WorldWideScience

Sample records for brittle cornea syndrome

  1. Brittle Cornea Syndrome Associated with a Missense Mutation in the Zinc-Finger 469 Gene

    DEFF Research Database (Denmark)

    Christensen, Anne Elisabeth; Knappskog, Per Morten; Midtbø, Marit

    2010-01-01

    Purpose: To investigate the diverse clinical manifestations, identify the causative mutation and explain the association with red hair in a family with brittle cornea syndrome (BCS). Methods: Eight family members in three generations underwent ophthalmic, dental, and general medical examination...... mapping with SNP markers, DNA sequencing, and MC1R genotyping. Results: At 42 and 48 years of age, respectively, both affected individuals were blind due to retinal detachment and secondary glaucoma. They had extremely thin and bulging corneas, velvety skin, chestnut colored hair, scoliosis, reduced BMD...

  2. Brittle Cornea Syndrome: Case Report with Novel Mutation in the PRDM5 Gene and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Georgia Avgitidou

    2015-01-01

    Full Text Available A 3-year-old boy presented with acute corneal hydrops on the left eye and spontaneous corneal rupture on the right eye. A diagnosis of brittle cornea syndrome was confirmed by molecular analysis. A novel mutation, the homozygous variant c.17T>G, p.V6G, was found in the gene for PR-domain-containing protein 5 (PRDM5 in exon 1. Brittle cornea syndrome is a rare connective tissue disease with typical ocular, auditory, musculoskeletal, and cutaneous disorders. Almost all patients suffer from declined vision due to corneal scarring, thinning, and rupture. The most common ophthalmologic findings include keratoconus, progressive central corneal thinning, high myopia, irregular astigmatism, retinal detachment, and high risk for spontaneous corneal or scleral rupture. In addition to describing the case with a novel mutation here we review the current literature on brittle cornea syndrome pathogenesis, clinical findings, and therapy.

  3. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

    NARCIS (Netherlands)

    Wright, Emma M. M. Burkitt; Spencer, Helen L.; Daly, Sarah B.; Manson, Forbes D. C.; Zeef, Leo A. H.; Urquhart, Jill; Zoppi, Nicoletta; Bonshek, Richard; Tosounidis, Ioannis; Mohan, Meyyammai; Madden, Colm; Dodds, Annabel; Chandler, Kate E.; Banka, Siddharth; Au, Leon; Clayton-Smith, Jill; Khan, Naz; Biesecker, Leslie G.; Wilson, Meredith; Rohrbach, Marianne; Colombi, Marina; Giunta, Cecilia; Black, Graeme C. M.

    2011-01-01

    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition,

  4. A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome

    NARCIS (Netherlands)

    Porter, L.F.; Galli, G.G.; Williamson, S.; Selley, J.; Knight, D.; Elcioglu, N.; Aydin, A.; Elcioglu, M.; Venselaar, H.; Lund, A.H.; Bonshek, R.; Black, G.C.; Manson, F.D.

    2015-01-01

    Type 2 brittle cornea syndrome (BCS2) is an inherited connective tissue disease with a devastating ocular phenotype caused by mutations in the transcription factor PR domain containing 5 (PRDM5) hypothesized to exert epigenetic effects through histone and DNA methylation. Here we investigate

  5. A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome

    DEFF Research Database (Denmark)

    Porter, Louise F; Galli, Giorgio G; Williamson, Sally

    2015-01-01

    Type 2 brittle cornea syndrome (BCS2) is an inherited connective tissue disease with a devastating ocular phenotype caused by mutations in the transcription factor PRDM5 hypothesised to exert epigenetic effects through histone and DNA methylation. Here we investigate clinical samples, including...

  6. Brittle cornea syndrome ZNF469 mutation carrier phenotype and segregation analysis of rare ZNF469 variants in familial keratoconus.

    Science.gov (United States)

    Davidson, Alice E; Borasio, Edmondo; Liskova, Petra; Khan, Arif O; Hassan, Hala; Cheetham, Michael E; Plagnol, Vincent; Alkuraya, Fowzan S; Tuft, Stephen J; Hardcastle, Alison J

    2015-01-06

    Brittle cornea syndrome 1 (BCS1) is a rare recessive condition characterized by extreme thinning of the cornea and sclera, caused by mutations in ZNF469. Keratoconus is a relatively common disease characterized by progressive thinning and ectasia of the cornea. The etiology of keratoconus is complex and not yet understood, but rare ZNF469 variants have recently been associated with disease. We investigated the phenotype of BCS1 carriers with known pathogenic ZNF469 mutations, and recruited families in which aggregation of keratoconus was observed to establish if rare variants in ZNF469 segregated with disease. Patients and family members were recruited and underwent comprehensive anterior segment examination, including corneal topography. Blood samples were donated and genomic DNA was extracted. The coding sequence and splice sites of ZNF469 were PCR amplified and Sanger sequenced. Four carriers of three BCS1-associated ZNF469 loss-of-function mutations (p.[Glu1392Ter], p.[Gln1930Argfs*6], p.[Gln1930fs*133]) were examined and none had keratoconus. One carrier had partially penetrant features of BCS1, including joint hypermobility. ZNF469 sequencing in 11 keratoconus families identified 9 rare (minor allele frequency [MAF] ≤ 0.025) variants predicted to be potentially damaging. However, in each instance the rare variant(s) identified, including two previously reported as potentially keratoconus-associated, did not segregate with the disease. The presence of heterozygous loss-of-function alleles in the ZNF469 gene did not cause keratoconus in the individuals examined. None of the rare nonsynonymous ZNF469 variants identified in the familial cohort conferred a high risk of keratoconus; therefore, genetic variants contributing to disease pathogenesis in these 11 families remain to be identified. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  7. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus.

    Science.gov (United States)

    Lechner, Judith; Porter, Louise F; Rice, Aine; Vitart, Veronique; Armstrong, David J; Schorderet, Daniel F; Munier, Francis L; Wright, Alan F; Inglehearn, Chris F; Black, Graeme C; Simpson, David A; Manson, Forbes; Willoughby, Colin E

    2014-10-15

    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus

    Science.gov (United States)

    Lechner, Judith; Porter, Louise F.; Rice, Aine; Vitart, Veronique; Armstrong, David J.; Schorderet, Daniel F.; Munier, Francis L.; Wright, Alan F.; Inglehearn, Chris F.; Black, Graeme C.; Simpson, David A.; Manson, Forbes; Willoughby, Colin E.

    2014-01-01

    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date. PMID:24895405

  9. Brittle nail syndrome: a pathogenesis-based approach with a proposed grading system.

    NARCIS (Netherlands)

    Kerkhof, P.C.M. van de; Pasch, M.C.; Scher, R.K.; Kerscher, M.; Gieler, U.; Haneke, E.; Fleckman, P.

    2005-01-01

    Brittle nail syndrome is a heterogeneous abnormality, characterized by increased fragility of the nail plate. Brittle nails affect about 20% of the population and women are affected twice as frequently as men. The vast majority of patients experience brittle nails as a significant cosmetic problem

  10. Síndrome das unhas frágeis Brittle nail syndrome

    Directory of Open Access Journals (Sweden)

    Izelda Maria Carvalho Costa

    2007-06-01

    Full Text Available A síndrome das unhas frágeis é queixa comum, caracterizada por aumento da fragilidade das lâminas ungueais. Afeta quase 20% da população geral, sendo mais comum em mulheres. Clinicamente se manifesta com onicosquizia e onicorrexe - distúrbios nos fatores de adesão intercelular das unhas se manifestam como a primeira, ao passo que alterações da matriz apresentamse com onicorrexe. Mesmo sendo tão usual e afetando os pacientes de maneira importante em seu cotidiano, o tratamento das unhas frágeis avançou pouco nas últimas décadas e ainda se baseia principalmente no uso da biotina.Brittle nail syndrome is a common condition, characterized by increased fragility of the nail plates. It affects almost 20% of the population, being more usual in women. Clinical manifestations of brittle nails are onychoschizia and onychorexis - disorders of intercellular adhesive factors are expressed as the first, while disorders of the nail matrix manifest as onychorexis. Despite being so common and causing much more than only cosmetic problems to the patient, the treatment of brittle nails has had little improvement over the past decades and is still mainly based on the daily use of biotin.

  11. Cornea Transplant

    Science.gov (United States)

    ... Swelling of the cornea Signs and symptoms of cornea rejection In some cases, your body's immune system ... the risks of the procedure. Finding a donor cornea Most corneas used in cornea transplants come from ...

  12. The Structural Role of Elastic Fibers in the Cornea Investigated Using a Mouse Model for Marfan Syndrome.

    Science.gov (United States)

    White, Tomas L; Lewis, Philip; Hayes, Sally; Fergusson, James; Bell, James; Farinha, Luis; White, Nick S; Pereira, Lygia V; Meek, Keith M

    2017-04-01

    The presence of fibrillin-rich elastic fibers in the cornea has been overlooked in recent years. The aim of the current study was to elucidate their functional role using a mouse model for Marfan syndrome, defective in fibrillin-1, the major structural component of the microfibril bundles that constitute most of the elastic fibers. Mouse corneas were obtained from animals with a heterozygous fibrillin-1 mutation (Fbn1+/-) and compared to wild type controls. Corneal thickness and radius of curvature were calculated using optical coherence tomography microscopy. Elastic microfibril bundles were quantified and visualized in three-dimensions using serial block face scanning electron microscopy. Transmission electron microscopy was used to analyze stromal ultrastructure and proteoglycan distribution. Center-to-center average interfibrillar spacing was determined using x-ray scattering. Fbn1+/- corneas were significantly thinner than wild types and displayed a higher radius of curvature. In the Fbn1+/- corneas, elastic microfibril bundles were significantly reduced in density and disorganized compared to wild-type controls, in addition to containing a higher average center-to-center collagen interfibrillar spacing in the center of the cornea. No other differences were detected in stromal ultrastructure or proteoglycan distribution between the two groups. Proteoglycan side chains appeared to colocalize with the microfibril bundles. Elastic fibers have an important, multifunctional role in the cornea as highlighted by the differences observed between Fbn1+/- and wild type animals. We contend that the presence of normal quantities of structurally organized elastic fibers are required to maintain the correct geometry of the cornea, which is disrupted in Marfan syndrome.

  13. [Cosmetology and brittle nails].

    Science.gov (United States)

    Abimelec, P

    2000-12-15

    The knowledge of manicure techniques and nail cosmetics compositions are a prerequisite to the understanding of their potential side effects. The brittle nail syndrome is a common problem that roughly affect 20% of women. We will review the etiologic hypothesis, describe the various presentations, and suggest a treatment for this perplexing problem.

  14. Fracture of brittle solids

    CERN Document Server

    Lawn, Brian

    1993-01-01

    This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent-ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials--to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the at...

  15. Facts about the Cornea and Corneal Disease

    Science.gov (United States)

    ... the Cornea and Corneal Disease Facts About the Cornea and Corneal Disease What is the cornea? The cornea is the eye’s outermost layer. It ... your vision. What are the parts of the cornea? Although the cornea may look clear and seem ...

  16. The cornea in measles

    NARCIS (Netherlands)

    N.W.H.M. Dekkers (Nico)

    1981-01-01

    textabstractThe involvement of the cornea in the acute stage of measles is the subject of the present study. The best study on the measles-keratitis now available is still the one by Trantas in 1903. It seems wo.:thwhile therefore to study this self-limiting keratitis with the investigative tools

  17. CORNEA AND ANTERIOR SEGMENT

    African Journals Online (AJOL)

    2016-11-04

    Nov 4, 2016 ... 24. Nigerian Journal of Ophthalmology / Supplement 1 - 2014 - Volume 22. S24. CORNEA AND ANTERIOR SEGMENT. A Comparison of Visual Outcomes after Extracapsular Cataract. Surgery and Phacoemulsification in Eye Foundation Hospital. Lagos Nigeria. Oderinlo O. O., Hassan A. O., Oluyadi F. O., ...

  18. Keratoconus in Costello syndrome.

    Science.gov (United States)

    Gripp, Karen W; Demmer, Laurie A

    2013-05-01

    Keratoconus is a corneal dystrophy with progressive corneal thinning resulting in abnormal corneal shape and astigmatism. Corneal hydrops and rupture can occur and corneal transplant may become necessary. While keratoconus is rare in the general population occurring in about 1/2,000 individuals, it is more common in individuals with intellectual disability and syndromic conditions. Connective tissue abnormalities, most typically brittle cornea syndrome, have frequently been reported in association with keratoconus. Here, we report on bilateral keratoconus with acute hydrops in the left eye of a 24-year-old male with Costello syndrome. The patient was treated medically. After resolution of the hydrops, he had significant visual impairment from the resulting irregular astigmatism and scarring. This is the second report of keratoconus in Costello syndrome, suggesting an increased risk for this corneal dystrophy in individuals with Costello syndrome. Ongoing ophthalmological surveillance may be necessary for adult individuals with Costello syndrome, and apparent vision changes should be evaluated expediently. Copyright © 2012 Wiley Periodicals, Inc.

  19. Regenerative approaches for the cornea.

    Science.gov (United States)

    Griffith, M; Alarcon, E I; Brunette, I

    2016-09-01

    The cornea is the transparent front part of the eye that transmits light to the back of the eye to generate vision. Loss of corneal transparency, if irreversible, leads to severe vision loss or blindness. For decades, corneal transplantation using human donor corneas has been the only option for treating corneal blindness. Despite recent improvement in surgical techniques, donor cornea transplantation remains plagued by risks of suboptimal optical results and visual acuity, immune rejection and eventually graft failure. Furthermore, the demand for suitable donor corneas is increasing faster than the number of donors, leaving thousands of curable patients untreated worldwide. Here, we critically review the state of the art of biomaterials for corneal regeneration. However, the lessons learned from the use of the cornea as a disease model will allow for extension of the biomaterials and techniques for regeneration of more complex organs such as the heart. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  20. Spheroidal Degeneration of the Cornea

    OpenAIRE

    Erdem Dinç; Ufuk Ad›güzel; Bahri Ayd›n; İdil Göksel; Özlem Y›ld›r›m

    2011-01-01

    A thirty-one-year-old male patient presented with bilateral epiphora and stinging sensation in the cornea. Detailed history revealed that a bilateral corneal scraping had been made regarding the initial diagnosis of fungal keratitis. His bestcorrected visual acuities were 20/20 and 20/30 in right and left eyes, respectively. Biomicroscopy showed bilateral amber colored spherules in the anterior stroma of the central cornea. The diagnosis of spheroidal corneal degeneration was esta...

  1. Keratoprosthesis. Implantation of artificial corneas.

    Science.gov (United States)

    Berta, A

    1997-01-01

    Keratoprosthesis (implantation of artificial, plastic cornea) is indicated in severe cases with corneal leucoma (non-transparent, cicatrized cornea) in which keratoplasty (corneal transplantation) is not possible or has repeatedly failed. In the past 40 years we implanted 37 artificial corneas (7 Cardona type, 29 Konstantinov type, 1 Fjodorov type). The visual acuity increase was temporary (lasting from a few weeks to a few months) in 25 patients. The visual acuity was at least 0.2 three years following the implantation of keratoprosthesis in 12 patients. One patient had 1.0 vision 10 years after surgery. Our results indicate that the implantation of artificial corneal is still an "ultimum refugium", an operation that can be justified only in monocular patients, in eyes that cannot be and/or had unsuccessfully been operated on with repeated keratoplasties. The visual improvement is temporary, but in some cases may last for several years. Still this is the only procedure by which useful vision can be provided, for shorter or longer time intervals, for patients suffering from corneal blindness (nontransparent cornea in otherwise functioning eye) whose only eye cannot be treated with corneal transplantation. Keratoprosthesis with better biocompatibility, better fixation techniques, and wider visual fields have to be developed before the implantation of artificial cornea can be looked upon as a surgical procedure with which full optical rehabilitation can be achieved.

  2. Artificial corneas versus donor corneas for repeat corneal transplants.

    Science.gov (United States)

    Akpek, Esen K; Alkharashi, Majed; Hwang, Frank S; Ng, Sueko M; Lindsley, Kristina

    2014-11-05

    Individuals who have failed one or more full thickness penetrating keratoplasties (PKs) may be offered repeat corneal surgery using an artificial or donor cornea. An artificial or prosthetic cornea is known as a keratoprosthesis. Both donor and artificial corneal transplantations involve removal of the diseased and opaque recipient cornea (or the previously failed cornea) and replacement with another donor or prosthetic cornea. To assess the effectiveness of artificial versus donor corneas in individuals who have had one or more failed donor corneal transplantations. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2013, Issue 10), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2013), EMBASE (January 1980 to November 2013), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to November 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 27 November 2013. Two review authors independently assessed reports from the electronic searches to identify randomized controlled trials (RCTs) or controlled clinical trials (CCTs). We resolved discrepancies by discussion or consultation with a third review author. For discussion purposes, we assessed findings from observational cohort studies and non-comparative case series. No data synthesis was performed. We did not identify any RCTs or CCTs comparing artificial corneas with donor corneas for repeat corneal transplantations. The optimal management for those individuals who have failed a conventional corneal transplantation is not known

  3. Artificial corneas versus donor corneas for repeat corneal transplants

    Science.gov (United States)

    Akpek, Esen K; Alkharashi, Majed; Hwang, Frank S; Ng, Sueko M; Lindsley, Kristina

    2014-01-01

    Background Individuals who have failed one or more full thickness penetrating keratoplasties (PKs) may be offered repeat corneal surgery using an artificial or donor cornea. An artificial or prosthetic cornea is known as a keratoprosthesis. Both donor and artificial corneal transplantations involve removal of the diseased and opaque recipient cornea (or the previously failed cornea) and replacement with another donor or prosthetic cornea. Objectives To assess the effectiveness of artificial versus donor corneas in individuals who have had one or more failed donor corneal transplantations. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2013, Issue 10), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2013), EMBASE (January 1980 to November 2013), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to November 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 27 November 2013. Selection criteria Two review authors independently assessed reports from the electronic searches to identify randomized controlled trials (RCTs) or controlled clinical trials (CCTs). We resolved discrepancies by discussion or consultation with a third review author. Data collection and analysis For discussion purposes, we assessed findings from observational cohort studies and non-comparative case series. No data synthesis was performed. Main results We did not identify any RCTs or CCTs comparing artificial corneas with donor corneas for repeat corneal transplantations. Authors

  4. The filtering, clear-cornea diathermal keratostomy

    DEFF Research Database (Denmark)

    Kessing, Svend Vedel; Nissen, Ole I; Thygesen, John

    2012-01-01

    Is the new micropenetrating, clear-cornea procedure, intrastromal diathermal keratostomy (IDK), an alternative to the intricate "modern trabeculectomy"?......Is the new micropenetrating, clear-cornea procedure, intrastromal diathermal keratostomy (IDK), an alternative to the intricate "modern trabeculectomy"?...

  5. Combining Sodium Hyaluronate and Polyvinylpyrrolidone Therapies for the Rabbit Cornea: A New Approach to Relief of the Human Dry Eye Syndrome.

    Science.gov (United States)

    Ehrenberg, Moshe; Zolotariov, Eyal; Loeb, Emmanuel; Poliansky, Vadim; Levy, Aharon

    2015-09-01

    The novel combination of 0.1% sodium hyaluronate (HA) and 5.0% polyvinylpyrrolidone (PVP) into one eyedrop was investigated to test the hypothesis of its increased relief of dry eye syndrome (DES). We evaluated HA and PVP, either alone, or in combination, by utilizing 16 rabbits, where their right eyes received one or two different eyedrops, and their left eyes, as controls, received none. The DES replica in rabbits was induced by 0.1% benzalkonium chloride (BAC) eyedrops. BAC was instilled into the right eyes of all rabbits, which were divided into four groups of four. In Group 1 M, the rabbits received only BAC. A second eyedrop given to the right eyes of Group 2 M was HA, of Group 3 M was PVP, and of Group 4 M was the combination of both HA and PVP. All eyes were followed clinically for 14 d, and thereafter, examined histopathologically. Clinically, the HA+PVP combination yielded the least perilimbal conjunctival erythema (p < 0.05), and the least corneal epithelial fluorescein staining (p < 0.001) compared to each treatment alone. Histopathologically, all four rabbits' right eyes in the combination group 4 M displayed the greatest preservation of the corneal epithelium (p < 0.001) and of the perilimbal conjunctival goblet cell density (p < 0.001). This unique combination of both HA and PVP into one eyedrop, was more potent than either treatment alone in protecting the ocular surface. A preparation, containing both HA and PVP may become useful for DES patients.

  6. Brittle type 1 diabetes mellitus.

    Science.gov (United States)

    Bertuzzi, Federico; Verzaro, Roberto; Provenzano, Vincenzo; Ricordi, Camillo

    2007-01-01

    A small group of patients affected by type 1 diabetes mellitus is characterized by a severe instability of glycemic values with frequent and unpredictable hypoglycemic and/or ketoacidosis episodes which cannot be explained by errors of patients or diabetologists. The quality of life of these patients is dramatically compromised in particular because of the frequency of acute events, hospital recoveries and precocious appearance of chronic complications. This clinical condition has been defined as "brittle diabetes". A precise quantification of these patients is difficult because diagnostic criteria are still not well defined and it is often difficult to verify errors of patients in terms of inappropriate conduct with the pathology. Even more than the other kinds of diabetes, therapy is based on education, glycemic control, intensive therapy and strict interaction between physicians and patients. The introduction of insulin analogous, with either ultra-fast and ultra-slow action and the use of subcutaneous insulin pumps have significantly increased the possibility of treating the most of these cases. However, there is a minority of patients resistant to the therapy. In similar cases, pancreas or islet transplantation represents an effective therapeutic option entailing good expected outcomes. The main limiting factor of beta cell function replacement by transplantation is so far represented by the potentially severe side effects of the immunosuppression therapy necessary to avoid graft rejection and recurrence of autoimmunity.

  7. On the micromechanics of brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Jokl, M.L. (Barnwell Industries, Inc., Fairlawn, NJ (US)); Vitek, V.; McMahon, C.J. Jr. (Pennsylvania Univ., Philadelphia, PA (USA). Dept. of Materials Science and Engineering); Burgers, P. (Hibbitt, Karlsson and Sorensen, Providence, RI (USA))

    1989-01-01

    The response of a deformable solid, in which dislocations are assumed to be highly mobile, to the presence of a loaded crack has been examined, and two cases have been considered. In the first case, that of a crack which pre-exists at zero load, it was confirmed that dislocation emission from the crack tip always precludes brittle crack propagation. In the second case, a microcrack is injected into the loaded deformable solid, for example, due to the cracking of a brittle inclusion. In this case simultaneous dislocation emission and brittle crack propagation can occur, depending on the cohesive energy and the dislocation mobility. Both cases have been studied dynamically, assuming fast moving dislocations, and the effect of the presence of dislocations upon the crack-tip field was fully taken into account. The implications of these results for understanding the brittle-ductile transition and impurity-induced intergranular embrittlement are discussed.

  8. Spheroidal Degeneration of the Cornea

    Directory of Open Access Journals (Sweden)

    Erdem Dinç

    2011-08-01

    Full Text Available A thirty-one-year-old male patient presented with bilateral epiphora and stinging sensation in the cornea. Detailed history revealed that a bilateral corneal scraping had been made regarding the initial diagnosis of fungal keratitis. His bestcorrected visual acuities were 20/20 and 20/30 in right and left eyes, respectively. Biomicroscopy showed bilateral amber colored spherules in the anterior stroma of the central cornea. The diagnosis of spheroidal corneal degeneration was established and symptomatic therapy with artificial tear drops was prescribed. Ultraviolet light is widely accepted to be the main etiological factor in the pathogenesis of spheroidal degeneration. Because of difficulties in the early stages of the diagnostic process of the disease, incorrect diagnoses can be made with inappropriate interventions. (Turk J Ophthalmol 2011; 41: 264-6

  9. Cornea and ocular surface treatment.

    Science.gov (United States)

    De Miguel, Maria P; Alio, Jorge L; Arnalich-Montiel, Francisco; Fuentes-Julian, Sherezade; de Benito-Llopis, Laura; Amparo, Francisco; Bataille, Laurent

    2010-06-01

    In addition to being a protective shield, the cornea represents two thirds of the eye's refractive power. Corneal pathology can affect one or all of the corneal layers, producing corneal opacity. Although full corneal thickness keratoplasty has been the standard procedure, the ideal strategy would be to replace only the damaged layer. Current difficulties in corneal transplantation, mainly immune rejection and shortage of organ supply, place more emphasis on the development of artificial corneas. Bioengineered corneas range from prosthetic devices that solely address the replacement of the corneal function, to tissue-engineered hydrogels that allow regeneration of the tissue. Recently, major advances in the biology of corneal stem cells have been achieved. However, the therapeutic use of these stem cell types has the disadvantage of needing an intact stem cell compartment, which is usually damaged. In addition, long ex vivo culture is needed to generate enough cell numbers for transplantation. In the near future, combination of advanced biomaterials with cells from abundant outer sources will allow advances in the field. For the former, magnetically aligned collagen is one of the most promising ones. For the latter, different cell types will be optimal: 1) for epithelial replacement: oral mucosal epithelium, ear epidermis, or bone marrow- mesenchymal stem cells, 2) for stromal regeneration: adipose-derived stem cells and 3) for endothelial replacement, the possibility of in vitro directed differentiation of adipose-derived stem cells towards endothelial cells provides an exciting new approach.

  10. [An experience of dried cornea transplantation].

    Science.gov (United States)

    Gundorova, R A; Chentsova, E V; Makarov, P V; Kugusheva, A É; Rakova, A V

    2011-01-01

    Sometimes an urgent lamellar keratoplasty remains the only treatment option for corneal defect closure. When fresh donor tissue is absent as it is regular in recent years dried cornea transplantation becomes reasonable. In recent years in ocular trauma department 320 transplantations of dried on silicagel cornea were performed. Analysis of results allows to conclude that use of dried cornea is a promising surgical procedure to preserve the globe and in some cases to prepare the eye with severe trauma for subsequent optic surgery.

  11. Time-dependent fracture toughness of cornea.

    Science.gov (United States)

    Tonsomboon, Khaow; Koh, Ching Theng; Oyen, Michelle L

    2014-06-01

    The fracture and time-dependent properties of cornea are very important for the development of corneal scaffolds and prostheses. However, there has been no systematic study of cornea fracture; time-dependent behavior of cornea has never been investigated in a fracture context. In this work, fracture toughness of cornea was characterized by trouser tear tests, and time-dependent properties of cornea were examined by stress-relaxation and uniaxial tensile tests. Control experiments were performed on a photoelastic rubber sheet. Corneal fracture resistance was found to be strain-rate dependent, with values ranging from 3.39±0.57 to 5.40±0.48kJm(-2) over strain rates from 3 to 300mmmin(-1). Results from stress-relaxation tests confirmed that cornea is a nonlinear viscoelastic material. The cornea behaved closer to a viscous fluid at small strain but became relatively more elastic at larger strain. Although cornea properties are greatly dependent on time, the stress-strain responses of cornea were found to be insensitive to the strain rate when subjected to tensile loading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Synthetic cornea: biocompatibility and optics

    Science.gov (United States)

    Parel, Jean-Marie A.; Kaminski, Stefan; Fernandez, Viviana; Alfonso, E.; Lamar, Peggy; Lacombe, Emmanuel; Duchesne, Bernard; Dubovy, Sander; Manns, Fabrice; Rol, Pascal O.

    2002-06-01

    Purpose. Experimentally find a method to provide a safe surgical technique and an inexpensive and long lasting mesoplant for the restoration of vision in patients with bilateral corneal blindness due to ocular surface and stromal diseases. Methods. Identify the least invasive and the safest surgical technique for synthetic cornea implantation. Identify the most compatible biomaterials and the optimal shape a synthetic cornea must have to last a long time when implanted in vivo. Results. Penetrating procedures were deemed too invasive, time consuming, difficult and prone to long term complications. Therefore a non-penetrating delamination technique with central trephination was developed to preserve the integrity of Descemet's membrane and the anterior segment. Even though this approach limits the number of indications, it is acceptable since the majority of patients only have opacities in the stroma. The prosthesis was designed to fit in the removed tissue plane with its skirt fitted under the delaminated stroma. To improve retention, the trephination wall was made conical with the smallest opening on the anterior surface and a hat-shaped mesoplant was made to fit. The skirt was perforated in its perimeter to allow passage of nutrients and tissues ingrowths. To simplify the fabrication procedure, the haptic and optic were made of the same polymer. The intrastromal biocompatibility of several hydrogels was found superior to current clinically used PMMA and PTFE materials. Monobloc mesoplants made of 4 different materials were implanted in rabbits and followed weekly until extrusion occurred. Some remained optically clear allowing for fundus photography. Conclusions. Hydrogel synthetic corneas can be made to survive for periods longer than 1 year. ArF excimer laser photoablation studies are needed to determine the refractive correction potential of these mesoplants. A pilot FDA clinical trial is needed to assess the mesoplant efficacy and very long-term stability.

  13. Epikeratophakia on pediatric traumatized corneas.

    Science.gov (United States)

    Vila-Coro, A A; Goosey, J D; Mazow, M L; Martin, D I

    1987-01-01

    Four children ranging from 4 to 6 years of age with unilateral aphakia and corneal scarring secondary to penetrating injuries were treated with epikeratophakia. One child had undergone a rotational penetrating keratoplasty to displace the corneal scar from the visual axis prior to the epikeratophakia procedure. In all of the cases, nonlyophilized donor tissue was utilized. The procedure was successful in all four cases. The average best corrected postoperative visual acuity was 20/45. These results confirm prior studies suggesting that epikeratophakia can be performed successfully on partially opaque and scarred corneas in pediatric aphakic eyes.

  14. Cytochrome P450 Activity in Ex Vivo Cornea Models and a Human Cornea Construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-07-01

    The pharmacokinetic behaviors of novel ophthalmic drugs are often preliminarily investigated in preclinical studies using ex vivo animal cornea or corneal cell culture models. During transcorneal passage, topically applied drugs may be affected by drug metabolizing enzymes. The knowledge regarding the functional expression of metabolic enzymes in corneal tissue is marginal; thus, the aim of this study was to investigate cytochrome P450 activity in an organotypic three-dimensional human cornea construct and to compare it with porcine and rabbit corneas, which are commonly used ex vivo cornea models. The total cytochrome P450 activity was determined by measuring the transformation of 7-ethoxycoumarin. Furthermore, the expression of the cytochrome P450 enzyme 2D6 (CYP2D6) was investigated at the protein level using immunohistochemistry and western blotting. CYP2D6 activity measurements were performed using a d-luciferin-based assay. In summary, similar levels of the total cytochrome P450 activity were identified in all 3 cornea models. The protein expression of CYP2D6 was confirmed in the human cornea construct and porcine cornea, whereas the signals in the rabbit cornea were weak. The analysis of the CYP2D6 activity indicated similar values for the human cornea construct and porcine cornea; however, a distinctly lower activity was observed in the rabbit cornea. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Relationship Between Slugging Pressure and Brittle Fracture ...

    African Journals Online (AJOL)

    The hardness of the slugs was determined and taken as measure of the hardness of the resulting granules. The following tableting parameters were measured for the final tablets - tensile strength (T), packing fraction (Pf) and the brittle fracture index (BFI). Results - A high slugging load was associated with the formation of ...

  16. Tarsorrhaphy: clinical experience from a cornea practice.

    Science.gov (United States)

    Cosar, C B; Cohen, E J; Rapuano, C J; Maus, M; Penne, R P; Flanagan, J C; Laibson, P R

    2001-11-01

    To evaluate indications, success rate, and complications of tarsorrhaphy in a cohort of cornea and external disease patients. In this study, charts of patients who underwent tarsorrhaphies from January 1, 1995, to September 30, 2000, were retrospectively evaluated. Information reviewed included patient age and sex, indication for tarsorrhaphy, duration of signs and symptoms before tarsorrhaphy, time to epithelial healing after tarsorrhaphy, type of tarsorrhaphy (temporary/permanent), complications, timing of tarsorrhaphy removal, recurrence of signs and symptoms after complete or partial opening of the tarsorrhaphy, number of tarsorrhaphies needed to be replaced or extended, and duration of follow up. Seventy-seven patients were included in this study. Indications for a tarsorrhaphy were persistent epithelial defects or other ocular surface problems associated with neurotrophic ulcers, penetrating keratoplasty (PK), postinfection, exposure keratopathy, surgery other than PK, dry eye syndrome, radiation keratopathy, ocular cicatricial pemphigoid, Stevens-Johnson syndrome, entropion, and application of tissue adhesive. The epithelial defects in 70 (90.9%) of the 77 eyes completely resolved. Overall, the mean duration of signs and symptoms before tarsorrhaphy was 89.8 +/- 27.8 days, and time-to-healing after tarsorrhaphy was 18.0 +/- 2.0 days. The difference between the duration of the signs and symptoms before tarsorrhaphy and time-to-healing after tarsorrhaphy was statistically significant ( p = 0.01). Of the 77 tarsorrhaphies, 24 (31.2%) were temporary and 53 (68.8%) were permanent. Complications after tarsorrhaphy included trichiasis, adhesion between upper and lower lids after tarsorrhaphy lysis, premature opening of the temporary tarsorrhaphy, pyogenic granuloma, and keloid formation of the eyelid. Tarsorrhaphy is a very effective and safe procedure in the management of nonhealing epithelial defects and other surface problems, with a 90.9% success rate and only

  17. Assessment of Mudrock Brittleness with Micro-scratch Testing

    Science.gov (United States)

    Hernandez-Uribe, Luis Alberto; Aman, Michael; Espinoza, D. Nicolas

    2017-11-01

    Mechanical properties are essential for understanding natural and induced deformational behavior of geological formations. Brittleness characterizes energy dissipation rate and strain localization at failure. Brittleness has been investigated in hydrocarbon-bearing mudrocks in order to quantify the impact of hydraulic fracturing on the creation of complex fracture networks and surface area for reservoir drainage. Typical well logging correlations associate brittleness with carbonate content or dynamic elastic properties. However, an index of rock brittleness should involve actual rock failure and have a consistent method to quantify it. Here, we present a systematic method to quantify mudrock brittleness based on micro-mechanical measurements from the scratch test. Brittleness is formulated as the ratio of energy associated with brittle failure to the total energy required to perform a scratch. Soda lime glass and polycarbonate are used for comparison to identify failure in brittle and ductile mode and validate the developed method. Scratch testing results on mudrocks indicate that it is possible to use the recorded transverse force to estimate brittleness. Results show that tested samples rank as follows in increasing degree of brittleness: Woodford, Eagle Ford, Marcellus, Mancos, and Vaca Muerta. Eagle Ford samples show mixed ductile/brittle failure characteristics. There appears to be no definite correlation between micro-scratch brittleness and quartz or total carbonate content. Dolomite content shows a stronger correlation with brittleness than any other major mineral group. The scratch brittleness index correlates positively with increasing Young's modulus and decreasing Poisson's ratio, but shows deviations in rocks with distinct porosity and with stress-sensitive brittle/ductile behavior (Eagle Ford). The results of our study demonstrate that the micro-scratch test method can be used to investigate mudrock brittleness. The method is particularly useful for

  18. Water content and other aspects of brittle versus normal fingernails

    NARCIS (Netherlands)

    Stern, Dana Kazlow; Diamantis, Stephanie; Smith, Elizabeth; Wei, Huachen; Gordon, Marsha; Muigai, Wangui; Moshier, Erin; Lebwohl, Mark; Spuls, Phyllis

    2007-01-01

    BACKGROUND: Previous authors have claimed that dehydration of the nail plate causes brittle nails. Some experts claim that normal nails contain 18% water, and brittle nails contain less than 16%. OBJECTIVE: We sought to test the hypothesis that brittle nails contain 2% less water than normal nails.

  19. Johanna and Tommy: Two Preschoolers in Sweden with Brittle Bones.

    Science.gov (United States)

    Millde, Kristina; Brodin, Jane

    Information is presented for caregivers of Swedish children with osteogenesis imperfecta (brittle bones) and their families. Approximately five children with brittle bones are born in Sweden annually. Two main types of brittle bone disease have been identified: congenita and tarda. Typical symptoms include numerous and unexpected fractures, bluish…

  20. Aspects of brittle failure assessment for RPV

    Energy Technology Data Exchange (ETDEWEB)

    Zecha, H.; Hermann, T.; Hienstorfer, W. [TUeV SUeD Energietechnik GmbH Baden-Wuerttemberg, Filderstadt (Germany); Schuler, X. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    This paper describes the process of pressurized thermal shock analysis (PTS) and brittle failure assessment for the reactor pressure vessel (RPV) of the nuclear power plants NECKAR I/II. The thermo-hydraulic part of the assessment provides the boundary conditions for the fracture mechanics analysis. In addition to the one dimensional thermo-hydraulic simulations CFD, analyses were carried out for selected transients. An extensive evaluation of material properties is necessary to provide the input data for a reliable fracture mechanics assessment. For the core weld and the flange weld it has shown that brittle crack initiation can be precluded for all considered load cases. For the cold and hot leg nozzle detailed linear-elastic and elasticplastic Finite Element Analyses (FEA) are performed to verify the integrity of the RPV. (orig.)

  1. Fabrication of brittle materials -- current status

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  2. Bioengineered Corneas Grafted as Alternatives to Human Donor Corneas in Three High‐Risk Patients

    National Research Council Canada - National Science Library

    Buznyk, Oleksiy; Pasyechnikova, Nataliya; Islam, M. Mirazul; Iakymenko, Stanislav; Fagerholm, Per; Griffith, May

    2015-01-01

    .... In this early observational study, we grafted bioengineered corneal implants made from recombinant human collagen and synthetic phosphorylcholine polymer into three patients for whom donor cornea...

  3. Suggested Guidelines for Reporting Keratoprosthesis Results: Consensus Opinion of the Cornea Society, Asia Cornea Society, EuCornea, PanCornea, and the KPRO Study Group.

    Science.gov (United States)

    Belin, Michael W; Güell, Jose L; Grabner, Günther

    2016-02-01

    To propose a series of standardized guidelines for reporting keratoprosthesis (KPRO) results. At the most recent KPRO Study Group Meeting (Barcelona, 2015), representatives of the 4 multinational corneal societies (Cornea Society, Asia Cornea Society, EuCornea, and PanCornea) and the KPRO Study Group agreed to propose consistent terminology for reporting KPRO results, especially in describing the length of follow-up and in the description of the KPRO itself. Consensus was reached for minimal reporting guidelines. The 4 multinational corneal societies and the KPRO Study Group agreed to standardized terminology for reporting the length of follow-up, preoperative diagnosis grouping, and data stratification based on the KPRO type used. Guidelines suggesting minimal reporting standards will assist in both data collection and reporting and will allow for better comparative analysis and pooling of the available data.

  4. Interactions between bovine cornea proteoglycans and collagen.

    OpenAIRE

    Speziale, P.; Bardoni, A; Balduini, C.

    1980-01-01

    Two types of proteoglycan subunits were obtained from bovine cornea, the first mainly composed of proteochondroitin sulphate and the second of proteokeratan sulphate. These two fractions can be obtained from the tissue as an aggregate, and are able to recombine each other after separation, to re-form the original structure. In order to investigate collagen-proteoglycan interactions, type-I collagen was isolated from bovine cornea by pepsin digestion followed by 3.5% (w/v) NaCl precipitation, ...

  5. Thermal and biomechanical parameters of porcine cornea.

    Science.gov (United States)

    Kampmeier, J; Radt, B; Birngruber, R; Brinkmann, R

    2000-05-01

    New methods in refractive surgery require a considerable understanding of the material "cornea" and are often studied by theoretical modeling in order to gain insight into the procedure and an optimized approach to the technique. The quality of these models is highly dependent on the preciseness of its input parameters. Porcine cornea often is used as a model in preclinical studies because of its similarity to man and its availability. The important physical parameters for biomechanical deformation, heat conduction, and collagen denaturation kinetics have been determined for porcine cornea. Experimental methods include densitometry, calorimetry, turbidimetry, tensile tests, stress relaxation, and hydrothermal isometric tension measurements. The density of porcine cornea was measured as p = 1062+/-5 kg/m3, the heat capacity gave c = 3.74+/-0.05 J/gK. The stress-strain relation for corneal strips is represented by a third order approximation where the secant modulus yields about Esec approximately equal to 0.4 MPa for small strains less than 2%. The normalized stress relaxation is described by an exponential fit over time. The denaturation process of cornea is characterized by specific temperatures which can be related to the change of the mechanical properties. Denaturation kinetics are described according to the model of Arrhenius yielding the activation energy deltaEa = 106 kJ/mol and the phase transition entropy deltaS = 39 J/(mol x K). The established set of parameters characterizes the porcine cornea in a reliable way that creates a basis for corneal models. It furthermore gives direct hints of how to treat cornea in certain refractive techniques.

  6. Deformation, Fracture, and Fragmentation in Brittle Geologic Solids

    Science.gov (United States)

    2010-09-01

    Deformation, Fracture, and Fragmentation in Brittle Geologic Solids by J. D. Clayton ARL-RP-299 September 2010 A...Proving Ground, MD 21005-5066 ARL-RP-299 September 2010 Deformation, Fracture, and Fragmentation in Brittle Geologic Solids J. D. Clayton...2010 4. TITLE AND SUBTITLE Deformation, Fracture, and Fragmentation in Brittle Geologic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  7. Introduction to biomechanics of the cornea.

    Science.gov (United States)

    Buzard, K A

    1992-01-01

    As refractive procedures involving the cornea have proliferated, concerns over the long-term stability and predictability of these procedures have occupied a more prominent role. Procedures and principles of mechanical engineering to mathematically model the cornea can provide valuable insight into the biomechanics of the cornea, and this approach can be used to predict corneal behavior. In order to utilize these advanced methods, some basic knowledge concerning limitations, assumptions, and techniques regarding the finite element method is needed. The principles of mechanical measurement of deformable bodies are discussed, as are the quantities stress, strain, Poisson's ratio, and creep as they are measured and used in the modeling of biologic systems. The finite element modeling procedure is discussed in a simplified geometric system. While work remains to be done in this area, it is seen that useful and predictive models can be created which significantly improve our understanding and predictability of corneal procedures.

  8. Fluid-driven fractures in brittle hydrogels

    Science.gov (United States)

    O'Keeffe, Niall; Linden, Paul

    2016-11-01

    Hydraulic fracturing is a process in which fluid is injected deep underground at high pressures that can overcome the strength of the surrounding matrix. This results in an increase of surface area connected to the well bore and thus allows extraction of natural gas previously trapped in a rock formation. We experimentally study the physical mechanisms of these fluid-driven fractures in low permeability reservoirs where the leak-off of fracturing fluid is considered negligible. This is done through the use of small scale experiments on transparent and brittle, heavily cross-linked hydrogels. The propagation of these fractures can be split into two distinct regimes depending on whether the dominant energy dissipation mechanism is viscous flow or material toughness. We will analyse crack growth rates, crack thickness and tip shape in both regimes. Moreover, PIV techniques allow us to explore the flow dynamics within the fracture, which is crucial in predicting transport of proppants designed to prevent localisation of cracks.

  9. Crack Path Prediction in Anisotropic Brittle Materials

    Science.gov (United States)

    Hakim, Vincent; Karma, Alain

    2005-12-01

    A force balance condition to predict quasistatic crack paths in anisotropic brittle materials is derived from an analysis of diffuse interface continuum models that describe both short-scale failure and macroscopic linear elasticity. The path is uniquely determined by the directional anisotropy of the fracture energy, independent of details of the failure process. The derivation exploits the gradient dynamics and translation symmetry properties of this class of models to define a generalized energy-momentum tensor whose integral around an arbitrary closed path enclosing the crack tip yields all forces acting on this tip, including Eshelby’s configurational forces, cohesive forces, and dissipative forces. Numerical simulations are in very good agreement with analytic predictions.

  10. Effect of substrate roughness on the contact damage of thin brittle films on brittle substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Mirko [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Institute for Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 23, 64287 Darmstadt (Germany); Borrero-Lopez, Oscar [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071, Badajoz (Spain); Hoffman, Mark, E-mail: mark.hoffman@unsw.edu.a [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Bendavid, Avi; Martin, Phil J. [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2010-07-01

    The effect of substrate and surface roughness on the contact fracture of diamond-like carbon coatings on brittle soda-lime glass substrates has been investigated. The average surface roughness (R{sub a}) of the examined samples ranged from 15 nm to 571 nm. Contact damage was simulated by means of spherical nanoindentation, and fracture was subsequently assessed by focused ion beam microscopy. It was found that, in the absence of sub-surface damage in the substrate, fracture occurs in the coating in the form of radial, and ring/cone cracks during loading, and lateral cracks during unloading. Increasing the surface roughness results in a decrease in the critical load for crack initiation during loading, and in the suppression of fracture modes during unloading from high loads. When sub-surface damage (lateral cracks) is present in the substrate, severe spalling takes place during loading, causing a large discontinuity in the load-displacement curve. The results have implications concerning the design of damage-tolerant coated systems consisting of a brittle film on a brittle substrate.

  11. Engineering copolymeric artificial cornea with salt porogen.

    Science.gov (United States)

    Zellander, Amelia; Wardlow, Melissa; Djalilian, Ali; Zhao, Chenlin; Abiade, Jeremiah; Cho, Michael

    2014-06-01

    Artificial corneas or keratoprostheses (KPros) are designed to replace diseased or damaged cornea. Although many synthetic KPros have been developed, current products are often inappropriate or inadequate for long term use due to ineffective host integration. This study presents an alternative approach of engineering a KPro that comprises a combination of poly (2-hydroxyethyl methacrylate) (PHEMA), poly (methyl methacrylate) (PMMA), and sodium chloride (NaCl) as porogen. Based on the core-skirt model for KPro, the porous outer portion of artificial cornea (skirt) was engineered by combining NaCl with HEMA and MMA monomers to promote tissue ingrowth from the host. The central optic (core) was designed to provide >85% light transmission in the visible wavelength range and securely attached to the skirt. Mechanical tensile data indicated that our KPro (referred to as salt porogen KPro) is mechanically stable to maintain its structure in the ocular environment and during implantation. Using human corneal fibroblasts (HCFs), we demonstrate that the cells grew into the pores of the skirt and proliferated, suggesting biointegration is adequately achieved. This novel PHEMA-PMMA copolymeric salt porogen KPro may offer a cornea replacement option that leads to minimal risk of corneal melting by permitting sufficient tissue ingrowth and mass transport. Copyright © 2013 Society of Plastics Engineers.

  12. Biomechanical analysis of the keratoconic cornea.

    Science.gov (United States)

    Gefen, Amit; Shalom, Ran; Elad, David; Mandel, Yossi

    2009-07-01

    Keratoconus is a non-inflammatory disease characterized by irregular thinning and gradual bulging of the cornea, which results in distortion of the corneal surface that causes blurred vision. We conducted three-dimensional finite element (FE) simulations to analyze the biomechanical factors contributing to the distorted shape of a keratoconic cornea. We assumed orthotropic linear elastic tissue mechanical properties, and simulated localized tissue thinning (reduction from 0.5 mm to 0.35 or 0.2 mm). We analyzed tissue deformations, stresses and theoretical dioptric power maps predicted by the models, for intraocular pressure (IOP) of 10, 15 20 and 25 mmHg. The analyses revealed that three factors affect the shape distortion of keratoconic corneas: (i) localized thinning, and (ii) reduction in the tissue's meridian elastic modulus or (iii) reduction in the shear modulus perpendicular to the corneal surface, whereas thinning showed the most predominant effect. Maximal stress levels occurred at the centers of the bulged regions, at the thinnest points. The IOP levels had little influence on dioptric power in the healthy cornea, but a substantial influence in keratoconic conditions. The present FE studies allowed characterization of the biomechanical interactions in keratoconus, toward understanding the aetiology of this poorly studied malady.

  13. Biomechanics and Wound Healing in the Cornea

    OpenAIRE

    Dupps, William J.; Wilson, Steven E.

    2006-01-01

    The biomechanical and wound healing properties of the cornea undermine the predictability and stability of refractive surgery and contribute to discrepancies between attempted and achieved visual outcomes after LASIK, surface ablation and other keratorefractive procedures. Furthermore, patients predisposed to biomechanical failure or abnormal wound healing can experience serious complications such as keratectasia or clinically significant corneal haze, and more effective means for the identif...

  14. [Structural analysis of normal corneas and diseased corneas by applying second harmonic generation].

    Science.gov (United States)

    Morishige, Naoyuki

    2011-11-01

    We have established a second harmonic generation (SHG) microscopy system for imaging of the human cornea with a mode-locked femtosecond laser and a laser confocal microscope. This SHG microscopy system has allowed us to scan corneal tissue noninvasively ex vivo and to obtain three-dimensional images of corneal collagen lamellae. Such three-dimensional imaging of the normal anterior cornea revealed that collagen lamellae at the anterior stroma are inter-woven and adhere to Bowman membrane with these adherent lamellae being designated "sutural lamellae." Sutural lamellae adhere to Bowman membrane at an angle of approximately 19 degrees, whereas the angle of lamellae in the mid-stroma relative to Bowman membrane is smaller. We hypothesize that the structural unit consisting of both Bowman membrane and the sutural lamellae contributes to the rigidity and anterior curvature of the cornea. SHG imaging of keratoconic corneas revealed an either abnormal or a total lack of structure of the sutural lamellae, suggesting that this abnormality might be related to that of the corneal anterior curvature in such corneas. Furthermore, SHG imaging of corneas affected by stromal edema showed that the structure of the sutural lamellae was maintained, although abnormal collagen signals both above and below Bowman membrane were detected in corneas affected by clinical stromal edema for more than 12 months. SHG imaging of the structure of collagen lamellae in normal and diseased corneas thus has the potential to provide insight both into the mechanism for maintenance of corneal curvature as well as into the pathophysiology of corneal diseases.

  15. Impact of the Cornea Donor Study (CDS) on Acceptance of Corneas from Older Donors

    Science.gov (United States)

    Sugar, Alan; Montoya, Monty M.; Beck, Roy; Cowden, John W.; Dontchev, Mariya; Gal, Robin L.; Kollman, Craig; Malling, Jackie; Mannis, Mark J.; Tennant, Bradley

    2014-01-01

    Purpose Evaluate retrospectively whether findings from the Cornea Donor Study (CDS) led to changes in the transplantation of corneas from older donors. Methods United States eye banks provided complete data on donor age and placement (domestic or international) for 86,273 corneas from 1998 to 2009. The data were analyzed by 3 time periods: preceding CDS (1998–1999), during CDS (2000–2007) and after publication of CDS 5 year results (2008–2009), and separately for corneas placed within vs. outside the United States. Results For corneal tissues transplanted in the United States, the percentage of donors ≥66 years old increased from 19% before CDS to 21% during CDS and 25% after CDS (pcorneas distributed outside the United States with the percentage of donors ≥66 years old decreasing from 56% to 42% to 34%, respectively. Donor age trends over time varied by eye bank. Conclusions There was a modest overall increase in the donor age of corneas transplanted in the United States from 1998 to 2009, but the retrospective nature of the study limits our ability to attribute this change to the CDS. The modest increases in the donor age of corneas transplanted is a positive finding, but wider acceptance of older corneal donor tissue should be encouraged based on the five-year evidence generated by the CDS. PMID:22262218

  16. Impact of the cornea donor study on acceptance of corneas from older donors.

    Science.gov (United States)

    Sugar, Alan; Montoya, Monty M; Beck, Roy; Cowden, John W; Dontchev, Mariya; Gal, Robin L; Kollman, Craig; Malling, Jackie; Mannis, Mark J; Tennant, Bradley

    2012-12-01

    To evaluate retrospectively whether the findings from the Cornea Donor Study (CDS) led to changes in the transplantation of corneas from older donors. Eye banks in United States provided complete data on donor age and placement (domestic or international) for 86,273 corneas from 1998 to 2009. The data were analyzed by 3 periods, preceding CDS (1998-1999), during CDS (2000-2007), and after publication of CDS 5-year results (2008-2009), and separately for corneas placed within versus outside the United States. For corneal tissues transplanted in the United States, the percentage of donors who were 66 years or older increased from 19% before CDS to 21% during CDS and 25% after CDS (Pcorneas distributed outside the United States, with the percentage of donors 66 years and older decreasing from 56% to 42% to 34%, respectively. Donor age trends over time varied by eye bank. There was a modest overall increase in the donor age of corneas transplanted in the United States from 1998 to 2009, but the retrospective nature of the study limits our ability to attribute this change to the CDS. The modest increases in the donor age of corneas transplanted is a positive finding, but wider acceptance of older corneal donor tissue should be encouraged based on the 5-year evidence generated by the CDS.

  17. Magnetic fabric of brittle fault rocks

    Science.gov (United States)

    Pomella, Hannah

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  18. Theory of friction based on brittle fracture

    Science.gov (United States)

    Byerlee, J.D.

    1967-01-01

    A theory of friction is presented that may be more applicable to geologic materials than the classic Bowden and Tabor theory. In the model, surfaces touch at the peaks of asperities and sliding occurs when the asperities fail by brittle fracture. The coefficient of friction, ??, was calculated from the strength of asperities of certain ideal shapes; for cone-shaped asperities, ?? is about 0.1 and for wedge-shaped asperities, ?? is about 0.15. For actual situations which seem close to the ideal model, observed ?? was found to be very close to 0.1, even for materials such as quartz and calcite with widely differing strengths. If surface forces are present, the theory predicts that ?? should decrease with load and that it should be higher in a vacuum than in air. In the presence of a fluid film between sliding surfaces, ?? should depend on the area of the surfaces in contact. Both effects are observed. The character of wear particles produced during sliding and the way in which ?? depends on normal load, roughness, and environment lend further support to the model of friction presented here. ?? 1967 The American Institute of Physics.

  19. ON THE BRITTLENESS OF ENAMEL AND SELECTED DENTAL MATERIALS

    Science.gov (United States)

    Park, S.; Quinn, J. B; Romberg, E.; Arola, D.

    2008-01-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of “brittleness” is currently not used in assessing the clinical merits of dental materials. Objective To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Methods Specimens of human enamel were prepared from the 3rd molars of “young” (18≤age≤25) and “old” (50≤age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and Micaceous Glass Ceramic (MGC) dental materials was estimated and compared with that of the enamel. Results The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 µm−1 at the DEJ to nearly 900 µm−1 at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to 4 times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. Significance The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel. PMID:18436299

  20. Factors influencing the contamination rate of human organ-cultured corneas.

    Science.gov (United States)

    Röck, Daniel; Wude, Johanna; Bartz-Schmidt, Karl U; Yoeruek, Efdal; Thaler, Sebastian; Röck, Tobias

    2017-12-01

    To assess the influence of donor, environment and storage factors on the contamination rate of organ-cultured corneas, to consider the microbiological species causing corneal contamination and to investigate the corresponding sensitivities. Data from 1340 consecutive donor corneas were analysed retrospectively. Logistic regression analysis was used to assess the influence of different factors on the contamination rate of organ-cultured corneas for transplantation. The mean annual contamination rate was 1.8 ± 0.4% (range: 1.3-2.1%); 50% contaminations were of fungal origin with exclusively Candida species, and 50% contaminations were of bacterial origin with Staphylococcus species being predominant. The cause of donor death including infection and multiple organ dysfunction syndrome increased the risk of bacterial or fungal contamination during organ culture (p = 0.007 and p = 0.014, respectively). Differentiating between septic and aseptic donors showed an increased risk of contamination for septic donors (p = 0.0020). Mean monthly temperature including warmer months increased the risk of contamination significantly (p = 0.0031). Sex, donor age, death to enucleation, death to corneoscleral disc excision and storage time did not increase the risk of contamination significantly. The genesis of microbial contamination in organ-cultured donor corneas seems to be multifactorial. The main source of fungal or bacterial contamination could be resident species from the skin flora. The rate of microbial contamination in organ-cultured donor corneas seems to be dependent on the cause of donor death and mean monthly temperature. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Visualization of Immune Responses in the Cornea.

    Science.gov (United States)

    Perez, Victor L

    2017-11-01

    The eye has become a useful site for the investigation and understanding of local and systemic immune responses. The ease of access and transparency of the cornea permits direct visualization of ocular structures, blood vessels, and lymphatic vessels, allowing for the tracking of normal and pathological biological processes in real time. As a window to the immune system, we have used the eye to dissect the mechanisms of corneal inflammatory reactions that include innate and adaptive immune responses. We have identified that the ocular microenvironment regulates these immune responses by recruiting different populations of inflammatory cells to the cornea through local production of selected chemokines. Moreover, crosstalk between T cells and macrophages is a common and crucial step in the development of ocular immune responses to corneal alloantigens. This review summarizes the data generated by our group using intravital fluorescent confocal microscopy to capture the tempo, magnitude, and function of innate and adaptive corneal immune responses.

  2. Decorin and biglycan of normal and pathologic human corneas

    Science.gov (United States)

    Funderburgh, J. L.; Hevelone, N. D.; Roth, M. R.; Funderburgh, M. L.; Rodrigues, M. R.; Nirankari, V. S.; Conrad, G. W.

    1998-01-01

    PURPOSE: Corneas with scars and certain chronic pathologic conditions contain highly sulfated dermatan sulfate, but little is known of the core proteins that carry these atypical glycosaminoglycans. In this study the proteoglycan proteins attached to dermatan sulfate in normal and pathologic human corneas were examined to identify primary genes involved in the pathobiology of corneal scarring. METHODS: Proteoglycans from human corneas with chronic edema, bullous keratopathy, and keratoconus and from normal corneas were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative immunoblotting, and immunohistology with peptide antibodies to decorin and biglycan. RESULTS: Proteoglycans from pathologic corneas exhibit increased size heterogeneity and binding of the cationic dye alcian blue compared with those in normal corneas. Decorin and biglycan extracted from normal and diseased corneas exhibited similar molecular size distribution patterns. In approximately half of the pathologic corneas, the level of biglycan was elevated an average of seven times above normal, and decorin was elevated approximately three times above normal. The increases were associated with highly charged molecular forms of decorin and biglycan, indicating modification of the proteins with dermatan sulfate chains of increased sulfation. Immunostaining of corneal sections showed an abnormal stromal localization of biglycan in pathologic corneas. CONCLUSIONS: The increased dermatan sulfate associated with chronic corneal pathologic conditions results from stromal accumulation of decorin and particularly of biglycan in the affected corneas. These proteins bear dermatan sulfate chains with increased sulfation compared with normal stromal proteoglycans.

  3. Expression of SFRP Family Proteins in Human Keratoconus Corneas.

    Directory of Open Access Journals (Sweden)

    Jingjing You

    Full Text Available We investigated the expression of the secreted frizzled-related proteins (SFRPs in keratoconus (KC and control corneas. KC buttons (∼8 mm diameter (n = 15 and whole control corneas (n = 7 were fixed in 10% formalin or 2% paraformaldehyde and subsequently paraffin embedded and sectioned. Sections for histopathology were stained with hematoxylin and eosin, or Periodic Acid Schiff's reagent. A series of sections was also immunolabelled with SFRP 1 to 5 antibodies, visualised using immunofluorescence, and examined with a Zeiss LSM700 scanning laser confocal microscope. Semi-quantitative grading was used to compare SFRP immunostaining in KC and control corneas. Overall, KC corneas showed increased immunostaining for SFRP1 to 5, compared to controls. Corneal epithelium in all KC corneas displayed heterogeneous moderate to strong immunoreactivity for SFRP1 to 4, particularly in the basal epithelium adjacent to cone area. SFRP3 and 5 were localised to epithelial cell membranes in KC and control corneas, with increased SFRP3 cytoplasmic expression observed in KC. Strong stromal expression of SFRP5, including extracellular matrix, was seen in both KC and control corneas. In control corneas we observed differential expression of SFRP family proteins in the limbus compared to more central cornea. Taken together, our results support a role for SFRPs in maintaining a healthy cornea and in the pathogenesis of epithelial and anterior stromal disruption observed in KC.

  4. Expression of SFRP Family Proteins in Human Keratoconus Corneas

    Science.gov (United States)

    You, Jingjing; Wen, Li; Roufas, Athena; Madigan, Michele C.; Sutton, Gerard

    2013-01-01

    We investigated the expression of the secreted frizzled-related proteins (SFRPs) in keratoconus (KC) and control corneas. KC buttons (∼8 mm diameter) (n = 15) and whole control corneas (n = 7) were fixed in 10% formalin or 2% paraformaldehyde and subsequently paraffin embedded and sectioned. Sections for histopathology were stained with hematoxylin and eosin, or Periodic Acid Schiff’s reagent. A series of sections was also immunolabelled with SFRP 1 to 5 antibodies, visualised using immunofluorescence, and examined with a Zeiss LSM700 scanning laser confocal microscope. Semi-quantitative grading was used to compare SFRP immunostaining in KC and control corneas. Overall, KC corneas showed increased immunostaining for SFRP1 to 5, compared to controls. Corneal epithelium in all KC corneas displayed heterogeneous moderate to strong immunoreactivity for SFRP1 to 4, particularly in the basal epithelium adjacent to cone area. SFRP3 and 5 were localised to epithelial cell membranes in KC and control corneas, with increased SFRP3 cytoplasmic expression observed in KC. Strong stromal expression of SFRP5, including extracellular matrix, was seen in both KC and control corneas. In control corneas we observed differential expression of SFRP family proteins in the limbus compared to more central cornea. Taken together, our results support a role for SFRPs in maintaining a healthy cornea and in the pathogenesis of epithelial and anterior stromal disruption observed in KC. PMID:23825088

  5. Interferon-γ treatment in vitro elicits some of the changes in cathepsin S and antigen presentation characteristic of lacrimal glands and corneas from the NOD mouse model of Sjögren's Syndrome.

    Directory of Open Access Journals (Sweden)

    Zhen Meng

    Full Text Available Inflammation and impaired secretion by lacrimal and salivary glands are hallmarks of the autoimmune disease, Sjögren's Syndrome. These changes in the lacrimal gland promote dryness and inflammation of the ocular surface, causing pain, irritation and corneal damage. The changes that initiate and sustain autoimmune inflammation in the lacrimal gland are not well-established. Here we demonstrate that interferon-γ (IFN-γ is significantly elevated in lacrimal gland and tears of the male NOD mouse, a model of autoimmune dacryoadenitis which exhibits many ocular characteristics of Sjögren's Syndrome, by 12 weeks of age early in lacrimal gland inflammation. Working either with primary cultured lacrimal gland acinar cells from BALB/c mice and/or rabbits, in vitro IFN-γ treatment for 48 hr decreased expression of Rab3D concurrent with increased expression of cathepsin S. Although total cellular cathepsin S activity was not commensurately increased, IFN-γ treated lacrimal gland acinar cells showed a significant increase in carbachol-stimulated secretion of cathepsin S similar to the lacrimal gland in disease. In vitro IFN-γ treatment did not increase the expression of most components of major histocompatibility complex (MHC class II-mediated antigen presentation although antigen presentation was slightly but significantly stimulated in primary cultured lacrimal gland acinar cells. However, exposure of cultured human corneal epithelial cells to IFN-γ more robustly increased expression and activity of cathepsin S in parallel with increased expression and function of MHC class II-mediated antigen presentation. We propose that early elevations in IFN-γ contribute to specific features of ocular disease pathology in Sjögren's Syndrome.

