WorldWideScience

Sample records for brittle cornea syndrome

  1. Brittle Cornea Syndrome Associated with a Missense Mutation in the Zinc-Finger 469 Gene

    DEFF Research Database (Denmark)

    Christensen, Anne Elisabeth; Knappskog, Per Morten; Midtbø, Marit

    2010-01-01

    Purpose: To investigate the diverse clinical manifestations, identify the causative mutation and explain the association with red hair in a family with brittle cornea syndrome (BCS). Methods: Eight family members in three generations underwent ophthalmic, dental, and general medical examination, ...

  2. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

    NARCIS (Netherlands)

    Wright, Emma M. M. Burkitt; Spencer, Helen L.; Daly, Sarah B.; Manson, Forbes D. C.; Zeef, Leo A. H.; Urquhart, Jill; Zoppi, Nicoletta; Bonshek, Richard; Tosounidis, Ioannis; Mohan, Meyyammai; Madden, Colm; Dodds, Annabel; Chandler, Kate E.; Banka, Siddharth; Au, Leon; Clayton-Smith, Jill; Khan, Naz; Biesecker, Leslie G.; Wilson, Meredith; Rohrbach, Marianne; Colombi, Marina; Giunta, Cecilia; Black, Graeme C. M.

    2011-01-01

    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resu

  3. Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness.

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2010-05-01

    Full Text Available Central corneal thickness (CCT, one of the most highly heritable human traits (h(2 typically>0.9, is important for the diagnosis of glaucoma and a potential risk factor for glaucoma susceptibility. We conducted genome-wide association studies in five cohorts from Australia and the United Kingdom (total N = 5058. Three cohorts were based on individually genotyped twin collections, with the remaining two cohorts genotyped on pooled samples from singletons with extreme trait values. The pooled sample findings were validated by individual genotyping the pooled samples together with additional samples also within extreme quantiles. We describe methods for efficient combined analysis of the results from these different study designs. We have identified and replicated quantitative trait loci on chromosomes 13 and 16 for association with CCT. The locus on chromosome 13 (nearest gene FOXO1 had an overall meta-analysis p-value for all the individually genotyped samples of 4.6x10(-10. The locus on chromosome 16 was associated with CCT with p = 8.95x10(-11. The nearest gene to the associated chromosome 16 SNPs was ZNF469, a locus recently implicated in Brittle Cornea Syndrome (BCS, a very rare disorder characterized by abnormal thin corneas. Our findings suggest that in addition to rare variants in ZNF469 underlying CCT variation in BCS patients, more common variants near this gene may contribute to CCT variation in the general population.

  4. Syndromes with congenital brittle bones

    Directory of Open Access Journals (Sweden)

    Plotkin Horacio

    2004-08-01

    Full Text Available Abstract Background There is no clear definition of osteogenesis imperfecta (OI. The most widely used classification of OI divides the disease in four types, although it has been suggested that there may be at least 12 forms of OI. These forms have been named with numbers, eponyms or descriptive names. Some of these syndromes can actually be considered congenital forms of brittle bones resembling OI (SROI. Discussion A review of different syndromes with congenital brittle bones published in the literature is presented. Syndromes are classified in "OI" (those secondary to mutations in the type I pro-collagen genes, and "syndromes resembling OI" (those secondary to mutations other that the type I pro-collagen genes, identified or not. A definition for OI is proposed as a syndrome of congenital brittle bones secondary to mutations in the genes codifying for pro-collagen genes (COL1A1 and COL1A2. Summary A debate about the definition of OI and a possible clinical and prognostic classification are warranted.

  5. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus.

    Science.gov (United States)

    Lechner, Judith; Porter, Louise F; Rice, Aine; Vitart, Veronique; Armstrong, David J; Schorderet, Daniel F; Munier, Francis L; Wright, Alan F; Inglehearn, Chris F; Black, Graeme C; Simpson, David A; Manson, Forbes; Willoughby, Colin E

    2014-10-15

    Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date.

  6. Cornea Transplant

    Science.gov (United States)

    ... died from an unknown cause. During your cornea transplant On the day of your cornea transplant, you' ... when you see your eye doctor. Procedures to transplant a portion of the cornea With some types ...

  7. Cloudy cornea

    Science.gov (United States)

    ... of lid tissue Computer mapping of the cornea (corneal topography) Schirmer's test for eye dryness Special photographs to measure the cells of the cornea Standard eye exam Ultrasound to measure corneal thickness ...

  8. A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome

    DEFF Research Database (Denmark)

    Porter, Louise F; Galli, Giorgio G; Williamson, Sally;

    2015-01-01

    and development. Q-PCR, and ChIP-qPCR confirm upregulation of critical mediators of ECM stability in vascular structures (COL13A1, COL15A1, NTN1, CDH5) in patient fibroblasts. We identify H3K9 di-methylation at these PRDM5 target genes in fibroblasts, and demonstrate that the BCS2 mutation p.Arg83Cys diminishes......, and dysregulated H3K9 di-methylation in skin fibroblasts of three patients (p.Arg590*, p.Glu134* and Δ exons 9-14) by western blotting. These findings suggest that defective interaction of PRDM5 with repressive complexes, and dysregulation of H3K9 di-methylation, play a role in PRDM5-associated disease....

  9. [Cosmetology and brittle nails].

    Science.gov (United States)

    Abimelec, P

    2000-12-15

    The knowledge of manicure techniques and nail cosmetics compositions are a prerequisite to the understanding of their potential side effects. The brittle nail syndrome is a common problem that roughly affect 20% of women. We will review the etiologic hypothesis, describe the various presentations, and suggest a treatment for this perplexing problem.

  10. The cornea in measles

    NARCIS (Netherlands)

    N.W.H.M. Dekkers (Nico)

    1981-01-01

    textabstractThe involvement of the cornea in the acute stage of measles is the subject of the present study. The best study on the measles-keratitis now available is still the one by Trantas in 1903. It seems wo.:thwhile therefore to study this self-limiting keratitis with the investigative tools no

  11. Fracture of brittle solids

    CERN Document Server

    Lawn, Brian

    1993-01-01

    This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent-ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials--to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the at...

  12. [The cornea: stasis and dynamics].

    Science.gov (United States)

    Nishida, Teruo

    2008-03-01

    The physiological roles of the cornea are to conduct external light into the eye, focus it, together with the lens, onto the retina, and to provide rigidity to the entire eyeball. Good vision thus requires maintenance of the transparency and proper refractive shape of the cornea. Although the cornea appears to be a relatively static structure, dynamic processes operate within and around the cornea at the tissue, cell, and molecular level. In this article, I review the mechanisms responsible for maintenance of corneal homeostasis as well as the development of new modes of treatment for various corneal diseases. I. The static cornea: structure and physiological functions. The cornea is derived from ectoderm, so that it can be considered as transparent skin. It is devoid of blood vessels and manifests the highest sensitivity in the entire body. The surface of the cornea is covered by tear fluid, which serves both as a lubricant and as a conduit for regulatory molecules. The cornea is also supplied with oxygen and various nutrients by the aqueous humor and a loop vascular system in addition to tear fluid. The cornea interacts with its surrounding tissues directly as well as indirectly through tear fluid or aqueous humor, with such interactions playing an important role in the regulation of corneal structure and functions. The resident cells of the cornea-epithelial cells, fibroblasts (keratocytes), and endothelial cells--also engage in mutual interactions through network systems. These interactions as well as those with infiltrated cells and regulation by nerves contribute to the maintenance of the normal structure and functions of the cornea as well as to the repair of corneal injuries. II. The dynamic cornea: maintenance of structure and functions by network systems. Developments in laser and computer technology have allowed observation of the cells and collagen fibers within the cornea. Furthermore, progress in cell and molecular biology has allowed characterization

  13. Spheroidal Degeneration of the Cornea

    Directory of Open Access Journals (Sweden)

    Erdem Dinç

    2011-08-01

    Full Text Available A thirty-one-year-old male patient presented with bilateral epiphora and stinging sensation in the cornea. Detailed history revealed that a bilateral corneal scraping had been made regarding the initial diagnosis of fungal keratitis. His bestcorrected visual acuities were 20/20 and 20/30 in right and left eyes, respectively. Biomicroscopy showed bilateral amber colored spherules in the anterior stroma of the central cornea. The diagnosis of spheroidal corneal degeneration was established and symptomatic therapy with artificial tear drops was prescribed. Ultraviolet light is widely accepted to be the main etiological factor in the pathogenesis of spheroidal degeneration. Because of difficulties in the early stages of the diagnostic process of the disease, incorrect diagnoses can be made with inappropriate interventions. (Turk J Ophthalmol 2011; 41: 264-6

  14. Bee sting of the cornea.

    Science.gov (United States)

    Singh, G

    1984-04-01

    Irreversible heterochromia-iridis, internal ophthalmoplegia, and punctate subcapsular lenticular opacities developed in a 9-year-old girl after she received a bee sting in her right cornea. These complications persisted even after an 11-month follow-up period. To the author's knowledge, this presentation is the first of its nature. The pathogenesis of these changes is discussed and the literature is reviewed.

  15. Cornea and ocular surface treatment.

    Science.gov (United States)

    De Miguel, Maria P; Alio, Jorge L; Arnalich-Montiel, Francisco; Fuentes-Julian, Sherezade; de Benito-Llopis, Laura; Amparo, Francisco; Bataille, Laurent

    2010-06-01

    In addition to being a protective shield, the cornea represents two thirds of the eye's refractive power. Corneal pathology can affect one or all of the corneal layers, producing corneal opacity. Although full corneal thickness keratoplasty has been the standard procedure, the ideal strategy would be to replace only the damaged layer. Current difficulties in corneal transplantation, mainly immune rejection and shortage of organ supply, place more emphasis on the development of artificial corneas. Bioengineered corneas range from prosthetic devices that solely address the replacement of the corneal function, to tissue-engineered hydrogels that allow regeneration of the tissue. Recently, major advances in the biology of corneal stem cells have been achieved. However, the therapeutic use of these stem cell types has the disadvantage of needing an intact stem cell compartment, which is usually damaged. In addition, long ex vivo culture is needed to generate enough cell numbers for transplantation. In the near future, combination of advanced biomaterials with cells from abundant outer sources will allow advances in the field. For the former, magnetically aligned collagen is one of the most promising ones. For the latter, different cell types will be optimal: 1) for epithelial replacement: oral mucosal epithelium, ear epidermis, or bone marrow- mesenchymal stem cells, 2) for stromal regeneration: adipose-derived stem cells and 3) for endothelial replacement, the possibility of in vitro directed differentiation of adipose-derived stem cells towards endothelial cells provides an exciting new approach.

  16. Brittle diabetes: Psychopathology and personality.

    Science.gov (United States)

    Pelizza, Lorenzo; Pupo, Simona

    The term "brittle" is used to describe an uncommon subgroup of patients with type I diabetes whose lives are disrupted by severe glycaemic instability with repeated and prolonged hospitalization. Psychosocial problems are the major perceived underlying causes of brittle diabetes. Aim of this study is a systematic psychopathological and personological assessment of patients with brittle diabetes in comparison with subjects without brittle diabetes, using specific parameters of general psychopathology and personality disorders following the multi-axial format of the current DSM-IV-TR (Diagnostic and Statistical manual of Mental Disorders - IV Edition - Text Revised) diagnostic criteria for mental disorders. Patients comprised 42 subjects with brittle diabetes and a case-control group of 42 subjects with stable diabetes, matched for age, gender, years of education, and diabetes duration. General psychopathology and the DSM-IV-TR personality disorders were assessed using the Symptom Checklist-90-Revised (SCL-90-R) and the Structured Clinical Interview for axis II personality Disorders (SCID-II). The comparison for SCL-90-R parameters revealed no differences in all primary symptom dimensions and in the three global distress indices between the two groups. However, patients with brittle diabetes showed higher percentages in borderline, histrionic, and narcissistic personality disorder. In this study, patients with brittle diabetes show no differences in terms of global severity of psychopathological distress and specific symptoms of axis I DSM-IV-TR psychiatric diagnoses in comparison with subjects without brittle diabetes. Differently, individuals with brittle diabetes are more frequently affected by specific DSM-IV-TR cluster B personality disorders.

  17. Anatomy and physiology of the cornea.

    Science.gov (United States)

    DelMonte, Derek W; Kim, Terry

    2011-03-01

    The importance of the cornea to the ocular structure and visual system is often overlooked because of the cornea's unassuming transparent nature. The cornea lacks the neurobiological sophistication of the retina and the dynamic movement of the lens; yet, without its clarity, the eye would not be able to perform its necessary functions. The complexity of structure and function necessary to maintain such elegant simplicity is the wonder that draws us to one of the most important components of our visual system.

  18. Lymphangiogenesis Occurring in Transplanted Corneas

    Institute of Scientific and Technical Information of China (English)

    LING Shiqi; XIAO Qing; HU Yanhua

    2006-01-01

    To study corneal lymphangiogenesis after corneal transplantation, corneal allogenic transplantation models were established in rats. 8 female Wister rats were used as donors, and 16 Sprague Dawley (SD) rats were used as recipients and 2 SD served as controls. Corneal lymphangiogenesis and hemangiogenesis was examined by electron microscopy 1 and 2 weeks after corneal penetrating transplantation, and the expression of lymphatic vessel endothelial receptor (LYVE-1) was examined 1, 3, 7, 14 days after the transplantation respectively. In addition, 19 allograft failed human corneas were examined by 5'-nase-alkaline phosphatase (5'-NA-ALP) doubleenzyme-histochemistry staining to detect corneal lymphangiogenesis and hemangiogenesis. By immunohistochemistry for LYVE-1, it was found that blown lymphatics were localized in the stroma 3days after the corneal transplantation. With electron microscopy, new lymphatic vessels and blood vessels were found 1 and 2 weeks after the corneal transplantation. By 5'-NA-ALP enzyme-histochemistry, corneal hemangiogenesis was found in all allograft failed huma n corneas and 5 of 19(26.3%) cases had developed corneal lymphangiogenesis. It is concluded that corneal lymphangiogenesis is present after corneal transplantation, which may play an important role in allograft rejection.

  19. Construction of Tissue Engineering Artificial Cornea with Skin Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yan JIN

    2005-01-01

    @@ 1 Introduction The clinical need for an alternative to donor corneal tissue has encouraged much interests in recent years. An artificial cornea must fulfill the functions of the cornea it replaces. More recently, the idea of a bio-engineered cornea has risen. Corneal equivalents have been reconstructed by tissue engineering method. Aim of this study is to construct an artificial rabbit cornea by employing tissue engineering method and to determine if skin stem cells have a role in tissue engineered cornea construction.

  20. Protection of brittle film against cracking

    Science.gov (United States)

    Musil, J.; Sklenka, J.; Čerstvý, R.

    2016-05-01

    This article reports on the protection of the brittle Zrsbnd Sisbnd O film against cracking in bending by the highly elastic top film (over-layer). In experiments the Zrsbnd Sisbnd O films with different elemental composition and structure were used. Both the brittle and highly elastic films were prepared by magnetron sputtering using a dual magnetron. The brittle film easily cracks in bending. On the other hand, the highly elastic film exhibits enhanced resistance to cracking in bending. Main characteristic parameters of both the brittle and highly elastic films are given. Special attention is devoted to the effect of the structure (crystalline, amorphous) of both the brittle and highly elastic top film on the resistance of cracking of the brittle film. It was found that (1) both the X-ray amorphous and crystalline brittle films easily crack in bending, (2) the highly elastic film can have either X-ray amorphous or crystalline structure and (3) both the X-ray amorphous and crystalline, highly elastic top films perfectly protect the brittle films against cracking in bending. The structure, mechanical properties and optical transparency of the brittle and highly elastic sputtered Zrsbnd Sisbnd O films are described in detail. At the end of this article, the principle of the low-temperature formation of the highly elastic films is also explained.

  1. Designing a perfect cornea: computational aspects

    Science.gov (United States)

    Rubinstein, Jacob; Wolansky, Gershon

    2002-12-01

    We analyze an algorithm for the design of a perfect cornea that exactly focuses a preselected object or a preselected wave front on the retina. The algorithm can be used, for example, in refractive surgery. We consider the sensitivity of the algorithm to various errors, including errors in the measurements of the aberrations, the original corneal topography and the ablation process.

  2. Construction of Tissue Engineering Artificial Cornea with Skin Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionThe clinical need for an alternative to donor corneal tissue has encouraged much interests in recent years. An artificial cornea must fulfill the functions of the cornea it replaces. More recently, the idea of a bio-engineered cornea has risen. Corneal equivalents have been reconstructed by tissue engineering method. Aim of this study is to construct an artificial rabbit cornea by employing tissue engineering method and to determine if skin stem cells have a role in tissue engineered cornea co...

  3. Fracturing and brittleness index analyses of shales

    Science.gov (United States)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable

  4. Awareness of Cornea Donation of Registered Tissue Donors in Nanjing

    Institute of Scientific and Technical Information of China (English)

    Ting Chu; Lin-nong Wang; Hao Yu; Ru-yang Zhang

    2013-01-01

    Objective To evaluate the current cornea donation awareness of tissue donors in the city of Nanjing,China. Methods Altogether 2000 registered tissue donors in the Red Cross Eye Bank of Nanjing by the end of 2010 and 2000 control residents of Nanjing in February to June 2011 were randomly selected to par-ticipate in our field questionnaire survey. The questionnaire consisted of questions regarding the understand-ing of cornea donation,the attitude toward cornea donation,and attitude toward legislation and free dona-tion. The awareness of cornea donation between the registered tissue donors and residents was compared. Related factors of the willingness to donate corneas and to become a tissue donor were evaluated with uni-variate and multiple logistic regression analysis. Results A total of 1867 (response rate: 93.4%) tissue donors and 1796 (response rate: 89.8%; ef-fective questionnaires: 1697) residents participated in this survey. For the questions about the knowledge of cornea donation,90.3% tissue donors (residents: 78.9%) knew that donated corneas could be used for transplantations; 71.2% tissue donors (residents: 47.6%) knew that the appearance would not be destroyed after cornea donation; 70.7% tissue donors (residents: 20.0%) knew the formalities to become a cornea do-nor. For attitude toward cornea donation,82.2% tissue donors (residents: 45.1%) were willing to donate corneas or eyeballs after death; 84.0% tissue donors (residents: 30.2%) had discussed with their families about donation; 85.1% tissue donors (residents: 24.8%) supported their families' or friends' cornea donation. For attitude toward legislation and free donation,88.3% tissue donors (residents: 61.3%) approved of legis-lation to regular cornea donation; 72.2% tissue donors (residents: 38.8%) thought that cornea or organ do-nation should be gratis. The difference between two groups was significant (P<0.001). However,some tissue donors did not know cornea donation well,some even opposed the

  5. Investigation of Friction-induced Damage to the Pig Cornea

    NARCIS (Netherlands)

    da Cruz Barros, Raquel; Van Kooten, Theo G.; Veeregowda, Deepak Halenahally

    2015-01-01

    Mechanical friction causes damage to the cornea. A friction measurement device with minimal intervention with the pig cornea tear film revealed a low friction coefficient of 0.011 in glycerine solution. Glycerine molecules presumably bind to water, mucins, and epithelial cells and therewith improve

  6. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  7. Numerical experiments in revisited brittle fracture

    DEFF Research Database (Denmark)

    Bourdin, Blaise; Francfort, Gilles A; Marigo, Jean-Jacques

    2000-01-01

    The numerical implementation of the model of brittle fracture developed in~ Francfort and Marigo (1998) is presented. Various computational methods based on variational approximations of the original functional are proposed. They are tested on several antiplanar and planar examples that are beyon...... the reach of the classical computational tools of fracture mechanics.......The numerical implementation of the model of brittle fracture developed in~ Francfort and Marigo (1998) is presented. Various computational methods based on variational approximations of the original functional are proposed. They are tested on several antiplanar and planar examples that are beyond...

  8. Estimation of the surface tension of ocular cornea

    Science.gov (United States)

    Zhang, Xueyong; Ma, Jianguo; Lu, Rongsheng; Xia, Ruixue

    2008-12-01

    Considering the potential clinical importance, the surface tension of ocular cornea under the action of normal physiological intraocular pressure is estimated, and a novel technique and a simple mechanical model for determining the tension are also presented in this paper. An instrument embodying mainly a CCD camera, an optical staff gauge and a manometer was developed primarily to measure both the surface point displacement and intraocular pressure of the cornea. A simple theoretical model was used to characterize the tensions of the ocular corneas under the action of the intraocular pressure. Due to the difficulty in obtaining the human cornea, laboratory experiments were carried out on porcine cornea specimens. The thickness of the specimens was accurately measured by optical coherence tomography. The matrix and collagen properties within the corneal tissue were manifested in the experiment. Experimental results on porcine corneas showed that the present technique is applicable to estimate the surface tension. In the normal physiological intraocular pressure range, both meridian and circumference tensions of the porcine corneas along the radial coordinate distribute are not uniform.

  9. Benchmarking numerical models of brittle thrust wedges

    NARCIS (Netherlands)

    Buiter, Susanne J H; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-01-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the s

  10. Collagen cross-linking in thin corneas

    Directory of Open Access Journals (Sweden)

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  11. Measurement of the anisotropic thermal conductivity of the porcine cornea.

    Science.gov (United States)

    Barton, Michael D; Trembly, B Stuart

    2013-10-01

    Accurate thermal models for the cornea of the eye support the development of thermal techniques for reshaping the cornea and other scientific purposes. Heat transfer in the cornea must be quantified accurately so that a thermal treatment does not destroy the endothelial layer, which cannot regenerate, and yet is responsible for maintaining corneal transparency. We developed a custom apparatus to measure the thermal conductivity of ex vivo porcine corneas perpendicular to the surface and applied a commercial apparatus to measure thermal conductivity parallel to the surface. We found that corneal thermal conductivity is 14% anisotropic at the normal state of corneal hydration. Small numbers of ex vivo feline and human corneas had a thermal conductivity perpendicular to the surface that was indistinguishable from the porcine corneas. Aqueous humor from ex vivo porcine, feline, and human eyes had a thermal conductivity nearly equal to that of water. Including the anisotropy of corneal thermal conductivity will improve the predictive power of thermal models of the eye.

  12. Aspects of brittle failure assessment for RPV

    Energy Technology Data Exchange (ETDEWEB)

    Zecha, H.; Hermann, T.; Hienstorfer, W. [TUeV SUeD Energietechnik GmbH Baden-Wuerttemberg, Filderstadt (Germany); Schuler, X. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2009-07-01

    This paper describes the process of pressurized thermal shock analysis (PTS) and brittle failure assessment for the reactor pressure vessel (RPV) of the nuclear power plants NECKAR I/II. The thermo-hydraulic part of the assessment provides the boundary conditions for the fracture mechanics analysis. In addition to the one dimensional thermo-hydraulic simulations CFD, analyses were carried out for selected transients. An extensive evaluation of material properties is necessary to provide the input data for a reliable fracture mechanics assessment. For the core weld and the flange weld it has shown that brittle crack initiation can be precluded for all considered load cases. For the cold and hot leg nozzle detailed linear-elastic and elasticplastic Finite Element Analyses (FEA) are performed to verify the integrity of the RPV. (orig.)

  13. Towards an Approach to Overcome Software Brittleness

    Energy Technology Data Exchange (ETDEWEB)

    OSBOURN,GORDON C.

    1999-11-01

    Development of bug-free, high-surety, complex software is quite difficult using current tools. The brittle nature of the programming constructs in popular languages such as C/C++ is one root cause. Brittle commands force the designer to rigidly specify the minutiae of tasks, e.g. using ''for(index=0;index>total;index++)'', rather than specifying the goals or intent of the tasks, e.g. ''ensure that all relevant data elements have been examined''. Specification of task minutiae makes code hard to comprehend, which in turn encourages design errors/limitations and makes future modifications quite difficult. This report describes an LDRD project to seed the development of a surety computer language, for stand-alone computing environments, to be implemented using the swarm intelligence of autonomous agents. The long term vision of this project was to develop a language with the following surety capabilities: (1) Reliability -- Autonomous agents can appropriate y decide when to act and when a task is complete, provide a natural means for avoiding brittle task specifications, and can overcome many hardware glitches. (2) Safety, security -- Watchdog safety and security agents can monitor other agents to prevent unauthorized or dangerous actions. (3) An immune system -- The small chunks of agent code can have an encryption scheme to enable detection and elimination of unauthorized and corrupted agents. This report describes the progress achieved during this small 9 month project and describes lessons learned.

