life and may lead to the need for liver transplantation, which is the only effective and definitive treatment. In this article, we review the etiological, pathophysiological, clinical and therapeutic features of this syndrome. PMID:25840463

  10. Turcot Syndrome

    Science.gov (United States)

    ... procedure done in conjunction with in-vitro fertilization (IVF). It allows people who carry a specific known ... screening? If you are concerned about your family history and think your family may have Turcot syndrome, ...

  11. Levator Syndrome

    Science.gov (United States)

    ... 2 Diabetes, Heart Disease a Dangerous Combo Are 'Workaholics' Prone to OCD, Anxiety? ALL NEWS > Resources First ... are variations of levator syndrome. The muscle spasm causes pain that typically is not related to defecation. ...

  12. Pendred Syndrome

    Science.gov (United States)

    ... Health & Human Services National Institutes of Health Search Search form Search A–Z Index Español Menu Home ... children, the thyroid is important for normal growth and development. Children with Pendred syndrome, however, rarely have problems ...

  13. Goodpasture syndrome

    Science.gov (United States)

    ... glomerulonephritis with pulmonary hemorrhage; Pulmonary renal syndrome; Glomerulonephritis - pulmonary hemorrhage ... when urinating Nausea and vomiting Pale skin Swelling (edema) in any area of the body, especially in the legs

  14. Tourette Syndrome

    Science.gov (United States)

    ... methylphenidate and clonidine in children with ADHD and tics. Developing New Treatments for Tourette Syndrome: Clinical and Basic Science Dialogue Publicaciones en Español Síndrome de Tourette Prepared ...

  15. Alport Syndrome

    Science.gov (United States)

    ... syndrome diagnosed? Your healthcare provider will have to watch your signs, symptoms, and look at your family ... 05/2016 - 10:00am Philadelphia, PA Kidney Camp Sun, 07/17/2016 - 6:00pm Ingleside, IL Register ...

  16. Barth Syndrome

    DEFF Research Database (Denmark)

    Saric, Ana; Andreau, Karine; Armand, Anne-Sophie;

    2016-01-01

    Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart...

  17. [DIDMOAD syndrome].

    Science.gov (United States)

    Alicanoğlu, R; Canbakan, B; Yildiz, N; Arikan, E; Kundur, H; Bahtiyar, K; Sayali, E

    1994-01-01

    The DIDMOAD or so called Wolfram syndrome is a hereditary disease with autosomal-recessive transmission showing 4 main features: diabetes mellitus, diabetes insipidus, nervus opticus atrophia and deafness. Beside this it shows multiple organ involvement. Our 38-year old male patient, showing all above mentioned features except deafness had urinary tract involvement and neurological symptoms. EEG, cerebral MRI, tests with evoked potentials and HLA-typing were performed to discuss the aetiopathogenetic background in our patient. Almost all symptoms of the Wolfram syndrome can be mixed up with complications of diabetes mellitus, which is usually the first symptom of the Wolfram syndrome. Because of this, wrong diagnosis is not rare. Hence in differential diagnosis in any diabetes mellitus type I patient, the possibility of the Wolfram syndrome should be discussed. PMID:8023526

  18. Heyde's syndrome

    Directory of Open Access Journals (Sweden)

    Perišić Nenad

    2006-01-01

    Full Text Available Background: Heyde's syndrome implies an association of calcified aortic stenosis with the high gradient of pressure and angiodysplasic bleeding from the digestive tract. It has been proven that in patients with this syndrome, acquired form of von Willebrand type II A develops. Replacing of aortic valves by artificial ones brings about the spontaneous retreat of coagulation disorder, and the stoppage of the digestive tract bleeding. Case report. We reported two patients with the Heyde's syndrome. In one of the patients the aortic valves were replaced by biologic valves, after which the digestive tract bleeding stopped, while the second patient was treated conservatively due to a high operation risk. Conclusion. Patients with Heyde's syndrome are a complex multidisciplinary problem, thus their adequate treatment requires a team work in order to provide the most rational type of therapy for each patient separately.

  19. Reifenstein syndrome

    Science.gov (United States)

    ... male sex hormones (androgens). Testosterone is a male sex hormone. This disorder is a type of androgen insufficiency syndrome. ... Donohoue PA. Disorders of sex development. In: Kliegman RM, Stanton ... J, Schor N, Behrman RE, eds. Nelson Textbook of Pediatrics . ...