  6. Tuna cornea as biomaterial for cardiac applications.

    Science.gov (United States)

    Parravicini, Roberto; Cocconcelli, Flavio; Verona, Alessandro; Parravicini, Valeriano; Giuliani, Enrico; Barbieri, Alberto

    2012-01-01

    Among available biomaterials, cornea is almost completely devoid of cells and is composed only of collagen fibers oriented in an orderly pattern, which contributes to low antigenicity. Thunnus thynnus, the Atlantic bluefin tuna, is a fish with large eyes that can withstand pressures of approximately 10 MPa. We evaluated the potential of this tuna cornea in cardiac bioimplantation. Eyes from freshly caught Atlantic bluefin tuna were harvested and preserved in a fixative solution. Sterilized samples of corneal stroma were embedded in paraffin and stained with hematoxylin and eosin, and the histologic features were studied. Physical and mechanical resistance tests were performed in comparison with bovine pericardial strips and porcine mitral valves. Corneal material was implanted subcutaneously in 7 rats, to evaluate in vivo calcification rates. Mitral valves made from tuna corneal leaflets were implanted in 9 sheep. We found that the corneal tissue consisted only of parallel collagen fibers without evidence of vascular or neural structures. In tensile strength, the tuna corneal specimens were substantially similar to bovine pericardium. After 23 days, the rat-implanted samples showed no calcium or calcium salt deposition. Hydrodynamic and fatigue testing of valve prototypes yielded acceptable functional and long-term behavioral results. In the sheep, valvular performance was stable during the 180-day follow-up period, with no instrumental sign of calcification at the end of observation. We conclude that low antigenicity and favorable physical properties qualify tuna cornea as a potential material for durable bioimplantation. Further study is warranted.

  7. The collagens of the developing bovine cornea.

    Science.gov (United States)

    Lee, R E; Davison, P F

    1984-11-01

    The morphology of the developing bovine eye has been examined and the collagens in fetal bovine eyes from three months' gestation to maturity have been solubilized by pepsin treatment and analyzed to determine the ratios of the predominant types of collagen. The type I collagen decreased, while the type V collagen increased with age. Type III collagen comprised less than 1% of all the corneas, except for the three-month fetal calf. The anterior to posterior thickness of the paraffin-embedded fetal calf cornea increased from the third to the seventh month, decreased from the seventh month to birth, and then increased after birth. Descemet's membrane increased in thickness with age. Analysis of dissected regions of the calf cornea showed a uniform distribution of the collagen populations from the center to the limbus (89% type I, 10% type V and less than 1% type III collagen) and uniformity through the depth of the stroma, except that type III was concentrated around Bowman's layer, and type IV in Descement's membrane. The localization of the different collagens was consistent with the immunofluorescent staining studies with anticollagen antibodies, but the ratios of the intensities of the fluorescence did not correspond to the quantitative analyses. These results are concordant with other studies that have shown that antibody binding may be masked or diminished in certain tissues and therefore immunofluorescence cannot be used reliably for quantitative measurements.

  8. Scattering mechanical performances for brittle bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    J. W. Qiao

    2014-11-01

    Full Text Available Scattering mechanical performances of brittle La- and Mg-based BMGs are found in the present study. Upon dynamic loading, there exist largely scattered fracture strengths even if the strain rates are under the same order, and the BMG systems are the same. The negative strain rate dependence for La- and Mg-based BMGs is obtained, i.e., a decreased fracture strength is dominating from quasi-static to dynamic compression. At cryogenic temperatures, distinguishingly low fracture strengths are available for these two brittle BMGs, and decreased tolerance to accommodate strains makes BMGs more and more brittle. It is concluded that the scattering mechanical performances of brittle BMGs should be carefully evaluated before actual applications.

  9. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy.

    Science.gov (United States)

    Scarcelli, Giuliano; Besner, Sebastien; Pineda, Roberto; Yun, Seok Hyun

    2014-06-17

    Loss of corneal strength is a central feature of keratoconus progression. However, it is currently difficult to measure corneal mechanical changes noninvasively. The objective of this study is to evaluate if Brillouin optical microscopy can differentiate the mechanical properties of keratoconic corneas versus healthy corneas ex vivo. We obtained eight tissue samples from healthy donor corneas used in Descemet's stripping endothelial keratoplasty (DSEK) and 10 advanced keratoconic corneas from patients undergoing deep anterior lamellar keratoplasty (DALK). Within 2 hours after surgery, a confocal Brillouin microscope using a monochromatic laser at 532 nm was used to map the Brillouin frequency shifts of the corneas. The mean Brillouin shift in the anterior 200 μm of the keratoconic corneas at the cone was measured to be 7.99 ± 0.10 GHz, significantly lower than 8.17 ± 0.06 GHz of the healthy corneas (P < 0.001). The Brillouin shift in the keratoconic corneas decreased with depth from the anterior toward posterior regions with a steeper slope than in the healthy corneas (P < 0.001). Within keratoconic corneas, the Brillouin shift in regions away from the apex of the cone was significantly higher than within the cone region (P < 0.001). Brillouin measurements revealed notable differences between healthy and keratoconic corneas. Importantly, Brillouin imaging showed that the mechanical loss is primarily concentrated within the area of the keratoconic cone. Outside the cone, the Brillouin shift was comparable with that of healthy corneas. The results demonstrate the potential of Brillouin microscopy for diagnosis and treatment monitoring of keratoconus. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. DISTRIBUTION OF REFRACTIVE INDEX AND CHROMATIC DISPERSION OF THE CORNEA

    OpenAIRE

    渡邉, 千博

    1999-01-01

    Many refractive surgeries of the cornea (radial keratotomy RK, photore- fractive keratectomy PRK, laser in situ keratomileusis LASIK) are done routinely in an increasing number of patients in many countries. However, few analyses of the cornea related to the corneal configuration change and refractive index distribution, which affect the postoperative visual outcomes, have been reported. We have analyzed the refractive index and chromatic dispersion of the cornea as a function of the temperat...

  11. Altered organization of collagen in the apex of keratoconus corneas.

    Science.gov (United States)

    Radner, W; Zehetmayer, M; Skorpik, C; Mallinger, R

    1998-01-01

    In 15 keratoconus corneas, the three-dimensional arrangement of collagen lamellae was investigated by means of scanning electron microscopy. Keratoconus corneas without visible scars were obtained during perforating keratoplasty. The noncollagenous matrix of the stroma was removed with sodium hydroxide. Descemet's membrane was removed mechanically and deeper layers of the stroma were exposed by cutting the tissue tangentially to the corneal surface with an ultramicrotome. The apical and the para-apical regions of keratoconus were compared the central regions of normal corneas. In the apical regions of 11 out of the 15 keratoconus corneas (73%), the arrangement of the collagen lamellae differs from those of the para-apical regions and normal corneas. Their collagen fibrils from uniform layers and no delimited collagen lamellae can be differentiated. Interlacing between adjacent layers in extremely decreased or even absent. In the para-apical region of keratoconus corneas the three-dimensional arrangement of collagen lamellae does not differ from that in normal corneas. Stromal thinning and conical ectasia in the apex of keratoconus corneas alters the organization of collagen. This will certainly affect the biomechanical properties of the cornea and further lead to a progression of keratoconus irrespective of its primary pathogenesis.

  12. Ultrastructure features of camel cornea--collagen fibril and proteoglycans.

    Science.gov (United States)

    Almubrad, Turki; Akhtar, Saeed

    2012-01-01

      The uniform distribution of collagen fibrils and proteoglycans maintain the transparency of normal cornea. We describe the ultrastructural features of camel cornea including collagen fibrils and proteoglycans (PGs).   Camel corneas (of 6-, 8-, and 10-month-old animals) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in sodium acetate buffer and processed for electron microscopy. The 'AnalySIS LS Professional' program was used to analyze the collagen fibril diameter.   The camel cornea consists of four layers: the epithelium (227 μm), stroma (388 μm), Descemet's membrane (DM), and endothelium. The epithelium constituted 36% of the camel cornea, whereas corneal stroma constituted 62% of the corneal thickness (629 μm). The PGs in the posterior stroma were significantly larger in number and size compared with the anterior and middle stroma. The collagen fibril diameter was 25 nm and interfibrillar spacing 40 nm. Fibrillar structures are present throughout the DM.   The structure of the camel cornea is very different from human and other animals. The unique structure of the cornea might be an adaptation to help the camel to survive in a hot and dry climate. The camel cornea may also be a good model to study the effect of hot and dry climates on the cornea. © 2011 American College of Veterinary Ophthalmologists.

  13. Measurement of an Elasticity Map in the Human Cornea.

    Science.gov (United States)

    Mikula, Eric R; Jester, James V; Juhasz, Tibor

    2016-06-01

    The biomechanical properties of the cornea have an important role in determining the shape of the cornea and visual acuity. Since the cornea is a nonhomogeneous tissue, it is thought that the elastic properties vary throughout the cornea. We aim to measure a map of corneal elasticity across the cornea. An acoustic radiation force elasticity microscope (ARFEM) was used to create a map of corneal elasticity in the human cornea. This ARFEM uses a low frequency, high intensity acoustic force to displace a femtosecond laser-generated microbubble, while using a high frequency, low intensity ultrasound to monitor the position of the microbubble within the cornea. From the displacement of the bubble and the magnitude of the acoustic radiation force, the local value of corneal elasticity is calculated in the direction of the displacement. Measurements were conducted at 6 locations, ranging from the central to peripheral cornea at anterior and posterior depths. The mean anterior elastic moduli were 4.2 ± 1.2, 3.4 ± 0.7, and 1.9 ± 0.7 kPa in the central, mid, and peripheral regions, respectively, while the posterior elastic moduli were 2.3 ± 0.7, 1.6 ± 0.3, and 2.9 ± 1.2 kPa in the same radial locations. We found that there is a unique distribution of elasticity axially and radially throughout the cornea.

  14. Migration of limbal melanocytes onto the central cornea after ocular surface reconstruction: an in vivo confocal microscopic case report.

    Science.gov (United States)

    Huang, Hsin-Wei; Hu, Fung-Rong; Wang, I-Jong; Hou, Yu-Chih; Chen, Wei-Li

    2010-02-01

    To report the in vivo confocal microscopic findings of migrated melanocytes onto the central cornea in a patient with Stevens-Johnson syndrome who received ocular surface reconstruction by amniotic membrane transplantation (AMT). Single interventional case report. A 37-year-old man presented with bilateral symblepharon because of Stevens-Johnson syndrome. Release of the bilateral symblepharon with AMT on the bare sclera was performed. Three weeks after the surgery, slit-lamp biomicroscopy of the right eye revealed patchy brown pigmentation on the surface of the cornea and the amniotic membrane transplanted to the bare sclera. In vivo confocal microscopy of the affected cornea revealed abnormal basal epithelial cells with hyperreflective nuclei and loss of cellular borders. Multiple dendritiform cells, which appeared to be melanocytes, were distributed mainly on the corneal basal epithelial layer and superficial stroma. The number of the migrated melanocytes gradually decreased over 6 months of observation. Melanocytes can migrate into the central cornea after reconstruction of the ocular surface with AMT. In vivo confocal microscopy can be a useful tool to observe these changes.

  15. Gamma-Irradiated Sterile Cornea for Use in Corneal Transplants in a Rabbit Model.

    Science.gov (United States)

    Yoshida, Junko; Heflin, Thomas; Zambrano, Andrea; Pan, Qing; Meng, Huan; Wang, Jiangxia; Stark, Walter J; Daoud, Yassine J

    2015-01-01

    Gamma irradiated corneas in which the donor keratocytes and endothelial cells are eliminated are effective as corneal lamellar and glaucoma patch grafts. In addition, gamma irradiation causes collagen cross inking, which stiffens collagen fibrils. This study evaluated gamma irradiated corneas for use in corneal transplantations in a rabbit model comparing graft clarity, corneal neovascularization, and edema. Penetrating keratoplasty was performed on rabbits using four types of corneal grafts: Fresh cornea with endothelium, gamma irradiated cornea, cryopreserved cornea, and fresh cornea without endothelium. Slit lamp examination was performed at postoperative week (POW) one, two, and four. Corneal clarity, edema, and vascularization were graded. Confocal microscopy and histopathological evaluation were performed. A P cornea with endothelium compared to the other three groups (P cornea scored better than the cryopreserved and fresh cornea without endothelium groups in clarity (0.9 vs. 1.5 and 2.6, respectively), and edema (0.6 vs. 0.8 and 2.0, respectively). The gamma irradiated corneas, cryopreserved corneas and the fresh corneas without endothelium, developed haze and edema after POW 2. Gamma irradiated cornea remained statistically significantly clearer than cryopreserved and fresh cornea without endothelium during the observation period (P cornea. Gamma irradiated corneas remained clearer and thinner than the cryopreserved cornea and fresh cornea without endothelium. However, this outcome is transient. Gamma irradiated corneas are useful for lamellar and patch grafts, but cannot be used for penetrating keratoplasty.

  16. Circulating cornea-specific antibodies in corneal disease and cornea transplantation

    NARCIS (Netherlands)

    Jager, M. J.; Vos, A.; Pasmans, S.; Hoekzema, R.; Broersma, L.; van der Gaag, R.

    1994-01-01

    In order to establish the significance of circulating cornea-specific antibodies, we determined the presence of anti-corneal antibodies in the serum of 100 patients with corneal disease and in 50 healthy controls, and subsequently followed the pattern of antibody reactivity in 46 patients who

  17. Cornea Optical Topographical Scan System (COTSS)

    Science.gov (United States)

    1986-01-01

    The Cornea Optical Topographical Scan System (COTSS) is an instrument designed for use by opthalmologist to aid in performing surgical procedures such as radial keratotomy and to provide quick accurate data to aid in prescribing contact lenses and eyeglasses. A breadboard of the system was built and demonstrated in June of 1984. Additional refinements to the breadboard are needed to meet systems requirements prior to proceeding with prototype development. The present status of the COTSS instrument is given and the areas in which system refinements are required, are defined.

  18. Constrained molecular dynamics for quantifying intrinsic ductility versus brittleness

    Science.gov (United States)

    Tanguy, D.

    2007-10-01

    Evaluating the critical load levels for intrinsic ductility and brittle propagation is a first, but necessary, step for modeling semibrittle crack propagation. In the most general case, the calculations have to be fully atomistic because the details of the crack tip structure cannot be captured by continuum mechanics. In this paper, we present a method to explore ductile and brittle configurations, within the same force field, giving a quantitative estimate of the proximity of a transition from intrinsic ductility to brittleness. The shear localization is characterized by a centrosymmetry criterion evaluated on each atom in the vicinity of the crack tip. This provides an efficient order parameter to track the nucleation and propagation of dislocations. We show that it can be used as a holonomic constraint within molecular dynamics simulations, giving a precise control over plasticity during crack propagation. The equations of motion are derived and applied to crack propagation in the [112¯] direction of an fcc crystal loaded in mode I along [111]. The critical loads for dislocation emission and for brittle propagation are computed. The key point is that the generalized forces of constraint are not dissipative. Therefore, they do not spoil the critical elastic energy release rates (the Griffith criterion is preserved). As an example of the possibilities of the method, the response of blunted tips is investigated for three configurations: a slab of vacancies, an elliptical hole, and a circular hole. Brittle propagation by an alternative mechanism to cleavage, called “vacancy injection,” is reported.

  19. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-peak Strength Parameters in Rock Uniaxial Compression

    Science.gov (United States)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-12-01

    Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.

  20. Investigation of Friction-induced Damage to the Pig Cornea

    NARCIS (Netherlands)

    da Cruz Barros, Raquel; Van Kooten, Theo G.; Veeregowda, Deepak Halenahally

    2015-01-01

    Mechanical friction causes damage to the cornea. A friction measurement device with minimal intervention with the pig cornea tear film revealed a low friction coefficient of 0.011 in glycerine solution. Glycerine molecules presumably bind to water, mucins, and epithelial cells and therewith improve

  1. Biomechanics and wound healing in the cornea.

    Science.gov (United States)

    Dupps, William J; Wilson, Steven E

    2006-10-01

    The biomechanical and wound healing properties of the cornea undermine the predictability and stability of refractive surgery and contribute to discrepancies between attempted and achieved visual outcomes after LASIK, surface ablation and other keratorefractive procedures. Furthermore, patients predisposed to biomechanical failure or abnormal wound healing can experience serious complications such as keratectasia or clinically significant corneal haze, and more effective means for the identification of such patients prior to surgery are needed. In this review, we describe the cornea as a complex structural composite material with pronounced anisotropy and heterogeneity, summarize current understanding of major biomechanical and reparative pathways that contribute to the corneal response to laser vision correction, and review the role of these processes in ectasia, intraocular pressure measurement artifact, diffuse lamellar keratitis (DLK) and corneal haze. The current understanding of differences in the corneal response after photorefractive keratectomy (PRK), LASIK and femtosecond-assisted LASIK are reviewed. Surgical and disease models that integrate corneal geometric data, substructural anatomy, elastic and viscoelastic material properties and wound healing behavior have the potential to improve clinical outcomes and minimize complications but depend on the identification of preoperative predictors of biomechanical and wound healing responses in individual patients.

  2. Biomechanical properties of axially myopic cornea.

    Science.gov (United States)

    Altan, Cigdem; Demirel, Berna; Azman, Engin; Satana, Banu; Bozkurt, Ercüment; Demirok, Ahmet; Yilmaz, Omer Faruk

    2012-01-01

    To investigate biomechanical parameters of the cornea measured with ocular response analyzer (ORA) in myopic eyes with high axial length and the relationship between these parameters and axial length (AL). A total of 165 eyes of 165 consecutive patients were included. Eyes with AL greater than 26 mm were named group 1 and eyes with AL shorter than 26 mm were named group 2. Axial length and keratometric values were measured by intraocular lens (IOL) Master optical biometry. Metrics of corneal biomechanical properties, including corneal hysteresis (CH) and corneal resistance factor (CRF), were measured with the ORA. The ORA also determined the values of intraocular pressure (IOPg) and corneal compensated IOP (IOPcc). The mean age of total subjects was 43.0 ± 15.6 years. Eighty-three eyes were included in group 1; 82 eyes were included in group 2. The CH and CRF of group 1 were significantly lower than group 2. The IOPcc was significantly higher in group 1 than group 2. When group 1 and group 2 were combined for analysis, CH was negatively correlated with age. Both CH and CRF were significantly correlated with SE. However, CH and CRF were negatively correlated with AL. Also, there was significant correlation between AL and IOPcc (pbiomechanical properties of the cornea change with elongation of the eye and this may have an impact on IOP measurement.

  3. Electrolytes in the cornea: a therapeutic challenge.

    Science.gov (United States)

    Schrage, N F; Flick, S; Redbrake, C; Reim, M

    1996-12-01

    Reported here are the results of electrolyte measurements in different layers of 70 apparently normal human corneas. Samples were examined by energy-dispersive X-ray analysis under calibrated conditions in a scanning electron microscope. The method allows the simultaneous quantitative analysis of, among others, sodium (Na), chloride (Cl), phosphorus (P) and potassium (K). The results are related to the dry weight of the analyzed samples. Four distinct layers, subepithelium, middle stroma, posterior stroma and Descemet's membrane, were analysed in each cornea. In the middle stroma we found concentrations of: sodium 0.609 +/- 0.13, chloride 0.557 +/- 0.115, potassium 0.058 +/- 0.02 and phosphorus 0.038 +/- 0.01 (mol/kg dry weight) [corrected]. The collation of normal electrolyte concentrations provides reference values for future studies on changes of the corneal electrolyte composition in diseased or injured eyes. The electrolyte composition of rinsing fluids or eye drops should be adjusted to that of the corneal stroma. Phosphate buffer, for example, is not a good vehicle for topical eye treatments and should be replaced by organic buffering systems.

  4. Selenoprotein P controls oxidative stress in cornea.

    Directory of Open Access Journals (Sweden)

    Akihiro Higuchi

    Full Text Available The ocular surface is always attacked by oxidative stress, and cornea epithelial cells are supposed to have their own recovery system against oxidative stress. Therefore we hypothesized that tears supply key molecules for preventing oxidative stress in cornea. The potential target key molecule we focused is selenoprotein P (SeP. SeP is a carrier of selenium, which is an essential trace element for many animals, for oxidative stress metabolism in the organism, and was extremely expressed in lacrimal gland. An experiment was performed with SeP eye drops in a rat dry eye model, prepared by removing the lacrimal glands. The anticipated improvement in corneal dry eye index and the suppression of oxidative stress markers were observed in SeP eye drop group. Furthermore, the concentration of SeP was significantly higher in dry eye patients compared with normal volunteers. Collectively, we concluded that tear SeP is a key molecule to protect the ocular surface cells against environmental oxidative stress.

  5. Biomechanics and Wound Healing in the Cornea

    Science.gov (United States)

    Dupps, William J.; Wilson, Steven E.

    2009-01-01

    The biomechanical and wound healing properties of the cornea undermine the predictability and stability of refractive surgery and contribute to discrepancies between attempted and achieved visual outcomes after LASIK, surface ablation and other keratorefractive procedures. Furthermore, patients predisposed to biomechanical failure or abnormal wound healing can experience serious complications such as keratectasia or clinically significant corneal haze, and more effective means for the identification of such patients prior to surgery are needed. In this review, we describe the cornea as a complex structural composite material with pronounced anisotropy and heterogeneity, summarize current understanding of major biomechanical and reparative pathways that contribute to the corneal response to laser vision correction, and review the role of these processes in ectasia, intraocular pressure measurement artifact, diffuse lamellar keratitis (DLK) and corneal haze. The current understanding of differences in the corneal response after photorefractive keratectomy (PRK), LASIK and femtosecond-assisted LASIK are reviewed. Surgical and disease models that integrate corneal geometric data, substructural anatomy, elastic and viscoelastic material properties and wound healing behavior have the potential to improve clinical outcomes and minimize complications but depend on the identification of preoperative predictors of biomechanical and wound healing responses in individual patients. PMID:16720023

  6. Mechanical Modeling of a Keratoconic Cornea.

    Science.gov (United States)

    Perone, Jean Marc; Conart, Jean Baptiste; Bertaux, Pierre-Jean; Sujet-Perone, Nicolas; Ouamara, Nadia; Sot, Maxime; Henry, Jean Jacques

    2017-10-01

    We created a laboratory model of a cornea that was subjected to various pressures and thermal and mechanical factors to better understand the genesis of keratoconus deformation. A steel base allowed for fixation of circular multilaminated patches of araldite (10 cm in diameter, 5 mm thick) in which the corneal anatomy was modeled. The model was plunged into a steam room (374°F/3 bars of pressure for 1 h) to ensure thermal homogeneity and was subjected to pressure using compressed air. Three models were assessed: a fault-free model with no lesion (model 1), and 2 models with a defect. The first of the defective models (model 2) had an external crack-type lesion (1 cm long; 1 mm deep). The second defective model (model 3) had one quarter thinned down using abrasive sandpaper (thickness reduced by 30%-40%). For model 1, which represented a healthy cornea, homogeneous modification was noted when examined under polarized light. In model 2, no excessive deformation was noticed, but there were stress lines at the edge of the lesion. Model 3 had a deformity, similar to keratoconic deformation. Our findings suggest that the disease progresses under environmental stresses, but only when there is an initial defect, and especially when there is a thinning down defect. This thinning down defect may be induced by continual eye rubbing.

  7. The nature of temper brittleness of high-chromium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V. [Central Scientific-Research Institute for Ferrous Metallurgy, Moscow (Russian Federation)

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  8. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  9. Finite element modelling of cornea mechanics: a review.

    Science.gov (United States)

    Nejad, Talisa Mohammad; Foster, Craig; Gongal, Dipika

    2014-01-01

    The cornea is a transparent tissue in front of the eye that refracts light and facilitates vision. A slight change in the geometry of the cornea remarkably affects the optical power. Because of this sensitivity, biomechanical study of the cornea can reveal much about its performance and function. In vivo and in vitro studies have been conducted to investigate the mechanics of the cornea and determine its characteristics. Numerical techniques such as the finite element method (FEM) have been extensively implemented as effective and noninvasive methods for analyzing corneal mechanics and possible disorders. This article reviews the use of FEM for assessing the mechanical behavior of the cornea. Different applications of FEM in corneal disease studies, surgical predictions, impact simulations, and clinical applications have been reviewed. Some suggestions for the future of this type of modeling in the area of corneal mechanics are also discussed.

  10. [The 2009 performance report of the German cornea banks].

    Science.gov (United States)

    Schrage, N; Reinhard, T; Seitz, B; Hermel, M; Böhringer, D; Reinshagen, H

    2011-03-01

    In Germany, human tissue for corneal and amniotic transplantation is supplied by 27 cornea banks. The Section for Tissue Transplantation and Biotechnology of the German Ophthalmological Society records the cornea banks' activities by means of an annual questionnaire. In 2009, a total of 4,818 corneal grafts were processed by 21 responding cornea banks, and 57% were deemed suitable for transplantation. This ratio is slightly higher than the European average. In addition, German cornea banks released 1,257 amniotic grafts in 2009. German cornea banks are currently facing new regulatory issues due to updated legislation regarding tissue transplantation. Recent updates in European law have limited the cutoff time for postmortem blood sampling to 24 h, and this regulation may lead to a significant reduction in potential donors.

  11. Finite element modelling of cornea mechanics: a review

    Directory of Open Access Journals (Sweden)

    Talisa Mohammad Nejad

    2014-01-01

    Full Text Available The cornea is a transparent tissue in front of the eye that refracts light and facilitates vision. A slight change in the geometry of the cornea remarkably affects the optical power. Because of this sensitivity, biomechanical study of the cornea can reveal much about its performance and function. In vivo and in vitro studies have been conducted to investigate the mechanics of the cornea and determine its characteristics. Numerical techniques such as the finite element method (FEM have been extensively implemented as effective and noninvasive methods for analyzing corneal mechanics and possible disorders. This article reviews the use of FEM for assessing the mechanical behavior of the cornea. Different applications of FEM in corneal disease studies, surgical predictions, impact simulations, and clinical applications have been reviewed. Some suggestions for the future of this type of modeling in the area of corneal mechanics are also discussed.

  12. Extracellular matrix alterations in human corneas with bullous keratopathy

    DEFF Research Database (Denmark)

    Ljubimov, A V; Burgeson, R E; Butkowski, R J

    1996-01-01

    PURPOSE. To uncover abnormalities of extracellular matrix (ECM) distribution in human corneas with pseudophakic and aphakic bullous keratopathy (PBK/ABK). METHODS. Indirect immunofluorescence with antibodies to 27 ECM components was used on frozen sections of 14 normal and 20 PBK/ABK corneas....... RESULTS. Fibrillar deposits of an antiadhesive glycoprotein tenascin in the anterior and posterior stroma, epithelial basement membrane (BM), bullae and subepithelial fibrosis (SEF) areas, and posterior collagenous layer (PCL) were revealed in disease corneas. Tenascin in midstroma, which was observed...... in some cases, correlated with decreased visual acuity. In normal central corneas, tenascin was never found. Other major ECM abnormalities in PBK/ABK corneas compared to normals included: discontinuous epithelial BM straining for laminin-1 (alpha 1 beta 1 gamma 1), entactin/nidogen and fibronectin...

  13. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    Science.gov (United States)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  14. UV Crosslinking of Donor Corneas Confers Resistance to Keratolysis

    Science.gov (United States)

    Arafat, Samer N.; Robert, Marie-Claude; Shukla, Anita N.; Dohlman, Claes H.; Chodosh, James; Ciolino, Joseph B.

    2014-01-01

    Purpose To develop a modified ex vivo corneal crosslinking method that increases stromal resistance to enzymatic degradation for use as a carrier for the Boston keratoprosthesis. Methods Ex vivo crosslinking of human corneas was performed using Barron® artificial anterior chambers. The corneas were de-epithelialized, pre-treated with riboflavin solution (0.1% riboflavin/20% dextran) and irradiated with ultraviolet A (UVA) light (λ=370nm, irradiance=3mW/cm2) for various durations. The combined effect of UVA and gamma (γ) irradiation was also assessed using the commercially available γ-irradiated corneal donors. The corneas were then trephined and incubated at 37 degrees Celsius with 0.3% collagenase A solution. The time to dissolution of each cornea was compared across treatments. Results De-epithelialized corneas (no UV light, no riboflavin) dissolved in 5.8 ± 0.6 hours. Crosslinked corneas demonstrated increased resistance to dissolution, with a time to dissolution of 17.8 +/− 2.6 hours (p corneas did not provide added resistance when compared to crosslinking the anterior corneas only (p>0.05). γ-irradiated corneas dissolved as readily as de-epithelialized controls regardless of whether they were further crosslinked (5.6 ± 1.2 hours) or not (6.1 ± 0.6 hours) (p=0.43) Conclusions Collagen crosslinking of the de-epithelialized anterior cornea surface for 30 minutes conferred optimal resistance to in vitro keratolysis by collagenase A. PMID:25014151

  15. Rudolf Virchow's medical school dissertation on rheumatism and the cornea: overlooked tribute to the cornea in biomedical research.

    Science.gov (United States)

    Margo, Curtis E; Harman, Lynn E

    2015-02-01

    To critique Rudolf Virchow's medical school dissertation on rheumatism and the cornea and to determine whether it might have anticipated his remarkable career in medicine. Review of the English translation of Rudolf Virchow's de Rheumate Praesertim Corneae written in 1843. The dissertation was more than 7000 words long. Virchow considered rheumatism as an irritant disorder not induced by acid as traditionally thought but by albumin. He concluded that inflammation was secondary to a primary irritant and that the "seat" of rheumatism was "gelatinous" (connective) tissues, which included the cornea. He divided kerato-rheumatism into different varieties. The prognosis of keratitis was variable, and would eventually lapse into "scrofulosis, syphilis, or arthritis of the cornea." Virchow's dissertation characterizes rheumatism in terms of chemical and tissue interactions that make little sense in the context of today's knowledge of rheumatic disease and keratitis. Ironically, many of these concepts were made obsolete by the cellular model of disease that Virchow championed. Virchow decided to pursue the study of rheumatism through the cornea because he thought that the cornea was an ideal tissue to study disease. This discernment was passed on to his students whose seminal contributions to general pathology were based on research with the cornea. It is debatable whether Virchow's insight into the importance of the cornea in biomedical research at such an early stage of his career could have predicted his monumental contributions to medicine.

  16. The cornea and disorders of lipid metabolism.

    Science.gov (United States)

    Barchiesi, B J; Eckel, R H; Ellis, P P

    1991-01-01

    Disorders of lipid metabolism, either hyperlipidemia or hypolipidemia, are associated with the formation of corneal opacities. Corneal arcus, the most commonly encountered peripheral corneal opacity, is frequently associated with abnormal serum lipid levels, but may occur without any predisposing factors. Reports also have linked corneal arcus with alcoholism, diabetes mellitus and atherosclerotic heart disease. Unilateral arcus is a rare entity that is associated with carotid artery disease or ocular hypotony. Diffuse corneal opacities associated with hypolipidemic disorders such as LCAT deficiency, fish eye disease and Tangier disease, may be the initial manifestation of these disorders and puts the ophthalmologist in a position to make an early diagnosis. Corneal arcus, along with a central corneal opacity, is seen in Schnyder's crystalline stromal distrophy. The association of the disorder with a dyslipidemia remains controversial. A review of lipid metabolism, corneal arcus and several disorders of lipid metabolism that affect the cornea are presented.

  17. Customized Finite Element Modelling of the Human Cornea

    Science.gov (United States)

    Simonini, Irene; Pandolfi, Anna

    2015-01-01

    Aim To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Method Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea. Results Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP. Conclusion Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK). Patient-specific models can be used as indicators of feasibility before performing the surgery. PMID:26098104

  18. Customized Finite Element Modelling of the Human Cornea.

    Directory of Open Access Journals (Sweden)

    Irene Simonini

    Full Text Available To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK.Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea.Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP.Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK. Patient-specific models can be used as indicators of feasibility before performing the surgery.

  19. Customized Finite Element Modelling of the Human Cornea.

    Science.gov (United States)

    Simonini, Irene; Pandolfi, Anna

    2015-01-01

    To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea. Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP. Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK). Patient-specific models can be used as indicators of feasibility before performing the surgery.

  20. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The

  1. Fracture mechanics applied to the machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  2. Continuous intraperitoneal insulin infusion in patients with 'brittle' diabetes

    DEFF Research Database (Denmark)

    DeVries, J H; Eskes, S A; Snoek, Frank J

    2002-01-01

    AIMS: To evaluate the effects of continuous intraperitoneal insulin infusion (CIPII) using implantable pumps on glycaemic control and duration of hospital stay in poorly controlled 'brittle' Dutch diabetes patients, and to assess their current quality of life. METHODS: Thirty-three patients were...

  3. Analytical model of micromachining of brittle materials with sharp particles

    NARCIS (Netherlands)

    Moktadir, Z.; Wensink, H.; Kraft, M.

    2005-01-01

    We present an analytical model for the powder blasting of brittle materials with sharp particles. We developed a continuum equation, which describes the surface evolution during the powder blasting, into which we introduced surface energetics as the major relaxation mechanism. The experimental and

  4. Scaling properties of crack branching and brittle fragmentation

    Directory of Open Access Journals (Sweden)

    Uvarov S.

    2011-01-01

    Full Text Available The present study is focused on the correlation of scaling properties of crack branching and brittle fragmentation with damage accumulation and a change in the fracture mechanism. The experimental results obtained from the glass fragmentation tests indicate that the size distribution of fragments has a fractal character and is described by a power law.

  5. Brittle deformational features of Michika Area, Hawal Basement ...

    African Journals Online (AJOL)

    Brittle deformational features of Michika Area, Hawal Basement complex, NE Nigeria. N E Bassey. Abstract. No Abstract. Global Journal of Geological Sciences Vol. 5 (1&2) 2007: pp. 51-54. http://dx.doi.org/10.4314/gjgs.v5i1.18741 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  6. Mapping the ductile-brittle transition of magma

    Science.gov (United States)

    Kendrick, J. E.; Lavallee, Y.; Dingwell, D. B.

    2010-12-01

    During volcanic unrest, eruptive activity can switch rapidly from effusive to explosive. Explosive eruptions require the fragmentation of magma, in which, if deformation rate is too fast to be relaxed, magma undergoes a transition in deformation mechanism from viscous and/or ductile to brittle. Our knowledge of the deformation mechanisms of magma ascent and eruption remains, to date, poor. Many studies have constrained the glass transition (Tg) of the interstitial melt phase; yet the effect of crystals and bubbles are unresolved. During ascent, magma undergoes P-T changes which induce crystallization, thereby inducing a transition from viscous to ductile and, in some cases, to brittle deformation. Here, we explore the deformation mechanisms of magma involved in the dome-building eruptions and explosions that occurred at Volcán de Colima (Mexico) since 1998. For this purpose, we investigated the rheology of dome lavas, containing 10-45 vol.% rhyolitic interstitial melt, 55-90 vol.% crystals and 5-20 vol.% bubbles. The interstitial glass is characterized by electron microprobe and Tg is characterized using a differential scanning calorimeter and a dilatometer. The population of crystals (fraction, shape and size distribution) is described optically and quantified using ImageJ and AMOCADO. The rheological effects of crystals on the deformation of magmas are constrained via acoustic emission (AE) and uniaxial deformation experiments at temperature above Tg (900-980 °C) and at varied applied stresses (and strain rates: 10-6 to 10-2 s-1). The ratio of ductile to brittle deformation across the ductile-brittle transition is quantified using the output AE energy and optical and SEM analysis. We find that individual dome lava sample types have different mechanical responses, yielding a significant range of measured strain rates under a given temperature and applied stress. Optical analysis suggests that at low strain rates, ductile deformation is mainly controlled by the

  7. [The macrophage contribution for maintaining lymphatic vessel in cornea].

    Science.gov (United States)

    Maruyama, Kazuichi

    2014-11-01

    The presence of antigen-presenting cells and hem- and lymphangiogenesis in the cornea are risk factors for the rejection of corneal transplants. We previously reported that antigen-presenting cells such as macrophages (MPs) play an important role in the induction of lymphatic endothelial cells during inflammation. This prompted us to inquire whether the existence of lymphatic vessels in the cornea is associated with the activation of MPs during inflammation. To investigate this question, we performed suture placement on the cornea to induce inflammation. We found that a large number of MPs were recruited and that lymphatic vessels were formed in response. Next, as C57BL/6 mice have a higher rejection rate after corneal transplantation than BALB/c mice, we compared the corneas of C57BL/6 and BALB/c mice under normal and inflamed conditions. We found that the number of spontaneously formed lymphatic vessels in the C57BL/6 corneas was significantly greater than in the BALB/c corneas, and that there were more activated MPs in the C57BL/6 corneas than in the BALB/c corneas. Additionally, to confirm that activated MPs induced and maintained lymphatic vessels in the cornea, we depleted the number of MPs in C57BL/6 mice via clodronate liposomes. We found that MP depletion reduced the spontaneous formation of lymphatic vessels and reduced inflammation-induced lymphangiogenesis relative to control mice. Finally, we found that mice deficient in MP markers had fewer spontaneously formed lymphatic vessels and less lymphangiogenesis than control C57BL/6 mice. The evidence gathered in this study leads us to conclude that activated MPs appear to play an important role in the formation of new lymphatic vessels and in their maintenance.

  8. Effects on collagen orientation in the cornea after trephine injury.

    Science.gov (United States)

    Kamma-Lorger, Christina S; Hayes, Sally; Boote, Craig; Burghammer, Manfred; Boulton, Michael E; Meek, Keith M

    2009-01-01

    Structural changes are well known to occur in the cornea after injury. The aim of this study was to investigate collagen orientation changes in the cornea during a short-term wound healing process. Seven bovine corneas were injured using a penetrating 5 mm biopsy punch and were subsequently organ cultured for up to two weeks. Six uninjured corneas acted as controls. The trephine wounded samples were snap frozen in liquid nitrogen either immediately after injury (0 h) or after 1 or 2 weeks in culture. Control/uninjured samples were snap frozen on arrival (0 h) or after 1 or 2 weeks in culture. Wide angle X-ray diffraction data were collected from each cornea at the UK Synchrotron Radiation Source or at the European Synchrotron Radiation Facility. Data analysis revealed information about collagen orientation and distribution in the corneal stroma during wound healing. For histology, two trephine wounded corneas at 0 h and 1 week and one control/uninjured cornea at 0 h were fixed in 10% neutral buffered formalin and processed for wax embedding. Wax sections were subsequently counterstained with haematoxylin and eosin to observe tissue morphology and the time course of complete re-epithelialization. Immediately after injury, collagen organization was altered in a small area inside the wound but remained similar to the control/uninjured sample in the remainder of the tissue. After one week, the trephine wounded corneas showed complete re-epithelialization and evidence of swelling while collagen adopted a radial arrangement inside and outside the wound. Remarkable changes in collagen fibril orientation were observed in trephine wounded corneas. Orientation changes immediately after wounding are likely to be due to the mechanical deformation of the tissue during the wounding process. However, tissue swelling and changes in collagen orientation at later stages probably reflect the processes of tissue repair. These differences will determine corneal stability and strength

  9. Simulation analysis of the transparency of cornea and sclera

    Science.gov (United States)

    Yang, Chih-Yao; Tseng, Snow H.

    2017-02-01

    Both consist of collagen fibrils, sclera is opaque whereas cornea is transparent for optical wavelengths. By employing the pseudospectral time-domain (PSTD) simulation technique, we model light impinging upon cornea and sclera, respectively. To analyze the scattering characteristics of light, the cornea and sclera are modeled by different sizes and arrangements of the non-absorbing collagen fibrils. Various factors are analyzed, including the wavelength of incident light, the thickness of the scattering media, position of the collagen fibrils, size distribution of the fibrils.

  10. [Riboflavin photoprotection with cross-linking effect in photorefractive ablation of the cornea].

    Science.gov (United States)

    Kornilovskiy, I M; Sultanova, A I; Burtsev, A A

    2016-01-01

    Photorefractive ablation is inevitably accompanied by oxidative stress of the cornea and weakening of its biomechanical and photoprotective properties. To validate the expediency of riboflavin use in photorefractive ablation for photoprotection of the cornea and cross-linking. The effects of riboflavin use in photorefractive ablation was first studied in a series of in vitro and in vivo experiments performed on 56 eyes of 28 rabbits, and then on 232 eyes of 142 patients with different degrees of myopia. Biomechanical testing of corneal samples was performed with Zwick/RoellВZ 2.5/TN1S tensile-testing machine. Transepithelial photorefractive keratectomy (TransPRK) and femtosecond laser-assisted in situ keratomileusis (Femto-LASIK) were performed on Wavelight-Allegretto200, MEL-80, and WaveLight-EX500 excimer laser systems and also VisuMax and WaveLight-FS200 femtosecond lasers. For preliminary examinations, an appropriate set of diagnostic tools was used. In vivo experiments have proved that, in the absence of conservative therapy, riboflavin is able to produce both photoprotective and cross-linking effects to the cornea. Corneal syndrome was thus reduced and re-epithelialization after TransPRK accelerated. Biomechanical testing of corneal samples revealed an increase in tolerated load from 12.9±1.4 N to 18.3±1.2 N (p=0.0002) and tensile strength from 8.6±1.7 MPa to 12.4±1.7 MPa (p=0.007). Clinical studies conducted in a group of patients with mild to moderate myopia have also confirmed the photoprotective effect of riboflavin at months 1-12 after TransPRK. There were no significant differences in uncorrected visual acuity (ranged from 0.80±0.16 to 0.85±0.15) and corrected visual acuity at baseline (0.83±0.14). Evaluation of the optical and refractive effect achieved after Femto-LASIK with riboflavin photoprotection in the fellow eye has shown that this technique is not inferior to the traditional one as to its refractive accuracy, but provides better

  11. Biomechanical properties of the keratoconic cornea: a review

    National Research Council Canada - National Science Library

    Vellara, Hans R; Patel, Dipika V

    2015-01-01

    ... ). This review discusses the effects of keratoconus on the biomechanical properties of the cornea and the current techniques used to detect these changes both in the laboratory and clinical setting...

  12. ANALYSIS OF DONOR CORNEA RETRIEVAL DATA- HOSPITAL AND RESIDENCES

    Directory of Open Access Journals (Sweden)

    Rekha Gyanchand

    2017-07-01

    Full Text Available BACKGROUND The voluntary eye donation is still the most popular methods of eye donation in our country. Since last three decades, the voluntary eye donation is promoted by a number of NGOs and Government of India. The meaning of voluntary eye donation is that an individual has prior knowledge about eye donation and also has the contact number of the eye bank. When they come across any death in their community, they will contact the eye bank for eye donation. As per Eye Bank Association of India, the incidence of total blindness is 8.9 million and 1% of this is corneal blindness. Each year, 25,000 to 30,000/new corneal blind patients are added. The voluntary eye donation is not sufficient in providing transplantable corneas to the corneal blind. As our concentration is mainly on voluntary eye collections, this is one of the main reasons that we are unable reach our target of sight restoration in the management of corneal blindness. In this study, we have analysed the voluntary eye donations procured from residence and hospital. The aim of the study is to compare corneas procured by hospital eye donations and residence eye donations to look into all factors that contribute to a transplantable cornea. MATERIALS AND METHODS The donor corneas retrieved from the year 2005-2010 were analysed. The hospital eye donations and residential eye donations were divided into two study groups. The factors analysed were number of corneas collected, donor age and gender, serology test result, death to preservation time (DPT, optical grade cornea, utilisation of corneas for transplantation and role of pledging in eye donation. Study Type- Retrospective study. Study Done- At Lions International Eye Bank, Bangalore. RESULTS The total number of donor eyes collected from the year 2005-2010 were 7362 of which residence collections was 50.73% and hospital collections was 49.26%. The 5-year period between from 2005 to 2010 in spite of not conducting a Hospital Cornea

  13. Fibronectin promotes epithelial migration of cultured rabbit cornea in situ

    OpenAIRE

    1983-01-01

    We investigated the effect of fibronectin on epithelial migration onto the stroma in cultured rabbit cornea. Rabbit plasma fibronectin was purified by affinity chromatography using gelatin-Sepharose 4B, and its purity was confirmed by SDS polyacrylamide slab gel electrophoresis. Antibody against rabbit plasma fibronectin raised in guinea pigs formed a single precipitin line against rabbit plasma and purified rabbit plasma fibronectin by Ouchterlony double diffusion test. When rabbit cornea wa...

  14. Biomechanical Measurement of Rabbit Cornea by a Modified Scheimpflug Device

    OpenAIRE

    Bo Zhang; Jianjun Gu; Xiaoxiao Zhang; Bin Yang; Zheng Wang; Danying Zheng

    2016-01-01

    Purpose. To explore the probability and variation in biomechanical measurements of rabbit cornea by a modified Scheimpflug device. Methods. A modified Scheimpflug device was developed by imaging anterior segment of the model imitating the intact eye at various posterior pressures. The eight isolated rabbit corneas were mounted on the Barron artificial chamber and images of the anterior segment were taken at posterior pressures of 15, 30, 45, 60, and 75 mmHg by the device. The repeatability an...

  15. Experimental allogenic transplantation of cornea endothelial cells in cats.

    Science.gov (United States)

    Kiełbowicz, Z; Kuryszko, J; Strzadała, L

    2010-01-01

    The aim of the present study was assessing the possibility of experimental allogenic transplantation of cat cornea endothelial cells, multiplied in vitro, into the anterior chamber of the eyeball in recipient cats. The reason for undertaking the research is the need to develop a method that would help in the cornea treatment in animals with corneal opacification following cataract surgery, as well as lens dislocation, injuries and endothelium degeneration. Cats aged 10-12 months were used in the experiment. Cornea fragments consisting of the posterior limiting membrane and posterior epithelium were placed in Iscove's medium with addition of 10% foetal calf serum. Multiplied in vitro cells were injected into the anterior chamber of recipient cats. The cornea was subject to histological, histometric and SEM examination on the 3rd, 7th, 20th and 30th day after the surgery. Micromorphological examination of the cornea showed full restitution of its endothelium 30 days after transplantation. Complete regeneration of structures indispensable for normal functioning of the posterior epithelium occurred as a result of implantation. In this study the results show that implantation of the cells of posterior corneal epithelium of donor cats, multiplied into vitro and injected into the anterior chamber of recipient cats. The cornea regained its full function, the layer of the posterior epithelium was regenerated and the stroma stabilized, presenting the image of full and proper corneal translucency.

  16. Extracellular matrix alterations in human corneas with bullous keratopathy.

    Science.gov (United States)

    Ljubimov, A V; Burgeson, R E; Butkowski, R J; Couchman, J R; Wu, R R; Ninomiya, Y; Sado, Y; Maguen, E; Nesburn, A B; Kenney, M C

    1996-05-01

    To uncover abnormalities of extracellular matrix (ECM) distribution in human corneas with pseudophakic and aphakic bullous keratopathy (PBK/ABK). Indirect immunofluorescence with antibodies to 27 ECM components was used on frozen sections of 14 normal and 20 PBK/ABK corneas. Fibrillar deposits of an antiadhesive glycoprotein tenascin in the anterior and posterior stroma, epithelial basement membrane (BM), bullae and subepithelial fibrosis (SEF) areas, and posterior collagenous layer (PCL) were revealed in disease corneas. Tenascin in midstroma, which was observed in some cases, correlated with decreased visual acuity. In normal central corneas, tenascin was never found. Other major ECM abnormalities in PBK/ABK corneas compared to normals included: discontinuous epithelial BM straining for laminin-1 (alpha 1 beta 1 gamma 1), entactin/nidogen and fibronectin; accumulation of fibronectin and alpha 1-alpha 2 type IV collagen on the endothelial face of the Descemet's membrane; and abnormal deposition of stromal ECM (tenascin, fibronectin, decorin, types I, III, V, VI, VIII, XII, XIV collagen) and BM components (type IV, collagen, perlecan, bamacan, laminin-1, entactin-nidogen, fibronectin) in SEF areas and in PCL. The study provides a molecular description of an ongoing fibrosis on the epithelial, stomal, and endothelial levels in PBK/ABK corneas. These fibrotic changes may follow initial endothelial damage after cataract surgery, may be caused by the upregulation of fibrogenic cytokines, and may play a significant role in the progression of bullous keratopathy.

  17. Nerves and Neovessels Inhibit Each Other in the Cornea

    Science.gov (United States)

    Ferrari, Giulio; Hajrasouliha, Amir R.; Sadrai, Zahra; Ueno, Hiroki; Chauhan, Sunil K.; Dana, Reza

    2013-01-01

    Purpose. To evaluate the regulatory cross-talk of the vascular and neural networks in the cornea. Methods. b-FGF micropellets (80 ng) were implanted in the temporal side of the cornea of healthy C57Bl/6 mice. On day 7, blood vessels (hemangiogenesis) and nerves were observed by immunofluorescence staining of corneal flat mounts. The next group of mice underwent either trigeminal stereotactic electrolysis (TSE), or sham operation, to ablate the ophthalmic branch of the trigeminal nerve. Blood vessel growth was detected by immunohistochemistry for PECAM-1 (CD31) following surgery. In another set of mice following TSE or sham operation, corneas were harvested for ELISA (VEGFR3 and pigment epithelium-derived factor [PEDF]) and for quantitative RT-PCR (VEGFR3, PEDF, and CD45). PEDF, VEGFR3, beta-3 tubulin, CD45, CD11b, and F4/80 expression in the cornea were evaluated using immunostaining. Results. No nerves were detected in the areas subject to corneal neovascularization, whereas they persisted in the areas that were neovessel-free. Conversely, 7 days after denervation, significant angiogenesis was detected in the cornea, and this was associated with a significant decrease in VEGFR3 (57.5% reduction, P = 0.001) and PEDF protein expression (64% reduction, P cornea. When vessel growth is stimulated, nerves disappear and, conversely, denervation induces angiogenesis. This phenomenon, here described in the eye, may have far-reaching implications in understanding angiogenesis. PMID:23307967

  18. A partial skeletal proteome of the brittle star Ophiocoma wendtii

    Science.gov (United States)

    Seaver, Ryan W.

    The formation of mineralized tissue was critical to the evolution and diversification of metazoans and remains functionally significant in most animal lineages. Of special importance is the protein found occluded within the mineral matrix, which facilitates the process of biomineralization and modulates the final mineral structure. These skeletal matrix proteins have well been described in several species, including the sea urchin Stronglyocentrotus purpuratus, an important model organism. Biomineralization research is limited in other echinoderm classes. This research encompasses the first description of mineral matrix proteins in a member of the echinoderm class Ophiuroidea. This work describes the skeletal matrix proteins of the brittle star Ophiocoma wendtii using bioinformatic and proteomic techniques. General characteristics of matrix protein are described and a number of candidate biomineralization related genes have been identified, cloned, and sequenced. The unique evolutionary and biochemical properties of brittle star skeletal matrix proteins are also described.

  19. Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teague, Melissa Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Theron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grutzik, Scott Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modeling is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.

  20. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  1. Collagen cross-linking in thin corneas

    Science.gov (United States)

    Padmanabhan, Prema; Dave, Abhishek

    2013-01-01

    Collagen cross-linking (CXL) has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA) radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety. PMID:23925328

  2. Composition Effect on Intrinsic Plasticity or Brittleness in Metallic Glasses

    OpenAIRE

    Yuan-Yun Zhao; Akihisa Inoue; Chuntao Chang; Jian Liu; Baolong Shen; Xinmin Wang; Run-Wei Li

    2014-01-01

    The high plasticity of metallic glasses is highly desirable for a wide range of novel engineering applications. However, the physical origin of the ductile/brittle behaviour of metallic glasses with various compositions and thermal histories has not been fully clarified. Here we have found that metallic glasses with compositions at or near intermetallic compounds, in contrast to the ones at or near eutectics, are extremely ductile and also insensitive to annealing-induced embrittlement. We ha...

  3. On failure in polycrystalline and amorphous brittle materials

    Science.gov (United States)

    Bourne, Neil

    2009-06-01

    The response of brittle materials to uniaxial compressive shock loading is still not well understood. Describing the physical mechanisms resulting from the more complex triaxial states that result from impact and penetration is thus empirical. The physical interpretation of the yield point of brittle materials in one-dimensional strain (the Hugoniot elastic limit (HEL)), the rate dependence of this threshold, the form of stress histories and the effect of polycrystalline microstructure still remain to be comprehensively explained. However, evidence of failure occurring in glasses and ceramics behind a travelling front that follows a shock front has been accumulated and verified in several laboratories. Such a boundary has been called a failure front. The variations in properties across this front include complete loss of tensile strength, partial loss of shear strength, reduction in acoustic impedance, lowered sound speed and opacity to light. It is the object of this work to collect observations of these phenomena and their relation to failure and the HEL in brittle materials. Further, to relate these uniaxial strain measurements of their failed states to the depth of penetration (DoP) in the widely conducted test. British Crown Copyright MoD/2009.

  4. Portable light transmission measuring system for preserved corneas

    Directory of Open Access Journals (Sweden)

    de Jesus Gabriel

    2005-12-01

    Full Text Available Abstract Background The authors have developed a small portable device for the objective measurement of the transparency of corneas stored in preservative medium, for use by eye banks in evaluation prior to transplantation. Methods The optical system consists of a white light, lenses, and pinholes that collimate the white light beams and illuminate the cornea in its preservative medium, and an optical filter (400–700 nm that selects the range of the wavelength of interest. A sensor detects the light that passes through the cornea, and the average corneal transparency is displayed. In order to obtain only the tissue transparency, an electronic circuit was built to detect a baseline input of the preservative medium prior to the measurement of corneal transparency. The operation of the system involves three steps: adjusting the "0 %" transmittance of the instrument, determining the "100 %" transmittance of the system, and finally measuring the transparency of the preserved cornea inside the storage medium. Results Fifty selected corneas were evaluated. Each cornea was submitted to three evaluation methods: subjective classification of transparency through a slit lamp, quantification of the transmittance of light using a corneal spectrophotometer previously developed, and measurement of transparency with the portable device. Conclusion By comparing the three methods and using the expertise of eye bank trained personnel, a table for quantifying corneal transparency with the new device has been developed. The correlation factor between the corneal spectrophotometer and the new device is 0,99813, leading to a system that is able to standardize transparency measurements of preserved corneas, which is currently done subjectively.

  5. Biomechanical properties of the keratoconic cornea: a review.

    Science.gov (United States)

    Vellara, Hans R; Patel, Dipika V

    2015-01-01

    There has been a recent surge of interest in assessing corneal biomechanical properties due to potential clinical applications, particularly in the early detection of keratoconus (KC). This review discusses the effects of keratoconus on the biomechanical properties of the cornea and the current techniques used to detect these changes both in the laboratory and clinical setting. Specific structural changes occurring in the corneal stroma as part of the disease process can be linked to alterations in the viscous and elastic properties of the cornea in keratoconus. Although there are extensive ex vivo studies using techniques such as extensometry and inflation testing to analyse the biomechanical properties of the normal cornea, few have investigated the keratoconic cornea using the same methods. There are a number of ex vivo studies that confirm the effectiveness of collagen cross-linking in increasing Young's modulus in healthy corneas. Recently, research has focussed on measuring corneal biomechanical parameters in vivo using two commercially available instruments: the Ocular Response Analyser (ORA) and the CorVis ST (CST). Both instruments analyse the dynamic behaviour of the cornea, when temporarily deformed by an air puff; however, the outputs of these instruments are not directly comparable due to differences in the characteristics of the air puff and output parameters. Studies using these instruments have reported significant differences between keratoconic and healthy corneas; however, neither instrument can currently be used in isolation to reliably diagnose keratoconus. Further research analysing the outputs of these instruments may enhance their diagnostic capabilities. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometry Australia.

  6. Unique Presentation of Corneal Opacity in Peters Plus Syndrome: An Unusual Form of Peters Anomaly Showing Tissue Repair in Serial Analysis.

    Science.gov (United States)

    de Nie, Karlijn F; Wesseling, Pieter; Eggink, Catharina A

    2016-02-01

    To report an unusual case of bilateral Peters anomaly in Peters Plus syndrome. Systematic analysis and description of relevant clinical features, histopathological, and genetic findings. A premature neonate, born after 34 weeks of gestation, presented with typical features of Peters Plus syndrome and bilateral corneal opacification with central clearing. Peters Plus syndrome was confirmed by the identification of a homozygous mutation in the B3GALTL gene. When a flat anterior chamber was observed and perforation was suspected both corneas necessitated corneal transplantation (left cornea transplanted at 4 weeks of age, right cornea at the age of 9 weeks). Histopathological analysis of the left cornea revealed a central defect with absence of all corneal layers except for the corneal epithelium. The right cornea revealed central absence of the corneal endothelium and Descemet membrane as well, but the central stroma consisted of a cellular meshwork rich in fibroblasts. There were no signs of iridocorneal or keratolenticular adhesions. We report the histopathology of serially obtained left and right cornea of a premature neonate with Peters Plus syndrome. As demonstrated in the left cornea, the child had a central defect of all corneal layers except for the corneal epithelium. Histopathological analysis of the right cornea obtained 5 weeks later revealed that the defect had induced fibrovascular tissue repair. The sequence of events we report in the corneas of our patient may help to better understand the pathogenesis of corneal (and anterior chamber) abnormalities in Peters Plus syndrome.

  7. Effect of genipin collagen crosslinking on porcine corneas.

    Science.gov (United States)

    Avila, Marcel Y; Navia, José L

    2010-04-01

    To evaluate the effect of genipin, a natural crosslinker, on porcine corneas. Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia. Corneal strips (12.0 mm x 2.3 mm) were harvested from porcine eyes and treated by incubation with genipin at concentrations of 1.00%, 0.25%, and 0.10%. Parallel corneal strips from the same eye were used as untreated controls. After treatment at 20 degrees C for 40 minutes, tensile strain measurements were performed in a biomaterial tester. Porcine button corneas were treated with genipin 0.25% for 15 minutes and then digested by bacterial collagenase. Treated and untreated corneas were evaluated by light microscopy. Young modulus and stiffness in treated corneas increased in a concentration-dependent manner. Genipin increased resistance to corneal collagenase 5-fold in comparison with the controls. A decrease in the interlamellar space in treated corneas was also observed. Corneal collagen crosslinking induced with genipin produced a significant increase in biomechanical strength and resistance to bacterial collagenase. This crosslinker could be useful in treating corneal ectasia and corneal infectious and noninfectious diseases involving corneal melting. Copyright (c) 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Interpreting finite element results for brittle materials in endodontic restorations

    Directory of Open Access Journals (Sweden)

    González-Lluch Carmen

    2011-06-01

    Full Text Available Abstract Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen and material strength data (diametral tensile strength and flexural strength were considered in the study. Three finite element models (FEM were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test.

  9. ADAPTIVE QUASICONTINUUM SIMULATION OF ELASTIC-BRITTLE DISORDERED LATTICES

    Directory of Open Access Journals (Sweden)

    Karel Mikeš

    2017-11-01

    Full Text Available The quasicontinuum (QC method is a computational technique that can efficiently handle atomistic lattices by combining continuum and atomistic approaches. In this work, the QC method is combined with an adaptive algorithm, to obtain correct predictions of crack trajectories in failure simulations. Numerical simulations of crack propagation in elastic-brittle disordered lattices are performed for a two-dimensional example. The obtained results are compared with the fully resolved particle model. It is shown that the adaptive QC simulation provides a significant reduction of the computational demand. At the same time, the macroscopic crack trajectories and the shape of the force-displacement diagram are very well captured.

  10. The Brittleness and Chemical Stability of Optimized Geopolymer Composites.

    Science.gov (United States)

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-04-09

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability.

  11. Risk factors for donor cornea contamination: retrospective analysis of 4546 procured corneas in a single eye bank.

    Science.gov (United States)

    Linke, Stephan J; Fricke, Otto H; Eddy, Mau-Thek; Bednarz, Jürgen; Druchkiv, Vasyl; Kaulfers, Paul-Michael; Wulff, Birgit; Püschel, Klaus; Richard, Gisbert; Hellwinkel, Olaf J C

    2013-02-01

    Microbiological contamination is a common cause for elimination of organ-cultured donor corneas. The aims of the present study were to analyze contamination rates and identify risk factors for contamination. Retrospectively, the contamination rates of 4546 organ-cultured corneas and the causative species were studied. The impact of sex, age, death-to-explantation interval, explantation technique, cause of death, and mean monthly temperature on contamination rate was analyzed. The median annual contamination rate was 5.3% (range: 3%-19%). Most contaminations were of fungal origin (61.9%), with Candida species (45%) being predominant. Bacterial contaminations (34.4%) were dominated by Staphylococcus species (12.8%). Sex, donor age, and mean monthly temperature had no statistically significant influence on the contamination rate. The median death-to-explantation interval of contaminated corneas (44 hours) was longer than that of sterile corneas (39 hours; P < 0.001; n = 4437). Cardiopulmonary failure was associated with the highest contamination rate (13.6%) of all death causes. The switch from whole globe to in situ excision was followed by a temporary increase in contamination rate (12.5%-19.4%). Although the genesis of donor cornea contamination seems to be multifactorial, resident species from physiological skin flora are the main contaminants indicating that the donor corpses could be the main source of microbiological contamination. A change in the explantation technique was followed by an increase in the contamination rate.

  12. Estimation of surface wave propagation in mouse cornea

    Science.gov (United States)

    Manapuram, Ravi Kiran; Menodiado, Floredes M.; Truong, Phiet; Aglyamov, Salavat; Emelianov, Stanislav; Twa, Michael; Larin, Kirill V.

    2012-03-01

    In this paper, we report the use of phase stabilized swept source optical coherence tomography (PhSSSOCT) for the measurement of surface mechanical wave propagation in ocular tissue in-situ. Mechanical wave propagation was measured in the mouse cornea for both young and older mice to assess tissue properties as a function of age. The measurements were performed by inducing low amplitude (cornea and 0.37 μm/mm for 9 month old mice (and presumably of different stiffness for 1 month and 9 months old). Results also suggest that PhS-SSOCT is capable of measuring the changes in the wave amplitude as small as 0.03 μm (limited by the phase stability of the system) that allowed the measurements with a very low amplitude excitation wave, thus making the method minimally invasive. Therefore, this method could potentially be used to assess tissue biomechanical properties and to reconstruct stiffness maps of the cornea.