  14. Fabrication of brittle materials -- current status

    Energy Technology Data Exchange (ETDEWEB)

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  15. Portable light transmission measuring system for preserved corneas

    Science.gov (United States)

    Ventura, Liliane; de Jesus, Gabriel Torres; de Oliveira, Gunter Camilo Dablas; Sousa, Sidney JF

    2005-01-01

    Background The authors have developed a small portable device for the objective measurement of the transparency of corneas stored in preservative medium, for use by eye banks in evaluation prior to transplantation. Methods The optical system consists of a white light, lenses, and pinholes that collimate the white light beams and illuminate the cornea in its preservative medium, and an optical filter (400–700 nm) that selects the range of the wavelength of interest. A sensor detects the light that passes through the cornea, and the average corneal transparency is displayed. In order to obtain only the tissue transparency, an electronic circuit was built to detect a baseline input of the preservative medium prior to the measurement of corneal transparency. The operation of the system involves three steps: adjusting the "0 %" transmittance of the instrument, determining the "100 %" transmittance of the system, and finally measuring the transparency of the preserved cornea inside the storage medium. Results Fifty selected corneas were evaluated. Each cornea was submitted to three evaluation methods: subjective classification of transparency through a slit lamp, quantification of the transmittance of light using a corneal spectrophotometer previously developed, and measurement of transparency with the portable device. Conclusion By comparing the three methods and using the expertise of eye bank trained personnel, a table for quantifying corneal transparency with the new device has been developed. The correlation factor between the corneal spectrophotometer and the new device is 0,99813, leading to a system that is able to standardize transparency measurements of preserved corneas, which is currently done subjectively. PMID:16372912

  16. Dating brittle tectonic movements with cleft monazite

    DEFF Research Database (Denmark)

    Berger, Alfons; Gnos, E.; Janots, E.;

    2013-01-01

    . Deformation events of the area have been subdivided into three steps: (D1) main thrusting including formation of a new schistosity; (D2) dextral transpression; and (D3) local crenulation including a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate...... phases. This allows the high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 Ma and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data...

  17. Metallurgical viewpoints on the brittleness of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G.

    1960-02-15

    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed.

  18. Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Regnet, J. B.; Dimanov, A.; Guéguen, Y.

    2016-07-01

    Inelastic deformation can either occur with dilatancy or compaction, implying differences in porosity changes, failure and petrophysical properties. In this study, the roles of water as a pore fluid, and of temperature, on the deformation and failure of a micritic limestone (white Tavel limestone, porosity 14.7 per cent) were investigated under triaxial stresses. For each sample, a hydrostatic load was applied up to the desired confining pressure (from 0 up to 85 MPa) at either room temperature or at 70 °C. Two pore fluid conditions were investigated at room temperature: dry and water saturated. The samples were deformed up to failure at a constant strain rate of ˜10-5 s-1. The experiments were coupled with ultrasonic wave velocity surveys to monitor crack densities. The linear trend between the axial crack density and the relative volumetric strain beyond the onset of dilatancy suggests that cracks propagate at constant aspect ratio. The decrease of ultrasonic wave velocities beyond the onset of inelastic compaction in the semi-brittle regime indicates the ongoing interplay of shear-enhanced compaction and crack development. Water has a weakening effect on the onset of dilatancy in the brittle regime, but no measurable influence on the peak strength. Temperature lowers the confining pressure at which the brittle-semi-brittle transition is observed but does not change the stress states at the onset of inelastic compaction and at the post-yield onset of dilatancy.

  19. Nerve repulsion by the lens and cornea during cornea innervation is dependent on Robo-Slit signaling and diminishes with neuron age.

    Science.gov (United States)

    Schwend, Tyler; Lwigale, Peter Y; Conrad, Gary W

    2012-03-01

    The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation

  20. Research on basic characteristics of complex system brittleness

    Institute of Scientific and Technical Information of China (English)

    JIN Hong-zhang; GUO Jian; WEI Qi; LIN De-ming; LI Qi

    2004-01-01

    Tbe goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of complex system are also given in this paper.Otherwise, the qualitative description of complex system is presented at first. On the basis of analyzing the existing brittleness problems, linguistic description and mathematic description of brittleness are given as well. Three kinds of phenomena to judge brittleness of complex system are also given, based on catastrophe theory. Basic characteristics of brittleness are given on the basis of its mathematic description. Two critical point sets are defined by using catastrophe theory. The definition of brittleness and its related theory can serve the control of complex system, and provide theoretical basis for the design and control of complex system.

  1. Brittle dynamic damage due to earthquake rupture

    Science.gov (United States)

    Bhat, Harsha; Thomas, Marion

    2016-04-01

    The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, and generalized by Deshpande and Evans 2008 has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over wide range of strain rates. We then implement this constitutive response to understand the role of dynamic brittle off-fault damage on earthquake ruptures. We show that off-fault damage plays an important role in asymmetry of rupture propagation and is a source of high-frequency ground motion in the near source region.

  2. Fluid-driven fractures in brittle hydrogels

    Science.gov (United States)

    O'Keeffe, Niall; Linden, Paul

    2016-11-01

    Hydraulic fracturing is a process in which fluid is injected deep underground at high pressures that can overcome the strength of the surrounding matrix. This results in an increase of surface area connected to the well bore and thus allows extraction of natural gas previously trapped in a rock formation. We experimentally study the physical mechanisms of these fluid-driven fractures in low permeability reservoirs where the leak-off of fracturing fluid is considered negligible. This is done through the use of small scale experiments on transparent and brittle, heavily cross-linked hydrogels. The propagation of these fractures can be split into two distinct regimes depending on whether the dominant energy dissipation mechanism is viscous flow or material toughness. We will analyse crack growth rates, crack thickness and tip shape in both regimes. Moreover, PIV techniques allow us to explore the flow dynamics within the fracture, which is crucial in predicting transport of proppants designed to prevent localisation of cracks.

  3. Benchmarking numerical models of brittle thrust wedges

    Science.gov (United States)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  4. File list: ALL.Oth.05.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX437636,SRX24830...2,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Cornea.bed ...

  5. File list: ALL.Oth.20.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX437636,SRX24830...2,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.20.AllAg.Cornea.bed ...

  6. File list: ALL.Oth.50.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX437636,SRX24830...2,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Cornea.bed ...

  7. File list: ALL.Oth.10.AllAg.Cornea [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Cornea mm9 All antigens Others Cornea SRX437637,SRX248302,SRX43763...6,SRX248301,SRX437638 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.10.AllAg.Cornea.bed ...

  8. Biomechanical Measurement of Rabbit Cornea by a Modified Scheimpflug Device

    Science.gov (United States)

    Zhang, Bo; Gu, Jianjun; Zhang, Xiaoxiao; Yang, Bin

    2016-01-01

    Purpose. To explore the probability and variation in biomechanical measurements of rabbit cornea by a modified Scheimpflug device. Methods. A modified Scheimpflug device was developed by imaging anterior segment of the model imitating the intact eye at various posterior pressures. The eight isolated rabbit corneas were mounted on the Barron artificial chamber and images of the anterior segment were taken at posterior pressures of 15, 30, 45, 60, and 75 mmHg by the device. The repeatability and reliability of the parameters including CCT, ACD, ACV, and CV were evaluated at each posterior pressure. All the variations of the parameters at the different posterior pressures were calculated. Results. All parameters showed good intraobserver reliability (Cronbach's alpha; intraclass correlation coefficient, α, ICC > 0.96) and repeatability in the modified Scheimpflug device. With the increase of posterior pressures, the ratio of CCT decreased linearly and the bulk modulus gradually reduced to a platform. The increase of ACD was almost linear with the posterior pressures elevated. Conclusions. The modified Scheimpflug device was a valuable tool to investigate the biomechanics of the cornea. The posterior pressure 15–75 mmHg range produced small viscoelastic deformations and nearly linear pressure-deformation response in the rabbit cornea. PMID:27446608

  9. Semi-brittle flow of granitoid fault rocks in experiments

    NARCIS (Netherlands)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée; Drury, Martyn

    2016-01-01

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have perf

  10. Effect of substrate roughness on the contact damage of thin brittle films on brittle substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Mirko [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Institute for Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 23, 64287 Darmstadt (Germany); Borrero-Lopez, Oscar [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071, Badajoz (Spain); Hoffman, Mark, E-mail: mark.hoffman@unsw.edu.a [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Bendavid, Avi; Martin, Phil J. [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2010-07-01

    The effect of substrate and surface roughness on the contact fracture of diamond-like carbon coatings on brittle soda-lime glass substrates has been investigated. The average surface roughness (R{sub a}) of the examined samples ranged from 15 nm to 571 nm. Contact damage was simulated by means of spherical nanoindentation, and fracture was subsequently assessed by focused ion beam microscopy. It was found that, in the absence of sub-surface damage in the substrate, fracture occurs in the coating in the form of radial, and ring/cone cracks during loading, and lateral cracks during unloading. Increasing the surface roughness results in a decrease in the critical load for crack initiation during loading, and in the suppression of fracture modes during unloading from high loads. When sub-surface damage (lateral cracks) is present in the substrate, severe spalling takes place during loading, causing a large discontinuity in the load-displacement curve. The results have implications concerning the design of damage-tolerant coated systems consisting of a brittle film on a brittle substrate.

  11. Calcareous degeneration of the canine cornea.

    Science.gov (United States)

    Sansom, Jane; Blunden, Tony

    2010-07-01

    The purpose of this paper is to describe a specific presentation of canine corneal calcification. Fourteen cases are described. In seven cases the corneal lesions were bilaterally symmetrical. In five cases the corneal lesion was unilateral. Two dogs were uniocular, the contralateral eye had been enucleated between 1 and 3 months previously by the referring veterinary surgeon following corneal ulceration and perforation. Of a total of 21 eyes with corneal calcification, 16 eyes had associated ulceration. The ulceration presented as follows: two eyes had descemetocoeles, four eyes had corneal perforations, eight eyes had stromal ulceration, and two eyes had superficial punctate ulceration. The cause of the corneal mineralization remains undetermined but underlying systemic disease, particularly hyperadrenocorticism (Cushing's Syndrome), is suspected as a possible contributing factor in some of these cases. Histopathology was carried out on three cases following a keratectomy and placement of a conjunctival pedicle flap into the ulcerated lesion.

  12. Brittle and compaction creep in porous sandstone

    Science.gov (United States)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  13. The transparent lens and cornea in the mouse and zebra fish eye.

    Science.gov (United States)

    Greiling, Teri M S; Clark, John I

    2008-04-01

    The lens and cornea combine to form a single optical element in which transparency and refraction are the fundamental biophysical characteristics required for a functional visual system. Although lens and cornea have different cellular and extracellular specializations that contribute to transparency and refraction, their development is closely related. In the embryonic mouse, the developing cornea and lens separate early. In contrast, zebra fish lens and cornea remain connected during early development and the optical properties of the cornea and lens observed by slit lamp and quasielastic laser light scattering spectroscopy (QLS) are more similar in the zebra fish eye than in the mouse eye. Optical similarities between cornea and lens of zebra fish may be the result of similarities in the cellular development of the cornea and lens.

  14. Modeling failure in brittle porous ceramics

    Science.gov (United States)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  15. Theory of friction based on brittle fracture

    Science.gov (United States)

    Byerlee, J.D.

    1967-01-01

    A theory of friction is presented that may be more applicable to geologic materials than the classic Bowden and Tabor theory. In the model, surfaces touch at the peaks of asperities and sliding occurs when the asperities fail by brittle fracture. The coefficient of friction, ??, was calculated from the strength of asperities of certain ideal shapes; for cone-shaped asperities, ?? is about 0.1 and for wedge-shaped asperities, ?? is about 0.15. For actual situations which seem close to the ideal model, observed ?? was found to be very close to 0.1, even for materials such as quartz and calcite with widely differing strengths. If surface forces are present, the theory predicts that ?? should decrease with load and that it should be higher in a vacuum than in air. In the presence of a fluid film between sliding surfaces, ?? should depend on the area of the surfaces in contact. Both effects are observed. The character of wear particles produced during sliding and the way in which ?? depends on normal load, roughness, and environment lend further support to the model of friction presented here. ?? 1967 The American Institute of Physics.

  16. CONSERVATION LAWS IN FINITE MICROCRACKING BRITTLE SOLIDS

    Institute of Scientific and Technical Information of China (English)

    Wang Defa; Chen Yiheng; Fukui Takuo

    2005-01-01

    This paper addresses the conservation laws in finite brittle solids with microcracks.The discussion is limited to the 2-D cases. First, after considering the combination of the PseudoTraction Method and the indirect Boundary Element Method, a versatile method for solving multicrack interacting problems in finite plane solids is proposed, by which the fracture parameters (SIF and path-independent integrals) can be calculated with a desirable accuracy. Second, with the aid of the method proposed, the roles the conservation laws play in the fracture analysis for finite microcracking solids are studied. It is concluded that the conservation laws do play important roles in not only the fracture analysis but also the analysis of damage and stability for the finite microcracking system. Finally, the physical interpretation of the M-integral is discussed further.An explicit relation between the M-integral and the crack face area, I.e., M = GS, has been discovered using the analytical method, which can shed some light on the Damage Mechanics issues from a different perspective.

  17. Acanthamoeba castellanii: morphological analysis of the interaction with human cornea.

    Science.gov (United States)

    Omaña-Molina, Maritza; González-Robles, Arturo; Salazar-Villatoro, Lizbeth Iliana; Cristóbal-Ramos, Ana Ruth; González-Lázaro, Mónica; Salinas-Moreno, Edmundo; Méndez-Cruz, Rene; Sánchez-Cornejo, Manuel; De la Torre-González, Enrique; Martínez-Palomo, Adolfo

    2010-09-01

    The present study demonstrates that when Acanthamoeba castellanii trophozoites are co-cultivated with isolated human corneas, the amoeba can be invasive and cause damage to the intact corneal epithelium without the requirement of previous corneal abrasion. After adhesion, A. castellanii trophozoites migrate between cells forming bumps on the corneal cell layers and reaching Bowman s membrane in 3h, although no evidence of cell damage was observed until the phagocytic process was detected. Likewise, conditioned medium produced damage to the corneal cells that was proportional to the time of incubation, but this cytophatic effect involved only the most superficial layer of the human cornea and was not enough to explain amoebic invasion of Bowman s membrane. As a result of our observations, we suggest that the mechanical action of the trophozoites and phagocytosis of corneal cells during the process of corneal invasion are more important than previously suggested.

  18. Live imaging of newly formed lymphatic vessels in the cornea

    Institute of Scientific and Technical Information of China (English)

    Don Yuen; Xiufeng Wu; Alex C Kwan; Jeffrey LeDue; Hui Zhang; Tatiana Ecoiffier; Bronislaw Pytowski; Lu Chen

    2011-01-01

    Dear Editor,Lymphatic research denotes a field of new discovery and has experienced exponential growth in recent years [1-3].Though lymphatic dysfunction has been found in a broad spectrum of disorders from transplant rejection to cancer metastasis,to date,there is still little effective treatment for lymphatic diseases,so it is a field with urgent demand for new experimental approaches and therapeutic protocols.The cornea provides an ideal site for lymphatic research due to its accessible location,transparent nature,and alymphatic status under normal condition [2,4].Indeed,the use of this tissue for tumor angiogenesis research dates back to 1970s [5].Most recently,we have demonstrated that the cornea possesses a full range of plasticity in lymphatic formation and regression [6].An advanced technology for live imaging of lymphatic vessels in this tissue would therefore have widespread applications in biomedical research.

  19. Posterior polymorphous dystrophy of the cornea. An ultrastructural study.

    Science.gov (United States)

    de Felice, G P; Braidotti, P; Viale, G; Bergamini, F; Vinciguerra, P

    1985-01-01

    A corneal button excised from a 2-month-old infant with congenital posterior polymorphous dystrophy of the cornea, a rare disease affecting Descemet's membrane and endothelium, was examined by electron microscopy. We observed irregularly arranged, sometimes multilayered cells with marked epithelial features, lining the posterior surface of the cornea in place of the endothelium, and Descemet's membrane with focal alterations sometimes involving all of its layers. We interpreted these abnormal cells as epithelial-like cells. As these findings were in a very young patient, which is unusual, we concluded that the onset of the disease may take place in the early period of intrauterine life, corresponding to the beginning of Descemet's membrane production.

  20. Management of chemical burns of the canine cornea

    OpenAIRE

    Christmas, Richard

    1991-01-01

    Significant clinical signs and general principles of treatment for chemical burns of the canine cornea are presented using three typical case studies for illustration. Alkali burns are more common in dogs than acid burns. The sources of alkali in this study were soap, cement, and mortar dust. Common signs of chemical burns are ocular pain, corneal ulceration, tear film inadequacy, corneal edema, and marked corneal neovascularity. Successful treatment requires thorough ocular lavage, treatment...

  1. Neuronal Changes in the Diabetic Cornea: Perspectives for Neuroprotection

    Science.gov (United States)

    Yamamoto, Shuichi

    2016-01-01

    Diabetic neuropathy is associated with neurotrophic ulcerations of the skin and cornea. Decreased corneal sensitivity and impaired innervation lead to weakened epithelial wound healing predisposing patients to ocular complications such as corneal infections, stromal opacification, and surface irregularity. This review presents recent findings on impaired corneal innervation in diabetic individuals, and the findings suggest that corneal neuropathy might be an early indicator of diabetic neuropathy. Additionally, the recent findings for neuroprotective and regenerative therapy for diabetic keratopathy are presented. PMID:28044131

  2. Ultrahigh-resolution OCT imaging of the human cornea

    Science.gov (United States)

    Werkmeister, René M.; Sapeta, Sabina; Schmidl, Doreen; Garhöfer, Gerhard; Schmidinger, Gerald; Aranha dos Santos, Valentin; Aschinger, Gerold C.; Baumgartner, Isabella; Pircher, Niklas; Schwarzhans, Florian; Pantalon, Anca; Dua, Harminder; Schmetterer, Leopold

    2017-01-01

    We present imaging of corneal pathologies using optical coherence tomography (OCT) with high resolution. To this end, an ultrahigh-resolution spectral domain OCT (UHR-OCT) system based on a broad bandwidth Ti:sapphire laser is employed. With a central wavelength of 800 nm, the imaging device allows to acquire OCT data at the central, paracentral and peripheral cornea as well as the limbal region with 1.2 µm x 20 µm (axial x lateral) resolution at a rate of 140 000 A-scans/s. Structures of the anterior segment of the eye, not accessible with commercial OCT systems, are visualized. These include corneal nerves, limbal palisades of Vogt as well as several corneal pathologies. Cases such as keratoconus and Fuchs’s endothelial dystrophy as well as infectious changes caused by diseases like Acanthamoeba keratitis and scarring after herpetic keratitis are presented. We also demonstrate the applicability of our system to visualize epithelial erosion and intracorneal foreign body after corneal trauma as well as chemical burns. Finally, results after Descemet’s membrane endothelial keratoplasty (DMEK) are imaged. These clinical cases show the potential of UHR-OCT to help in clinical decision-making and follow-up. Our results and experience indicate that UHR-OCT of the cornea is a promising technique for the use in clinical practice, but can also help to gain novel insight in the physiology and pathophysiology of the human cornea. PMID:28271013

  3. [Temporary biokeratoprostheses in total destruction of the cornea].

    Science.gov (United States)

    Onishchenko, A L; Kolbasko, A V; Kramer, E R

    2016-01-01

    The paper presents an original method for temporary biokeratoprothetics in total destruction of the cornea, which consists of the following. In the operating room a 12-mm disc is cut out of patient's conchal cartilage by a trephine and then thinned down to 1 mm with a blade. The prepared autograft is placed in front of the iris completely overlapping corneal defect and sutured to the sclera with 10--12 U-shaped interrupted stitches using a 7/0 suture. Between the stitches 0.2--0.3 ml of viscoelastic are injected into the anterior chamber. Temporary blepharorrhaphy is done within the temporal one-third of the eyelids with a U-shaped suture 6/0. The authors present an own clinical observation of patient D., aged 46, with purulent corneal ulcer and total destruction of the cornea. In ophthalmic emergency, if no donor cornea is available, the described method allows to save the eyeball from its anatomical and functional loss. Further routine keratoplasty or optical keratoprosthetics may bring some functional improvement.

  4. Benchmarking analogue models of brittle thrust wedges

    Science.gov (United States)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  5. Scattering mechanical performances for brittle bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    J. W. Qiao

    2014-11-01

    Full Text Available Scattering mechanical performances of brittle La- and Mg-based BMGs are found in the present study. Upon dynamic loading, there exist largely scattered fracture strengths even if the strain rates are under the same order, and the BMG systems are the same. The negative strain rate dependence for La- and Mg-based BMGs is obtained, i.e., a decreased fracture strength is dominating from quasi-static to dynamic compression. At cryogenic temperatures, distinguishingly low fracture strengths are available for these two brittle BMGs, and decreased tolerance to accommodate strains makes BMGs more and more brittle. It is concluded that the scattering mechanical performances of brittle BMGs should be carefully evaluated before actual applications.

  6. Proteinases of the cornea and preocular tear film.

    Science.gov (United States)

    Ollivier, F J; Gilger, B C; Barrie, K P; Kallberg, M E; Plummer, C E; O'Reilly, S; Gelatt, K N; Brooks, D E

    2007-01-01

    Maintenance and repair of corneal stromal extracellular matrix (ECM) requires a tightly coordinated balance of ECM synthesis, degradation and remodeling in which proteolytic enzymes (proteinases) perform important functions. There are natural proteinase inhibitors present in preocular tear film (PTF) and cornea simultaneously with proteinases that prevent excessive degradation of normal healthy tissue. Disorders occur when there is an imbalance between proteinases and proteinase inhibitors in favor of the proteinases, causing pathologic degradation of stromal collagen and proteoglycans in the cornea. Two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, are of major importance in terms of remodeling and degradation of the corneal stromal collagen. Immunohistochemical studies have shown different origins of MMP-2 and -9. MMP-2 is synthesized by corneal keratocytes and performs a surveillance function in the normal cornea, becoming locally activated to degrade collagen molecules that occasionally become damaged. Alternatively, MMP-9 may be produced by epithelial cells and polymorphonuclear neutrophils following corneal wounding. Because the cornea is in close contact with the preocular tear film (PTF), proteinases have been evaluated in the PTF. In damaged corneas, total proteolytic activity in the tear fluid was found to be significantly increased compared to normal eyes and contralateral eyes. Studies analyzing the proteolytic activity in serial PTF samples during corneal healing led to the following conclusions: ulcerative keratitis in animals is associated with initially high levels of tear film proteolytic activity, which decrease as ulcers heal; proteinase levels in melting ulcers remain elevated leading to rapid progression of the ulcers. The success of medical and surgical treatment of the corneal ulcers is reflected by the proteolytic activity in tears. In animals, successful treatment leads to a rapid reduction in tear film proteolytic activity that

  7. The Ets transcription factor EHF as a regulator of cornea epithelial cell identity.

    Science.gov (United States)

    Stephens, Denise N; Klein, Rachel Herndon; Salmans, Michael L; Gordon, William; Ho, Hsiang; Andersen, Bogi

    2013-11-29

    The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways.

  8. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-06-15

    Glutathione transferase (GST) expression and activity were examined in a three-dimensional human cornea construct and were compared to those of excised animal corneas. The objective of this study was to characterize phase II enzyme expression in the cornea construct with respect to its utility as an alternative to animal cornea models. The expression of the GSTO1-1 and GSTP1-1 enzymes was investigated using immunofluorescence staining and western blotting. The level of total glutathione transferase activity was determined using 1-chloro-2,4- dinitrobenzene as the substrate. Furthermore, the levels of GSTO1-1 and GSTP1-1 activity were examined using S-(4-nitrophenacyl)glutathione and ethacrynic acid, respectively, as the specific substrates. The expression and activity levels of these enzymes were examined in the epithelium, stroma and endothelium, the three main cellular layers of the cornea. In summary, the investigated enzymes were detected at both the protein and functional levels in the cornea construct and the excised animal corneas. However, the enzymatic activity levels of the human cornea construct were lower than those of the animal corneas.