  20. HELLP syndrome

    Science.gov (United States)

    ... out of 1,000 pregnancies. In women with preeclampsia or eclampsia , the condition develops in 10 to ... have high blood pressure and are diagnosed with preeclampsia before they develop HELLP syndrome. In some cases, ...

  1. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine

    Science.gov (United States)

    Alarcon, E. I.; Vulesevic, B.; Argawal, A.; Ross, A.; Bejjani, P.; Podrebarac, J.; Ravichandran, R.; Phopase, J.; Suuronen, E. J.; Griffith, M.

    2016-03-01

    Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity.Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity. Electronic supplementary information (ESI) available: Collagen hydrogel, moulded as a cornea, prepared containing collagen protected AgNPs and representative images for collagen hydrogels, moulded as corneas, containing Blue AgNPs either unprotected or protected with LL37-SH; representative TEM images for Green-1 AgNPs prepared in this work; changes on surface plasmon band after synthesis for Green-2 AgNPs without LL37-SH; representative picture of the powder obtained for Green-1 AgNPs capped with LL37-SH after 72 h lyophilization, see main text; representative TEM images for Blue and Green-1 AgNPs prepared in this work; absorption spectra for the supernatants for collagen hydrogels containing Blue AgNPs; absorbance at 600 nm of PAO1 cultures prepared in 25% LB media incubated for 14 h at 37 °C in the presence of different concentrations of AgNPs, Green-1 or Blue, or silver nitrate; HECC cell density (cells per cm2) measured on gels with and without silver nitrate after 1 day of cell incubation; total silver concentration

  2. Kindler syndrome

    OpenAIRE

    Kaviarasan P; Prasad P; Shradda; Viswanathan P

    2005-01-01

    Kindler syndrome is a rare autosomal recessive disorder associated with skin fragility. It is characterized by blistering in infancy, photosensitivity and progressive poikiloderma. The syndrome involves the skin and mucous membrane with radiological changes. The genetic defect has been identified on the short arm of chromosome 20. This report describes an 18-year-old patient with classical features like blistering and photosensitivity in childhood and the subsequent development of poikiloderm...

  3. Turner Syndrome

    OpenAIRE

    Ramachandran Sudarshan; G Sree Vijayabala; KS Prem Kumar

    2012-01-01

    Turner syndrome is a genetic disorder that affects mostly females. Affected females have characteristic features such as short stature, premature ovarian failure, and several other features. Oral manifestations of this condition are not much discussed in the literature. But reported literature includes teeth, palate, periodontal and salivary changes. So the aim of this review is to illustrate the general manifestations, and especially the oral manifestations of Turner syndrome and evaluate th...

  4. Pendred's syndrome

    International Nuclear Information System (INIS)

    This report describes Pendred's syndrome in three siblings of a consanguineous marriage, belonging to Rahimyar Khan. The children presented with deafmutism and goiters. The investigations included scintigram, perchlorate discharge test and audiometery. The perchlorate discharge was positive in index case. Bilateral sensorineural hearing defect was detected on Pure Tone Average (PTA) audiometry. Meticulous clinical and laboratory evaluation is mandatory for the detection of rare disorders like Pendred's syndrome. (author)

  5. Controlling the ductile to brittle transition in Fe–9%Cr ODS steels

    International Nuclear Information System (INIS)

    Probably the most important range of materials for consideration as the blanket material for the tokamak design for fusion reactors ITER and DEMO is the high alloy Fe–9Cr oxide dispersion strengthened ferritic steels. Ferritic steels possess exceptional thermal conductivity and low thermal expansion and are resistant to void swelling. Their main drawback is high ductile to brittle transition temperatures, particularly in the oxide dispersion strengthened versions. This paper describes attempts to reduce the DBTT in an un-irradiated ferritic steel by a novel heat treatment procedure. New batches of high alloy Fe–9Cr oxide dispersion strengthened (Eurofer) ferritic steel have been produced by a powder metallurgy route, and relatively homogeneous material has been produced by hot isostatic pressing (HIP). Mini-Charpy test specimens were made from materials which had been subjected to a matrix of heat treatments with varying solution treatment temperature (ST), cooling rate from the ST temperature, and tempering treatment. The initial DBTT was in the range of 150–200 °C (423–473 K). Downward shifts of up to approximately 200 °C (473 K) have been observed after solution treatment at 1300 °C (1573 K) followed by slow cooling. This paper describes the microstructure of this material, and discussion is made of the likely microstructural factors needed to produce these DBTT downward shifts