  13. Morphological and Biochemical Analysis of Intact and Opaque Cornea in Dogs

    OpenAIRE

    HIROOKA, Masamitsu; Igarashi, Osamu; NAGAYASU, Aya; MINAGUCHI, Jyun; HOSAKA, , Yoshinao Z.; UEDA, Hiromi; TANGKAWATTANA, Prasarn; TAKEHANA, Kazushige

    2010-01-01

    The arrangement of collagen fibrils and glycosaminoglycans (GAGs) in substantia propria are important for maintaining transparency of the cornea. Interferences in collagen fibrils and GAG production could be adversative to corneal integrity. In this study, six dogs consisting of four Beagles with normal cornea (normal), one Beagles with opaque cornea (sample No.1) and one Shih Tzu with neovascularization opaque cornea (sample No.2) were used. All samples were observed morphologically by light...

  14. Localization of collagen type VIII in normal and pathological human cornea

    OpenAIRE

    Zenklová, Kateřina

    2007-01-01

    The aim of this work was to localize collagen type VIII in different layers of the cornea and to compare it's localization in normal corneas with pathological corneas obtained from patients with Fuchs endothelial dystrophy, posterior polymorphous dystrophy or keratoconus.The only comercially available antibody did not proove sufficient specifiky for collagen type VIII. With use of the antibody 9H3 anti alCVIII was collagen VIII evidenced in the cornea. This antibody can be used for detection ...

  15. Brittle ice shell thickness of Enceladus from fracture distribution analysis

    Science.gov (United States)

    Lucchetti, A.; Pozzobon, R.; Mazzarini, F.; Cremonese, G.; Massironi, M.

    2017-11-01

    We determine the depth of fracture penetration in multiple regions of Enceladus by performing self-similar clustering and length distribution analysis of fractures. The statistical characterization of fault-population attribute, such as length and clustering, provide a productive avenue for exploring deformation rate, stress transmission mode, rheology of the medium, and mechanical stratification of the ice satellite. Through this analysis, we estimate the depth of the mechanical discontinuity of Enceladus' ice shell that is the depth to which fractures penetrate the brittle ice layer above the ductile one. In this work, we find that for the South Polar Terrain (SPT), the brittle ice shell interested by fracture penetration is about 30 km and corresponds to the total depth of the ice shell because the SPT has a very high thermal gradient and, hence, fractures likely reach the ocean-ice interface. In the other regions analyzed, the depth of fracture penetration increases from 31 to 70 km from the South Pole to northern regions up to 75°.

  16. Dynamic Initiation and Propagation of Multiple Cracks in Brittle Materials

    Directory of Open Access Journals (Sweden)

    Xiaodan Ren

    2013-07-01

    Full Text Available Brittle materials such as rock and ceramic usually exhibit apparent increases of strength and toughness when subjected to dynamic loading. The reasons for this phenomenon are not yet well understood, although a number of hypotheses have been proposed. Based on dynamic fracture mechanics, the present work offers an alternate insight into the dynamic behaviors of brittle materials. Firstly, a single crack subjected to stress wave excitations is investigated to obtain the dynamic crack-tip stress field and the dynamic stress intensity factor. Second, based on the analysis of dynamic stress intensity factor, the fracture initiation sizes and crack size distribution under different loading rates are obtained, and the power law with the exponent of −2/3 is derived to describe the fracture initiation size. Third, with the help of the energy balance concept, the dynamic increase of material strength is directly derived based on the proposed multiple crack evolving criterion. Finally, the model prediction is compared with the dynamic impact experiments, and the model results agree well with the experimentally measured dynamic increasing factor (DIF.

  17. Large strain bulk deformation and brittle tough transitions in polyethylenes

    CERN Document Server

    Hillmansen, S

    2001-01-01

    Some tough, crystalline polymers can fail by fast brittle fracture. This thesis explores the role of ductile 'shear lips', which form at the fracture surface verges, in brittle-tough transitions. A new laboratory method was used to isolate this region, and to test its ability to draw rapidly, in polyethylenes. The test uses a conventional Charpy type specimen that is deeply notched and impact loaded in three-point bending by a single striker. The ligament, rapidly loaded in almost pure tension, first yields, and then necks down until failure. Initial results are encouraging and correlate well with the in-service performance. A fundamental study of large strain deformation, that avoids the complexity associated with impact tests, was then conducted with the aim of isolating the dominating influences that furnish a polymer with the ability to sustain rapid large strain deformation. True stress vs. true strain curves have been interpreted using the one dimensional spring dashpot model of Haward and Thackray (H-T...

  18. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn.

    Science.gov (United States)

    Luo, Hailang; Lu, Yongbo; Wu, Tiantian; Zhang, Mi; Zhang, Yongjie; Jin, Yan

    2013-09-01

    Although acellular corneas have been reported to be a potential substitute for allogeneic cornea transplantation to treat corneal injury, severe corneal injury is hard to repair due to inflammation and neovascularization. The use of the amniotic membrane as a graft in ocular surface reconstruction has become widespread because of the anti-inflammatory and anti-angiogenic properties of amniotic epithelial cells (AECs). Our objective was to construct a tissue-engineered cornea (TEC) composed of an acellular porcine cornea (APC) and AECs to repair severe corneal injury. Corneal cells were completely removed from the prepared APC, and the microstructure, mechanical properties, and stability of a natural porcine cornea (NPC) was maintained. In vitro, MTT and flow cytometry analyses showed that the APC did not negatively affect cell viability and apoptosis. In vivo, corneal pocket and subcutaneous transplantation demonstrated that the APC was incapable of trigging accepted immune response. AECs isolated from the human amniotic membrane have proliferation potential and present healthy morphology before 6 passages. After 7 days of culture on the surface of the APC, the AECs were stratified into 5-6 layers. We found that the AECs reconstituted the basement membrane that had been disrupted by the decellularization process. ELISA results showed that after culturing the TEC, the culture medium contained anti-inflammatory and anti-angiogenic growth factors, such as MIF, IL6, Fas-L, and PDEF. Finally, the results of lamellar keratoplasty to treat an alkali burn showed that the transplanted TEC was transparent and completely inoculated into the host cornea. However, the transplanted APC was degraded due to host rejection. Therefore, we conclude that a TEC composed of AECs and an APC holds great potential for the repair of severe corneal injury. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Brittle Creep of Tournemire Shale: Orientation, Temperature and Pressure Dependences

    Science.gov (United States)

    Geng, Zhi; Bonnelye, Audrey; Dick, Pierre; David, Christian; Chen, Mian; Schubnel, Alexandre

    2017-04-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. Here, we conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France. Conventional tri-axial experiments were carried under two different temperatures (26˚ C, 75˚ C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1 along, perpendicular and 45˚ to bedding). Following the methodology developed by Heap et al. [2008], differential stress was first increased to ˜ 60% of the short term peak strength (10-7/s, Bonnelye et al. 2016), and then in steps of 5 to 10 MPa every 24 hours until brittle failure was achieved. In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1˜15 minutes, enabling us to monitor the evolution of elastic wave speed anisotropy. Temporal evolution of anisotropy was illustrated by inverting acoustic velocities to Thomsen parameters. Finally, samples were investigated post-mortem using scanning electron microscopy. Our results seem to contradict our traditional understanding of loading rate dependent brittle failure. Indeed, the brittle creep failure stress of our Tournemire shale samples was systematically observed ˜50% higher than its short-term peak strength, with larger final axial strain accumulated. At higher temperatures, the creep failure strength of our samples was slightly reduced and deformation was characterized with faster 'steady-state' creep axial strain rates at each steps, and larger final axial strain

  20. Brittle fracture in casing pipes; Sproeda brott i mantelroer

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Stefan; Thoernblom, Kristian; Saellberg, Sven-Erik; Bergstroem, Gunnar [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-05-01

    Rapid Crack Propagation (RCP) has been observed in the casing pipe of large diameter district heating pipes on several occasions. An RCP crack is driven by hoop stresses in the casing pipe wall. It is a problem during installation work in cold weather. The casing pipe material is more brittle in low temperatures, and a temperature decrease will cause a hoop stress build-up since the thermal contraction of the casing pipe is constrained by the steel pipe and the PUR foam. RCP fracture has been documented at temperatures around -18 deg C but has likely, at some instances, occurred already at few degrees below 0 deg C. Three different polyethylene materials were evaluated with respect to the risk for brittle fracture of the casing pipe. One unimodal material of PE80 quality which have been used in casing to a large extent previously, one modern unimodal PE80 material which is used today and, finally, a bimodal PE80 material of a quality which currently is the dominant choice among pipe producers. Modern materials are in general much more resistant to brittle fracture, since it is an important design property for the raw material producers. Tests were done on casing of both large (up to 630 mm in diameter) and small (160 mm) dimension. A handling test was made where the pipes were cooled down and worked on with power tools in a manner similar to actual field work. An RCP fracture occurred at -25 deg C during cutting with angle grinder on a pipe with a diameter of 500 mm on the modern unimodal PE80 material. The same material also fractured during impact testing according to EN 253 at -20 deg C on both small and large diameter pipes. The bimodal PE80 resin passed both tests without fracture. A series of impact tests were done on pipes with diameter 160 mm with the purpose of determining critical temperatures and temperature stress levels with respect to brittle fracture. The results show that the bimodal material is so resistant that there is no real risk for RCP in

  1. Numerical modelling of brittle fracture and step-path failure: from laboratory to rock slope scale

    OpenAIRE

    Yan, Ming

    2008-01-01

    Recent research indicates that brittle fracture and step-path failure are important considerations in both natural high-mountain and engineered rock slopes. Newly developed techniques for field survey and numerical modeling of brittle fracture and step-path failure are presented in this research in an attempt to overcome many of the limitations of traditional approaches. Research primarily focuses on the simulation of brittle fracture and step-path failure at both the laboratory and large slo...

  2. File list: ALL.Oth.05.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX437636,SRX24830...2,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Cornea.bed ...

  3. File list: ALL.Oth.20.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX437636,SRX24830...2,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.20.AllAg.Cornea.bed ...

  4. File list: ALL.Oth.50.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX437636,SRX24830...2,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Cornea.bed ...

  5. File list: ALL.Oth.10.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX248302,SRX43763...6,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.10.AllAg.Cornea.bed ...

  6. [Expression and function of microRNAs in the cornea].

    Science.gov (United States)

    Ru, Yusha; Zhang, Yan; Zhao, Shaozhen

    2015-03-01

    MicroRNAs (miRNAs) are a class of small (21-2i nucleotictes), single-stranded, noncoding RNA molecules that regulate gene expression at the post-transcriptional or translational level by binding to the 3'-untranslated region of the target mRNAs. miRNAs ubiquitously exist in the genome of an organism. More than two hundred miRNA species are expressed in the eye, of which 25% are found in the cornea. miRNAs play important roles in corneal development, differentiation, glycogen metabolism, post-injury regeneration, and maintenance of homeostasis. On the other hand, miRNAs are involved in the regulation of pathological processes in the cornea, such as keratoconus, corneal neovascularization caused by corneal transplantation, herpes simplex virus infection and alkali burns. Therefore, miRNAs are expressed in a tissue-specific manner and regulate physiological and pathological processes in the cornea. The study of miRNA expression and regulation in the cornea would provide a theoretical basis for exploring pathogenic mechanisms and novel therapeutic targets for corneal diseases.

  7. Human cornea modeling using artificial collagen

    OpenAIRE

    Bukanina, V.; Khokhlov, A.; Lovetskiy, K.

    2011-01-01

    This article focuses on spectrophotometric analysis of thin films of synthetic collagen with subsequent use of the received data to recover the optical properties of collagen and modeling a multilayer optical structure similar to the properties of human cornea.

  8. Giant inclusion cyst of the cornea following filtering surgery

    Directory of Open Access Journals (Sweden)

    Kothari Mihir

    2006-01-01

    Full Text Available Various trans-conjunctival ophthalmic procedures are reported to cause inclusion cyst of conjunctiva, due to the accidental inclusion of viable conjunctival epithelium, under intact conjunctiva. We report a case of histopathologically confirmed inclusion cyst of the cornea following filtering surgery. There was no recurrence in 24 months of postoperative period.

  9. Advanced Squamous Cell Carcinoma of Cornea in a Child with ...

    African Journals Online (AJOL)

    tumors such as squamous cell carcinomas, (SCCs) basal cell carcinoma, malignant melanoma, fibrosarcoma, etc.,. The pathogenesis in a majority of these cases involve. Advanced Squamous Cell Carcinoma of. Cornea in a Child with Xeroderma Pigmentosa. Misra Somen, Bhandari Akshay Jawahirlal, Neeta Misra, Dipti ...

  10. Mechanical Interferometry Imaging for Creep Modeling of the Cornea

    OpenAIRE

    Yoo, Lawrence; Reed, Jason; Gimzewski, James K; Demer, Joseph L.

    2011-01-01

    Nanoindentation by magnetic microspheres imaged by optical interferometry permits determination of the viscoelastic properties of fine local regions of each layer of the cornea. This approach provides robust biomechanical data on corneal creep behavior that scales reliably with the magnitude of applied force throughout the tissue.

  11. Biomechanical Measurement of Rabbit Cornea by a Modified Scheimpflug Device

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-01-01

    Full Text Available Purpose. To explore the probability and variation in biomechanical measurements of rabbit cornea by a modified Scheimpflug device. Methods. A modified Scheimpflug device was developed by imaging anterior segment of the model imitating the intact eye at various posterior pressures. The eight isolated rabbit corneas were mounted on the Barron artificial chamber and images of the anterior segment were taken at posterior pressures of 15, 30, 45, 60, and 75 mmHg by the device. The repeatability and reliability of the parameters including CCT, ACD, ACV, and CV were evaluated at each posterior pressure. All the variations of the parameters at the different posterior pressures were calculated. Results. All parameters showed good intraobserver reliability (Cronbach’s alpha; intraclass correlation coefficient, α, ICC > 0.96 and repeatability in the modified Scheimpflug device. With the increase of posterior pressures, the ratio of CCT decreased linearly and the bulk modulus gradually reduced to a platform. The increase of ACD was almost linear with the posterior pressures elevated. Conclusions. The modified Scheimpflug device was a valuable tool to investigate the biomechanics of the cornea. The posterior pressure 15–75 mmHg range produced small viscoelastic deformations and nearly linear pressure-deformation response in the rabbit cornea.

  12. Three-Dimensional Ultrasonic Imaging Of The Cornea

    Science.gov (United States)

    Heyser, Rrichar C.; Rooney, James A.

    1988-01-01

    Proposed technique generates pictures of curved surfaces. Object ultrasonically scanned in raster pattern generated by scanning transmitter/receiver. Receiver turned on at frequent intervals to measure depth variations of scanned object. Used for medical diagnoses by giving images of small curved objects as cornea. Adaptable to other types of reflection measurementsystems such as sonar and radar.

  13. Gender and Age Related Variation in Cornea Power | Azonobi | East ...

    African Journals Online (AJOL)

    Objective: To determine the mean cornea power for this population and how it varies with gender and age. Design: A retrospective study. Setting: The eye clinic of the Niger Delta University Teaching Hospital. Subjects: All patients referred to the Optometric unit by the duty optometrist using a Carl Zeiss 599 ...

  14. Riboflavin/ultraviolet a crosslinking of the paracentral cornea.

    Science.gov (United States)

    Koller, Tobias; Schumacher, Silvia; Fankhauser, Franz; Seiler, Theo

    2013-02-01

    The depth of corneal crosslinking (CXL) does not seem homogeneous within the treatment area but shows a reduction toward the periphery of the cornea. This study was undertaken to investigate this reduction effect and to look for possible solutions. Ten corneas were investigated by means of an optical coherence tomography system (SS-100; Tomey, Nagoya, Japan) 1 month after standard CXL (epithelium off, 0.1% riboflavin for 30 minutes, ultraviolet A radiation 365 nm, 3 mW/cm). The depth of the demarcation line was measured as a function of the radial distance from the apex. These curves were compared with a theoretical curve derived from a standard model of photopolymerization. The CXL depth 3 mm away from the center decreases on average to 65% of the central depth (range: 52%-78%). Polymerization theory predicts this decay, however, underestimates the effect. The intended depth of CXL using current light sources is achieved only within the central area of the cornea. To provide CXL to the peripheral cornea, the ultraviolet beam either should have an improved intensity profile or may have to be decentered.

  15. GENDER AND AGE RELATED VARIATION IN CORNEA POWER

    African Journals Online (AJOL)

    2014-05-01

    May 1, 2014 ... Objective: To determine the mean cornea power for this population and how it varies with gender and age. Design: A retrospective study. Setting: The eye clinic of the Niger Delta University. Teaching Hospital. Subjects: All patients referred to the Optometric unit by the duty optometrist using a. Carl Zeiss ...

  16. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor?

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2012-05-01

    Full Text Available Anastasios John Kanellopoulos,1,2 Ioannis M Aslanides,3 George Asimellis11Laservision Eye Institute, Athens, 2Emmetropia Mediterranean Eye Clinic, Crete, Greece, 3New York University School of Medicine, NY, USAPurpose: To determine and correlate epithelial corneal thickness (pachymetric measurements taken with a digital arc scanning very high frequency ultrasound biomicroscopy (HF UBM imaging system (Artemis-II, and compare mean and central epithelial thickness among normal eyes, untreated keratoconic eyes, and keratoconic eyes previously treated with collagen crosslinking (CXL.Methods: Epithelial pachymetry measurements (topographic mapping were conducted on 100 subjects via HF UBM. Three groups of patients were included: patients with normal eyes (controls, patients with untreated keratoconic eyes, and patients with keratoconic eyes treated with CXL. Central, mean, and peripheral corneal epithelial thickness was examined for each group, and a statistical study was conducted.Results: Mean, central, and peripheral corneal epithelial thickness was compared between the three groups of patients. Epithelium thickness varied substantially in the keratoconic group, and in some cases there was a difference of up to 20 µm between various points of the same eye, and often a thinner epithelium coincided with a thinner cornea. However, on average, data from the keratoconic group suggested an overall thickening of the epithelium, particularly over the pupil center of the order of +3 µm, while the mean epithelium thickness was on average +1.1 µm, compared to the control population (P = 0.005. This overall thickening was more pronounced in younger patients in the keratoconic group. Keratoconic eyes previously treated with CXL showed, on average, virtually the same average epithelium thickness (mean –0.7 µm, –0.2 µm over the pupil center, –0.9 µm over the peripheral zone as the control group. This finding further reinforces our novel theory of the

  17. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  18. On Failure in Polycrystalline and Amorphous Brittle Materials

    Science.gov (United States)

    Bourne, N. K.

    2009-12-01

    The performance of behaviour of brittle materials depends upon discrete deformation mechanisms operating during the loading process. The critical mechanisms determining the behaviour of armour ceramics have not been isolated using traditional ballistics. It has recently become possible to measure strength histories in materials under shock. The data gained for the failed strength of the armour are shown to relate directly to the penetration measured into tiles. Further the material can be loaded and recovered for post-mortem examination. Failure is by micro-fracture that is a function of the defects and then cracking activated by plasticity mechanisms within the grains and failure at grain boundaries in the amorphous intergranular phase. Thus it is the shock-induced plastic yielding of grains at the impact face that determines the later time penetration through the tile.

  19. Experimental Evaluation of Brittle Crack Propagation Velocity - an Improved Technique

    DEFF Research Database (Denmark)

    Debel, Christian

    1979-01-01

    A short review of experimental methods currently used in evaluating the velocity of fast crack extension is given. The technique of applying a surface deposited grid gauge has been innovated. This new technique involves a grid produced by a photo-chemical method and an electronic registration cir...... circuit based on integrated transistor-transistor logic. This new method has been applied to experimental studies of brittle crack extension in steel at temperatures between −115 and +22°C.......A short review of experimental methods currently used in evaluating the velocity of fast crack extension is given. The technique of applying a surface deposited grid gauge has been innovated. This new technique involves a grid produced by a photo-chemical method and an electronic registration...

  20. Brittle onset of monodispersed magmatic suspensions: from spheres to spheroid

    Science.gov (United States)

    Cordonnier, B.; Kaus, B.; Manga, M.; Caricchi, L.; Pistone, M.; Castro, J.; Hess, K.-U.; Gottschaller, S.; Dingwell, D. B.; Burlini, L.

    2012-04-01

    This abstract describes one of the last projects engaged by Dr. Luigi Burlini. It highlights his wish to make a close link between experimental and numerical studies, and push even further our understanding of rock mechanics. His students, engaged in this study, wish to credit these results to the legacy left by him owing to his constant involvement in Science and in educating the next generation of rheologists. While he could not see this project to fruition, his constant support and help during the conception of the project made it possible. The brittle-ductile transition remains a central question of modern geology as rock failure is the main parameter in mitigating geological risks, such as, for volcanic eruptions, the transitions from effusive to explosive eruptive style. Although numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. We first recall some experimental results obtained under torsion and uni-axial compression on both pure melts and crystal-bearing magmas. Torsion experiments were performed at high temperature (600 to 900 degC) and high pressure (200 to 300 MPa) using a Paterson-type rock deformation apparatus (ETH Zurich). We characterized the brittle onset of two phases magmas from 0 to 65 vol% crystals. The strain-rates span 5 orders of magnitude, with a change in the behavior of the material from viscous to brittle (10^-5- 100 s^-1). The materials tested are a standard borosilicate glass (NIST717), a natural crystal bearing rhyolitic melt (Mt Unzen volcano) and a suspension of haplogranitic synthetic sample with corundum particles. To characterize the physical processes leading to failure in the experiments, we performed 2D and 3D numerical simulations on monodispersed rigid spheroids with eccentricities ranging from 10^-2 to 10^2. The model is numerically solved with Finite Elements Methods. The pre-processing, processing and

  1. The complex simplicity of the brittle star nervous system.

    Science.gov (United States)

    Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir

    2018-01-01

    Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.

  2. Computer-aided analysis of cutting processes for brittle materials

    Science.gov (United States)

    Ogorodnikov, A. I.; Tikhonov, I. N.

    2017-12-01

    This paper is focused on 3D computer simulation of cutting processes for brittle materials and silicon wafers. Computer-aided analysis of wafer scribing and dicing is carried out with the use of the ANSYS CAE (computer-aided engineering) software, and a parametric model of the processes is created by means of the internal ANSYS APDL programming language. Different types of tool tip geometry are analyzed to obtain internal stresses, such as a four-sided pyramid with an included angle of 120° and a tool inclination angle to the normal axis of 15°. The quality of the workpieces after cutting is studied by optical microscopy to verify the FE (finite-element) model. The disruption of the material structure during scribing occurs near the scratch and propagates into the wafer or over its surface at a short range. The deformation area along the scratch looks like a ragged band, but the stress width is rather low. The theory of cutting brittle semiconductor and optical materials is developed on the basis of the advanced theory of metal turning. The fall of stress intensity along the normal on the way from the tip point to the scribe line can be predicted using the developed theory and with the verified FE model. The crystal quality and dimensions of defects are determined by the mechanics of scratching, which depends on the shape of the diamond tip, the scratching direction, the velocity of the cutting tool and applied force loads. The disunity is a rate-sensitive process, and it depends on the cutting thickness. The application of numerical techniques, such as FE analysis, to cutting problems enhances understanding and promotes the further development of existing machining technologies.

  3. Temporary brittle bone disease: relationship between clinical findings and judicial outcome

    Directory of Open Access Journals (Sweden)

    Colin R. Paterson

    2011-10-01

    Full Text Available There is a wide differential diagnosis for the child with unexplained fractures including non-accidental injury, osteogenesis imperfecta and vitamin D deficiency rickets. Over the last 20 years we and others have described a self-limiting syndrome characterised by fractures in the first year of life. This has been given the provisional name temporary brittle bone disease. This work had proved controversial mostly because the fractures, including rib fractures and metaphyseal fractures, were those previously regarded as typical or even diagnostic of non-accidental injury. Some have asserted that the condition does not exist. Over the years 1985 to 2000 we investigated 87 such cases with fractures with a view to determining the future care of the children. In 85 of these the judiciary was involved. We examined the clinical and radiological findings in the 33 cases in which there was a judicial finding of abuse, the 24 cases in which the parents were exonerated and the 28 cases in which no formal judicial finding was made. The three groups of patients were similar in terms of demographics, age at fracturing and details of the fractures. The clinical similarities between the three groups of patients contrasts with the very different results of the judicial process.

  4. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle

  5. Effect of Carbonitriding on the Susceptibility of Medium-Carbon Alloy Steels to Temper Brittleness

    Science.gov (United States)

    Priymak, E. Yu.; Stepanchukova, A. V.; Yakovleva, I. L.; Tereshchenko, N. A.; Chirkov, E. Yu.

    2017-07-01

    The effect of carbonitriding as a finishing operation of hardening of the thread of drill pipes on the properties of the matrix metal, its temper brittleness in particular, is studied. The cold brittleness is evaluated with the help of tests for impact toughness. Steels for the production of drill pipe locks for operation at negative temperatures are recommended.

  6. Thermomechanical behavior of collagen-cross-linked porcine cornea.

    Science.gov (United States)

    Spoerl, Eberhard; Wollensak, Gregor; Dittert, Dag-Daniel; Seiler, Theo

    2004-01-01

    Collagen cross-linking using combined riboflavin/UVA treatment has been shown to increase the biomechanical rigidity of the cornea and has been used successfully for the treatment of progressive keratoconus. From morphological and biochemical investigations, a different degree of cross-linking for the anterior and posterior stroma by the treatment is suggested. The present study was undertaken to better evaluate this effect by testing the thermomechanical behavior. Ten 10 x 5 mm corneal strips from porcine cadaver eyes enucleated within 5 h post mortem were cross-linked using the photosensitizer riboflavin and UVA irradiation (370 nm, irradiance = 3 mW/cm(2)) for 30 min and compared to ten untreated corneal strips and ten corneal strips cross-linked with 0.1% glutaraldehyde. The temperature in a water bath was raised from 60 to 95 degrees C with temperature increments of 1 degrees C per minute. The hydrothermal shrinkage of the corneal strips was measured in 2.5 degrees C steps using a micrometer. In addition, six 10-mm whole corneal buttons were cross-linked with riboflavin/UVA and immersed into water at 70 or 75 degrees C. The maximal hydrothermal shrinkage for the untreated control specimens and the posterior portion of the riboflavin/UVA-treated corneas was at 70 degrees C, for the anterior portion of the cornea cross-linked by riboflavin/UVA at 75 degrees C and for glutaraldehyde-cross-linked cornea at 90 degrees C. In the cross-linked corneal buttons, a typical mushroom-like shape was observed at 70 degrees C and a cylinder shape at 75 degrees C. The different degree of collagen cross-linking in the corneal stroma after riboflavin/UVA treatment is reflected by the differences in the maximal shrinkage temperature of the anterior and posterior portion. Therefore, in the corneas cross-linked with riboflavin/UVA a higher shrinkage temperature was observed for the anterior portion of the cornea (75 degrees C) compared to the posterior stroma (70 degrees C) due to

  7. In vivo confocal microscopic characterisation of the cornea in chronic graft-versus-host disease related severe dry eye disease.

    Science.gov (United States)

    Steger, B; Speicher, L; Philipp, W; Bechrakis, N E

    2015-02-01

    To first describe in vivo confocal microscopic (IVCM) corneal findings in severe dry eye syndrome due to ocular chronic graft versus host disease (cGvHD) after allogeneic stem cell transplantation. IVCM of the central cornea was performed in 12 prospectively recruited patients with severe ocular cGvHD associated dry eye syndrome and in six control patients with haematological malignancies without cGvHD. Within each examined corneal layer, at least three non-overlapping areas were selected for representative analysis. The number of sub basal nerve branches was markedly reduced in patients with cGvHD. Sub basal nerve morphology was characterised by increased tortuosity and reduced reflectivity. Accumulation of hyper-reflective extracellular matrix, significantly increased haze and increased keratocyte density were found in the anterior stroma of the study group. IVCM findings of the cornea in patients with severe ocular cGvHD include a rarefaction of the sub basal corneal nerve plexus and dense accumulation of hyper-reflective extracellular matrix in the anterior stroma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Correlation between epithelial thickness in normal corneas, untreated ectatic corneas, and ectatic corneas previously treated with CXL; is overall epithelial thickness a very early ectasia prognostic factor?

    Science.gov (United States)

    Kanellopoulos, Anastasios John; Aslanides, Ioannis M; Asimellis, George

    2012-01-01

    To determine and correlate epithelial corneal thickness (pachymetric) measurements taken with a digital arc scanning very high frequency ultrasound biomicroscopy (HF UBM) imaging system (Artemis-II), and compare mean and central epithelial thickness among normal eyes, untreated keratoconic eyes, and keratoconic eyes previously treated with collagen crosslinking (CXL). Epithelial pachymetry measurements (topographic mapping) were conducted on 100 subjects via HF UBM. Three groups of patients were included: patients with normal eyes (controls), patients with untreated keratoconic eyes, and patients with keratoconic eyes treated with CXL. Central, mean, and peripheral corneal epithelial thickness was examined for each group, and a statistical study was conducted. Mean, central, and peripheral corneal epithelial thickness was compared between the three groups of patients. Epithelium thickness varied substantially in the keratoconic group, and in some cases there was a difference of up to 20 μm between various points of the same eye, and often a thinner epithelium coincided with a thinner cornea. However, on average, data from the keratoconic group suggested an overall thickening of the epithelium, particularly over the pupil center of the order of +3 μm, while the mean epithelium thickness was on average +1.1 μm, compared to the control population (P = 0.005). This overall thickening was more pronounced in younger patients in the keratoconic group. Keratoconic eyes previously treated with CXL showed, on average, virtually the same average epithelium thickness (mean -0.7 μm, -0.2 μm over the pupil center, -0.9 μm over the peripheral zone) as the control group. This finding further reinforces our novel theory of the "reactive" component of epithelial thickening in corneas that are biomechanically unstable, becoming stable when biomechanical rigidity is accomplished despite persistence of cornea topographic irregularity. A highly irregular epithelium may be

  9. Modeling of brittle-viscous flow using discrete particles

    Science.gov (United States)

    Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.

    2017-04-01

    Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the

  10. Modeling Shear Instabilities With Block Sliders: Brittle and Ductile

    Science.gov (United States)

    Riedel, M. R.

    2003-12-01

    Block slider-type models have been succesfully used for almost 35 years to describe the spatio-temporal development of shear instabilities in the brittle crust (Burridge & Knopoff, 1967; Olami et al., 1992). More recently, increasing attention is paid on the extension of the classical Burridge-Knopoff model (based on a pure Mohr-Coulomb rheology) with a viscous component, either to include depth-dependent properties into the model or aiming at a more accurate description of fore- and aftershock sequences of a main earthquake event (e.g. Hainzl et al., 1999). On the other hand, viscous feedback mechanisms of various types have become an increasingly attractive mechanism for the generation of intermediate-depth and deep-focus earthquakes in the ductile mantle lithosphere (e.g. Wiens & Snider, 2001). Heat generated during viscous deformation provides a positive feedback to creep and eventually faulting under high pressure (Karato et al., 2001, Bercovici & Karato, 2003). The present paper discusses the specific properties of block slider-type models that are extended with a viscous component and compare their behaviour with the pure brittle ("classical") case. Block slider-type models for ductile instabilities are numerically much less demanding than solutions based on the corresponding, thermal-mechanically coupled, continuum equations. They allow for the inclusion of possible non-equilibrium effects associated with mineral phase transformations in a subducting slab (kinetic overshoot, grainsize reduction, latent heat release) in a straightforward manner. They may therefore serve as an effective tool to study the coupling of viscous heating, temperature-dependent viscosity and brittle stress transfer that are thought to cause the specific spatial-temporal clustering of intermediate-depth and deep-focus eartquakes. References D. Bercovici and S. Karato "Theoretical Analysis of Shear Localization in the Lithosphere", in: Reviews in Mineralogy and Geochemistry 51, eds. S

  11. Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds

    Directory of Open Access Journals (Sweden)

    Hai-Yan Wang

    2013-12-01

    Full Text Available The keratoprosthesis (KPro; artificial cornea is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision. The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty. The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea. Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells, modification of keratoprosthesis to support cornea cells remains elusive. Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials, but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase. The necrosis of stroma and spontaneous extrusion of the device, allow for maintenance of a precorneal tear layer, and play the role of ensuring a good optical surface and resisting bacterial infection. As a result, improvement in corneal cells has been the main aim of several recent investigations; some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells. The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas.

  12. Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds.

    Science.gov (United States)

    Wang, Hai-Yan; Wei, Rui-Hua; Zhao, Shao-Zhen

    2013-12-18

    The keratoprosthesis (KPro; artificial cornea) is a special refractive device to replace human cornea by using heterogeneous forming materials for the implantation into the damaged eyes in order to obtain a certain vision. The main problems of artificial cornea are the biocompatibility and stability of the tissue particularly in penetrating keratoplasty. The current studies of tissue-engineered scaffold materials through comprising composites of natural and synthetic biopolymers together have developed a new way to artificial cornea. Although a wide agreement that the long-term stability of these devices would be greatly improved by the presence of cornea cells, modification of keratoprosthesis to support cornea cells remains elusive. Most of the studies on corneal substrate materials and surface modification of composites have tried to improve the growth and biocompatibility of cornea cells which can not only reduce the stimulus of heterogeneous materials, but also more importantly continuous and stable cornea cells can prevent the destruction of collagenase. The necrosis of stroma and spontaneous extrusion of the device, allow for maintenance of a precorneal tear layer, and play the role of ensuring a good optical surface and resisting bacterial infection. As a result, improvement in corneal cells has been the main aim of several recent investigations; some effort has focused on biomaterial for its well biological properties such as promoting the growth of cornea cells. The purpose of this review is to summary the growth status of the corneal cells after the implantation of several artificial corneas.

  13. Collagen Fibrils and Proteoglycans of Macular Dystrophy Cornea: Ultrastructure and 3D Transmission Electron Tomography.

    Science.gov (United States)

    Akhtar, Saeed; Alkatan, Hind M; Kirat, Omar; Khan, Adnan A; Almubrad, Turki

    2015-06-01

    We report the ultrastructure and 3D transmission electron tomography of collagen fibrils (CFs), proteoglycans (PGs), and microfibrils within the CF of corneas of patients with macular corneal dystrophy (MCD). Three normal corneas and three MCD corneas from three Saudi patients (aged 25, 31, and 49 years, respectively) were used for this study. The corneas were processed for light and electron microscopy studies. 3D images were composed from a set of 120 ultrastructural images using the program "Composer" and visualized using the program "Visuliser Kai". 3D image analysis of MCD cornea showed a clear organization of PGs around the CF at very high magnification and degeneration of the microfibrils within the CF. Within the MCD cornea, the PG area in the anterior stroma was significantly larger than in the middle and posterior stroma. The PG area in the MCD cornea was significantly larger compared with the PG area in the normal cornea. The CF diameter and inter-fibrillar spacing of the MCD cornea were significantly smaller compared with those of the normal cornea. Ultrastructural 3D imaging showed that the production of unsulfated keratin sulfate (KS) may lead to the degeneration of micro-CFs within the CFs. The effect of the unsulfated KS was higher in the anterior stroma compared with the posterior stroma.

  14. Donor risk factors for graft failure in the cornea donor study.

    Science.gov (United States)

    Sugar, Joel; Montoya, Monty; Dontchev, Mariya; Tanner, Jean Paul; Beck, Roy; Gal, Robin; Gallagher, Shawn; Gaster, Ronald; Heck, Ellen; Holland, Edward J; Kollman, Craig; Malling, Jackie; Mannis, Mark J; Woody, Jason

    2009-10-01

    The purpose of this study was to assess the relationship between donor factors and 5-year corneal graft survival in the Cornea Donor Study. Donor corneas met criteria established by the Eye Bank Association of America, had an endothelial cell density of 2300 to 3300/mm, and were determined to be of good to excellent quality by the eye banks. Donor corneas were assigned using a random approach and surgeons were masked to information about the donor cornea including donor age. Surgery and postoperative care were performed according to the surgeons' usual routines and subjects were followed for 5 years. Donor and donor cornea factors were evaluated for their association with graft failure, which was defined as a regraft or a cloudy cornea that was sufficiently opaque to compromise vision for a minimum of 3 consecutive months. Graft failure was not significantly associated with the type of tissue retrieval (enucleation versus in situ), processing factors, timing of use of the cornea, or characteristics of the donor or the donor cornea. Adjusting for donor age did not affect the results. Donor and donor cornea characteristics do not impact graft survival rates for corneas comparable in quality to those used in this study.

  15. Netherton′s Syndrome

    Directory of Open Access Journals (Sweden)

    M L Khatri

    1989-01-01

    Full Text Available A 6 year old Libyan boy had diffuse erythema at birth and later developed pruritic, maculo-papular, papular, circinat c, double-edge, scaly lesions, suggestive of ichthyosis linearis circumflexa (ILC.Hisscalp hair were brittle and sparse with partial patchy alopecia, showing change of trichorrhexis invaginata, these -associations being characteristic of Netherton′s syndrome. The boy had slightly stunted growth; a feature which has not been recorded in previously reported cases.

  16. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    Science.gov (United States)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  17. Management of chemical burns of the canine cornea

    OpenAIRE

    Christmas, Richard

    1991-01-01

    Significant clinical signs and general principles of treatment for chemical burns of the canine cornea are presented using three typical case studies for illustration. Alkali burns are more common in dogs than acid burns. The sources of alkali in this study were soap, cement, and mortar dust. Common signs of chemical burns are ocular pain, corneal ulceration, tear film inadequacy, corneal edema, and marked corneal neovascularity. Successful treatment requires thorough ocular lavage, treatment...

  18. Customized finite element modelling of the human cornea

    OpenAIRE

    Irene Simonini; Anna Pandolfi

    2015-01-01

    Aim To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Method Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to esti...

  19. The biomechanical properties of the cornea and anterior segment parameters

    OpenAIRE

    Hwang, Ho Sik; Park, Seh Kwang; Kim, Man Soo

    2013-01-01

    Background To investigate the biomechanical properties of the cornea measured with the Ocular Response Analyzer (ORA) and their association with the anterior segment parameters representing the geometric dimensions including the corneal volume and anterior chamber volume. Methods A retrospective review of 1020 patients who visited the BGN Eye Clinic was done. The mean radius of the corneal curvature, corneal astigmatism, corneal volume, anterior chamber depth, and anterior chamber volume were...

  20. [The glaucoma pharmacological treatment and biomechanical properties of the cornea].

    Science.gov (United States)

    Liehneová, I; Karlovská, S

    2014-10-01

    To evaluate and compare the impact of long-term use of intraocular pressure lowering medication on the biomechanical properties of the cornea. Group of 305 eyes of 154 patients newly diagnosed with primary open angle glaucoma (POAG, n = 68) or ocular hypertension (OH, n = 6) was enrolled in prospective cohort study. The control group was established of 80 untreated eyes of 40 patients with ocular hypertension and 80 eyes of 40 patients with no ocular pathology. Following parameters were evaluated: intraocular pressure (IOPg,IOPcc), hysteresis (CH), corneal resistance factor (CRF) and central corneal thickness (CCT). The parameters were evaluated at baseline (untreated) and in follow up periods of 3, 6, 9 and 12 months. The same schedule was used for eyes in the control group. Eyes with POAG or OH were sorted into two groups depending on the type of applied medication: prostaglandin analogues, carboanhydrase inhibitors alone or combined with betablockers. We did not prove any statistically significant difference in hysteresis in patients with newly diagnosed POAG (yet untreated) in comparison with normal eyes in control group (p = 0.238). We proved significantly higher values of CRF (p = 0.032) and CCT (p = 0.013) in the control group of untreated patients with ocular hypertension. This result confirms higher number of patients with stiffer and thicker corneas. Statistically significant difference of CH and CRF was proved (p eyes treated by prostaglandin analogues during follow up period. In these eyes we also demonstrated reduction of CCT (p < 0.001). We did not record any other statistically significant change in remaining followed parameters. Increase of CH and CRF can show change of biomechanical properties of the cornea after long-term use of prostaglandin analogues. The biomechanical properties of the cornea were not impacted by carboanhydrase inhibitors. Further studies are required to establish the effect of long-term use prostaglandin analogues on accuracy

  1. Polymicrobial Infection of the Cornea Due to Contact Lens Wear

    OpenAIRE

    Selçuk Sızmaz; Filiz Kibar; Soner Koltaş

    2016-01-01

    A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive f...

  2. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    Directory of Open Access Journals (Sweden)

    Xian-Ning Liu

    2016-03-01

    Full Text Available AIM: To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS: A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM and hematoxylin and eosin (H&E staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS: The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION: We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft.

  3. Nerve Repulsion by the Lens and Cornea during Cornea Innervation is Dependent on Robo-Slit Signaling and Diminishes with Neuron Age

    Science.gov (United States)

    Schwend, Tyler; Lwigale, Peter Y.; Conrad, Gary W.

    2012-01-01

    The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5-8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slit 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus

  4. Determination of the modulus of elasticity of the human cornea.

    Science.gov (United States)

    Elsheikh, Ahmed; Wang, Defu; Pye, David

    2007-10-01

    To determine the material behavior of the human cornea in the form of simple relationships between the modulus of elasticity and intraocular pressure (IOP) and to establish the effect of age on the material behavior. Human corneal specimens with age between 50 and 95 years were tested under inflation conditions to determine their behavior. The corneas were subjected to two extreme load rates to represent dynamic and static loading conditions. The pressure-deformation results were analyzed using shell theory to derive the relationship between the modulus of elasticity and IOP. The corneas demonstrated a nonlinear hyperelastic behavior pattern with an initial low stiffness stage and a final high stiffness stage. Despite the nonlinearity of the pressure deformation results, the relationship between the modulus of elasticity and the applied pressure was almost linear. A considerable increase was noted in the values of the modulus of elasticity associated with both age and load rate. General equations were derived to calculate the values of the secant and tangent moduli of elasticity in terms of IOP for any age greater than 50 years, and these equations are presented in a simple form suitable for use in numerical simulations. Adequate representation of corneal material behavior is essential for the accurate predictive modeling of corneal biomechanics. The material models developed in this work could be implemented in numerical simulations of refractive surgery procedures, corneal shape changes due to contact lens wear, and other applications.

  5. Ultrastructural changes in the developing chicken cornea following caffeine administration.

    Directory of Open Access Journals (Sweden)

    Bartel Hieronim

    2010-11-01

    Full Text Available Caffeine is one of the most frequently consumed psychoactive substances. It has been known for many years that caffeine at high concentrations exerts harmful effects on both women's and laboratory animals' fertility, moreover it may impair normal development of many organs in the prenatal period. So far there have been few studies performed that demonstrate teratogenic effects of caffeine on structures of the developing eye, particularly the cornea. The aim of the study was to show ultrastructural changes in the developing cornea, as the effect of caffeine administration to chicken embryos. The experimental materials were 26 chicken embryos from incubated breeding eggs. Eggs were divided into two groups: control (n=30 in which Ringer liquid was administrated, and experimental (n=30 in which teratogenic dose of caffeine 3.5mg/egg was given. In 36th hour of incubation solutions were given with cannula through hole in an egg shell directly onto amniotic membrane. After closing the hole with a glass plate and paraffine, eggs were put back to incubator. In 10th and 19th day of incubation corneas were taken for morphological analysis with a use of electron microscopy. Administration of caffeine during chicken development causes changes of collagen fibers of Bowman's membrane patterns and of the corneal stroma but it also changes proportion of amount of collagen fibers and of the stromal cells.

  6. Femtosecond laser lenticule transplantation in rabbit cornea: experimental study.

    Science.gov (United States)

    Liu, Huiying; Zhu, Wenqing; Jiang, Alice C; Sprecher, Alicia J; Zhou, Xingtao

    2012-12-01

    To evaluate the feasibility of femtosecond laser-induced lenticule transplantation in the rabbit cornea and to observe the relative histologic characteristics of corneal tissue and nerve repair after transplantation. Eight healthy, purebred, New Zealand white rabbits underwent femtosecond laser small-incision lenticule extraction (SMILE) surgery in the right eye. Lenticules were inserted into a femtosecond laser-created corneal stromal pocket in the left eye, which was defined as femtosecond laser corneal lenticule transplantation. Postoperative observation and examination were completed to evaluate the surgery. In the early postoperative period, inflammation of the cornea was noted, tissue around the lenticule was edematous, and cells were activated. Tissue edema remained at postoperative day 10. By 1 month, edema had resolved, activated cells gradually became quiescent, and nerve fiber regeneration was observed. By 3 months, the lenticule integrated into the recipient cornea, extracellular matrix gradually cleared, and thicker nerve fibers were noted. By 6 months postoperative, morphology and distribution of the corneal stromal fibers were close to normal, and the number of nerve fibers was reduced. Femtosecond laser corneal lenticule transplantation in rabbits is feasible, as the lenticule was shown to thrive and integrate with the recipient stroma. Nerve regeneration begins after 1 month. Copyright 2012, SLACK Incorporated.

  7. Stratification of Antigen-presenting Cells within the Normal Cornea

    Directory of Open Access Journals (Sweden)

    Jared E. Knickelbein

    2009-11-01

    Full Text Available The composition and location of professional antigen presenting cells (APC varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP from the CD11c promoter (pCD11c in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 µm in length and traverse up 20 µm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c-CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class IIpCD11c-CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.

  8. Importance of accurately assessing biomechanics of the cornea.

    Science.gov (United States)

    Roberts, Cynthia J

    2016-07-01

    This article summarizes the state-of-the-art in clinical corneal biomechanics, including procedures in which biomechanics play a role, and the clinical consequences in terms of error in estimating intraocular pressure (IOP). Corneal biomechanical response to refractive surgery can be categorized into either stable alteration of surface shape and thus visual outcome, or unstable biomechanical decompensation. The stable response is characterized by central flattening and peripheral steepening that is potentiated in a stiffer cornea. Two clinical devices for assessing corneal biomechanics do not yet measure classic biomechanical properties, but rather provide assessment of corneal deformation response. Biomechanical parameters are a function of IOP, and both the cornea and sclera become stiffer as IOP increases. Any assessment of biomechanical parameters must include IOP, and one value of stiffness does not adequately characterize a cornea. Corneal biomechanics plays a role in the outcomes of any procedure in which lamellae are transected. Once the corneal structure has been altered in a manner that includes central thinning, IOP measurements with applanation tonometry are likely not valid, and other technologies should be used.

  9. Aggregations of brittle stars can perform similar ecological roles as mussel reefs

    KAUST Repository

    Geraldi, NR

    2016-11-29

    Biogenic habitats, such as coral reefs, facilitate diverse communities. In aquatic systems, aggregations of mobile benthic species may play a similar ecological role to that of typically sessile biogenic habitats; however, this has rarely been considered. We quantified the abundance of sessile horse mussels Modiolus modiolus and aggregating brittle stars Ophiothrix fragilis and tested for correlations between the density of mussels (live and dead) and brittle stars each with (1) abundance, biomass, diversity, and assemblage structure of associated benthic macrofauna; and (2) percent organic matter of the sediment. We found that the abundance of live M. modiolus was positively associated with the abundance and biomass of macrofauna. The positive association between M. modiolus and macrofaunal abundance was further amplified with an increase in brittle stars and a decrease in dead mussel shells. Macrofaunal biomass was lower with a higher percentage of dead mussel shells, and macrofaunal diversity increased with greater abundances of live M. modiolus and brittle stars. Sediment organic matter was positively related to brittle star density, but not to the abundance of live or dead mussels. The positive relationship between brittle stars and sediment organic matter suggests that brittle stars could enhance rates of benthic- pelagic coupling. Given the importance of understanding the functional role of threatened habitats, it is essential that the underlying community patterns be understood through robust observational studies to then derive testable hypotheses to determine drivers. These findings provide novel insight into the ecological role of aggregations of mobile species, which is essential to prioritize conservation and restoration strategies.

  10. Elastic Anisotropy Reversal During Brittle Creep in Shale

    Science.gov (United States)

    Geng, Zhi; Bonnelye, Audrey; Chen, Mian; Jin, Yan; Dick, Pierre; David, Christian; Fang, Xin; Schubnel, Alexandre

    2017-11-01

    We conducted two brittle creep experiments on shale samples under upper crustal conditions (confining pressure of 80 MPa at 26°C and 75°C). We deformed the samples to failure, with bedding oriented perpendicular to the maximum compressive stress direction, using the stress-stepping methodology. In both experiments, the failure stress was 64% higher than the short-term peak strength. Throughout each differential stress step, ultrasonic wave velocities initially decreased and then gradually increased with deformation/time. The magnitude of these variations depends both on the direction of measurement with respect to the bedding and the temperature, and it is largest for velocities measured parallel to the bedding and at high temperature. Elastic wave anisotropy was completely reversed at 75°C, following a limited amount of axial strain ( 0.6%). Scanning electron microscope investigation confirmed evidence of a time-dependent pressure solution, localized compaction, crack sealing/healing, and mineral rotation. Our observations reveal that elastic anisotropy can evolve rapidly in both time and space, which has implications on the stress state and its rotation near fault zones.

  11. A finite amplitude necking model of rifting in brittle lithosphere

    Science.gov (United States)

    Lin, Jian; Parmentier, E. M.

    1990-04-01

    We formulate a mechanical model describing the formation of rifts as finite amplitude necking of an elastic-plastic layer overlying a fluid substrate. A perfectly plastic rheology is a continuum description of faulting in rift zones. Two important aspects of rift evolution are illustrated by this model: the evolution of the rift width as extension proceeds and the finite strain that occurs. A region at yield initially develops with a width determined by the thickness of the brittle layer, and the internal deformation within this yield zone is proportional to the topographic slope. As extension proceeds, the surface within the rift subsides, and the width of the subsiding yield zone decreases. At any stage of rifting, material in regions just outside the yield zone is deformed but no longer deforming. The width of these deformed regions increases with increasing extension. Vertical forces due to the mass deficit of the rift depression will flex the elastic layer outside the yield zone, creating flanking uplifts. The external force required to maintain active rifting increases with the amount of lithospheric stretching, indicating that rifting is a quasi-static, stable process. Because the yield zone will revert to elastic behavior if the external force causing extension is removed, the model predicts that the rift depression and flanking uplifts will be preserved after extension stops. Our simple mechanical model demonstrates the inherent relationship among graben formation, lithospheric thinning, and rift shoulder uplift in rift zones.

  12. Thermal stress fracture in elastic-brittle materials

    Science.gov (United States)

    Emery, A. F.

    1980-01-01

    The reported investigation shows that the assessment of the possibility of the thermal fracture of brittle materials depends upon an accurate evaluation of the thermal stresses and the determination of the resulting stress intensity factors. The stress intensity factors can be calculated in a variety of ways ranging from the very precise to approximate, but only for a limited number of geometries. The main difficulty is related to the determination of the thermal stress field because of its unusual character and its dependence upon boundary conditions at points far from the region of thermal activity. Examination of a number of examples suggests that the best visualization of the thermal stresses and any associated fracture can be made by considering the problem to be the combination of thermal and isothermal problems or by considering that the prime effect of the temperature is in the generation of thermal strains and that the thermal stresses are simply the result of the region trying to accommodate these strains.

  13. Cornea preservation time study: methods and potential impact on the cornea donor pool in the United States.

    Science.gov (United States)

    Lass, Jonathan H; Szczotka-Flynn, Loretta B; Ayala, Allison R; Benetz, Beth A; Gal, Robin L; Aldave, Anthony J; Corrigan, Michelle M; Dunn, Steven P; McCall, Ty L; Pramanik, Sudeep; Rosenwasser, George O; Ross, Kevin W; Terry, Mark A; Verdier, David D

    2015-06-01

    The aim of this study was to describe the aims, methods, donor and recipient cohort characteristics, and potential impact of the Cornea Preservation Time Study (CPTS). The CPTS is a randomized clinical trial conducted at 40 clinical sites (70 surgeons) designed to assess the effect of donor cornea preservation time (PT) on graft survival 3 years after Descemet stripping automated endothelial keratoplasty (DSAEK). Eyes undergoing surgery for Fuchs endothelial corneal dystrophy or pseudophakic/aphakic corneal edema were randomized to receive donor corneas stored ≤7 days or 8 to 14 days. Donor and patient characteristics, tissue preparation and surgical parameters, recipient and donor corneal stroma clarity, central corneal thickness, intraocular pressure, complications, and a reading center-determined central endothelial cell density were collected. Surveys were conducted to evaluate pre-CPTS PT practices. The 1330 CPTS donors were: 49% >60 years old, 27% diabetic, had a median eye bank-determined screening endothelial cell density of 2688 cells/mm, and 74% eye bank prepared for DSAEK. A total of 1090 recipients (1330 eyes including 240 bilateral cases) had: median age of 70 years, were 60% female, 90% white, 18% diabetic, 52% phakic, and 94% had Fuchs endothelial corneal dystrophy. Before the CPTS, 19 eye banks provided PT data on 20,852 corneas domestically placed for DSAEK in 2010 to 2011; 96% were preserved ≤7 days. Of 305 American Academy of Ophthalmology members responding to a pre-CPTS survey, 233 (76%) set their maximum PT preference at 8 days or less. The CPTS will increase understanding of factors related to DSAEK success and, if noninferiority of longer PT is shown, will have great potential to extend the available pool of endothelial keratoplasty donors.Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01537393.

  14. The biomechanical properties of the cornea and anterior segment parameters.

    Science.gov (United States)

    Hwang, Ho Sik; Park, Seh Kwang; Kim, Man Soo

    2013-10-02

    To investigate the biomechanical properties of the cornea measured with the Ocular Response Analyzer (ORA) and their association with the anterior segment parameters representing the geometric dimensions including the corneal volume and anterior chamber volume. A retrospective review of 1020 patients who visited the BGN Eye Clinic was done. The mean radius of the corneal curvature, corneal astigmatism, corneal volume, anterior chamber depth, and anterior chamber volume were measured with an anterior segment tomographer. The central corneal thickness (CCT) was measured with an ultrasonic pachymeter. The corneal diameter was measured with an Orbscan as White to White. Cornea hysteresis (CH), corneal resistance factor (CRF), Goldmann correlated intraocular pressure (IOPg), and cornea-compensated IOP (IOPcc) were measured with an ORA. Multiple linear regression models were constructed with CH and CRF as the dependent variables and age, gender, and the anterior segment parameters as the covariates. 958 eyes from 958 patients (mean age 26.7 years; male 43.4%) were included in this study after excluding some eyes according to the exclusion criteria. The mean CH and CRF were 10.1 and 9.9 mmHg, respectively. The mean IOPg and IOPcc were 14.8 and 15.8 mmHg. The multivariate analysis showed that CH was negatively associated with the mean radius of the cornea curvature (regression coefficient = -0.481, p = 0.023) and positively associated with CCT (regression coefficient = 0.015, p corneal volume (regression coefficient =0.059, p = 0.014). The association between CH and the corneal diameter, anterior chamber depth, and anterior chamber volume were not statistically significant. The evaluation of CRF showed that CRF was negatively associated with the mean radius of the cornea curvature (regression coefficient = -0.540, p = 0.013), and positively associated with CCT (β = 0.026, p corneal diameter, corneal volume, anterior chamber depth, and anterior chamber volume were not

  15. Characterization of Inhibitor of differentiation (Id) proteins in human cornea.

    Science.gov (United States)

    Mohan, Rajiv R; Morgan, Brandie R; Anumanthan, Govindaraj; Sharma, Ajay; Chaurasia, Shyam S; Rieger, Frank G

    2016-05-01

    Inhibitor of differentiation (Id) proteins are DNA-binding transcription factors involved in cellular proliferation, migration, inflammation, angiogenesis and fibrosis. However, their expression and role in the cornea is unknown. The present study was undertaken to characterize the expression of Id proteins and their interactions with the pro-fibrotic cytokine Transforming Growth Factor β1 (TGFβ1) and anti-fibrotic cytokine, bone morphogenic protein 7 (BMP7) in human cornea. Human donor corneas procured from Eye Bank were used. Id proteins were localized in human corneal sections using immunofluorescence. Primary cultures of human corneal fibroblasts (HCF) were established and treated with either TGFβ1 (5 ng/ml) or BMP7 (10 ng/ml) for 24 h in serum free medium. Expression of Id's in response to TGFβ1, BMP7 and TGFβ1 + BMP7 was analyzed by quantitative real time PCR (qRT-PCR) and western blot analysis. Id1 and Id2 proteins were ubiquitously expressed in the epithelial cells and stromal keratocytes in human cornea. The Id1 was localized to the basal epithelial cells as seen by immunohistochemistry. HCF expressed all known mammalian Id genes (Id1-Id4). In addition, Id1 and Id2 are selectively expressed in HCF. Treatment of human recombinant TGFβ1 (5 ng/ml) to serum-starved HCF showed a significant increase in Id genes (Id1, Id2 and Id4) at 2 h time point compared to BMP7 treatment, which showed time dependent increase in the expression of Id1-Id3 at 24-48 h. Combined treatment with TGFβ1 + BMP7 to HCF showed a significant increase in Id1 transcript and an increasing trend in Id3 and Id4 expression. The results of this study suggest that Id family of genes (Id1-Id4) are localized in the human cornea and expressed in the corneal fibroblasts. Also, Id's were differentially regulated with TGFβ1 and/or BMP7 in a time dependent manner and might serve as a therapeutic target in corneal fibrosis. Published by Elsevier Ltd.

  16. Clinical and epidemiological aspects of cornea transplant patients of a reference hospital

    Directory of Open Access Journals (Sweden)

    Giovanna Karinny Pereira Cruz

    Full Text Available ABSTRACT Objective: clinically characterizing cornea transplant patients and their distribution according to indicated and post-operative conditions of cornea transplantation, as well as estimating the average waiting time. Method: a cross-sectional, descriptive and analytical study performed for all cornea transplants performed at a reference service (n=258. Data were analyzed using Statistical Package for the Social Sciences, version 20.0. Results: the main indicator for cornea transplant was keratoconus. The mean waiting time for the transplant was approximately 5 months and 3 weeks for elective transplants and 9 days for urgent cases. An association between the type of corneal disorder with gender, age, previous surgery, eye classification, glaucoma and anterior graft failure were found. Conclusion: keratoconus was the main indicator for cornea transplant. Factors such as age, previous corneal graft failure (retransplantation, glaucoma, cases of surgeries prior to cornea transplant (especially cataract surgery may be related to the onset corneal endothelium disorders.

  17. [Nondestructive applanation technique to measure the elasticity moduli and creep properties of ocular cornea in vivo].

    Science.gov (United States)

    Zhang, Xueyong; Liu, Dong; Tang, Zhen; Liao, Rongfeng; Ma, Jianguo

    2015-02-01

    Due to lack of the practical technique to measure the biomechanical properties of the ocular cornea in vivo, clinical ophthalmologists have some difficulties in understanding the deformation mechanism of the cornea under the action of physiological intraocular pressures. Using Young's theory analysis of the corneal deformation during applanation tonometry, the relation between the elasticity moduli of the cornea and the applanated corneal area and the measured and true intraocular pressures can be obtained. A new applanation technique has been developed for measuring the biomechanical properties of the ocular cornea tissue in vivo, which can simultaneously acquire the data of the applanation area and displacement of the corneal deformation as well as the exerted applanation force on the cornea. Experimental results on a rabbit's eyeball demonstrated that the present technique could be used to measure the elasticity moduli and creep properties of the ocular cornea nondestructively in vivo.

  18. Wound healing in rabbit corneas after photorefractive keratectomy and laser in situ keratomileusis.

    Science.gov (United States)

    Miyamoto, Takeshi; Saika, Shizuya; Yamanaka, Akio; Kawashima, Yoshiji; Suzuki, Yoshitaka; Ohnishi, Yoshitaka

    2003-01-01

    To compare the wound-healing process in the rabbit cornea after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) with the same refractive correction. Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan. Adult albino rabbits (N = 24) were used. One eye of each animal had PRK or LASIK with the same refractive correction. Each animal was killed after an interval of up to 6 months. The expression pattern of corneal stromal injury-related molecules with the 2 treatments were compared. Paraffin sections of the cornea were processed immunohistochemically for alpha-smooth muscle actin (alpha-SMA), collagen type IV [alpha1(IV)](2),alpha2(IV), and heat shock protein (HSP) 47 as well as other HSPs. Sections were also examined after hematoxylin and eosin or periodic acid-Schiff staining. Hematoxylin and eosin staining showed the central epithelium to be thick in PRK-treated corneas. The thick epithelium was restricted to the area around the corneal flap edge adhesion in LASIK-treated corneas at 3 months. Periodic acid-Schiff staining showed an absence of or interruption in the epithelial basement membrane in PRK-treated corneas for up to 6 months. Heat shock protein 47 was detected in keratocytes on day 3 but not after that in PRK-treated corneas. There was no difference in the expression of other HSPs. Alpha-smooth muscle actin was expressed in keratocytes repopulated in the central anterior cornea of PRK-treated corneas at 28 days. Keratocytes with immunoreactivity for these 2 proteins were not seen in LASIK-treated corneas. Collagen IV [alpha1(IV)](2),alpha2(IV) was not detected in either group of corneas. The central epithelium became transiently thicker in PRK-treated corneas. Keratocyte responses to laser stromal ablation were more marked in corneas treated with PRK than in those treated with LASIK.

  19. Cultivation and characterization of a bovine in vitro model of the cornea.

    Science.gov (United States)

    Tegtmeyer, S; Reichl, S; Müller-Goymann, C C

    2004-06-01

    The aim of this study was to develop an in vitro model of the cornea of bovine cells, to characterise the model by histochemical methods and to investigate permeation of ophthalmic drugs through the model. As in the in vivo situation, an in vitro model of the cornea should consist of all three different types of cells. In the current study, the construction of the in vitro cornea was performed using cells prepared from primary cultures. To investigate the state of the cells in the cultures, growth curves were established. Immunocytochemical determination of keratin and vimentin was performed for all three isolated and sub-cultivated cell types of the bovine cornea. To further simulate the in vivo conditions, corneal epithelial cells were seeded onto the collagen-gel base containing the stromal cells with an underlying sheet of endothelium. Permeation experiments were performed with pilocarpine hydrochloride and timolol hydrogen maleate as model drugs and excised bovine cornea and the in vitro cornea as permeation barriers. The immunohistochemical investigations show that excised bovine cornea and the in vitro model of the cornea are comparable with respect to the expression of keratin K3, indicating that the primarily isolated cells correspond to the different cell types of the cornea. Culturing of the epithelial cells on the complex basis has led to the formation of a corneal epithelium with several layers, closely resembling the morphology of the in vivo epithelium. Although the permeation rates of the drug through the in vitro cornea were always higher, the sequence in which the drugs permeate through the two types of barriers was the same. The drug permeation through the in vitro cornea may therefore be a useful predictive tool to estimate the permeability coefficients of drugs through excised cornea.