  9. Delivery of antisense oligonucleotide to the cornea by iontophoresis.

    Science.gov (United States)

    Berdugo, M; Valamanesh, F; Andrieu, C; Klein, C; Benezra, D; Courtois, Y; Behar-Cohen, F

    2003-04-01

    We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the

  10. Extracellular matrix alterations in human corneas with bullous keratopathy

    DEFF Research Database (Denmark)

    Ljubimov, A V; Burgeson, R E; Butkowski, R J

    1996-01-01

    . RESULTS. Fibrillar deposits of an antiadhesive glycoprotein tenascin in the anterior and posterior stroma, epithelial basement membrane (BM), bullae and subepithelial fibrosis (SEF) areas, and posterior collagenous layer (PCL) were revealed in disease corneas. Tenascin in midstroma, which was observed......; accumulation of fibronectin and alpha 1-alpha 2 type IV collagen on the endothelial face of the Descemet's membrane; and abnormal deposition of stromal ECM (tenascin, fibronectin, decorin, types I, III, V, VI, VIII, XII, XIV collagen) and BM components (type IV, collagen, perlecan, bamacan, laminin-1, entactin...

  11. Brittleness Generation Mechanism and Failure Model of High Strength Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The brittleness generation mechanism of high strength lightweight aggregate concrete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot,initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.

  12. Brittle and semibrittle creep in a low porosity carbonate rock

    Science.gov (United States)

    Nicolas, Aurélien; Fortin, Jérôme; Regnet, Jean-Baptiste; Dimanov, Alexandre; Guéguen, Yves

    2016-04-01

    The mechanical behavior of limestones at room temperature is brittle at low confining pressure and becomes semi-brittle with the increase of the confining pressure. The brittle behavior is characterized by a macroscopic dilatancy due to crack propagation, leading to a stress drop when cracks coalesce at failure. The semi-brittle behavior is characterized by diffuse deformation due to intra-crystalline plasticity (dislocation movements and twinning) and microcracking. The aim of this work is to examine the influence of pore fluid and time on the mechanical behavior. Constant strain rate triaxial deformation experiments and stress-stepping creep experiments were performed on white Tavel limestone (porosity 14.7%). Elastic wave velocity evolutions were recorded during each experiment and inverted to crack densities. Constant strain rate triaxial experiments were performed for confining pressure in the range of 5-90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. In this regime, water-saturation decreases the differential stress at the onset of crack propagation and enhances macroscopic dilatancy. For Pc≥70 MPa, the behavior is semi-brittle. Inelastic compaction is due to intra-crystalline plasticity and micro-cracking. However, in this regime, our results show that water-saturation has no clear effect at the onset of inelastic compaction. Stress stepping creep experiments were performed in a range of confining pressures crossing the brittle-ductile transition. In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack propagation and/or nucleation. In the semi-brittle regime, the first steps are inelastic compactant because of plastic pore collapse. But, following stress steps are dilatant because of crack nucleation and/or propagation. However, our results show that the axial strain rate is always controlled by plastic phenomena, until the last

  13. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-peak Strength Parameters in Rock Uniaxial Compression

    Science.gov (United States)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-12-01

    Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.

  14. An adaptive algorithm for the cornea modeling from keratometric data

    CERN Document Server

    Martinez-Finkelshtein, Andrei; Castro-Luna, Gracia M; Alio, Jorge L

    2010-01-01

    In this paper we describe an adaptive and multi-scale algorithm for the parsimonious fit of the corneal surface data that allows to adapt the number of functions used in the reconstruction to the conditions of each cornea. The method implements also a dynamical selection of the parameters and the management of noise. It can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido rings based topographers, decisive for an early detection of corneal diseases such as keratoconus. Numerical experiments show that the algorithm exhibits a steady exponential error decay, independently of the level of aberration of the cornea. The complexity of each anisotropic gaussian basis functions in the functional representation is the same, but their parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of their centers,...

  15. Wide-angle cornea-sclera (OCULAR) topography

    Science.gov (United States)

    Klein, Stanley A.; Corzine, John; Corbin, Jacob A.; Wechsler, Sheldon; Carney, Thom

    2002-06-01

    Most corneal topographers are slope-based instruments, measuring corneal slope based on light reflected by the cornea acting as a mirror. This mirror method limits corneal coverage to about 9 mm diameter. Both refractive surgery and contact lens fitting actually require a larger coverage than is obtainable using slope-based instruments. Height-based instruments should be able to measure a cornea/sclera area that is twice the size (four times the area) of slope-based topographers with an accuracy of a few microns. We have been testing a prototype of a new model height-based topographer manufactured by Euclid Systems. We find that single shots can produce a corneal coverage of up to 16 mm vertical and 20 mm horizontal. The heights and slopes in the corneal region have good replicability. Although the scleral region is noisier, it is the only topographer available able to measure scleral topography that is critically important to contact lens fitting. There are a number of improvements to the Euclid software and hardware that would enable it to fill an important niche in eye care and eye research.

  16. Efficient numerical modeling of the cornea, and applications

    Science.gov (United States)

    Gonzalez, L.; Navarro, Rafael M.; Hdez-Matamoros, J. L.

    2004-10-01

    Corneal topography has shown to be an essential tool in the ophthalmology clinic both in diagnosis and custom treatments (refractive surgery, keratoplastia), having also a strong potential in optometry. The post processing and analysis of corneal elevation, or local curvature data, is a necessary step to refine the data and also to extract relevant information for the clinician. In this context a parametric cornea model is proposed consisting of a surface described mathematically by two terms: one general ellipsoid corresponding to a regular base surface, expressed by a general quadric term located at an arbitrary position and free orientation in 3D space and a second term, described by a Zernike polynomial expansion, which accounts for irregularities and departures from the basic geometry. The model has been validated obtaining better adjustment of experimental data than other previous models. Among other potential applications, here we present the determination of the optical axis of the cornea by transforming the general quadric to its canonical form. This has permitted us to perform 3D registration of corneal topographical maps to improve the signal-to-noise ratio. Other basic and clinical applications are also explored.

  17. Morphology, topography, and optics of the orthokeratology cornea

    Science.gov (United States)

    Faria-Ribeiro, Miguel; Belsue, Rafael Navarro; López-Gil, Norberto; González-Méijome, José Manuel

    2016-07-01

    The goal of this work was to objectively characterize the external morphology, topography, and optics of the cornea after orthokeratology (ortho-k). A number of 24 patients between the ages of 17 and 30 years (median=24 years) were fitted with Corneal Refractive Therapy® contact lenses to correct myopia between -2.00 and -5.00 diopters (D) (median=-3.41 D). A classification algorithm was applied to conduct an automatic segmentation based on the mean local curvature. As a result, three zones (optical zone, transition zone, and peripheral zone) were delimited. Topographical analysis was provided through global and zonal fit to a general ellipsoid. Ray trace on partially customized eye models provided wave aberrations and retinal image quality. Monozone topographic description of the ortho-k cornea loses accuracy when compared with zonal description. Primary (C40) and secondary (C60) spherical aberration (SA) coefficients for a 5-mm pupil increased 3.68 and 19 times, respectively, after the treatments. The OZ area showed a strong correlation with C40 (r=-0.49, p<0.05) and a very strong correlation with C60 (r=0.78, p<0.01). The OZ, as well as the TZ, areas did not correlate with baseline refraction. The increase in the eye's positive SA after ortho-k is the major factor responsible for the decreased retinal optical quality of the unaccommodated eye.

  18. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, E.G.; Shelly, D.R.; Guyer, R.A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place. Copyright ?? 2011 by the American Geophysical Union.

  19. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    Science.gov (United States)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  20. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    Science.gov (United States)

    Barrows, R. G.

    1977-01-01

    Necessary to the development and understanding of brittle fiber reinforced composites is a means to statistically describe fiber strength and strain-to-failure behavior. A statistical characterization for multicomponent brittle fibers is presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  1. Xanthelasmata, arcus corneae, and ischaemic vascular disease and death in general population: prospective cohort study

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Frikke-Schmidt, Ruth; Schnohr, Peter

    2011-01-01

    To test the hypothesis that xanthelasmata and arcus corneae, individually and combined, predict risk of ischaemic vascular disease and death in the general population.......To test the hypothesis that xanthelasmata and arcus corneae, individually and combined, predict risk of ischaemic vascular disease and death in the general population....

  2. Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.

    Science.gov (United States)

    Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2015-03-01

    High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas.

  3. Public Health Implications of the 1540 nm Laser on the Cornea

    Science.gov (United States)

    2007-05-30

    7; 2003. Isnard N, Bourles-Dagonet F, Robert L, Renard G. Studies on corneal wound healing. Effect of fucose on iodine vapor-burnt rabbit corneas... Fucose On Iodine Vapor-Burnt Rabbit Corneas. Ophthalmologica 219, no. 6: 324-33. Jane’s international defense review. 2005. Jane’s. Jester, J. V., A

  4. Multiphoton Imaging of Rabbit Cornea Treated with Mitomycin C after Photorefractive Keratectomy

    Science.gov (United States)

    Hsueh, Chiu-Mei; Lo, Wen; Wang, Tsung-Jen; Hu, Fung-Rong; Dong, Chen-Yuan

    2007-07-01

    In this work we use multiphoton microscopy to observe the post surgery structure variation of rabbit cornea after photorefractive keratectomy (PRK). In addition, we added mitomycin C (MMC) to the post surgery rabbit cornea in order to investigate the effect of MMC treatment on the postoperative regeneration.

  5. Prevalence and clinical consequences of herpes simplex virus type 1 DNA in human cornea tissues

    NARCIS (Netherlands)

    L. Remeijer (Lies); R. Duan (Rui); J.M. van Dun (Jessica); M.A.W. Bettink; A.D.M.E. Osterhaus (Ab); G.M.G.M. Verjans (George)

    2009-01-01

    textabstractBackground. We determined the prevalence and clinical consequences of herpes simplex virus (HSV) type 1 (HSV-1), HSV type 2 (HSV-2), and varicella-zoster virus (VZV) in cornea tissues obtained after penetrating keratoplasty (PKP) was performed. Methods. The excised corneas of 83 patients

  6. Damage and dissipation mechanisms in the dynamic fracture of brittle materials: Velocity driven transition from nominally brittle to quasi-brittle

    Directory of Open Access Journals (Sweden)

    Bonamy D.

    2010-06-01

    Full Text Available We present the results of recent dynamic fracture experiments [Scheibert et al., Phys. Rev. Lett. 104 (2010 045501] on polymethylmethacrylate, the archetype of nominally brittle materials, over a wide range of crack velocities. By combining velocity measurements and finite element calculations of the stress intensity factor, we determine the dynamic fracture energy as a function of crack speed. We show that the slope of this curve exhibits a discontinuity at a well-defined critical velocity, below the one associated to the onset of micro-branching instability. This transition is associated with the appearance of conics patterns on the fracture surfaces. In many amorphous materials, these are the signature of damage spreading through the nucleation, growth and coalescence of micro-cracks. We end with a discussion of the relationship between the energetic and fractographic measurements. All these results suggest that dynamic fracture at low velocities in amorphous materials is controlled by the brittle/quasi-brittle transition studied here.

  7. Scaling properties of crack branching and brittle fragmentation

    Directory of Open Access Journals (Sweden)

    Uvarov S.

    2011-01-01

    Full Text Available The present study is focused on the correlation of scaling properties of crack branching and brittle fragmentation with damage accumulation and a change in the fracture mechanism. The experimental results obtained from the glass fragmentation tests indicate that the size distribution of fragments has a fractal character and is described by a power law.

  8. Fracture mechanics applied to the machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  9. Fracture in brittle matrix particle composites with varying particle content

    NARCIS (Netherlands)

    Vliet, M.R.A. van; Mier, J.G.M. van

    1999-01-01

    Fracture in brittle matrix particle and fibre composites can be conveniently modelled by means of lattice models where the particle and/or fibre structure is incorporated directly in the model. The particles, fibres and matrix, as well as the interfacial transition zone are assumed to behave as a co

  10. Analytical model of micromachining of brittle materials with sharp particles

    NARCIS (Netherlands)

    Moktadir, Z.; Wensink, H.; Kraft, M.

    2005-01-01

    We present an analytical model for the powder blasting of brittle materials with sharp particles. We developed a continuum equation, which describes the surface evolution during the powder blasting, into which we introduced surface energetics as the major relaxation mechanism. The experimental and t

  11. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The tensi

  12. Polymicrobial Infection of the Cornea Due to Contact Lens Wear

    Science.gov (United States)

    Sızmaz, Selçuk; Bingöllü, Sibel; Erdem, Elif; Kibar, Filiz; Koltaş, Soner; Yağmur, Meltem; Ersöz, Reha

    2016-01-01

    A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive for Pseudomonas aeruginosa; cultures from the contact lenses, lens solution and storage case of both eyes revealed Pseudomonas aeruginosa and Alcaligenes xylosoxidans. Polymerase chain reaction of the corneal scraping was positive for Acanthameoba. The topical antibiotics were changed with ones that both bacteria were sensitive to and anti-amoebic therapy was added. The patient had two recurrences following initial presentation despite intensive therapy. Keratitis occurred due to multiple pathogens; the relapsing course despite adequate therapy is potentially associated with this polymicrobial etiology. PMID:27800266

  13. Epithelial ion transport in rabbit corneas following myopic keratomileusis.

    Science.gov (United States)

    Swinger, C A; Candia, O A; Marcus, S; Barker, B A; Kornmehl, E W

    1986-08-01

    In isolated rabbit corneas that had undergone lamellar keratectomy or myopic keratomileusis, the stimulation of chloride transport by 10(-5) M epinephrine was completely inhibited at 1 week following surgery. At 28 days following surgery, both groups responded to 10(-7) M epinephrine. The response to 10(-5) M amphotericin B was normal both at 1 week and at 28 days following surgery. We conclude that, although the Na-K pump was not affected by the lamellar keratectomy and cryolathing, that either the epithelial beta receptors and/or the cAMP pathway were temporarily inhibited for at least 1 week following surgery. A lamellar keratectomy, therefore, can have an adverse effect on the epithelial transport system of the corneal epithelium even though the epithelium may appear normal clinically.

  14. Tissue Engineering the Cornea: The Evolution of RAFT.

    Science.gov (United States)

    Levis, Hannah J; Kureshi, Alvena K; Massie, Isobel; Morgan, Louise; Vernon, Amanda J; Daniels, Julie T

    2015-01-22

    Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.

  15. Tissue Engineering the Cornea: The Evolution of RAFT

    Directory of Open Access Journals (Sweden)

    Hannah J. Levis

    2015-01-01

    Full Text Available Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT. The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.

  16. Xanthelasma palpebrarum with arcus cornea: A clinical and biochemical study

    Directory of Open Access Journals (Sweden)

    Pragya Ashok Nair

    2016-01-01

    Full Text Available Background: Xanthelasma palpebrarum (XP is characterized by sharply demarcated yellowish flat plaques on upper and lower eyelids. It is commonly seen in women with a peak incidence at 30–50 years. It is also considered as the cutaneous marker of underlying atherosclerosis along with the disturbed lipid metabolism. XP and corneal arcus are associated with increased levels of serum cholesterol and low-density lipoprotein (LDL cholesterol. Aims and Objectives: To study the clinical pattern of XP, its relationship with lipid profile and association with arcus cornea. Materials and Methods: This study was conducted at Department of Dermatology and Opthalmology, between August 2013 and January 2015. Patients with clinical diagnosis of XP who visited skin outpatient department and willing to undergo lipid profile test and eye examination were included in the study. Data regarding demographics, clinical findings, family history, and past history were noted along with the lipid profile details. Data of age-matched healthy controls were taken for comparison. The clinical profile of the participants was presented using frequency and proportions. Gender wise analysis comparing the lipid profile in cases with XP and without XP was done using independent sample t-test. Results: Total 49 patients of XP, 81.6% were females. Maximum, 35% patients were among 50–60 years of age and 69.4% were homemakers by occupation. The average lipid values were-cholesterol 210.57 mg%, triglyceride 123.06 mg%. LDL 142.79 mg% and VLDL 30.95 mg% among patients of XP. Arcus cornea was found in 20% cases of XP. Conclusions: Patients of XP requires proper investigation at the onset and regular follow-up thereafter for any altered lipid profile and early diagnosis of coronary artery disease.

  17. Preliminary study on the effect of stiffness on lamb wave propagation in bovine corneas.

    Science.gov (United States)

    Zhang, Xin-Yu; Yin, Yin; Guo, Yan-Rong; Diao, Xian-Fen; Chen, Xin

    2013-01-01

    The viscoelastic properties of human cornea could provide valuable information for various clinical applications. Particularly, it will be helpful to achieve a patient-specific biomechanical optimization in LASIK refractive surgery, early detection of corneal ecstatic disease or improved accuracy of intraocular pressure (IOP) measurement. However, there are few techniques that are capable of accurately assessing the corneal elasticity in situ in a nondestructive fashion. In order to develop a quantitative method for assessing both elasticity and viscosity of the cornea, we use ultrasound radiation force to excite Lamb waves in cornea, and a pulse echo transducer to track the tissue vibration. The fresh postmortem bovine eyes were treated via collagen cross-linking to make the cornea stiff. The effect of stiffness was studied by comparing the propagation of Lamb waves in normal and treated corneas. It was found that the waveform of generated Lamb waves changed significantly due to the increase in higher modes in treated corneas. This result indicated that the generated waveform was a complex of multiple harmonics and the varied stiffness will affect the energy distribution over different components. Therefore, it is important for assessing the viscoelastic properties of the cornea to know the components of Lamb wave and calculate the phase velocity appropriately.

  18. Effects of the holmium laser on the human cornea: a preliminary study

    Science.gov (United States)

    Mueller, Linda J.; Tassignon, Marie J.; Trau, Rene; Pels, Liesbeth; Vrensen, Gijs F.

    1996-12-01

    Treatment of peripheral post-mortem human corneas with the Holmium laser in a ring pattern resulted in opaque spots. One pair of treated eyes was immediately processed for light and electron microscopy and three other treated eyes were preserved for 4 days in medium in order to compare direct and short-term effects of the Holmium laser. Cross as well as frontal light microscopical sections of all eyes revealed interconnecting bands between the spots. At the ultrastructural level the anterior corneal tissue within these spots was characterized by coagulation of cells and collagen and shoed either a dramatic distorting effect on the epithelium in the eyes processed immediately or a single layer of flattened multi-nucleolated epithelial cells having more than one nucleolus per nucleus in the eyes stored in medium. Furthermore, the spots showed disturbed Bowman's layer, destroyed keratocytes and collagen fibrils which were either coagulated or organized chaotically. The interconnecting bands contained alternating normal and coagulated collagen fibers. The rest of the cornea outside the spots had a normal appearance. In corneas stored in medium, both keratocytes and epithelial cells over the entire cornea exhibited accumulations of cytoplasmic fibrils and glycogen particles. These phenomena were not observed in non-preserved corneas, suggesting that the differences are due to preservation and not due to the laser treatment. It is concluded that morphological changes occur mainly in the treated peripheral cornea whereas the central untreated cornea remains unaffected,indicating that the Holmium laser is a reliable instrument to treat hypermetropic patients.

  19. A comparison of three methods of decellularization of pig corneas to reduce immunogenicity

    Institute of Scientific and Technical Information of China (English)

    Whayoung; Lee; Yuko; Miyagawa; Cassandra; Long; David; K.; C.; Cooper; Hidetaka; Hara

    2014-01-01

    ·AIM: To investigate whether decellularization using different techniques can reduce immunogenicity of the cornea, and to explore the decellularized cornea as a scaffold for cultured corneal endothelial cells(CECs).Transplantation of decellularized porcine corneas increases graft transparency and survival for longer periods compared with fresh grafts.·METHODS: Six-month-old wild-type pig corneas were cut into 100-200 μm thickness, and then decellularized by three different methods: 1) 0.1% sodium dodecyl sulfate(SDS); 2) hypoxic nitrogen(N2); and 3) hypertonic NaCl. Thickness and transparency were assessed visually. Fresh and decellularized corneas were stained with hematoxylin/eosin(H&E), and for the presence of galactose-α1,3-galactose(Gal) and N-glycolylneuraminic acid(NeuGc, a nonGal antigen). Also, a human IgM/IgG binding assay was performed. Cultured porcine CECs were seeded on the surface of the decellularized cornea and examined after H&E staining.· RESULTS: All three methods of decellularization reduced the number of keratocytes in the stromal tissue by >80% while the collagen structure remained preserved. No remaining nuclei stained positive for Gal or NeuGc, and expression of these oligosaccharides on collagen was also greatly decreased compared to expression on fresh corneas. Human IgM/IgG binding to decellularized corneal tissue was considerably reduced compared to fresh corneal tissue. The cultured CECs formed a confluent monolayer on the surface of decellularized tissue.· CONCLUSION: Though incomplete, the significant reduction in the cellular component of the decellularized cornea should be associated with a significantly reduced in vivo immune response compared to fresh corneas.

  20. Brittle, flowing structures focused on subtle crustal heterogeneities

    Science.gov (United States)

    Soden, A. M.; Shipton, Z. K.; Lunn, R. J.; Pytharouli, S.; Kirkpatrick, J. D.

    2011-12-01

    Fundamental to the development of groundwater flow models are geological models that accurately account for the spatial distribution and geometrical attributes of fracture systems in three dimensions, at both seismic and sub-seismic resolution. Accurate characterization of fracture populations in crystalline rock is of particular importance, as these are the principal targets for nuclear waste repositories and enhanced geothermal systems. Fracture models are populated using average properties from site specific outcrop and borehole data, geophysical imaging and empirical scaling relationships such as the decrease of fracture density with distance from a fault surface However, host rock heterogeneity is likely to be of equal importance in influencing fracture attributes. Our study focuses on brittle structures associated with a regional NE-SW ductile shear zone in NE Brazil. Detailed field mapping shows two phases of brittle structure overprinting a ductile shear zone: 1) a brittle fault zone, which is largely "sealed" to flow, 2) a later set of open fractures. The earliest brittle fault is 1.4 - 2.6m wide zone of chaotic breccia bound by two sub-vertical fault walls. Extremely indurated breccias branching from the fault core have an orientation consistent with sinistral motion on the fault. The breccia is composed of centimeter to meter scale clasts in a fine-grained matrix. The host rock is intensely fractured by centimeter-scale fractures up to 60 m away from the fault. Veining is predominantly concentrated within 15 meters of the fault wall, and joints beyond this are unmineralised. The latest brittle deformation is represented by meter-scale open discrete fractures and fracture zones, up to 80 meters from the main fault. The fractures are unmineralised suggesting formation at relatively shallow depths. Fracture zones vary from decimeters long en echelon fractures to intensely fractured zones where the host rock is completely fragmented. This final phase of

  1. A time-delay calibrated method for cornea hysteresis and intraocular pressure measurement

    Science.gov (United States)

    Wang, Kuo-Jen; Tsai, Che-Liang; Wang, Wai; Hsu, Long; Hsu, Ken-Yuh

    2016-04-01

    The presence of cornea hysteresis (CH) in characterizing the intraocular pressure (IOP) of a human eye deteriorates the accuracy of IOP. To suppress CH, the pressure gauge of a tonometer must be located as close as possible to the cornea. However, this arrangement is unpractical because appropriate working distance to the cornea is required. In this paper, a time-delay calibrated (TDC) method is proposed to counteract the undesired effect of CH in characterizing the IOP. Employing this TDC method, the CH approaches to zero for most eyes measured.

  2. Dual-path handheld system for cornea and retina imaging using optical coherence tomography

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Wijesinghe, Ruchire Eranga; Ravichandran, Naresh Kumar; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2016-11-01

    A dual-path handheld system is proposed for cornea and retina imaging using spectral domain optical coherence tomography. The handheld sample arm is designed to acquire two images simultaneously. Both eyes of a person can be imaged at the same time to obtain the images of the cornea of one eye and the retina of the other eye. Cornea, retina, and optic disc images are acquired with the proposed sample arm. Experimental results demonstrate the usefulness of this system for imaging of different eye segments. This system reduces the time required for imaging of the two eyes and is cost effective.

  3. An Immunohistochemical Study of Langerhans Cells,T-Cells and the HLA Antigen in Human Cornea

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    The distribution of Langerhans cells (LC),T-cell subsets andHLA antigen in 12 normal and 7 morbid corneas,including 4 of suppurativecorneal ulcer and 3 of uveogenic endophthalmitis,was investigated withmonoclonal antibodies.The results revealed that a small amount of LC andT-cell subsets were present in the limbal region of normal corneas,whilelarge numbers of LC and OKT_4~+ were observed in the corneas of suppurativeulcer.HLA-A,B,C antigens were expressed on the epithelial cells andkeratocytes of the n...

  4. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs

    Institute of Scientific and Technical Information of China (English)

    Huang Xin-Rui; Huang Jian-Ping; Li Zhen-Chun; Yang Qin-Yong; Sun Qi-Xing; Cui Wei

    2015-01-01

    Brittleness analysis becomes important when looking for sweet spots in tight-oil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.