  6. Investigations on hydrogen brittleness of quenched and draun steels during electrochemical coating

    International Nuclear Information System (INIS)

    The results of hydrogen permeation investigations on coated steel foils on the one hand, and during metal depositing on the other, clearly show that the decisive quantity of hydrogen for possible material brittleness occurs during the nucleation process and the building-up of the first atomic positions. One can thus no longer measure any hydrogen permeation for the deposit of bright cadmium or zinc longers after a layer of about 0,5 μm has been built up. It would seem therefore useful after building up this layer to allow the hydrogen to diffuse out by temperature procedure and then to deposit the layer with no danger to the desired thickeness. It is also advantageous to coat a diffusion inhiliting, very this layer of e.g. copper, upon which further layers can be deposited. Furthermore, the diffusion behaviour of hydrogen can be reduced by appropriate alloy components or layered electrochemically inactive particles such as found for Cu-Ni alloy coatings or phosphorous-contained nickel dispersion layers. (orig.)

  7. On the initiation of shear faults during brittle compressive failure: A new mechanism

    Science.gov (United States)

    Schulson, Erland M.; Iliescu, Daniel; Renshaw, Carl E.

    1999-01-01

    Brittle materials loaded under compression generally fail by shear faulting. This paper addresses the initiation of the fault. It presents direct observational evidence from ice, which is used as a model material for rock, and shows that wing cracking and "splay cracking" are important processes in the localization of deformation, both prior to and during fault initiation. Wing cracks develop at the tips of sliding intergranular cracks and tend to align with the maximum principal stress. Splay cracks emanate from one side of the sliding parent crack. The theme of the paper is that the splay cracks play the dominant role in triggering the fault. The central idea is that the slender columns between the splay cracks are more likely to buckle and fail than are the columns between adjacent wing cracks because they do not have two fixed ends; instead, the end stemming from the inclined parent crack is free. A moment is then applied by frictional sliding of the parent inclined crack, and this causes the fixed-free columns to break at a much lower stress than the fixed-fixed columns. Columns created near a free surface are more likely to fail than those created elsewhere, and this explains the observation that shear localization tends to initiate near free surfaces. A first-order calculation shows that the failure stress of the splay-created columns is of the same order of magnitude as the terminal failure stress.

  8. Standard test method for splitting tensile strength for brittle nuclear waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This test method is used to measure the static splitting tensile strength of cylindrical specimens of brittle nuclear waste forms. It provides splitting tensile-strength data that can be used to compare the strength of waste forms when tests are done on one size of specimen. 1.2 The test method is applicable to glass, ceramic, and concrete waste forms that are sufficiently homogeneous (Note 1) but not to coated-particle, metal-matrix, bituminous, or plastic waste forms, or concretes with large-scale heterogeneities. Cementitious waste forms with heterogeneities >1 to 2 mm and 5 mm can be tested using this procedure provided the specimen size is increased from the reference size of 12.7 mm diameter by 6 mm length, to 51 mm diameter by 100 mm length, as recommended in Test Method C 496 and Practice C 192. Note 1—Generally, the specimen structural or microstructural heterogeneities must be less than about one-tenth the diameter of the specimen. 1.3 This test method can be used as a quality control chec...

  9. Characterizing and Modeling Brittle Bi-material Interfaces Subjected to Shear

    Science.gov (United States)

    Anyfantis, Konstantinos N.; Berggreen, Christian

    2014-12-01

    This work is based on the investigation, both experimentally and numerically, of the Mode II fracture process and bond strength of bondlines formed in co-cured composite/metal joints. To this end, GFRP-to-steel double strap joints were tested in tension, so that the bi-material interface was subjected to shear with debonding occurring under Mode II conditions. The study of the debonding process and thus failure of the joints was based both on stress and energy considerations. Analytical formulas were utilized for the derivation of the respective shear strength and fracture toughness measures which characterize the bi-material interface, by considering the joint's failure load, geometry and involved materials. The derived stress and toughness magnitudes were further utilized as the parameters of an extrinsic cohesive law, applied in connection with the modeling the bi-material interface in a finite element simulation environment. It was concluded that interfacial fracture in the considered joints was driven by the fracture toughness and not by strength considerations, and that LEFM is well suited to analyze the failure of the joint. Additionally, the double strap joint geometry was identified and utilized as a characterization test for measuring the Mode II fracture toughness of brittle bi-material interfaces.