  20. Physical and Biological Characterization of the Gamma-Irradiated Human Cornea.

    Science.gov (United States)

    Chae, J Jeremy; Choi, Joseph S; Lee, Justin D; Lu, Qiaozhi; Stark, Walter J; Kuo, Irene C; Elisseeff, Jennifer H

    2015-10-01

    To compare the physical and biological characteristics of commercial gamma-irradiated corneas with those of fresh human corneas and to determine suitability for transplantation. The physical properties of gamma-irradiated and fresh corneas were evaluated with respect to light transmittance, hydration (swelling ratio), elastic modulus (compressive modulus by the indentation method), matrix organization (differential scanning calorimetry), and morphology (light and transmission electron microscopy). The biological properties of the gamma-irradiated cornea, including residual cell content and cellular biocompatibility, were evaluated by quantifying DNA content and measuring the proliferation rate of human corneal epithelial cells, respectively. The hydration, light transmittance, elastic modulus, and proliferation rate of human corneal epithelial cells were not significantly different between fresh and gamma-irradiated corneas. However, differences were observed in tissue morphology, DNA content, and thermal properties. The density of collagen fibrils of the gamma-irradiated corneal sample (160.6 ± 33.2 fibrils/μm) was significantly lower than that of the fresh corneal sample (310.0 ± 44.7 fibrils/μm). Additionally, in the gamma-irradiated corneas, cell fragments-but not viable cells-were observed, supported by lower DNA content of the gamma-irradiated cornea (1.0 ± 0.1 μg/mg) than in fresh corneas (1.9 μg/mg). Moreover, the denaturation temperature of gamma-irradiated corneas (61.8 ± 1.1 °C) was significantly lower than that of fresh corneas (66.1 ± 1.9 °C). Despite structural changes due to irradiation, the physical and biological properties of the gamma-irradiated cornea remain similar to the fresh cornea. These factors, combined with a decreased risk of rejection and longer shelf life, make the gamma-irradiated tissue a viable and clinically desired option in various ophthalmic procedures.

  1. The Ets Transcription Factor EHF as a Regulator of Cornea Epithelial Cell Identity*

    Science.gov (United States)

    Stephens, Denise N.; Klein, Rachel Herndon; Salmans, Michael L.; Gordon, William; Ho, Hsiang; Andersen, Bogi

    2013-01-01

    The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways. PMID:24142692

  2. Research of cornea section's shape ablated by 193-nm ArF laser spots

    Science.gov (United States)

    Zhu, Zhiqiang; Yu, Yinshan; Deng, Guoqing

    2005-11-01

    The ablation theory of cornea and biology effect by 193-nm ArF excimer laser are introduced. The ablation tracks model is put forward to make laser spots scan around cornea by many steps and many areas to change cornea curvature. The corneal average ablation curve is calculated by software so as to explain the feasibility of the ablation tracks model. By analyzing the actual ablation shapes of many arbitrary cornea sections, the optimal ablation method for deciding the random position of every laser spot in every ablation track is obtained. Experiments combining the ablation model with the device testify the energy stability of laser spots and the accuracy of rectifying anisometropia.

  3. Influx of immunoglobulins from the vascular compartment into a grafted cornea.

    Science.gov (United States)

    Van der Veen, G; Broersma, L; Bruyne, I; Verhagen, C; Ruijter, J; Van Rij, G; Van der Gaag, R

    1997-04-01

    To determine the effect of a fresh corneal wound or a healed corneal scar on the immunodiffusion of immunoglobulins into the cornea. F344 rats were immunized with human serum albumin (HSA) 1 week before an autologous rotational keratoplasty of the right cornea or 1 year after an autograft was performed. One group of rats also was treated with gentamicin-dexamethasone ointment in the grafted eye for 1 week after transplantation to reduce the postsurgical inflammatory signs. A serum sample was drawn every week and booster injections with HSA were given after 2 and 3 weeks. At various times after immunization, groups of rats were killed, blood and aqueous humor samples were taken, and the corneas of both eyes were removed. The corneas were divided into the graft or a 3-mm central button and the peripheral rim and weighed. The anti-HSA titer was determined in serum, aqueous humor, and both parts of the corneas. Up to 5 weeks after transplantation, the grafted cornea contained more anti-HSA immunoglobulins than did the control eye. One year postgrafting, no difference was seen. In the first weeks after keratoplasty, influx of anti-HSA from the peripheral into the central cornea was, however, neither obstructed nor enhanced. Surgical trauma in itself causes increased influx of anti-HSA immunoglobulins into the cornea. Within the cornea, a wound or a scar does not appear to be a barrier for centripetal immunoglobulin diffusion.

  4. Mid-term clinical outcomes of collagen-phosphorylcholine cornea substitutes for therapeutic anterior lamellar keratoplasty

    National Research Council Canada - National Science Library

    O Buznyk; MM Islam; S Iakymenko; N Pasyechnikova; M Griffith

    2016-01-01

    Purpose To assess safety and efficacy of biosynthetic collagen-phosphorylcholine implants as corneal substitutes in patients with severe pathologies for whom human donor cornea transplantation carries...

  5. Distribution of specific collagen types and fibronectin in normal and keratoconus corneas.

    Science.gov (United States)

    Tsuchiya, S; Tanaka, M; Konomi, H; Hayashi, T

    1986-01-01

    The distribution of five types of collagen and fibronectin in 6 normal and 9 keratoconus corneas was examined, using immunofluorescent staining and the enzyme-labeled antibody method. Types I, III and V collagens were detected in the corneal stroma. There was essentially no difference between normal and keratoconus corneas in their distribution. Type IV collagen and fibronectin were detected in the basement membrane of the normal corneal epithelium, while in the keratoconus corneas the disruption of the basement membrane as well as the excrescence of basement membrane materials was observed. The abnormal distribution of the type IV collagen and fibronectin was also observed in the anterior stromal area of keratoconus corneas.

  6. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Dual illumination for cornea and retina imaging using spectral domain optical coherence tomography

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Wijesinghe, Ruchire Eranga; Ravichandran, Naresh Kumar; Jeon, Mansik; Kim, Jeehyun

    2017-04-01

    A dual illumination system is proposed for cornea and retina imaging using spectral domain optical coherence tomography (SD-OCT). The system is designed to acquire cornea and retina imaging with dual illumination with limited optics and using a single spectrometer. The beam propagation for cornea and retina imaging in dual illumination enables to acquire the images of different segments. This approach will reduce the imaging time for separate corneal and retinal imaging. The in vivo imaging of both the cornea and retina of a health volunteer shows the feasibility of the system for clinical applications

  8. Forecasting the brittle failure of heterogeneous, porous geomaterials

    Science.gov (United States)

    Vasseur, Jérémie; Wadsworth, Fabian; Heap, Michael; Main, Ian; Lavallée, Yan; Dingwell, Donald

    2017-04-01

    forecasting the failure of porous brittle solids that build the Earth's crust.

  9. Polymer Reinforced, Non-Brittle, Light-Weight Cryogenic Insulation for Reduced Life Cycle Costs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to fabricate a composite aerogel foam. This material is designed to be impact resistant, non-brittle, non-water-retaining and insulating...

  10. Prediction of rock brittleness using nondestructive methods for hard rock tunneling

    Directory of Open Access Journals (Sweden)

    Rennie B. Kaunda

    2016-08-01

    Full Text Available The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks (ANN. Herein hard rock brittleness is defined using Yagiz' method. A predictive model is developed using a comprehensive database compiled from 30 years' worth of rock tests at the Earth Mechanics Institute (EMI, Colorado School of Mines. The model is sensitive to density, elastic properties, and P- and S-wave velocities. The results show that the model is a better predictor of rock brittleness than conventional destructive strength-test based models and multiple regression techniques. While the findings have direct implications on intact rock, the methodology can be extrapolated to rock mass problems in both tunneling and underground mining where rock brittleness is an important control.

  11. Habitat Distribution and Comparison of Brittle Star (Echinodermata: Ophiuroidea) Arm Regeneration on Moorea, French Polynesia

    OpenAIRE

    Chinn, Sarah

    2006-01-01

    Autotomy and regeneration are widespread in many groups of invertebrates and vertebrates, such as annelids, crustaceans, amphibians, and reptiles. Regeneration is common in all classes of Echinodermata and prevalent in ophiuroid brittle stars. Moorea, French Polynesia was surveyed for species of brittle stars living on coastal areas of the island in different habitats. Ophiuroid populations were sampled in habitats such as a mangrove marsh, a sandy beach with coral rubble and a jetty...

  12. Unraveling the Brittle History of Cratonic Areas Reveals the Profound Mechanical Instability of "Stable" Shields

    Science.gov (United States)

    Viola, G.; Mattila, J.

    2014-12-01

    Archean cratons are considered stable regions that have basically remained undeformed since the Precambrian, forming the ancient cores of the continents. While this is certainly true with respect to episodes of thoroughgoing ductile deformation, recent research indicates that shields are not nearly as mechanically stable within the field of environmental conditions leading to brittle deformation. Structural and illite K-Ar geochronological studies on fault gouges point to a significant mechanical instability, wherein large volumes of 'stable' rocks can become saturated with fractures and brittle faults soon after exhumation to below 300-350° C. Indeed, old crystalline basements present compelling evidence of long brittle deformation histories, often complex and thus challenging to unfold. We use the Svecofennian Shield (SS) as an example of a supposedly 'stable' craton to show that it is possible to unravel the details of brittle histories spanning more than 1.5 Gyr. New structural and geochronological results from Finland are integrated with a review of existing data from Sweden to explore how the effects of far-field stresses are partitioned within a shield, which was growing progressively saturated with fractures as time passed from its initial consolidation. Comparison of time-constrained paleostress data from different locations of the shield shows a remarkably similar stress evolution through time, despite the different local geological boundary conditions. This suggests that the southern SS has behaved as a mechanically coherent block since the Late Mesoproterozoic, time when it had already reached structural maturity with respect to the saturation of brittle features. Structural reactivation rather than generation of new fractures is the key mechanism that has controlled the mechanical evolution of the shield and that will steer its future brittle evolution. Similar brittle histories within different domains of the shield also imply that far-field stresses

  13. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    Interestingly, the dislocation plasticity of the single- crystal AlN strongly depends on specimen sizes. As shown in Fig. 5a and b, the large plastic...ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to-Ductile Transition of Single- Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to-Ductile Transition of Single- Crystal

  14. Fitting the post-keratoplasty cornea with hydrogel lenses.

    Science.gov (United States)

    Katsoulos, Costas; Nick, Vasileiou; Lefteris, Karageorgiadis; Theodore, Mousafeiropoulos

    2009-02-01

    We report two cases who have undergone penetrating keratoplasty (three eyes total), and who were fitted with hydrogel lenses. In the first case, a 28-year-old male presented with an interest in contact lens fitting. He had undergone corneal transplantation in both eyes, about 5 years ago. After topographies and trial fitting were performed, it was decided to be fitted with reverse geometry hydrogel lenses, due to the globular geometry of the cornea, the resultant instability of RGPs, and personal preference. In the second case, a 26-year-old female who had also penetrating keratoplasty was fitted with a hydrogel toric lens of high cylinder in the right eye. The final hydrogel lenses for the first subject incorporated a custom tricurve design, in which the second curve was steeper than the base curve and the third curve flatter than the second but still steeper than the first. Visual acuity was 6/7.5 RE and a mediocre 6/15 LE (OU 6/7.5). The second subject achieved 6/4.5 acuity RE with the high cylinder hydrogel toric lens. In corneas exhibiting extreme protrusion, such as keratoglobus and some cases after penetrating keratoplasty, curvatures are so extreme and the cornea so globular leading to specific fitting options: sclerals, small diameter RGPs and reverse geometry hydrogel lenses, in order to improve lens and optical stability. In selected cases such as the above, large diameter inverse geometry RGP may be fitted only if the eyelid shape and tension permits so. The first case demonstrates that the option of hydrogel lenses is viable when the patient has no interest in RGPs and in certain cases can improve vision to satisfactory levels. In other cases, graft toricity might be so high that the practitioner will need to employ hydrogel torics with large amounts of cylinder in order to correct vision. In such cases, the patient should be closely monitored in order to avoid complications from hypoxia.

  15. Effect of diabetes mellitus on biomechanical parameters of the cornea.

    Science.gov (United States)

    Goldich, Yakov; Barkana, Yaniv; Gerber, Yariv; Rasko, Adi; Morad, Yair; Harstein, Morris; Avni, Isaac; Zadok, David

    2009-04-01

    To compare parameters of biomechanical response of the human cornea measured as corneal hysteresis (CH) and corneal resistance factor (CRF) in patients with diabetes mellitus and healthy control subjects. Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, Israel. In the right eye of each participant, the CH, CRF, Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated intraocular pressure (IOPcc) were measured with the Ocular Response Analyzer. Central corneal thickness (CCT) was measured by ultrasonic pachymetry and intraocular pressure by Goldmann applanation tonometry (IOP GAT). Findings were compared between the 2 groups (control and diabetic). Forty diabetic patients (17 women, 23 men) and 40 healthy subjects (19 women, 21 men) were prospectively recruited. The mean CH was 9.3 mm Hg +/- 1.4 (SD) and 10.7 +/- 1.6 mm Hg and the mean CRF was 9.6 +/- 1.6 mm Hg and 10.9 +/- 1.7 mm Hg in the control group and diabetic group, respectively (both P corneas were significantly thicker (P = .019); the mean CCT was 530.3 +/- 35.9 microm in the control group and 548.7 +/- 33.0 microm in the diabetic group. The CH and CRF remained significantly different in multivariate analysis that included CCT. There was no statistically significant difference between the 2 groups in IOPcc, IOPg, or IOP GAT measurements. Diabetes mellitus affected biomechanical parameters of the human corneas, including increased CH, CRF, and CCT. Whether this observation has implications in the clinical management and understanding of corneal ectasia and glaucoma requires further study.

  16. Axial Lengths in Children with Recessive Cornea Plana.

    Science.gov (United States)

    Al Hazimi, Amro; Khan, Arif O

    2015-06-01

    While flat keratometry contributes to the hyperopia and associated refractive accommodative esotropia that is part of recessive cornea plana, whether or not axial lengths are abnormally short in the disease is unclear. In this study we assess this possibility. Prospective (2010-2012) axial length measurement (IOLmaster; Carl Zeiss, Oberkochen, Germany) of affected right eyes and comparison to right eyes with refractive accommodative esotropia only. Keratometry and refraction were also performed. For eight affected right eyes (age 10-12 years; seven families) axial length ranged from 21.46-24.80 mm (mean 23.34). Best corrected visual acuity ranged from 20/25 to 20/50, keratometry from 25.33-39.80 diopters (D) [mean 31.80], and refraction from +2.00 to +14.00 D (mean +7.22). For 50 control right eyes (age 4-12 years), axial length ranged from 19.87-23.66 mm (mean 21.6). Best-corrected visual acuity was 20/25 or better, keratometry ranged from 39.81-46.25 D (mean 42.42), and refraction from +2.25 to +8.00 D (mean 4.71). Axial lengths were longer in the affected group (2-tailed unpaired t-test p value 0.000005) despite greater hyperopia (2-tailed unpaired t-test p value 0.001). Despite greater hyperopia, axial lengths were longer in eyes with recessive cornea plana, evidence that axial lengths are not shortened by the disease. Keratometry in children with cornea plana was below the range of controls and was the major factor underlying the phenotype's hyperopia.

  17. Effects of polysialic acid on sensory innervation of the cornea.

    Science.gov (United States)

    Mao, Xiuli; Zhang, Yuntao; Schwend, Tyler; Conrad, Gary W

    2015-02-15

    Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-d-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Brittleness modelling of shale gas reservoir: Case study of Pematang formation, Central Sumatera basin

    Science.gov (United States)

    Haris, A.; Iskandarsyah, Riyanto, A.

    2017-07-01

    The Pematang formation, which is located at Central Sumatera basin become the prospective shale gas reservoir in the Kisaran area. It is shown by a large potential amount of gas and oil in place. However, there is still a lack of information about the shale properties in this field so it becomes a big challenge for developing the shale gas exploration. Based on the core and petrophysical analysis, it is shown that the formation is dominated by shale and some part is laminated by sand layers. There is a significantly large deposit of shale underneath sand layer. This paper aims to perform the brittleness modeling, which is based on the integration of geophysical and geomechanical data. In the application, the brittleness distribution map is used to delineate the brittle zone of the shale reservoir that has potential to be fractured by using an artificial hydraulic fracturing. The brittleness modeling is performed by using Statistic Linear Gaussian Simulation (SLGS) approach based on the 3D seismic data and the well log data. The brittleness map shows that the potential shale reservoir to be fractured, which is indicated by brittleness index greater than 0.5, is distributed in the eastern part and the north-eastern part of the study area at the depth range of 6308 feet to 7432 feet.

  19. Influence of the brittle behavior of work materials on polishing characteristics

    Science.gov (United States)

    Sakamoto, Satoshi; Gemma, Masaya; Hayashi, Keitoku; Kondo, Yasuo; Yamaguchi, Kenji; Yakou, Takao; Arakawa, Susumu

    2017-09-01

    Diamond electrodeposited wire tools are frequently used to cut thin wafers from hard and brittle materials. However, microcracks sometimes appear during the slicing process. The appearance of microcracks adversely affects slicing efficiency and slicing accuracy. In this study, we examine the influence of brittle behavior on the polishing characteristics such as polishing depth and tool wear. This is the first step toward investigating the influence of the brittle behavior of work materials on slicing characteristics. Ceramics such as alumina, silicon carbide, and zirconia are used as work materials. Even with the same degree of hardness, we found that the polishing depth values were greater for materials exhibiting brittle behavior. In the polishing of high-hardness materials, abrasive grains were badly damaged during the initial stages of polishing. Damage to the abrasive paper was less in wet polishing as compared with dry polishing. Moreover, wet polishing had a greater polishing depth than dry polishing. The polishing characteristics of the brittle materials were similar to the grooving characteristics produced using wire tools; however, both these characteristics depend on the brittle behavior of the work materials. Therefore, by performing simple polishing tests, estimating the state of grooving or slicing using wire tools is possible.

  20. A brittle star-like robot capable of immediately adapting to unexpected physical damage

    Science.gov (United States)

    Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio

    2017-01-01

    A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star—a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion. PMID:29308250

  1. Brittleness and Packing Density Effects on Blast-hole Cuttings Yield of Selected Rocks

    Directory of Open Access Journals (Sweden)

    B. Adebayo

    2016-06-01

    Full Text Available This paper evaluates brittleness and packing density to analysis their effects on blast-hole cutting yield for three selected rocks in Nigeria. Brittleness test (S20 was carried out in accordance with Norwegian Soil and Rock Engineering and the Brittleness Index (BI for the selected rocks were estimated. The packing density determined from the photomicrograph of the rock samples. The grain size of 45 blast-holes drill cuttings collected from three selected while drilling of these rocks were determined using standard method of America Society for Testing and Materials (ASTM D 2487. The brittleness values are 50%, 44% and 42% for micro granite, porphyritic granite and medium biotite granite respectively. The result of BI varied from 10.32 – 11.59 and they are rated as moderately brittle rocks. The values of packing density varied from 92.20 – 94.55%, 91.00 -92.96% and 92.92 – 94.96% for all the rocks. The maximum weights of blast-hole particle size retained at 75 µm are 106.00g, 103.28 g and 99.76 g for medium biotite granite, micro granite and porhyritic granite respectively. Packing density values have correlation to some extent with (S20 values hence, this influence the yield of blast-hole cuttings as drilling progresses. The minimum weight of blast-hole cuttings particle size retained at 150 µm agrees with brittleness index classification for micro granite.

  2. Brittle materials at high-loading rates: an open area of research

    Science.gov (United States)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  3. [Comparing cryopreserved with fresh corneas on clinical application in penetrating keratoplasty].

    Science.gov (United States)

    Xu, L; Chen, J; Hung, T

    2001-06-01

    To evaluate the role of cryopreserved corneas on penetrating keratoplasty (PKP) by comparing them with fresh corneas on clinical application. Third-six excellent condition patients were chosen and randomly divided into two groups. They were performed PKP by using fresh and cryopreserved corneas respectively. The graft transparency, epithelial healing speed of graft, tear membrane, graft thickness, endothelium density and visual acurity were emphasized respectively. When fresh and cryopreserved corneas were used on PKP as the donor respectively, postoperative time to recover normal break-up time (BUT) was two to six months average (4.7 +/- 0.3) months and two to eight months, average (5.6 +/- 0.4) months and time to recover normal Schirmer's test was one to four months average (2.1 +/- 0.3) months and 1-3.5 months, average (1.7 +/- 0.5) months. The graft's thickness, stabilized visual acurity and graft's rejective rate were 0.56-0.68 mm (average 0.62 mm) vs 0.54-0.62 mm (average 0.59 mm), (0.46 +/- 0.03) vs (0.44 +/- 0.05) and 20% vs 19% respectively when fresh vs cryoperserved corneas. No statistical significance between fresh and cryopreserved corneas (P > 0.05). But the grafts behaved intact epithelium and continuing transparency when fresh corneas as donors, while the graft's epithelial defects healed after three to five days of the operation and edematous grafts were reclear after two to three weeks of the operation when cryopreserved corneas as donors. Graft's endothelium density in fresh corneas group 2,043-2,210 cells/mm2 (average 2,135 cells/mm2) was high than in cryopreserved corneas 1,240-1,860 cells/mm2 (average 1,672 cells/mm2) (P healing was delayed and endothelium density was lower when cryopreserved corneas as donors.

  4. The lens regenerative competency of limbal vs. central regions of mature Xenopus cornea epithelium

    Science.gov (United States)

    Hamilton, Paul W.; Henry, Jonathan J.

    2016-01-01

    The frog, Xenopus laevis, is capable of completely regenerating a lens from the cornea epithelium. Because this ability appears to be limited to the larval stages of Xenopus, virtually all the work to understand the mechanisms regulating this process has been limited to pre-metamorphic tadpoles. It has been reported that the post-metamorphic cornea is competent to regenerate under experimental conditions, despite the fact that the in vivo capacity to regenerate is lost; however, that work didn’t examine the regenerative potential of different regions of the cornea. A new model suggests that cornea-lens regeneration in Xenopus may be driven by oligopotent stem cells, and not by transdifferentiation of mature cornea cells. We investigated the regenerative potential of the limbal region in post-metamorphic cornea, where the stem cells of the cornea are thought to reside. Using EdU (5-Ethynyl-2’-deoxyuridine), we identified long-term label retaining cells in the basal cells of peripheral post-metamorphic Xenopus cornea, consistent with slow-cycling stem cells of the limbus that have been described in other vertebrates. Using this data to identify putative stem cells of the limbal region in Xenopus, we tested the regenerative competency of limbal regions and central cornea. All three regions showed a similarly high ability for the cells of the basal epithelium to express lens proteins when cultured in proximity to larval retina. Thus, the regenerative competency in post-metamorphic cornea is not restricted to stem cells of the limbal region, but also occurs in the transit amplifying cells throughout the basal layer of the cornea epithelium. PMID:27569373

  5. Cost Minimization Analysis of Precut Cornea Grafts in Descemet Stripping Automated Endothelial Keratoplasty.

    Science.gov (United States)

    Yong, Kai-Ling; Nguyen, Hai V; Cajucom-Uy, Howard Y; Foo, Valencia; Tan, Donald; Finkelstein, Eric A; Mehta, Jodhbir S

    2016-02-01

    Descemet stripping automated endothelial keratoplasty (DSAEK) is the most common corneal transplant procedure. A key step in the procedure is preparing the donor cornea for transplantation. This can be accomplished via 1 of 3 alternatives: surgeon cuts the cornea on the day of surgery, the cornea is precut ahead of time in an offsite facility by a trained technician, or a precut cornea is purchased from an eye bank. Currently, there is little evidence on the costs and effectiveness of these 3 strategies to allow healthcare providers decide upon the preferred method to prepare grafts.The aim of this study was to compare the costs and relative effectiveness of each strategy.The Singapore National Eye Centre and Singapore Eye Bank performed both precut cornea and surgeon-cut cornea transplant services between 2009 and 2013.This study included 110 subjects who received precut cornea and 140 who received surgeon-cut cornea. Clinical outcomes and surgical duration were compared across the strategies using the propensity score matching. The cost of each strategy was estimated using the microcosting and consisted of facility costs and procedural costs including surgical duration. One-way sensitivity analysis and threshold analysis were performed.The cost for DSAEK was highest for the surgeon-cut approach ($13,965 per procedure), followed by purchasing precut corneas ($12,659) and then setting up precutting ($12,421). The higher procedural cost of the surgeon-cut approach was largely due to the longer duration of the procedure (surgeon-cut = 72.54 minutes, precut = 59.45 minutes, P cornea from eye bank. If there were more than 290 cases annually, the cheapest option would be to setup precutting facility.Our findings suggest that it is more efficient for centers that are performing a large number of cornea transplants (more than 290 cases) to set up their own facility to conduct precutting.

  6. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    Science.gov (United States)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  7. Prevalence and clinical consequences of herpes simplex virus type 1 DNA in human cornea tissues

    NARCIS (Netherlands)

    L. Remeijer (Lies); R. Duan (Rui); J.M. van Dun (Jessica); M.A.W. Bettink; A.D.M.E. Osterhaus (Albert); G.M.G.M. Verjans (George)

    2009-01-01

    textabstractBackground. We determined the prevalence and clinical consequences of herpes simplex virus (HSV) type 1 (HSV-1), HSV type 2 (HSV-2), and varicella-zoster virus (VZV) in cornea tissues obtained after penetrating keratoplasty (PKP) was performed. Methods. The excised corneas of 83 patients

  8. [Biomechanical condition of the cornea as a new indicator for pathological and structural changes].

    Science.gov (United States)

    Spörl, E; Terai, N; Haustein, M; Böhm, A G; Raiskup-Wolf, F; Pillunat, L E

    2009-06-01

    Several methods permit the measurement of geometric parameters of the cornea, but until now biomechanical conditions of the cornea have been ignored (e.g. in refractive corneal surgery). Besides the geometric condition, biomechanical properties of the cornea have been shown to influence applanation measurement of intra-ocular pressure (IOP) and epidemiological studies have identified corneal thickness as an independent risk factor for the development and progression of glaucoma. The aim of this investigation was to characterize the biomechanical properties of the cornea using the ocular response analyzer (ORA). The ocular response analyzer (ORA) is a new method available for non-contact measurement of the biomechanical properties of the cornea. We evaluated the reproducibility of measurements, the difference between static and dynamic factors and the impact of independent factors (e.g. IOP, age, CCT, swelling of the cornea) on 2,500 measurements of corneal hysteresis (CH) and corneal resistance factor (CRF). In a large sample size we observed changes in CH and CRF after refractive surgery procedures (LASIK, UV-A cross-linking, keratoplasty) and in other corneal disorders (keratoconus, corneal dystrophies). CRF and CH changes may reflect structural changes of the cornea. Thus, the ORA provides valuable information for a better understanding and characterization of the biomechanical condition of the cornea, especially with regard to diseases such as keratoconus and glaucoma.

  9. Identification of biomechanical properties of the cornea: the ocular response analyzer.

    Science.gov (United States)

    Terai, Naim; Raiskup, Frederik; Haustein, Michael; Pillunat, Lutz E; Spoerl, Eberhard

    2012-07-01

    Several methods have been devised for measuring geometric parameters of the cornea but, until now, the biomechanics of the cornea have been largely ignored. The relatively new Ocular Response Analyzer (ORA) provides such biomechanical information. In order to correctly interpret the underlying biomechanics of ORA data, we review reported ORA measurements and provide a compendium of factors influencing these measurements, with discussion of possible explanations for ORA measurement results. This review comprised a literature search using "ocular response analyzer" and "ocular response analyser" as keywords. We reviewed and compared reported results from recent ORA studies so obtained, with an eye to understanding corneal biomechanics. Several ORA biomechanical parameters of the cornea - corneal hysteresis (CH) and corneal resistant factor (CRF) - characterize the viscoelastic properties of the cornea, especially those of the ground substance. The impact on CH and CRF values of various independent factors, e.g. intraocular pressure (IOP), age, central corneal thickness (CCT), and corneal swelling, are discussed. The impact on CH and CRF of treatment-related structural changes of the cornea, i.e. those occurring after refractive surgical procedures, placement of intracorneal rings, and collagen crosslinking (CXL), as well as pathological changes of the cornea, e.g. those resulting from keratoconus, edema, and glaucoma, are discussed. Changes in CRF and CH may be reflective of structural changes in the ground substance of the cornea. Thus, ORA provides invaluable information for delineating biomechanical conditions pertaining to the cornea, with special regard to ocular diseases, e.g. keratoconus and glaucoma.

  10. Molecular cloning of a new angiopoietinlike factor from the human cornea

    NARCIS (Netherlands)

    Peek, R; van Gelderen, BE; Bruinenberg, M; Kijlstra, A

    PURPOSE. To isolate tissue-specific gene products that contribute to corneal integrity. METHODS. A cDNA library was constructed and differentially hybridized. Cornea-specific clones were purified and further characterized. RESULTS. In this study cornea-specific gene products were isolated by

  11. Xanthelasmata, arcus corneae, and ischaemic vascular disease and death in general population: prospective cohort study

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Frikke-Schmidt, Ruth; Schnohr, Peter

    2011-01-01

    To test the hypothesis that xanthelasmata and arcus corneae, individually and combined, predict risk of ischaemic vascular disease and death in the general population.......To test the hypothesis that xanthelasmata and arcus corneae, individually and combined, predict risk of ischaemic vascular disease and death in the general population....

  12. In silico investigation of cornea deformation during irrigation/aspiration in phacoemulsification in cataract surgery.

    Science.gov (United States)

    Bayatpour, Dariush; Abouali, Omid; Ghaffarieh, Alireza; Ahmadi, Goodarz

    2017-05-01

    To analyze the stress, strain and displacement of the human cornea under the action of negative intraocular pressure, which occurs during phacoemulsification in cataract surgery, a multidisciplinary approach including biomedical engineering, solid mechanics, numerical analysis, and fluid dynamics was used. Fluid-structure interaction method was implemented using 3-dimensional nonlinear finite element analysis of cornea tissue in conjunction with CFD analysis of anterior chamber fluid flow to study the deformation of the cornea under negative gage pressure during irrigation and aspiration (I/A). The computational model of the eye includes both cornea and sclera. To increase the accuracy of the computational model, both cornea hyperelasticity and thickness variation were included in the analysis. The simulation was performed for both coaxial and bimanual I/A systems with different flow rates. The cornea deformations for various flow rates were evaluated, and the possibility of an unstable anterior chamber was assessed. The results show that the critical pressure in the anterior chamber, which may lead to the surge condition due to buckling of the cornea, is sub-ambient (below zero gauge pressure). Anterior chamber instability occurs at higher volume flow rates for coaxial I/A system compared with that for bimanual system, but the deformation of the cornea is more intense for the bimanual system. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Method for optical coherence elastography of the cornea

    Science.gov (United States)

    Ford, Matthew R.; Dupps, William J.; Rollins, Andrew M.; Roy, Abhijit Sinha; Hu, Zhilin

    2011-01-01

    The material properties of the cornea are important determinants of corneal shape and refractive power. Corneal ectatic diseases, such as keratoconus, are characterized by material property abnormalities, are associated with progressive thinning and distortion of the cornea, and represent a leading indication for corneal transplantation. We describe a corneal elastography technique based on optical coherence tomography (OCT) imaging, in which displacement of intracorneal optical features is tracked with a 2-D cross-correlation algorithm as a step toward nondestructive estimation of local and directional corneal material properties. Phantom experiments are performed to measure the effects of image noise and out-of-plane displacement on effectiveness of displacement tracking and demonstrated accuracy within the tolerance of a micromechanical translation stage. Tissue experiments demonstrate the ability to produce 2-D maps of heterogeneous intracorneal displacement with OCT. The ability of a nondestructive optical method to assess tissue under in situ mechanical conditions with physiologic-range stress levels provides a framework for in vivo quantification of 3-D corneal elastic and viscoelastic resistance, including analogs of shear deformation and Poisson's ratio that may be relevant in the early diagnosis of corneal ectatic disease.

  14. Tectonic Lamellar Keratoplasty Using Cryopreserved Cornea in a Large Descemetocele.

    Science.gov (United States)

    Kim, Kang Yoon; Jung, Ji Won; Kim, Eung Kweon; Seo, Kyoung Yul; Kim, Tae Im

    2016-01-01

    We describe herein a case of an impending corneal perforation with a large descemetocele in a patient with previous penetrating keratoplasty (PKP) that subsequently was treated with an emergent lamellar keratoplasty using frozen preserved cornea. A 76-year-old male patient, who had a PKP, presented with a completely whitish and edematous graft accompanied by large epithelial defects. Although antibiotics and antiviral agents were tried for three days, the corneal stroma abruptly melted, except for the Descemet's membrane and endothelium. Cryopreserved corneal tissue that was kept at -80°C was thawed and sutured on top of the remaining Descemet's membrane and endothelium. Pathological and microbiological tests were conducted using the remaining donor and recipient corneal tissues. After tectonic corneal transplantation on top of a large descemetocele, a healthy graft and relatively clear interfaces between graft-host junctions were maintained without serious adverse reactions throughout 6 month follow-up period. Microbiological evaluations of donor tissue at the time of thawing and tissue preparation were done, and the results were all negative. Tissue that was taken intraoperatively from the recipient cornea also showed negative microbiological results. In conclusion, tectonic lamellar keratoplasty, using cryopreserved corneal tissue, only onto the remaining Descemet's membrane and endothelium in an emergent condition, was a safe and effective treatment.

  15. Biomechanical model of human cornea based on stromal microstructure.

    Science.gov (United States)

    Studer, H; Larrea, X; Riedwyl, H; Büchler, P

    2010-03-22

    The optical characteristics of the human cornea depends on the mechanical balance between the intra-ocular pressure and intrinsic tissue stiffness. A wide range of ophthalmic surgical procedures alter corneal biomechanics to induce local or global curvature changes for the correction of visual acuity. Due to the large number of surgical interventions performed every day, a deeper understanding of corneal biomechanics is needed to improve the safety of these procedures and medical devices. The aim of this study is to propose a biomechanical model of the human cornea, based on stromal microstructure. The constitutive mechanical law includes collagen fiber distribution based on X-ray scattering analysis, collagen cross-linking, and fiber uncrimping. Our results showed that the proposed model reproduced inflation and extensiometry experimental data [Elsheikh et al., Curr. Eye Res., 2007; Elsheikh et al., Exp. Eye Res., 2008] successfully. The mechanical properties obtained for different age groups demonstrated an increase in collagen cross-linking for older specimens. In future work such a model could be used to simulate non-symmetric interventions, and provide better surgical planning. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Flattening of the cornea after collagen crosslinking for keratoconus.

    Science.gov (United States)

    Koller, Tobias; Pajic, Bojan; Vinciguerra, Paolo; Seiler, Theo

    2011-08-01

    To identify preoperative parameters that may predict flattening of the keratoconic cornea after collagen crosslinking (CXL). Institut für Refraktive und Ophthalmo-Chirurgie (IROC), Zurich, Switzerland. Cohort study. Patients with verified progressive primary keratectasia received standard corneal CXL. Factors such as corrected distance visual acuity (CDVA) and Scheimpflug tomography (Pentacam) were used to follow the evolution from preoperatively to 12 months after CXL. Statistical analysis included U tests and Spearman rank correlation tests to detect risk factors for flattening of the keratoconus. The study enrolled 151 eyes of 151 patients; more than 80% completed the 12-month follow-up. The flattening rate (flattening of the maximum curvature >1.00 diopter [D]) was 37.7%. A preoperative maximum keratometry (K) reading of more than 54.00 D was identified as the only significant risk factor for this effect (odds ratio, 1.88; 95% confidence interval, 1.01-3.51). A restriction to corneas with a maximum K value greater than 54.00 D would have resulted in a significant flattening in 51% of the cases. Statistically significant flattening occurred during 1 year after CXL in more than 50% of cases when the preoperative maximum K reading was more than 54.00 D. None of the other preoperative parameters evaluated (eg, age, sex, diagnosis, CDVA, corneal shape factors) had a statistically significant impact on corneal flattening after CXL. Copyright © 2011. Published by Elsevier Inc.

  17. Laser thermokeratoplasty: determination of biomechanical properties of the cornea

    Science.gov (United States)

    Kampmeier, Juergen; Brinkmann, Ralf; Birngruber, Reginald

    1996-01-01

    Laser thermokeratoplasty (LTK) is a minimally invasive method to correct hyperopia and astigmatism. The alteration in refractive power of the eye is achieved by thermally induced shrinkage of stromal collagen in the corneal periphery with a mid-IR laser system ((lambda) equals 1.4 - 2.5 micrometers ) and thereby mechanically increasing the central corneal curvature. In order to evaluate the best choice of laser parameters and exposure geometry a mechanical model of the cornea, which is highly dependent on the material parameters of the corneal tissue, is to be developed. For this reason uniaxial tensile tests were performed on specimens of porcine cornea to determine their nonlinear stress-strain relations and their viscoelastic behavior. Laser induced stress has been measured while corneal stripes were being exposed to a pulsed Cr:Tm:Ho:YAG laser ((lambda) equals 2.12 micrometers ) system. The stresses observed correlated just beyond the threshold qualitatively well with the number of applied pulses. For larger pulse energies the stress stabilized after a few pulses, which means further laser application could neither increase nor decrease the level of stress. After the end of the last laser pulse the specimens relaxed within several minutes down to a level of residual stress, which is probably to be held responsible for the refractive change in LTK.

  18. Spectral optical coherence tomography: a novel technique for cornea imaging.

    Science.gov (United States)

    Kaluzny, Bartłomiej J; Kaluzy, Bartłomiej J; Kałuzny, Jakub J; Szkulmowska, Anna; Gorczyńska, Iwona; Szkulmowski, Maciej; Bajraszewski, Tomasz; Wojtkowski, Maciej; Targowski, Piotr

    2006-09-01

    Spectral optical coherence tomography (SOCT) is a new, noninvasive, noncontact, high-resolution technique that provides cross-sectional images of the objects that weakly absorb and scatter light. SOCT, because of very short acquisition time and high sensitivity, is capable of providing tomograms of substantially better quality than the conventional OCT. The aim of this paper is to show the application of the SOCT to cross-sectional imaging of the cornea and its pathologies. Eleven eyes with different corneal pathologies were examined with a slit lamp and the use of a prototype SOCT instrument constructed in the Institute of Physics, Nicolaus Copernicus University, Toruń, Poland. Our SOCT system provides high-resolution (4 microm axial, 10 microm transversal) tomograms composed of 3000-5000 A-scans with an acquisition time of 120-200 ms. The quality of the images is adequate for detailed cross-sectional evaluation of various corneal pathologies. Objective assessment of the localization, size, shape, and light-scattering properties of the changed tissue is possible. Corneal and epithelial thickness and the depth and width of lesions can be estimated. SOCT technique allows acquiring clinically valuable cross-sectional optical biopsy of the cornea and its pathologies.

  19. Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model

    OpenAIRE

    Yoshihide Hashimoto; Shinya Hattori; Shuji Sasaki; Takako Honda; Tsuyoshi Kimura; Seiichi Funamoto; Hisatoshi Kobayashi; Akio Kishida

    2016-01-01

    The decellularized cornea has received considerable attention for use as an artificial cornea. The decellularized cornea is free from cellular components and other immunogens, but maintains the integrity of the extracellular matrix. However, the ultrastructure of the decellularized cornea has yet to be demonstrated in detail. We investigated the influence of high hydrostatic pressure (HHP) on the decellularization of the corneal ultrastructure and its involvement in transparency, and assessed...

  20. Aqueous humour dynamics in anterior chamber under influence of cornea indentation

    Science.gov (United States)

    Zuhaila, I.; Jiann, L. Y.; Sharidan, S.; Fitt, A.

    2017-04-01

    The existing temperature different between the cornea and the pupil induces the aqueous humour (AH) to circulate in the anterior chamber (AC). The buoyancy forces produced by the temperature gradient has driven the AH to flow. Previous studies have shown that cornea indentation changes the structure of the AC. This imply that the cornea indentation may change the fluid flow behaviour in the AC. A mathematical model of AH flow has been developed in order to analyse the fluid mechanics concerning the indentation of the cornea. Naiver-Stokes equations is used to describe the flow of AH in the AC. The governing equations have been solved numerically using finite element method. The results show that the cornea indentation has slow down the circulation the AH in the AC.

  1. The Anti-Proliferative and Anti-Angiogenic Effect of the Methanol Extract from Brittle Star

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2015-05-01

    Full Text Available Background: Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. Methods: The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 μg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05. Results: Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05. Conclusion: These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  2. Evaluation of the efficacy of excimer laser ablation of cross-linked porcine cornea.

    Directory of Open Access Journals (Sweden)

    Shihao Chen

    Full Text Available BACKGROUND: Combination of riboflavin/UVA cross-linking (CXL and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking. METHODS AND FINDINGS: The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ± 0.5, ± 1.0, ± 1.5, ± 2.0, and ± 2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001 in the overall ablation depth between the CXL-half corneas (158 ± 22 µm and the control-half corneas (174 ± 26 µm. The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001. CONCLUSION: The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas.

  3. The location- and depth-dependent mechanical response of the human cornea under shear loading.

    Science.gov (United States)

    Sloan, Stephen R; Khalifa, Yousuf M; Buckley, Mark R

    2014-10-30

    To characterize the depth-dependent shear modulus of the central and peripheral human cornea along the superior-inferior and nasal-temporal directions with a high spatial resolution. Cylindrical explants from the central and peripheral corneas of 10 human donors were subjected to a 5% shear strain along the superior-inferior and nasal-temporal directions using a microscope-mounted mechanical testing device. Depth-dependent shear strain and shear modulus were computed through force measurements and displacement tracking. The shear modulus G of the human cornea varied continuously with depth, with a maximum occurring roughly 25% of the way from the anterior surface to the posterior surface. G also varied with direction in the superior region and (at some depths) was significantly higher for superior-inferior shear loading. In the anterior half of the cornea, the shear modulus along the nasal-temporal direction (GNT) did not vary with location; however, the superior region had significantly higher GNT in posterior cornea. In contrast, the shear modulus along the superior-inferior direction (GSI) was independent of location at all depths. This study demonstrates that the peak shear modulus of the human cornea occurs at a substantial distance within the corneal stroma. Depth-dependent differences between central and peripheral cornea possibly reflect the location-dependent mechanical environment of the cornea. Moreover, the cornea is not a transverse isotropic material, and must be characterized by more than a single shear modulus due to its dependence on loading direction. The material properties measured in this study are critical for developing accurate mechanical models to predict the vision-threatening morphological changes that can occur in the cornea. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. The viscous to brittle transition in eruptions of clay suspensions

    Science.gov (United States)

    Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben; Jolly, Art; Dingwell, Donald B.

    2017-04-01

    solid-like behaviour is a viscous to brittle transition and occurs between a kaolin mass fraction of 0.48 and 0.65, which is consistent with previous observations of the liquid and plastic rheological limits, respectively. We find that a Stokes' number balances the timescale of flow with the timescale of particle motion opposing flow. We suggest that the transition from regime 1 to regime 2 occurs when the relative velocity between the ejected material and the gas phase increases and the Stokes' number exceeds 1, leading to decoupling and shear-stresses at the ejected fluid interfaces. A capillary number characterizes the transition from elongated liquid structures (regime 2) to individual droplets (regime 3) in the liquid-dominated system when the relative velocity drops to a value at which surface tension can restore the droplets to spherical. Our results emphasize that the different rheology of muddy material exhibit different characteristic eruption styles and offers a way to classify them.

  5. On catastrophic fracture of steel structures at temperatures lower than cold brittleness threshold

    Science.gov (United States)

    Kornev, V. M.

    2017-10-01

    The paper considers crack propagation in elements of homogeneous steel structures and those with welded joints. For analysis of failure of the structures, diagrams of quasi-brittle fracture have been plotted. When constructing quasi-brittle fracture diagrams, the model of elastic-plastic material having an ultimate strain was used. The data report for quasi-brittle fracture diagrams of common elements of structures has been given. Analysis of parameters used in the proposed model was carried out for temperatures near or lower the brittleness threshold. Parameters of the model are selected from two laboratory experiments (critical stress intensity factor and classical stress-strain diagram) performed at appropriate temperatures. It has been established that weld structures with cracks in the vicinity of a welded joint exhibit decreased crack toughness. The effect of structure break under monotonic loading conditions is clearly visible inasmuch as ultimate loads essentially decrease with increasing a crack length. The attention is given to the parameter characterizing plastic material deformation and exhaustion of plasticity resource under preliminary plastic material deformation. After the plasticity resource is exhausted, the temperature of brittleness threshold approaches a room temperature.

  6. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    Science.gov (United States)

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (pstar extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (pstar methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  7. Brittle Rock Modeling Approach and its Validation Using Excavation-Induced Micro-Seismicity

    Science.gov (United States)

    Ma, Chun-Chi; Li, Tian-Bin; Xing, Hui-Lin; Zhang, Hang; Wang, Min-Jie; Liu, Tian-Yi; Chen, Guo-Qing; Chen, Zi-Quan

    2016-08-01

    With improvements to the bonded-particle model, a custom indicator of crack intensity is introduced to grade rock fractures accurately. Brittle fracturing of rock mass is studied using the bonded-particle model; here, "brittle" refers to the process where more energy is released towards making particles collide and disperse, and hence results in the quick emergence of "chain cracks". Certain principles concerning how to construct brittle rock are then proposed. Furthermore, a modeling approach for brittle rocks based on the adaptive continuum/discontinuum (AC/DC) method is proposed to aid the construction of large-scale models of tunnel excavations. To connect with actual tunneling conditions, fundamental mechanical properties, the mechanism for brittle fracturing, the joint distribution, and the initial stress field are considered in the modeling approach. Results from micro-seismic monitoring of a tunnel excavation confirmed the suitability of this modeling approach to simulate crack behavior, and results show that simulated cracking exhibit similar trends (evolution, location, and intensity) with micro-seismic cracking.

  8. Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells.

    Science.gov (United States)

    Yang, Xueyi; Moldovan, Nicanor I; Zhao, Qingmei; Mi, Shengli; Zhou, Zhenhui; Chen, Dan; Gao, Zhimin; Tong, Dewen; Dou, Zhongying

    2008-06-05

    It is crucial for the treatment of severe ocular surface diseases such as Stevens-Johnson syndrome (SJS) and ocular cicatricial pemphigoid (OCP) to find strategies that avoid the risks of allograft rejection and immunosuppression. Here, we report a new strategy for reconstructing the damaged corneal surface in a goat model of total limbal stem cell deficiency (LSCD) by autologous transplantation of epidermal adult stem cells (EpiASC). EpiASC derived from adult goat ear skin by explant culture were purified by selecting single cell-derived clones. These EpiASC were cultivated on denuded human amniotic membrane (HAM) and transplanted onto goat eyes with total LSCD. The characteristics of both EpiASC and reconstructed corneal epithelium were identified by histology and immunohistochemistry. The clinical characteristic of reconstructed corneal surface was observed by digital camera. Ten LSCD goats (10 eyes) were treated with EpiASC transplantation, leading to the restoration of corneal transparency and improvement of postoperative visual acuity to varying degrees in 80.00% (8/10) of the experimental eyes. The corneal epithelium of control groups either with HAM transplantation only or without any transplantation showed irregular surfaces, diffuse vascularization, and pannus on the entire cornea. The reconstructed corneal epithelium (RCE) expressed CK3, CK12, and PAX-6 and had the function of secreting glycocalyx-like material (AB-PAS positive). During the follow-up period, all corneal surfaces remained transparent and there were no serious complications. We also observed that the REC expressed CK1/10 weakly at six months after operation but not at 12 months after operation, suggesting that the REC was derived from grafted EpiASC. Our results showed that EpiASC repaired the damaged cornea of goats with total LSCD and demonstrated that EpiASC can be induced to differentiate into corneal epithelial cell types in vivo, which at least in part correlated with down

  9. Hard contact lens-induced metabolic changes in rabbit corneas.

    Science.gov (United States)

    Tsubota, K; Kenyon, K R; Cheng, H M

    1989-11-01

    The biochemistry of contact lens-cornea interaction is not well understood, although previous studies have suggested that corneal metabolic changes may be the underlying factor in morphological alterations. Using a rabbit model, this interaction has been examined with 31P nuclear magnetic resonance (NMR) spectroscopy, which detects signals principally from the epithelium. The examination was supplemented with electron microscopy and histochemistry. Polymethylmethacrylate lenses caused reversible changes, including activation of anaerobic glycolysis and disturbance of membrane metabolite levels. These changes were far more severe than those occurring during prolonged eye closure. There appears to be an association between cellular deterioration and loss of membrane metabolites. On the other hand, oxygen-permeable silicone lenses allowed maintenance of nearly normal metabolic patterns. These results show multifaceted corneal response to hard contact lens wear.

  10. Polymicrobial Infection of the Cornea Due to Contact Lens Wear.

    Science.gov (United States)

    Sızmaz, Selçuk; Bingöllü, Sibel; Erdem, Elif; Kibar, Filiz; Koltaş, Soner; Yağmur, Meltem; Ersöz, Reha

    2016-04-01

    A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive for Pseudomonas aeruginosa; cultures from the contact lenses, lens solution and storage case of both eyes revealed Pseudomonas aeruginosa and Alcaligenes xylosoxidans. Polymerase chain reaction of the corneal scraping was positive for Acanthameoba. The topical antibiotics were changed with ones that both bacteria were sensitive to and anti-amoebic therapy was added. The patient had two recurrences following initial presentation despite intensive therapy. Keratitis occurred due to multiple pathogens; the relapsing course despite adequate therapy is potentially associated with this polymicrobial etiology.

  11. Tissue Engineering the Cornea: The Evolution of RAFT

    Directory of Open Access Journals (Sweden)

    Hannah J. Levis

    2015-01-01

    Full Text Available Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT. The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.

  12. Unraveling Brittle-Fracture Statistics from Intermittent Patterns Formed During Femtosecond Laser Exposure

    Science.gov (United States)

    Athanasiou, Christos-Edward; Hongler, Max-Olivier; Bellouard, Yves

    2017-11-01

    Femtosecond-laser-written patterns at the surface of brittle materials may show at random times spontaneous alternations from regular to disordered structures and vice versa. Here, we show that these random transitions carry relevant statistical information, such as the Weibull parameters characterizing the fracture of brittle materials. The regular-erratic cycles of random lengths of the observed patterns suggests a phenomenological analogy with the idle and busy periods arising in queuing systems. This analogy enables us to establish experimentally that the random durations of the successive cycles are statistically independent. Based on these observations, we propose an experimental method bypassing the need for many specimens to build up statistically relevant ensembles of fracture tests. Our method is potentially generic, as it may apply to a broad number of brittle materials.

  13. Cornea donors who have had prior refractive surgery: data from the Eye Bank Association of America.

    Science.gov (United States)

    Fargione, Robert A; Channa, Prabjot

    2016-07-01

    Millions of Americans have undergone refractive surgeries, including radial keratotomy, photorefractive keratectomy, and laser-assisted in situ keratomileusis. Eye Bank Association of America medical standards do not permit corneas from patients who have undergone refractive procedures to be used in penetrating keratoplasty, anterior lamellar keratoplasty, or tectonic grafting procedures. Such corneas, can, however, be used for endothelial corneal transplantation. The objective of this article is to provide an update on current trends for the screening and usage of corneas that have undergone refractive surgery. Several case reports have highlighted the difficulty in using postrefractive surgery corneas in penetrating keratoplasty. However, tissue with anterior stromal flaws, including a history of refractive surgery, has been used in endothelial keratoplasty with equivalent outcomes in topography, endothelial cell count, and visual acuity. Many modalities for proper identification of postmortem donor corneas that have undergone refractive surgery have been studied. Corneas with a history of refractive surgery have found use in endothelial keratoplasty. Multiple objective methods of tissue identification have been investigated to avoid the use of these corneas in penetrating or anterior keratoplasty surgeries.

  14. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering.

    Science.gov (United States)

    Du, Liqun; Wu, Xinyi

    2011-07-01

    Our aim was to produce a natural, acellular matrix from porcine cornea for use as a scaffold in developing a tissue-engineered cornea replacement. Full-thickness, intact porcine corneas were decellularized by immersion in 0.5% (wt/vol) sodium dodecyl sulfate. The resulting acellular matrices were then characterized and examined specifically for completeness of the decellularization process. Histological analyses of decellularized corneal stromas showed that complete cell and α-Gal removal was achieved, while the major structural proteins including collagen type I and IV, laminin, and fibronectin were retained. DAPI staining did not detect any residual DNA within the matrix, and the DNA contents, which reflect the presence of cellular materials, were significantly diminished in the decellularized cornea. The collagen content of the decellularized cornea was well maintained compared with native tissues. Uniaxial tensile testing indicated that decellularization did not significantly compromise the ultimate tensile strength of the tissue (P > 0.05). In vitro cytotoxicity assays using rabbit corneal fibroblast cultures excluded the presence of soluble toxins in the biomaterial. In vivo implantation to rabbit interlamellar stromal pockets showed good biocompability. In summary, a full-thickness natural acellular matrix retaining the major structural components and strength of the cornea has been successfully developed. The matrix is biocompatible with cornea-derived cells and has potential for use in corneal transplantation and tissue-engineering applications. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. [Relationship between corneal neovascularization and various relevant biological factors in surrounding cornea stroma of rats].

    Science.gov (United States)

    Wang, Ting; Shi, Wei-yun; Li, Su-xia; Liu, Ming-na

    2009-02-01

    To study the relationship between corneal neovascularization and various biological factors in corneal stroma of rats. It was an experimental study. Corneal neovascularization was induced by alkali burn in 40 rats. Transforming growth factor-beta1 (TGF-beta1), alpha-smooth muscle actin (alpha-SMA) and fibroblast activation protein (FAP) in the stroma surrounding corneal neovascularization were detected by immunohistochemical studies on day 1, 3 and 7 after chemical burn. Platelet-endothelial cell adhesion molecule-1 (CD31) was used to identify the vascular endothelial cells. RT-PCR was used to identify FAP in the cornea 3 and 7 days after chemical burn. Picrosirius staining and polarization microscopy were used to detect changes of collagen types I and III in the cornea. After alkali burn, TGF-beta1 was first expressed in the cornea stroma. Then, some stroma cells expressed both alpha-SMA and FAP. The FAP(+) keratocytes were found surrounding the CD31(+) endothelium of angiogenesis. RT-PCR study showed that FAP mRNA was only present in neovascularized cornea and not in normal cornea. Polarization microscopy revealed that the collagen types I and III were rearranged in neovascularized cornea. Various biological factors in corneal stroma are changed when the cornea shows neovascularization. FAP(+) keratocytes are present in the stroma, and the appearance of these cells parallels the growth of vascular endothelial cells. Collagen types I and III are rearranged during the process of angiogenesis.

  16. Preliminary study on the effect of stiffness on lamb wave propagation in bovine corneas.

    Science.gov (United States)

    Zhang, Xin-Yu; Yin, Yin; Guo, Yan-Rong; Diao, Xian-Fen; Chen, Xin

    2013-01-01

    The viscoelastic properties of human cornea could provide valuable information for various clinical applications. Particularly, it will be helpful to achieve a patient-specific biomechanical optimization in LASIK refractive surgery, early detection of corneal ecstatic disease or improved accuracy of intraocular pressure (IOP) measurement. However, there are few techniques that are capable of accurately assessing the corneal elasticity in situ in a nondestructive fashion. In order to develop a quantitative method for assessing both elasticity and viscosity of the cornea, we use ultrasound radiation force to excite Lamb waves in cornea, and a pulse echo transducer to track the tissue vibration. The fresh postmortem bovine eyes were treated via collagen cross-linking to make the cornea stiff. The effect of stiffness was studied by comparing the propagation of Lamb waves in normal and treated corneas. It was found that the waveform of generated Lamb waves changed significantly due to the increase in higher modes in treated corneas. This result indicated that the generated waveform was a complex of multiple harmonics and the varied stiffness will affect the energy distribution over different components. Therefore, it is important for assessing the viscoelastic properties of the cornea to know the components of Lamb wave and calculate the phase velocity appropriately.

  17. In vitro evaluation of the effect of tobacco smoke on rat cornea function.

    Science.gov (United States)

    Marzec, Ewa; Olszewski, Jan; Piątek, Jacek; Samborski, Włodzimierz; Sosnowski, Przemysław; Oleśków, Beata; Zawadziński, Jarosław; Florek, Ewa

    2012-01-01

    The influence of tobacco smoke on the dielectric properties of rat cornea were measured in vitro over the frequency range of the electric field of 500Hz-100kHz and in temperatures of the air from 25 to 150°C. The temperature dependencies of the loss tangent for both healthy and smoky cornea represent the relation between the energy lost and the energy stored in the epithelium-stromal-endothelium systems of the cornea. The differences between the healthy and the smoky cornea concerned the temperature ranges in which there appeared the decomposition of loosely-bound water and β-relaxation associated with polar side-chains relaxations on protein molecules of this tissue. The effect of smoke is manifested as a shift of the loss tangent peaks of these two processes towards higher temperatures, when compared with the control. The results are interpreted as caused by the toxic compounds of the tobacco smoke leading to higher ion transport in the nonhomogeneous structure of the cornea when compared to that of the control tissue. The activation energy of conductivity were similar for the healthy and smoky cornea as a consequence of the braking of hydrogen and Van der Waals bonds between loosely bound water, and the proteins of channels in the epithelium and endothelium. Recognition of the effect of frequency and temperature on the dielectric behaviour of the smoky cornea may be of interest for disease characterization of this tissue.

  18. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaffold.

    Science.gov (United States)

    Du, Liqun; Wu, Xinyi; Pang, Kunpeng; Yang, Yongmei

    2011-03-01

    To optimise a protocol to produce an acellular porcine cornea scaffold and investigate its mechanical integrity and biocompatibility. Fresh porcine corneas were decellularised with different detergents over a range of concentrations. Morphological and histological examinations were carried out to detect the major structure of the cornea. Completely acellular cornea scaffolds were subjected to uniaxial tensile testing and reseeding assay. Most protocols resulted in the retention of large numbers of whole cells and cell fragments. Only sodium dodecyl sulfate (SDS; 0.5% or 1%) resulted in total decellularisation at 24h. Histological analysis of the acellular matrix showed that the corneal stromal cells had been completely removed, collagen fibres were arranged in an orderly fashion, and Bowman's layer and Descemet's membrane were both intact after decellularisation. The ultimate tensile strength of acellular matrix treated with 0.5% SDS for 24h was not affected significantly compared with that of fresh cornea (p>0.05), whereas there was a significant difference between fresh cornea and cornea treated with 1% SDS (pcornea decellularisation. Biomechanical analysis and recellularisation showed that treatment with 0.5% SDS for 24h was optimal.

  19. Expression of cholecystokinin, gastrin, and their receptors in the mouse cornea.

    Science.gov (United States)

    Gonzalez-Coto, Ana F; Alonso-Ron, Carlos; Alcalde, Ignacio; Gallar, Juana; Meana, Álvaro; Merayo-Lloves, Jesús; Belmonte, Carlos

    2014-03-28

    Cholecystokinin (CCK) is a neuropeptide that has been identified in trigeminal ganglion neurons. Gastrin (GAST) is a related peptide never explored in the cornea. The presence and role of both gastrointestinal peptides in the cornea and corneal sensory neurons remain to be established. We explored here in mice whether CCK, GAST, and their receptors CCK1R and CCK2R are expressed in the corneal epithelium and trigeminal ganglion neurons innervating the cornea. We used RT-PCR analysis to detect mRNAs of CCK, GAST, CCK1R, and CCK2R in mouse cornea epithelium, trigeminal ganglia, and primary cultured corneal epithelial cells. Immunofluorescence microscopy was used to localize these peptides and their receptors in the cornea, cultured corneal epithelial cells, and corneal nerves, as well as in the cell bodies of corneal trigeminal ganglion neurons identified by retrograde labeling with Fast Blue. Mouse corneal epithelial cells in the cornea in situ and in cell cultures expressed CCK and GAST. Only the receptor CCK2R was found in the corneal epithelium. In addition, mouse corneal afferent sensory neurons expressed CCK and GAST, and the CCK1R receptors. The presence of CCK, GAST, and their receptors in the mouse corneal epithelium, and in trigeminal ganglion neurons supplying sensory innervation to the cornea, opens the possibility that these neuropeptides are involved in corneal neurogenic inflammation and in the modulation of repairing/remodeling processes following corneal injury.

  20. HSP47 expression in cornea after excimer laser photoablation.

    Science.gov (United States)

    Kasagi, Yasuo; Yamashita, Hidetoshi

    2002-01-01

    The expression of heat shock protein 47 (HSP47) was observed histologically to investigate the spatial and chronological effects of excimer laser photoablation. HSP47 expression after radial keratotomy (RK) was also investigated and compared with the effects after excimer laser photoablation. Twenty-eight male rabbits were used. The rabbits were divided with two groups and treated with either excimer laser photoablation or four radial incisions to simulate corneal refractive surgery. The chronological and spatial changes in the expression of HSP47 were observed immunohistochemically. In eyes that underwent excimer laser photoablation, HSP47 was detected in the basal layer of the epithelial cells and in the superficial stromal layer 3 days after surgery. After 5 and 7 days, HSP47 expression extended to the deep layer of the stroma and to the endothelial cells. After 14 days, HSP47 was detected only in the deep layer of the stroma and in the endothelial cells. After 28 days, HSP47 expression was reduced. In eyes that underwent RK, HSP47 was detected in the basal layer of the epithelial cells and in the stroma surrounding the wound 1 day after surgery. After 3 and 7 days, HSP47 expression did not expand further. After 28 days, HSP47 expression diminished. Excimer laser photoablation affects the whole layer of the cornea, and may be caused by the shock wave that occurs as a result of photoablation. In addition, interaction among the keratocytes may propagate the stress-induced response to the whole layer of the cornea. With RK, the wound is smaller and deeper. HSP47 expression occurs earlier, but is limited to the area surrounding the wound.

  1. PROSE for irregular corneas at a tertiary eye care center.

    Science.gov (United States)

    Arumugam, Amudha Oli; Rajan, Rajni; Subramanian, Madhumathi; Mahadevan, Rajeswari

    2014-03-01

    The aim of this study was to report and discuss the clinical experience with PROSE (Prosthetic Replacement of Ocular Surface Ecosystem) practice at a tertiary eye care hospital. Retrospective data of patients who were prescribed PROSE during April 2011 to March 2012 in a tertiary eye care center in south India were analyzed. Data collected include patient demographics, indications of scleral lens fitting, previous correction modality, PROSE parameters, best-corrected visual acuity (BCVA) with spectacles, and BCVA with PROSE at initial assessment and few hours of wear. The BCVA before (with glasses) and after PROSE fitting was recorded in logMAR units. The age of the patients ranged between 13 and 68 years (male:female 60:25) with a mean age of 32.44±13.45 years. Mean BCVA improved by 0.3 logMAR units (3 lines) after fitting with PROSE. There was a statistically significant difference between pre- and post-PROSE BCVA (P=0.0001). Failure of rigid gas-permeable lens fitting or intolerance was the common indication for PROSE in corneas with irregular astigmatism (refractive conditions). The other reasons for which PROSE was prescribed were pain, photophobia, comfort, ghosting of images, and frequent loss of smaller lenses. Toric scleral haptic was indicated in 62 eyes. The diameter, vault, and haptic measurements of PROSE in ocular surface disorders were much less and flatter than that of refractive conditions. PROSE device is a very useful alternative for irregular corneas to improve visual acuity, to improve comfort, and for symptomatic relief.