  5. Brittle to ductile transition in densified silica glass.

    Science.gov (United States)

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  6. A role for smoothened during murine lens and cornea development.

    Directory of Open Access Journals (Sweden)

    Janet J Y Choi

    Full Text Available Various studies suggest that Hedgehog (Hh signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30 showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3 were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre did not affect ocular development, whereas deletion from ∼E9.5 (LeCre resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5-E12.5 in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs

  7. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    Science.gov (United States)

    2014-10-01

    tension. Int J Fract Mech 4:257–266 Voyiadjis G, Mozaffari N (2013) Nonlocal damage model using the phase field method: theory and applications. Int J... model of fracture. Computer simula- tions enable descriptions of fracture in brittle solids under complex loading conditions and for nonlinear and...Simple models based on the notion of theo- retical strength (Gilman1960;Clayton 2009, 2010) can provide insight into directionality of fracture

  8. Rate-dependent deformation of rocks in the brittle regime

    Science.gov (United States)

    Baud, P.; Brantut, N.; Heap, M. J.; Meredith, P. G.

    2013-12-01

    Rate-dependent brittle deformation of rocks, a phenomenon relevant for long-term interseismic phases of deformation, is poorly understood quantitatively. Rate-dependence can arise from chemically-activated, subcritical crack growth, which is known to occur in the presence of aqueous fluids. Here we attempt to establish quantitative links between this small scale process and its macroscopic manifestations. We performed a series of brittle deformation experiments in porous sandstones, in creep (constant stress) and constant strain rate conditions, in order to investigate the relationship between their short- and long-term mechanical behaviors. Elastic wave velocities measurements indicate that the amount of microcracking follows the amount of inelastic strain in a trend which does not depend upon the timescale involved. The comparison of stress-strain curves between constant strain rate and creep tests allows us to define a stress difference between the two, which can be viewed as a difference in energy release rate. We empirically show that the creep strain rates are proportional to an exponential function of this stress difference. We then establish a general method to estimate empirical micromechanical functions relating the applied stresses to mode I stress intensity factors at microcrack tips, and we determine the relationship between creep strain rates and stress intensity factors in our sandstone creep experiments. We finally provide an estimate of the sub-critical crack growth law parameters, and find that they match -within the experimental errors and approximations of the method- the typical values observed in independent single crack tests. Our approach provides a comprehensive and unifying explanation for the origin and the macroscopic manifestation of time-dependent brittle deformation in brittle rocks.

  9. Plasto-damage modelling for semi-brittle geomaterials

    OpenAIRE

    Alizadeh Ali; Gatmiri Behrouz

    2016-01-01

    This paper presents an elastoplastic damage model for constitutive modelling of semi-brittle geomaterials showing two irreversible mechanisms. On one hand, the model deals with the plastic behaviour of a porous medium by a new variant of Barcelona Basic Model. On the other hand, the model combines the micromechanical definition of damage and phenomenological concepts in the framework of Continuum Damage Mechanics (CDM) for damage modelling. A second order tensorial damage variable is adopted ...

  10. THEORETICAL STATISTICAL SOLUTION AND NUMERICAL SIMULATION OF HETEROGENEOUS BRITTLE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    陈永强; 姚振汉; 郑小平

    2003-01-01

    The analytical stress-strain relation with heterogeneous parameters is derived for the heterogeneous brittle materials under a uniaxial extensional load,in which the distributions of the elastic modulus and the failure strength are assumed to be statistically independent.This theoretical solution gives an approximate estimate of the equivalent stress-strain relations for 3-D heterogeneous materials.In one-dimensional cases it may provide comparatively accurate results.The theoretical solution can help us to explain how the heterogeneity influences the mechanical behaviors.Further,a numerical approach is developed to model the non-linear behavior of three-dimensional heterogeneous brittle materials.The lattice approach and statistical techniques are applied to simulate the initial heterogeneity of heterogeneous materials.The load increment in each loading stage is adaptively determined so that the better approximation of the failure process can be realized.When the maximum tensile principal strain exceeds the failure strain,the elements are considered to be broken,which can be carried out by replacing its Young's modulus with a very small value.A 3-D heterogeneous brittle material specimen is simulated during a full failure process.The numerical results are in good agreement with the analytical solutions and experimental data.

  11. The effect of shockwave profile shape on dynamic brittle failure

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available The role of shock wave loading profile is investigated for the failure processes in a brittle material. The dynamic damage response of ductile metals has been demonstrated to be critically dependent on the shockwave profile and the stress-state of the shock. Changing from a square to triangular (Taylor profile with an identical peak compressive stress has been reported to increase the “spall strength” by over a factor of two and suppress damage mechanisms. The spall strength of tungsten heavy alloy (WHA based on plate impact square-wave loading has been extensively reported in the literature. Here a triangular wave loading profile is achieved with a composite flyer plate of graded density in contrast to the square-wave loading. Counter to the strong dependence in wave profile in ductile metals, for WHA, both square and triangle wave profiles the failure is by brittle cleavage fracture with additional energy dissipation through crack branching in the more brittle tungsten particles, largely indistinguishable between wave profiles. The time for crack nucleation is negligible compared to the duration of the experiment and the crack propagation rate is limited to the sound speed as defined by the shock velocity.

  12. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea

    Directory of Open Access Journals (Sweden)

    Koon-Ja Lee

    2013-04-01

    Full Text Available To understand the corneal regeneration induced by bevacizumab,we investigated the structure changes of stroma andbasement membrane regeneration. A Stick soaked in 0.5 NNaOH onto the mouse cornea and 2.5 mg/ml of bevacizumabwas delivered into an alkali-burned cornea (2 μl by subconjunctivalinjections at 1 hour and 4 days after injury. At 7 daysafter injury, basement membrane regeneration was observedby transmission electron microscope. Uneven and thin epithelialbasement membrane, light density of hemidesmosomes,and edematous collagen fibril bundles are shown in thealkali-burned cornea. Injured epithelial basement membraneand hemidesmosomes and edematous collagen fibril bundlesresulting from alkali-burned mouse cornea was repaired bybevacizumab treatment. This study demonstrates that bevacizumabcan play an important role in wound healing in thecornea by accelerating the reestablishment of basementmembrane integrity that leads to barriers for scar formation.[BMB Reports 2013; 46(4: 195-200

  13. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas

    Science.gov (United States)

    Duggal, Neil; Jaishankar, Dinesh; Yadavalli, Tejabhiram; Hadigal, Satvik; Mishra, Yogendra Kumar; Adelung, Rainer

    2017-01-01

    Purpose Infection of the human cornea by herpes simplex virus type-1 (HSV-1) can cause significant vision loss. The purpose of this study was to develop an ex vivo model to visualize viral growth and spread in the cornea. The model was also used to analyze cytokine production and study the antiviral effects of zinc oxide tetrapods. Methods A β-galactosidase-expressing recombinant virus, HSV-1(KOS)tk12, was used to demonstrate the ability of the virus to enter and develop blue plaques on human corneal epithelial (HCE) cells and corneal tissues. Freshly obtained porcine corneas were cultured and then scratched before infection with HSV-1(KOS)tk12. The blue plaques on the corneas were imaged using a stereomicroscope. Western blot analysis for HSV-1 proteins was performed to verify HSV-1 infection of the cornea. Using the ex vivo model, zinc oxide tetrapods were tested for their anti-HSV-1 potential, and a cytokine profile was developed to assess the effects of the treatment. Results Cultured corneas and the use of β-galactosidase-expressing HSV-1(KOS)tk12 virus can provide an attractive ex vivo model to visualize and study HSV-1 entry and spread of the infection in tissues. We found that unlike cultured HCE cells, which demonstrated nearly 100% infectivity, HSV-1 infection of the cultured cornea was more restrictive and took longer to develop. We also found that the zinc oxide tetrapod–shaped nano- and microstructures inhibited HSV infection of the cultured cells, as well as the cultured corneas. The cytokine profile of the infected samples was consistent with previous studies of HSV-1 corneal infection. Conclusions The ability to visualize HSV-1 growth and spread in corneal tissues can provide new details about HSV-1 infection of the cornea and the efficacy of new cornea-specific antiviral drug candidates. The ex vivo model also demonstrates antiviral effects of zinc oxide tetrapods and adequately portrays the drug delivery issues that cornea-specific treatments

  14. Hyperglycemia-induced abnormalities in rat and human corneas: the potential of second harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Gaël Latour

    Full Text Available BACKGROUND: Second Harmonic Generation (SHG microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea. METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily

  15. Diabetic cornea wounds produce significantly weaker electric signals that may contribute to impaired healing

    OpenAIRE

    Yunyun Shen; Trisha Pfluger; Fernando Ferreira; Jiebing Liang; Navedo, Manuel F; Qunli Zeng; Brian Reid; Min Zhao

    2016-01-01

    Wounds naturally produce electric signals which serve as powerful cues that stimulate and guide cell migration during wound healing. In diabetic patients, impaired wound healing is one of the most challenging complications in diabetes management. A fundamental gap in knowledge is whether diabetic wounds have abnormal electric signaling. Here we used a vibrating probe to demonstrate that diabetic corneas produced significantly weaker wound electric signals than the normal cornea. This was conf...

  16. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    Science.gov (United States)

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  17. Polymicrobial Infection of the Cornea Due to Contact Lens Wear

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2016-04-01

    Full Text Available A 38-year-old male presented with pain and redness in his left eye. He had a history of wearing contact lenses. His ophthalmic examination revealed a large corneal ulcer with surrounding infiltrate. Cultures were isolated from the contact lenses, lens solutions, storage cases, and conjunctivae of both eyes and also corneal scrapings of the left eye. Fortified vancomycin and amikacin drops were started hourly. Culture results of conjunctivae of each eye and left cornea were positive for Pseudomonas aeruginosa; cultures from the contact lenses, lens solution and storage case of both eyes revealed Pseudomonas aeruginosa and Alcaligenes xylosoxidans. Polymerase chain reaction of the corneal scraping was positive for Acanthameoba. The topical antibiotics were changed with ones that both bacteria were sensitive to and anti-amoebic therapy was added. The patient had two recurrences following initial presentation despite intensive therapy. Keratitis occurred due to multiple pathogens; the relapsing course despite adequate therapy is potentially associated with this polymicrobial etiology.

  18. Cross-linking da cornea: protocolo padrão

    Directory of Open Access Journals (Sweden)

    Marcony R. Santhiago

    Full Text Available RESUMO O objetivo desta revisão é de determinar as indicações e eficácia da cirurgia que promove novas ligações covalentes entre as fibras de colágeno da córnea, conhecida como Cross-Linking (CXL, assim como esclarecer seus objetivos. O ceratocone é uma doença ectasica da córnea, bilateral, assimétrica, que, principalmente, cursa com encurvamento e afinamentos progressivo, e se inicia em geral na segunda década de vida. O uso primário do CXL tem sido na interrupção da progressão do Ceratocone. Apesar do conhecido encurvamento no estroma da córnea ocorrer nesses pacientes, a fisiopatologia por trás do ceratocone ainda é desconhecida e parece ser multifatorial. Pela evidencia literária disponível até o momento, o CXL da córnea esta, portanto indicado nos pacientes com doença em progressão. Concluímos que existe evidencia suficiente para afirmar que o CXL da córnea é eficaz na estabilização da doença ectásica da cornea.

  19. Ocular allergic inflammation: interaction between the cornea and conjunctiva.

    Science.gov (United States)

    Fukuda, Ken; Nishida, Teruo

    2010-11-01

    Severe ocular allergic diseases such as vernal keratoconjunctivitis are characterized not only by conjunctival allergic inflammation, including infiltration of T helper 2 cells and eosinophils into the conjunctiva, but also by various corneal disorders such as persistent epithelial defects and shield ulcer. Although the cornea and conjunctiva are thought to influence each other during ocular allergic inflammation, direct evidence for interaction between these tissues in vivo has been lacking. Eosinophils and eosinophil-derived factors are implicated in the pathogenesis of corneal lesions associated with ocular allergy, with cytotoxic granule proteins such as major basic protein and matrix metalloproteinase 9 derived from eosinophils having been detected in shield ulcer. Major basic protein exhibits cytotoxic effects in cultured corneal epithelial cells and inhibits corneal epithelial wound healing in organ culture, whereas matrix metalloproteinase 9 can degrade the corneal epithelial basement membrane. In vitro studies have revealed that cytokines and other inflammatory mediators directly impair the barrier function of corneal epithelial cells and increase the expression of chemokines and adhesion molecules by corneal stromal fibroblasts, effects that may enhance allergic inflammation. We have recently shown that removal of the corneal epithelium augmented late-phase clinical signs and conjunctival eosinophilia, whereas conjunctival inflammation delayed corneal epithelial wound healing, in a rat model of ocular allergy. Conjunctival allergic inflammation and corneal epithelial disorders thus interact with each other in vivo to generate a vicious cycle, interruption of which might provide the basis for novel approaches to the treatment of severe ocular allergy.

  20. Human cornea wound healing in organ culture after Er:YAG laser ablation

    Science.gov (United States)

    Shen, Jin-Hui; Joos, Karen M.; Robinson, Richard D.; Shetlar, Debra J.; O'Day, Denis M.

    1998-06-01

    Purpose: To study the healing process in cultured human corneas after Er:YAG laser ablation. Methods: Human cadaver corneas within 24 hours post mortem were ablated with a Q- switched Er:YAG laser at 2.94 micrometer wavelength. The radiant exposure was 500 mJ/cm2. The cornea was cultured on a tissue supporting frame immediately after the ablation. Culture media consisted of 92% minimum essential media, 8% fetal bovine serum, 0.125% HEPES buffer solution, 0.125% gentamicin, and 0.05% fungizone. The entire tissue frame and media container were kept in an incubator at 37 degrees Celsius and 5% CO2. Serial macroscopic photographs of the cultured corneas were taken during the healing process. Histology was performed after 30 days of culture. Results: A clear ablated crater into the stroma was observed immediately after the ablation. The thickness of thermal damage ranges between 1 and 25 micrometer. Haze development within the crater varies from the third day to the fourteenth day according to the depth and the roughness of the crater. Histologic sections of the cultured cornea showed complete re- epithelization of the lased area. Loose fibrous tissue is observed filling the ablated space beneath the epithelium. The endothelium appeared unaffected. Conclusions: The intensity and time of haze development appears dependent upon the depth of the ablation. Cultured human corneas may provide useful information regarding the healing process following laser ablation.

  1. Intrastromal Injection of China Painting Ink in Corneas of Male Rabbits: Clinical and Histological Study

    Directory of Open Access Journals (Sweden)

    Alahmady Hamad Alsmman Hassan

    2016-01-01

    Full Text Available Background. Many patients with corneal opacity or complicated cataract in blind eye ask for cosmoses. In this study we tried to investigate the staining of corneas of male rabbits by Rotring China painting ink and to study the histological changes. Method. 10 eyes of 10 male Baladi Egyptian rabbits were injected (0.1 mL intrastromally in the cornea by the use of China painting ink (Rotring Tinta China through insulin syringe (27-gauge needle by single injection; clinical follow-up is for 6 months and lastly the rabbits were scarified and the stained eyes were enucleated for histological analysis. Results. Clinically the stain was stable in color and distribution in corneas with no major complications. Histological results of the stained rabbit corneas showed blackish pigmentation in the corneal stroma without any inflammatory cellular infiltration. Some fibroblast cells had pigment granules in their cytoplasm in the adjacent layers. Conclusion. Corneal staining by China painting ink is effective and safe in staining of male rabbits cornea; however further study in human corneas with longer follow-up period is advisable.

  2. Trasplante de córnea Cornea transplant

    Directory of Open Access Journals (Sweden)

    A. Garralda

    2006-08-01

    Full Text Available La queratoplastia o trasplante de córnea es una de las técnicas quirúrgicas más antiguas de la oftalmología cuyas indicaciones son: 1 tectónicas, para preservar la anatomía e integridad corneal, 2 clínicas, para eliminar el tejido corneal inflamado en casos refractarios al tratamiento médico, 3 ópticas, para mejorar la agudeza visual y 4 cosméticas para mejorar el aspecto del ojo. El perfeccionamiento en la técnica y en el instrumental, así como en el tratamiento postoperatorio y en los medios de conservación del tejido donante han mejorado la supervivencia de los injertos realizados. El Modelo Pamplona de coordinación de trasplantes del Hospital Virgen del Camino (HVC está considerado como original y único en España, y en la logística de este programa se incluye el protocolo de detección y extracción de córneas así como el de queratoplastias.The keratoplasty, or corena transplant, is one of the oldest surgical techniques in opthalmology, whose indication are: 1 tectonic, in order to preserve corneal anatomy and integrity; 2 clinical, in order to eliminate the inflamed corneal tissue in cases refractory to medical treatment; 3 optical, in order to improve visual acuity; and 4 cosmetic, in order to improve the appearance of the eye. Improvements in technique and instruments, as well as in post-operative treatment and the means of preserving donated tissue, have improved survival of the grafts. The Pamplona Model of transplant coordination of the Virgen del Camino Hospital is considered to be original and unique in Spain. The logistics of this program include the protocol for detection and extraction of corneas as well as for keratoplasties.

  3. Effect of epithelial debridement on human cornea proteoglycans

    Directory of Open Access Journals (Sweden)

    E.S. Soriano

    2001-03-01

    Full Text Available Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each. Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.

  4. Gene transfer of integration defective anti-HSV-1 meganuclease to human corneas ex vivo.

    Science.gov (United States)

    Elbadawy, H M; Gailledrat, M; Desseaux, C; Salvalaio, G; Di Iorio, E; Ferrari, B; Bertolin, M; Barbaro, V; Parekh, M; Gayon, R; Munegato, D; Franchin, E; Calistri, A; Palù, G; Parolin, C; Ponzin, D; Ferrari, S

    2014-03-01

    Corneal graft rejection is a major problem in chronic herpetic keratitis (HK) patients with latent infection. A new class of antiviral agents targeting latent and active forms of herpes simplex virus type 1 (HSV-1) is importantly required. Meganucleases are sequence-specific homing endonucleases capable of inducing DNA double-strand breaks. A proof-of-concept experiment has shown that tailor-made meganucleases are efficient against HSV-1 in vitro. To take this work a step forward, we hypothesized that the pre-treatment of human corneas in eye banks using meganuclease-encoding vectors will allow HK patients to receive a medicated cornea to resist the recurrence of the infection and the common graft rejection problem. However, this strategy requires efficient gene delivery to human corneal endothelium. Using recombinant adeno-associated virus, serotype 2/1 (rAAV2/1), efficient gene delivery of a reporter gene was demonstrated in human corneas ex vivo. The optimum viral dose was 3.7 × 10(11) VG with an exposure time of 1 day, followed by 6 days incubation in de-swelling medium. In addition, 12 days incubation can result in transgene expression in excess of 70%. Using similar transduction conditions, meganuclease transgene expression was detected in 39.4% of the endothelial cells after 2 weeks in culture. Reduction of the total viral load in the media and the endothelial cells of corneas infected with HSV-1 was shown. Collectively, this work provides information about the optimum conditions to deliver genetic material to the cornea, and demonstrates for the first time the expression of meganuclease in human corneas ex vivo and its antiviral activity. In conclusion, we demonstrate that the treatment of human corneas in eye banks before transplantation is a new approach to address the unmet clinical needs in corneal diseases.

  5. Nonlocal effects on dynamic damage accumulation in brittle solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  6. What controls the strength and brittleness of shale rocks?

    Science.gov (United States)

    Rybacki, Erik; Reinicke, Andreas; Meier, Tobias; Makasi, Masline; Dresen, Georg

    2014-05-01

    With respect to the productivity of gas shales, in petroleum science the mechanical behavior of shales is often classified into rock types of high and low 'brittleness', sometimes also referred to as 'fraccability'. The term brittleness is not well defined and different definitions exist, associated with elastic properties (Poisson's ratio, Young's modulus), with strength parameters (compressive and tensile strength), frictional properties (cohesion, friction coefficient), hardness (indentation), or with the strain or energy budget (ratio of reversible to the total strain or energy, respectively). Shales containing a high amount of clay and organic matter are usually considered as less brittle. Similarly, the strength of shales is usually assumed to be low if they contain a high fraction of weak phases. We performed mechanical tests on a series of shales with different mineralogical compositions, varying porosity, and low to high maturity. Using cylindrical samples, we determined the uniaxial and triaxial compressive strength, static Young's modulus, the tensile strength, and Mode I fracture toughness. The results show that in general the uniaxial compressive strength (UCS) linearly increases with increasing Young's modulus (E) and both parameters increase with decreasing porosity. However, the strength and elastic modulus is not uniquely correlated with the mineral content. For shales with a relatively low quartz and high carbonate content, UCS and E increase with increasing quartz content, whereas for shales with a relatively low amount for carbonates, but high quartz content, both parameters increase with decreasing fraction of the weak phases (clays, kerogen). In contrast, the average tensile strength of all shale-types appears to increase with increasing quartz fraction. The internal friction coefficient of all investigated shales decreases with increasing pressure and may approach rather high values (up to ≡ 1). Therefore, the mechanical strength and

  7. Nanoscale Morphology in Tensile Fracture of a Brittle Amorphous Ribbon

    Institute of Scientific and Technical Information of China (English)

    Xifeng LI; Kaifeng ZHANG; Guofeng WANG

    2008-01-01

    The paper reports on the observation of nanoscale morphology on the tensile fracture surface of a brittle amorphous Fe-based ribbon. The formation of nanoscale damage cavity structure is a main characteristic morphology on the fracture surfaces. Approaching the ribbon boundary, these damage cavities assemble and form the nanoscale periodic corrugations, which are neither Wallner lines nor crack front waves. The periodic corrugations result from the interactions between the reflected elastic waves by the boundaries of amorphous ribbon and the stress fields of the crack tip.

  8. Estimation Criteria for Rock Brittleness Based on Energy Analysis During the Rupturing Process

    Science.gov (United States)

    Ai, Chi; Zhang, Jun; Li, Yu-wei; Zeng, Jia; Yang, Xin-liang; Wang, Ji-gang

    2016-12-01

    Brittleness is one of the most important mechanical properties of rock: it plays a significant role in evaluating the risk of rock bursts and in analysis of borehole-wall stability during shale gas development. Brittleness is also a critical parameter in the design of hydraulic fracturing. However, there is still no widely accepted definition of the concept of brittleness in rock mechanics. Although many criteria have been proposed to characterize rock brittleness, their applicability and reliability have yet to be verified. In this paper, the brittleness of rock under compression is defined as the ability of a rock to accumulate elastic energy during the pre-peak stage and to self-sustain fracture propagation in the post-peak stage. This ability is related to three types of energy: fracture energy, post-peak released energy and pre-peak dissipation energy. New brittleness evaluation indices B 1 and B 2 are proposed based on the stress-strain curve from the viewpoint of energy. The new indices can describe the entire transition of rock from absolute plasticity to absolute brittleness. In addition, the brittle characteristics reflected by other brittleness indices can be described, and the calculation results of B 1 and B 2 are continuous and monotonic. Triaxial compression tests on different types of rock were carried out under different confining pressures. Based on B 1 and B 2, the brittleness of different rocks shows different trends with rising confining pressure. The brittleness of red sandstone decreases with increasing confining pressure, whereas for black shale it initially increases and then decreases in a certain range of confining pressure. Granite displays a constant increasing trend. The brittleness anisotropy of black shale is discussed. The smaller the angle between the loading direction and the bedding plane, the greater the brittleness. The calculation B 1 and B 2 requires experimental data, and the values of these two indices represent only

  9. Challenges in the Japan Beyond-Brittle Project (JBBP) for EGS development beyond the brittle-ductile transition

    Science.gov (United States)

    Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.