  10. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    Science.gov (United States)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  11. Design against brittle or elastic-plastic fracture of nuclear waste container

    International Nuclear Information System (INIS)

    Design against brittle or elastic plastic fracture of nuclear waste container is discussed based on three different concepts: (i) reserve of ductility defined by means of reference temperature, (ii) deterministic design using linear or elasto-plastic fracture mechanics associated with reserve factors, and (iii) probabilistic design associated with RCCMR failure assessment diagram. Cast ferritic steel predetermined for containers of spent nuclear fuel has been used in experimental part of the study. Fracture toughness characteristics necessary for considerations have been obtained by standard 1T three point bend specimens tested statically at different temperatures. Pre-cracked Charpy type specimen has been also employed for the investigations tested statically and dynamically. Material properties necessary for the concept presented are corresponding Master Curve and Weibull distribution of fracture toughness. Special attention has been paid to dynamic loading. Large scatter in reserve factor was found depending on the selected failure assessment method for fracture toughness characteristics changing the value from 1.44 to 4.55. (author)

  12. Evaluation of Crashworthiness for SAE Materials under Ductile to Brittle Transition Temperature (DBTT

    Directory of Open Access Journals (Sweden)

    Amol Bhanage

    2014-10-01

    Full Text Available The concept of crashworthy coaches came into existence after a crash. This demands, avoid vehicle deformation of other/central parts. For this, the behaviour of plastic deformation of the material is necessary to be known. So, these results are required to study the crashworthy behaviour of the structure. In this research, Comparative study has been taken on the automotive materials of SAE 1026, SAE 4140, SAE 5120 and SAE8620. This paper presents the results of fracture toughness, impact energy and stress required for crack propagation from Charpy v-notch impact test and tensile test. The mechanical behaviour of SAE 1026, SAE 4140, SAE 5120 and SAE 8620 are important to describe response during actual loading condition properties used in the crash analysis of the component. The Charpy impact test was conducted at temperature ranging from room temperature 24°C, 0°C, -20°C, - 40°C, -60°C. Specimens oriented in T-L direction are tested. The materials SAE 1026, SAE 4140, SAE 5120 and SAE8620 shown that the ductile to brittle transition temperature, based on 19.5 J, 10.5 J, 113 J, 59.5 J, absorbed energy is about 1.2°C, -3°C, -38°C, -10°C respectively.

  13. Optimization Of Laboratory Hot Rolling Of Brittle Fe-40at.%Al-Zr-B Aluminide

    Directory of Open Access Journals (Sweden)

    Schindler I.

    2015-09-01

    Full Text Available Use of the protective steel capsules enabled to manage the laboratory hot flat rolling of the extremely brittle as-cast aluminide Fe-40at.%Al-Zr-B with the total height reduction of almost 70 %. The hot rolling parameters were optimized to obtain the best combination of deformation temperature (from 1160°C up to 1240°C and rolling speed (from 0.14 m·s−1 to 0.53 m·s−1. The resistance against cracking and refinement of the highly heterogeneous cast microstructure were the main criteria. Both experiments and mathematical simulations based on FEM demonstrated that it is not possible to exploit enhanced plasticity of the investigated alloy at low strain rates in the hot rolling process. The heat flux from the sample to the working rolls is so intensive at low rolling speed that even the protective capsule does not prevent massive appearance of the surface transverse cracking. The homogeneity and size of product’s grain was influenced significantly by temperature of deformation, whereas the effect of rolling speed was relatively negligible. The optimal forming parameters were found as rolling temperature 1200°C and the rolling speed 0.35 m·s−1. The effective technology of the iron aluminide Fe-40at.% Al-Zr-B preparation by simple processes of melting, casting and hot rolling was thus established and optimized.

  14. A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    Science.gov (United States)

    Castro, Jorge; Cicero, Sergio; Sagaseta, César

    2016-01-01

    This paper presents a new analytical criterion for brittle failure of rocks and heavily over-consolidated soils. Griffith's model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith's criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as half of the critical distance. This fracture criterion is known as the point method, and is part of the theory of critical distances, which is utilised in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, σ 0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/ L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, σ c and σ t. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils ( σ c/ σ t = 3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low-confining stresses.