  2. Extracellular matrix changes in human corneas after radial keratotomy.

    Science.gov (United States)

    Ljubimov, A V; Alba, S A; Burgeson, R E; Ninomiya, Y; Sado, Y; Sun, T T; Nesburn, A B; Kenney, M C; Maguen, E

    1998-09-01

    Extracellular matrix and basement membrane alterations were identified in human corneas after radial keratotomy. Ten normal and five radial keratotomy autopsy corneas (two at 6 months post surgery, and three at 3 years post surgery) were studied by immunofluorescence with antibodies to 28 extracellular matrix and basement membrane components. Outside of radial keratotomy scars, all studied components had a normal distribution. Of stromal extracellular matrix, only type III collagen accumulated around the scars. The basement membrane around epithelial plugs had a normal composition except for type IV collagen. Its alpha1-alpha2 chains, normally present only in the limbal basement membrane, appeared around all plugs. alpha3 and alpha4 chains were very weak or absent in these areas, contrary to nonscarred areas. This basement membrane pattern was similar to the normal limbal but not to the central corneal pattern. Keratin 3 also had a limbal-like, suprabasal expression in the plug epithelium. The stroma around the scars accumulated tenascin-C, fibrillin-1, types VIII and XIV collagen, all of which were absent from normal corneal basement membrane and extracellular matrix. Only tenascin-C showed less staining in anterior scars 3 years post surgery than 6 months post surgery, but still persisted in posterior scars. Incomplete scar healing was evident even 3 years post radial keratotomy. It was manifested by the accumulation of abnormal extracellular matrix in the anterior and posterior scars and by the limbal-like pattern of type IV collagen isoforms in the basement membrane around epithelial plugs. Copyright 1998 Academic Press.

  3. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas

    Directory of Open Access Journals (Sweden)

    Spadea L

    2012-11-01

    Full Text Available Leopoldo Spadea,1 Rita Mencucci21University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, Eye Clinic, L'Aquila, 2University of Florence, Department of Oto-Neuro-Ophthalmological Surgical Sciences, Eye Clinic, Florence, ItalyBackground: The purpose of this paper was to report the results of transepithelial corneal collagen cross-linking (CXL with modified riboflavin and ultraviolet A irradiation in patients affected by keratoconus, each with thinnest pachymetry values of less than 400 µm (with epithelium and not treatable using standard de-epithelialization techniques.Methods: Sixteen patients affected by progressive keratoconus with thinnest pachymetry values ranging from 331 µm to 389 µm underwent transepithelial CXL in one eye using a riboflavin 0.1% solution in 15% Dextran T500 containing ethylenediamine tetra-acetic acid 0.01% and trometamol to enhance epithelial penetration. The patients underwent complete ophthalmological examination, including endothelial cell density measurements and computerized videokeratography, before CXL and at one day, one week, and one, 6, and 12 months thereafter.Results: Epithelial healing was complete in all patients after one day of use of a soft bandage contact lens. No side effects or damage to the limbal region was observed during the follow-up period. All patients showed slightly improved uncorrected and spectacle-corrected visual acuity; keratometric astigmatism showed reductions (up to 5.3 D and apical ectasia power decreased (Kmax values reduced up to 4.3 D. Endothelial cell density was unchanged.Conclusion: Application of transepithelial CXL using riboflavin with substances added to enhance epithelial permeability was safe, seemed to be moderately effective in keratoconic eyes with ultrathin corneas, and applications of the procedure could be extended to patients with advanced keratoconus.Keywords: keratoconus, pachymetry, topography, transepithelial corneal collagen

  4. Collagen synthesized in fluorocarbon polymer implant in the rabbit cornea.

    Science.gov (United States)

    Drubaix, I; Legeais, J M; Malek-Chehire, N; Savoldelli, M; Ménasche, M; Robert, L; Renard, G; Pouliquen, Y

    1996-04-01

    The integration of microporous polymer into tissues is of great interest for the production of keratoprosthetic devices. Our previous studies showed functional differentiated cells and collagen synthesis in the pore of an expanded polytetrafluoroethylene implant. This study identifies and quantifies collagen types synthesized in the implant. Expanded polytetrafluoroethylene polymers were implanted in the rabbit corneas. The collagen extracted from the polymer and implanted stroma after 1, 3 and 6 months was quantified by measuring hydroxyproline. The relative proportions of collagen types were determined by densitometric analysis after SDS-PAGE. The collagen-to-protein ratio in the polymer increased from 0.22 to 0.70 between the first and third month after implantation becoming similar to control cornea. So that of the protein and collagen densities in the polymer and implanted stroma were similar to the control from the third month. The collagen synthesized in the polymer was mainly type I (87%) plus a small amount of type III (8%) 1 month after implantation. The collagen distribution from the third month after implantation was similar to that of the controls and remained constant thereafter in the polymer implant and in the implanted stroma. Immunogold labelling techniques confirmed these results. Implantation of this PTFE disc induced no obvious modification of the corneal stroma, confirming that this polymer is a good interface that is compatible with the native corneal stroma. The keratocytes in this polymer rapidly adopted a corneal phenotype, distinct from the dermal or scaring phenotype as shown by the collagen types produced in the implant.

  5. Irregular Corneas: Improve Visual Function With Scleral Contact Lenses.

    Science.gov (United States)

    de Luis Eguileor, Beatriz; Etxebarria Ecenarro, Jaime; Santamaria Carro, Alaitz; Feijoo Lera, Raquel

    2016-10-20

    To assess visual function in patients with irregular cornea who do not tolerate gas permeable (GP) corneal contact lenses and are fitted with GP scleral contact lenses (Rose K2 XL). In this prospective study, we analyzed 15 eyes of 15 patients who did not tolerate GP corneal contact lenses and were fitted with scleral contact lenses (Rose K2 XL). We assessed visual function using visual acuity and the visual function index (VF-14); we used the VF-14 as an indicator of patient satisfaction. The measurements were taken with the optical correction used before and 1 month after the fitting of the Rose K2 XL contact lenses. We also recorded the number of hours lenses had been worn over the first month. Using Rose K2 XL contact lenses, visual acuity was 0.06±0.07 logMAR. In all cases, visual acuity had improved compared with the measurement before fitting the lenses (0.31±0.18 logMAR; P=0.001). VF-14 scores were 72.74±12.38 before fitting of the scleral lenses, and 89.31±10.87 after 1 month of lens use (P=0.003). Patients used these scleral lenses for 9.33±2.99 comfortable hours of wear. Both visual acuity and VF-14 may improve after fitting Rose K2 XL contact lenses in patients with irregular corneas. In addition, in our patients, these lenses can be worn for a longer period than GP corneal contact lenses.

  6. Optically Sectioning Ocular Fluorometer Microscope: Applications To The Cornea

    Science.gov (United States)

    Masters, Barry R.

    1988-06-01

    An optically sectioning ocular fluorometer microscope is described with the capability of measuring the emission spectra of molecules in planes along the microscope axis. Its unique feature is that the objective is attached to a piezoelectric driver and scans from the tear film to the aqueous humor. This permits measurements on living animals and adoption for clinical use. The excitation light from a laser (nitrogen, dye, argon or helium cadmium) couples to the microscope via a quartz optical fiber. The light is projected through a 100 PM slit on the excitation side, through one half of the objective. The emitted light is collected by the second half of the objective and passes a second 100 pm slit in the conjugate plane of the eyepiece. The depth resolution is 6 um with an 100x objective, and 18 PM with a 50 power objective. The fluorescence is coupled by a quartz fiber to an optical spectrum analyzer. It consists of a monochromator with two microchannel plates attached to a linear diode array. The photocathode of the detector is gated for use with pulsed lasers or it can operate in the continuous mode. The applications include fluorescence measurements on thin layered structures. The present study involves the noninvasive measurement of oxidative metabolism of the component layers of the in vivo cornea. This is based on fluorescence measurements of the reduced pyridine nucleotide in the cornea. The fluorescence signals from the corneal epithelial (30 μm) and endothelial (4 μm) are clearly defined. Other applications to ophthalmology include studies of the fluorescence form the component layers of the ocular lens. Support from N.I.I. EY06958.

  7. Reversible steatohepatosis in a young boy with brittle type 1 diabetes mellitus: mauriac syndrome.

    Science.gov (United States)

    Shrivastava, Makardhwaj Sarvadaman; Palkar, Atul Vijay; Padwal, Namita J; Moulick, Nivedita

    2011-07-20

    A 14-year-old male, diagnosed case of type 1 diabetes mellitus since 1 year, presented with uncontrolled blood glucose levels, non-compliance with insulin therapy and recurrent admissions with diabetic ketoacidosis. His blood glucose levels were difficult to control with wide fluctuations in insulin requirement. He had absent secondary sexual characteristics and hepatomegaly. Liver biopsy showed macrovesicularsteatosis without fibrosis or inflammation. Many glycogenated nuclei were present. He was started on intensive insulin therapy, whereby he showed subsequent regression of hepatomegaly and onset of pubertal spurt.

  8. Melatonin Entrains PER2::LUC Bioluminescence Circadian Rhythm in the Mouse Cornea.

    Science.gov (United States)

    Baba, Kenkichi; Davidson, Alec J; Tosini, Gianluca

    2015-07-01

    Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock.

  9. Angiopoietin 2 expression in the cornea and its control of corneal neovascularisation.

    Science.gov (United States)

    Ferrari, Giulio; Giacomini, Chiara; Bignami, Fabio; Moi, Davide; Ranghetti, Anna; Doglioni, Claudio; Naldini, Luigi; Rama, Paolo; Mazzieri, Roberta

    2016-07-01

    To define proangiogenic angiopoietin 2 (ANG2) expression and role(s) in human and mouse vascularised corneas. Further, to evaluate the effect of ANG2 inhibition on corneal neovascularisation (CNV). CNV was induced in FVB mice by means of intrastromal suture placement. One group of animals was sacrificed 10 days later; corneas were immunostained for ANG2 and compared with (i) mouse non-vascularised corneas and (ii) human vascularised and non-vascularised corneas. A second group of CNV animals was treated systemically with an anti-ANG2 antibody. After 10 days, the corneas were whole-mounted, stained for CD31 and LYVE1 and lymphatic/blood vessels quantified. In another set of experiments, the corneal basal Bowman membrane was either (i) removed or (ii) left in place. After 2 or 10 days the corneas were removed and immunostained for collagen IV, ANG2, CD31, LYVE1, CD11b and MRC1 markers. In human beings and mice, ANG2 is expressed only in the epithelium, and, mildly, in the endothelium, of the avascular cornea. Instead, it is expressed in the epithelium, endothelium and stroma of vascularised corneas. Disruption of the Bowman membrane is associated with a significant increase of (i) ANG2 stromal expression and (ii) proangiogenic macrophage infiltration in the corneal stroma. Finally, blocking ANG2 significantly reduced hemangiogenesis, lymphangiogenesis and macrophage infiltration. Balancing proper healing and good vision is crucial in the cornea, constantly exposed to potential injuries. In this paper, we suggest the existence of a mechanism regulating the onset of inflammation (and associated CNV) depending on injury severity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Mechanical behavior of limestone undergoing brittle-ductile transition: experiments and model

    Science.gov (United States)

    Nicolas, Aurélien; Fortin, Jérôme; Verberne, Berend; Regnet, Jean-Baptiste; Plümper, Oliver; Dimanov, Alexandre; Spiers, Christopher; Guéguen, Yves

    2017-04-01

    With increasing confining pressure, carbonate rocks can undergo the brittle-ductile transition at room temperature. In order to examine the brittle-ductile transition, we performed constant strain rate triaxial deformation and stress-stepping creep experiments on Tavel limestone (porosity 14.7%) under various conditions. The evolution of elastic wave velocities were recorded during each experiment and inverted to crack densities. The constant strain rate triaxial experiments were performed for varying confining pressure from 5 to 90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. The latter is characterized by dilatancy due to crack propagation, leading to a stress drop at failure. For Pc≥70 MPa, the behavior is semi-brittle with elastic compaction followed by inelastic compaction, then leading to dilatancy and eventual failure. The semi-brittle behavior is characterized by diffuse deformation. Inelastic compaction is due to intra-crystalline plasticity (dislocation motions and twinning) and micro-cracking. Constant strain rates experiments were modelled taking into account (1) crack propagation from pre-existing flaws, (2) plastic pore collapse and (3) crack nucleation from dislocation pile-ups. The obtained model predictions are in good agreement with our experimental data. Stress stepping (creep) experiments were performed in a range of confining pressures crossing the brittle-ductile transition (from 20 to 85 MPa). In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack nucleation and/or propagation. In the semi-brittle regime, the first steps are inelastic compactant due to plastic pore collapse. All following stress steps are dilatant as a result of crack nucleation and/or propagation. In general, our results show that the axial strain rate is always controlled by plastic phenomena, until the last step, during which the axial strain

  11. Dual-path handheld system for cornea and retina imaging using optical coherence tomography

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Wijesinghe, Ruchire Eranga; Ravichandran, Naresh Kumar; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2017-04-01

    A dual-path handheld system is proposed for cornea and retina imaging using spectral domain optical coherence tomography. The handheld sample arm is designed to acquire two images simultaneously. Both eyes of a person can be imaged at the same time to obtain the images of the cornea of one eye and the retina of the other eye. Cornea, retina, and optic disc images are acquired with the proposed sample arm. Experimental results demonstrate the usefulness of this system for imaging of different eye segments. This system reduces the time required for imaging of the two eyes and is cost effective.

  12. Altered expression of type XIII collagen in keratoconus and scarred human cornea: Increased expression in scarred cornea is associated with myofibroblast transformation.

    Science.gov (United States)

    Määttä, Marko; Väisänen, Timo; Väisänen, Marja-Riitta; Pihlajaniemi, Taina; Tervo, Timo

    2006-05-01

    Type XIII collagen (ColXIII) is a transmembrane protein thought to be involved in cell-cell and cell-matrix interactions. We report here on its presence in the normal human cornea and compare the results for keratoconus and scarred corneas. Immunohistochemistry and in situ hybridization were applied to human corneal samples obtained by penetrating keratoplasty. In the normal human cornea, ColXIII was immunolocalized to the corneal epithelial cells, and to a lesser degree to the stromal keratocytes. The keratoconus cases showed otherwise similar results, but in areas containing Bowman membrane disruptions showed thinned epithelial cells reduced immunostaining for ColXIII, whereas occasionally pronounced immunoreactivity was seen in the stromal keratocytes. The corneal scar samples contained highly increased ColXIII immunostaining by stromal cells in the fibrotic foci, whereas the peripheral areas showed less intense immunostaining. In situ hybridization confirmed that the corneal epithelium and keratocytes actively synthesize the transcript. Immunostaining with alphaSMA revealed that a substantial proportion of the ColXIII mRNA-expressing cells in the stromal scar tissues was myofibroblasts and that these areas lack CD34 immunoreactivity. The results indicate that ColXIII, which is predominantly confined to the basal corneal cells in the normal cornea, may have a role in the adhesion of corneal epithelial cells to each other and to the underlying basement membrane. Additionally, highly increased expression in scarred corneas suggests that it participates in the corneal wound healing process.

  13. New strategy to study corneal endothelial cell transplantation: the chick cornea model.

    Science.gov (United States)

    Mangioris, Georgios; Chiodini, Florence; Dosso, Andre

    2011-12-01

    To set up a culture assay of chick corneal endothelial cells (CECs) for transplantation into host corneas. Histology sections were performed at 6, 9, 12, 15, and 18 embryonic days of development of the chick embryo. Visualization of the gross morphology of CECs and of epithelium, stroma, and Descemet membrane was performed. Transplantation of CECs at 18 embryonic days of development into explanted, denuded from endothelial cell, host corneas of the same stage was attempted. The results from the histological sections clearly indicate that after embryonic day 12, the endothelial cells are well differentiated and the proliferation is complete. Transplanted CECs were able to migrate and integrate into the denuded host corneas. This study demonstrated its feasibility using an easy accessible model of chick cornea. With this technique, sufficient CECs may be obtained for biochemical and functional investigations using only nonhatched chickens that are easily accessible and easy to manipulate.

  14. Successful treatment of Fusarium keratitis with cornea transplantation and topical and systemic voriconazole.

    NARCIS (Netherlands)

    Klont, R.R.; Eggink, C.A.; Rijs, A.J.M.M.; Wesseling, P.; Verweij, P.E.

    2005-01-01

    A case of invasive Fusarium keratitis in a previously healthy male patient was treated successfully with cornea transplantation and systemic and topical voriconazole after treatment failure with topical amphotericin B and systemic itraconazole. Topical voriconazole was well tolerated, and, in

  15. Air-puff OCE for assessment of mouse cornea in vivo

    Science.gov (United States)

    Li, Jiasong; Wang, Shang; Singh, Manmohan; Aglyamov, Salavat; Emelianov, Stanislav; Twa, Michael; Larin, Kirill V.

    2014-02-01

    We characterize the relaxation rates of deformations created by focused air puffs with the use of phasestabilized swept source optical coherence elastography (PhS-SSOCE) in tissue-mimicking gelatin phantoms of various concentrations and mouse corneas of different ages in vivo. The results indicate that gelatin of varying concentrations and corneas from different aged mice have different relaxation rates. In addition, the results show that phantoms with higher concentration gelatin and corneas of older mice have higher relaxation rates, which can be attributed to stiffer material. Because this method is non-contact, noninvasive, and utilizes a minimal force which induces a deformation on the scale of μm, this method can be used to study the biomechanical properties of sensitive tissues, such as the cornea.

  16. Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea

    OpenAIRE

    Park, Choul Yong; Lee, Jimmy K.; Chuck, Roy S.

    2015-01-01

    In this paper, we imaged human cornea using a second harmonic generation imaging technique. The horizontal collagen bundle arrangement of corneal stroma as a function of depth and location was analyzed.

  17. Constructing an in vitro cornea from cultures of the three specific corneal cell types.

    Science.gov (United States)

    Schneider, A I; Maier-Reif, K; Graeve, T

    1999-10-01

    This paper presents a reliable method for establishing pure cultures of the three types of corneal cells. This is believed to be the first time, corneal cells have been cultured from fetal pig corneas. Cell growth studies were performed in different media. Subcultures of the three corneal cell types were passaged until the 30th generation without their showing signs of senescence. For engineering an in vitro cornea, corneal epithelial cells were cultured over corneal stromal cells in an artificial biomatrix of collagen with an underlying layer of corneal endothelial cells. The morphology, histology, and differentiation of the in vitro cornea were investigated to determine the degree of comparability to the cornea in vivo. The in vitro construct displayed signs of transition to an organotypic phenotype of which the most prominent was the formation of two basement membranes.

  18. Keratan sulfate and dermatan sulfate proteoglycans associate with type VI collagen in fetal rabbit cornea

    National Research Council Canada - National Science Library

    Takahashi, T; Cho, HI; Kublin, CL; Cintron, C

    1993-01-01

    .... Because certain cytochemical data suggested that proteoglycans are associated with type VI collagen in the fetal rabbit cornea, we developed polyclonal antibodies specific to the core proteins of rabbit corneal KSPG...

  19. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea

    Directory of Open Access Journals (Sweden)

    Koon-Ja Lee

    2013-04-01

    Full Text Available To understand the corneal regeneration induced by bevacizumab,we investigated the structure changes of stroma andbasement membrane regeneration. A Stick soaked in 0.5 NNaOH onto the mouse cornea and 2.5 mg/ml of bevacizumabwas delivered into an alkali-burned cornea (2 μl by subconjunctivalinjections at 1 hour and 4 days after injury. At 7 daysafter injury, basement membrane regeneration was observedby transmission electron microscope. Uneven and thin epithelialbasement membrane, light density of hemidesmosomes,and edematous collagen fibril bundles are shown in thealkali-burned cornea. Injured epithelial basement membraneand hemidesmosomes and edematous collagen fibril bundlesresulting from alkali-burned mouse cornea was repaired bybevacizumab treatment. This study demonstrates that bevacizumabcan play an important role in wound healing in thecornea by accelerating the reestablishment of basementmembrane integrity that leads to barriers for scar formation.[BMB Reports 2013; 46(4: 195-200

  20. Damage Threshold of In Vivo Rabbit Cornea by 2 micron Laser Irradiation

    National Research Council Canada - National Science Library

    Chen, Bo; Oliver, Jeffery; Dutta, Soumak; Rylander, III, Grady H; Thomsen, Sharon L; Welch, Ashley J

    2007-01-01

    To support refinement of the Maximum Permissible Exposure (MPE) safety limits, a series of experiments were conducted in vivo on Dutch Belted rabbit corneas to determine corneal minimum visible lesion thresholds...

  1. The filtering, clear-cornea diathermal keratostomy: a minor Danish multicenter study

    DEFF Research Database (Denmark)

    Kessing, S.V.; Nissen, O.I.; Thygesen, J.

    2008-01-01

    PURPOSE: Is the new micropenetrating, clear-cornea procedure, intrastromal diathermal keratostomy (IDK), an alternative to the intricate "modern trabeculectomy"? METHODS: Prospective multicenter study. Four surgeons from 4 Danish eye departments attended an IDK course and subsequently decided when...

  2. Mottled cyan opacification of the posterior cornea in contact lens wearers.

    Science.gov (United States)

    Holland, E J; Lee, R M; Bucci, F A; Janda, A M; Doughman, D J; Harris, J K; Krachmer, J H

    1995-05-01

    We studied patients who had mottled cyan-colored opacities of the cornea to better understand the cause and prognosis of this entity. We reviewed examinations of patients who had a mottled cyan opacification of the cornea. Risk factors, including contact lens wear and exposure to heavy metals, were analyzed. Clinical findings, pachymetry specular microscopy, and progression of the abnormality were noted. Six patients who had a mottled cyan opacification at the level of Descemet's membrane were identified. These opacities were located in the peripheral and midperipheral cornea. All patients had bilateral findings, had visual acuities of 20/20 or better, and were asymptomatic. All patients had worn soft contact lenses bilaterally for periods ranging from seven to 14 years. All patients had the similar clinical appearance of a mottled cyan opacification at the level of Descemet's membrane in the peripheral cornea. Long-term contact lens wear appears to be associated; however, the exact cause is unclear.

  3. Bending and flexure of brittle materials through damage: A model for folding in the elastico- frictional domain

    Science.gov (United States)

    Manaker, D. M.; Turcotte, D. L.; Kellogg, L. H.

    2006-12-01

    Ductile behavior in rocks is often associated with plasticity due to dislocation motion or diffusion under high pressures and temperatures. However, ductile behavior can also occur in brittle materials. We consider a damage-based rheology for ductile behavior of the upper brittle crust. Damage has been used to describe inelastic behavior of solids in engineering, and covers a wide range of phenomena from microfracture in brittle materials to dislocation creep in the mantle. We apply continuum damage to describe the inelastic behavior of brittle materials and the temporal and spatial changes in rheology. We use this empirical method to simulate the bending of brittle layers under a constant bending moment and the flexure of a plate under a constant load. We introduce a yield stress below which damage does not occur. A damage variable α represents the degree of damage in the brittle material. Where α = 0 there is no damage, and where α = 1, failure occurs. We calculate quasi-elastostatic solutions and use the stresses and strains obtained from these solutions to obtain the damage rate dα/dt, which is proportional to powers of the excess stress and strain over the yield values. We investigate a wide range of behavior from slow relaxation to instantaneous failure. We obtain perfectly plastic behavior in brittle materials and develop fold hinges through damage mechanics. Thus continuum damage mechanics can be used to simulate ductile rheology in brittle materials analogous to folding due to cataclastic flow in the elastico-frictional regime.

  4. Comparison between frictional behavior of the soft and brittle materials at different contact pressures

    Directory of Open Access Journals (Sweden)

    Mehdi Eskandarzade

    2017-06-01

    Full Text Available Miavaghi, A. Kangarlou, H. and Eskandarzade, M. 2017. Comparison between frictional behavior of the soft and brittle materials at different contact pressures. Lebanese Science Journal. 18(1: 98-105. Coefficient of friction changed significantly by the change in contact pressure. Experimental measurement of the coefficient of friction in different contact pressures can be useful in numerical and analytical analysis of many engineering problems, such as metal forming process. This study dedicated to investigate the sensitivity of the friction coefficient to changes in contact pressures. To aim this goal the special tribometer device has been fabricated and the coefficient of friction of the soft and brittle metals when sliding with a low speed on a rigid body are measured for different contact pressures. The friction sensitivity of the soft (copper and aluminum and brittle (steel samples to changes in contact pressure are compared and discussed. The results showed that both brittle and soft metals are highly sensitive for change in contact pressure but their behaviour is slightly different. While the coefficient of friction of the steel sample when sliding on a steel substrate is reduced sharply by a little increase in contact pressure; the coefficient of friction of the soft material when sliding on a steel substrate is reduced slowly depending on the magnetude of the applied normal load.

  5. Interaction between cracking, delamination and buckling in brittle elastic thin films

    NARCIS (Netherlands)

    Vellinga, W. P.; Van den Bosch, M.; Geers, M. G. D.

    2008-01-01

    A discrete lattice based model for the interaction of cracking, delamination and buckling of brittle elastic coatings is presented. The model is unique in its simultaneous incorporation of the coating and of disorder in the interface and material properties, leading to realistic 3D bending (and

  6. Brittle fracture phase-field modeling of a short-rod specimen

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ivana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bishop, Joseph E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.

  7. Influence of some starch binders on the brittle fracture tendency of ...

    African Journals Online (AJOL)

    The study was carried out to compare the binder effects of cassava and cocoyam starch with that of maize starch BP. The parameters investigated were the brittle fracture index (BFI), the tablet packing fraction (Pf), and tensile strength (T). Mucilages of the starches of varying concentrations; 15, 20, and 25% (w/v) were ...

  8. Analogue modelling of different angle thrust-wrench fault interference in a brittle medium

    NARCIS (Netherlands)

    Rosas, F.M.; Duarte, João C.; Schellart, W. P.; Tomás, R.; Grigorova, V.; Terrinha, P.

    2015-01-01

    Analogue modelling experiments of thrust-wrench fault interference in a brittle medium are presented and discussed. Simultaneous reactivation of confining strike-slip and thrust faults bounding a (corner) zone of interference defined by the angle between the two fault systems is simulated, instead

  9. Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture

    Science.gov (United States)

    Karma, Alain; Lobkovsky, Alexander E.

    2004-06-01

    Crack propagation is studied numerically using a continuum phase-field approach to modeIII brittle fracture. The results shed light on the physics that controls the speed of accelerating cracks and the characteristic branching instability at a fraction of the wave speed.

  10. Nano finish grinding of brittle materials using electrolytic in-process ...

    Indian Academy of Sciences (India)

    Nano-surface finish can be achieved only when chip removal is done at the atomic level. Recent developments of ductile mode machining of hard and brittle materials show that plastically deformed chip removal minimizes the subsurface damage of the workpiece. When chip deformation takes place in the ductile regime, ...

  11. Long-term follow-up of children thought to have temporary brittle bone disease

    Directory of Open Access Journals (Sweden)

    Paterson CR

    2011-06-01

    Full Text Available Colin R Paterson1, Elizabeth A Monk21Department of Medicine (retired, 2School of Accounting and Finance, University of Dundee, Dundee, ScotlandBackground: In addition to nonaccidental injury, a variety of bone disorders may underlie the finding of unexplained fractures in young children. One controversial postulated cause is temporary brittle bone disease, first described in 1990.Methods: Eighty-five patients with fractures showing clinical and radiological features of temporary brittle bone disease were the subject of judicial hearings to determine whether it was appropriate for them to return home. Sixty-three patients did, and follow-up information was available for 61 of these. The mean follow-up period was 6.9 years (range 1–17, median 6.Results: We found that none of the children had sustained any further injuries that were thought to represent nonaccidental injury; no child was re-removed from home. Three children had fractures. In each case there was general agreement that the fractures were accidental. Had the original fractures in these children been the result of nonaccidental injury, it would have been severe and repeated; the average number of fractures was 9.1.Conclusion: The fact that no subsequent suspicious injuries took place after return home is consistent with the view that the fractures were unlikely to have been caused by nonaccidental injury, and that temporary brittle bone disease is a distinctive and identifiable disorder.Keywords: fractures, osteogenesis imperfecta, temporary brittle bone disease, nonaccidental injury

  12. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea.

    Science.gov (United States)

    Almubrad, Turki; Akhtar, Saeed

    2011-01-01

    The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The 'iTEM Olympus Soft Imaging Solutions GmbH' program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. The tree shrew cornea consists of 5 layers: the epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman's layer was 5.5±1.0 µm thick and very similar to a normal human Bowman's layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm(2). The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser-assisted in situ keratomileusis).

  13. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea

    Science.gov (United States)

    Almubrad, Turki

    2011-01-01

    Purpose The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Methods Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The ‘iTEM Olympus Soft Imaging Solutions GmbH’ program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. Results The tree shrew cornea consists of 5 layers: the epithelium, Bowman’s layer, stroma, Descemet’s membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman’s layer was 5.5±1.0 µm thick and very similar to a normal human Bowman’s layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm2. The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. Conclusions The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser

  14. Comparison of different methods of glycerol preservation for deep anterior lamellar keratoplasty eligible corneas.

    Science.gov (United States)

    Li, Jinyang; Shi, Shuai; Zhang, Xin; Ni, Shouxiang; Wang, Yu; Curcio, Christine A; Chen, Wei

    2012-08-17

    To compare different methods of glycerol-preserved corneas intended for deep anterior lamellar keratoplasty (DALK). We analyzed transparency, transmittance, thickness, biomechanics, morphology, and antigenicity of donor corneas preserved by four different glycerol-based methods (n = 6 per group) for 3 months, as follows: tissues in anhydrous glycerol without aluminosilicate molecular sieves at room temperature (GRT); tissues in anhydrous glycerol with aluminosilicate molecular sieves at room temperature (SRT); tissues in anhydrous glycerol without aluminosilicate molecular sieves at -78°C (G78); and tissues in anhydrous glycerol without aluminosilicate molecular sieves at -20°C (G20). Slit lamp images and transmittance curves obtained by spectrophotometer show that the G78 cornea was the most transparent tissue. Stress-strain behavior indicated that corneas in the G78 group were the most pliable, and SRT corneas were the stiffest. Electron microscopy analysis indicated that corneal cytoarchitecture and keratocyte integrity was destroyed in all glycerol-preserved corneas. Disorganized stromal collagen fibers were evident in groups stored at RT. Especially in SRT corneas, parallelism was lost, fibrils were extremely tortuous and discontinuous, and widespread fibril degeneration could be found. Antigenicity of tissue, assessed via immunohistochemistry for CD45-positive cells, HLA-ABC and HLA-DR, was lowered after glycerol preservation relative to fresh cornea tissues, and immunoreactivity was located mainly on corneal epithelium and limbus rather than stroma. Anhydrous glycerol preservation without molecular sieves in a -78°C freezer was the best method to obtain DALK-eligible tissues that were both transparent and pliable.

  15. Autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium

    OpenAIRE

    Yun Wang

    2013-01-01

    AIM: To observe the clinical effectiveness and practicality the autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium.METHODS: Of the 53 recurrent pterygium patients(57 eyes), after all pathological tissues were removed, underwent the autologous conjunctiva transplantation with stem cells on edge of cornea which were locked above conjunctival transplantation of the operated eye.RESULTS: Postopretive follow-up was 1-12 months for all 57 eyes, of which...

  16. Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography

    OpenAIRE

    Chen, Si; Liu, Xinyu; Wang, Nanshuo; Wang, Xianghong; Xiong, Qiaozhou; Bo, En; Yu, Xiaojun; Chen, Shufen; Liu, Linbo

    2017-01-01

    Diagnosis of corneal disease and challenges in corneal transplantation require comprehensive understanding of corneal anatomy, particularly that of the posterior cornea. Micro-optical coherence tomography (?OCT) is a potentially suitable tool to meet this need, owing to its ultrahigh isotropic spatial resolution, high image acquisition rate and depth priority scanning mode. In this study, we explored the ability of ?OCT to visualize micro-anatomical structures of the posterior cornea ex vivo ...

  17. Hyperglycemia-induced abnormalities in rat and human corneas: the potential of second harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Gaël Latour

    Full Text Available BACKGROUND: Second Harmonic Generation (SHG microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea. METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily

  18. Abnormalities of stromal structure in the bullous keratopathy cornea identified by second harmonic generation imaging microscopy.

    Science.gov (United States)

    Morishige, Naoyuki; Yamada, Norihiro; Zhang, Xu; Morita, Yukiko; Yamada, Naoyuki; Kimura, Kazuhiro; Takahara, Atsushi; Sonoda, Koh-Hei

    2012-07-27

    To identify structural alterations in collagen lamellae and the transdifferentiation of keratocytes into myofibroblasts in the corneal stroma of bullous keratopathy (BK) patients and to examine the relation of such changes to the duration of stromal edema or the underlying cause of BK. Six normal human corneas and 16 BK corneas were subjected to second harmonic generation (SHG) imaging microscopy to allow three-dimensional (3-D) reconstruction of collagen lamellae. Expression of α-smooth muscle actin (αSMA) was examined by immunofluorescence analysis and conventional laser confocal microscopy. Collagen lamellae were interwoven at the anterior stroma and uniformly aligned at the posterior stroma, whereas αSMA was not detected throughout the entire stroma of the normal cornea. Nine (56%) and 7 (44%) of the 16 BK corneas showed abnormal collagen structure at the anterior and posterior stroma, respectively. Expression of αSMA was detected in the anterior or posterior stroma of 7 (44%) and 6 (38%) of the 16 BK corneas, respectively. Disorganization of collagen lamellae and myofibroblastic transdifferentiation were detected only in corneas with a duration of stromal edema of at least 12 months. Corneas with BK as a result of birth injury showed abnormal collagen structure at the posterior stroma, whereas those with BK resulting from laser iridotomy did not. Changes in the structure of the entire stroma were detected in BK corneas with a duration of stromal edema of at least 12 months, suggesting that such changes may be progressive. In addition, the underlying cause of BK may influence structural changes at the posterior stroma.

  19. Increased Biomechanical Efficacy of Corneal Cross-linking in Thin Corneas Due to Higher Oxygen Availability.

    Science.gov (United States)

    Kling, Sabine; Richoz, Olivier; Hammer, Arthur; Tabibian, David; Jacob, Soosan; Agarwal, Amar; Hafezi, Farhad

    2015-12-01

    To compare the currently available ultraviolet-A (UV-A) corneal cross-linking (CXL) treatment protocols for thin corneas with respect to oxygen, UV fluence, and osmotic pressure. Freshly enucleated murine (n = 16) and porcine (n = 16) eyes were used. The dependency on oxygen and the amount of UV absorption were evaluated using different CXL protocols, including standard CXL, contact lens-assisted CXL (caCXL), and CXL after corneal swelling. The CXL protocol was adapted from the treatment parameters of the human cornea to fit the thickness of murine and porcine corneas. Immediately after CXL, the corneas were subjected to biomechanical testing, including preconditioning, stress relaxation at 0.6 MPa, and stress-strain extensiometry. A two-element Prony series was fitted to the relaxation curves for viscoelastic characterization. Standard CXL was most efficient; prior corneal swelling reduced the long-term modulus by 6% and caCXL by 15% to 20%. Oxygen reduction decreased the long-term modulus G∞ by 14% to 15% and the instantaneous modulus G0 by 2% to 5%, and increased the short-term modulus G2 by 22% to 31%. Reducing the amount of absorbed UV energy decreased the long-term modulus G∞ by 5% to 34%, the instantaneous modulus G0 by 7% to 29%, and the short-term modulus G2 by 17% to 20%. The amount of absorbed UV light was more important in porcine than in murine corneas. The higher oxygen availability in thin corneas potentially increases the overall efficacy of riboflavin UV-A CXL compared to corneas of standard thickness. Clinical protocols for thin corneas should be revised to implement these findings. Copyright 2015, SLACK Incorporated.

  20. Gamma-irradiated sterile cornea for use in corneal transplants in a rabbit model

    OpenAIRE

    Junko Yoshida; Thomas Heflin; Andrea Zambrano; Qing Pan; Huan Meng; Jiangxia Wang; Stark, Walter J.; Daoud, Yassine J.

    2015-01-01

    Purpose: Gamma irradiated corneas in which the donor keratocytes and endothelial cells are eliminated are effective as corneal lamellar and glaucoma patch grafts. In addition, gamma irradiation causes collagen cross inking, which stiffens collagen fibrils. This study evaluated gamma irradiated corneas for use in corneal transplantations in a rabbit model comparing graft clarity, corneal neovascularization, and edema. Methods: Penetrating keratoplasty was performed on rabbits using four ty...

  1. Differential gene expression patterns of the developing and adult cornea compared to the lens and tendon

    OpenAIRE

    Wu, Feng; Lee, Seakwoo; Schumacher, Michael; Jun, Albert; Chakravarti, Shukti

    2008-01-01

    The cornea continues to mature after birth to develop a fully functional, refractive and protective barrier tissue. Here we investigated the complex biological events underlying this process by profiling global genome-wide gene expression patterns of the immature postnatal day 10 and seven week-old adult mouse cornea. The lens and tendon were included in the study to increase the specificity of genes identified as up regulated in the corneal samples. Notable similarities in gene expression be...

  2. Distribution of non-gal antigens in pig cornea: relevance to corneal xenotransplantation.

    Science.gov (United States)

    Cohen, David; Miyagawa, Yuko; Mehra, Ruhina; Lee, Whayoung; Isse, Kumiko; Long, Cassandra; Ayares, David L; Cooper, David K C; Hara, Hidetaka

    2014-04-01

    The aim of this study was to investigate the distribution of antigens other than galactose-α-1,3-galactose (Gal) (non-Gal) recognized by human and rhesus monkey serum antibodies in the α-1,3-galactosyltransferase gene-knockout (GTKO) pig cornea. The distribution of non-Gal, specifically N-glycolylneuraminic acid (NeuGc), in the corneas from wild-type (WT) and GTKO pigs was identified. Corneal sections from WT and GTKO pigs were incubated with human or rhesus monkey serum to determine immunoglobulin (Ig)M and IgG binding to corneal tissue by means of fluorescent microscopy. Strong expression of NeuGc was found in all layers of both WT and GTKO pig corneas. In both humans and monkeys, antibody binding (IgG > IgM) to GTKO was found to be weaker than that to entire WT pig corneas, but in both, most antibody binding, especially IgG, was to the epithelium. There was weak diffuse antibody binding, especially of IgG, to the corneal stroma, suggesting binding to antigens expressed on collagen. There was no or minimal binding of IgM/IgG to the corneal endothelium. Although the cornea is avascular, antibodies in primate serum can bind to pig antigens, especially on epithelial cells and stromal collagen. Although the binding to entire GTKO corneas was weaker than that to WT corneas, deletion of the expression of NeuGc and expression of human complement-regulatory proteins in the pig cornea will be important if prolonged clinical corneal xenograft survival is to be achieved.

  3. Two-Photon Microscopy of the Mouse Peripheral Cornea Ex Vivo.

    Science.gov (United States)

    Lee, Jun Ho; Kim, Ki Hean; Lee, Seunghun; Jeong, Hyerin; Kim, Myoung Joon

    2016-11-01

    To investigate the 3-dimensional (3D) cell and extracellular matrix (ECM) structure of mouse peripheral corneas in normal and corneal neovascularization tissues using 2-photon microscopy (TPM) based on both intrinsic and extrinsic moxifloxacin contrasts. Peripheral corneas in freshly enucleated mouse eyes were imaged by TPM based on both intrinsic and extrinsic contrasts. Intrinsic autofluorescence and second harmonic generation were used to image cells and ECM collagen, respectively. Moxifloxacin ophthalmic solution was applied to image cells. The peripheral cornea, limbus, and sclera were imaged in 3D. In addition to normal mice, mouse models of suture-induced corneal neovascularization were imaged to visualize changes in the microstructure. Complex 3D cell and ECM structures in the cornea, limbus, and sclera were visualized by TPM. TPM images based on intrinsic contrasts visualized both cell and ECM structures, and TPM images based on moxifloxacin visualized cell structures with enhanced contrast. On the limbus side of the mouse peripheral cornea, TPM images visualized the vasculature in the limbus, the trabecular meshwork/Schlemm canal, iris, and ciliary body. On the scleral side, TPM images visualized cell and ECM structures in the sclera and multiple cell layers below the sclera. TPM images of the peripheral cornea in the corneal neovascularization condition visualized the extension of vasculature from the limbus to the cornea. TPM imaging based on both intrinsic and external moxifloxacin contrasts visualized detailed 3D cell and ECM microstructures in the mouse peripheral cornea. TPM based on moxifloxacin might be advantageous for studying cell structures by enhancing image contrast.

  4. Outcome of transplanted donor corneas with more than 6 h of death-to-preservation time

    Directory of Open Access Journals (Sweden)

    Ashik Mohamed

    2016-01-01

    Full Text Available Purpose: In tropical countries, physicians are skeptic in using corneas with death-to-preservation time (DTPT >6 h, concerns being endothelial cell viability and microbial contamination on prolonged DTPT. The objective of the study was to investigate these concerns by analyzing the outcomes of corneal transplants performed using donor corneas with DTPT >6 h. Materials and Methods: The study was a retrospective case series of 65 transplants performed in 2013 with donor corneas that had DTPT >6 h (range, 6.1–9.8 h. The information on donor cornea tissues and the recipient details were collected from the eye bank and the medical records department of our tertiary eye care center. The main outcome measures were slit lamp assessment of the donor corneas, primary graft failure, graft survival, and postoperative adverse reactions, especially infections, if any. Results: Median DTPT was 7 h. Forty-four (67.7% corneas were evaluated as optical grade and 21 (32.3% were deemed as therapeutic grade; 36 (55.4% were used for optical indications. There was no relationship between DTPT and the tissue grading of corneas or endothelial cell density. Of the 23 keratoplasties for purely optical indications with a minimum follow-up of 3 months, 15 (65.2% remained clear whereas 7 (30.4% failed (mean follow-up 15.1 ± 6.7 months. The causes of failure were primary graft failure (n = 1 and secondary graft failure (n = 6. Conclusion: The donor corneas with DTPT 6 h to 10 h can be utilized for optical indications provided that they meet the criteria of tissue acceptance for optical use.

  5. Outcome of transplanted donor corneas with more than 6 h of death-to-preservation time.

    Science.gov (United States)

    Mohamed, Ashik; Chaurasia, Sunita; Garg, Prashant

    2016-09-01

    In tropical countries, physicians are skeptic in using corneas with death-to-preservation time (DTPT) >6 h, concerns being endothelial cell viability and microbial contamination on prolonged DTPT. The objective of the study was to investigate these concerns by analyzing the outcomes of corneal transplants performed using donor corneas with DTPT >6 h. The study was a retrospective case series of 65 transplants performed in 2013 with donor corneas that had DTPT >6 h (range, 6.1-9.8 h). The information on donor cornea tissues and the recipient details were collected from the eye bank and the medical records department of our tertiary eye care center. The main outcome measures were slit lamp assessment of the donor corneas, primary graft failure, graft survival, and postoperative adverse reactions, especially infections, if any. Median DTPT was 7 h. Forty-four (67.7%) corneas were evaluated as optical grade and 21 (32.3%) were deemed as therapeutic grade; 36 (55.4%) were used for optical indications. There was no relationship between DTPT and the tissue grading of corneas or endothelial cell density. Of the 23 keratoplasties for purely optical indications with a minimum follow-up of 3 months, 15 (65.2%) remained clear whereas 7 (30.4%) failed (mean follow-up 15.1 ± 6.7 months). The causes of failure were primary graft failure (n = 1) and secondary graft failure (n = 6). The donor corneas with DTPT 6 h to 10 h can be utilized for optical indications provided that they meet the criteria of tissue acceptance for optical use.

  6. A role for smoothened during murine lens and cornea development.

    Directory of Open Access Journals (Sweden)

    Janet J Y Choi

    Full Text Available Various studies suggest that Hedgehog (Hh signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30 showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3 were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre did not affect ocular development, whereas deletion from ∼E9.5 (LeCre resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5-E12.5 in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs

  7. In situ cornea harvesting through the Red Cross Organization: a new approach to relieving severe cornea donor shortage in Chinese eye banks

    Directory of Open Access Journals (Sweden)

    Su-Xia Li

    2017-10-01

    Full Text Available Corneal diseases are currently the second main cause of blindness in China. Although most of the corneal blindness could be treated by corneal transplantation, only about 10 000 operations were carried out each year owing to the severe shortage of corneal donors and limited eye bank programs. A feasible cornea donation program was established through the organization of the Red Cross, and in situ corneal removal techniques were developed to avoid conflicts with Chinese traditions of keeping the deceased intact. The number of donated corneas, which had a safe and secure quality, increased significantly year by year.

  8. In situ cornea harvesting through the Red Cross Organization: a new approach to relieving severe cornea donor shortage in Chinese eye banks.

    Science.gov (United States)

    Li, Su-Xia; Wang, Fu-Hua; Wang, Ting; Han, Sha-Sha; Shi, Wei-Yun

    2017-01-01

    Corneal diseases are currently the second main cause of blindness in China. Although most of the corneal blindness could be treated by corneal transplantation, only about 10 000 operations were carried out each year owing to the severe shortage of corneal donors and limited eye bank programs. A feasible cornea donation program was established through the organization of the Red Cross, and in situ corneal removal techniques were developed to avoid conflicts with Chinese traditions of keeping the deceased intact. The number of donated corneas, which had a safe and secure quality, increased significantly year by year.

  9. Use of Fish Scale-Derived BioCornea to Seal Full-Thickness Corneal Perforations in Pig Models.

    Directory of Open Access Journals (Sweden)

    Shih-Cheng Chen

    Full Text Available The aim of this study was to test the use of BioCornea, a fish scale-derived collagen matrix for sealing full-thickness corneal perforations in mini-pigs. Two series of experiments were carried out in 8 Lan-Yu and 3 Göttingen mini-pigs, respectively. A 2mm central full thickness corneal perforation was made with surgical scissors and 2mm trephines. The perforations were sealed immediately by suturing BioCornea to the wounded cornea. The conditions of each patched cornea were followed-up daily for 3 or 4 days. Status of operated eyes was assessed with slit lamp examination or optical coherence tomography (OCT. Animals were sacrificed after the study period and the corneas operated were fixated for histological examination. Both OCT imaging and handheld slit lamp observations indicated that a stable ocular integrity of the perforated corneas was maintained, showing no leakage of aqueous humor, normal depth of anterior chamber and only mild swelling of the wounded cornea. Hematoxylin and eosin staining of the patched cornea showed no epithelial ingrowths to the perforated wounds and no severe leucocyte infiltration of the stroma. The fish scale-derived BioCornea is capable to seal full-thickness corneal perforation and stabilize the integrity of ocular anterior chamber in pre-clinic mini-pig models. BioCornea seems to be a safe and effective alternative for emergency treatment of corneal perforations.

  10. A comprehensive method for the fracability evaluation of shale combined with brittleness and stress sensitivity

    Science.gov (United States)

    Wang, Xiaoqiong; Ge, Hongkui; Wang, Daobing; Wang, Jianbo; Chen, Hao

    2017-12-01

    An effective fracability evaluation on the fracture network is key to the whole process of shale gas exploitation. At present, neither a standard criteria nor a generally accepted evaluation method exist. Well log and laboratory results have shown that the commonly used brittleness index calculated from the mineralogy composition is not entirely consistent with that obtained from the elastic modulus of the rock, and is sometimes even contradictory. The brittle mineral reflects the brittleness of the rock matrix, and the stress sensitivity of the wave velocity reflects the development degree of the natural fracture system. They are both key factors in controlling the propagating fracture morphology. Thus, in this study, a novel fracability evaluation method of shale was developed combining brittleness and stress sensitivity. Based on this method, the fracability of three shale gas plays were evaluated. The cored cylindrical samples were loaded under uniaxial stress up to 30 MPa and the compressional wave velocities were obtained along the axis stress direction at each MPa stress. From the stress velocity evolution, the stress sensitivity coefficients could be obtained. Our results showed that the fracability of Niutitang shale is better than that of Lujiaping shale, and the fracability of Lujiaping shale is better than Longmaxi shale. This result is in good agreement with acoustic emission activity measurements. The new fracability evaluation method enables a comprehensive reflection of the characteristics of rock matrix brittleness and the natural fracture system. This work is valuable for the evaluation of hydraulic fracturing effects in unconventional oil and gas reservoirs in the future.

  11. A kinematic measurement for ductile and brittle failure of materials using digital image correlation

    Directory of Open Access Journals (Sweden)

    M.M. Reza Mousavi

    2016-12-01

    Full Text Available This paper addresses some material level test which is done on quasi-brittle and ductile materials in the laboratory. The displacement control experimental program is composed of mortar cylinders under uniaxial compression shows quasi-brittle behavior and seemingly round-section aluminum specimens under uniaxial tension represents ductile behavior. Digital Image Correlation gives full field measurement of deformation in both aluminum and mortar specimens. Likewise, calculating the relative displacement of two points located on top and bottom of virtual LVDT, which is virtually placed on the surface of the specimen, gives us the classical measure of strain. However, the deformation distribution is not uniform all over the domain of specimens mainly due to imperfect nature of experiments and measurement devices. Displacement jumps in the fracture zone of mortar specimens and strain localization in the necking area for the aluminum specimen, which are reflecting different deformation values and deformation gradients, is compared to the other regions. Since the results are inherently scattered, it is usually non-trivial to smear out the stress of material as a function of a single strain value. To overcome this uncertainty, statistical analysis could bring a meaningful way to closely look at scattered results. A large number of virtual LVDTs are placed on the surface of specimens in order to collect statistical parameters of deformation and strain. Values of mean strain, standard deviation and coeffcient of variations for each material are calculated and correlated with the failure type of the corresponding material (either brittle or ductile. The main limiters for standard deviation and coeffcient of variations for brittle and ductile failure, in pre-peak and post-peak behavior are established and presented in this paper. These limiters help us determine whether failure is brittle or ductile without determining of stress level in the material.

  12. Biomechanical and optical behavior of human corneas before and after photorefractive keratectomy.

    Science.gov (United States)

    Sánchez, Paolo; Moutsouris, Kyros; Pandolfi, Anna

    2014-06-01

    To evaluate numerically the biomechanical and optical behavior of human corneas and quantitatively estimate the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Athineum Refractive Center, Athens, Greece, and Politecnico di Milano, Milan, Italy. Retrospective comparative interventional cohort study. Corneal topographies of 10 human eyes were taken with a scanning-slit corneal topographer (Orbscan II) before and after PRK. Ten patient-specific finite element models were created to estimate the strain and stress fields in the cornea in preoperative and postoperative configurations. The biomechanical response in postoperative eyes was computed by directly modeling the postoperative geometry from the topographer and by reproducing the corneal ablation planned for the PRK with a numerical reprofiling procedure. Postoperative corneas were more compliant than preoperative corneas. In the optical zone, corneal thinning decreased the mechanical stiffness, causing local resteepening and making the central refractive power more sensitive to variations in intraocular pressure (IOP). At physiologic IOP, the postoperative corneas had a mean 7% forward increase in apical displacement and a mean 20% increase in the stress components at the center of the anterior surface over the preoperative condition. Patient-specific numerical models of the cornea can provide quantitative information on the changes in refractive power and in the stress field caused by refractive surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Assessment of the ex vivo biomechanical properties of porcine cornea with inflation test for corneal xenotransplantation.

    Science.gov (United States)

    Bao, F; Jiang, L; Wang, X; Zhang, D; Wang, Q; Zeng, Y

    2012-01-01

    This study aims to obtain the biomechanical properties of porcine cornea so as to provide necessary biomechanical experimental basis for pig-to-human corneal xenotransplantation. Seventeen fresh porcine corneal specimens obtained from pigs aged 4-6 months were examined under inflation conditions to determine the constitutive relationships of the material through dynamic loading conditions (pressure range: 1.47-42.66 mmHg). The forward deflection of porcine anterior corneal apex was measured by the laser displacement sensor. The pressure deformation results were analysed on the basis of shell theory to estimate Young's modulus of the cornea and derive its relationship with intraocular pressure (IOP). The porcine corneas showed a nonlinear corneal forward displacement/IOP and stress/strain relationship with an initial low stiffness stage and a later high stiffness stage. In spite of the nonlinearity between the internal pressure and apex forward deflection, the relationship between the Young's modulus and the IOP was almost linear. Compared with human corneas, porcine corneas exhibited a similar nonlinear behaviour but lower stiffness values. The biomechanical parameters of porcine cornea obtained from this test could be applied to numerical simulations of refractive surgery procedures and lay a foundation for pig-to-human corneal xenotransplantation. Copyright © 2012 Informa UK, Ltd.

  14. A microscopy study of the structural features of post-LASIK human corneas.

    Directory of Open Access Journals (Sweden)

    Mohammad Abahussin

    Full Text Available PURPOSE: To study the structural features of human post-LASIK corneas. METHODS: A pair of post-mortem donor corneas, from a 55-year old patient who underwent uncomplicated LASIK surgery five years previously, were bisected and fixed in 4% paraformaldehyde. The right cornea and one half of the left cornea were processed for light microscopy and scanning electron microscopy. One half of the right cornea was also examined by transmission electron microscopy. RESULTS: The flap-bed interface could be easily detected several years after LASIK and, although the flap appeared to be in close association with the stromal bed, there was a noticeable absence of reconnection between adjacent severed lamellae. Tissue gaps were evident at the flap margin, which once free of cellular components revealed the presence of a few bridging fibres. CONCLUSION: Examination of corneas five years after LASIK revealed evidence of primitive reparative scar development at the wound interface, but no reconnection of severed collagen lamellae. Such findings may explain the occurrence of flap dislocation following trauma in some patients months or years after surgery.

  15. Dendritic cells in the cornea during Herpes simplex viral infection and inflammation.

    Science.gov (United States)

    Kwon, Min S; Carnt, Nicole A; Truong, Naomi R; Pattamatta, Ushasree; White, Andrew J; Samarawickrama, Chameen; Cunningham, Anthony L

    2017-11-10

    Herpes simplex keratitis is commonly caused by Herpes simplex virus type 1, which primarily infects eyelids, corneas, or conjunctiva. Herpes simplex virus type 1-through sophisticated interactions with dendritic cells (DCs), a type of antigen-presenting cell)-initiates proinflammatory responses in the cornea. Corneas were once thought to be an immune-privileged region; however, with the recent discovery of DCs that reside in the cornea, this long-held conjecture has been overturned. Therefore, evaluating the clinical, preclinical, and cell-based studies that investigate the roles of DCs in corneas infected with Herpes simplex virus is critical. With in vivo confocal microscopy, animal models, and cell culture experiments, we may further the understanding of the sophisticated interactions of Herpes simplex virus with DCs in the cornea and the molecular mechanism associated with it. It has been shown that specific differentiation of DCs using immunohistochemistry, flow cytometry, and polymerase chain reaction analysis in both human and mice tissues and viral tissue infections are integral to increasing understanding. As for in vivo confocal microscopy, it holds promise as it is the least invasive and a real-time investigation. These tools will facilitate the discovery of various targets to develop new treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. In Vitro Corneal Tomography of Donor Cornea Using Anterior Segment OCT.

    Science.gov (United States)

    Janunts, Edgar; Langenbucher, Achim; Seitz, Berthold

    2016-05-01

    The aim of this study was to establish a tomographic screening method for revealing potential pathologies in corneal donors before keratoplasty so they may be excluded as candidates for corneal transplantation. Donor corneal tomographies were measured in a viewing chamber filled with preservation medium and with the use of a clinical optical coherence tomography (OCT) device. Custom-written software was developed to extract corneal surfaces from the raw data, which were analyzed in the central and peripheral regions. An adaptive nonlinear edge-enhancement algorithm was used to observe scars within the corneal volume. The thickness distribution map was analyzed to detect keratoconus and corneas with extreme topographic irregularities. Measurements were repeated 5 times to assess reproducibility. Eight corneas were investigated: 6 randomly selected intact donors, unsuitable for implantation because of low endothelial cell densities, and 2 keratoconus corneas, excised from patients during corneal transplantation. A major thickness abnormality was detected in one of the intact donor corneas, so it was excluded from further analysis. The keratoconus corneas were clearly evident in optical coherence tomography cross-sectional images, and similarly, they could easily be identified by analyzing the thickness map. Overall, the measurements were reliable and had a Cronbach's alpha coefficient greater than 0.8. Donor corneal examination using sterile viewing chambers was found to be suitable as a pre-keratoplasty advanced screening routine. A proof of concept was demonstrated, which could identify both irregular corneas and those affected by keratoconus.

  17. Biomechanical simulation of needle insertion into cornea based on distortion energy failure criterion.

    Science.gov (United States)

    Su, Peng; Yang, Yang; Zhang, Leiyu; Huang, Long

    2016-01-01

    This paper is mainly about biomechanical behavior of needle insertion into cornea, and proposes a failure criterion to simulate the insertion process which has attracted considerable attention due to its importance for the minimally invasive treatment. In the process of needle insertion into cornea, tiny and complex insertion force is generated due to contact between needle and soft tissue. Based on the distortion energy theory, there is proposed a failure criterion of corneal material that can solve contact problem between rigid body and biological tissue in insertion simulation, where Cauchy stress of corneal material is the key to numerical calculation. A finite element model of in vivo cornea is built, and the cornea constrained by sclera is simplified to two layers containing epithelium and stroma. Considering the hyper-viscoelastic property of corneal material, insertion simulation is carried out. By insertion experiment, the insertion force increases with insertion depth accompanying obvious fluctuations. Different insertion forces are generated at different speeds. The punctured locations are obvious in the force-displacement curves. The results of insertion simulation are generally consistent with experimental data. Maps of von Mises stress reflect the tissue injury of the cornea during insertion process, and punctured status corresponds to the point in the curves. The ability of this study to reproduce the behavior of needle insertion into cornea opens a promising perspective for the control of robotic surgery operation as well as the real-time simulation of corneal suture surgery.

  18. Intrastromal Injection of China Painting Ink in Corneas of Male Rabbits: Clinical and Histological Study

    Directory of Open Access Journals (Sweden)

    Alahmady Hamad Alsmman Hassan

    2016-01-01

    Full Text Available Background. Many patients with corneal opacity or complicated cataract in blind eye ask for cosmoses. In this study we tried to investigate the staining of corneas of male rabbits by Rotring China painting ink and to study the histological changes. Method. 10 eyes of 10 male Baladi Egyptian rabbits were injected (0.1 mL intrastromally in the cornea by the use of China painting ink (Rotring Tinta China through insulin syringe (27-gauge needle by single injection; clinical follow-up is for 6 months and lastly the rabbits were scarified and the stained eyes were enucleated for histological analysis. Results. Clinically the stain was stable in color and distribution in corneas with no major complications. Histological results of the stained rabbit corneas showed blackish pigmentation in the corneal stroma without any inflammatory cellular infiltration. Some fibroblast cells had pigment granules in their cytoplasm in the adjacent layers. Conclusion. Corneal staining by China painting ink is effective and safe in staining of male rabbits cornea; however further study in human corneas with longer follow-up period is advisable.

  19. Effect of glaucoma tube shunt parameters on cornea endothelial cells in patients with Ahmed valve implants.

    Science.gov (United States)

    Koo, Euna B; Hou, Jing; Han, Ying; Keenan, Jeremy D; Stamper, Robert L; Jeng, Bennie H

    2015-01-01

    The aim of this study was to assess the effect of various tube parameters on corneal endothelial cell density (ECD) after insertion of Ahmed valves. Thirty-nine eyes of 33 patients with previous superotemporal (ST) Ahmed valve implantation and 20 eyes of 13 participants with previous uncomplicated phacoemulsification and intraocular lens implantation but no history of glaucoma surgery were evaluated. Various tube parameters were measured with anterior segment optical coherence tomography. ST, central, and inferonasal (IN) ECD and pachymetry were measured. Endothelial cell loss and corneal thickness in the ST cornea was compared with those in the IN cornea. The mean age of the operated patients was 58 ± 22 years, and the mean time since glaucoma surgery was 2.5 ± 2.6 years. Thirty-two of the 39 study eyes were pseudophakic. The ECD was significantly lower in the ST endothelium than in the IN endothelium in eyes with glaucoma tube surgery (P cornea and distance from the tip of the tube to the cornea were significant risk factors for decreased ST endothelial cell loss when assessed relative to the IN ECD (P = 0.01 and P = 0.02, respectively). In multivariate analysis, only the distance of the tube tip to the cornea remained significantly associated with ST endothelial cell loss. Although this was a retrospective study with inherent limitations, tubes that are closer to the cornea seem to lead to increased loss of adjacent endothelial cells.

  20. Polymicrobial Infection of the Cornea Due to Contact Lens Wear

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2016-04-01

    Full Text Available A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive for Pseudomonas aeruginosa; cultures from the contact lenses, lens solution and storage case of both eyes revealed Pseudomonas aeruginosa and Alcaligenes xylosoxidans. Polymerase chain reaction of the corneal scraping was positive for Acanthameoba. The topical antibiotics were changed with ones that both bacteria were sensitive to and anti-amoebic therapy was added. The patient had two recurrences following initial presentation despite intensive therapy. Keratitis occurred due to multiple pathogens; the relapsing course despite adequate therapy is potentially associated with this polymicrobial etiology.

  1. Cornea Society nomenclature for ocular surface rehabilitative procedures.

    Science.gov (United States)

    Daya, Sheraz M; Chan, Clara C; Holland, Edward J

    2011-10-01

    In the past 20 years, there has been tremendous development in ocular surface rehabilitation and, through better understanding and improvements in analytic and culture techniques, a variety of new procedures have been developed. Differing techniques have been used internationally and often similar terminology is used when procedures could be considered to be quite different or vice versa. To communicate clearly and to compare techniques and outcomes, it was determined that an agreed international nomenclature was necessary. A subcommittee was established by The Cornea Society. An initial steering group of international experts with special interest in ocular surface was assembled and established broad principles for the nomenclature based on a previous nomenclature. The nomenclature for procedures was based on several parameters, including a) anatomic source of tissue transplanted, for example conjunctival, keratolimbal or mucosal, b) whether the source was autologous or allogeneic (cadaveric or living related), and c) cell culture techniques. For example, an expanded cell culture of cadaveric limbal tissue was named ex-vivo cultivated cadaveric limbal allograft (EvC-LAL). Agreed nomenclature for transplantation procedures used in ocular surface rehabilitation has been developed, and use of this common terminology should help communication among those involved in this field.