    2013-12-01

    Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically

  10. Cornea nerve fiber quantification and construction of phenotypes in patients with fibromyalgia

    Science.gov (United States)

    Oudejans, Linda; He, Xuan; Niesters, Marieke; Dahan, Albert; Brines, Michael; van Velzen, Monique

    2016-01-01

    Cornea confocal microscopy (CCM) is a novel non-invasive method to detect small nerve fiber pathology. CCM generally correlates with outcomes of skin biopsies in patients with small fiber pathology. The aim of this study was to quantify the morphology of small nerve fibers of the cornea of patients with fibromyalgia in terms of density, length and branching and further phenotype these patients using standardized quantitative sensory testing (QST). Small fiber pathology was detected in the cornea of 51% of patients: nerve fiber length was significantly decreased in 44% of patients compared to age- and sex-matched reference values; nerve fiber density and branching were significantly decreased in 10% and 28% of patients. The combination of the CCM parameters and sensory tests for central sensitization, (cold pain threshold, mechanical pain threshold, mechanical pain sensitivity, allodynia and/or windup), yielded four phenotypes of fibromyalgia patients in a subgroup analysis: one group with normal cornea morphology without and with signs of central sensitization, and a group with abnormal cornea morphology parameters without and with signs of central sensitization. In conclusion, half of the tested fibromyalgia population demonstrates signs of small fiber pathology as measured by CCM. The four distinct phenotypes suggest possible differences in disease mechanisms and may require different treatment approaches. PMID:27006259

  11. Diabetic cornea wounds produce significantly weaker electric signals that may contribute to impaired healing.

    Science.gov (United States)

    Shen, Yunyun; Pfluger, Trisha; Ferreira, Fernando; Liang, Jiebing; Navedo, Manuel F; Zeng, Qunli; Reid, Brian; Zhao, Min

    2016-06-10

    Wounds naturally produce electric signals which serve as powerful cues that stimulate and guide cell migration during wound healing. In diabetic patients, impaired wound healing is one of the most challenging complications in diabetes management. A fundamental gap in knowledge is whether diabetic wounds have abnormal electric signaling. Here we used a vibrating probe to demonstrate that diabetic corneas produced significantly weaker wound electric signals than the normal cornea. This was confirmed in three independent animal models of diabetes: db/db, streptozotocin-induced and mice fed a high-fat diet. Spatial measurements illustrated that diabetic cornea wound currents at the wound edge but not wound center were significantly weaker than normal. Time lapse measurements revealed that the electric currents at diabetic corneas lost the normal rising and plateau phases. The abnormal electric signals correlated significantly with impaired wound healing. Immunostaining suggested lower expression of chloride channel 2 and cystic fibrosis transmembrane regulator in diabetic corneal epithelium. Acute high glucose exposure significantly (albeit moderately) reduced electrotaxis of human corneal epithelial cells in vitro, but did not affect the electric currents at cornea wounds. These data suggest that weaker wound electric signals and impaired electrotaxis may contribute to the impaired wound healing in diabetes.

  12. Fracture and ductile vs. brittle behavior -- Theory, modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Beltz, G.E. [ed.] [Univ. of California, Santa Barbara, CA (United States); Selinger, R.L.B. [ed.] [Catholic Univ., Washington, DC (United States); Kim, K.S. [ed.] [Brown Univ., Providence, RI (United States); Marder, M.P. [ed.] [Univ. of Texas, Austin, TX (United States)

    1999-08-01

    The symposium brought together the many communities that investigate the fundamentals of fracture, with special emphasis on the ductile/brittle transition across a broad spectrum of material classes, fracture at interfaces, and modelling fracture over various length scales. Theoretical techniques discussed ranged from first-principles electronic structure theory to atomistic simulation to mesoscale and continuum theories, along with studies of fractals and scaling in fracture. Experimental and theoretical talks were interspersed throughout all sessions, rather than being segregated. The contributions to this volume generally follow the topical outline upon which the symposium was organized. The first part, dealing with ductile vs. brittle behavior in metals, concerns itself with investigations of high-strength steel, magnesium alloys, ordered intermetallics, and Fe-Cr-Al alloys. The development of analytical methods based on micromechanical models, such as dislocation mechanics and cohesive/contact zone models, are covered in a follow-up section. Nonmetals, including silicon, are considered in Parts 3 and 4. Fractals, chaos, and scaling theories are taken up in Part 5, with a special emphasis on fracture in heterogeneous solids. Modelling based on large populations of dislocations has substantially progressed during the past three years; hence, a section devoted to crystal plasticity and mesoscale dislocation modelling appears next. Finally, the technologically significant area of interfacial fracture, with applications to composites and intergranular fracture, is taken up in Part 7. Separate abstracts were prepared for most of the papers in this book.

  13. Brittle fracture in casing pipes; Sproeda brott i mantelroer

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Stefan; Thoernblom, Kristian; Saellberg, Sven-Erik; Bergstroem, Gunnar [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-05-01

    Rapid Crack Propagation (RCP) has been observed in the casing pipe of large diameter district heating pipes on several occasions. An RCP crack is driven by hoop stresses in the casing pipe wall. It is a problem during installation work in cold weather. The casing pipe material is more brittle in low temperatures, and a temperature decrease will cause a hoop stress build-up since the thermal contraction of the casing pipe is constrained by the steel pipe and the PUR foam. RCP fracture has been documented at temperatures around -18 deg C but has likely, at some instances, occurred already at few degrees below 0 deg C. Three different polyethylene materials were evaluated with respect to the risk for brittle fracture of the casing pipe. One unimodal material of PE80 quality which have been used in casing to a large extent previously, one modern unimodal PE80 material which is used today and, finally, a bimodal PE80 material of a quality which currently is the dominant choice among pipe producers. Modern materials are in general much more resistant to brittle fracture, since it is an important design property for the raw material producers. Tests were done on casing of both large (up to 630 mm in diameter) and small (160 mm) dimension. A handling test was made where the pipes were cooled down and worked on with power tools in a manner similar to actual field work. An RCP fracture occurred at -25 deg C during cutting with angle grinder on a pipe with a diameter of 500 mm on the modern unimodal PE80 material. The same material also fractured during impact testing according to EN 253 at -20 deg C on both small and large diameter pipes. The bimodal PE80 resin passed both tests without fracture. A series of impact tests were done on pipes with diameter 160 mm with the purpose of determining critical temperatures and temperature stress levels with respect to brittle fracture. The results show that the bimodal material is so resistant that there is no real risk for RCP in

  14. Systematic assessment of microneedle injection into the mouse cornea

    Directory of Open Access Journals (Sweden)

    Matthaei Mario

    2012-06-01

    Full Text Available Abstract Background Corneal intrastromal injection is an important mode of gene-vector application to subepithelial layers. In a mouse model, this procedure is substantially complicated by the reduced corneal dimensions. Furthermore, it may be difficult to estimate the corneal area reached by the volume of a single injection. This study aimed to investigate intrastromal injections into the mouse cornea using different microneedles and to quantify the effect of injecting varying volumes. A reproducible injection technique is described. Methods Forty eyes of 20 129 Sv/J mice were tested. India ink was intrastromally injected using 30° beveled 33 G needles, tri-surface 25° beveled 35 G needles, or hand-pulled and 25° beveled glass needles. Each eye received a single injection of a volume of 1 or 2 μL. Corneoscleral buttons were fixed and flat mounted for computer-assisted quantification of the affected corneal area. Histological assessment was performed to investigate the intrastromal location of the injected dye. Results A mean corneal area of 5.0 ±1.4 mm2 (mean ± SD and 7.7 ±1.4 mm2 was covered by intrastromal injections of 1 and 2 μL, respectively. The mean percentage of total corneal area reached ranged from 39% to 53% for 1 μL injections, and from 65% to 81% for 2 μL injections. Injections using the 33 G needles tended to provide the highest distribution area. Perforation rates were 8% for 30° beveled 33 G needles and 44% for tri-surface beveled 35 G needles. No perforation was observed with glass needle; however, intrastromal breakage of needle tips was noted in 25% of these cases. Conclusions Intracorneal injection using a 30° beveled 33 G needle was safe and effective. The use of tri-surface beveled 35 G needles substantially increased the number of corneal perforations. Glass needles may break inside the corneal stroma. Injections of 1 μL and 2 μL resulted in an overall mean of 49% and 73% respectively

  15. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    Maciej Kupczyk; Adam Lejwoda; Przemyslaw Cieszkowski; Przemyslaw Libuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqvist's method for measurement of coating susceptibility to brittle cracking.

  16. Determination of the Influence of c-BN+h-BN Coating Structure on Brittleness

    Institute of Scientific and Technical Information of China (English)

    MaciejKupczyk; AdamLejwoda; PrzemyslawCieszkowski; PrzemyslawLibuda

    2004-01-01

    In the article is presented the brittleness study of boron nitride coatings deposited on cutting edges made of cemented carbides by the pulse-plasma method (PPD). Influences of the structure (density, pores, microcracks) of coating material on the brittleness and on selected technological parameters of boron nitride formation by PPD method particularly taking into account discharge voltage on brittleness are shown. Differences between values of both a1(300) and a1(500)coefficients characterized susceptibility to coatings cracking of investigated coating manufactured using different values of discharge voltage were defined. Results of an investigations have been confirmed usefulness of Palmqyist's method for measurement of coating susceptibility to brittle cracking.

  17. Research progress on ultra-precision machining technologies for soft-brittle crystal materials

    Science.gov (United States)

    Gao, Hang; Wang, Xu; Guo, Dongming; Chen, Yuchuan

    2016-12-01

    Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining difficulties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for softbrittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.

  18. [Cornea bank of Lyon: from quality diagnosis to ISO 9001 certification].

    Science.gov (United States)

    Pascal, P; Chalochet, A; Damour, O

    2001-12-01

    The tissue and cell bank of the HCL (Hospices Civils de Lyon) has, since 10 June 1999, consisted of two sections with related activities: cell culture for the Skin Substitutes Laboratory (Laboratoire des Substituts Cutanés, LSC) and preservation of corneas at 31 degrees C for the Cornea Bank. As the LSC had been ISO 9001 certified since March 1997 our aim, since merger, was to raise the Cornea Bank to the same level of quality as the LSC, so as to coincide with the renewal of the LSC certificate in February 2000. The methods we used (project, quality control, analysis and process optimization) led us to receive official certification only nine months after the merger. The procedure started with a program of quality control at the Cornea Bank from February 1999 onwards, in order to list the work and equipment required, evaluate its documentation system and what was needed to incorporate this new activity into the existing system of quality assurance at the LSC. On the 7th March 2000, the Tissue and Cell Bank of the HCL obtained an ISO 9001 certificate for its combined functions. As well as achieving our objectives and the strong points highlighted by the auditor during the renewal process, this quality assessment revealed many advantages: improvements in the conservation of corneas, economies in staff replacement and reductions in both the cost of maintaining quality, the cost of the corneas themselves, etc. The decree 'Banque' no. 99-741 of 30th August 1999, which put in place the system of authorization of tissue banks in France, demands quality control. Our application for certification which started in early 1999 had anticipated this regulation. This helped us enormously when compiling the dossier accompanying the official request and was an essential element in obtaining the favourable response of the ASSAPS on 21 June 2000.

  19. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  20. Holographic interferometry of intact and radially incised human eye-bank corneas.

    Science.gov (United States)

    Smolek, M K

    1994-05-01

    Many methods to measure corneal elasticity destroy the tissue and thereby produce erroneous results. Holographic interferometry, a highly precise nondestructive optical comparison technique, was used to evaluate corneal elasticity of intact eye-bank eyes. A double-pulse holographic interferometer operating at 632.8 nm was used to measure corneal deformation in 20 whole-globe eyes from donors 45 to 83 years of age for intraocular pressures from 16 mm Hg to 21 mm Hg. Stress was computed from LaPlace's law, and arc length strain was derived from z-axis distention of the central cornea. The stress-strain relationship in the normal physiological range of intraocular pressure was linear with a Young's elastic modulus of 1.03 gigapascals for the central cornea (r = 0.999). During interferometry of radial keratotomy of the cornea, interference fringe patterns developed in association with each incision as it was made. When four incisions were placed deep along each of the primary semimeridians, the fringe pattern developed as expected, based on current keratotomy models. When incisions were shallow (approximately 50% depth) and placed asymmetrically along the nasal, temporal, and superior semimeridians, the resulting surface strain was symmetrical about the central cornea, forming an annular pattern of interference fringes. These results indicate that when the cornea was stressed at physiological pressures as part of the intact whole globe, it was less elastic than excised corneal tissue tested by strip extensiometry. Radially incised corneas demonstrated strain patterns suggestive of inherent structural anisotropy with a possible inferior quadrant weakness.

  1. Second harmonic generation imaging of collagen fibrils in cornea and sclera

    Science.gov (United States)

    Han, Meng; Giese, Günter; Bille, Josef F.

    2005-07-01

    Collagen, as the most abundant protein in the human body, determines the unique physiological and optical properties of the connective tissues including cornea and sclera. The ultrastructure of collagen, which conventionally can only be resolved by electron microscopy, now can be probed by optical second harmonic generation (SHG) imaging. SHG imaging revealed that corneal collagen fibrils are regularly packed as a polycrystalline lattice, accounting for the transparency of cornea. In contrast, scleral fibrils possess inhomogeneous, tubelike structures with thin hard shells, maintaining the high stiffness and elasticity of the sclera.

  2. Morphological characterization of keratoconus-affected human corneas by SHG imaging and correlation analysis

    Science.gov (United States)

    Mercatelli, R.; Ratto, F.; Tatini, F.; Rossi, F.; Menabuoni, L.; Nicoletti, R.; Pini, R.; Pavone, Frederick; Cicchi, R.

    2016-03-01

    Keratoconus is an ophthalmic disease in which the cornea acquires an abnormal conical shape that prevents the correct focusing on the retina, causing visual impairment. The late diagnosis of keratoconus is among the principal causes of corneal transplantation surgery. In this study, we characterize the morphology of keratoconic corneas by means of the correlation of SHG images, finding that keratoconus can be diagnosed by analyzing the inclination of lamellae below Bowman's membrane. In addition, imaging performed with both sagittal and "en face" geometry demonstrated that this morphological features can be highlighted both ex vivo and in vivo.

  3. Computer driven optical keratometer and method of evaluating the shape of the cornea

    Science.gov (United States)

    Baroth, Edmund C. (Inventor); Mouneimme, Samih A. (Inventor)

    1994-01-01

    An apparatus and method for measuring the shape of the cornea utilize only one reticle to generate a pattern of rings projected onto the surface of a subject's eye. The reflected pattern is focused onto an imaging device such as a video camera and a computer compares the reflected pattern with a reference pattern stored in the computer's memory. The differences between the reflected and stored patterns are used to calculate the deformation of the cornea which may be useful for pre-and post-operative evaluation of the eye by surgeons.

  4. Temporary brittle bone disease: relationship between clinical findings and judicial outcome

    Directory of Open Access Journals (Sweden)

    Colin R. Paterson

    2011-10-01

    Full Text Available There is a wide differential diagnosis for the child with unexplained fractures including non-accidental injury, osteogenesis imperfecta and vitamin D deficiency rickets. Over the last 20 years we and others have described a self-limiting syndrome characterised by fractures in the first year of life. This has been given the provisional name temporary brittle bone disease. This work had proved controversial mostly because the fractures, including rib fractures and metaphyseal fractures, were those previously regarded as typical or even diagnostic of non-accidental injury. Some have asserted that the condition does not exist. Over the years 1985 to 2000 we investigated 87 such cases with fractures with a view to determining the future care of the children. In 85 of these the judiciary was involved. We examined the clinical and radiological findings in the 33 cases in which there was a judicial finding of abuse, the 24 cases in which the parents were exonerated and the 28 cases in which no formal judicial finding was made. The three groups of patients were similar in terms of demographics, age at fracturing and details of the fractures. The clinical similarities between the three groups of patients contrasts with the very different results of the judicial process.

  5. New criterion of material resistance for brittle fracture

    Directory of Open Access Journals (Sweden)

    M. Maj

    2010-01-01

    Full Text Available Wide variety of cast material applications and efforts to find optimum fields for casting operation are the reasons why it is so important to collect as many data on the properties of materials as possible. The problem of primary importance is to know how these materials will behave under the normally and rapidly changing loads, in other words – to know their fatigue strength. This study gives a short characteristic of fatigue tests and compares various data collected during measurements of the low-cycle fatigue strength coefficient K with the values of constant KIc, representing fracture toughness. The results of the investigations described here have revealed some important correlations that exist between the total elongation A5 and the proposed brittleness criterion B, conventional stress K, and fracture toughness KIc. The development of measurements seems to be of great importance and opens the field for further studies on practical implementation of this method.

  6. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  7. Plasto-damage modelling for semi-brittle geomaterials

    Directory of Open Access Journals (Sweden)

    Alizadeh Ali

    2016-01-01

    Full Text Available This paper presents an elastoplastic damage model for constitutive modelling of semi-brittle geomaterials showing two irreversible mechanisms. On one hand, the model deals with the plastic behaviour of a porous medium by a new variant of Barcelona Basic Model. On the other hand, the model combines the micromechanical definition of damage and phenomenological concepts in the framework of Continuum Damage Mechanics (CDM for damage modelling. A second order tensorial damage variable is adopted for the model. Damaged effective stress variables are employed for formulation of elastoplastic behaviour laws and the plastic yield surface is a damage dependent one. The model has been validated by comparing the numerical results with experimental results of argillites.

  8. Dynamic brittle material response based on a continuum damage model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  9. Modeling Strain Rate Effect for Heterogeneous Brittle Materials

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; DONG Aiai; LI Jianchun

    2006-01-01

    Rocks are heterogeneous from the point of microstructure which is of significance to their dynamic failure behavior.Both the compressive and tensile strength of rock-like materials is regarded different from the static strength.The present study adopts smoothed particle hydrodynamics (SPH) which is a virtual particle based meshfree method to investigate strain rate effect for heterogeneous brittle materials.The SPH method is capable of simulating rock fracture,free of the mesh constraint of the traditional FEM and FDM models.A pressure dependent J-H constitutive model involving heterogeneity is employed in the numerical modeling.The results show the compressive strength increases with the increase of strain rate as well as the tensile strength,which is important to the engineering design.

  10. Continuous intraperitoneal insulin infusion in patients with 'brittle' diabetes

    DEFF Research Database (Denmark)

    DeVries, J H; Eskes, S A; Snoek, Frank J

    2002-01-01

    .001). Relatively low levels for quality of life were found, as well as a higher than expected number of patients with psychiatric symptoms. CONCLUSIONS: CIPII proved effective in complex patients with a history of poor control and hospital admission. Despite a substantial long-term improvement in glycaemic control......AIMS: To evaluate the effects of continuous intraperitoneal insulin infusion (CIPII) using implantable pumps on glycaemic control and duration of hospital stay in poorly controlled 'brittle' Dutch diabetes patients, and to assess their current quality of life. METHODS: Thirty-three patients were......-term glycaemic response were sought. Self-report questionnaires were administered at 58 months follow-up only, to assess current psychopathology and quality of life. RESULTS: Mean HbA(1c) decreased from 10.0 +/- 2.3% to 9.0 +/- 1.8% (P = 0.039) 1 year after implantation and stabilized at 9.0 +/- 1.6% (P = 0...

  11. [Neurocutaneous syndrome with hair alterations].

    Science.gov (United States)

    Camacho-Martínez, F

    1997-09-01

    There are multiple neurocutaneous syndromes that may show hair alterations such as the interglabellar peak or 'widow's peak', which is an alteration of the hair implantation, in addition to the genohypotrichosis, hypertrichosis and hair shaft dysplasias. In this chapter we will focus on the latter. Out of the unspecific hair shaft dysplasias the only ones showing neurological alterations are trichorrhexis invaginata, observed in the syndrome of Netherton. Among the specific dysplasias we would like to point out monilethrix, and very especially the moniliform hair syndrome, the trichorrhexis nodosa, the pili torti and trichotiodystrophy. The latter is actually a group of syndromes which associates a series of diverse symptoms that have in common hair brittleness, fertility problems and physical and mental retardation, and they constitute the basic syndrome know as 'BIDS syndrome.

  12. A proposal for an international brittle fracture acceptance criterion for nuclear material transport cask applications

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, K.B.; Salzbrenner, R.J.; Nickell, R.E.

    1989-01-01

    This paper presents a fundamental basis for a brittle fracture acceptance criterion, examine several existing criteria and propose examples for consideration as international brittle fracture acceptance criteria. The proposed criteria are intended to stimulate discussion in order to advance the development of a consensus approach. 8 refs., 1 fig., 1 tab.

  13. Model of Mass and Heat Transfer during Vacuum Freeze-Drying for Cornea

    Directory of Open Access Journals (Sweden)

    Zou Huifen

    2012-01-01

    Full Text Available Cornea is the important apparatus of organism, which has complex cell structure. Heat and mass transfer and thermal parameters during vacuum freeze-drying of keeping corneal activity are studied. The freeze-drying cornea experiments were operated in the homemade vacuum freeze dryer. Pressure of the freeze-drying box was about 50 Pa and temperature was about −10°C by controlled, and operating like this could guarantee survival ratio of the corneal endothelium over the grafting normal. Theory analyzing of corneal freeze-drying, mathematical model of describing heat and mass transfer during vacuum freeze-drying of cornea was established. The analogy computation for the freeze-drying of cornea was made by using finite-element computational software. When pressure of the freeze-drying box was about 50 Pa and temperature was about −10°C, time of double-side drying was 170 min. In this paper, a moving-grid finite-element method was used. The sublimation interface was tracked continuously. The finite-element mesh is moved continuously such that the interface position always coincides with an element node. Computational precision was guaranteed. The computational results were agreed with the experimental results. It proved that the mathematical model was reasonable. The finite-element software is adapted for calculating the heat and mass transfer of corneal freeze-drying.

  14. Crosslinked collagen-gelatin-hyaluronic acid biomimetic film for cornea tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Ren, Li, E-mail: psliren@scut.edu.cn; Wang, Yingjun, E-mail: imwangyj@163.com

    2013-01-01

    Cornea disease may lead to blindness and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents the crosslinked collagen (Col)-gelatin (Gel)-hyaluronic acid (HA) films developed by making use of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as the crosslinker. The test results on the physical and biological properties indicate that the CGH631 film (the mass ratio of Col:Gel:HA = 6:3:1) has appropriate optical performance, hydrophilicity and mechanical properties. The diffusion properties of the CGH631 film to NaCl and tryptophan are also satisfactory and the measured data are 2.43 Multiplication-Sign 10{sup -6} cm{sup 2}/s and 7.97 Multiplication-Sign 10{sup -7} cm{sup 2}/s, respectively. In addition, cell viability studies demonstrate that the CGH631 film has good biocompatibility, on which human corneal epithelial cells attached and proliferated well. This biocompatible film may have potential use in cornea tissue engineering. - Highlights: Black-Right-Pointing-Pointer Crosslinked collagen-gelatin-hyaluronic acid films were fabricated in this study. Black-Right-Pointing-Pointer The film had appropriate physical properties. Black-Right-Pointing-Pointer Diffusion coefficient of the film was comparable with the human cornea. Black-Right-Pointing-Pointer HCEC viability studies confirmed the biocompatibility of the film.

  15. Shape of the anterior cornea : Comparison of height data from 4 corneal topographers

    NARCIS (Netherlands)

    de Jong, Tim; Sheehan, Matthew T.; Dubbelman, Michiel; Koopmans, Steven A.; Jansonius, Nomdo M.

    2013-01-01

    PURPOSE: To compare the ability of clinical corneal topographers to describe the shape of the anterior cornea for optical modeling. SETTING: University Medical Center Groningen, Groningen, Netherlands. DESIGN: Cross-sectional study. METHODS: The anterior corneal shape of healthy subjects was assesse

  16. Spectroscopic measurements and terahertz imaging of the cornea using a rapid scanning terahertz time domain spectrometer

    Science.gov (United States)

    Wen-Quan, Liu; Yuan-Fu, Lu; Guo-Hua, Jiao; Xian-Feng, Chen; Zhi-Sheng, Zhou; Rong-Bin, She; Jin-Ying, Li; Si-Hai, Chen; Yu-Ming, Dong; Jian-Cheng, Lv

    2016-06-01

    Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy (THz-TDS) system. A voice coil motor stage based optical delay line (VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length. The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content, and the measurement results show the consistence with the reported results, in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line (MDL). With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed. The two-term Debye relaxation model is employed to explain our experimental results, revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules. These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology. Project supported by the National Natural Science Foundation of China (Grant No. 61205101), the Shenzhen Municipal Research Foundation, China (Grant Nos. GJHZ201404171134305 and JCYJ20140417113130693), and the Marie Curie Actions-International Research Staff Exchange Scheme (IRSES) (Grant No. FP7 PIRSES-2013-612267).