  15. Observations on the nature of micro-cracking in brittle composites

    International Nuclear Information System (INIS)

    The degree of micro-cracking in BeO-SiC composites due to internal stresses which arise from the mismatch in the coefficients of thermal expansion was monitored by measurements of the thermal diffusivity by the laser-flash technique. The experimental results indicated that micro-cracking was most extensive at approximately 30 and 80 wt % SiC and a minimum at nearly 50 wt % SiC. A theoretical analysis indicated that the magnitude of internal stress increases linearly with SiC content, so that the above observations cannot be attributed to a low internal stress state at approximately 50 wt % SiC. Instead, this effect can be attributed to changes in the statistical variables affecting the brittle fracture as well as the degree of internal stress relaxation. Both these factors are thought to be controlled by the nature of multiaxial stress distribution. At approximately 50 wt % SiC-content, due to anticipated non-hydrostatic triaxial stress distribution, residual stress relaxation is possible in both the components of the composite. However, at low and high fractions of SiC content, such stress relaxation is less likely to occur due to the expected hydrostatic stress distribution in one of the components. (author)

  16. Micropolar effect on the cataclastic flow and brittle-ductile transition in high-porosity rocks

    Science.gov (United States)

    Zheng, Zheyuan; Sun, WaiChing; Fish, Jacob

    2016-03-01

    A micromechanical distinct element method (DEM) model is adopted to analyze the grain-scale mechanism that leads to the brittle-ductile transition in cohesive-frictional materials. The cohesive-frictional materials are idealized as particulate assemblies of circular disks. While the frictional sliding of disks is sensitive to the normal compressive stress exerted on contacts, normal force can be both caused by interpenetration and long-range cohesive bonding between two particles. Our numerical simulations indicate that the proposed DEM model is able to replicate the gradual shift of porosity change from dilation to compaction and failure pattern from localized failures to cataclastic flow upon rising confining pressure in 2-D biaxial tests. More importantly, the micropolar effect is examined by tracking couple stress and microcrack initiation to interpret the transition mechanism. Numerical results indicate that the first invariant of the couple stress remains small for specimen sheared under low confining pressure but increases rapidly when subjected to higher confining pressure. The micropolar responses inferred from DEM simulations reveal that microcracking may occur in a more diffuse and stable manner when the first invariant of the macroscopic couple stress are of higher magnitudes.

  17. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials.

    Science.gov (United States)

    Montemayor, L C; Wong, W H; Zhang, Y-W; Greer, J R

    2016-01-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials. PMID:26837581

  18. Application of fracture toughness scaling models to the ductile-to- brittle transition

    International Nuclear Information System (INIS)

    An experimental investigation of fracture toughness in the ductile-brittle transition range was conducted. A large number of ASTM A533, Grade B steel, bend and tension specimens with varying crack lengths were tested throughout the transition region. Cleavage fracture toughness scaling models were utilized to correct the data for the loss of constraint in short crack specimens and tension geometries. The toughness scaling models were effective in reducing the scatter in the data, but tended to over-correct the results for the short crack bend specimens. A proposed ASTM Test Practice for Fracture Toughness in the Transition Range, which employs a master curve concept, was applied to the results. The proposed master curve over predicted the fracture toughness in the mid-transition and a modified master curve was developed that more accurately modeled the transition behavior of the material. Finally, the modified master curve and the fracture toughness scaling models were combined to predict the as-measured fracture toughness of the short crack bend and the tension specimens. It was shown that when the scaling models over correct the data for loss of constraint, they can also lead to non-conservative estimates of the increase in toughness for low constraint geometries

  19. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  20. Influence of the residual stresses on crack initiation in brittle materials and structures

    International Nuclear Information System (INIS)

    Many material assemblies subjected to thermo-mechanical loadings develop thermal residual stresses which modify crack onset conditions. Besides if one of the components has a plastic behaviour, plastic residual deformations may also have a contribution. One of the issues in brittle fracture mechanics is to predict crack onset without any pre-existing defect. Leguillon proposed an onset criterion based on both a Griffth-like energetic condition and a maximum stress criterion. The analysis uses matched asymptotics and the theory of singularity. The good fit between the model and experimental measurements led on homogeneous isotropic materials under pure mechanical loading incited us to take into account residual stresses in the criterion. The comparison between the modified criterion and the experimental measurements carried out on an aluminum/epoxy assembly proves to be satisfying concerning the prediction of failure of the interface between the two components. Besides, it allows, through inversion, identifying the fracture properties of this interface. The modified criterion is also applied to the delamination of the tile/structure interface in the plasma facing components of the Tore Supra tokamak. Indeed thermal and plastic residual stresses appear in the metallic part of these coating tiles. (author)