  2. Changes of extracellular matrix of the cornea in diabetes mellitus.

    Science.gov (United States)

    Hager, A; Wegscheider, K; Wiegand, W

    2009-10-01

    Differences in corneal viscoelasticity due to diabetes have been reported to have a protective effect on the progression of glaucoma and the development and progression of keratoconus. Due to longterm changes of tissue in diabetes mellitus, biomechanical changes of the cornea because of glycation and modified extracellular matrix may be detectable. The purpose of the study was to determine whether there is a difference in corneal biomechanical properties, characterized by corneal hysteresis (CH) and central corneal thickness (CCT), between diabetic and normal subjects, and relate these to the duration of diabetes. In a cross sectional study, a group of 484 eyes including 99 eyes of diabetic individuals was evaluated. CH as measured with the Ocular Response Analyzer, CCT (Orbscan II), Goldmann applanation tonometry (GAT) and slit-lamp examination were obtained from each patient. Linear mixed models were applied for statistical evaluation. CH showed a significant decrease with age (-0.036 mmHg/year, p age, IOP and CCT). This was not related to the duration of diabetes (mean 12.6 +/- 9.0y, p = 0.522). CCT did not differ with regard to diabetes. Intraclass correlation coefficients were 81% and 50% for CCT and CH respectively. CH is assumed to be an indicator for acquired changes of tissue such as diabetes-mediated. CCT is a more characteristic parameter for the individual patient. CH may provide more information about changes of the extracellular matrix in diabetes, and therefore offer a new monitoring parameter.

  3. Biomechanical properties of the cornea in high myopia.

    Science.gov (United States)

    Shen, Meixiao; Fan, Fan; Xue, Anquan; Wang, Jianhua; Zhou, Xiangtian; Lu, Fan

    2008-09-01

    To determine corneal biomechanical properties in patients with high myopia. Observational study. High myopia patients (n=45, age: 37.0+/-12.6 years) with refractive errors of spherical equivalent (SE) greater than -9.00D were recruited in this study along with healthy subjects (n=90, age: 33.7+/-12.4 years) with refractive errors of SE ranging from 0D to -3.00D. Only the right eye was studied. Central corneal thickness (CCT) was measured by optical coherence tomography (OCT). Metrics of corneal biomechanical properties, including corneal hysteresis (CH) and corneal resistance factor (CRF), were measured with the Ocular Response Analyzer (ORA). The ORA also determined the values of intraocular pressure (IOP(g)) and corneal compensated IOP (IOP(cc)). No significant differences of CCT and CRF were present between the two groups (P=.15 and 0.35 for CCT and CRF, respectively); however, CH in the high myope group was lower than that in the controls (Page in either the control group or the high myope group (P>.05). There was a significant correlation between CH and SE when the two groups were combined for analysis. CH, but not CRF, was significantly lower in high myopia patients compared to that in normal subjects. The results indicate that some compromised aspects of the biomechanical properties of cornea may exist in people with high myopia.

  4. Cross-linking da cornea: protocolo padrão

    Directory of Open Access Journals (Sweden)

    Marcony R. Santhiago

    Full Text Available RESUMO O objetivo desta revisão é de determinar as indicações e eficácia da cirurgia que promove novas ligações covalentes entre as fibras de colágeno da córnea, conhecida como Cross-Linking (CXL, assim como esclarecer seus objetivos. O ceratocone é uma doença ectasica da córnea, bilateral, assimétrica, que, principalmente, cursa com encurvamento e afinamentos progressivo, e se inicia em geral na segunda década de vida. O uso primário do CXL tem sido na interrupção da progressão do Ceratocone. Apesar do conhecido encurvamento no estroma da córnea ocorrer nesses pacientes, a fisiopatologia por trás do ceratocone ainda é desconhecida e parece ser multifatorial. Pela evidencia literária disponível até o momento, o CXL da córnea esta, portanto indicado nos pacientes com doença em progressão. Concluímos que existe evidencia suficiente para afirmar que o CXL da córnea é eficaz na estabilização da doença ectásica da cornea.

  5. Collagen cross-linking: Strengthening the unstable cornea

    Directory of Open Access Journals (Sweden)

    Oren Tomkins

    2008-05-01

    Full Text Available Oren Tomkins, Hanna J GarzoziDepartment of Ophthalmology, Bnai Zion Medical Center, Haifa, IsraelAbstract: Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen crosslinking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls.Keywords: corneal cross-linking, corneal ectasia, keratoconus, stroma, cornea

  6. Role of Brittle Behaviour of Soft Calcarenites Under Low Confinement: Laboratory Observations and Numerical Investigation

    Science.gov (United States)

    Lollino, Piernicola; Andriani, Gioacchino Francesco

    2017-07-01

    The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly

  7. Biomechanical properties of human corneas following low- and high-intensity collagen cross-linking determined with scanning acoustic microscopy.

    Science.gov (United States)

    Beshtawi, Ithar M; Akhtar, Riaz; Hillarby, M Chantal; O'Donnell, Clare; Zhao, Xuegen; Brahma, Arun; Carley, Fiona; Derby, Brian; Radhakrishnan, Hema

    2013-08-07

    To assess and compare changes in the biomechanical properties of the cornea following different corneal collagen cross-linking protocols using scanning acoustic microscopy (SAM). Ten donor human corneal pairs were divided into two groups consisting of five corneal pairs in each group. In group A, five corneas were treated with low-fluence (370 nm, 3 mW/cm(2)) cross-linking (CXL) for 30 minutes. In group B, five corneas were treated with high-fluence (370 nm, 9 mW/cm(2)) CXL for 10 minutes. The contralateral control corneas in both groups had similar treatment but without ultraviolet A. The biomechanical properties of all corneas were tested using SAM. In group A, the mean speed of sound in the treated corneas was 1677.38 ± 10.70 ms(-1) anteriorly and 1603.90 ± 9.82 ms(-1) posteriorly, while it was 1595.23 ± 9.66 ms(-1) anteriorly and 1577.13 ± 8.16 ms(-1) posteriorly in the control corneas. In group B, the mean speed of sound of the treated corneas was 1665.06 ± 9.54 ms(-1) anteriorly and 1589.89 ± 9.73 ms(-1) posteriorly, while it was 1583.55 ± 8.22 ms(-1) anteriorly and 1565.46 ± 8.13 ms(-1) posteriorly in the untreated control corneas. The increase in stiffness between the cross-linked and control corneas in both groups was by a factor of 1.051×. SAM successfully detected changes in the corneal stiffness after application of collagen cross-linking. A higher speed-of-sound value was found in the treated corneas when compared with the controls. No significant difference was found in corneal stiffness between the corneas cross-linked with low- and high-intensity protocols.

  8. Biomechanical Properties of Human Corneas Following Low- and High-Intensity Collagen Cross-Linking Determined With Scanning Acoustic Microscopy

    Science.gov (United States)

    Beshtawi, Ithar M.; Akhtar, Riaz; Hillarby, M. Chantal; O'Donnell, Clare; Zhao, Xuegen; Brahma, Arun; Carley, Fiona; Derby, Brian; Radhakrishnan, Hema

    2013-01-01

    Purpose. To assess and compare changes in the biomechanical properties of the cornea following different corneal collagen cross-linking protocols using scanning acoustic microscopy (SAM). Methods. Ten donor human corneal pairs were divided into two groups consisting of five corneal pairs in each group. In group A, five corneas were treated with low-fluence (370 nm, 3 mW/cm2) cross-linking (CXL) for 30 minutes. In group B, five corneas were treated with high-fluence (370 nm, 9 mW/cm2) CXL for 10 minutes. The contralateral control corneas in both groups had similar treatment but without ultraviolet A. The biomechanical properties of all corneas were tested using SAM. Results. In group A, the mean speed of sound in the treated corneas was 1677.38 ± 10.70 ms−1 anteriorly and 1603.90 ± 9.82 ms−1 posteriorly, while it was 1595.23 ± 9.66 ms−1 anteriorly and 1577.13 ± 8.16 ms−1 posteriorly in the control corneas. In group B, the mean speed of sound of the treated corneas was 1665.06 ± 9.54 ms−1 anteriorly and 1589.89 ± 9.73 ms−1 posteriorly, while it was 1583.55 ± 8.22 ms−1 anteriorly and 1565.46 ± 8.13 ms−1 posteriorly in the untreated control corneas. The increase in stiffness between the cross-linked and control corneas in both groups was by a factor of 1.051×. Conclusions. SAM successfully detected changes in the corneal stiffness after application of collagen cross-linking. A higher speed-of-sound value was found in the treated corneas when compared with the controls. No significant difference was found in corneal stiffness between the corneas cross-linked with low- and high-intensity protocols. PMID:23847309

  9. [Investigation of the biomechanical properties of the cornea by bidirectional applanation: new approaches to interpreting the results].

    Science.gov (United States)

    Avetisov, S E; Novikov, I A; Bubnova, I A; Antonov, A A; Siplivyĭ, V I

    2008-01-01

    This study deals with the biomechanical properties of the cornea, which is essential in solving different problems of clinical ophthalmology, specifically in predicting the potential complications of keratorefraction operations, in early diagnosing keratoconus, and interpreting the measurements of intraocular pressure. The investigations confirmed the efficiency of using bidirectional applanation of the cornea to define its strength characteristics. A procedure has been also developed to estimate the elasticity coefficient which reflects the elastic properties of the cornea irrespective of intraocular pressure values.

  10. The maintenance of lymphatic vessels in the cornea is dependent on the presence of macrophages.

    Science.gov (United States)

    Maruyama, Kazuichi; Nakazawa, Toru; Cursiefen, Claus; Maruyama, Yuko; Van Rooijen, Nico; D'Amore, Patricia A; Kinoshita, Shigeru

    2012-05-31

    It has been shown previously that the presence in the cornea of antigen-presenting cells (APC), such as macrophages (MPS) and lymphangiogenesis, is a risk for corneal transplantation. We sought to determine whether the existence of lymphatic vessels in the non-inflamed cornea is associated with the presence of MPS. Flat mounts were prepared from corneas of untreated C57BL/6, CD11b(-/-), F4/80(-/-), and BALB/c mice, and after suture placement or corneal transplantation, observed by immunofluorescence for the presence of lymphatic vessels using LYVE-1 as a marker of lymphatic endothelium. Innate immune cells were detected in normal mouse corneas using CD11b, F4/80, CD40, as well as MHC-class II. Digital images of the flat mounts were taken using a spot image analysis system, and the area covered by lymphatic vessels was measured using NIH Image software. The number of spontaneous lymphatic vessels in C57BL/6 corneas was significantly greater than in BALB/c corneas (P = 0.03). There were more CD11b(+) (P lymphatic vessels and reduced inflammation-induced lymphangiogenesis relative to control mice. Mice deficient in CD11b or F4/80 had fewer spontaneous lymphatic vessels and less lymphangiogenesis than control C57BL/6 mice. C57BL/6 mouse corneas have more endogenous CD11b(+) cells and lymphatic vessels. The endogenous lymphatic vessels, along with pro-inflammatory MPS, account for the high risk of corneal graft rejection in C57BL/6 mice. CD11b(+) and F4/80(+) MPS appear to have an important role in of the formation of new lymphatic vessels.

  11. Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia.

    Science.gov (United States)

    Spoerl, Eberhard; Zubaty, Viktoria; Raiskup-Wolf, Frederik; Pillunat, Lutz E

    2007-11-01

    The risk of regression after photorefractive keratectomy (PRK) and the tendency to develop keratectasia after laser-assisted in situ keratomileusis (LASIK) procedure is higher in women than men. Currently, interest is focused on the influence of oestrogen on corneal stability after corneal refractive surgery. The aim of this experimental study was to investigate the change in biomechanical properties of the cornea induced by oestrogen. The influence of oestrogen was investigated in 12 fresh porcine corneas incubated in culture medium with 10 micromol/l beta-oestradiol for 7 days. A group of 12 porcine corneas incubated in culture medium without oestradiol for the same time served as a control group. Strips of cornea were cut and the stress-strain was measured in a biomaterial tester. The Young's modulus was calculated. During incubation the thickness of the cornea changed in the control group by only 6.4% and in the oestradiol group by 12%. However, the difference in the biomechanical stress values at 10% strain was significantly larger. In the control group the stress value was 120.18+/-28.93 kPa and in the oestradiol group 76.87+/-34.63 kPa (p = 0.002), representing a reduction of the corneal stiffness by 36% due to the oestradiol treatment. Oestrogen is a modulating factor of the biomechanical properties of the cornea that is not explainable only by an increased swelling. The significance of the hormone status of patients and its influence on the biomechanical stability of the cornea, a determining factor after refractive surgery, have been underestimated and may contribute to the development of keratectasia.

  12. Organization of fibrillar collagen in the human and bovine cornea: collagen types V and III.

    Science.gov (United States)

    White, J; Werkmeister, J A; Ramshaw, J A; Birk, D E

    1997-01-01

    The localization and fibrillar organization of collagen types V and III in the human and bovine corneal stromas were studied. In the chicken cornea, type V co-assembles with type I collagen as heterotypic fibrils and this interaction is involved in the regulation of fibril diameter necessary for corneal transparency. To determine whether this is a regulatory mechanism common to the corneas of different species the human and bovine corneal stroma were studied. Collagen type V was found in the epithelium and Bowman's membrane in the untreated adult human and bovine cornea using immunofluorescence microscopy. In the absence of any treatment, there was no type V reactivity within the stroma. However, type V collagen was detected homogeneously throughout the corneal stroma after treatments that partially disrupt fibril structure. The reactivity was strongest in the cornea, weaker in the limbus and weakest in the sclera. Fetal corneas showed similar reactivity for type V collagen, but unlike the adult, the stroma was slightly reactive. Immunoelectron microscopy demonstrated that type V collagen was associated with disrupted, but not with intact, fibrils in both human and bovine corneal stroma. Type III collagen reactivity was not detected in the cornea, but was present subepithelially in the limbus and in the scleral stroma. These data indicate that type V collagen is a component of striated collagen fibrils throughout the human and bovine corneal stromas. The interaction of type I and V collagen as heterotypic fibrils masks the helical epitope recognized by the monoclonal antibody against type V collagen. The heterotypic interactions of collagen type V indicate a role in the regulation of fibril diameter analogous to that described in the avian cornea.

  13. Elastic modulus and collagen organization of the rabbit cornea: epithelium to endothelium.

    Science.gov (United States)

    Thomasy, Sara M; Raghunathan, Vijay Krishna; Winkler, Moritz; Reilly, Christopher M; Sadeli, Adeline R; Russell, Paul; Jester, James V; Murphy, Christopher J

    2014-02-01

    The rabbit is commonly used to evaluate new corneal prosthetics and study corneal wound healing. Knowledge of the stiffness of the rabbit cornea would better inform the design and fabrication of keratoprosthetics and substrates with relevant mechanical properties for in vitro investigations of corneal cellular behavior. This study determined the elastic modulus of the rabbit corneal epithelium, anterior basement membrane (ABM), anterior and posterior stroma, Descemet's membrane (DM) and endothelium using atomic force microscopy (AFM). In addition, three-dimensional collagen fiber organization of the rabbit cornea was determined using nonlinear optical high-resolution macroscopy. The elastic modulus as determined by AFM for each corneal layer was: epithelium, 0.57 ± 0.29 kPa (mean ± SD); ABM, 4.5 ± 1.2 kPa, anterior stroma, 1.1 ± 0.6 kPa; posterior stroma, 0.38 ± 0.22 kPa; DM, 11.7 ± 7.4 kPa; and endothelium, 4.1 ± 1.7 kPa. The biophysical properties, including the elastic modulus, are unique for each layer of the rabbit cornea and are dramatically softer in comparison to the corresponding regions of the human cornea. Collagen fiber organization is also dramatically different between the two species, with markedly less intertwining observed in the rabbit vs. human cornea. Given that the substratum stiffness considerably alters the corneal cell behavior, keratoprosthetics that incorporate mechanical properties simulating the native human cornea may not elicit optimal cellular performance in rabbit corneas that have dramatically different elastic moduli. These data should allow for the design of substrates that better mimic the biomechanical properties of the corneal cellular environment. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Modelling with a meshfree approach the cornea-aqueous humor interaction during the air puff test.

    Science.gov (United States)

    Montanino, Andrea; Angelillo, Maurizio; Pandolfi, Anna

    2018-01-01

    The air puff test is an in-vivo investigative procedure commonly utilized in ophthalmology to estimate the intraocular pressure. Potentially the test, quick and painless, could be combined with inverse analysis methods to characterize the patient-specific mechanical properties of the human cornea. A rapid localized air jet applied on the anterior surface induces the inward motion of the cornea, that interacts with aqueous humor-the fluid filling the narrow space between cornea and iris-with a strong influence on the dynamics of the cornea. While models of human cornea reproduce accurately patient-specific geometries and have reached a considerable level of complexity in the description of the material, yet scant attention has been paid to the aqueous humor, and no eye models accounting for the physically correct fluid-solid interaction are currently available. The present study addresses this gap by proposing a fluid-structure interaction approach based on a simplified two-dimensional axis-symmetric geometry to simulate the anterior chamber of the eye undergoing the air puff test. We regard the cornea as a membrane described through an analytical model and discretize the fluid with a mesh-free particle approach. The membrane is assumed to be nonlinear elastic and isotropic, and the fluid weakly compressible Newtonian. Numerical analyses reveal a marked influence of the fluid on the dynamics of the cornea. We perform a parametric analysis to assess the quantitative influence of geometrical and material parameters on the mechanical response of the model. Additionally, we investigate the possibility to use the dynamics of the test to estimate the intraocular pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Detection of differentially expressed genes in healing mouse corneas, using cDNA microarrays.

    Science.gov (United States)

    Cao, Zhiyi; Wu, Helen K; Bruce, Amenda; Wollenberg, Kurt; Panjwani, Noorjahan

    2002-09-01

    To identify differentially expressed genes in healing mouse corneas by using cDNA microarrays. Transepithelial excimer laser ablations were performed on mouse corneas, and the wounds were allowed to heal partially in vivo for 18 to 22 hours. Total RNA was isolated from both normal and healing corneas and was used for synthesis of cDNA probes. 33P-labeled exponential cDNA probes were hybridized to mouse cDNA nylon arrays. Of the 1176 genes on the nylon arrays, the expression of 37 was upregulated and that of 27 was downregulated more than fivefold in the healing corneas compared with the normal, uninjured corneas. Interleukin (IL)-1beta, laminin-5, and thrombospondin-1, which have been shown to be upregulated in healing corneas, were all found to be induced in the corneas in response to excimer laser treatment. Many genes were identified for the first time to be differentially regulated during corneal wound healing. Among the upregulated genes were intercellular adhesion molecule (ICAM)-1, macrophage inflammatory proteins, suppressors of cytokine signaling proteins (SOCS), IL-10 receptor, and galectin-7. Among the downregulated genes were connexin-31, a gap junction protein; ZO1 and occludin, tight junction proteins; and Smad2, a key component in the TGFbeta signaling pathway. Microarray data were validated on a limited number of genes by semiquantitative RT-PCR and Western blot analyses. Gene array technology was used to identify for the first time many genes that are differentially regulated during corneal wound healing. These differentially expressed genes have not previously been investigated in the context of wound healing and represent novel factors for further study of the mechanism of wound healing.

  16. Evaluation of the shape symmetry of bilateral normal corneas in a Chinese population.

    Science.gov (United States)

    Bao, Fangjun; Chen, Hao; Yu, Ye; Yu, Jiguo; Zhou, Shi; Wang, Jing; Wang, QinMei; Elsheikh, Ahmed

    2013-01-01

    To investigate the bilateral symmetry of the global corneal topography in normal corneas with a wide range of curvature, astigmatism and thickness values. Cross-Sectional Study. Topography images were recorded for the anterior and posterior surfaces of 342 participants using a Pentacam. Elevation data were fitted to a general quadratic model that considered both translational and rotational displacements. Comparisons between fellow corneas of estimates of corneal shape parameters (elevation, radius in two main directions, Rx and Ry, and corresponding shape factors, Qx and Qy) and corneal position parameters (translational displacements: x0, y0 and z0, and rotational displacements: α, β and γ) were statistically analyzed. The general quadratic model provided average RMS of fit errors with the topography data of 1.7±0.6 µm and 5.7±1.3 µm in anterior and posterior corneal surfaces. The comparisons showed highly significant bilateral correlations with the differences between fellow corneas in Rx, Ry, Qx and Qy of anterior and posterior surfaces remaining insignificantly different from zero. Bilateral differences in elevation measurements at randomly-selected points in both corneal central and peripheral areas indicated strong mirror symmetry between fellow corneas. The mean geometric center (x0, y0, z0) of both right and left corneas was located on the temporal side and inferior-temporal side of the apex in anterior and posterior topography map, respectively. Rotational displacement angle α along X axis had similar distributions in bilateral corneas, while rotation angle β along Y axis showed both eyes tilting towards the nasal side. Further, rotation angle γ along Z axis, which is related to corneal astigmatism, showed clear mirror symmetry. Analysis of corneal topography demonstrated strong and statistically-significant mirror symmetry between bilateral corneas. This characteristic could help in detection of pathological abnormalities, disease diagnosis

  17. Clinical transplantation of individualized recipient serum-adapted cornea reduces the risk of graft rejection after keratoplasty.

    Science.gov (United States)

    Thanos, Solon; Gatzioufas, Zissis; Schallenberg, Maurice; König, Simone; Meyer-Rüsenberg, Hans-Werner; Busse, Holger

    2013-01-01

    Corneal diseases cause severe visual impairment that necessitates corneal transplantation and frequently repetitive procedures due to graft rejection. We tested the hypothesis that exposure of donor corneas to recipient serum-derived factors during eye banking triggers a preoperative adaptation that is beneficial for postoperative tolerance. Donor corneas were incubated in a medium containing human serum (HS) obtained in each case from the prospective graft recipient in order to individually expose the donor cornea to the recipient's serum. All recipient serum-adapted corneas (RSACs) fulfilled the clinical criteria required by the national law and were transplanted successfully. The postoperative ophthalmological examination extended up to 8 years. All RSACs were tolerated by their recipients and did not cause postoperative complications and no rejection. Proteomic analysis of corneas cultivated in culture medium containing either fetal calf serum (FCS) that is routinely used for cornea banking or HS revealed different patterns of proteins. HS-cultured corneas showed a greater proteomic similarity with native human corneas than did the FCS-cultured corneas, indicating a differential nutrification of the cultured corneal tissue by HS-derived factors. The clinical results show for the first time that postoperative complications such as tissue intolerance and graft rejection might be managed if the corneal tissue is individually adapted to the recipient's serum trophic factors. This new donor tissue treatment procedure offers incontrovertible advantages and could be adapted for low-risk eyes as well as other transplantable tissues.

  18. 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology.

    Science.gov (United States)

    Abahussin, Mohammad; Hayes, Sally; Knox Cartwright, Nathaniel E; Kamma-Lorger, Christina S; Khan, Yasir; Marshall, John; Meek, Keith M

    2009-11-01

    To study the distribution and predominant orientations of fibrillar collagen at different depths throughout the entire thickness of the human cornea. This information will form the basis of a full three-dimensional reconstruction of the preferred orientations of corneal lamellae. Femtosecond laser technology was used to delaminate the central zones of five human corneas into three separate layers (anterior, mid, and posterior stroma), each with predetermined thicknesses. Wide-angle x-ray diffraction was used to study the gross collagen fibril orientation and distribution within each layer. The middle and posterior parts of the human cornea demonstrated a preferential orthogonal arrangement of collagen fibrils, directed along the superior-inferior and nasal-temporal meridians, with an increase in the number of lamellae toward the periphery. However, the anterior cornea (33% of total corneal thickness) showed no systematic preferred lamellar orientation. In the posterior two thirds of the human cornea, collagen lies predominantly in the vertical and horizontal meridians (directed toward the four major rectus muscles), whereas collagen in the anterior third of the cornea is more isotropic. The predominantly orthogonal arrangement of collagen in the mid and posterior stroma may help to distribute strain in the cornea by allowing it to withstand the pull of the extraocular muscles, whereas the more isotropic arrangement in the anterior cornea may play an important role in the biomechanics of the cornea by resisting intraocular pressure while at the same time maintaining corneal curvature.

  19. Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function

    DEFF Research Database (Denmark)

    Roos, Laura; Bertelsen, Birgitte; Harris, Pernille

    2015-01-01

    Background: Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is associated with homozygous or compound heterozygous mutations...... of the keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described. Case presentation: In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected......, and this knowledge will ease the interpretation of future findings of mutations in these areas in other families with cornea plana....

  20. Adhesion complex formation after small keratectomy wounds in the cornea.

    Science.gov (United States)

    Stock, E L; Kurpakus, M A; Sambol, B; Jones, J C

    1992-02-01

    The adhesion complex of the corneal epithelium consists of the hemidesmosome and its associated structures, such as anchoring filaments, lamina densa of the basement membrane, and anchoring fibrils. It contributes to the adhesion of the corneal epithelium to Bowman's layer. To understand the adhesion complex better, an electron microscopic and immunofluorescence analysis was done of the reformation of the adhesion complex in small (1 mm) keratectomy wounds in the guinea pig cornea. In these wounds, the epithelium, hemidesmosomes, basal lamina, anchoring fibrils, and anterior stroma were removed. The wound bed was epithelialized completely by 24 hr after wounding. Immunofluorescence analyses involved the use of antibodies against plaque components of the hemidesmosome, an antibody against laminin, and an antibody against the collagen VII component of anchoring fibrils. At 18 hr after wounding, there was no morphologic evidence of hemidesmosomes at the epithelial-stromal interface. At 24 hr, hemidesmosomes were observed, with or without subjacent lamina densa. Furthermore, plaque components were detected by immunofluorescence in those cells in contact with the wound bed. In contrast, no type VII collagen was detected. On day 7, collagen VII, laminin, and bullous pemphigoid autoantibody markers colocalized along the wound bed as determined by immunofluorescence. However, at the ultrastructural level, even though the lamina densa of the basal lamina was observed primarily where hemidesmosomes were present, it remained incomplete. In this study, the precise temporal sequence in which components are incorporated into the assembling adhesion complex was described during wound healing. Furthermore, the possibility that the hemidesmosomal plaque nucleates the formation of the underlying basal lamina was discussed.

  1. Biomechanical profile of the cornea in primary congenital glaucoma.

    Science.gov (United States)

    Gatzioufas, Zisis; Labiris, Georgios; Stachs, Oliver; Hovakimyan, Marine; Schnaidt, Arnulf; Viestenz, Arne; Käsmann-Kellner, Barbara; Seitz, Berthold

    2013-02-01

    The aim of our study was to investigate the biomechanical properties of the cornea in primary congenital glaucoma (PCG) and to identify the potential ocular determinants, which affect the corneal biomechanical metrics. Corneal hysteresis (CH), corneal resistance factor (CRF) and central corneal thickness (CCT) were measured in 26 patients with PCG (40 eyes) with the aid of ocular response analyser. In vivo laser-scanning confocal microscopy was used for the estimation of stromal keratocyte density (KD) and the evaluation of corneal endothelium. Twenty normal subjects (40 eyes) served as controls. Student's t-test and Pearson's correlation coefficients were used for statistical analysis. p Values Corneal hysteresis, CRF and CCT were significantly reduced in patients with PCG (all p Corneal hysteresis and CRF negatively correlated with the corneal diameter in both groups (r(1) = -0.53, r(2) = -0.66, p corneal stroma in patients with PCG (764 ± 162 and 362 ± 112 cells/mm(2) , respectively) compared with controls (979 ± 208 and 581 ± 131 cells/mm(2) , respectively) (p corneal endothelium of patients with PCG.   Our results showed a significant reduction in CH and CRF in PCG. Both CH and CRF were negatively correlated with corneal diameter. A significant correlation of CH and CRF with CCT was identified in both groups. Keratocyte density was decreased in PCG, but did not have a significant impact on CH and CRF. Mean endothelial density was also decreased in PCG. Our results suggest that reduced CCT and increased corneal diameter are major ocular determinants for the modified corneal biomechanical profile in PCG, while cellular alterations in corneal stroma and endothelium have no significant biomechanical impact. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  2. Topographic and biomechanical evaluation of cornea in patients with acromegaly.

    Science.gov (United States)

    Altinkaynak, Hasan; Duru, Necati; Ersoy, Reyhan; Kalkan Akcay, Emine; Ugurlu, Nagihan; Cagil, Nurullah; Cakir, Bekir

    2015-01-01

    The aim of this study was to compare topographic and biomechanical properties of corneas in patients with acromegaly with those of healthy individuals. Thirty-five patients with acromegaly (study group) and 35 healthy individuals (control group) were enrolled in this prospective study. Topographic measurements, including central corneal thickness (CCT), mean keratometry (K) value, K1, K2, surface asymmetry index, corneal volume (CV), and anterior chamber depth in the right eye of each participant were obtained using a Scheimpflug camera with a Placido disc topographer (Sirius; Costruzione Strumenti Oftalmici). Corneal hysteresis (CH), corneal resistance factor (CRF), corneal-compensated intraocular pressure (IOP), and Goldmann-corelated intraocular pressure (IOPg) were measured using Reichert Ocular Response Analyzer (Reichert Ophthalmic Instruments). Mean CCT, CV, CH, CRF, and IOPg values were higher in acromegalic eyes (549.3 ± 30.2 μm, 59.1 ± 3.1 μm, 11.3 ± 1.2 mm Hg, 11.3 ± 1.2 mm Hg, and 17.5 ± 2.9 mm Hg, respectively) than in healthy eyes (531.4 ± 33.6 μm, 57.4 ± 2.7 μm, 10.4 ± 1.2 mm Hg, 10.2 ± 1.6 mm Hg, and 14.8 ± 3.1 mm Hg, respectively; CCT, P = 0.042; CV, P = 0.032; CH, P = 0.044; CRF, P = 0.035; IOPg, P < 0.001). CCT, CV, CH, CRF, IOPg, and IOP with Goldmann applanation tonometry were significantly higher in acromegalic eyes. These corneal topographic and biomechanical properties, disease duration, and disease status should be considered when planning corneal refractive surgery and determining accurate intraocular pressure in patients with acromegaly.

  3. Use of glycerol-preserved corneas for corneal transplants

    Directory of Open Access Journals (Sweden)

    Neeti Gupta

    2017-01-01

    Full Text Available Purpose: This study was carried out to see the results of glycerol-preserved cornea (GPC in emergency situation when fresh corneal tissue was not available. The aim was to study the outcome of corneal transplantation using GPC. Methods: This was a retrospective study. The medical records of all the patients were reviewed, who underwent keratoplasty using “GPC” during the period from October 2011 to December 2015. The indication of keratoplasty, duration of preservation of the GPC, and its outcome were analyzed. Descriptive statistics were applied. Results: Out of the 222 penetrating keratoplasty (PKP performed over the study period, the GPC was used in 34 patients (males = 31, 91.2% aged 15–74 years. Therapeutic keratoplasty was performed in all cases in this cohort except one in which tectonic keratoplasty was done. The primary indication of PKP (91.2% was infectious keratitis. Of these, 20 (64.5% patients presented with perforated corneal ulcers. Post-PKP, ocular anatomy was preserved in 91.2%, and visual acuity of perception of light positive and accurate projection of rays in all the quadrants was obtained in 76.5% cases. Complications included glaucoma (n = 12, 35.1%, phthisis bulbi (n = 2, 5.9%, and graft reinfection and endophthalmitis after PKP (n = 1, 2.9%. The secondary procedure post-GPC and PKP were trabeculectomy with mitomycin C (n = 7, 58.3% in patients not controlled on topical antiglaucoma medication. Optical keratoplasty was performed in (n = 3 8.8% patients and triple procedure in (n = 2 5.8% patients with good visual acuity postprocedure. Conclusions: Acellular GPCs are useful in emergency keratoplasty to avoid loss of vision and can save the eye.

  4. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    Science.gov (United States)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to

  5. Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Tanushree; Kulkarni, Yashashree, E-mail: ykulkarni@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States)

    2014-11-14

    Nanotwinned metals have opened exciting avenues for the design of high strength and high ductility materials. In this work, we investigate crack propagation along coherent twin boundaries in nanotwinned metals using molecular dynamics. Our simulations reveal that alternating twin boundaries exhibit intrinsic brittleness and ductility owing to the opposite crystallographic orientations of the adjoining twins. This is a startling consequence of the directional anisotropy of an atomically sharp crack along a twin boundary that favors cleavage in one direction and dislocation emission from the crack tip in the opposite direction. We further find that a blunt crack exhibits ductility in all cases albeit with very distinct deformation mechanisms and yield strength associated with intrinsically brittle and ductile coherent twin boundaries.

  6. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    Science.gov (United States)

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  7. Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process

    Directory of Open Access Journals (Sweden)

    M. Ll. Maspoch

    2015-03-01

    Full Text Available The ductile-brittle transition behaviour of organo modified montmorillonite-based Poly(lactic acid films (PLA/o-MMT was analysed using the Essential Work of Fracture (EWF methodology, Small Punch Tests (SPT and Enthalpy relaxation analysis. While the EWF methodology could only be applied successfully to de-aged samples, small punch test (SPT was revealed as more effective for a mechanical characterization during the transient behaviour from ductile to brittle. According to differential scanning calorimetry (DSC results, physical aging at 30°C of PLA/o-MMT samples exhibited slower enthalpy relaxation kinetics as compared to the pristine polymer. Although all samples exhibited an equivalent thermodynamic state after being stored one week at 30°C, significant differences were observed in the mechanical performances. These changes could be attributed to the toughening mechanisms promoted by o-MMT.

  8. Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2016-01-01

    Full Text Available Fundamental understandings on the bitumen fracture mechanism are vital to improve the mixture design of asphalt concrete. In this paper, a diffuse interface model, namely, phase-field method is used for modeling the quasi-brittle fracture in bitumen. This method describes the microstructure using a phase-field variable which assumes one in the intact solid and negative one in the crack region. Only the elastic energy will directly contribute to cracking. To account for the growth of cracks, a nonconserved Allen-Cahn equation is adopted to evolve the phase-field variable. Numerical simulations of fracture are performed in bituminous materials with the consideration of quasi-brittle properties. It is found that the simulation results agree well with classic fracture mechanics.

  9. Nonadiabatic study of dynamic electronic effects during brittle fracture of silicon.

    Science.gov (United States)

    Theofanis, Patrick L; Jaramillo-Botero, Andres; Goddard, William A; Xiao, Hai

    2012-01-27

    It has long been observed that brittle fracture of materials can lead to emission of high energy electrons and UV photons, but an atomistic description of the origin of such processes has lacked. We report here on simulations using a first-principles-based electron force field methodology with effective core potentials to describe the nonadiabatic quantum dynamics during brittle fracture in silicon crystal. Our simulations replicate the correct response of the crack tip velocity to the threshold critical energy release rate, a feat that is inaccessible to quantum mechanics methods or conventional force-field-based molecular dynamics. We also describe the crack induced voltages, current bursts, and charge carrier production observed experimentally during fracture but not previously captured in simulations. We find that strain-induced surface rearrangements and local heating cause ionization of electrons at the fracture surfaces.

  10. Application of percolation model on the brittle to ductile transition for polystyrene and polyolefin elastomer blends

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The percolation model was applied in the study of brittle to ductile transition (BDT of polystyrene (PS and polyolefin elastomer (POE blends. Based on the interparticle distance and percolation model, stress volume (Vs can be expressed by volume fraction (Vr and ratio of the diameter of stress volume and the diameter of the domain (S/d. The percolation threshold (Vsc varied from π/6 to 0.65. From the results of the Charpy impact strength of the blends, the percolation threshold for the brittle to ductile transition of PS/POE blend is 14 wt% POE, corresponding to Vsc~0.5, which is consistent with the calculated value of π/6. Morphology observations show that the percolation point is correlated with the phase inversion of the blend.

  11. Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale

    Science.gov (United States)

    Perez Altimar, Roderick

    Brittleness is a key characteristic for effective reservoir stimulation and is mainly controlled by mineralogy in unconventional reservoirs. Unfortunately, there is no universally accepted means of predicting brittleness from measures made in wells or from surface seismic data. Brittleness indices (BI) are based on mineralogy, while brittleness average estimations are based on Young's modulus and Poisson's ratio. I evaluate two of the more popular brittleness estimation techniques and apply them to a Barnett Shale seismic survey in order to estimate its geomechanical properties. Using specialized logging tools such as elemental capture tool, density, and P- and S wave sonic logs calibrated to previous core descriptions and laboratory measurements, I create a survey-specific BI template in Young's modulus versus Poisson's ratio or alternatively lambdarho versus murho space. I use this template to predict BI from elastic parameters computed from surface seismic data, providing a continuous estimate of BI estimate in the Barnett Shale survey. Extracting lambdarho-murho values from microseismic event locations, I compute brittleness index from the template and find that most microsemic events occur in the more brittle part of the reservoir. My template is validated through a suite of microseismic experiments that shows most events occurring in brittle zones, fewer events in the ductile shale, and fewer events still in the limestone fracture barriers. Estimated ultimate recovery (EUR) is an estimate of the expected total production of oil and/or gas for the economic life of a well and is widely used in the evaluation of resource play reserves. In the literature it is possible to find several approaches for forecasting purposes and economic analyses. However, the extension to newer infill wells is somewhat challenging because production forecasts in unconventional reservoirs are a function of both completion effectiveness and reservoir quality. For shale gas reservoirs

  12. Damage initiation in brittle and ductile materials as revealed from a fractoluminescence study

    Directory of Open Access Journals (Sweden)

    Alexandre Chmel

    2014-10-01

    Full Text Available A set of heterogeneous and homogeneous materials differing in their brittle and ductile characteristics (granite, marble, silica ceramics, silicon carbide, organic glass were subjected to impact damaging by a falling weight. Multiple chemical bond ruptures produced by elastic waves propagating from a damaged zone were accompanied by the photon emission generated throughout the sample (tribo- or fractoluminescence, FL. The statistical analysis of the FL time series detected with high resolution (10 ns showed that the energy release distributions in brittle solids follow the power law typical for the correlated nucleation of primary defects. At the same time, the formation of damaged sites in ductile materials (marble and organic glass was found to be fully random.

  13. Damage spreading in quasi-brittle disordered solids: I. Localization and failure

    Science.gov (United States)

    Berthier, Estelle; Démery, Vincent; Ponson, Laurent

    2017-05-01

    We propose a novel approach inspired from non-local damage continuum mechanics to describe damage evolution in disordered quasi-brittle solids. Material heterogeneities are introduced at a mesoscopic continuous scale through spatial variations of the resistance to damage. The damage field evolution is computed from irreversible thermodynamics principles by assuming that the elastic energy released during loading is dissipated into failure. The onsets of damage localization and catastrophic failure in the material are studied as a function of the strength of the heterogeneities and the interaction function involved in the non-local formulation of the model. The predictions obtained numerically are explained theoretically for weak heterogeneities using a linear stability analysis and confirmed through a complementary approach based on a global energy minimization. Two distinct quasi-brittle failure behaviors are identified: for interaction functions that impose a reloading of the material points after the occurrence of a damage event, the damage grows rather uniformly in the material until catastrophic failure takes place. On the contrary, when damage events trigger reloading, but also a sufficiently strong unloading in some material regions, catastrophic failure is preceded by a stable regime of damage localization characterized by a length scale emerging from the structure of the load redistribution. Our study reveals the cooperative nature of the damage localization process, showing that quasi-brittle failure emerges from the interaction between the elements constituting the material. It also highlights the central role played by the mechanism of load redistribution that is shown to control the failure behavior of quasi-brittle solids.

  14. Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, W.W.

    1997-01-01

    The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin film fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.

  15. Contact mechanics at nanometric scale using nanoindentation technique for brittle and ductile materials.

    Science.gov (United States)

    Roa, J J; Rayon, E; Morales, M; Segarra, M

    2012-06-01

    In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.

  16. An investigation of the mineral in ductile and brittle cortical mouse bone

    OpenAIRE

    Rodriguez-Florez, N. (Naiara); Garcia-Tunon, E; Mukadam, Q.; Saiz, E.; Oldknow, K. J.; Farquharson, C.; Millán, J L; Boyde, A.; Shefelbine, S J

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse pheno...

  17. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  18. A study on gelatin capsule brittleness: moisture tranfer between the capsule shell and its content.

    Science.gov (United States)

    Chang, R K; Raghavan, K S; Hussain, M A

    1998-05-01

    Variation in moisture content of the capsule shells either due to the change of storage conditions or the moisture transfer between the capsule shell and its contents may lead to undesired physical properties, such as capsule brittleness and stickiness. DMP 504, a developmental bile-acid sequestrant, is a strongly basic anion-exchange polymer which contains randomly distributed primary, secondary, tertiary, and quaternary amine groups in their hydrochoride salt form. The alkylammonium groups which comprise this polymer form a random network containing a high level of branching and a low level of cross-linking. DMP 504 is very hygroscopic and has a tendency to gain or lose moisture with ease. The transfer of moisture from the capsule shell to DMP 504 powder contained in a hard gelatin capsule can be expected, and if a low water content of the capsule shell is achieved, the capsules become brittle and fracture easily. The sorption isotherm for DMP 504 was generated by storing the drug substance under various relative humidity conditions. After equilibrium, the moisture contents for the samples of individual isotherm points were measured by thermogravimetric analyses. This report applies the sorption-desorption moisture transfer (SDMT) model to predict the equilibrium relative humidity in a system containing DMP 504 in hard gelatin capsules and to establish target loss on drying values for DMP 504 and the capsule shell. Application of this SDMT model resulted in finding a solution to the brittleness problem. The moisture levels of capsule shells and contents for two formulations in a 12-month stability program are also reported here. Results of this study further demonstrate that the SDMT model can be used as a tool to guide the formulator to select optimal initial moisture contents for the empty capsule shell and the formulation to avoid the incidence of brittle capsule problems.

  19. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    Science.gov (United States)

    Fu, Yu; Wang, Zhe; Ren, Fengyu; Wang, Daguo

    2017-10-01

    A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  20. Numerical model of thermo-mechanical coupling for the tensile failure process of brittle materials

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-10-01

    Full Text Available A numerical model of thermal cracking with a thermo-mechanical coupling effect was established. The theory of tensile failure and heat conduction is used to study the tensile failure process of brittle materials, such as rock and concrete under high temperature environment. The validity of the model is verified by thick-wall cylinders with analytical solutions. The failure modes of brittle materials under thermal stresses caused by temperature gradient and different thermal expansion coefficient were studied by using a thick-wall cylinder model and an embedded particle model, respectively. In the thick-wall cylinder model, different forms of cracks induced by temperature gradient were obtained under different temperature boundary conditions. In the embedded particle model, radial cracks were produced in the medium part with lower tensile strength when temperature increased because of the different thermal expansion coefficient. Model results are in good agreement with the experimental results, thereby providing a new finite element method for analyzing the thermal damage process and mechanism of brittle materials.

  1. Experimental study on the physical and chemical properties of the deep hard brittle shale

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2016-03-01

    Full Text Available In the hard brittle shale formation, rock composition, physical and chemical properties, mechanics property before and after interacting with fluid have direct relation with borehole problems, such as borehole wall collapse, mud loss, hole shrinkage. To achieve hard brittle shale micro-structure, physical–chemical properties and mechanics property, energy-dispersive X-ray diffraction (XRD, cation exchange capacity experiment and hardness test are conducted. The result of laboratory experiments indicates that, clay mineral and quartz is dominated in mineral composition. In clay mineral, illite and illite/semectite mixed layers are abundant and there is no sign of montmorillonite. Value of cation exchange capacity (CEC ranges from 102.5–330 mmol/kg and average value is 199.56 mmol/kg. High value of CEC and content of clay mineral means hard brittle shale has strong ability of hydration. The image of XRD shows well developed micro-cracks and pores, which make rock failure easily, especially when fluid invades rock inside. Shale sample soaked with anti-high temperature KCL drilling fluid on shorter immersing time has stronger strength, whereas shale sample soaked with plugging and film forming KCL drilling fluid on longer immersing time has stronger strength.

  2. Cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks

    Science.gov (United States)

    Liu, Yi; Dai, Feng; Xu, Nuwen; Zhao, Tao

    2017-08-01

    We propose a cyclic flattened Brazilian disc (FBD) testing method to measure the tensile fatigue properties of brittle rocks. Our method has obvious merits in its specimen preparation and experimental operation. Two parallel flattens are introduced in the disc specimen, which facilitate easily and uniformly loading the specimen without special loading devices required. Moreover, the contact regions between two flattens and loading planes barely change during the entire loading and unloading process, ensuring a consistent contact condition. With certain appropriate loading angles, this method guarantees that the very first breakage of the specimen occurs at the center of the disc, which is the prerequisite of the Brazilian-type indirect tensile tests. To demonstrate our new method, nine cyclic FBD tensile tests are conducted. The fatigue load-deformation characteristics of FBD specimens are revealed. The tensile fatigue lives of tested specimens are observed to increase with the increase in cyclic loading frequency. Our proposed method provides a convenient and reliable approach to indirectly measure the fatigue tensile properties of brittle rocks and other brittle solids subjected to cyclic tensile loadings.

  3. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  4. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  5. Brittle Fracture Behaviors of Large Die Holders Used in Hot Die Forging

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2017-05-01

    Full Text Available Brittle fracture of large forging equipment usually leads to catastrophic consequences. To avoid this kind of accident, the brittle fracture behaviors of a large die holder were studied by simulating the practical application. The die holder is used on the large die forging press, and it is made of 55NiCrMoV7 hot-work tool steel. Detailed investigations including mechanical properties analysis, metallographic observation, fractography, transmission electron microscope (TEM analysis and selected area electron diffraction (SAED were conducted. The results reveal that the material generated a large quantity of large size polyhedral M23C6 (M: Fe and Cr mainly and elongated M3C (M: Fe mainly carbides along the martensitic lath boundaries when the die holder was recurrently tempered and water-cooled at 250 °C during the service. The large size carbides lead to the material embrittlement and impact toughness degradation, and further resulted in the brittle fracture of the die holder. Therefore, the operation specification must be emphasized to avoid the die holder being cooled by using water, which is aimed at accelerating the cooling.

  6. Brittle crack arrestability of thick steel plate welds in large structure

    Science.gov (United States)

    An, Gyu Baek; Park, Joon Sik

    2011-10-01

    Recently, there has been such a critical issue in shipbuilding industry that much larger and stronger ships are required to develop oil and gas in the Arctic region. Attention has been paid to obtaining high strength, good toughness at low temperature, and good weldability. An experimental study was performed to evaluate the brittle crack arrest toughness value (Kca) and brittle crack arrest method of welded joints using EH40 grade steel with a thickness of 80 mm. The test specimens were made by both flux cored arc welding (FCAW) and combined welding (EGW+FCAW) processes. Temperature gradient ESSO test was performed to measure the Kca of the base metal. Also, a constant temperature (-10 °C) ESSO test was performed to establish a brittle crack arrest method using high toughness welding consumable with real structural specimens. The research aims in this study were to investigate the effect of joint design and welding consumable for the crack arrestability of thick steel plates using EH40 grade shipbuilding steel of straight block joint weld line with two kinds of welding processes.

  7. Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis.

    Science.gov (United States)

    Pinnock, Abigail; Shivshetty, Nagaveni; Roy, Sanhita; Rimmer, Stephen; Douglas, Ian; MacNeil, Sheila; Garg, Prashant

    2017-02-01

    In the study of microbial keratitis, in vivo animal models often require a large number of animals, and in vitro monolayer cell culture does not maintain the three-dimensional structure of the tissues or cell-to-cell communication of in vivo models. Here, we propose reproducible ex vivo models of single- and dual-infection keratitis as an alternative to in vivo and in vitro models. Excised rabbit and human corneoscleral rims maintained in organ culture were infected using 108 cells of Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans or Fusarium solani. The infection was introduced by wounding with a scalpel and exposing corneas to the microbial suspension or by intrastromal injection. Post-inoculation, corneas were maintained for 24 and 48 h at 37 °C. After incubation, corneas were either homogenised to determine colony-forming units (CFU)/cornea or processed for histological examination using routine staining methods. Single- and mixed-species infections were compared. We observed a significant increase in CFU after 48 h compared to 24 h with S. aureus and P. aeruginosa. However, no such increase was observed in corneas infected with C. albicans or F. solani. The injection method yielded an approximately two- to 100-fold increase (p keratitis, particularly when this might be due to two infective organisms.

  8. Cornea nerve fiber quantification and construction of phenotypes in patients with fibromyalgia.

    Science.gov (United States)

    Oudejans, Linda; He, Xuan; Niesters, Marieke; Dahan, Albert; Brines, Michael; van Velzen, Monique

    2016-03-23

    Cornea confocal microscopy (CCM) is a novel non-invasive method to detect small nerve fiber pathology. CCM generally correlates with outcomes of skin biopsies in patients with small fiber pathology. The aim of this study was to quantify the morphology of small nerve fibers of the cornea of patients with fibromyalgia in terms of density, length and branching and further phenotype these patients using standardized quantitative sensory testing (QST). Small fiber pathology was detected in the cornea of 51% of patients: nerve fiber length was significantly decreased in 44% of patients compared to age- and sex-matched reference values; nerve fiber density and branching were significantly decreased in 10% and 28% of patients. The combination of the CCM parameters and sensory tests for central sensitization, (cold pain threshold, mechanical pain threshold, mechanical pain sensitivity, allodynia and/or windup), yielded four phenotypes of fibromyalgia patients in a subgroup analysis: one group with normal cornea morphology without and with signs of central sensitization, and a group with abnormal cornea morphology parameters without and with signs of central sensitization. In conclusion, half of the tested fibromyalgia population demonstrates signs of small fiber pathology as measured by CCM. The four distinct phenotypes suggest possible differences in disease mechanisms and may require different treatment approaches.

  9. Expression of HGF and c-Met Proteins in Human Keratoconus Corneas

    Directory of Open Access Journals (Sweden)

    Jingjing You

    2015-01-01

    Full Text Available Keratoconus (KC is a progressive degenerative inflammatory-related disease of the human cornea leading to decreased visual function. The pathogenesis of KC remains to be understood. Recent genetic studies indicate that gene variants of an inflammation-related molecule, hepatocyte growth factor (HGF, are associated with an increased susceptibility for developing KC. However HGF protein expression in KC has not been explored. In this initial study, we investigated late-stage KC and control corneas for the expression of HGF and its receptor mesenchymal-epithelial transition factor (c-Met/Met. KC buttons (~8 mm diameter (n=10 and whole control corneas (n=6 were fixed in 10% formalin or 2% paraformaldehyde, paraffin embedded and sectioned. Sections were immunolabelled with HGF and c-Met antibodies, visualised using immunofluorescence, and examined with scanning laser confocal microscopy. Semiquantitative grading was used to compare HGF and c-Met immunostaining in KC and control corneas. Overall, KC corneas showed increased HGF and c-Met immunostaining compared to controls. KC corneal epithelium displayed heterogeneous moderate-to-strong immunoreactivity for HGF and c-Met, particularly in the basal epithelium adjacent to the cone area. Taken together with the recent genetic studies, our results further support a possible role for HGF/c-Met in the pathogenesis of KC.

  10. Expression of HGF and c-Met Proteins in Human Keratoconus Corneas

    Science.gov (United States)

    You, Jingjing; Wen, Li; Roufas, Athena; Hodge, Chris; Sutton, Gerard; Madigan, Michele C.

    2015-01-01

    Keratoconus (KC) is a progressive degenerative inflammatory-related disease of the human cornea leading to decreased visual function. The pathogenesis of KC remains to be understood. Recent genetic studies indicate that gene variants of an inflammation-related molecule, hepatocyte growth factor (HGF), are associated with an increased susceptibility for developing KC. However HGF protein expression in KC has not been explored. In this initial study, we investigated late-stage KC and control corneas for the expression of HGF and its receptor mesenchymal-epithelial transition factor (c-Met/Met). KC buttons (~8 mm diameter) (n = 10) and whole control corneas (n = 6) were fixed in 10% formalin or 2% paraformaldehyde, paraffin embedded and sectioned. Sections were immunolabelled with HGF and c-Met antibodies, visualised using immunofluorescence, and examined with scanning laser confocal microscopy. Semiquantitative grading was used to compare HGF and c-Met immunostaining in KC and control corneas. Overall, KC corneas showed increased HGF and c-Met immunostaining compared to controls. KC corneal epithelium displayed heterogeneous moderate-to-strong immunoreactivity for HGF and c-Met, particularly in the basal epithelium adjacent to the cone area. Taken together with the recent genetic studies, our results further support a possible role for HGF/c-Met in the pathogenesis of KC. PMID:26697215

  11. The structural response of the cornea to changes in stromal hydration

    Science.gov (United States)

    White, Tomas; Boote, Craig; Kamma-Lorger, Christina S.; Bell, James; Sorenson, Thomas; Terrill, Nick; Shebanova, Olga; Meek, Keith M.

    2017-01-01

    The primary aim of this study was to quantify the relationship between corneal structure and hydration in humans and pigs. X-ray scattering data were collected from human and porcine corneas equilibrated with polyethylene glycol (PEG) to varying levels of hydration, to obtain measurements of collagen fibril diameter, interfibrillar spacing (IFS) and intermolecular spacing. Both species showed a strong positive linear correlation between hydration and IFS2 and a nonlinear, bi-phasic relationship between hydration and fibril diameter, whereby fibril diameter increased up to approximately physiological hydration, H = 3.0, with little change thereafter. Above H = 3.0, porcine corneas exhibited a larger fibril diameter than human corneas (p hydration in a bi-phasic manner but reached a maximum value at a lower hydration (H = 1.5) than fibril diameter. Human corneas displayed a higher intermolecular spacing than porcine corneas at all hydrations (p hydration, suggesting that the total fixed charge that gives rise to the swelling pressure is the same. The difference in their structural responses to hydration can be explained by variations in molecular cross-linking and intra/interfibrillar water partitioning. PMID:28592658

  12. Distribution of types I, II, III, IV and V collagen in normal and keratoconus corneas.

    Science.gov (United States)

    Nakayasu, K; Tanaka, M; Konomi, H; Hayashi, T

    1986-01-01

    By using type-specific antibodies to types I, II, III, IV and V collagens, distribution of distinct types of collagen in normal human cornea as well as keratoconus cornea were examined by indirect immunofluorescence microscopy. In normal human cornea, immunohistochemical evidence supported the previous biochemical finding that type I collagen was the major type of collagen in human corneal stroma. No reaction was observed to anti-type II collagen antibody in the whole cornea. Anti-type III collagen antibody reacted with the corneal stroma in a similar fashion as that of anti-type I collagen antibody. Type IV collagen was observed in the basement membrane of the corneal epithelium and in Descemet's membrane. Anti-type V collagen antibody also reacted with the corneal stroma diffusely. Bowman's membrane was strongly stained only with he anti-type V collagen antibody. For further details of the distribution of type I, type III and V collagens in human corneal stroma, immunoelectron microscopic study was undertaken. The positive reaction products of anti-type I and anti-type III collagen antibodies were located on the collagen fibrils, while that of anti-type V collagen antibody was either on or close to collagen fibrils. In keratoconus cornea, no difference was observed in terms of the distribution of type I, III and V collagens, while the disruptive and excrescent distribution of type IV collagen was noted in the basement membrane of the corneal epithelium.

  13. Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures.

    Science.gov (United States)

    Vrana, N Engin; Builles, Nicolas; Justin, Virginie; Bednarz, Jurgen; Pellegrini, Graziella; Ferrari, Barbara; Damour, Odile; Hulmes, David J S; Hasirci, Vasif

    2008-12-01

    To develop an artificial cornea, the ability to coculture the different cell types present in the cornea is essential. Here the goal was to develop a full-thickness artificial cornea using an optimized collagen-chondroitin sulfate foam, with a thickness close to that of human cornea, by coculturing human corneal epithelial and stromal cells and transfected human endothelial cells. Corneal extracellular matrix was simulated by a porous collagen/glycosaminoglycan-based scaffold seeded with stromal keratocytes and then, successively, epithelial and endothelial cells. Scaffolds were characterized for bulk porosity and pore size distribution. The performance of the three-dimensional construct was studied by histology, immunofluorescence, and immunohistochemistry. The scaffold had 85% porosity and an average pore size of 62.1 microm. Keratocytes populated the scaffold and produced a newly synthesized extracellular matrix as characterized by immunohistochemistry. Even though the keratocytes lost their CD34 phenotype marker, the absence of smooth muscle actin fibers showed that these cells had not differentiated into myofibroblasts. The epithelial cells formed a stratified epithelium and began basement membrane deposition. An endothelial cell monolayer beneath the foam was also apparent. These results demonstrate that collagen-chondroitin sulfate scaffolds are good substrates for artificial cornea construction with good resilience, long-term culture capability, and handling properties.

  14. Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas.

    Science.gov (United States)

    Dhaliwal, Jasmeet S; Kaufman, Stephen C

    2009-01-01

    The purpose of this study was to evaluate morphological changes induced by corneal collagen cross-linking in a human ex vivo cornea, using confocal, electron, and light microscopy. The central epithelium was partially removed from ex vivo human corneal buttons. Riboflavin 0.1% solution was applied before ultraviolet A light treatment and then for every 2 minutes for 30 minutes while the corneas were exposed to ultraviolet A light at a wavelength of 370 nm and intensity of 3 mW/cm(2). Each cornea was evaluated using confocal, electron, and light microscopy. Confocal microscopy demonstrated normal-appearing corneas on their initial pretreatment examination, with reduced stromal detail. After treatment, a superficial layer of highly reflective spherical structures (4-10 microm) was observed. Many of these hyperreflective structures appeared up to a depth of 300 microm. The remainder of the corneal stroma and endothelium appeared normal. Electron microscopy showed keratocyte apoptotic changes to a depth of 300 microm. No observable pathologic changes were seen on histology. Based on clinical studies, corneal cross-linking is a promising treatment that appears to be safe and to halt ectatic corneal disease progression. Initial European studies used animal models to extrapolate human protocols. In conjunction with clinical studies, we believe that human ex vivo corneal studies provide a means to evaluate the structural and morphological changes associated with this procedure, within human corneas, in a manner that cannot be accomplished in vivo.

  15. Prevalence and Associations of Steep Cornea/Keratoconus in Greater Beijing. The Beijing Eye Study

    Science.gov (United States)

    Xu, Liang; Wang, Ya Xing; Guo, Yin; You, Qi Sheng; Jonas, Jost B.

    2012-01-01

    Purpose To evaluate the prevalence and associated factors of steep cornea/keratoconus in the adult Chinese population. Methods The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6±9.8 years (range: 50–93 years). A detailed ophthalmic examination was performed including optical low-coherence reflectometry. Steep cornea/keratoconus were defined as an anterior corneal refractive power exceeding 48 diopters. Results Mean refractive power of the cornea was 43.16±1.45 diopters (range: 36.51 to 48.46 diopters; flattest meridian) and 43.98±1.52 diopters (range: 37.00 to 52.88 diopters; steepest meridian). A steep cornea/keratoconus defined as corneal refractive power of ≥48 diopters and ≥49 diopters was detected in 27 subjects (prevalence rate: 0.9±0.2%) and 6 (0.2± 0.1%) subjects, respectively. Presence of steep cornea/keratoconus was associated with shorter axial length (Pkeratoconus defined as corneal refractive power of 48+ diopters has a prevalence of 0.9±0.2% among Chinese aged 50 years and above. Its prevalence was significantly associated with the ocular parameters of shorter axial length, smaller interpupillary distance, higher cylindrical and myopic refractive error and lower best corrected visual acuity, however, with none of the systemic parameters tested. PMID:22792169

  16. Quantification of collagen organization in the peripheral human cornea at micron-scale resolution.

    Science.gov (United States)

    Boote, Craig; Kamma-Lorger, Christina S; Hayes, Sally; Harris, Jonathan; Burghammer, Manfred; Hiller, Jennifer; Terrill, Nicholas J; Meek, Keith M

    2011-07-06

    The collagen microstructure of the peripheral cornea is important in stabilizing corneal curvature and refractive status. However, the manner in which the predominantly orthogonal collagen fibrils of the central cornea integrate with the circumferential limbal collagen is unknown. We used microfocus wide-angle x-ray scattering to quantify the relative proportion and orientation of collagen fibrils over the human corneolimbal interface at intervals of 50 μm. Orthogonal fibrils changed direction 1-1.5 mm before the limbus to integrate with the circumferential limbal fibrils. Outside the central 6 mm, additional preferentially aligned collagen was found to reinforce the cornea and limbus. The manner of integration and degree of reinforcement varied significantly depending on the direction along which the limbus was approached. We also employed small-angle x-ray scattering to measure the average collagen fibril diameter from central cornea to limbus at 0.5 mm intervals. Fibril diameter was constant across the central 6 mm. More peripherally, fibril diameter increased, indicative of a merging of corneal and scleral collagen. The point of increase varied with direction, consistent with a scheme in which the oblique corneal periphery is reinforced by chords of scleral collagen. The results have implications for the cornea's biomechanical response to ocular surgeries involving peripheral incision. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Quantification of Collagen Organization in the Peripheral Human Cornea at Micron-Scale Resolution

    Science.gov (United States)

    Boote, Craig; Kamma-Lorger, Christina S.; Hayes, Sally; Harris, Jonathan; Burghammer, Manfred; Hiller, Jennifer; Terrill, Nicholas J.; Meek, Keith M.

    2011-01-01

    The collagen microstructure of the peripheral cornea is important in stabilizing corneal curvature and refractive status. However, the manner in which the predominantly orthogonal collagen fibrils of the central cornea integrate with the circumferential limbal collagen is unknown. We used microfocus wide-angle x-ray scattering to quantify the relative proportion and orientation of collagen fibrils over the human corneolimbal interface at intervals of 50 μm. Orthogonal fibrils changed direction 1–1.5 mm before the limbus to integrate with the circumferential limbal fibrils. Outside the central 6 mm, additional preferentially aligned collagen was found to reinforce the cornea and limbus. The manner of integration and degree of reinforcement varied significantly depending on the direction along which the limbus was approached. We also employed small-angle x-ray scattering to measure the average collagen fibril diameter from central cornea to limbus at 0.5 mm intervals. Fibril diameter was constant across the central 6 mm. More peripherally, fibril diameter increased, indicative of a merging of corneal and scleral collagen. The point of increase varied with direction, consistent with a scheme in which the oblique corneal periphery is reinforced by chords of scleral collagen. The results have implications for the cornea's biomechanical response to ocular surgeries involving peripheral incision. PMID:21723812

  18. Localization of type XII collagen in normal and healing rabbit cornea by in situ hybridization.

    Science.gov (United States)

    Zhan, Q; Burrows, R; Cintron, C

    1995-05-01

    To identify the cell types responsible for type XII collagen synthesis in normal and healing rabbit cornea, a partial cDNA sequence of rabbit type XII collagen, obtained from an adult rabbit cornea cDNA library, was used to develop highly specific oligonucleotide probes for Northern blot analysis and in situ hybridization. Approximately 2000 bases of a type XII collagen 2.2 kb cDNA clone were sequenced. Comparative sequence analysis of the bases showed a 74% identity with chick alpha 1 (XII) chain of type XII collagen. The deduced amino acid sequence indicated a 72% identity with chick type XII collagen. Northern blot analysis showed that cultures of cornea stromal and endothelial cells each contain two RNA species, greater than 10 kb, that hybridize to rabbit type XII collagen oligonucleotide probes. Although normal stromal cells failed to show type XII collagen mRNA, normal endothelial cells contain mRNA for this collagen. These results indicate that endothelium of normal rabbit cornea has a potential to synthesize type XII collagen. During corneal wound healing, both endothelium-derived and stroma-derived cells in the developing scar tissue contained type XII mRNA. In view of the known presence of type XII collagen in corneal stromas from chick and mouse, the distribution of mRNA in normal cornea is puzzling.