  17. Bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits' cornea

    Directory of Open Access Journals (Sweden)

    Rodrigo V. Sepúlveda

    Full Text Available ABSTRACT: In order to test the performance of bacterial cellulose/polycaprolactone composite (BC/PCL and pure bacterial cellulose (BC as tissue substitutes in rabbits' cornea, a superficial ulcer containing 5mm in diameter and 0.2mm deep was made in the right cornea of 36 rabbits, then a interlayer pocket was created from the basis of this ulcer. Twelve rabbits received BC/PCL membrane and 12 were treated with BC membranes, both membranes with 8mm in diameter. The remaining rabbits received no membrane constituting the control group. The animals were clinically followed up for 45 days. Three animals of each group were euthanized at three, seven, 21, and 45 days after implantation for histological examination of the cornea along with the implant. Clinical observation revealed signs of moderate inflammatory process, decreasing from day 20th in the implanted groups. Histology showed absence of epithelium on the membranes, fibroplasia close to the implants, lymph inflammatory infiltrate with giant cells, collagen disorganization, with a predominance of immature collagen fibers in both groups with implants. Although inflammatory response is acceptable, the membranes used does not satisfactorily played the role of tissue substitute for the cornea during the study period.

  18. Influx of immunoglobulins from the vascular compartment into a grafted cornea

    NARCIS (Netherlands)

    VanDerVeen, G; Broersma, L; Bruyne, [No Value; Verhagen, C; VanRij, G; VanDerGaag, R; Ruijter, J

    1997-01-01

    Purpose. To determine the effect of a fresh corneal wound or a healed corneal Methods. F344 rats were immunized with human serum albumin (HSA) 1 week before an autologous rotational keratoplasty of the right cornea or 1 year after an autograft was performed. One group of rats also was treated with g

  19. Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea.

    Science.gov (United States)

    Mallet, Justin D; Rochette, Patrick J

    2013-08-01

    Exposition to ultraviolet (UV) light is involved in the initiation and the progression of skin cancer. The genotoxicity of UV light is mainly attributed to the induction of cyclobutane pyrimidine dimers (CPDs), the most abundant DNA damage generated by all UV types (UVA, B and C). The human cornea is also exposed to the harmful UV radiations, but no UV-related neoplasm has been reported in this ocular structure. The probability that a specific DNA damage leads to a mutation and eventually to cellular transformation is influenced by its formation frequency. To shed light on the genotoxic effect of sunlight in the human eye, we have analyzed CPD induction in the cornea and the iris following irradiation of ex vivo human eyes with UVA, B or C. The extent of CPD induction was used to establish the penetrance of the different UV types in the human cornea. We show that UVB- and UVC-induced CPDs are concentrated in the corneal epithelium and do not penetrate deeply beyond this corneal layer. On the other hand, UVA wavelengths penetrate deeper and induce CPDs in the entire cornea and in the first layers of the iris. Taken together, our results are undoubtedly an important step towards better understanding the consequences of UV exposure to the human eye.

  20. Successful treatment of Fusarium keratitis with cornea transplantation and topical and systemic voriconazole.

    NARCIS (Netherlands)

    Klont, R.R.; Eggink, C.A.; Rijs, A.J.M.M.; Wesseling, P.; Verweij, P.E.

    2005-01-01

    A case of invasive Fusarium keratitis in a previously healthy male patient was treated successfully with cornea transplantation and systemic and topical voriconazole after treatment failure with topical amphotericin B and systemic itraconazole. Topical voriconazole was well tolerated, and, in conjun

  1. [Simple keratectomy in band-shaped degeneration of the cornea (author's transl)].

    Science.gov (United States)

    Kenyeres, P

    1980-01-01

    In a case of band-shaped keratopathy chemical solution of the opacity failed but it proved easy to remove Bowman's membrane by grasping it with a forceps and pulling it off. As a result the cornea became clear and vision improved up to 6/7ths.

  2. Pretreatment methods to improve nerve immunostaining in corneas from long-term fixed embryonic quail eyes

    Science.gov (United States)

    Barrett, J. E.; Wells, D. C.; Conrad, G. W.

    1999-01-01

    Pretreatment methods were used to improve neurofilament immunostaining in corneas from embryonic day 16 Japanese quail corneas that had been stored in fixative solution for several months. A sequential combination of the following three pretreatments: brief microwave heating in saline, followed by extraction with sodium dodecyl sulfate (SDS) at 37 degrees C, followed by digestion with hyaluronidase at 37 degrees C, produced significantly increased antibody staining of corneal neurofilament proteins, compared with embryonic corneas subjected to no prior pretreatments or to single or two-step protocols. After applying the sequence of all three pretreatments, darkest nerve staining and increased numbers of fine branches were observed, together with lower background staining. Thus, the result of applying the three-step pretreatment sequence is better than that of applying any of its component single pretreatments or even combinations of any two of them. These findings therefore suggest that each of these three pretreatments causes a unique effect, beneficial to immunostaining of neurofilament proteins, and that their individual effects are independent and additive. In addition to embryonic corneas, the three-step procedure also may be useful for immunostaining of nerves in other very delicate, highly-hydrated tissues containing an abundance of extracellular matrix.

  3. Impression cytology and in vivo confocal microscopy in corneas with total limbal stem cell deficiency

    Directory of Open Access Journals (Sweden)

    Aline Lütz de Araújo

    2013-10-01

    Full Text Available PURPOSES: To describe corneal changes seen on in vivo confocal microscopy in patients with total limbal stem cell deficiency and to correlate them with cytological findings. METHODS: A prospective case series including 13 eyes (8 patients with total limbal deficiency was carried out. Stem cell deficiency was diagnosed clinically and by corneal impression cytology. Confocal images of the central cornea were taken with the Heidelberg Retina Tomograph II, Rostock Corneal Module (Heidelberg Engineering, Heidelberg, Germany. RESULTS: Impression cytology of the cornea revealed conjunctival epithelial cells and goblet cells in all cases. In vivo confocal microscopy showed disruption of normal layers of the corneal epithelium in all eyes. Confocal images showed cells with characteristics of conjunctival epithelium at the cornea in 76.9% of the total. These findings on confocal microscopy were compatible to limbal stem cell deficiency. Additionally, goblet cells, squamous metaplasia, inflammatory cells and dendritic cells were observed. The sub-basal nerve plexus was not identified in any of the corneas. Corneal neovessels were observed at the epithelium and stroma. All cases showed diffuse hyper-reflective images of the stroma corresponding to opacity of the tissue. CONCLUSIONS: Limbal stem cell deficiency had been confirmed by impression cytology in all cases, and 76.9% of the cases could also be diagnosed by in vivo confocal microscopy through the conjunctival epithelial cell visualization on the corneal surface. Frequent confocal microscopy findings were abnormal cells at the cornea (conjunctival epithelial, goblet and inflammatory cells, corneal neovessels and diffuse hyper-reflection of the stroma.

  4. Variable depth thermal lesions in rabbit corneas using a tunable thulium fiber laser

    Science.gov (United States)

    Fried, Nathaniel M.; Noguera, Guillermo; Castro-Combs, Juan; Behrens, Ashley

    2007-02-01

    Laser-induced thermal changes in the cornea have been used clinically for refractive surgery. This study describes the creation of variable depth thermal lesions in the cornea using a tunable Thulium fiber laser. Thermal lesions were created in fresh rabbit corneas, ex vivo, at three different wavelengths (1873 nm, 1890 nm, and 1904 nm) (n=6 corneas each). All other laser parameters were kept fixed with power of 5.5 W, 25-ms exposure time, and 650-μm diameter spot, yielding a single pulse exposure of 138 mJ, and a fluence of 42 J/cm2. Optical coherence tomography (OCT) and histology were used to measure pre- and post-operative corneal thickness and lesion dimensions. OCT measurements of pre and post-operative corneal thickness and lesion depth (in microns) were: (1873 nm: 450+/-30, 801+/-95, 655+/-51), (1890 nm: 460+/-27, 618+/-70, 332+/-56), (1904 nm: 448+20, 550+/-42, 245+36), respectively. By comparison, histologic measurements were: (1873 nm: 470+25, 828+21, 540+/-31), (1890 nm: 457+/-13, 625+/-17, 350+/-43), (1904 nm: 465+/-40, 627+/-35, 239+/-23), respectively. OCT lesion depth measured 82%, 54%, and 45% of corneal thickness, compared to histologic analysis of 65%, 56%, and 38%. This is the first preliminary test of a compact and tunable Thulium fiber laser for creating variable depth thermal lesions in the cornea. The Thulium fiber laser may have potential use as a replacement for the Ho:YAG and diode lasers for thermal keratoplasty.

  5. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    Science.gov (United States)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  6. Brittle-tough transitions during crack growth in toughened adhesives

    Science.gov (United States)

    Thoules, Michael

    2008-03-01

    The use of structural adhesives in automotive applications relies on an effective understanding of their performance under crash conditions. In particular, there is considerable potential for mechanics-based modeling of the interaction between an adhesive layer and the adherends, to replace current empirical approaches to design. Since energy dissipation during a crash, mediated by plastic deformation of the structure, is a primary consideration for automotive applications, traditional approaches of fracture mechanics are not appropriate. Cohesive-zone models that use two fracture parameters - cohesive strength and toughness - have been shown to provide a method for quantitative mechanics analysis. Combined numerical and experimental techniques have been developed to deduce the toughness and strength parameters of adhesive layers, allowing qualitative modeling of the performance of adhesive joints. These techniques have been used to study the failure of joints, formed from a toughened adhesive and sheet metal, over a wide range of loading rates. Two fracture modes are observed: quasi-static crack growth and dynamic crack growth. The quasi-static crack growth is associated with a toughened mode of failure; the dynamic crack growth is associated with a more brittle mode of failure. The results of the experiments and analyses indicate that the fracture parameters for quasi-static crack growth in this toughened system are essentially rate independent, and that quasi-static crack growth can occur even at the highest crack velocities. Effects of rate appear to be limited to the ease with which a transition to dynamic fracture could be triggered. This transition appears to be stochastic in nature, and it does not appear to be associated with the attainment of any critical value for crack velocity or loading rate. Fracture-mechanics models exist in the literature for brittle-ductile transitions in rate-dependent polymers, which rely on rate dependent values of toughness

  7. Harnessing of corneas captured and processed for transplantation in an ocular tissue bank of North-eastern Brazil

    Directory of Open Access Journals (Sweden)

    Izaura Luzia Silvério Freire

    Full Text Available The aim of this study was to describe the harnessing of corneas captured and processed for transplantation in an ocular tissue bank in north-eastern Brazil. This was a transverse and retrospective study, with a sample group of 612 individuals whose corneas were donated and captured between January/2007 and July/2012. This study was approved by the Research Ethics Committee under number 007.0.294.000-10, and research was based on an instrument consisting of social, demographic and clinical data of the donors. Of the 1209 corneas captured, 868 were used and 341 were discarded. Of the 612 donors, the corneas of 597 (97.5% were captured from both eyes, being that 423 (70.9% of these corneas were used. Further studies are required on the reasons for discarding corneas and clarifications as to the conduct of professionals when processing corneas, considering the increase in the quantity of donors and the elevated number of discarded ocular tissue.

  8. A Maxwell elasto-brittle rheology for sea ice modelling

    Science.gov (United States)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  9. Comparison of ductile-to-brittle transition curve fitting approaches

    Energy Technology Data Exchange (ETDEWEB)

    Cao, L.W. [School of Materials Science and Engineering, Beihang University (BUAA), Beijing 100191 (China)] [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Wu, S.J., E-mail: wusj@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), Beijing 100191 (China); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, Bristol BS2 8BS (United Kingdom)] [School of Physics, HH Wills Laboratory, University of Bristol, BS8 1TL (United Kingdom)

    2012-05-15

    Ductile-to-brittle transition (DBT) curve fitting approaches are compared over the transition temperature range for reactor pressure vessel steels with different kinds of data, including Charpy-V notch impact energy data and fracture toughness data. Three DBT curve fitting methods have been frequently used in the past, including the Burr S-Weibull and tanh distributions. In general there is greater scatter associated with test data obtained within the transition region. Therefore these methods give results with different accuracies, especially when fitting to small quantities of data. The comparison shows that the Burr distribution and tanh distribution can almost equally fit well distributed and large data sets extending across the test temperature range to include the upper and lower shelves. The S-Weibull distribution fit is poor for the lower shelf of the DBT curve. Overall for both large and small quantities of measured data the Burr distribution provides the best description. - Highlights: Black-Right-Pointing-Pointer Burr distribution offers a better fit than that of a S-Weibull and tanh fit. Black-Right-Pointing-Pointer Burr and tanh methods show similar fitting ability for a large data set. Black-Right-Pointing-Pointer Burr method can fit sparse data well distributed across the test temperature. Black-Right-Pointing-Pointer S-Weibull method cannot fit the lower shelf well and show poor fitting quality.

  10. Numerical modeling of macroscale brittle rock crushing during impacts

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Salah A.; Abdelhaffez, Gamal S. [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2014-02-01

    Several machines, such as crushers use the physical effect of compression to cause fragmentation 'crushing' of brittle rocks. As a consequence of the complex fragmentation process, crushers are still sized by empirical approaches. This paper present the results of a numerical study to understand some aspects of rock crushing phenomenon in terms of energy consumption. The study uses the discrete element approach of PFC2D code to simulate a stamp mill. The stamp mill has a simple crushing mechanism of a fixed kinetic energy delivered by a rigid ram impact. A single rock fragment crushing process dependent on the number of stamp mill ram blows is numerically examined. Both amount and type of energy generated by a ram blow are monitored besides the type of fractures generated. The model results indicate that the ram impact energy is mainly consumed in form of friction energy (up to 61 %) while strain energy stays at about 5 % of delivered energy. The energy consumed by crushing the rock represents only 32 % to 45 % of stamp mill energy and tends to decrease as the number of impacts increases. The rock fragmented matrix tends to convert into more friction energy with reduced number of new fractures as number of blows increase. The fragmentation caused by tensile is more often compared to those caused by shear, this behaviour increased with increasing number of ram blows. (orig.)

  11. Ductile streaks in precision grinding of hard and brittle materials

    Indian Academy of Sciences (India)

    V C Venkatesh; S Izman; S Sharif; T T Mon; M Konneh

    2003-10-01

    Ductile streaks produced during diamond grinding of hard and brittle materials have aided the subsequent process of polishing. Two novel techniques were used to study the formation of ductile mode streaks during diamond grinding (primary process) of germanium, silicon, and glass. In the first technique, aspheric surfaces were generated on Ge and Si at conventional speeds (5000 rpm). In the second technique, diamond grinding of plano surfaces on glass and Si surfaces using high speed (100,000 rpm) was carried out. Form accuracy, surface finish and ductile mode grinding streaks are discussed in this paper. It was found that resinoid diamond wheels gave more ductile streaks than metal-bonded wheels but better form accuracy was obtained with the latter. Ductile streaks were obtained more easily with pyrex rather than with BK 7 glass thus necessitating very little time for polishing. Ductile streaks appeared in abundance on germanium rather than silicon. Both the novel grinding techniques were used on CNC machining centres.

  12. Differential expression and processing of transforming growth factor beta induced protein (TGFBIp) in the normal human cornea during postnatal development and aging

    DEFF Research Database (Denmark)

    Karring, Henrik; Runager, Kasper; Valnickova, Zuzana

    2010-01-01

    Transforming growth factor beta induced protein (TGFBIp, also named keratoepithelin) is an extracellular matrix protein abundant in the cornea. The purpose of this study was to determine the expression and processing of TGFBIp in the normal human cornea during postnatal development and aging....... TGFBIp in corneas from individuals ranging from six months to 86 years of age was detected and quantified by immunoblotting. The level of TGFBIp in the cornea increases about 30% between 6 and 14 years of age, and adult corneas contain 0.7-0.8 microg TGFBIp per mg wet tissue. Two-dimensional (2-D...... of corneal TGFBIp suggests that TGFBIp may play a role in the postnatal development and maturation of the cornea. Furthermore, these observations may be relevant to the age at which mutant TGFBIp deposits in the cornea in those dystrophies caused by mutations in the transforming growth factor beta induced...

  13. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.

    Science.gov (United States)

    Zhang, Xinyu; Yin, Yin; Guo, Yanrong; Fan, Ning; Lin, Haoming; Liu, Fulong; Diao, Xianfen; Dong, Changfeng; Chen, Xin; Wang, Tianfu; Chen, Siping

    2015-05-01

    The viscoelastic properties of the human cornea can provide valuable information for clinical applications such as the early detection of corneal diseases, better management of corneal surgery and treatment and more accurate measurement of intra-ocular pressure. However, few techniques are capable of quantitatively and non-destructively assessing corneal biomechanics in vivo. The cornea can be regarded as a thin plate in which the vibration induced by an external vibrator propagates as a Lamb wave, the properties of which depend on the thickness and biomechanics of the tissue. In this study, pulses of ultrasound radiation force with a repetition frequency of 100 or 200 Hz were applied to the apex of corneas, and the linear-array transducer of a SonixRP system was used to track the tissue motion in the radial direction. Shear elasticity and viscosity were estimated from the phase velocities of the A0 Lamb waves. To assess the effectiveness of the method, some of the corneas were subjected to collagen cross-linking treatment, and the changes in mechanical properties were validated with a tensile test. The results indicated that the shear modulus was 137 ± 37 kPa and the shear viscosity was 3.01 ± 2.45 mPa · s for the group of untreated corneas and 1145 ± 267 kPa and was 0.16 ± 0.11 mPa · s for the treated group, respectively, implying a significant increase in elasticity and a significant decrease in viscosity after collagen cross-linking treatment. This result is in agreement with the results of the mechanical tensile test and with reports in the literature. This initial investigation illustrated the ability of this ultrasound-based method, which uses the velocity dispersion of low-frequency A0 Lamb waves, to quantitatively assess both the elasticity and viscosity of corneas. Future studies could discover ways to optimize this system and to determine the feasibility of using this method in clinical situations.

  14. Characterizing the effects of VPA, VC and RCCS on rabbit keratocytes onto decellularized bovine cornea.

    Directory of Open Access Journals (Sweden)

    Ying Dai

    Full Text Available To investigate the morphological and growth characteristics of rabbit keratocytes when cultured on decellularized cornea under simulate microgravity (SMG rotary cell culture system (RCCS and static culture or in plastic culture supplemented with small molecules of valproic acid (VPA and vitamin C (VC. Bovine corneas were firstly decellularized with Triton X-100 and NH(4OH and through short-term freezing process. Then cell count kit-8 (CCK-8 and flow cytometry were used to test the effects of VPA and VC on the proliferation, cell cycle and apoptosis of rabbit keratocytes. Hematoxylin-eosin (H&E staining and scanning electron microscopy (SEM imaging showed that cells were eliminated in the decellularized bovine corneas. The proliferation of cultured keratocytes was promoted by VPA and VC in the cell proliferation assay. VPA and VC moderately decreased the number of apoptotic cells and obviously promoted cell-cycle entrance of keratocytes. Rabbit keratocytes in plastic displayed spindle shape and rare interconnected with or without VPA and VC. Cells revealed dendritic morphology and reticular cellular connections when cultured on the carriers of decellularized corneas supplemented with VPA and VC even in the presence of 10% fetal bovine serum (FBS. When cultured in RCCS supplemented with VPA, VC and 10% FBS, keratocytes displayed round shape with many prominences and were more prone to grow into the pores of carriers with aggregation. Reverse transcription-polymerase chain reaction (RT-PCR analysis proved that the keratocytes cultured on decellularized bovine cornea under SMG with VPA and VC expressed keratocan and lumican. Keratocytes cultured on plastic expressed lumican but not keratocan. Immunofluorescence identification revealed that cells in all groups were positively immunostained for vimentin. Keratocytes on decellularized bovine cornea under SMG or in static culture were positively immunostained for keratocan and lumican. Thus, we

  15. Investigation of the influence of riboflavin-UV induced crosslinking on the cornea in the experiment

    Directory of Open Access Journals (Sweden)

    S. I. Anisimov

    2012-01-01

    Full Text Available Purpose: Morphological examination of the efficiency of the influence of various doses of riboflavin-UV induced crosslinking on the state of the corneal stroma in experimental animals.Methods: In the work were used rabbits males breed Chinchilla mass of 1.5-2.0 kg. the experiment was conducted on 20 eyes of 10 animals, which performed the routine crosslinking. Experimental animals, depending on the power UV-laser irradiation, were divided into 4 groups: the animals of the 1 group with the minimum intensity of radiation (30 minutes, 0.27 J, animals 2 group with medium intensity of radiation (15 minutes, 0.34 J, animals 3 groups with high intensity of radiation (30 minutes, 0.34 J, the control group 4 (without UV-radiation. Date of dynamic observation of the experimental animals was 5 days, after which the animals were taken out of the experiment. Morphological investigations were carried out by means of light and electron microscopy.Results: In groups of experimental animals with the impact of riboflavin UV-radiation in the stroma of the cornea were found the appearance of the areas of cross-stitched collagen fibers and fibrils. In the zone of the crosslinking were found activated keratoblasts.Near the membranes of these cells the contents of the vacuoles are released and filaments finish building of the collagen fibers. the epithelium of the corneas of all experimental animals recovered fully, with no morphological signs of endothelial damage has been found. Electron-microscopic investigation of stroma of corneas of the experimental animals of the control group after the experiment showed the presence of keratocytes in an inactive form and collagen fibers of stroma, packed in the form of plates or beams with a characteristic orientation.Conclusion: Studies have shown that UV-irradiation of the cornea leads to the appearance of linking between the fibers of collagen and actively synthesizing cells in the stroma of the cornea, which points to a

  16. Investigation of the influence of riboflavin-UV induced crosslinking on the cornea in the experiment

    Directory of Open Access Journals (Sweden)

    S. I. Anisimov

    2014-07-01

    Full Text Available Purpose: Morphological examination of the efficiency of the influence of various doses of riboflavin-UV induced crosslinking on the state of the corneal stroma in experimental animals.Methods: In the work were used rabbits males breed Chinchilla mass of 1.5-2.0 kg. the experiment was conducted on 20 eyes of 10 animals, which performed the routine crosslinking. Experimental animals, depending on the power UV-laser irradiation, were divided into 4 groups: the animals of the 1 group with the minimum intensity of radiation (30 minutes, 0.27 J, animals 2 group with medium intensity of radiation (15 minutes, 0.34 J, animals 3 groups with high intensity of radiation (30 minutes, 0.34 J, the control group 4 (without UV-radiation. Date of dynamic observation of the experimental animals was 5 days, after which the animals were taken out of the experiment. Morphological investigations were carried out by means of light and electron microscopy.Results: In groups of experimental animals with the impact of riboflavin UV-radiation in the stroma of the cornea were found the appearance of the areas of cross-stitched collagen fibers and fibrils. In the zone of the crosslinking were found activated keratoblasts.Near the membranes of these cells the contents of the vacuoles are released and filaments finish building of the collagen fibers. the epithelium of the corneas of all experimental animals recovered fully, with no morphological signs of endothelial damage has been found. Electron-microscopic investigation of stroma of corneas of the experimental animals of the control group after the experiment showed the presence of keratocytes in an inactive form and collagen fibers of stroma, packed in the form of plates or beams with a characteristic orientation.Conclusion: Studies have shown that UV-irradiation of the cornea leads to the appearance of linking between the fibers of collagen and actively synthesizing cells in the stroma of the cornea, which points to a

  17. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Science.gov (United States)

    Mohan, Rajiv R; Sinha, Sunilima; Tandon, Ashish; Gupta, Rangan; Tovey, Jonathan C K; Sharma, Ajay

    2011-04-12

    Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5), and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12) vg/ml) expressing green fluorescent protein gene (GFP) was topically applied onto normal or diseased (fibrotic or neovascularized) rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng) using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point). Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5-treated and

  18. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  19. Polymer Reinforced, Non-Brittle, Light-Weight Cryogenic Insulation for Reduced Life Cycle Costs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — InnoSense LLC (ISL) proposes to fabricate a composite aerogel foam. This material is designed to be impact resistant, non-brittle, non-water-retaining and insulating...

  20. Prediction of rock brittleness using nondestructive methods for hard rock tunneling

    Directory of Open Access Journals (Sweden)

    Rennie B. Kaunda

    2016-08-01

    Full Text Available The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks (ANN. Herein hard rock brittleness is defined using Yagiz' method. A predictive model is developed using a comprehensive database compiled from 30 years' worth of rock tests at the Earth Mechanics Institute (EMI, Colorado School of Mines. The model is sensitive to density, elastic properties, and P- and S-wave velocities. The results show that the model is a better predictor of rock brittleness than conventional destructive strength-test based models and multiple regression techniques. While the findings have direct implications on intact rock, the methodology can be extrapolated to rock mass problems in both tunneling and underground mining where rock brittleness is an important control.