  19. Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development

    Energy Technology Data Exchange (ETDEWEB)

    Cenedella, R.J.; Fleschner, C.R. (Kirksville College of Osteopathic Medicine, MO (USA))

    1989-07-01

    The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of {sup 3}H{sub 2}O and ({sup 14}C)mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of {sup 14}C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of {sup 3}H of {sup 3}H{sub 2}O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered.

  20. Transient Ingrowth of Lymphatic Vessels into the Physiologically Avascular Cornea Regulates Corneal Edema and Transparency.

    Science.gov (United States)

    Hos, Deniz; Bukowiecki, Anne; Horstmann, Jens; Bock, Felix; Bucher, Franziska; Heindl, Ludwig M; Siebelmann, Sebastian; Steven, Philipp; Dana, Reza; Eming, Sabine A; Cursiefen, Claus

    2017-08-03

    Lymphangiogenesis is essential for fluid homeostasis in vascularized tissues. In the normally avascular cornea, however, pathological lymphangiogenesis mediates diseases like corneal transplant rejection, dry eye disease, and allergy. So far, a physiological role for lymphangiogenesis in a primarily avascular site such as the cornea has not been described. Using a mouse model of perforating corneal injury that causes acute and severe fluid accumulation in the cornea, we show that lymphatics transiently and selectively invade the cornea and regulate the resolution of corneal edema. Pharmacological blockade of lymphangiogenesis via VEGFR-3 inhibition results in increased corneal thickness due to delayed drainage of corneal edema and a trend towards prolonged corneal opacification. Notably, lymphatics are also detectable in the cornea of a patient with acute edema due to spontaneous Descemet´s (basement) membrane rupture in keratoconus, mimicking this animal model and highlighting the clinical relevance of lymphangiogenesis in corneal fluid homeostasis. Together, our findings provide evidence that lymphangiogenesis plays an unexpectedly beneficial role in the regulation of corneal edema and transparency. This might open new treatment options in blinding diseases associated with corneal edema and transparency loss. Furthermore, we demonstrate for the first time that physiological lymphangiogenesis also occurs in primarily avascular sites.

  1. Biomechanical Changes of Collagen Cross-Linking on Human Keratoconic Corneas Using Scanning Acoustic Microscopy.

    Science.gov (United States)

    Beshtawi, Ithar M; Akhtar, Riaz; Hillarby, M Chantal; O'Donnell, Clare; Zhao, Xuegen; Brahma, Arun; Carley, Fiona; Derby, Brian; Radhakrishnan, Hema

    2016-05-01

    To assess the biomechanical changes of collagen cross-linking on keratoconic corneas in vitro. Six keratoconic corneal buttons were included in this study. Each cornea was divided into two halves, where one half was cross-linked and the other half was treated with riboflavin only and served as control. The biomechanical changes of the corneal tissue were measured across the stroma using scanning acoustic microscopy (SAM). In the cross-linked corneas, there was a steady decrease in the magnitude of speed of sound from the anterior region through to the posterior regions of the stroma. The speed of sound was found to decrease slightly across the corneal thickness in the control corneas. The increase in speed of sound between the cross-linked and control corneas in the anterior region was by a factor of 1.039×. A higher speed of sound was detected in cross-linked keratoconic corneal tissue when compared with their controls, using SAM. This in vitro model can be used to compare to the cross-linking results obtained in vivo, as well as comparing the results obtained with different protocols.

  2. Sorption of sodium hydroxide by type I collagen and bovine corneas.

    Science.gov (United States)

    Whikehart, D R; Edwards, W C; Pfister, R R

    1991-01-01

    There are no quantitative studies on the uptake of alkali into corneal tissues. To study this phenomenon, both type I collagen and bovine corneas were incubated in sodium hydroxide (NaOH) under varying conditions for periods up to 27.5 h. The sorption (absorption or adsorption) of the alkali to protein and tissue was measured as the quantity of NaOH no longer available for titration to neutrality with hydrochloric acid. Sorption was found to be dependent on the concentration of NaOH (0.01-1 N) but independent of the incubation temperature (4-35 degrees C). In whole cornea, sorption of 1 N NaOH began immediately and increased with time up to 6 h. After 6 h, sorption decreased, together with the observed degradation and solubilization of the tissue. Stripping of the corneal endothelium alone or of the endothelium and epithelium increased sorption in a similar manner when compared to whole corneas for periods up to 4 h. These observations are compatible with ionic and nonionic bonding of hydroxide ions to collagen (including that of the cornea) and the subsequent release of hydroxide ions during hydrolysis of the protein itself. Indirect evidence also suggests the inclusion of quantities of unbound hydroxide ions in hydrated gels of glycosaminoglycans. It is proposed that in a chemical burn of the cornea, alkali is both stored in the tissue (by sorption) and reacted with it (by hydrolysis), without any net consumption of alkali taking place.

  3. Keratoconus prediction using a finite element model of the cornea with local biomechanical properties.

    Science.gov (United States)

    Carvalho, Luis Alberto; Prado, Marcelo; Cunha, Rodivaldo H; Costa Neto, Alvaro; Paranhos, Augusto; Schor, Paulo; Chamon, Wallace

    2009-01-01

    The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predict keratoconus-like behavior and its evolution based on material properties of the corneal tissue. Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.

  4. The influence of the geometry of the porcine cornea on the biomechanical response of inflation tests.

    Science.gov (United States)

    Pandolfi, Anna; Boschetti, Federica

    2015-01-01

    To withstand the high probability of success, the growing diffusion of laser surgery for the correction of visual defects, corneal surgeons are regarding with interest numerical tools able to provide reliable predictions of the intervention outcomes. The main obstacle to the definition of a predictive numerical instrument is the objective difficulty in evaluating the in vivo mechanical properties of the human cornea. In this study, we assess the ability of a parametrised numerical model of the cornea (Pandolfi and Manganiello 2006) to describe individual pressurisation tests on whole porcine corneas once the mechanical parameters of the model have been calibrated over average data. We also aim at estimating the sensitivity of the mechanical response with the variation of basic geometrical parameters, such as the central corneal thickness, the curvature and the in-plane diameter. We conclude that the actual geometry of a cornea has a minor role in the overall mechanical response, and therefore the material properties must be considered carefully and individually in any numerical application. This study makes use of the data obtained from a wide experimental program, where a set of 21 porcine corneas has been fully characterised in terms of mechanical and geometrical properties (Boschetti et al. 2012).

  5. Optical coherence tomography analysis of hydrofluoric acid decontamination of human cornea by mannitol solution.

    Science.gov (United States)

    Nosé, Ricardo M; Daga, Fabio B; Nosé, Walton; Kasahara, Niro

    2017-03-01

    To evaluate the efficacy of mannitol solution as a decontamination agent on the chemical burn of the human corneas. Eight donor corneas from an eye bank were exposed to 25μl of 2.5% hydrofluoric acid (HF) solution on a filter paper for 20s. Three eyes were rinsed with 1000ml of mannitol 20% for 15min immediately after removal of the filter paper, 3 other were rinsed with sodium chloride (NaCl) 0.9% (1000ml for 15min) and two eyes were not rinsed. Microstructural changes were monitored in the time domain by optical coherence tomography (OCT) imaging for 75min. NaCl reduced the penetration depth to approximately half the thickness of the cornea at 15min; scattering within the anterior cornea was higher than that for the unrinsed eye. With mannitol, no increased scattering was observed in the posterior part of the corneal stroma within a time period of 1h after rinsing. OCT images revealed low-scattering intensity within the anterior stroma at the end of the rinsing period. In eye bank human corneas, mannitol proved to be an efficient agent to decontaminate HF burn. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  6. Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea.

    Science.gov (United States)

    Kaji, Yuichi; Akiyama, Toshihiro; Segawa, Hiroki; Oshika, Tetsuro; Kano, Hideaki

    2017-11-01

    In vivo and in situ visualization of biomolecules without pretreatment will be important for diagnosis and treatment of ocular disorders in the future. Recently, multiphoton microscopy, based on the nonlinear interactions between molecules and photons, has been applied to reveal the localizations of various molecules in tissues. We aimed to use multimodal multiphoton microscopy to visualize the localizations of specific biomolecules in rat corneas. Multiphoton images of the corneas were obtained from nonlinear signals of coherent anti-Stokes Raman scattering, third-order sum frequency generation, and second-harmonic generation. The localizations of the adhesion complex-containing basement membrane and Bowman layer were clearly visible in the third-order sum frequency generation images. The fine structure of type I collagen was observed in the corneal stroma in the second-harmonic generation images. The localizations of lipids, proteins, and nucleic acids (DNA/RNA) was obtained in the coherent anti-Stokes Raman scattering images. Imaging technologies have progressed significantly and been applied in medical fields. Optical coherence tomography and confocal microscopy are widely used but do not provide information on the molecular structure of the cornea. By contrast, multiphoton microscopy provides information on the molecular structure of living tissues. Using this technique, we successfully visualized the localizations of various biomolecules including lipids, proteins, and nucleic acids in the cornea. We speculate that multiphoton microscopy will provide essential information on the physiological and pathological conditions of the cornea, as well as molecular localizations in tissues without pretreatment.

  7. Inhibition of matrix metalloproteins 9 attenuated Candida albicans induced inflammation in mouse cornea.

    Science.gov (United States)

    Dong, C; Yang, M G

    2016-10-31

    Since the severe corneal ulceration of mouse cornea is known to occur with inflammation. As one of imperative matrix metalloproteinase, the potential roles of matrix metalloproteins 9 (MMP9) in corneal ulceration and keratitis are still unveiled caused by fungal invasion. In this study, Candida albicans (CA) inoculated wild-type KM mice cornea was used as a model pathogen in corneal inflammation.  CA invasion significantly stimulated the expression of collagen IV and MMP9 detected by RT-PCR, Real-time PCR and Immunofluorescent staining in mouse cornea as soon as 6 hours post infection, and relatively decreased at 1 day post infection. For examining the role of MMP9 in fungal keratitis, the mice corneas were subconjunctivally injected MMP9 antibody or recombinant MMP9 protein 6 hours prior to CA inoculation, using rabbit IgG as control. Subconjunctival injection of recombinant MMP9 protein prior to CA inoculation enhanced, whereas MMP9 antibody attenuated corneal ulceration and inflammation, examining basement membrane, fungal load, myeloperoxidase (MPO) and proinflammatory cytokines including Macrophage inflammatory protein 2 (MIP2), Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α). Inhibition of MMP9 could potentially attenuate Candida albicans induced inflammation in mouse cornea.

  8. Comparable change in stromal refractive index of cat and human corneas following blue-IRIS

    Science.gov (United States)

    Wozniak, Kaitlin T.; Gearhart, Sara M.; Savage, Daniel E.; Ellis, Jonathan D.; Knox, Wayne H.; Huxlin, Krystel R.

    2017-05-01

    Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ˜300 μm below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ˜1 μm wide, spaced 5 μm apart, using a scan speed of 5 mm/s. Additional cat corneas were used to test writing at 3 and 7 mm/s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.

  9. Identification of the HSPB4/TLR2/NF-κB axis in macrophage as a therapeutic target for sterile inflammation of the cornea

    Science.gov (United States)

    Oh, Joo Youn; Choi, Hosoon; Lee, Ryang Hwa; Roddy, Gavin W; Ylöstalo, Joni H; Wawrousek, Eric; Prockop, Darwin J

    2012-01-01

    Sterile inflammation underlies many diseases of the cornea including serious chemical burns and the common dry eye syndrome. In search for therapeutic targets for corneal inflammation, we defined the kinetics of neutrophil infiltration in a model of sterile injury to the cornea and identified molecular and cellular mechanisms triggering inflammatory responses. Neutrophil infiltration occurred in two phases: a small initial phase (Phase I) that began within 15 min after injury, and a larger second phase (Phase II) that peaked at 24–48 h. Temporal analysis suggested that the neuropeptide secretoneurin initiated Phase I without involvement of resident macrophages. Phase II was initiated by the small heat shock protein HSPB4 that was released from injured keratocytes and that activated resident macrophages via the TLR2/NF-κB pathway. The Phase II inflammation was responsible for vision-threatening opacity and was markedly suppressed by different means of inhibition of the HSPB4/TLR2/NF-κB axis: in mice lacking HSPB4 or TLR2, by antibodies to HSPB4 or by TNF-α stimulated gene/protein 6 that CD44-dependently inhibits the TLR2/NF-κB pathway. Therefore, our data identified the HSPB4/TLR2/NF-κB axis in macrophages as an effective target for therapy of corneal inflammation. PMID:22359280

  10. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii

    Directory of Open Access Journals (Sweden)

    Vaughn Roy

    2012-09-01

    Full Text Available Abstract Background The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. Methods Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. Results Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared ‘genetic toolkit’ central to the echinoderm gastrula, a key stage in embryonic development, though

  11. Cerebral gigantism (Sotos syndrome). Compiled data of 22 cases. Analysis of clinical features, growth and plasma somatomedin

    NARCIS (Netherlands)

    Wit, J. M.; Beemer, F. A.; Barth, P. G.; Oorthuys, J. W.; Dijkstra, P. F.; van den Brande, J. L.; Leschot, N. J.

    1985-01-01

    An in depth study on growth, bone age, cranial CT scans and plasma somatomedin activity (SM-act) was made of 22 children with Sotos syndrome. In addition to the known characteristics of the syndrome, thin and brittle nails were found in three adolescent patients. The mean body stature, expressed as

  12. Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery.

    Science.gov (United States)

    Jaycock, Philip David; Lobo, Leon; Ibrahim, Jamal; Tyrer, John; Marshall, John

    2005-01-01

    To develop a technique to quantify biomechanical changes in the cornea after microkeratome incisions as would be performed in laser in situ keratomileusis. St Thomas' Hospital, London, and the Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom. Corneal displacements of whole sheep eyes were studied under hydrostatic loading using electronic speckle pattern interferometry before and after microkeratome incisions. After hydrostatic loading, there was a 20.7% increase in corneal displacement in corneas with microkeratome incisions compared to unoperated corneas; this was statistically significant (P=.0068, unpaired t test). Results show that in the formation of the microkeratome flap, collagen fibers are severed and minimal biomechanical loading is distributed through the flap. Corneal biomechanical integrity is compromised after microkeratome incisions.

  13. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo

    Science.gov (United States)

    Li, Jiasong; Wang, Shang; Singh, M.; Aglyamov, S.; Emelianov, S.; Twa, M. D.; Larin, K. V.

    2014-06-01

    We demonstrate the use of phase-stabilized swept source optical coherence elastography (PhS-SSOCE) to assess the relaxation rate of deformation created by a focused air-pulse in tissue-mimicking gelatin phantoms of various concentrations and mouse corneas of different ages in vivo. The results show that the relaxation rate can be quantified and is different for gels with varying concentrations of gelatin and mouse corneas of different ages. The results indicate that gel phantoms with higher concentrations of gelatin as well as older mouse corneas have faster relaxation rates indicating stiffer material. This non-contact and non-invasive measurement technique utilizes low surface displacement amplitude (in µm scale) for tissue excitation and, therefore, can be potentially used to study the biomechanical properties of ocular and other sensitive tissues.

  14. The monoclonal antibody GRC1 produced against human cornea recognizes a common determinant of collagen.

    Science.gov (United States)

    Lopez Nevot, M A; Cardona, L; Doblaré, E; Muñoz, C; Ruiz-Cabello, F; Garrido, F

    1990-02-01

    The monoclonal antibody GRC1 was obtained by immunizing BALB/c mice with human cornea. Screening was performed by indirect immunofluorescence in cryostatic sections of several tissues: cornea, skin, placenta, hyaline cartilage, blood vessels, and nerves. GRC1 was seen to recognize fibrillar structures in all of these tissues. The pattern of reaction was interstitial and membranous. On cornea, GRC1 reacts definitely with Bowman's membrane and diffusely with the stroma, while on skin it shows strongly positive reactivity with the papillary dermis and with the basement membrane. It also reacts on hyaline cartilage at the periphery of the condrocytic lacunae. These immunohistologic results suggest that GRC1 recognized human collagen. In order to investigate further the subtype of collagen defined by GRC1, an ELISA was performed with purified collagens of several types: I, II, III, IV, and V. The monoclonal antibody GRC1 defines a common determinant in types III, IV, and V.

  15. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea

    Science.gov (United States)

    Clement, Colin I.; Parker, Douglas G.A.; Goldberg, Ivan

    2016-01-01

    Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics. PMID:27014386

  16. Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea.

    Science.gov (United States)

    Park, Choul Yong; Lee, Jimmy K; Chuck, Roy S

    2015-08-01

    To describe the horizontal arrangement of human corneal collagen bundles by using second harmonic generation (SHG) imaging. Human corneas were imaged with an inverted two photon excitation fluorescence microscope. The excitation laser (Ti:Sapphire) was tuned to 850 nm. Backscatter signals of SHG were collected through a 425/30-nm bandpass emission filter. Multiple, consecutive, and overlapping image stacks (z-stacks) were acquired to generate three dimensional data sets. ImageJ software was used to analyze the arrangement pattern (irregularity) of collagen bundles at each image plane. Collagen bundles in the corneal lamellae demonstrated a complex layout merging and splitting within a single lamellar plane. The patterns were significantly different in the superficial and limbal cornea when compared with deep and central regions. Collagen bundles were smaller in the superficial layer and larger in deep lamellae. By using SHG imaging, the horizontal arrangement of corneal collagen bundles was elucidated at different depths and focal regions of the human cornea.

  17. Analysis of holographic interferograms of the expanded cornea after refractive surgery procedure

    Science.gov (United States)

    Kasprzak, Henryk T.; Jaronski, Jaroslaw W.; Foerster, Werner; von Bally, Gert

    1994-12-01

    The paper presents results of holographic experiments of expanding bovine cornea in vitro, after different refractive surgery procedure (keratoplasty). The corneas of fresh, enucleated bovine eyes were subjected to different refractive procedures, such as: radial and tangential incisions, mechanical ablation of the corneal layers as well as ablation by means of excimer laser. After keratoplasty, the eyeball was placed into the holographic set-up and the needle connected to a pressure meter was inserted into the anterior chamber of the eye. Double exposure, as well as real time holographic interferograms of expanding corneas were recorded by means of photothermoplastic camera, due to small intraocular pressure differences in order of a few Pa. The holographic interferograms were stored and processed in the computer memory by use of CCD camera and the image processing board. Quantitative results are presented in the form of a 3-D surface plot of the displacement vectors of the corneal surface and respective changes of the corneal curvature.

  18. Utility of Assessing Nerve Morphology in Central Cornea Versus Whorl Area for Diagnosing Diabetic Peripheral Neuropathy.

    Science.gov (United States)

    Pritchard, Nicola; Dehghani, Cirous; Edwards, Katie; Burgin, Edward; Cheang, Nick; Kim, Hannah; Mikhaiel, Merna; Stanton, Gemma; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2015-07-01

    To compare small nerve fiber damage in the central cornea and whorl area in participants with diabetic peripheral neuropathy (DPN) and to examine the accuracy of evaluating these 2 anatomical sites for the diagnosis of DPN. A cohort of 187 participants (107 with type 1 diabetes and 80 controls) was enrolled. The neuropathy disability score (NDS) was used for the identification of DPN. The corneal nerve fiber length at the central cornea (CNFLcenter) and whorl (CNFLwhorl) was quantified using corneal confocal microscopy and a fully automated morphometric technique and compared according to the DPN status. Receiver operating characteristic analyses were used to compare the accuracy of the 2 corneal locations for the diagnosis of DPN. CNFLcenter and CNFLwhorl were able to differentiate all 3 groups (diabetic participants with and without DPN and controls) (P cornea. Quantification of CNFL from the corneal center is as accurate as CNFL quantification of the whorl area for the diagnosis of DPN.

  19. Study of noncontact air-puff applanation tonometry IOP measurement on irregularly-shaped corneas

    Science.gov (United States)

    Wang, Wai W.; Wang, Kuo-Jen; Tsai, Che-Liang; Wang, I.-Jong

    2017-04-01

    Abnormal corneas with corneal tissue defects like ulceration, melting, laceration, thinning scar, keratoconus etc., poses special challenges for ophthalmologist to measure intraocular pressure (IOP) correctly using air-puff noncontact applanation tonometry. Here, we propose an novel model, Abnormal Applanation IOP Model (AAIOP), to simulate IOP in these abnormal corneas on an air-puff noncontact applanation tonometry system, and the simulated IOP results are correctly fit in those of IOP measured database on human eyes of 91,024 patients (174,666 eyes)1). Our simulated IOP indicates that every 10 μm of central corneal thickness change results in 0.36 mmHg of IOP change. Using our simulation model, the IOP on abnormal eyes with irregularly-shaped corneas can be correctly expected and reported.

  20. Systematic assessment of microneedle injection into the mouse cornea

    Directory of Open Access Journals (Sweden)

    Matthaei Mario

    2012-06-01

    Full Text Available Abstract Background Corneal intrastromal injection is an important mode of gene-vector application to subepithelial layers. In a mouse model, this procedure is substantially complicated by the reduced corneal dimensions. Furthermore, it may be difficult to estimate the corneal area reached by the volume of a single injection. This study aimed to investigate intrastromal injections into the mouse cornea using different microneedles and to quantify the effect of injecting varying volumes. A reproducible injection technique is described. Methods Forty eyes of 20 129 Sv/J mice were tested. India ink was intrastromally injected using 30° beveled 33 G needles, tri-surface 25° beveled 35 G needles, or hand-pulled and 25° beveled glass needles. Each eye received a single injection of a volume of 1 or 2 μL. Corneoscleral buttons were fixed and flat mounted for computer-assisted quantification of the affected corneal area. Histological assessment was performed to investigate the intrastromal location of the injected dye. Results A mean corneal area of 5.0 ±1.4 mm2 (mean ± SD and 7.7 ±1.4 mm2 was covered by intrastromal injections of 1 and 2 μL, respectively. The mean percentage of total corneal area reached ranged from 39% to 53% for 1 μL injections, and from 65% to 81% for 2 μL injections. Injections using the 33 G needles tended to provide the highest distribution area. Perforation rates were 8% for 30° beveled 33 G needles and 44% for tri-surface beveled 35 G needles. No perforation was observed with glass needle; however, intrastromal breakage of needle tips was noted in 25% of these cases. Conclusions Intracorneal injection using a 30° beveled 33 G needle was safe and effective. The use of tri-surface beveled 35 G needles substantially increased the number of corneal perforations. Glass needles may break inside the corneal stroma. Injections of 1 μL and 2 μL resulted in an overall mean of 49% and 73% respectively

  1. [Cornea bank of Lyon: from quality diagnosis to ISO 9001 certification].

    Science.gov (United States)

    Pascal, P; Chalochet, A; Damour, O

    2001-12-01

    The tissue and cell bank of the HCL (Hospices Civils de Lyon) has, since 10 June 1999, consisted of two sections with related activities: cell culture for the Skin Substitutes Laboratory (Laboratoire des Substituts Cutanés, LSC) and preservation of corneas at 31 degrees C for the Cornea Bank. As the LSC had been ISO 9001 certified since March 1997 our aim, since merger, was to raise the Cornea Bank to the same level of quality as the LSC, so as to coincide with the renewal of the LSC certificate in February 2000. The methods we used (project, quality control, analysis and process optimization) led us to receive official certification only nine months after the merger. The procedure started with a program of quality control at the Cornea Bank from February 1999 onwards, in order to list the work and equipment required, evaluate its documentation system and what was needed to incorporate this new activity into the existing system of quality assurance at the LSC. On the 7th March 2000, the Tissue and Cell Bank of the HCL obtained an ISO 9001 certificate for its combined functions. As well as achieving our objectives and the strong points highlighted by the auditor during the renewal process, this quality assessment revealed many advantages: improvements in the conservation of corneas, economies in staff replacement and reductions in both the cost of maintaining quality, the cost of the corneas themselves, etc. The decree 'Banque' no. 99-741 of 30th August 1999, which put in place the system of authorization of tissue banks in France, demands quality control. Our application for certification which started in early 1999 had anticipated this regulation. This helped us enormously when compiling the dossier accompanying the official request and was an essential element in obtaining the favourable response of the ASSAPS on 21 June 2000.

  2. Split cornea transplantation for 2 recipients - review of the first 100 consecutive patients.

    Science.gov (United States)

    Heindl, Ludwig M; Riss, Stephan; Laaser, Kathrin; Bachmann, Bjoern O; Kruse, Friedrich E; Cursiefen, Claus

    2011-10-01

    To evaluate the feasibility of split cornea transplantation for 2 recipients by combining deep anterior lamellar keratoplasty (DALK) and Descemet membrane endothelial keratoplasty (DMEK). Interventional case series. Fifty consecutive eyes with anterior stromal disease suitable for DALK and 50 eyes with endothelial disease suitable for DMEK were scheduled for split cornea transplantation combining both procedures within 72 hours. Main outcome measures included success of using a single donor cornea for 2 recipients, best spectacle-corrected visual acuity (BSCVA), and complication rates within 6 months' follow-up. A single donor cornea could be used for 2 recipients in 47 cases (94%). In 3 eyes (6%), the DALK procedure had to be converted to penetrating keratoplasty (PK) requiring a full-thickness corneal graft. Thereby, 47 donor corneas (47%) could be saved. Six months after surgery, mean BSCVA was 20/36 in the 47 eyes that underwent successful DALK, 20/50 in the 3 eyes that underwent conversion from DALK to PK, and 20/29 in the 50 eyes that underwent DMEK. Postoperative complications after DALK included Descemet folds in 5 eyes (11%) and epitheliopathy in 3 eyes (6%). After DMEK, partial graft detachment occurred in 26 eyes (52%) and was managed successfully with intracameral air reinjection. All corneas remained clear up to 6 months after surgery. No intraocular infections occurred. Split use of donor corneal tissue for combined DALK and DMEK procedures in 2 recipients within 3 subsequent days is a feasible approach to reduce donor shortage in corneal transplantation in the future. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma.

    Science.gov (United States)

    White, Tomas L; Lewis, Philip N; Young, Robert D; Kitazawa, Koji; Inatomi, Tsutomu; Kinoshita, Shigeru; Meek, Keith M

    2017-06-01

    The optical and biomechanical properties of the cornea are largely governed by the collagen-rich stroma, a layer that represents approximately 90% of the total thickness. Within the stroma, the specific arrangement of superimposed lamellae provides the tissue with tensile strength, whilst the spatial arrangement of individual collagen fibrils within the lamellae confers transparency. In keratoconus, this precise stromal arrangement is lost, resulting in ectasia and visual impairment. In the normal cornea, we previously characterised the three-dimensional arrangement of an elastic fiber network spanning the posterior stroma from limbus-to-limbus. In the peripheral cornea/limbus there are elastin-containing sheets or broad fibers, most of which become microfibril bundles (MBs) with little or no elastin component when reaching the central cornea. The purpose of the current study was to compare this network with the elastic fiber distribution in post-surgical keratoconic corneal buttons, using serial block face scanning electron microscopy and transmission electron microscopy. We have demonstrated that the MB distribution is very different in keratoconus. MBs are absent from a region of stroma anterior to Descemet's membrane, an area that is densely populated in normal cornea, whilst being concentrated below the epithelium, an area in which they are absent in normal cornea. We contend that these latter microfibrils are produced as a biomechanical response to provide additional strength to the anterior stroma in order to prevent tissue rupture at the apex of the cone. A lack of MBs anterior to Descemet's membrane in keratoconus would alter the biomechanical properties of the tissue, potentially contributing to the pathogenesis of the disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Influence of glucocorticosteroids on the biomechanical properties of in-vivo rabbit cornea.

    Science.gov (United States)

    Yu, Ji-guo; Bao, Fang-jun; Joda, Akram; Fu, Xun-an; Zhou, Shi; Wang, Jing; Hu, Xiu-li; Wang, Qin-mei; Elsheikh, Ahmed

    2014-01-01

    Understanding corneal biomechanical responses during long-term glucocorticosteroids administration is important in clinical practice. The purpose of this study is to investigate the biomechanical influence of fluorometholone 0.1% eye drops on rabbit cornea. Thirty-eight Japanese white rabbits were randomly divided into three groups; a fluorometholone group, a supernatant group and a blank control group. For each rabbit in fluorometholone group, one cornea was treated with fluorometholone 0.1% eye drops four times a day for 8 weeks, while corneas of rabbits in supernatant group were treated in the same frequency with supernatant fraction centrifuged from fluorometholone 0.1% eye drops. The rabbits in the blank control group were not given any treatment. At the end of the 8 week observation period, the rabbits were euthanized and the eyes immediately enucleated and prepared for inflation testing. The experimental pressure-deformation data was used to derive the stress-strain behavior of each eye using an inverse modeling procedure. Comparisons of mechanical stiffness of corneas were conducted among the three groups to determine the influence of fluorometholone. The results showed that corneal stiffness decreased as the fluorometholone administration time prolonged. Comparisons of tangent modulus indicated average stiffness reductions of 34.2% and 33.5% in the fluorometholone group compared to the supernatant and control groups, respectively, at the end of the observation period. The stiffness-reduction effect of fluorometholone on the cornea should be considered in clinical management, especially when administrating it to biomechanically weakened corneas, such as after refractive surgeries and in cases of keratoconus. © 2013 Published by Elsevier Ltd.

  5. Optical system and image processing of endothelial cells of donated cornea

    Science.gov (United States)

    Ventura, Liliane; Caetano, Cesar A. C.; Faria de Sousa, Sidney J.; Lotufo, Roberto A.

    1999-06-01

    A magnifying optical system (250-400X) attached to a Slit Lamp has been developed in order to evaluate the endothelium of donated corneas. The images from the endothelium are captured by a CCD and displayed in a PC monitor. The cost of the system is relatively low compared to the specular microscopes that are on the market for donated corneas (66% less expensive). The system offers two kinds of computer evaluation: interactive and automatic. The interactive counting of the endothelial cells provides a window of any shape and size desired by the clinician, where the cells are clicked by the mouse and the developed software estimates the number of endothelial cells in the cornea as a whole. The automatic counting of the cells is done by an image processing, where the cells are recognized by the developed software, without any interference of the clinician, and counted automatically. The most important features of this system compared to most that are on the market are: there are two ways for the clinical to count the cells and both can be used simultaneously (the automatic provides a quick counting of the cells and the interactive provides a wanted clinical interference on the result); many parts of the cornea can be evaluated and an average counting is provided (usually just the central part of the cornea is analyzed); real time image is provided instead of just a static image, which allows the clinician to have more information about the cornea such as the evaluation of the cells in the snail tracks.

  6. Morphological and biochemical analysis of intact and opaque cornea in dogs.

    Science.gov (United States)

    Hirooka, Masamitsu; Igarashi, Osamu; Nagayasu, Aya; Minaguchi, Jun; Hosaka, Yoshinao Z; Ueda, Hiromi; Tangkawattana, Prasarn; Takehana, Kazushige

    2010-08-01

    The arrangement of collagen fibrils and glycosaminoglycans (GAGs) in substantia propria are important for maintaining transparency of the cornea. Interferences in collagen fibrils and GAG production could be adversative to corneal integrity. In this study, six dogs consisting of four Beagles with normal cornea (normal), one Beagles with opaque cornea (sample No. 1) and one Shih Tzu with neovascularization opaque cornea (sample No.2) were used. All samples were observed morphologically by light and electron microscopes to obtain diameter and distribution of collagen fibrils in substantia propria and were performed biochemically to investigate into GAGs and collagen types. The average diameter of collagen fibrils in the intact cornea of normal, sample No.1 and No.2 was 33.2, 35.0 and 25.0 nm, respectively. The percentage of matrix per unit area was 67% in normal, 87% in sample No.1 and 28.3% in sample No.2. The type III collagen ratio was 25.3% in normal, 21.3% in sample No.1 and 35.8% in sample No.2. The relative amount of heparan sulfate, chondroitin sulfate, dermatan sulfate and keratin sulfate was 1.5, 9.7, 51.1 and 37.7% in normal, 3.3, 26.0, 45.7 and 23.7% in sample No.1 and 1.2, 18.0, 16.6 and 54.1% in sample No.2. Hyaluronic acid was found only in sample No.1 with a relative amount of 1.3%. Since there was some relationship between collagen formation and GAGs composition, it might be speculated that disturbance in arrangement of collagen fibrils and GAG metabolism especially in substantia propria would bring up opacity of the cornea.

  7. Age-related changes and diseases of the ocular surface and cornea.

    Science.gov (United States)

    Gipson, Ilene K

    2013-12-13

    Aging of the ocular surface and corneal tissues, major components of the visual system, causes major eye disease and results in substantial cost in medical and social terms. These diseases include the highly prevalent dry eye disease that affects the ocular surface and its glands, leading to tear film alterations, discomfort, and decreased vision. Studies show that 14.4% of the population in the United States older than 50 years have dry eye disease and demonstrate that it is particularly prevalent among women. Annual medical costs per patient with dry eye in the United States are estimated at $783 per year, with an overall medical cost adjusted to prevalence of $3.84 billion per year. Societal costs, which include loss of productivity, are estimated per patient at $11,302 per year, with overall costs adjusted to prevalence of $55.4 billion per year. Because there are few effective treatments for the disease, more research on its etiology and mechanisms is warranted and needed. Increased public education about risk factors for the disease is also required. Another major age-related eye disease of the cornea that leads to vision impairment and potentially blindness if left untreated is Fuchs' endothelial corneal dystrophy. This disease leads to loss of the endothelial cells on the internal side of the cornea that are responsible for keeping the cornea in the proper hydration state to ensure its transparency to light. The mechanism of cell loss is unknown, and the only treatment available to date is surgical transplantation of the cornea or inner part of the cornea. These medically costly procedures require donor corneas, eye banking, and medical follow-up, with accrued costs. Fuchs' endothelial corneal dystrophy is a major cause of corneal transplantation in the United States; therefore, research support is needed to determine the mechanism of this age-related disease, to develop medical, nonsurgical methods for treatment.

  8. Factors involved in the occurrence of bleeding complications after enucleation for cornea donation.

    Science.gov (United States)

    van Wijk, Marja J; Nijenhuis, Matthijs V; Dorrepaal, Caroline A; Bokhorst, Arlinke G

    2009-10-01

    To identify risk factors for the occurrence of bleeding complications after enucleation for cornea donation, in order to develop preventive activities to reduce the occurrence of bleeding complications and especially the development of ocular hematomas. From all Dutch cornea donors deceased in the year 2006, donor characteristics, retrieval characteristics, and bleeding complication data were collected. First, univariate relations between donor and retrieval factors and bleeding complications were determined. Then, multivariate logistic regression analysis was used to identify factors significantly associated with bleeding complications. In 114 of the 1173 cornea donors (9.7%), bleeding complications occurred, with ocular hematomas developing in 39 (3.3% of all cornea donors). Donor factors significantly associated with bleeding complications were age [odds ratio (OR) 0.96 (95% CI 0.94-0.97)], weight [OR 1.03 (1.02-1.04)], heart failure [OR 2.10 (1.12-3.94)], thrombocyte aggregation inhibitor use [OR 1.64 (1.02-2.64)], and chronic alcoholic liver disease [OR 2.85 (1.11-7.31)]. The most significant factor associated with bleeding complications was the retrieval sequence. If cornea donation was followed by any other tissue retrieval, the risk of bleeding complications was strongly increased. : This study shows that the tissue retrieval sequence in multitissue donors is the most important factor associated with the occurrence of bleeding complications. The risk of bleeding and ocular hematoma is lower if cornea donation is performed after all other retrievals. However, if the tissue retrieval sequence is altered, the effect of prolonged postmortem time on corneal quality must be taken into account.

  9. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  10. Differential expression and processing of transforming growth factor beta induced protein (TGFBIp) in the normal human cornea during postnatal development and aging

    DEFF Research Database (Denmark)

    Karring, Henrik; Runager, Kasper; Valnickova, Zuzana

    2010-01-01

    Transforming growth factor beta induced protein (TGFBIp, also named keratoepithelin) is an extracellular matrix protein abundant in the cornea. The purpose of this study was to determine the expression and processing of TGFBIp in the normal human cornea during postnatal development and aging....... TGFBIp in corneas from individuals ranging from six months to 86 years of age was detected and quantified by immunoblotting. The level of TGFBIp in the cornea increases about 30% between 6 and 14 years of age, and adult corneas contain 0.7-0.8 microg TGFBIp per mg wet tissue. Two-dimensional (2-D...... and that the processing of TGFBIp changes during postnatal development of the cornea. In addition, TGFBIp appears to be degraded in a highly orchestrated manner in the normal human cornea with the resulting C-terminal fragments being retained in the cornea. The age-related changes in the expression and processing...

  11. Optics of the human cornea influence the accuracy of stereo eye-tracking methods: a simulation study

    NARCIS (Netherlands)

    Barsingerhorn, A.D.; Boonstra, F.N.; Goossens, H.H.L.M.

    2017-01-01

    Current stereo eye-tracking methods model the cornea as a sphere with one refractive surface. However, the human cornea is slightly aspheric and has two refractive surfaces. Here we used ray-tracing and the Navarro eye-model to study how these optical properties affect the accuracy of different

  12. Morphological characterization of keratoconus-affected human corneas by SHG imaging and correlation analysis

    Science.gov (United States)

    Mercatelli, R.; Ratto, F.; Tatini, F.; Rossi, F.; Menabuoni, L.; Nicoletti, R.; Pini, R.; Pavone, Frederick; Cicchi, R.

    2016-03-01

    Keratoconus is an ophthalmic disease in which the cornea acquires an abnormal conical shape that prevents the correct focusing on the retina, causing visual impairment. The late diagnosis of keratoconus is among the principal causes of corneal transplantation surgery. In this study, we characterize the morphology of keratoconic corneas by means of the correlation of SHG images, finding that keratoconus can be diagnosed by analyzing the inclination of lamellae below Bowman's membrane. In addition, imaging performed with both sagittal and "en face" geometry demonstrated that this morphological features can be highlighted both ex vivo and in vivo.

  13. Split cornea transplantation for 2 recipients: a new strategy to reduce corneal tissue cost and shortage.

    Science.gov (United States)

    Heindl, Ludwig M; Riss, Stephan; Bachmann, Bjoern O; Laaser, Kathrin; Kruse, Friedrich E; Cursiefen, Claus

    2011-02-01

    To evaluate the feasibility of using a single donor cornea for 2 recipients by combining deep anterior lamellar keratoplasty (DALK) and Descemet's membrane endothelial keratoplasty (DMEK) surgeries on the same day. Single-center, nonrandomized, prospective, interventional case series. Twelve consecutive donor corneas were scheduled for split cornea transplantation combining DALK for a keratoconus patient and DMEK for a Fuchs' endothelial dystrophy patient on the same surgery day. First, a big-bubble DALK procedure was performed for the keratoconus eye. When bare Descemet's membrane was prepared successfully requiring no conversion to penetrating keratoplasty (PK), then during surgery the donor, endothelium-Descemet's membrane layer was removed and stored for subsequent DMEK in a second patient, and the remaining anterior lamella of the donor cornea was used to complete the DALK surgery. Afterward, a DMEK procedure was performed on the second patient with Fuchs' endothelial dystrophy, grafting the stored endothelium-Descemet's membrane layer of the original donor button. Success of using a single donor cornea for 2 recipient eyes, best spectacle-corrected visual acuity (BSCVA), and complication rates within 6 months follow-up. A single donor cornea could be used for 2 recipients in 10 of 12 donor buttons (83%). In 2 cases (17%), the DALK procedure had to be converted to PK requiring a full-thickness corneal graft. Therefore, 10 donor corneas (45%) could be saved. Six months after surgery, mean BSCVA was 20/35 (range, 20/50-20/25) in 10 eyes that underwent successful DALK, 20/50 (range, 20/63-20/40) in 2 eyes that underwent conversion from DALK to PK, and 20/31 (range, 20/50-20/16) in 10 eyes that underwent DMEK. Postoperative complications after DALK included Descemet's folds in 3 eyes (30%) and epitheliopathy in 2 eyes (20%). After DMEK, partial graft detachment occurred in 5 eyes (50%) and was managed successfully with intracameral air reinjection. All corneas

  14. [A new principle in the investigation of the biomechanical properties of the cornea (a preliminary communication)].

    Science.gov (United States)

    Avetisov, S E; Bubnova, I A; Novikov, I A; Antonov, A A; Siplivyĭ, V I

    2008-01-01

    A new principle in the determination of mechanical stress distribution in the cornea is proposed on the basis of estimation of the polarization of light emitted by luminescence of strained collagen. It has been found, collagen fiber stress is inversely proportional to corneal stress on the intact cornea of a rabbit, and absolute values are determined by intraocular pressure values. After applying keratotomic incisions, the stress distribution map changes, at the same time, the major stress falls on the residual thickness of the stroma at the bottom of a keratotomic scar and close to this area and the central corneal region is subject to the least pressure.

  15. Multiparameter thermo-mechanical OCT-based characterization of laser-induced cornea reshaping

    Science.gov (United States)

    Zaitsev, Vladimir Yu.; Matveyev, Alexandr L.; Matveev, Lev A.; Gelikonov, Grigory V.; Vitkin, Alex; Omelchenko, Alexander I.; Baum, Olga I.; Shabanov, Dmitry V.; Sovetsky, Alexander A.; Sobol, Emil N.

    2017-02-01

    Phase-sensitive optical coherence tomography (OCT) is used for visualizing dynamic and cumulative strains and corneashape changes during laser-produced tissue heating. Such non-destructive (non-ablative) cornea reshaping can be used as a basis of emerging technologies of laser vision correction. In experiments with cartilaginous samples, polyacrilamide phantoms and excised rabbit eyes we demonstrate ability of the developed OCT system to simultaneously characterize transient and cumulated strain distributions, surface displacements, scattering tissue properties and possibility of temperature estimation via thermal-expansion measurements. The proposed approach can be implemented in perspective real-time OCT systems for ensuring safety of new methods of laser reshaping of cornea.

  16. Computer driven optical keratometer and method of evaluating the shape of the cornea

    Science.gov (United States)

    Baroth, Edmund C. (Inventor); Mouneimme, Samih A. (Inventor)

    1994-01-01

    An apparatus and method for measuring the shape of the cornea utilize only one reticle to generate a pattern of rings projected onto the surface of a subject's eye. The reflected pattern is focused onto an imaging device such as a video camera and a computer compares the reflected pattern with a reference pattern stored in the computer's memory. The differences between the reflected and stored patterns are used to calculate the deformation of the cornea which may be useful for pre-and post-operative evaluation of the eye by surgeons.

  17. Laser-assisted correction of eye cornea refraction with ring-shaped laser beam

    Science.gov (United States)

    Baum, Olga; Yuzhakov, Aleksey; Omelchenko, Alexander; Bolshunov, Andrey; Siplivy, Vladimir; Sobol, Emil

    2017-07-01

    A new method for non-ablative correction of cornea shape is based on thermo-mechanical effect of laser radiation with ring-shaped laser beam. The results obtained demonstrated that the new method for correction of eye refraction yields a significant alteration in the eye refraction and the ring-shaped laser beam with various ring diameters for correction of the eye refraction allows obtaining controllable alterations of the eye refraction with axial symmetry without any pathological changes in central part of cornea.

  18. Optical properties of an anterior lamellar human cornea model based on fibrin-agarose

    Science.gov (United States)

    Ionescu, Ana M.; Cardona, Juan de la Cruz; Ghinea, Razvan; Garzón, Ingrid; González-Andrades, Miguel; Alaminos, Miguel; Pérez, Maria del Mar

    2017-08-01

    The optical evaluation carried out using the Inverse Adding-Doubling (IAD) method to determine the scattering and the absorption coefficients of the bioengineered human corneal stromas showed that this type of artificial biomaterials shared many similarities with native control cornea after four weeks of development in culture. Their absorption and reduced scattering coefficients values were higher than the ones of the control cornea, but their spectral behaviors of both coefficients were similar. Time of development in culture was an influencing factor on the results.

  19. [Biomechanical properties of the cornea in primary open-angle glaucoma].

    Science.gov (United States)

    Eremina, M V

    2008-01-01

    The paper discusses the impact of some properties of corneal tissue (central corneal thickness, curvature radius, elasticity, etc.). The dynamic bilateral applanation process underlying the ocular analyzer provides exact information on the index determining the viscoelastic properties of the cornea - corneal hysteresis. The author presents the results of detecting corneal hysteresis in individuals without oculopathy and in patients with glaucoma, as well as the association of this index with the central thickness of the cornea, the levels of corneal compensated pressure, and the intraocular value equated to the Goldman tonometric index.

  20. Differential gene expression patterns of the developing and adult mouse cornea compared to the lens and tendon.

    Science.gov (United States)

    Wu, Feng; Lee, Seakwoo; Schumacher, Michael; Jun, Albert; Chakravarti, Shukti

    2008-09-01

    The cornea continues to mature after birth to develop a fully functional, refractive and protective barrier tissue. Here we investigated the complex biological events underlying this process by profiling global genome-wide gene expression patterns of the immature postnatal day 10 and 7-week old adult mouse cornea. The lens and tendon were included in the study to increase the specificity of genes identified as upregulated in the corneal samples. Notable similarities in gene expression between the cornea and the tendon were in the mesenchymal extracellular matrix collagen (types I, III, V, VI) and proteoglycan (lumican, decorin and biglycan) genes. Expression similarities in the cornea and lens were limited to certain epithelial genes and the crystallins. Approximately 76 genes were over expressed in the cornea samples that showed basal expression levels in the lens and tendon. Thirty-two of these were novel with no known functions in the cornea. These include genes with a potential role in protection against oxidative stress (Dhcr24, Cdo1, Akr1b7, Prdx6), inflammation (Ltb4dh, Wdr1), ion transport (Pdzk1ip1, Slc12a2, Slc25a17) and transcription (Zfp36l3, Pdzk1ip1). Direct comparison of the cornea of two ages showed selective upregulation of 50 and 12 genes in the P10 and adult cornea, respectively. Of the upregulated P10 genes several encode extracellular matrix collagens and proteoglycans that are stable components of the adult cornea and their high transcriptional activity at P10 indicate a period of actie corneal growth and matrix deposition in the young cornea. Much less is known about the genes selectively over expressed in the adult cornea; some relate to immune response and innervations (Npy), and possibly to electron transport (Cyp24a1, Cyp2f2) and others of yet unknown functions in the cornea (Rgs10, Psmb8, Xlr4). This study detected expression of genes with known functions in the cornea, providing additional validation of the microarray experiments

  1. The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation.

    Science.gov (United States)

    Drevets, Peter; Chucair-Elliott, Ana; Shrestha, Priyadarsini; Jinkins, Jeremy; Karamichos, Dimitrios; Carr, Daniel J J

    2015-10-01

    To determine the utility of human organotypic cornea cultures as a model to study herpes simplex virus type 1 (HSV-1)-induced inflammation and neovascularization. Human organotypic cornea cultures were established from corneas with an intact limbus that were retrieved from donated whole globes. One cornea culture was infected with HSV-1 (10(4) plaque-forming units), while the other cornea from the same donor was mock-infected. Supernatants were collected at intervals post-culture with and without infection to determine viral titer (by plaque assay) and pro-angiogenic and proinflammatory cytokine concentration by suspension array analysis. In some experiments, the cultured corneas were collected and evaluated for HSV-1 antigens by immunohistochemical means. Another set of experiments measured susceptibility of human three-dimensional cornea fibroblast constructs, in the presence and absence of TGF-β1, to HSV-1 infection in terms of viral replication and the inflammatory response to infection as a comparison to the organotypic cornea cultures. Organotypic cornea cultures and three-dimensional fibroblast constructs exhibited varying degrees of susceptibility to HSV-1. Fibroblast constructs were more susceptible to infection in terms of infectious virus recovered in a shorter period of time. There were changes in the levels of select pro-angiogenic or proinflammatory cytokines that were dictated as much by the cultures producing them as by whether they were infected with HSV-1 or treated with TGF-β1. Organotypic cornea and three-dimensional fibroblast cultures are likely useful for the identification and short-term study of novel antiviral compounds and virus replication, but are limited in the study of the local immune response to infection.

  2. Transient downregulation of microRNA-206 protects alkali burn injury in mouse cornea by regulating connexin 43.

    Science.gov (United States)

    Li, Xiaoyan; Zhou, Huanfen; Tang, Weiqiang; Guo, Qing; Zhang, Yan

    2015-01-01

    Chemical burn in cornea may cause permanent visual problem or complete blindness. In the present study, we investigated the role of microRNA 206 (miR-206) in relieving chemical burn in mouse cornea. An alkali burn model was established in C57BL/6 mice to induce chemical corneal injury. Within 72 hours, the transient inflammatory responses in alkali-treated corneas were measured by opacity and corneal neovascularization (CNV) levels, and the gene expression profile of miR-206 was measured by quantitative real-time PCR (qPCR). Inhibitory oligonucleotides of miR-206, miR-206-I, were intrastromally injected into alkali-burned corneas. The possible protective effects of down-regulating miR-206 were assessed by both in vivo measurements of inflammatory responses and in vitro histochemical examinations of corneal epithelium sections. The possible binding of miR-206 on its molecular target, connexin43 (Cx43), was assessed by luciferase reporter (LR) and western blot (WB) assays. Cx43 was silenced by siRNA to examine its effect on regulating miR-206 modulation in alkali-burned cornea. Opacity and CNV levels, along with gene expression of miR-206, were all transiently elevated within 72 hours of alkali-burned mouse cornea. Intrastromal injection of miR-206-I into alkali-burned cornea down-regulated miR-206 and ameliorated inflammatory responses both in vivo and in vitro. LR and WB assays confirmed that Cx43 was directly targeted by miR-206 in mouse cornea. Genetic silencing of Cx43 reversed the protective effect of miR-206 down-regulation in alkali-burned cornea. miR-206, associated with Cx43, is a novel molecular modulator in alkali burn in mouse cornea.

  3. Hemolytic and cytotoxic effects of saponin like compounds isolated from Persian Gulf brittle star (Ophiocoma erinaceus

    Directory of Open Access Journals (Sweden)

    Elaheh Amini

    2014-10-01

    Full Text Available Objective: To isolate and characterize the saponin from Persian Gulf brittle star (Ophiocoma erinaceus and to evaluate its hemolytic and cytotoxic potential. Methods: In an attempt to prepare saponin from brittle star, collected samples were minced and extracted with ethanol, dichloromethane, n-buthanol. Then, concentrated n-butanol extract were loaded on HP-20 resin and washed with dionized water, 80% ethanol and 100% ethanol respectively. Subsequently, detection of saponin was performed by foaming property, fourier transform infrared spectroscopy and hemolytic analysis on thin layer chromatography. The cytotoxic activity on HeLa cells was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazoliumbromide (MTT assay and under invert microscopy. Results: The existence of saponin in Ophiocoma erinaceus were approved by phytochemical method. The presence of C-H bond, C-O-C and OH in fourier transform infrared spectrum of fraction 80% ethanol is characteristic feature in the many of saponin compounds. Hemolytic assay revealed HD 50 value was 500 µg/mL. MTT assay exhibited that saponin extracted in IC50 value of 25 µg/mL inducsd potent cytotoxic activity against HeLa cells in 24 h and 12.5 µg/mL in 48 h, meanwhile in lower concentration did not have considerable effect against HeLa cells. Conclusions: These findings showed that only 80% ethanol fraction Persian Gulf brittle star contained saponin like compounds with hemolytic activity which can be detected simply by phytochemical that can be appreciable for future anticancer research.

  4. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  5. Cohesive stress heterogeneities and the transition from intrinsic ductility to brittleness

    Science.gov (United States)

    Tanguy, D.

    2017-11-01

    The influence of nanoscale cavities on the fracture of the Σ 33 {554 }[110 ] symmetrical tilt grain boundary is studied by atomistic simulations. The crack crystallography is chosen such that dislocation emission is easy. A transition from a ductile behavior of the tip to a brittle one is obtained for a dense (coverage beyond 15% and intercavity spacing smaller than 4 nm) distribution of small cavities (sizes in-between 1 and 2 nm). The results are in good agreement with recent experiments from the literature. Even at the highest coverage, the character of the crack is highly sensitive to the initial position of the tip and a mixture of ductile and brittle responses is found. This complexity is beyond the usual criterion based on the drop of the work of separation with the amount of damage in the structure. It is shown that a heterogeneous cohesive zone model, with parameters extracted from the simulations and enriched with a criterion for plasticity, can explain the simulations and reproduce the transition. Additional simulations show that outside this range of small sizes and dense packing, which gives essentially a two-dimensional response (either crack opening or infinite straight dislocation emission), dislocation half-loops appear for intercavity spacing starting at about 4 nm. They constitute, together with regions of low coverage/small cavities, efficient obstacles to brittle cracking. These results could be guidelines to designing interfaces more resistant to solute embrittlement, in general. The cohesive zone model is generic. Furthermore, the {554} single crystal was used to determine to which extent the results depend on the details of the core structure versus the cavity distribution. These elements show that the conclusions reached have a generic character.

  6. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    Science.gov (United States)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a

  7. THE VISCOUS TO BRITTLE TRANSITION IN CRYSTAL- AND BUBBLE-BEARING MAGMAS

    Directory of Open Access Journals (Sweden)

    Mattia ePistone

    2015-11-01

    Full Text Available The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K and high-pressure (200 MPa conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1. During the experiments bubbles are deformed (i.e. capillary number are in excess of 1 enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65 and bubble volume fractions (0.09 to 0.12. The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44 promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a potential sudden transition to brittle behaviour, which could result in an explosive volcanic eruption.

  8. The nature of temper brittleness of a high-chromium ferrite

    Science.gov (United States)

    Sarrak, V. I.; Suvorova, S. O.; Golovin, I. S.; Mishin, V. M.; Kislyuk, I. V.

    1994-07-01

    The cause of '475 C embrittlement' of ferritic steel Kh25 from the standpoint of fracture mechanics is considered. An upward shift of the curve of the temperature-dependent local yield stress is shown to have a decisive influence on the location of the brittle-to-ductile transition temperature and its increase due to 475 C aging. The effects under consideration are connected with the changes in the parameters governing the dislocation mobility: dislocation mobility activation energy in a crystalline structure and resistance to microplastic deformation due to Fe-Cr system decomposition and the decay of the interstitial solid solution supersaturated with C + N atoms.

  9. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  10. Temper Brittleness and Its Relation to the Heat Treatment of Ordnance Materiel

    Science.gov (United States)

    1945-06-20

    enercisea over timne vend te.-verpature of te-ePs ndl the necessity f or or-eventing ga~esra’.ients traceablIe to ev-’½.egrad~ients. Sho rt time, h_,i~i...nart may distort excessively uigsulbsequaent macHining - or m noerformn =satisfad- torilyr in service. Generall-y, how~ever, sufce totlar.rnce exists...Brittleness in Steels", The Science Reports of the 4 Tohoku imperial University, Series 1, Japan , 16, (February 1927 - December 1927). i!4

  11. Brittle tectonic history document the late- to post-orogenic evolution in the Lufilian Arc, RDCongo

    Science.gov (United States)

    Kipata, Louis; Delvaux, Damien; Ntabwoba Sebagenzi, Mwene; Cailteux, Jean-Jacques; Sintubin, Manuel

    2013-04-01

    Pan-African orogenic processes in Centra Africa involve intracontinental collision but also late-orogenic and intraplate processes that occurred in dominantly brittle conditions and can be documented by fault kinematic analysis and paleostress reconstructions. The Congo and Tanzania cratons in Central Africa are surrounded by Pan-African belts orogenic belts which all entered almost synchronously in collision stage in the early Paleozoic. While their tectonic history up to the collision stage is increasingly better documented by ductile deformation and metamorphic studies, their late evolution remain poorly known as soon as they enter in the brittle deformation regime. This results in an incomplete understanding of the orogenic processes, especially when the transition from ductile to the brittle regime occurred at the end of the orogenic compression. In this case, the last compressional stages and the entire late orogenic extension and extensional collapse stages remain undocumented. This is the case for the Lufilian orogeny which developed along the southern margin of the Congo Craton in Central Africa during the pan-African and was marked by a collisional event with crustal thickening and white schist formation at 550-530 Ma. The Lufilian Arc which forms the external part of the Lufilian orogeny developed as an arcuate fold-and-thrust belt. Its foreland is formed by the Kundelungu plateau, between the Bangweulu block and the Kibaran belt. This entire region is also tectonically active, as part of the incipient SW branch of the East African rift system. The long period between the paroxysm of the Lufilian orogeny and the late Neogene to Quaternary rifting has been investigated by fault-kinematic analysis and paleostress reconstruction in open mines spread over the entire arc and foreland. Paleostress tensors were computed from 23 sites totaling 1900 fault-slip data by interactive stress tensor inversion and data subset separation, and a succession of 8 brittle

  12. Model of Mass and Heat Transfer during Vacuum Freeze-Drying for Cornea

    Directory of Open Access Journals (Sweden)

    Zou Huifen

    2012-01-01

    Full Text Available Cornea is the important apparatus of organism, which has complex cell structure. Heat and mass transfer and thermal parameters during vacuum freeze-drying of keeping corneal activity are studied. The freeze-drying cornea experiments were operated in the homemade vacuum freeze dryer. Pressure of the freeze-drying box was about 50 Pa and temperature was about −10°C by controlled, and operating like this could guarantee survival ratio of the corneal endothelium over the grafting normal. Theory analyzing of corneal freeze-drying, mathematical model of describing heat and mass transfer during vacuum freeze-drying of cornea was established. The analogy computation for the freeze-drying of cornea was made by using finite-element computational software. When pressure of the freeze-drying box was about 50 Pa and temperature was about −10°C, time of double-side drying was 170 min. In this paper, a moving-grid finite-element method was used. The sublimation interface was tracked continuously. The finite-element mesh is moved continuously such that the interface position always coincides with an element node. Computational precision was guaranteed. The computational results were agreed with the experimental results. It proved that the mathematical model was reasonable. The finite-element software is adapted for calculating the heat and mass transfer of corneal freeze-drying.

  13. Hydro cone lens visual performance and impact on quality of life in irregular corneas.

    Science.gov (United States)

    Ozek, Dilay; Kemer, Ozlem Evren; Bayraktar, Neslihan

    2016-12-01

    The aim of this study is to evaluate the visual performance (efficiency) of HydroCone (Toris K) soft silicon hydrogel lenses in patients with irregular corneas. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  14. Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea.

    Science.gov (United States)

    Bor, Z; Hopp, B; Rácz, B; Szabó, G; Ratkay, I; Süveges, I; Füst, A; Mohay, J

    1993-01-01

    Excimer lasers are now used for corneal surgery; however, the physical processes occurring during photoablation of the cornea are incompletely understood. High speed laser-based photographic arrangement was constructed. The temporal resolution was better than 1 ns. The setup could work as a Schlieren arrangement, which is sensitive to the refractive index change caused by the shock wave propagating in the air above the eye. With minor changes the setup was converted into a shadowgraph, which could detect the ablation plume and the waves propagating on the surface of the eye. Due to the impact of the excimer laser pulse onto the surface of the cornea, a shock wave was generated in the air. The shadowgraph clearly showed the ejection of the ablated cornea. The ejection velocity of the plume was found to be over 600 m/s. It was shown for the first time that the recoil forces of the plume are generating a wave on the surface of the eye. The laser-based high speed photographic arrangement is a powerful arrangement in the study of physical effects occurring during photoablation of the cornea.

  15. Age-related differences in the elasticity of the human cornea.

    Science.gov (United States)

    Knox Cartwright, Nathaniel E; Tyrer, John R; Marshall, John

    2011-06-17

    The goal of this study was to determine age-related variation in the elasticity of the human cornea using nondestructive means. Organ cultured human corneoscleral buttons were studied. Changes in strain were measured with a radial shearing speckle pattern interferometer after an increase in intraocular pressure from 15.0 to 15.5 mm Hg. Changes in central corneal displacement were calculated by integration, and a bulk corneal Young's modulus was derived by mathematical analysis. Fifty corneas, including 17 pairs, were studied. Donors were aged between 24 and 102 years (mean, 73.1); 29 (58%) specimens were from male donors and 21 from female donors. Young's modulus of the cornea increased with age, with the line of best fit indicating an approximate doubling from 0.27 MPa at age 20 years (95% confidence interval, 0.22-0.31) to 0.52 (0.50-0.54) MPa at age 100 years (R² = 0.70). The stiffness of the human cornea increases by a factor of approximately two between the ages of 20 and 100 years. This variation is relevant to the algorithms used to predict the response to incisional and ablative refractive surgery and will also affect the formulas used to calculate intraocular pressure by applanation.

  16. Effect of glucose on the stress-strain behavior of ex-vivo rabbit cornea.

    Science.gov (United States)

    Ni, Shouxiang; Yu, Jiguo; Bao, Fangjun; Li, Jinyang; Elsheikh, Ahmed; Wang, Qinmei

    2011-05-01

    The biomechanical changes in rabbit cornea preserved in storage media with different glucose concentrations are experimentally assessed. Two groups of eight fresh rabbit corneas were preserved for 10 days in storage medium Optisol-GS with glucose concentrations of 14 and 28 mM, respectively. Eight additional corneas preserved, glucose-free, in the same medium served as the control group. All specimens were tested under inflation conditions up to 45 mmHg posterior pressure, and the pressure-deformation data obtained experimentally were analyzed using shell theory to derive the stress-strain behavior. Comparisons were held between the three specimen groups in order to determine the effect of glucose concentration on corneal biomechanical behavior and thickness. After storage, the mean central corneal thickness in the control, low-glucose and high-glucose groups underwent statistically significant increases of 38.7 ± 11.3%, 45.4 ± 7.6% and 50.6 ± 8.6%, respectively. The corneas also demonstrated consistent stiffness increases with higher glucose concentrations. The tangent modulus values determined at different pressure levels between 10 and 40 mmHg underwent statistically significant increases with glucose level (P refractive surgery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Excimer laser absorption on PMMA plate and on cornea: a practical approach using volume luminance

    Science.gov (United States)

    Digulescu, Petre P.; Carstocea, Benone D.; Sterian, Livia

    2001-04-01

    Excimer laser refractive surgery used in Ophthalmology in order to treat the human eye refraction problems has been performed over 10 years around the world. However a systematic approach of the physical phenomena and especially of the absorption on the cornea during the laser treatment is missing in the literature and the doctors are usually using empiric nomograms in order to achieve good results. The theoretical approach is difficult because of the complexity of the phenomena interconnected each to the others. The UV excimer laser beam used to controllably ablate the cornea is highly absorbed in the air and also is supplementary absorbed in the plume generated almost instantaneous as consequence of the ablation on the cornea. Because of this non-linear proces the energy of the laser beam delivered to the eye must be calibrated before each intervention on a patient. The purpose of the present work is to develop a mathematical model of the excimer laser absorption on PMMA and on human cornea based on a new physical notion, the Volume Luminance. The Volume Luminance is defined as volume density of the intensity of laser radiation. A brief theory of the Volume Luminance is also presented.

  18. Influx of immunoglobulins from the vascular compartment into a grafted cornea

    NARCIS (Netherlands)

    VanDerVeen, G; Broersma, L; Bruyne, [No Value; Verhagen, C; VanRij, G; VanDerGaag, R; Ruijter, J

    Purpose. To determine the effect of a fresh corneal wound or a healed corneal Methods. F344 rats were immunized with human serum albumin (HSA) 1 week before an autologous rotational keratoplasty of the right cornea or 1 year after an autograft was performed. One group of rats also was treated with

  19. A donor cornea with metastatic cells from a cutaneous malignant melanoma.

    Science.gov (United States)

    Campanelli, Marino; Mistò, Raffaela; Limongelli, Anna; Valente, Maria G; Cuttin, Maria S; D'Amato Tóthová, Jana

    2013-12-01

    To describe the case of a donor cornea that showed hematogenous metastatic spread of cutaneous melanoma to the sclerocorneal limbus. Corneal tissue obtained from a donor with cutaneous malignant melanoma was evaluated for endothelial cell density, corneal transparency, and epithelial morphology. Subsequently, hematoxylin and eosin staining and immunohistochemical characterization using S100, HMB45, Melan-A, and CD34 antibodies were performed on the corneal sections. The corneal tissue was transparent with high endothelial cell density; it was graded as being suitable for transplantation according to the current eye bank criteria. However, the aggressiveness of the donor's cancer and the diffuse melanosis of the sclera led to the suspicion of malignant melanoma metastasis to the cornea. Histochemical analysis of the corneoscleral rim showed small aggregates rich in pigmented cells that were localized in cleft-like structures in the sclera, at the sclerocorneal interface and in the peripheral avascular portion of the cornea. The aggregates were positive for the melanocytic tumor markers S100, HMB45, and Melan-A; the rims of the clefts expressed the panvascular CD34 antigen, which was suggestive of neovascularization. Corneal tissue from a donor with malignant cutaneous melanoma displayed neoplastic lesions of melanocytic origin that had spread from a primitive melanoma through hematogenous routes to the sclerocorneal limbus. On the basis of this finding, we believe that having a metastatic cutaneous malignant melanoma could in some cases be reviewed as an exclusionary criterion for undergoing cornea transplantation.

  20. Path antigen recognition and immune response after orthotopic transplantation cornea in a mouse model

    OpenAIRE

    Netuková, Magdaléna

    2008-01-01

    The present work deals with analysis of cell subpopulations in normal mouse cornea and the expression of specific markers of these cells. Another goal of this work was to monitor the origin and function of immune cells infiltrating fibrin mesh in the anterior chamber after orthotopic corneal transplantation.

  1. Ex vivo rabbit cornea diffusion studies with a soluble insert of moxifloxacin.

    Science.gov (United States)

    Sebastián-Morelló, María; Calatayud-Pascual, María Aracely; Rodilla, Vicent; Balaguer-Fernández, Cristina; López-Castellano, Alicia

    2018-02-01

    The objective of this research was to develop and evaluate an ocular insert for the controlled drug delivery of moxifloxacin which could perhaps be used in the treatment of corneal keratitis or even bacterial endophthalmitis. We have evaluated the ex vivo ocular diffusion of moxifloxacin through rabbit cornea, both fresh and preserved under different conditions. Histological studies were also carried out. Subsequently, drug matrix inserts were prepared using bioadhesive polymers. The inserts were evaluated for their physicochemical parameters. Ophthalmic ex vivo permeation of moxifloxacin was carried out with the most promising insert. The formulate insert was thin and provided higher ocular diffusion than commercial formulations. Ocular diffusion studies revealed significant differences between fresh and frozen corneas. Histological examinations also showed differences in the thickness of stroma between fresh and frozen corneas. The ophthalmic insert we have developed allows a larger quantity of moxifloxacin to permeate through the cornea than existing commercial formulations of the drug. Ocular delivery of moxifloxacin with this insert could be a new approach for the treatment of eye diseases.

  2. Shape of the anterior cornea : Comparison of height data from 4 corneal topographers

    NARCIS (Netherlands)

    de Jong, Tim; Sheehan, Matthew T.; Dubbelman, Michiel; Koopmans, Steven A.; Jansonius, Nomdo M.

    2013-01-01

    PURPOSE: To compare the ability of clinical corneal topographers to describe the shape of the anterior cornea for optical modeling. SETTING: University Medical Center Groningen, Groningen, Netherlands. DESIGN: Cross-sectional study. METHODS: The anterior corneal shape of healthy subjects was

  3. Biomechanical and refractive behaviors of keratoconic cornea based on three-dimensional anisotropic hyperelastic models.

    Science.gov (United States)

    Han, Zhaolong; Sui, Xiaohong; Zhou, Dai; Zhou, Chuanqing; Ren, Qiushi

    2013-04-01

    To investigate the biomechanical and refractive behaviors of normal and keratoconic corneas based on three-dimensional anisotropic hyperelastic corneal models with two layers. Based on an anisotropic hyperelastic formula, the finite element method was employed to develop normal and keratoconic corneal models in which the fiber orientations and the biomechanical differences between corneal layers were taken into account. The displacements for normal and keratoconic corneal models were studied, as well as changes in corneal refractive power with intraocular pressure (IOP). There were different displacements for keratoconic and normal corneas. Positive correlations were found in the keratoconic cornea between IOP and apical displacement, as well as between IOP and corneal refractive power. Under normal IOP, both the corneal shape and refractive power map were affected by the stiffness distributions of the corneal layers. Finite element analysis can be used to demonstrate the biomechanical and refractive behavior of a cornea with keratoconus. From a biomechanical viewpoint, the displacement changes seen under normal IOP were due to the decreased stiffness in the keratoconic corneal tissue and local thinning disorders. Thus, the curvature and corneal refractive power map will be abnormal in keratoconus. Copyright 2013, SLACK Incorporated.

  4. Evaluation of Megacell MEM as a storage medium for corneas destined for transplantation.

    Science.gov (United States)

    Smith, Valerie A; Johnson, Terrell

    2010-01-01

    Gibco's Minimum Essential Medium with Earle's salts and HEPES supplemented with glutamine, antibiotics (EB MEM) and 2% foetal calf serum (FCS) is used in European eye banks to store corneas. Although FCS is important to endothelial cell survival in this medium, it is a potential biohazard. Megacell MEM, formulated to reduce the FCS requirement of cells by a factor of 5, has therefore been evaluated as a corneal storage medium. Corneal stromal and epithelial cells were incubated in Megacell MEM (serum-free or 2% FCS) to assess their viability in these media. Endothelial cell densities of paired corneas held in either EB MEM 2% FCS or Megacell MEM (serum-free or 2% FCS) were measured over 5 weeks. Discs subsequently punched from the centre of these corneas were weighed, dried and reweighed to determine hydration levels. Both corneal stromal and epithelial cells proliferated in Megacell MEM 2% FCS. Relative to EB MEM, 2% FCS Megacell MEM prolonged the viability of corneal endothelial cells and improved their morphological appearance, irrespective of whether it contained FCS or not. This was independent of corneal swelling. Serum-free Megacell MEM is a better storage medium than EB MEM 2% FCS for corneas destined for transplantation. Copyright 2009 S. Karger AG, Basel.

  5. Organization of collagen types I and V in the embryonic chicken cornea.

    Science.gov (United States)

    Birk, D E; Fitch, J M; Linsenmayer, T F

    1986-10-01

    The distribution and organization of type I and type V collagens were studied in the embryonic chicken cornea using anti-collagen, type specific, monoclonal antibodies and immunoelectron microscopy. These studies were performed on lathyritic 17-day corneas treated at 4 degrees C or 37 degrees C. At the lower temperature, collagen fibril structure is disrupted; at the higher temperature, normal fibril structure is maintained. Corneas from non-lathyritic 17-day chick embryos, reacted at the two different temperatures, were studied for comparison. In Bowman's membrane, the thin (20 nm) fibrils were labelled by antibodies against both type I and type V collagen under all conditions studied. In the corneal stroma, the striated collagen fibrils (25 nm) were labelled with the antibodies against type I collagen in all cases, and by antibodies against type V collagen under conditions where fibril structure was disrupted. These results are consistent with the concept of heteropolymeric fibrils consisting of both type I and type V collagen molecules assembled such that the epitopes on the type V molecule are unavailable to antibody unless the fibrillar structure is disrupted. We suggest that the interaction of type V collagen with type I collagen may be responsible for the small diameter fibrils and the rigid control of fibril structure found in the cornea.

  6. Crosslinked collagen-gelatin-hyaluronic acid biomimetic film for cornea tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Ren, Li, E-mail: psliren@scut.edu.cn; Wang, Yingjun, E-mail: imwangyj@163.com

    2013-01-01

    Cornea disease may lead to blindness and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents the crosslinked collagen (Col)-gelatin (Gel)-hyaluronic acid (HA) films developed by making use of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as the crosslinker. The test results on the physical and biological properties indicate that the CGH631 film (the mass ratio of Col:Gel:HA = 6:3:1) has appropriate optical performance, hydrophilicity and mechanical properties. The diffusion properties of the CGH631 film to NaCl and tryptophan are also satisfactory and the measured data are 2.43 Multiplication-Sign 10{sup -6} cm{sup 2}/s and 7.97 Multiplication-Sign 10{sup -7} cm{sup 2}/s, respectively. In addition, cell viability studies demonstrate that the CGH631 film has good biocompatibility, on which human corneal epithelial cells attached and proliferated well. This biocompatible film may have potential use in cornea tissue engineering. - Highlights: Black-Right-Pointing-Pointer Crosslinked collagen-gelatin-hyaluronic acid films were fabricated in this study. Black-Right-Pointing-Pointer The film had appropriate physical properties. Black-Right-Pointing-Pointer Diffusion coefficient of the film was comparable with the human cornea. Black-Right-Pointing-Pointer HCEC viability studies confirmed the biocompatibility of the film.

  7. A structural model for the in vivo human cornea including collagen-swelling interaction

    Science.gov (United States)

    Cheng, Xi; Petsche, Steven J.; Pinsky, Peter M.

    2015-01-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  8. Pathways and Mechanisms Underlying the Photophysics and Photochemistry of Riboflavin induced cornea crosslinking

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen

    In this talk, we will describe general pathways involved in the photophysics of a photosensitized process, which can lead to crosslinking due to light excitation of Riboflavin in the cornea. Furthermore, we will elucidate different aspects of reactions that can produce crosslinks, with respect...

  9. Intracellular Position of Centrioles and the Direction of Homeostatic Epithelial Cell Movements in the Mouse Cornea.

    Science.gov (United States)

    Silverman, Erika; Zhao, Jin; Merriam, John C; Nagasaki, Takayuki

    2017-02-01

    Corneal epithelial cells exhibit continuous centripetal movements at a rate of about 30 µm per day, but neither the driving force nor the mechanism that determines the direction of movements is known. To facilitate the investigation of homeostatic cell movement, we examined if the intracellular position of a centriole can be used as a directional marker of epithelial cell movements in the mouse cornea. A direction of cell movements was estimated in fixed specimens from a pattern of underlying subepithelial nerve fibers. Intracellular position of centrioles was determined by gamma-tubulin immunohistology and plotted in a narrow strip along the entire diameter of a cornea from limbus to limbus. When we determined the position of centrioles in the peripheral cornea where cell movements proceed generally along a radial path, about 55% of basal epithelial cells contained a centriole in the front half of a cell. However, in the central cornea where cells exhibit a spiral pattern of movements, centrioles were distributed randomly. These results suggest that centrioles tend to be positioned toward the direction of movement in corneal basal epithelial cells when they are moving centripetally at a steady rate.

  10. Interrelation of Hydration, Collagen Cross-Linking Treatment, and Biomechanical Properties of the Cornea.

    Science.gov (United States)

    Hatami-Marbini, Hamed; Rahimi, Abdolrasol

    2016-05-01

    The present study was designed to investigate the effects of hydration and collagen cross-linking treatment on biomechanical properties of the cornea. The original corneal collagen cross-linking protocol was used to induce cross-links in bovine corneas. The thickness of samples was used as a measure of their hydration and five different thickness groups (n = 5 each) were considered. The cross-linked corneal strips were allowed to hydrate/dehydrate until their thickness reached 500, 700, 900, 1100, and 1500 μm. The tensile behavior of specimens in each thickness group was characterized by conducting uniaxial tensile experiments. The experiments were done in mineral oil in order to keep the thickness of samples constant and minimize hydration changes. It was observed that collagen cross-linking treatment significantly increased both the maximum tensile stress and the equilibrium (relaxed) stress of the bovine cornea (p  0.99), respectively. Hydration and collagen cross-linking treatment concomitantly affect biomechanical properties of the cornea. Therefore, an accurate estimate of stiffening effects of collagen cross-linking treatment option using uniaxial tensile experiments is only possible if the hydration of specimens is fully controlled.

  11. Effects of collagen cross-linking on the interlamellar cohesive strength of porcine cornea.

    Science.gov (United States)

    Tao, Chen; Sun, Yong; Zhou, Chuanqing; Han, Zhaolong; Ren, Qiushi

    2013-02-01

    To determine the interlamellar cohesive strength (ICS) of porcine cornea before and after collagen cross-linking using riboflavin and ultraviolet A (UVA) irradiation. Corneal flaps, 130 μm thick, were created with a microkeratome. Cross-linking was accomplished with 0.1% riboflavin and UVA irradiation for 30 minutes (3 mW/cm, 5.4 J/cm) at a distance of 10 mm. Two experiments were performed. (1) The maximal ICS between corneal flap and the stroma was determined and histological examination was performed. (2) The mean stromal ICS was measured. Untreated eyes served as controls in all experiments. The mean maximum flap-stroma ICS was 0.088 ± 0.046 N/mm in the experimental group and 0.012 ± 0.004 N/mm in the control group (P = 0.009). In experiment 2, incomplete (2 mm long) corneal flaps were used and the mean stromal ICS was 0.750 ± 0.077 N/mm in the experimental group and 0.338 ± 0.046 N/mm in the control group (P cornea with cross-linking, but a smooth separation surface in the cornea without cross-linking. Collagen cross-linking activated by riboflavin/UVA increases ICS in porcine corneas.

  12. Descemet membrane adhesion strength is greater in diabetics with advanced disease compared to healthy donor corneas.

    Science.gov (United States)

    Schwarz, Chaid; Aldrich, Benjamin T; Burckart, Kimberlee A; Schmidt, Gregory A; Zimmerman, M Bridget; Reed, Cynthia R; Greiner, Mark A; Sander, Edward A

    2016-12-01

    Descemet membrane endothelial keratoplasty (DMEK) is an increasingly popular surgical procedure for treating ocular diseases that require a corneal transplant. Previous studies have found that tissue tearing during surgical preparation is more likely elevated in eyes from donors with a history of diabetes mellitus. To quantify these potential differences, we established an experimental technique for quantifying the force required to separate the endothelium-Descemet membrane complex (EDM) from stroma in human donor corneal tissue, and we assessed differences in adhesion strength between diabetic and non-diabetic donor corneas. Transplant suitable corneas were obtained from 23 donors 50-75 years old with an average preservation to assay time of 11.5 days. Corneas were classified from a medical records review as non-diabetic (ND, n = 9), diabetic without evidence of advanced disease (NAD, n = 8), or diabetic with evidence of advanced disease (AD, n = 10). Corneas were sectioned into 3 mm wide strips and the EDM peeled from the stroma. Using the force-extension data obtained from mechanical peel testing, EDM elastic peel tension (TE), elastic stiffness (SE), average delamination tension (TD), and maximum tension (TMAX) were calculated. Mean TE, SE, TD, and TMAX values for ND corneas were 0.78 ± 0.07 mN/mm, 0.37 ± 0.05 mN/mm/mm, 0.78 ± 0.08 mN/mm, and 0.94 ± 0.17 mN/mm, respectively. NAD values did not differ significantly. However, AD values for TE (1.01 ± 0.18 mN/mm), TD (1.09 ± 0.21 mN/mm), and TMAX (1.37 ± 0.24 mN/mm) were greater than ND and NAD corneas (P donor corneal tissue. Results of this study provide a foundation for further investigations into the impact of diabetes on the posterior cornea, eye banking, and keratoplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  14. Changes in lysyl oxidase (LOX) distribution and its decreased activity in keratoconus corneas.

    Science.gov (United States)

    Dudakova, Lubica; Liskova, Petra; Trojek, Tomas; Palos, Michalis; Kalasova, Sarka; Jirsova, Katerina

    2012-11-01

    Inadequate cross-linking between collagen lamellae is a characteristic feature of keratoconus corneas. The formation of covalent bonds between collagen and elastin fibrils, which maintain the biomechanical properties of the cornea, is mediated by the cuproenzyme lysyl oxidase and four lysyl oxidase-like enzymes. The aim of this study was to determine the distribution of lysyl oxidase and the total lysyl oxidase activity (lysyl oxidase and the four lysyl oxidase-like enzymes) in control and keratoconic corneas. Seven control and eight keratoconic corneas were used for the imunohistochemical detection of lysyl oxidase in corneal cryosections using two different antibodies. The total lysyl oxidase activity in the culture medium of corneal fibroblasts from six explanted keratoconic and four control corneas was measured using a fluorometric assay in the presence and absence of the lysyl oxidase inhibitor beta-aminopropionitrile and determined as the production of H(2)O(2) in nM per μg of total protein. In the control tissue, the most intense signal for lysyl oxidase was present in the corneal epithelium, in which perinuclear dots brightly projecting from more or less homogenous cytoplasmic staining may represent the lysyl oxidase propeptide. Less intense staining was present in keratocytes, the extracellular matrix and in the corneal endothelium. The epithelium of the limbus and the perilimbal conjunctiva showed intense to very intense staining. The distribution of lysyl oxidase was clearly decreased in at least five of the eight keratoconic specimens. The most marked signal reduction was observed in the stromal matrix and in keratocytes. Moreover, the signal in pathological specimens revealed a more irregular pattern, including the presence of intra- and extracellular clumps in the epithelium. Interestingly, endothelial cells showed no or very weak staining in areas just beneath negative stromal tissue. The mean activity of total lysyl oxidase in the keratoconic

  15. The presence of lysyl oxidase-like enzymes in human control and keratoconic corneas.

    Science.gov (United States)

    Dudakova, Lubica; Sasaki, Takako; Liskova, Petra; Palos, Michalis; Jirsova, Katerina

    2016-01-01

    Lysyl oxidases, a family comprising lysyl oxidase (LOX) and four LOX-like enzymes (LOXL1-4), catalyse the cross-linking of elastin and collagen fibrils. Keratoconus (KC) is characterized by progressive thinning leading to irregular astigmatism, resulting in significant visual impairment. Although the pathogenesis of KC remains unclear, one of the current hypotheses is based on alterations in the organization and structure of collagen fibrils. To extend existing general knowledge about cross-linking enzymes in the human cornea, in the present study we have focused on the detection of LOXL enzymes. The localization and distribution of LOXL1-4 were assessed in cryosections of 7 control donors (three males and three females; 25-68 years; mean age 46±17.6 years) and 8 KC corneas (5 males and 3 females; 25-46 years; mean age 31.3±7.5 years) using indirect fluorescent immunohistochemistry (IHC). The specimens were examined using an Olympus BX51 microscope (Olympus Co., Tokyo, Japan) at a magnification of 200-1000x. Western blot analysis of 4 control and 4 KC corneas was performed for all tested enzymes. All four LOX-like enzymes were present in all layers of control corneas as well as in the limbus and conjunctiva. Almost no differences between control and pathological specimens were found for LOXL1. A lower staining intensity of LOXL2 was found using IHC and Western blot analysis in KC specimens. Decreases of the signal and small irregularities in the staining were found in the epithelium, keratocytes and extracellular matrix, where a gradual anterior-posterior weakening of the signal was observed. LOXL3 IHC staining was lower in the corneal stromal extracellular matrix and keratocytes of KC samples. No prominent differences were detected using IHC for LOXL4, but a slight decrease was observed in KC corneas using Western blot analysis. We presume that the decrease of LOXL2 in KC corneas is more likely a consequence of the associated pathological processes (activation

  16. Contrasting cellular damage after Blue-IRIS and Femto-LASIK in cat cornea.

    Science.gov (United States)

    Wozniak, Kaitlin T; Elkins, Noah; Brooks, Daniel R; Savage, Daniel E; MacRae, Scott; Ellis, Jonathan D; Knox, Wayne H; Huxlin, Krystel R

    2017-12-01

    Blue-intra-tissue refractive index shaping (Blue-IRIS) is a new approach to laser refractive correction of optical aberrations in the eye, which alters the refractive index of the cornea rather than changing its shape. Before it can be implemented in humans, it is critical to establish whether and to what extent, Blue-IRIS damages the cornea. Here, we contrasted the impact of -1.5 D cylinder refractive corrections inscribed using either Blue-IRIS or femtosecond laser in-situ keratomileusis (femto-LASIK) on corneal cell viability. Blue-IRIS was used to write a -1.5 D cylinder gradient index (GRIN) lens over a 2.5 mm by 2.5 mm area into the mid-stromal region of the cornea in six freshly-enucleated feline eyes. The same correction (-1.5 D cylinder) was inscribed into another four cat eyes using femto-LASIK. Six hours later, all corneas were processed for histology and stained for terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) and p-γ-H2AX to label damaged cells. In Blue-IRIS-treated corneas, no tissue was removed and TUNEL-stained cells were confined to the laser focal zone in the stroma. In femto-LASIK, photoablation removed 14 μm of anterior stroma, but in addition, TUNEL-positive cells clustered across the femto-flap, the epithelium at the flap edges and the stroma below the ablation zone. Keratocytes positive for p-γ-H2AX were seen adjacent to all Blue-IRIS focal zones, but were completely absent from femto-LASIK-treated corneas. Unlike femto-LASIK, Blue-IRIS attains refractive correction in the cornea without tissue removal and only causes minimal, localized keratocyte death within the laser focal zones. In addition, Blue-IRIS induced DNA modifications associated with phosphorylation of γ-H2AX in keratocytes adjacent to the laser focal zones. We posit that this p-γ-H2AX response is related to alterations in chromatin structure caused by localized changes in osmolarity, a possible mechanism for the induced

  17. Thermodynamic measurement after cooling the cornea with intact epithelium and lid manipulation.

    Science.gov (United States)

    de Ortueta, Diego; Magnago, Thomas; Arba-Mosquera, Samuel

    2015-01-01

    To characterize the rate of change of ocular surface temperature (OST) under lid manipulation after cooling the intact cornea with balanced salt solution (BSS). In a patient for refractive surgery, prior to the ablation, the temperature of the cornea was continuously recorded with a high speed infrared (350Hz) camera. Two millilitre of chilled BSS with a temperature of 8.6°Celsius (°C) was instilled for about 3s. Using exponential functions, the three contributions have been determined, subjacent corneal layers, environment, and chilled BSS. The mean temperature of the cornea preoperatively was 34.5°C. After applying the chilled BSS the temperature decreased about 14°C down to an OST of 20°C and the time needed afterwards to get the normal (OST) temperature of about 30°C was 40s. Due to the inserted speculum and missing blink, OST did not reach the original OST of 34.5°C and faded at about 32.5°C. According to our best fitted model, absolute value of each contributing component was 31.4°C (subjacent corneal layers), 26.8°C (environment) and 8.6°C (BSS). Applying chilled BSS to the cornea quickly reduces the temperature of the cornea with a thermal relaxation time of 3s and a amplitude decrease of 8.6°C. This together with a relaxation time of 7s for subjacent corneal layers, and 184s for environment after instillation of BSS combined with a well-controlled environment provides a period of 40s of corneal temperature below baseline, which may be of clinical benefit when applying chilled BSS immediately before or immediately after ablation. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  18. Variable depth thermal lesions in rabbit corneas using a tunable thulium fiber laser

    Science.gov (United States)

    Fried, Nathaniel M.; Noguera, Guillermo; Castro-Combs, Juan; Behrens, Ashley

    2007-02-01

    Laser-induced thermal changes in the cornea have been used clinically for refractive surgery. This study describes the creation of variable depth thermal lesions in the cornea using a tunable Thulium fiber laser. Thermal lesions were created in fresh rabbit corneas, ex vivo, at three different wavelengths (1873 nm, 1890 nm, and 1904 nm) (n=6 corneas each). All other laser parameters were kept fixed with power of 5.5 W, 25-ms exposure time, and 650-μm diameter spot, yielding a single pulse exposure of 138 mJ, and a fluence of 42 J/cm2. Optical coherence tomography (OCT) and histology were used to measure pre- and post-operative corneal thickness and lesion dimensions. OCT measurements of pre and post-operative corneal thickness and lesion depth (in microns) were: (1873 nm: 450+/-30, 801+/-95, 655+/-51), (1890 nm: 460+/-27, 618+/-70, 332+/-56), (1904 nm: 448+20, 550+/-42, 245+36), respectively. By comparison, histologic measurements were: (1873 nm: 470+25, 828+21, 540+/-31), (1890 nm: 457+/-13, 625+/-17, 350+/-43), (1904 nm: 465+/-40, 627+/-35, 239+/-23), respectively. OCT lesion depth measured 82%, 54%, and 45% of corneal thickness, compared to histologic analysis of 65%, 56%, and 38%. This is the first preliminary test of a compact and tunable Thulium fiber laser for creating variable depth thermal lesions in the cornea. The Thulium fiber laser may have potential use as a replacement for the Ho:YAG and diode lasers for thermal keratoplasty.

  19. Stiffening of rabbit corneas by the bacteriochlorophyll derivative WST11 using near infrared light.

    Science.gov (United States)

    Marcovich, Arie L; Brandis, Alexander; Daphna, Ofer; Feine, Ilan; Pinkas, Iddo; Goldschmidt, Ruth; Kalchenko, Vyacheslav; Berkutzki, Tamara; Wagner, H Daniel; Salomon, Yoram; Scherz, Avigdor

    2012-09-19

    We evaluated the efficacy and safety of photochemical corneal stiffening by palladium bacteriochlorin 13'-(2-sulfoethyl)amide dipotassium salt (WST11) and near infrared (NIR) illumination, using ex vivo and in vivo rabbit eye models. Corneas of post mortem rabbits and living rabbits were pretreated topically with 2.5 mg/mL WST11 in saline or in 20% dextran T-500 (WST-D), washed and illuminated with an NIR diode laser (755 nm, 10 mW/cm(2). Studies with corneas of untreated fellow eyes served as controls. Tensile strength measurements, histopathology, electron spin resonance, and optical spectroscopy and fluorescence microscopy were used to assess treatment effects. Comparative studies were performed with standard riboflavin/ultraviolet-A light (UVA) treatment. WST11/NIR treatment significantly increased corneal stiffness following ex vivo or in vivo treatment, compared to untreated contralateral eyes. The incremental ultimate stress and Young's modulus of treated corneas increased by 45, 113, 115%, and 10, 79, and 174% following 10, 20, and 30 minutes of incubation with WST11, respectively. WST-D/NIR had a similar stiffening effect, but markedly reduced post-treatment edema and shorter time of epithelial healing. WST11/NIR and WST-D/NIR generate hydroxyl and superoxide radicals, but no singlet oxygen in the cornea. Histology demonstrated a reduction in the keratocyte population in the anterior half of the corneal stroma, without damage to the endothelium. Treatment of rabbit corneas, with either WST11/NIR or WST-D/NIR, increases their biomechanical strength through a mechanism that does not involve singlet oxygen. The WST-D/NIR treatment showed less adverse effects, demonstrating a new potential for clinical use in keratoconus and corneal ectasia after refractive surgery.

  20. Thirty years of cornea cultivation: long-term experience in a single eye bank.

    Science.gov (United States)

    Linke, Stephan J; Eddy, Mau-Thek; Bednarz, Jürgen; Fricke, Otto H; Wulff, Birgit; Schröder, Ann-Sophie; Hassenstein, Andrea; Klemm, Maren; Püschel, Klaus; Richard, Gisbert; Hellwinkel, Olaf J C

    2013-09-01

    To evaluate donor demographics, trends in donor tissue procurement and tissue storage over a long period. A retrospective, longitudinal, descriptive analysis was undertaken of data from the Hamburg Eye Bank Data Base (HEB-DB) that had been collected between 1981 and 2010. Data on 54 parameters of cornea donors [including clinical history, age, death cause, gender and death-to-explantation interval (DEI)] and of cultivated corneas (endothelial quality and development in culture, cultivation period, microbiological contamination) were retrieved. These data were analysed statistically, focusing on the historical development of the eye bank. At the time of retrieval (June 2010), the HEB-DB contained data on 10 943 corneas (5503 donors). Most donors were men (65%) and had died from cardiopulmonary (n = 801)/cerebral (n = 261) failure or as the result of a polytraumatic accident/suicide (n = 602). Within these years, donor age, DEI and storage time increased. The percentage of stored corneas suitable for transplantation displayed a variable but increasing trend; in 2007, almost 75% of the stored corneas were transplanted. Between 1995 and June 2010, the median microbiological contamination rate was 5.3%. A change in the procurement procedure from enucleation to corneoscleral explantation in 2008 led to a briefly increased contamination rate.   Donor demographic data run parallel to the general demographic development. Our analysis indicates a dynamic development of the eye bank over the last 30 years and emphasizes the need for an active quality management in coping with the challenges of modern eye banking. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  1. EXPRESSION OF NeuGc ON PIG CORNEAS AND ITS POTENTIAL SIGNIFICANCE IN PIG CORNEAL XENOTRANSPLANTATION

    Science.gov (United States)

    Lee, Whayoung; Miyagawa, Yuko; Long, Cassandra; Ekser, Burcin; Walters, Eric; Ramsoondar, Jagdeece; Ayares, David; Tector, A. Joseph; Cooper, David K. C.; Hara, Hidetaka

    2016-01-01

    Purpose Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (i) to document the lack of NeuGc expression on corneas and aortas, and cultured endothelial cells (aortic [AECs]; corneal [CECs]) of GTKO/NeuGcKO pigs, and (ii) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. Methods Wild-type (WT), GTKO, and GTKO/NeuGcKO pig were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and to determine human IgM and IgG binding to tissues. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. Results Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither human nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared to binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. Conclusions The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas. PMID:26418433

  2. Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan.

    Science.gov (United States)

    Zhang, Guiyun; Chen, Shoujun; Goldoni, Silvia; Calder, Bennett W; Simpson, Holly C; Owens, Rick T; McQuillan, David J; Young, Marian F; Iozzo, Renato V; Birk, David E

    2009-03-27

    Decorin and biglycan are class I small leucine-rich proteoglycans (SLRPs) involved in regulation of collagen fibril and matrix assembly. We hypothesize that tissue-specific matrix assembly, such as in the cornea, requires a coordinate regulation involving multiple SLRPs. To this end, we investigated the expression of decorin and biglycan in the cornea of mice deficient in either SLRP gene and in double-mutant mice. Decorin and biglycan exhibited overlapping spatial expression patterns throughout the corneal stroma with differential temporal expression. Whereas decorin was expressed at relatively high levels in all developmental stages, biglycan expression was high early, decreased during development, and was present at very low levels in the mature cornea. Ultrastructural analyses demonstrated comparable fibril structure in the decorin- and biglycan-null corneas compared with wild-type controls. We found a compensatory up-regulation of biglycan gene expression in the decorin-deficient mice, but not the reverse. Notably, the corneas of compound decorin/biglycan-null mice showed severe disruption in fibril structure and organization, especially affecting the posterior corneal regions, corroborating the idea that biglycan compensates for the loss of decorin. Fibrillogenesis assays using recombinant decorin and biglycan confirmed a functional compensation, with both having similar effects at high SLRP/collagen ratios. However, at low ratios decorin was a more efficient regulator. The use of proteoglycan or protein core yielded comparable results. These findings provide firm genetic evidence for an interaction of decorin and biglycan during corneal development and further suggest that decorin has a primary role in regulating fibril assembly, a function that can be fine-tuned by biglycan during early development.

  3. Transepithelial riboflavin/ultraviolet. a corneal cross-linking in keratoconus: morphologic studies on human corneas.

    Science.gov (United States)

    Mencucci, Rita; Paladini, Iacopo; Sarchielli, Erica; Favuzza, Eleonora; Vannelli, Gabriella Barbara; Marini, Mirca

    2013-11-01

    To evaluate histologic and molecular changes in human keratoconic corneas after the procedure of transepithelial collagen cross-linking (CXL), without the removal of corneal epithelium. Experimental laboratory investigation. Thirty corneal buttons were examined, 18 of which were from patients affected by severe keratoconus and submitted to penetrating keratoplasty (PK). Among these, 8 were analyzed without any treatment, 4 were treated with transepithelial CXL 2 hours before PK, and 6 were treated with transepithelial CXL 3 months before PK. Twelve normal corneal buttons from healthy donors were used as controls. The corneal buttons were then evaluated by hematoxylin-eosin staining and by immunostaining with markers of epithelial junction proteins (ß-catenin and connexin 43), of stromal keratocytes (CD34), of apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] assay), and of collagen type I fibers. The analysis of epithelial markers showed a clear defective expression in keratoconic corneas before and soon after the transepithelial CXL treatment, returning to normal in corneas analyzed 3 months after transepithelial CXL. The analysis of stroma components indicated a loss of keratocytes in the upper stroma of keratoconic corneas and a trend toward a normal situation 3 months after transepithelial CXL; similarly, collagen fibers appeared disorganized in keratoconus, while their pattern appears to be close to normal 3 months after treatment. Histologic and immunohistochemical findings on human keratoconic corneas showed the presence of biochemical and morphologic alterations in the epithelium and the upper stroma that are significantly improved 3 months after transepithelial CXL. However, further studies are necessary to assess to what extent these results correlate with measurable biomechanical effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Wound healing in the rabbit cornea after corneal collagen cross-linking with riboflavin and UVA.

    Science.gov (United States)

    Wollensak, Gregor; Iomdina, Elena; Dittert, Dag-Daniel; Herbst, Hermann

    2007-06-01

    This study was undertaken to investigate the wound healing process of the first 6 weeks after photodynamic cross-linking treatment in the rabbit cornea, using the photosensitizer riboflavin and UVA. After removal of the central epithelium, the right corneas of 8 Chinchilla rabbits were cross-linked with a photosensitizing 0.1% riboflavin solution and UVA light (370 nm; irradiance, 3 mW/cm(2); dose, 5.4 J/cm(2)) for 30 minutes. Two animals were euthanized 3 days, 7 days, 4 weeks, and 6 weeks postoperatively. The corneas of the enucleated eyes were evaluated using 4-microm light microscopic sections with routine stains and avidin-biotin complex immunostaining with anti-alpha-smooth muscle actin. By day 3 after treatment, complete apoptotic damage and loss of the endothelial cells and the stromal keratocytes were found in the irradiated area through the entire thickness of the stroma. There was marked stromal edema (850 +/- 66 vs. 332 +/- 43 microm in the untreated controls; P neutrophils. By day 7, the endothelium was already intact again, and keratocyte repopulation of the posterior stroma was noted. By week 4, the keratocyte repopulation of the anterior stroma was observed with some acellular areas between. By week 6, the cytoarchitecture of the cornea seemed normal again. By weeks 4 and 6, alpha-actin-positive keratocytes were identified, especially in the periphery of the irradiated area. After riboflavin/UVA cross-linking of rabbit cornea, a complete cell loss occurs in the irradiation area with an irradiance of 3 mW/cm(2). The cytotoxic damage is repaired by repopulation after approximately 4-6 weeks. A combination of cross-linking with other procedures such as the implantation of intracorneal rings should be performed only after a sufficient time interval of approximately 2 months, allowing cellular regeneration.

  5. The relation between hydration and mechanical behavior of bovine cornea in tension.

    Science.gov (United States)

    Hatami-Marbini, Hamed; Rahimi, Abdolrasol

    2014-08-01

    The cornea is a transparent soft tissue covering the front of the eye. The biomechanical properties of the cornea have been commonly investigated by uniaxial tensile and inflation testing methods. The cornea like many other hydrated tissue swells when immersed in an ionic solution. Previous studies on hydrated tissues have shown that mechanical properties and hydration are closely related. The present study was designed to investigate the effects of thickness (hydration) variation due to swelling/dehydration on non-linear stress-strain response of the bovine cornea. Corneal strips were first air-dried and then soaked in a bathing solution until they reached an average thickness ranging from 0.3mm to 1.1mm. Based on their thickness, the samples were divided into different groups and uniaxial tests were performed to measure tensile properties. All experiments were done in mineral oil to prevent any hydration gain or loss during the tests. It was observed that swollen corneas had softer tensile properties in comparison with dehydrated ones. In particular, there was a significant difference between elastic tangent modulus of different groups (P<0.05). It was also shown that tensile behavior of bovine strips at any thickness within the range of 0.4-1.1mm can be obtained from a single experiment conducted on samples with known thickness (hydration). The findings of the present study confirm that mechanical properties obtained from uniaxial tensile experiments are strongly dependent on thickness (water amount) of samples; therefore, careful attention must be taken in interpreting previous studies which did not fully control the thickness of specimens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Revisiting the Cornea and Trabecular Meshwork Junction With 2-Photon Excitation Fluorescence Microscopy.

    Science.gov (United States)

    Marando, Catherine M; Park, Choul Yong; Liao, Jason A; Lee, Jimmy K; Chuck, Roy S

    2017-06-01

    To investigate the collagen and elastin architecture at the junction of the human cornea and trabecular meshwork (TM). The cornea, TM, and ciliary body (CB) tendons of unfixed human corneal buttons were imaged with an inverted 2-photon excited fluorescence microscope (FluoView FV-1000; Olympus, Central Valley, PA). The laser (Ti:sapphire) was tuned to 850 nm for 2-photon excitation. Backscatter signals of second harmonic generation and autofluorescence were collected through a 425/30-nm emission filter and a 525/45-nm emission filter, respectively. The second harmonic generation signal corresponds to collagen fibers, and the autofluorescence signal corresponds to elastin-containing tissue. Tissue structure representations were obtained through software-generated reconstructions of consecutive and overlapping (z-stack) images through a relevant sample depth. Collagen-rich CB tendons insert into the cornea between Descemet membrane (DM) and posterior stroma along with elastin fibers originating from the TM. The CB tendons directly abut DM, and their insertion narrows as they course centrally in the cornea, giving a wedge appearance to these parallel collagen fibers. Approximately 260 μm centrally from the edge of DM, the CB tendons fan out and merge with pre-DM collagen. As the CB tendons enter the cornea, they form a dense collagenous comb-like structure orthogonal to the edge of DM and supported by a delicate elastin network of interwoven fibers originating from the TM. Two-photon excited fluorescence microscopy has improved our understanding of the peripheral corneal architecture. CB tendon insertions in this region may contribute to the radial tears encountered when preparing DM endothelial keratoplasty grafts.

  7. Reactions with Antisera and Pathological Effects of Staphylococcus aureus Gamma-Toxin in the Cornea.

    Science.gov (United States)

    Bierdeman, Michael A; Torres, Angela M; Caballero, Armando R; Tang, Aihua; O'Callaghan, Richard J

    2017-08-01

    This study analyzed the toxicity of purified gamma-toxin from Staphylococcus aureus and the protectiveness of antisera to gamma-toxin in the rabbit cornea. Gamma-toxin was purified from cultures of alpha-toxin deficient S. aureus strain Newman Δhla. Antisera to native gamma-toxin (Hlg) were produced in rabbits. These antisera and a commercial polyclonal antibody to recombinant HlgB (rHlgB) were analyzed for specificity and toxin neutralization. Heat-inactivated gamma-toxin, active gamma-toxin either alone or with antisera or with commercial antibody to rHlgB, was injected into the rabbit cornea to observe the pathological effects using slit lamp examination scoring (SLE) and histological analyses. Eyes with intrastromal injection of gamma-toxin developed SLE scores that were significantly higher than eyes injected with heat-inactivated gamma-toxin (p ≤ 0.003). Slit lamp and histological examination of eyes revealed that gamma-toxin injected into the cornea mediated conjunctival injection and chemosis, iritis, fibrin accumulation in the anterior chamber, and polymorphonuclear neutrophil infiltration of the cornea and iris. Also, eyes injected with gamma-toxin plus antisera to native whole gamma-toxin or HlgB, but not with commercial antibody to rHlgB, yielded significantly lower SLE scores than eyes injected with gamma-toxin alone (p ≤ 0.003). This study illustrates that S. aureus gamma-toxin is capable of causing significant corneal pathology. Furthermore, the use of polyclonal antisera specific for native gamma-toxin was found to inhibit the damaging effects of the toxin in the rabbit cornea.

  8. Characterization of Rabbit Corneas Subjected to Stromal Stiffening by the Açaí Extract (Euterpe oleracea).

    Science.gov (United States)

    Bersanetti, Patrícia A; Bueno, Tatiane L N; Morandim-Giannetti, Andreia de A; Nogueira, Regina F; Matos, Jivaldo R; Schor, Paulo

    2017-04-01

    In this study, we characterized rabbit corneas subjected to corneal cross-linking (CXL) with açaí extract compared with a riboflavin photo-stimulated procedure. The corneas of the slaughterhouse rabbits were divided into three groups: control, consisting of untreated corneal samples; riboflavin/UVA, where corneas were treated with 0.1% riboflavin photo-stimulated at 365 nm as the standard protocol; and açaí, where the samples were subjected to 4% açaí extract for 0.5-2 h. After the CXL procedure, corneas of the three groups were characterized by analyzing their elastic modulus and thermal denaturation profile. The elastic modulus at 3% strain showed an approximately threefold increase in the riboflavin/UVA group and 10.5 times in the corneas treated with 4% açaí extract for 2 h, compared with the control group (p < 0.01). The denaturation temperature values of the two groups of crosslinked corneas increased significantly (p < 0.05) and were more pronounced in the açaí group. The açaí extract was effective in promoting CXL in rabbit corneas as characterized by the different techniques.

  9. Quantitative analysis of immunogold labellings of collagen types I, III, IV and VI in healthy and pathological human corneas.

    Science.gov (United States)

    Delaigue, O; Arbeille, B; Rossazza, C; Lemesle, M; Roingeard, P

    1995-06-01

    We studied the distribution of collagen types I, III, IV and VI in one healthy human cornea and in seven pathological human corneas, in which the disorders were three cases of pseudophakic bullous keratopathy (two severe, one moderate) and one case each of stage IV keratoconus, chronic ulcer, vascularized cornea and disciform keratitis. Transmission electron microscopy examinations were performed on post-embedding immunogold-labelled sections. The staining was evaluated by gold particle count in the different tissues. The presence or absence of a given antigen was determined by statistical analysis, using a d-value test. Our results on healthy corneal tissues corroborate the data available from previous studies, except for collagen type VI, which we found to be absent in Bowman's layer. In pathological corneas with a collagenous layer posterior to Descemet's membrane, collagen types I, III and especially IV were detected in this collagenous layer. Collagen types I, III and VI were detected in the anterior healed stroma of other pathological corneas, except for the keratoconus cornea, in which intense collagen III staining was observed. The presence of collagen types I and III in the posterior collagenous layer of our pseudophakic bullous keratopathy corneas suggests that this layer corresponds to scar tissue secreted by stimulated endothelial cells.

  10. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading

    Science.gov (United States)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  11. Modeling and analysis of ductility of brittle materials using indentation method

    Science.gov (United States)

    Sun, Guoyan; Lu, Zhe; Bai, Jianming; Yu, Fangsu

    2014-08-01

    Nowadays, many optical elements are fabricated by means of glass molding using hard and brittle inserts such as Silicon Carbide (SiC) and Silicon Nitride (Si3N4). However, for those hard-to-machine materials, the most feasible solution is still with ultra-precision grinding and following polishing. Hence, it is necessary and meaningful to study their plastic properties for the development of optical fabrication and ultra-precision manufacturing process. However, the conventional methods including compression test and indentation fracture mechanics are not sufficient to obtain the accurate parameters and still lack of reliable supporting of the machining process. To solve this problem, this paper presents a novel way to correlate the plastic properties to the indentation data using dimensional analysis for the two sorts of hard and brittle materials of SiC and Si3N4. Through integrating the data obtained by the indentation tests and the modeling method presented in this paper, stress-strain behavior, yield stress σy, yield strain epsilony and strain hardening exponent n could be determined. The processing performance of these two materials reflected by the above parameters are consistent with the conclusions drawing from the indentation crack development under varying loads during the indentation test, which verifies the effectiveness and feasibility of the presented modeling method.

  12. Brittle Creep Failure, Critical Behavior, and Time-to-Failure Prediction of Concrete under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yingchong Wang

    2015-01-01

    Full Text Available Understanding the time-dependent brittle deformation behavior of concrete as a main building material is fundamental for the lifetime prediction and engineering design. Herein, we present the experimental measures of brittle creep failure, critical behavior, and the dependence of time-to-failure, on the secondary creep rate of concrete under sustained uniaxial compression. A complete evolution process of creep failure is achieved. Three typical creep stages are observed, including the primary (decelerating, secondary (steady state creep regime, and tertiary creep (accelerating creep stages. The time-to-failure shows sample-specificity although all samples exhibit a similar creep process. All specimens exhibit a critical power-law behavior with an exponent of −0.51 ± 0.06, approximately equal to the theoretical value of −1/2. All samples have a long-term secondary stage characterized by a constant strain rate that dominates the lifetime of a sample. The average creep rate expressed by the total creep strain over the lifetime (tf-t0 for each specimen shows a power-law dependence on the secondary creep rate with an exponent of −1. This could provide a clue to the prediction of the time-to-failure of concrete, based on the monitoring of the creep behavior at the steady stage.

  13. An approach to scaling size effect on strength of quasi-brittle biomedical materials.

    Science.gov (United States)

    Lei, Wei-Sheng; Su, Peng

    2016-09-01

    Two-parameter Weibull statistics is commonly used for characterizing and modeling strength distribution of biomedical materials and its size dependence. The calibrated scale parameter and shape factor are usually sensitive to specimen size. Since Weibull statistics is subject to the weakest link postulate, this work proposed to directly resort to the weakest-link formulation for the cumulative failure probability to characterize size effect on strength distribution of quasi-brittle biomedical materials. As a preliminary examination, the approach was assessed by two sets of published strength data. It shows that the resultant expression for the cumulative probability follows either Weibull distribution or other type of distributions. The calibrated model parameters are independent of specimen size, so they can be used to transfer strength distribution from one set of specimens to another set of specimens with geometrical similarity under same loading mode. These initial results motivate a more comprehensive validation of the proposed approach to proceed via a larger set of case studies covering different quasi-brittle biomedical materials over a wider range of size variation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Brittle to ductile transition of metallic glasses induced by embedding spherical nanovoids

    Science.gov (United States)

    Zhu, Bida; Huang, Minsheng; Li, Zhenhuan

    2017-12-01

    The lack of global plasticity at low temperature seriously limits the application of metallic glasses (MGs) as structural materials. An approach to enhance the MG-ductility by dispersed spherical nanovoids is suggested and validated by molecular dynamics in the present paper. By introducing these nanovoids, a deformation mode transition from localized shear banding to homogeneous flow occurs. The ratio of void-surface area to MG volume λ is revealed to be the dominant factor controlling this brittle-to-ductile transition. Generally, for a given void volume fraction, smaller nanovoids with larger λ have better toughening effects. It is also discovered that the ductile responses of porous MGs with embedded nanovoids remain unchanged, even after several cycles of tensile-compressive loads. The intrinsic mechanism may be the transition of energetic void-surface atoms into internal atoms with lower potential energy. This process induces many uniformly distributed potential nucleation sites for shear transformation zones or embryonic shear bands (SBs), and thus provides another homogenous way to release the stored strain energy in MGs rather than by the formation of a single dominant SB. As a consequence, the highly localized deformation mode of classical MGs can be avoided. In addition, the effect of free and periodical boundary conditions and random distribution of nanovoids on the brittle-to-ductile transition are also discussed. The results may shed a light on the fabrication of better ductile MG materials.

  15. PREDICTION OF CHARACTERISTIC LENGTH AND FRACTURE TOUGHNESS IN DUCTILE-BRITTLE TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P

    2008-04-15

    Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from -160 to -45 C within the ductile-brittle transition regime. As many researchers have shown, the failure stress ({sigma}{sub f}) of the material could be approximated as a constant. The characteristic length, or the critical distance (r{sub c}) from the crack tip, at which {sigma}{sub f} is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A{sub 2} two-parameter constraint theory in fracture mechanics, the fracture toughness (J{sub C} or K{sub JC}) can be expressed as a function of the constraint level (A{sub 2}) and the critical distance r{sub c}. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant {sigma}{sub f} and a set of temperature-dependent r{sub c}. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W= 0.075) to deep cracks (a/W= 0.5), where a is the crack length and W is the specimen width.

  16. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    Science.gov (United States)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  17. Hydraulic machine tests for compression of a quasi-brittle material at medium strain rate

    Science.gov (United States)

    Quirion, Y.; Lesaffre, A. S.

    2006-08-01

    This paper describes an experimental device used to determine the dynamic compressive behaviour of quasi-brittle material at medium strain rates (1 to 100 s - 1). The tool combines a servo-hydraulic machine with a high-speed photography. Tests consist in compressing a sample between a dynamic jack and an instrumented anvil according to the direct impact method. The main difficulty of brittle material testing is to achieve dynamic equilibrium in the sample before failure because of their low failure strains. Furthermore, oscillations phenomena disturb load measurement. In this paper, we present adequate methods in order to carry out homogeneous testing and to simplify data interpretation. Two experimental configurations are developed. We use firstly the anvil as a load cell for low impact velocity and secondly the wave propagation in the anvil for medium impact velocity. Finally, in order to investigate experimentally the strain uniformity, axial strain measurements are quantified by image processing. Results are compared with experimental ones obtained on a crossbow system.

  18. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    Science.gov (United States)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  19. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    Science.gov (United States)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  20. Estimation of brittle fracture behavior of SA508 carbon steel by considering temperature dependence of damage model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Beom; Jeong, Jae Uk; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of); Chang, Yoon Suk [Kyunghee Univ., Seoul (Korea, Republic of); Kim, Min Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures -60 .deg. C, -80 .deg. C, and -100 .deg. C were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR 6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

  1. Serotonin syndrome

    Science.gov (United States)

    Hyperserotonemia; Serotonergic syndrome; Serotonin toxicity; SSRI - serotonin syndrome; MAO - serotonin syndrome ... brain area. For example, you can develop this syndrome if you take migraine medicines called triptans together ...

  2. Investigation of the influence of riboflavin-UV induced crosslinking on the cornea in the experiment

    Directory of Open Access Journals (Sweden)

    S. I. Anisimov

    2014-07-01

    Full Text Available Purpose: Morphological examination of the efficiency of the influence of various doses of riboflavin-UV induced crosslinking on the state of the corneal stroma in experimental animals.Methods: In the work were used rabbits males breed Chinchilla mass of 1.5-2.0 kg. the experiment was conducted on 20 eyes of 10 animals, which performed the routine crosslinking. Experimental animals, depending on the power UV-laser irradiation, were divided into 4 groups: the animals of the 1 group with the minimum intensity of radiation (30 minutes, 0.27 J, animals 2 group with medium intensity of radiation (15 minutes, 0.34 J, animals 3 groups with high intensity of radiation (30 minutes, 0.34 J, the control group 4 (without UV-radiation. Date of dynamic observation of the experimental animals was 5 days, after which the animals were taken out of the experiment. Morphological investigations were carried out by means of light and electron microscopy.Results: In groups of experimental animals with the impact of riboflavin UV-radiation in the stroma of the cornea were found the appearance of the areas of cross-stitched collagen fibers and fibrils. In the zone of the crosslinking were found activated keratoblasts.Near the membranes of these cells the contents of the vacuoles are released and filaments finish building of the collagen fibers. the epithelium of the corneas of all experimental animals recovered fully, with no morphological signs of endothelial damage has been found. Electron-microscopic investigation of stroma of corneas of the experimental animals of the control group after the experiment showed the presence of keratocytes in an inactive form and collagen fibers of stroma, packed in the form of plates or beams with a characteristic orientation.Conclusion: Studies have shown that UV-irradiation of the cornea leads to the appearance of linking between the fibers of collagen and actively synthesizing cells in the stroma of the cornea, which points to a

  3. Investigation of the influence of riboflavin-UV induced crosslinking on the cornea in the experiment

    Directory of Open Access Journals (Sweden)

    S. I. Anisimov

    2012-01-01

    Full Text Available Purpose: Morphological examination of the efficiency of the influence of various doses of riboflavin-UV induced crosslinking on the state of the corneal stroma in experimental animals.Methods: In the work were used rabbits males breed Chinchilla mass of 1.5-2.0 kg. the experiment was conducted on 20 eyes of 10 animals, which performed the routine crosslinking. Experimental animals, depending on the power UV-laser irradiation, were divided into 4 groups: the animals of the 1 group with the minimum intensity of radiation (30 minutes, 0.27 J, animals 2 group with medium intensity of radiation (15 minutes, 0.34 J, animals 3 groups with high intensity of radiation (30 minutes, 0.34 J, the control group 4 (without UV-radiation. Date of dynamic observation of the experimental animals was 5 days, after which the animals were taken out of the experiment. Morphological investigations were carried out by means of light and electron microscopy.Results: In groups of experimental animals with the impact of riboflavin UV-radiation in the stroma of the cornea were found the appearance of the areas of cross-stitched collagen fibers and fibrils. In the zone of the crosslinking were found activated keratoblasts.Near the membranes of these cells the contents of the vacuoles are released and filaments finish building of the collagen fibers. the epithelium of the corneas of all experimental animals recovered fully, with no morphological signs of endothelial damage has been found. Electron-microscopic investigation of stroma of corneas of the experimental animals of the control group after the experiment showed the presence of keratocytes in an inactive form and collagen fibers of stroma, packed in the form of plates or beams with a characteristic orientation.Conclusion: Studies have shown that UV-irradiation of the cornea leads to the appearance of linking between the fibers of collagen and actively synthesizing cells in the stroma of the cornea, which points to a

  4. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    2011-04-01

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  5. Characterizing the effects of VPA, VC and RCCS on rabbit keratocytes onto decellularized bovine cornea.

    Directory of Open Access Journals (Sweden)

    Ying Dai

    Full Text Available To investigate the morphological and growth characteristics of rabbit keratocytes when cultured on decellularized cornea under simulate microgravity (SMG rotary cell culture system (RCCS and static culture or in plastic culture supplemented with small molecules of valproic acid (VPA and vitamin C (VC. Bovine corneas were firstly decellularized with Triton X-100 and NH(4OH and through short-term freezing process. Then cell count kit-8 (CCK-8 and flow cytometry were used to test the effects of VPA and VC on the proliferation, cell cycle and apoptosis of rabbit keratocytes. Hematoxylin-eosin (H&E staining and scanning electron microscopy (SEM imaging showed that cells were eliminated in the decellularized bovine corneas. The proliferation of cultured keratocytes was promoted by VPA and VC in the cell proliferation assay. VPA and VC moderately decreased the number of apoptotic cells and obviously promoted cell-cycle entrance of keratocytes. Rabbit keratocytes in plastic displayed spindle shape and rare interconnected with or without VPA and VC. Cells revealed dendritic morphology and reticular cellular connections when cultured on the carriers of decellularized corneas supplemented with VPA and VC even in the presence of 10% fetal bovine serum (FBS. When cultured in RCCS supplemented with VPA, VC and 10% FBS, keratocytes displayed round shape with many prominences and were more prone to grow into the pores of carriers with aggregation. Reverse transcription-polymerase chain reaction (RT-PCR analysis proved that the keratocytes cultured on decellularized bovine cornea under SMG with VPA and VC expressed keratocan and lumican. Keratocytes cultured on plastic expressed lumican but not keratocan. Immunofluorescence identification revealed that cells in all groups were positively immunostained for vimentin. Keratocytes on decellularized bovine cornea under SMG or in static culture were positively immunostained for keratocan and lumican. Thus, we

  6. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.

    Directory of Open Access Journals (Sweden)

    Jérôme Delroisse

    Full Text Available Next generation sequencing (NGS technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric and mammal (ciliary classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic

  7. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Gheorghe Hutiu

    2018-02-01

    Full Text Available Some forensic in situ investigations, such as those needed in transportation (for aviation, maritime, road, or rail accidents or for parts working under harsh conditions (e.g., pipes or turbines would benefit from a method/technique that distinguishes ductile from brittle fractures of metals—as material defects are one of the potential causes of incidents. Nowadays, the gold standard in material studies is represented by scanning electron microscopy (SEM. However, SEM instruments are large, expensive, time-consuming, and lab-based; hence, in situ measurements are impossible. To tackle these issues, we propose as an alternative, lower-cost, sufficiently high-resolution technique, Optical Coherence Tomography (OCT to perform fracture analysis by obtaining the topography of metallic surfaces. Several metals have been considered in this study: low soft carbon steels, lamellar graphite cast iron, an antifriction alloy, high-quality rolled steel, stainless steel, and ductile cast iron. An in-house developed Swept Source (SS OCT system, Master-Slave (MS enhanced is used, and height profiles of the samples’ surfaces were generated. Two configurations were used: one where the dimension of the voxel was 1000 μm3 and a second one of 160 μm3—with a 10 μm and a 4 μm transversal resolution, respectively. These height profiles allowed for concluding that the carbon steel samples were subject to ductile fracture, while the cast iron and antifriction alloy samples were subjected to brittle fracture. The validation of OCT images has been made with SEM images obtained with a 4 nm resolution. Although the OCT images are of a much lower resolution than the SEM ones, we demonstrate that they are sufficiently good to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures—especially with the higher resolution MS/SS-OCT system. The investigation is finally extended to the most useful case of

  8. Capsules with evolving brittleness to resist the preparation of self-healing concrete

    Directory of Open Access Journals (Sweden)

    Gruyaert, E.

    2016-09-01

    Full Text Available Capsules for self-healing concrete have to possess multifunctional properties and it would be an enormous advantage in the valorization process when they could also be mixed in. Therefore, we aimed to develop capsules with evolving brittleness. Capsules with high initial flexibility were prepared by adding a plasticizer to an ethyl cellulose matrix. During hardening of the concrete, the plasticizing agent should leach out to the moist environment yielding more brittle capsules which break upon crack appearance. The tested capsules could easily be mixed in during concrete production. However, incompatibility issues between the capsule wall and the inner polymeric healing agent appeared. Moreover, the capsules became insufficiently brittle and the bond strength to the cementitious matrix was too weak. Consequently, multilayer capsules were tested. These capsules had a high impact resistance to endure concrete mixing and were able to break upon crack formation.Las cápsulas para la auto-reparación del hormigón tienen que poseer propiedades multifuncionales. Una enorme ventaja en el proceso para su valorización se obtendría si aquellas pudieran resistir con éxito el mezclado. Por lo tanto, nos propusimos desarrollar cápsulas cuya fragilidad evoluciona. Cápsulas con una alta flexibilidad inicial se prepararon mediante la adición de un plastificante a una matriz de etil celulosa. Durante el endurecimiento del hormigón, el agente plastificante debe filtrarse hacia el medio ambiente húmedo produciendo cápsulas más frágiles que se rompen con el surgimiento de fisuras. Las cápsulas pudieron ser fácilmente mezcladas durante la producción de hormigón. Sin embargo, aparecieron problemas de incompatibilidad entre la pared de la cápsula y el agente de curación polimérico interior. Por otra parte, las cápsulas se comportaron insuficientemente frágiles y con una baja adherencia hacia la matriz cementicia. En consecuencia, se probaron las c

  9. Optics of the human cornea influence the accuracy of stereo eye-tracking methods: a simulation study

    National Research Council Canada - National Science Library

    Barsingerhorn, A.D; Boonstra, F.N; Goossens, H.H.L.M

    2017-01-01

    .... However, the human cornea is slightly aspheric and has two refractive surfaces. Here we used ray-tracing and the Navarro eye-model to study how these optical properties affect the accuracy of different stereo eye-tracking methods...

  10. Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source.

    Science.gov (United States)

    Segawa, Hiroki; Kaji, Yuichi; Leproux, Philippe; Couderc, Vincent; Ozawa, Takeaki; Oshika, Tetsuro; Kano, Hideaki

    2015-09-01

    We applied our multimodal nonlinear spectral imaging microscope to the measurement of rat cornea. We successfully obtained multiple nonlinear signals of coherent anti-Stokes Raman scattering (CARS), third-order sum frequency generation (TSFG), and second harmonic generation (SHG). Depending on the nonlinear optical processes, the cornea tissue was visualized with different image contrast mechanism simultaneously. Due to white-light laser excitation, multiplex CARS and TSFG spectra were obtained. Combined multimodal and spectral analysis clearly elucidated the layered structure of rat cornea with molecular structural information. This study indicates that our multimodal nonlinear spectral microscope is a promising bioimaging method for tissue study. Multimodal nonlinear spectral images of rat cornea at corneal epithelium and corneal stroma in the in-plane (XY) direction. With use of the combinational analysis of different nonlinear optical processes, detailed molecular structural information is available without staining or labelling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A dimensional analysis approach to fatigue in quasi-brittle materials

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2009-10-01

    Full Text Available In this study, a generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth is proposed in order to highlight and explain the deviations from the classical power-law equations used to characterize the fatigue behaviour of quasi-brittle materials. According to this theoretical approach, the microstructural-size (related to the volumetric content of fibres in fibre-reinforced concrete, the crack-size, and the size-scale effects on the Paris’ law and the Wöhler equation are presented within a unified mathematical framework. Relevant experimental results taken from the literature are used to confirm the theoretical trends and to determine the values of the incomplete self-similarity exponents. All these information are expected to be useful for the design of experiments, since the role of the different dimensionless numbers governing the phenomenon of fatigue is herein elucidated.

  12. Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids

    Energy Technology Data Exchange (ETDEWEB)

    Falk, M.L. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    1999-09-01

    Molecular-dynamics simulations of fracture in systems akin to metallic glasses are observed to undergo embrittlement due to a small change in interatomic potential. This change in fracture toughness, however, is not accompanied by a corresponding change in flow stress. Theories of brittle fracture proposed by Freund and Hutchinson indicate that strain rate sensitivity is the controlling phys