  1. Prediction of rock brittleness using nondestructive methods for hard rock tunneling

    Institute of Scientific and Technical Information of China (English)

    Rennie B. Kaunda; Brian Asbury

    2016-01-01

    The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brit-tleness using artificial neural networks (ANN). Herein hard rock brittleness is defined using Yagiz’ method. A predictive model is developed using a comprehensive database compiled from 30 years’ worth of rock tests at the Earth Mechanics Institute (EMI), Colorado School of Mines. The model is sensitive to density, elastic properties, and P-and S-wave velocities. The results show that the model is a better predictor of rock brittleness than conventional destructive strength-test based models and mul-tiple regression techniques. While the findings have direct implications on intact rock, the methodology can be extrapolated to rock mass problems in both tunneling and underground mining where rock brittleness is an important control.

  2. Sensitivity and rapidity of blood culture bottles in the detection of cornea organ culture media contamination by bacteria and fungi

    OpenAIRE

    Thuret, G; Carricajo, A.; Chiquet, C.; Vautrin, A C; Celle, N; Boureille, M; Acquart, S; Aubert, G.; Maugery, J; Gain, P.

    2002-01-01

    Aims: To test the bactericidal activity of standard organ culture medium, and to compare the sensitivity and rapidity of blood culture bottles with conventional microbiological methods for detection of bacteria and fungi inoculated in a standard cornea organ culture medium.

  3. Physicochemical properties of biodegradable polyvinyl alcohol-agar films from the red algae Hydropuntia cornea.

    Science.gov (United States)

    Madera-Santana, Tomás J; Robledo, Daniel; Freile-Pelegrín, Yolanda

    2011-08-01

    Agar obtained from the red alga Hydropuntia cornea was blended with polyvinyl alcohol (PVOH) in order to produce biodegradable films. In this study, we compare the properties of biopolymeric films formulated with agars extracted from H. cornea collected at different seasons (rainy and dry) in the Gulf of Mexico coast and PVOH as synthetic matrix. The films were prepared at different agar contents (0%, 25%, 50%, 75%, and 100%) and their optical, mechanical, thermal, and morphological properties analyzed. The tensile strength of PVOH-agar films increased when agar content was augmented. The formulation with 50% agar from rainy season (RS) had a significant higher tensile strength when compared to those from dry season (DS; p biodegradable packaging industry.

  4. Photodynamic therapy (ALA-PDT) in the treatment of pathological states of the cornea

    Science.gov (United States)

    Switka-Wieclawska, Iwona; Kecik, Tadeusz; Kwasny, Miroslaw; Graczyk, Alfreda

    2003-10-01

    Each year an increasing amount of research is published on the use of photodynamic therapy in medicine. The most recent research has focused mostly on the use of photosensitizer called vertoporphyrin (Visudyne) is the treatment of subretinal neovascularization in age-related macular degeneration (AMD) or myopia, following a substantial amount of ophthalmology research mostly experimental on the application of the method in diagnosis and treatment of some eye tumors. In the Department of Ophthalmology of Polish Medical University in Warsaw, PDT was used as supplementary method in a selected group of patients with chronic virus ulcer of the cornea and keratopathies. During the treatment 5-aminolevulinic acid (5-ALA) was applied in ointment form as a photosensitizer activated with light wave of 633 nm. It appears, on the basis of the results obtained, that photodynamic therapy (ALA-PDT) may become in the future a valuable supplement to the methods being used at the present treating pathological states of the cornea.

  5. Tectonic deep anterior lamellar keratoplasty in impending corneal perforation using cryopreserved cornea.

    Science.gov (United States)

    Jang, Ji Hye; Chang, Sung Dong

    2011-04-01

    We report a case of tectonic corneal transplantation for impending corneal perforation to preserve anatomic integrity using cryopreserved donor tissue. An 82-year-old woman exhibiting impending corneal perforation suffered from moderate ocular pain in the left eye for one week. After abnormal tissues around the impending perforation area were carefully peeled away using a Crescent blade and Vannas scissors, the patient received tectonic deep anterior lamellar keratoplasty using a cryopreserved cornea stored in Optisol GS® solution at -70℃ for four weeks. At six months after surgery, the cornea remained transparent and restored the normal corneal thickness. There were no complications such as corneal haze or scars, graft rejection, recurrent corneal ulcer, and postoperative rise of intraocular pressure. Cryopreserved donor lamellar tissue is an effective substitute in emergency tectonic lamellar keratoplasty, such as impending corneal perforation and severe necrotic corneal keratitis.

  6. A new optical system for 3-dimensional mapping of the cornea

    Science.gov (United States)

    Franco, Sandra; Almeida, José B.

    2007-07-01

    In this work the authors present an optical corneal tomographer that uses two Scheimpflug cameras attached to an innovative illumination system that allows a rotary scanning of the entire cornea. The measurements are made from corneal optical sections obtained by illumination with a collimated beam expanded in a fan by a small cylindrical lens. This lens is provided with motor driven rotation in order to perform automated rotary scan of the whole cornea. The authors expect to achieve a scanning speed that will allow producing complete tomography maps without consideration of eye movements. Two Scheimpflug cameras are used to capture the images of the optical sections. With this system it is possible to obtain 3-D representation of the corneal thickness as well as corneal topography. Maps of the corneal thickness and elevation maps are shown. As Scheimpflug cameras are used, it is expected to obtained data from the lens too.

  7. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders.

    Science.gov (United States)

    Massoudi, Dawiyat; Malecaze, Francois; Galiacy, Stephane D

    2016-02-01

    The cornea represents the external part of the eye and consists of an epithelium, a stroma and an endothelium. Due to its curvature and transparency this structure makes up approximately 70% of the total refractive power of the eye. This function is partly made possible by the particular organization of the collagen extracellular matrix contained in the corneal stroma that allows a constant refractive power. The maintenance of such an organization involves other molecules such as type V collagen, FACITs (fibril-associated collagens with interrupted triple helices) and SLRPs (small leucine-rich proteoglycans). These components play crucial roles in the preservation of the correct organization and function of the cornea since their absence or modification leads to abnormalities such as corneal opacities. Thus, the aim of this review is to describe the different corneal collagens and proteoglycans by highlighting their importance in corneal transparency as well as their implication in corneal visual disorders.

  8. New insight into the shortening of the collagen fibril D-period in human cornea.

    Science.gov (United States)

    Jastrzebska, Maria; Tarnawska, Dorota; Wrzalik, Roman; Chrobak, Artur; Grelowski, Michal; Wylegala, Edward; Zygadlo, Dorota; Ratuszna, Alicja

    2017-02-01

    Collagen fibrils type I display a typical banding pattern, so-called D-periodicity, of about 67 nm, when visualized by atomic force or electron microscopy imaging. Herein we report on a significant shortening of the D-period for human corneal collagen fibrils type I (21 ± 4 nm) upon air-drying, whereas no changes in the D-period were observed for human scleral collagen fibrils type I (64 ± 4 nm) measured under the same experimental conditions as the cornea. It was also found that for the corneal stroma fixed with glutaraldehyde and air-dried, the collagen fibrils show the commonly accepted D-period of 61 ± 8 nm. We used the atomic force microscopy method to image collagen fibrils type I present in the middle layers of human cornea and sclera. The water content in the cornea and sclera samples was varying in the range of .066-.085. Calculations of the D-period using the theoretical model of the fibril and the FFT approach allowed to reveal the possible molecular mechanism of the D-period shortening in the corneal collagen fibrils upon drying. It was found that both the decrease in the shift and the simultaneous reduction in the distance between tropocollagen molecules can be responsible for the experimentally observed effect. We also hypothesize that collagen type V, which co-assembles with collagen type I into heterotypic fibrils in cornea, could be involved in the observed shortening of the corneal D-period.

  9. Demonstration of cornea Dua's layer at a deep anterior lamellar keratoplasty surgery

    OpenAIRE

    Yusuf Kocluk; Ayse Burcu; Emine Alyamac Sukgen

    2016-01-01

    The authors aimed to present a deep anterior lamellar keratoplasty (DALK) surgery case with mixed type bubble demonstrating Dua′s layer (DL). This was a reported case of DALK surgery. The authors encountered cornea DL structure at DALK surgery while cleaning the remaining stromal pieces. We also observed perforation in the central part of DL. However, DALK surgery could be completed. It is possible to encounter DL in a DALK surgery performed with mixed type big-bubble.

  10. Demonstration of cornea Dua′s layer at a deep anterior lamellar keratoplasty surgery

    Directory of Open Access Journals (Sweden)

    Yusuf Kocluk

    2016-01-01

    Full Text Available The authors aimed to present a deep anterior lamellar keratoplasty (DALK surgery case with mixed type bubble demonstrating Dua′s layer (DL. This was a reported case of DALK surgery. The authors encountered cornea DL structure at DALK surgery while cleaning the remaining stromal pieces. We also observed perforation in the central part of DL. However, DALK surgery could be completed. It is possible to encounter DL in a DALK surgery performed with mixed type big-bubble.

  11. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea.

    Directory of Open Access Journals (Sweden)

    Hassan Alizadeh

    Full Text Available Free-living amoebae of the Acanthamoeba species are the causative agent of Acanthamoeba keratitis (AK, a sight-threatening corneal infection that causes severe pain and a characteristic ring-shaped corneal infiltrate. Innate immune responses play an important role in resistance against AK. The aim of this study is to determine if Toll-like receptors (TLRs on corneal epithelial cells are activated by Acanthamoeba, leading to initiation of inflammatory responses in the cornea. Human corneal epithelial (HCE cells constitutively expressed TLR1, TLR2, TLR3, TLR4, and TLR9 mRNA, and A. castellanii upregulated TLR4 transcription. Expression of TLR1, TLR2, TLR3, and TLR9 was unchanged when HCE cells were exposed to A. castellanii. IL-8 mRNA expression was upregulated in HCE cells exposed to A. castellanii. A. castellanii and lipopolysaccharide (LPS induced significant IL-8 production by HCE cells as measured by ELISA. The percentage of total cells positive for TLR4 was higher in A. castellanii stimulated HCE cells compared to unstimulated HCE cells. A. castellanii induced upregulation of IL-8 in TLR4 expressing human embryonic kidney (HEK-293 cells, but not TLR3 expressing HEK-293 cells. TLR4 neutralizing antibody inhibited A. castellanii-induced IL-8 by HCE and HEK-293 cells. Clinical strains but not soil strains of Acanthamoeba activated TLR4 expression in Chinese hamster corneas in vivo and in vitro. Clinical isolates but not soil isolates of Acanthamoeba induced significant (P< 0.05 CXCL2 production in Chinese hamster corneas 3 and 7 days after infection, which coincided with increased inflammatory cells in the corneas. Results suggest that pathogenic species of Acanthamoeba activate TLR4 and induce production of CXCL2 in the Chinese hamster model of AK. TLR4 may be a potential target in the development of novel treatment strategies in Acanthamoeba and other microbial infections that activate TLR4 in corneal cells.

  12. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas.

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    Full Text Available Atmospheric pressure cold plasma (APCP might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS that kill microorganisms without substantially affecting human cells.In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC was able to inhibit or prevent damage and cell death.Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds. Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h.These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant.

  13. Synthesis of type III collagen by fibroblasts from the embryonic chick cornea

    OpenAIRE

    1980-01-01

    Synthesis of collagen types I, II, III, and IV in cells from the embryonic chick cornea was studied using specific antibodies and immunofluorescence. Synthesis of radioactively labeled collagen types I and III was followed by fluorographic detection of cyanogen bromide peptides on polyacrylamide slab gels and by carboxymethylcellulose chromatography followed by disc gel electrophoresis. Type III collagen had been detected previously by indirect immunofluorescence in the corneal epithelial cel...

  14. Inflammation Modulatory Protein TSG-6 for Chemical Injuries to the Cornea

    Science.gov (United States)

    2015-10-01

    protein TNF -stimulating gene 6 (TSG-6). TSG-6 may modulate the excessive inflammatory response that exacerbates the injury to the cornea caused by...period. The inflammatory response as measured by biochemical markers correlated with concentration of NAOH applied and began within 2 hours of injury...Goal – Establish the appropriate conditions for testing TSG-6 Determine timing and patterns of cellular and cytokine inflammatory responses as a

  15. Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Midura, R.J.; Hascall, V.C.; MacCallum, D.K.; Meyer, R.F.; Thonar, E.J.; Hassell, J.R.; Smith, C.F.; Klintworth, G.K. (National Institute of Dental Research, Bethesda, MD (USA))

    1990-09-15

    Corneal buttons were obtained from patients with types 1 and 2 macular corneal dystrophy (MCD) and from control patients with Fuchs' dystrophy or keratoconus. Buttons were incubated for 20 h in the presence of (3H)glucosamine or (2-3H)mannose. Radiolabeled proteoglycans and lactosaminoglycan-glycoproteins (L-GPs) were purified using chromatography on Q-Sepharose, Superose 6, and octyl-Sepharose. They were identified using chondroitinase ABC, keratanase or endo-beta-galactosidase digestion, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Superose 6 chromatography. This study confirms previous reports that type 1 MCD corneas synthesize a normal dermatan sulfate-proteoglycan (DS-PG) and an abnormal keratan sulfate-proteoglycan (KS-PG). The data indicate that typ 1 MCD corneas synthesize L-GP instead of KS-PG. This L-GP has a core protein of similar hydrophobicity (elution from octyl-Sepharose) and nearly similar mass (42 kDa) as the core protein of the KS-PG. It has identical glycoconjugates as those of the KS-PG except that they lack sulfate. Thus, type 1 MCD fails to synthesize keratan sulfate as a result of a defect in a sulfotransferase specific for sulfating lactosaminoglycans. Further, proteoglycans synthesized by a cornea from a patient with type 2 MCD were studied. This cornea synthesized a normal ratio of KS-PG to DS-PG although net synthesis of proteoglycans was approximately 30% below normal. The KS-PG appeared normal whereas the DS-PG had dermatan sulfate chains that were approximately 40% shorter than normal.

  16. A Cornea Substitute Derived from Fish Scale: 6-Month Followup on Rabbit Model

    OpenAIRE

    Fei Yuan; Liyan Wang; Chien-Chen Lin; Cheng-Hung Chou; Lei Li

    2014-01-01

    A fish scale-derived cornea substitute (Biocornea) is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the ...

  17. Development of a brittle fracture acceptance criterion for the International Atomic Energy Agency (IAEA)

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, K.B.; Salzbrenner, R. (Sandia National Labs., Albuquerque NM (United States)); Nickell, R.E.

    1993-01-01

    An effort has been undertaken to develop a brittle fracture acceptance criterion for structural components of nuclear material transportation casks. The need for such a criterion was twofold. First, new generation cask designs have proposed the use of ferritic steels and other materials to replace the austenitic stainless steel commonly used for structural components in transport casks. Unlike austenitic stainless steel which fails in a high-energy absorbing, ductile tearing mode, it is possible for these candidate materials to fail via brittle fracture when subjected to certain combinations of elevated loading rates and low temperatures. Second, there is no established brittle fracture criterion accepted by the regulatory community that covers a broad range of structural materials. Although the existing IAEA Safety Series no.37 addressed brittle fracture, its the guidance was dated and pertained only to ferritic steels. Consultant's Services Meetings held under the auspices of the IAEA have resulted in a recommended brittle fracture criterion. The brittle fracture criterion is based on linear elastic fracture mechanics, and is the result of a consensus of experts from six participating IAEA-member countries. The brittle fracture criterion allows three approaches to determine the fracture toughness of the structural material. The three approaches present the opportunity to balance material testing requirements and the conservatism of the material's fracture toughness which must be used to demonstrate resistance to brittle fracture. This work has resulted in a revised Appendix IX to Safety Series no.37 which will be released as an IAEA Technical Document within the coming year. (author).

  18. Development of a brittle fracture acceptance criterion for the International Atomic Energy Agency (IAEA)

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, Ken B.; Salzbrenner, Richard [Sandia National Labs., Albuquerque, NM (United States); Nickell, Robert E. [Applied Science and Technology, Inc., Poway, CA (United States)

    1992-01-01

    An effort has been undertaken to develop a brittle fracture acceptance criterion for structural components of nuclear material transportation casks. The need for such a criterion was twofold. First, new generation cask designs have proposed the use of ferritic steels and other materials to replace the austenitic stainless steel commonly used for structural components in transport casks. Unlike austenitic stainless steel which fails in a high-energy absorbing, ductile tearing mode, it is possible for these candidate materials to fail via brittle fracture when subjected to certain combinations of elevated loading rates and low temperatures. Second, there is no established brittle fracture criterion accepted by the regulatory community that covers a broad range of structural materials. Although the existing IAEA Safety Series {number sign}37 addressed brittle fracture, its the guidance was dated and pertained only to ferritic steels. Consultant's Services Meetings held under the auspices of the IAEA have resulted in a recommended brittle fracture criterion. The brittle fracture criterion is based on linear elastic fracture mechanics, and is the result of a consensus of experts from six participating IAEA-member countries. The brittle fracture criterion allows three approaches to determine the fracture toughness of the structural material. The three approaches present the opportunity to balance material testing requirements and the conservatism of the material's fracture toughness which must be used to demonstrate resistance to brittle fracture. This work has resulted in a revised Appendix IX to Safety Series {number sign}37 which will be released as an IAEA Technical Document within the coming year.

  19. Correlation between the electric and acoustic signals emitted during compression of brittle materials

    Directory of Open Access Journals (Sweden)

    Ermioni D. Pasiou

    2017-04-01

    Full Text Available An experimental protocol is described including a series of uni¬axial compression tests of three brittle materials (marble, mortar and glass. The Acoustic Emission (AE technique and the Pressure Stimulated Currents (PSC one are used since the recordings of both techniques are strongly related to the formation of cracking in brittle materials. In the present paper, the correlation of these techniques is investigated, which is finally proven to be very satisfactory.

  20. Fractal analysis of AFM images of the surface of Bowman's membrane of the human cornea.

    Science.gov (United States)

    Ţălu, Ştefan; Stach, Sebastian; Sueiras, Vivian; Ziebarth, Noël Marysa

    2015-04-01

    The objective of this study is to further investigate the ultrastructural details of the surface of Bowman's membrane of the human cornea, using atomic force microscopy (AFM) images. One representative image acquired of Bowman's membrane of a human cornea was investigated. The three-dimensional (3-D) surface of the sample was imaged using AFM in contact mode, while the sample was completely submerged in optisol solution. Height and deflection images were acquired at multiple scan lengths using the MFP-3D AFM system software (Asylum Research, Santa Barbara, CA), based in IGOR Pro (WaveMetrics, Lake Oswego, OR). A novel approach, based on computational algorithms for fractal analysis of surfaces applied for AFM data, was utilized to analyze the surface structure. The surfaces revealed a fractal structure at the nanometer scale. The fractal dimension, D, provided quantitative values that characterize the scale properties of surface geometry. Detailed characterization of the surface topography was obtained using statistical parameters, in accordance with ISO 25178-2: 2012. Results obtained by fractal analysis confirm the relationship between the value of the fractal dimension and the statistical surface roughness parameters. The surface structure of Bowman's membrane of the human cornea is complex. The analyzed AFM images confirm a fractal nature of the surface, which is not taken into account by classical surface statistical parameters. Surface fractal dimension could be useful in ophthalmology to quantify corneal architectural changes associated with different disease states to further our understanding of disease evolution.

  1. Temperature limitation may explain the containment of the trophozoites in the cornea during Acanthamoeba castellanii keratitis.

    Science.gov (United States)

    Nielsen, Mattias Kiel; Nielsen, Kim; Hjortdal, Jesper; Sørensen, Uffe B Skov

    2014-12-01

    Acanthamoeba keratitis is a serious sight-threatening disease. The relatively low temperature of the cornea may explain why amoebic infections usually are localized in this tissue and rarely spread to other parts of the eye. In this study, the growth rate of the amoeba Acanthamoeba castellanii was examined at different temperatures. The aim was to establish the optimal growth temperature for A. castellanii and to examine the growth within the vicinity of the core body temperature. The growth rates of four clinical and two environmental strains of A. castellanii were estimated at different temperatures, and temperature limitations for the trophozoite stage was established. Movements influenced by temperature gradients were monitored for two clinical strains of A. castellanii. The highest growth rate for each of the six amoebic strains tested was found to be close to 32 °C. The growth of the trophozoites of all examined strains was greatly reduced or completely halted at temperatures above 36 °C and encysted at the elevated temperature. Thus, the optimal growth temperature for the four strains of A. castellanii is close to the surface temperature of the human cornea, while the higher body core-temperature induced encysting of the amoebae. This may explain why most amoebic eye infections are confined to the cornea.

  2. Safety of cornea and iris in ocular surgery with 355-nm lasers.

    Science.gov (United States)

    Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel

    2015-09-01

    A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED 50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.

  3. A Cornea Substitute Derived from Fish Scale: 6-Month Followup on Rabbit Model

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2014-01-01

    Full Text Available A fish scale-derived cornea substitute (Biocornea is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the peripheral Biocornea, the collagen fibrils were arranged in reticular fashion. Slit lamp examination showed that haze and an ulcer were not observed in all groups at 3 months postoperatively while all corneas with Biocornea were clear at both 3 months and 6 months postoperatively. The interface of Biocornea and stromal tissue were filled successfully and without observable immune cells at postoperative day 180. Moreover, the Biocornea was not dissolved and degenerated but remained transparent and showed no apparent fragmentation. Our study demonstrated that the Biocornea derived from fish scale as a good substitute had high biocompatibility and support function after a long-term evaluation. This revealed that the new approach of using Biocornea may yield an ideal artificial cornea substitute for long-term inlay placement.

  4. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age

    Science.gov (United States)

    Artal, Pablo; Berrio, Esther; Guirao, Antonio; Piers, Patricia

    2002-01-01

    We studied the age dependence of the relative contributions of the aberrations of the cornea and the internal ocular surfaces to the total aberrations of the eye. We measured the wave-front aberration of the eye with a Hartmann-Shack sensor and the aberrations of the anterior corneal surface from the elevation data provided by a corneal topography system. The aberrations of the internal surfaces were obtained by direct subtraction of the ocular and corneal wave-front data. Measurements were obtained for normal healthy subjects with ages ranging from 20 to 70 years. The magnitude of the RMS wave-front aberration (excluding defocus and astigmatism) of the eye increases more than threefold within the age range considered. However, the aberrations of the anterior corneal surface increase only slightly with age. In most of the younger subjects, total ocular aberrations are lower than corneal aberrations, while in the older subjects the reverse condition occurs. Astigmatism, coma, and spherical aberration of the cornea are larger than in the complete eye in younger subjects, whereas the contrary is true for the older subjects. The internal ocular surfaces compensate, at least in part, for the aberrations associated with the cornea in most younger subjects, but this compensation is not present in the older subjects. These results suggest that the degradation of the ocular optics with age can be explained largely by the loss of the balance between the aberrations of the corneal and the internal surfaces.

  5. Resazurin metabolism assay is a new sensitive alternative test in isolated pig cornea.

    Science.gov (United States)

    Perrot, Sébastien; Dutertre-Catella, Hélène; Martin, Chantal; Rat, Patrice; Warnet, Jean-Michel

    2003-03-01

    The main object of our study was to investigate whether the resazurin metabolism assay is a sensitive surfactant and alcohol toxicity test in isolated pig cornea and to compare this recently developed fluorometric assay with the data collected in the eye irritation reference chemical data bank. Resazurin is a substrate that changes color in response to metabolic activity. Isolated pig corneas were immersed for 10 min in surfactants and alcohol irritant solutions. After incubation, resorufin fluorescence was read and corneal viability was assessed. This corneal viability was compared with the maximal modified average score published in the report of ECETOC. This assay highlighted different concentration-dependent irritation potentials of the three surfactants tested, and the same results were obtained with corneas treated with the alcohols. We observed that the degree of surfactant- and alcohol-induced decrease in corneal viability, using the resazurin reduction test, was correlated with the in vivo irritancy measurements as determined by the Draize test and scored with the Modified Maximum Average Score (MMAS). This assay allowed us to classify the ocular irritancy of the tested surfactants and alcohols in the same ranking order as the Draize classification. Corneal viability measurement can be used as a potential alternative for the toxicological assessment of surfactants and alcohols. The nontoxic, nonradioactive resazurin metabolism assay allows rapid assessment of many samples with simple equipment and at reduced cost for continuous monitoring of corneal viability. This assay seems to be suitable as a toxicological screening test for eye irritation determination.

  6. Surface modification of silicone rubber membrane by plasma induced graft copolymerization as artificial cornea.

    Science.gov (United States)

    Hsiue, G H; Lee, S D; Chang, P C

    1996-11-01

    In this study a highly biocompatible polymer membrane was prepared by surface modification. An artificial cornea was also developed for clinical applications. Silicone rubber (SR) membrane was grafted with hydrophilic monomers such as 2-hydroxyethyl methacrylate (HEMA) and acrylic acid by plasma induced grafted polymerization. Surface properties of the SR were characterized using secondary ions mass spectra, Fourier transform infrared/attenuated total reflection, and element spectra for chemical analysis. The corneal epithelial (CE) cell was cultured in vitro, and penetrating keratoplasty of albino rabbit cornea (in vivo) was performed to evaluate biological properties of modified SR membranes. The ability of the CE cell to attach onto various SR membranes was observed by inverted microscopy. The proliferation of CE cell was conducted in approximately 96 h. Experimental results indicated that the attachment and growth of CE onto SR-g-pHEMA (75 micrograms/ cm2) is enhanced. The morphologies of an attached CE cell are similar to those of a primary CE cell. In the in vivo study, the depth of anterior chamber was maintained 2 weeks after penetrating keratoplasty was performed with a SR grafted with pHEMA (210 micrograms/cm2). This phenomenon displayed a high biocompatibility of modified SR membrane with the CE cell. Furthermore, results in this study provide a valuable reference for application of the modified SR for an artificial cornea.

  7. In vivo multiphoton imaging of the cornea: polarization-resolved second harmonic generation from stromal collagen

    Science.gov (United States)

    Latour, G.; Gusachenko, I.; Kowalczuk, L.; Lamarre, I.; Schanne-Klein, M.-C.

    2012-03-01

    Multiphoton microscopy provides specific and contrasted images of unstained collagenous tissues such as tendons or corneas. Polarization-resolved second harmonic generation (SHG) measurements have been implemented in a laserscanning multiphoton microscope. Distortion of the polarimetric response due to birefringence and diattenuation during propagation of the laser excitation has been shown in rat-tail tendons. A model has been developed to account for these effects and correct polarization-resolved SHG images in thick tissues. This new modality is then used in unstained human corneas to access two quantitative parameters: the fibrils orientation within the collagen lamellae and the ratio of the main second-order nonlinear tensorial components. Orientation maps obtained from polarization resolution of the trans-detected SHG images are in good agreement with the striated features observed in the raw images. Most importantly, polarization analysis of the epi-detected SHG images also enables to map the fibrils orientation within the collagen lamellae while epi-detected SHG images of corneal stroma are spatially homogenous and do not enable direct visualization of the fibrils orientation. Depth profiles of the polarimetric SHG response are also measured and compared to models accounting for orientation changes of the collagen lamellae within the focal volume. Finally, in vivo polarization-resolved SHG is performed in rat corneas and structural organization of corneal stroma is determined using epi-detected signals.

  8. Brittleness and Packing Density Effects on Blast-hole Cuttings Yield of Selected Rocks

    Directory of Open Access Journals (Sweden)

    B. Adebayo

    2016-06-01

    Full Text Available This paper evaluates brittleness and packing density to analysis their effects on blast-hole cutting yield for three selected rocks in Nigeria. Brittleness test (S20 was carried out in accordance with Norwegian Soil and Rock Engineering and the Brittleness Index (BI for the selected rocks were estimated. The packing density determined from the photomicrograph of the rock samples. The grain size of 45 blast-holes drill cuttings collected from three selected while drilling of these rocks were determined using standard method of America Society for Testing and Materials (ASTM D 2487. The brittleness values are 50%, 44% and 42% for micro granite, porphyritic granite and medium biotite granite respectively. The result of BI varied from 10.32 – 11.59 and they are rated as moderately brittle rocks. The values of packing density varied from 92.20 – 94.55%, 91.00 -92.96% and 92.92 – 94.96% for all the rocks. The maximum weights of blast-hole particle size retained at 75 µm are 106.00g, 103.28 g and 99.76 g for medium biotite granite, micro granite and porhyritic granite respectively. Packing density values have correlation to some extent with (S20 values hence, this influence the yield of blast-hole cuttings as drilling progresses. The minimum weight of blast-hole cuttings particle size retained at 150 µm agrees with brittleness index classification for micro granite.

  9. Brittle materials at high-loading rates: an open area of research

    Science.gov (United States)

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  10. Brittle materials at high-loading rates: an open area of research

    Science.gov (United States)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  11. A new approach to rock brittleness and its usability at prediction of drillability

    Science.gov (United States)

    Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Yaralı, Olgay

    2016-07-01

    Rock brittleness is one of the most important issues in rock drilling and cutting. The relations between drillability and brittleness will assist engineers in excavation works. The demand for representative rock parameters related to planning of underground excavations is increasing, as these parameters constitute fundamental input for obtaining the most reliable cost and time estimates. In rock cutting mechanics, the effects of the rock and brittleness on the efficiency of drilling and excavation are examined by many researchers. In this study, 41 different rock types were tested in laboratory to investigate the relations between the drilling rate index and different brittleness values. Firstly, the relations defined in literature are tested. Strength tests are made according to International Society for Rock Mechanics standards. In addition Norwegian University of Science and Technology standards are used to determine drilling rate index. Then, a new brittleness index is proposed which is the arithmetic average of uniaxial compressive strength and tensile strength. Considering the regression analysis carried out, it was seen that the proposed formula showed good correlation for these samples handled in this study. As a result of this study, a high correlation is obtained between the proposed index and drilling rate index values (R:0.84). The results are found to be at least reliable as well as other brittleness equations given in literature.

  12. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    Science.gov (United States)

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  13. Optics of the average normal cornea from general and canonical representations of its surface topography.

    Science.gov (United States)

    Navarro, Rafael; González, Luis; Hernández, José L

    2006-02-01

    Generally, the analysis of corneal topography involves fitting the raw data to a parametric geometric model that includes a regular basis surface, plus some sort of polynomial expansion to adjust the more irregular residual component. So far, these parametric models have been used in their canonical form, ignoring that the observation (keratometric) coordinate system is different from corneal axes of symmetry. Here we propose, instead, to use the canonical form when the topography is referenced to the intrinsic corneal system of coordinates, defined by its principal axes of symmetry. This idea is implemented using the general expression of an ellipsoid to fit the raw data given by the instrument. Then, the position and orientation of the three orthogonal semiaxes of the ellipsoid, which define the intrinsic Cartesian system of coordinates for normal corneas, can be identified by passing to the canonical form, by standard linear algebra. This model has been first validated experimentally obtaining significantly lower values for rms fitting error as compared with previous standard models: spherical, conical, and biconical. The fitting residual was then adjusted by a Zernike polynomial expansion. The topographies of 123 corneas were analyzed obtaining their radii of curvature, conic constants, Zernike coefficients, and the direction and position of the optical axis of the ellipsoid. The results were compared with those obtained using the standard models. The general ellipsoid model provides more negative values for the conic constants and lower apex radii (more prolate shapes) than the standard models applied to the same data. If the data are analyzed using standard models, the resulting mean shape of the cornea is consistent with previous studies, but when using the ellipsoid model we find new interesting features: The mean cornea is a more prolate ellipsoid (apical power 50 D), the direction of the optical axis is about 2.3 degrees nasal, and the residual term shows

  14. Optics of the average normal cornea from general and canonical representations of its surface topography

    Science.gov (United States)

    Navarro, Rafael; González, Luis; Hernández, José L.

    2006-02-01

    Generally, the analysis of corneal topography involves fitting the raw data to a parametric geometric model that includes a regular basis surface, plus some sort of polynomial expansion to adjust the more irregular residual component. So far, these parametric models have been used in their canonical form, ignoring that the observation (keratometric) coordinate system is different from corneal axes of symmetry. Here we propose, instead, to use the canonical form when the topography is referenced to the intrinsic corneal system of coordinates, defined by its principal axes of symmetry. This idea is implemented using the general expression of an ellipsoid to fit the raw data given by the instrument. Then, the position and orientation of the three orthogonal semiaxes of the ellipsoid, which define the intrinsic Cartesian system of coordinates for normal corneas, can be identified by passing to the canonical form, by standard linear algebra. This model has been first validated experimentally obtaining significantly lower values for rms fitting error as compared with previous standard models: spherical, conical, and biconical. The fitting residual was then adjusted by a Zernike polynomial expansion. The topographies of 123 corneas were analyzed obtaining their radii of curvature, conic constants, Zernike coefficients, and the direction and position of the optical axis of the ellipsoid. The results were compared with those obtained using the standard models. The general ellipsoid model provides more negative values for the conic constants and lower apex radii (more prolate shapes) than the standard models applied to the same data. If the data are analyzed using standard models, the resulting mean shape of the cornea is consistent with previous studies, but when using the ellipsoid model we find new interesting features: The mean cornea is a more prolate ellipsoid (apical power 50 D), the direction of the optical axis is about 2.3° nasal, and the residual term shows three

  15. Correlation of Biomicroscopic Findings with Confocal Microscopy in Eyes with Amiodarone-Induced Cornea Verticillata

    Directory of Open Access Journals (Sweden)

    Emine Kaya

    2014-01-01

    Full Text Available Objectives: To investigate the correlation between biomicroscopic and confocal microscopic findings in eyes with amiodarone-induced cornea verticillata. Materials and Methods: Sixteen eyes of 8 patients with amiodarone-induced cornea verticillata were evaluated. Eyes with keratopathy were staged according to Orlando slit-lamp microscopy classification. Confocal laser-scanning microscopy was performed by Rostock cornea modulated to HRT II (Heidelberg Engineering GmbH, Heidelberg, Germany, and staging was done according to Falke’s classification that is based on the degree of epithelial basal cell deposit accumulation. The relation between biomicroscopic staging and corneal involvement detected on confocal microscopy was assessed by Spearman correlation analysis. Results: The mean age of the 8 patients (5 male, 3 female was 63.1±7.2 (50 to 69 years. The mean duration of drug treatment was 12.1±11.8 (3 to 36 months, and the mean drug treatment dose was 312.5±223.2 (100 to 800 mg/day. At the time of examination, 50% of the patients had already given up the treatment at a mean of 29.5±15.8 (6 to 40 months ago, whereas the other 50% were still on amiodarone therapy. Hyper-reflecting deposits were observed in the basal epithelium, anterior-, mid-and deep-stroma, and in the endothelium on confocal microscopic examination. Correlation was detected between biomicroscopic and confocal microscopic stages (r=0.770, p<0.001. Frequency of detecting deposits in the stroma and endothelium was found to be increasing as the biomicroscopic stage increased (r=0.844; p<0.001 and r=0.551; p<0.01, respectively. Conclusion: In amiodarone-induced cornea verticillata, correlated results were detected between biomicroscopic and confocal microscopic staging. Therefore, in clinics where confocal microscopy is not available, biomicroscopic staging can be used as a guiding parameter in eyes with amiodarone-induced cornea verticillata. (Turk J Ophthalmol 2014; 44: 63-67

  16. Chronic Lunar Dust Exposure on Rat Cornea: Evaluation by Gene Expression Profiling

    Science.gov (United States)

    Theriot, C. A.; Glass, A.; Lam, C-W.; James, J.; Zanello, S. B.

    2014-01-01

    Lunar dust is capable of entering habitats and vehicle compartments by sticking to spacesuits or other objects that are transferred into the spacecraft from the lunar surface and has been reported to cause irritation upon exposure. During the Apollo missions, crewmembers reported irritation specifically to the skin and eyes after contamination of the lunar and service modules. It has since been hypothesized that ocular irritation and abrasion might occur as a result of such exposure, impairing crew vision. Recent work has shown that both ultrafine and unground lunar dust exhibited minimal irritancy of the ocular surface (i.e., cornea); however, the assessment of the severity of ocular damage resulting from contact of lunar dust particles to the cornea has focused only on macroscopic signs of mechanical irritancy and cytotoxicity. Given the chemical reactive properties of lunar dust, exposure of the cornea may contribute to detrimental effects at the molecular level including but not limited to oxidative damage. Additionally, low level chronic exposures may confound any results obtained in previous acute studies. We report here preliminary results from a tissue sharing effort using 10-week-old Fischer 344 male rats chronically exposed to filtered air or jet milled lunar dust collected during Apollo 14 using a Jaeger-NYU nose-only chamber for a total of 120 hours (6 hours daily, 5 days a week) over a 4-week period. RNA was isolated from corneas collected from rats at 1 day and 7 days after being exposed to concentrations of 0, 20, and 60 mg/m3 of lunar dust. Microarray analysis was performed using the Affymetrix GeneChip Rat Genome 230 2.0 Array with Affymetrix Expression Console and Transcriptome Analysis Console used for normalization and secondary analysis. An Ingenuity iReport"TM" was then generated for canonical pathway identification. The number of differentially expressed genes identified increases with dose compared to controls suggesting a more severe

  17. In vitro permeation characteristics of moxifloxacin from oil drops through excised goat, sheep, buffalo and rabbit corneas.

    Science.gov (United States)

    Pawar, P K; Majumdar, D K

    2007-11-01

    The objective of present investigation was to study the in vitro permeation characteristics of moxifloxacin from oil drops through freshly excised goat, sheep, buffalo and rabbit corneas. Moxifloxacin, 0.043 to 0.048% (w/v) ophthalmic solutions with or without (0.5% v/v) benzyl alcohol were made in arachis, castor, cottonseed, olive, soybean, sunflower and sesame oils. Permeation studies were conducted by putting 1 ml oil formulation on cornea (0.50 cm2) fixed between donor and receptor compartments of an all glass modified Franz diffusion cell and measuring the drug permeated in receptor (containing 10 ml bicarbonate ringer, pH 7.4 at 37 degrees C under stirring) by spectrophotometry at 291 nm, after 120 min. Post permeation corneal hydration was measured to assess corneal damage. The study was designed with paired corneas i.e. one cornea of an animal received formulation without benzyl alcohol while the contralateral cornea received formulation with benzyl alcohol. Moxifloxacin ophthalmic solution in castor oil showed maximum permeation with all the corneas. Addition of benzyl alcohol, a preservative, to oil drops reduced permeation of moxifloxacin from each oil drop, with corneas of all the species. Partition experiments with moxifloxacin oil drops and phosphate buffer (pH 7.4) indicated higher partitioning of drug in the oil phase, in presence of benzyl alcohol. Thus results of permeation are consistent with the partition characteristics of drug between oil and aqueous phase. Corneal hydration obtained with all the formulations was between 75 to 80% indicating no corneal damage.

  18. Validation of an endothelial roll preparation for Descemet Membrane Endothelial Keratoplasty by a cornea bank using "no touch" dissection technique.

    Science.gov (United States)

    Marty, Anne-Sophie; Burillon, Carole; Desanlis, Adeline; Damour, Odile; Kocaba, Viridiana; Auxenfans, Céline

    2016-06-01

    Descemet Membrane Endothelial Keratoplasty (DMEK) selectively replaces the damaged posterior part of the cornea. However, the DMEK technique relies on a manually-performed dissection that is time-consuming, requires training and presents a potential risk of endothelial graft damages leading to surgery postponement when performed by surgeons in the operative room. To validate precut corneal tissue preparation for DMEK provided by a cornea bank in order to supply a quality and security precut endothelial tissue. The protocol was a technology transfer from the Netherlands Institute for Innovative Ocular Surgery (NIIOS) to Lyon Cornea Bank, after formation in NIIOS to the DMEK "no touch" dissection technique. The technique has been validated in selected conditions (materials, microscope) and after a learning curve, cornea bank technicians prepared endothelial tissue for DMEK. Endothelial cells densities (ECD) were evaluated before and after preparation, after storage and transport to the surgery room. Microbiological and histological controls have been done. Twenty corneas were manually dissected; 18 without tears. Nineteen endothelial grafts formed a double roll. The ECD loss after cutting was 3.3 % (n = 19). After transportation 7 days later, we found an ECD loss of 25 % (n = 12). Three days after cutting and transportation, we found 2.1 % of ECD loss (n = 7). Histology found an endothelial cells monolayer lying on Descemet membrane. The mean thickness was 12 ± 2.2 µm (n = 4). No microbial contamination was found (n = 19). Endothelial roll stability has been validated at 3 days in our cornea bank. Cornea bank technicians trained can deliver to surgeons an ECD controlled, safety and ready to use endothelial tissue, for DMEK by "no touch" technique, allowing time saving, quality and security for surgeons.

  19. Quantitative comparisons of analogue models of brittle wedge dynamics

    Science.gov (United States)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  20. Corneal Collagen Cross-Linking with Hypoosmolar Riboflavin Solution in Keratoconic Corneas

    Directory of Open Access Journals (Sweden)

    Shaofeng Gu

    2014-01-01

    Full Text Available Purpose. To report the 12-month outcomes of corneal collagen cross-linking (CXL with a hypoosmolar riboflavin and ultraviolet-A (UVA irradiation in thin corneas. Methods. Eight eyes underwent CXL using a hypoosmolar riboflavin solution after epithelial removal. The corrected distance visual acuity (CDVA, manifest refraction, the mean thinnest corneal thickness (MTCT, and the endothelial cell density (ECD were evaluated before and 6 and 12 months after CXL. Results. The MTCT was 413.9 ± 12.4 μm before treatment and reduced to 381.1 ± 7.3 μm after the removal of the epithelium. After CXL, the thickness decreased to 410.3 ± 14.5 μm at the last follow-up. Before treatment, the mean K-value of the apex of the keratoconus corneas was 58.7 ± 3.5 diopters and slightly decreased (57.7 ± 4.9 diopters at 12 months. The mean CDVA was 0.54 ± 0.23 logarithm of the minimal angle of resolution before treatment and increased to 0.51 ± 0.21 logarithm at the last follow-up. The ECD was 2731.4 ± 191.8 cells/mm2 before treatment and was 2733.4 ± 222.6 cells/mm2 at 12 months after treatment. Conclusions. CXL with a hypoosmolar riboflavin in thin corneas seems to be a promising method for keratoconic eyes with the mean thinnest corneal thickness less than 400 μm without epithelium.

  1. Localization and expression of CHST6 and keratan sulfate proteoglycans in the human cornea.

    Science.gov (United States)

    Di Iorio, Enzo; Barbaro, Vanessa; Volpi, Nicola; Bertolin, Marina; Ferrari, Barbara; Fasolo, Adriano; Arnaldi, Renato; Brusini, Paolo; Prosdocimo, Giovanni; Ponzin, Diego; Ferrari, Stefano

    2010-08-01

    Macular corneal dystrophy (MCD; OMIM 217800) is a rare autosomal recessive inherited disorder caused by mutations in the carbohydrate sulfotransferase 6 (CHST6) and characterised by the presence of unsulfated keratan sulfate proteoglycans (KSPGs) forming abnormal deposits that eventually lead to visual impairment. The aim of this study is to understand in which corneal cells CHST6 and KSPGs are expressed and exert their activity. Expression and localization of CHST6, keratan sulfate (KS) and proteins of the KSPGs, such as mimecan and lumican, were assessed both in human cornea sections and in cultured primary keratinocytes (n = 3) and keratocytes (n = 4). Immunohistochemistry, semiquantitative RT-PCR, in situ RNA hybridization and HPLC analysis of glycosaminoglycans were used as read-outs. In human corneas KS was predominantly found in the stroma, but absent, or barely detectable, in the corneal epithelium. A similar pattern of distribution was found in the epidermis, with KS mainly localised in the derma. As expected, in the cornea CHST6 (the gene encoding the enzyme which transfers sulfate residues onto KSPGs) was found expressed in the suprabasal, but not basal, layers of the epithelium, in the stroma and in the endothelium. Analyses of KS by means of HPLC showed that in vitro cultured stromal keratocytes express and secrete more KS than keratinocytes, thus mirroring results observed in vivo. Similarly expression of the CHST6 gene and of KS proteoglycans such as mimecan, lumican is limited to stromal keratocytes. Unlike keratocytes, corneal keratinocytes do not synthesize mimecan or lumican, and express very little, if none, CHST6. Any drug/gene therapy or surgical intervention aimed at curing this rare genetic disorder must therefore involve and target stromal keratocytes. If coupled to the accuracy of HPLC-based assay that we developed to determine the amount of KS in serum, our findings could lead to more targeted therapeutic treatments of the ocular features

  2. Ethical Considerations on Heterogeneous Cornea Transplant%异种角膜移植的伦理考量

    Institute of Scientific and Technical Information of China (English)

    张燕

    2011-01-01

    由于移植技术的进步以及异种角膜移植技术自身的优势,异种角膜移植有望成为眼科临床常规诊疗手段之一,为缓解同种角膜移植供体短缺的压力提供可能.分析了异种角膜移植的可行性,并就异种角膜移植涉及的部分伦理问题、安全性问题;人的同一性及完整性问题;患者接受度问题;角膜供体资源管理和分配问题;动物保护问题进行了探讨.%According to advanced transplantation technology and the advantages of comeal stroma, heterogeneous cornea transplant is expected to become one of the conventional means of ophthalmology clinical treatment,and it provides the possibility for easing the shortage of the same cornea transplant donation. This paper analyzed the feasibility of heterogeneous cornea transplant and discussed some ethical issues about heterogeneous cornea transplant: safety issue, people in the identity and integrity problems, degree about patients received, heterogeneous donor cornea resources management and distribution issue and animal protection issue.

  3. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.

    Science.gov (United States)

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J; Hartmann, Laura; Cochran, Jennifer R; Frank, Curtis W; Yu, Charles Q; Ta, Christopher N

    2015-10-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications.

  4. Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function

    DEFF Research Database (Denmark)

    Roos, Laura; Bertelsen, Birgitte; Harris, Pernille;

    2015-01-01

    Background: Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is associated with homozygous or compound heterozygous mutations of the kerato......Background: Cornea plana (CNA) is a hereditary congenital abnormality of the cornea characterized by reduced corneal curvature, extreme hypermetropia, corneal clouding and hazy corneal limbus. The recessive form, CNA2, is associated with homozygous or compound heterozygous mutations...... of the keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described. Case presentation: In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected...... individuals, hypotrichosis was found. KERA was screened for mutations using Sanger sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense variation...

  5. [Difficult cornea procurement: causes and consequences of the exceptional situation in France].

    Science.gov (United States)

    Delbosc, B

    2000-02-01

    Despite scientific advances, corneal grafting is still in a crucial situation in France in 1999. Over the last 3 years, the number of corneal grafts (2 903 in 1996, 3 213 in 1997, and 4 053 in 1998) has been insufficient to satisfy estimated needs (8 041 in 1996, 8 303 in 1997, 7 400 in 1998). The consequences are waiting lists, long time on waiting lists, and regional differences. This situation results more from difficulties in the cornea procurement system than from limited numbers of potential donors or restricted selection criteria. Progress will depend greatly on structural changes.

  6. Comparison of Scheimpflug imaging parameters between steep and keratoconic corneas of Caucasian eyes

    Directory of Open Access Journals (Sweden)

    Huseynova T

    2016-04-01

    Full Text Available Tukezban Huseynova,1 Farah Abdulaliyeva,2 Michele Lanza3 1Briz-L Eye Clinic, 2National Ophthalmology Center, Baku, Azerbaijan; 3Second University of Naples, Caserta, Campania, Italy Purpose: To compare the keratometric and pachymetric parameters of healthy eyes with those affected by steep cornea and keratoconus (KC using Scheimpflug camera.Setting: Briz-L Eye Clinic, Baku, Azerbaijan.Design: A cross-sectional study.Methods: In this study, 49 KC (Amsler–Krumeich stage 1 eyes and 36 healthy eyes were enrolled. A complete ophthalmic evaluation and a Scheimpflug camera scan were performed in every eye included in the study. Tomographic parameters such as parameters from the front and back cornea, maximum keratometry reading (Kmax, corneal volume (CV, anterior chamber volume (ChV, anterior chamber depth (ACD, anterior chamber angle (AC angle, keratometric power deviation (KPD, maximum front elevation (Max FE, and maximum back elevation (Max BE, as well as pachymetric progression indices (PPI, Ambrosio relational thickness (ART, index of surface variance (ISV, index of vertical asymmetry (IVA, center keratoconus index (CKI, index of height asymmetry (IHA, index of height decentration (IHD, and radius minimum (RM were collected and statistically compared between the two groups.Results: PPI, ART, ISV, IVA, CKI, IHA, IHD, and RM parameter values were significantly different (P<0.05 between the KC and healthy eyes. There were no significant differences in K mean and Q values of the frontal corneal parameters, as well as in Kmax, AC angle, RM, back, and front astigmatism, between stage 1 keratoconic and normal Caucasian eyes with steep cornea. All other parameters such as K mean and Q values of the back corneal parameters, Max FE, Max BE, ACD, ChV, and CV showed significant differences between the groups (P<0.05 for all. Conclusion: Scheimpflug imaging is able to detect corneal morphological differences between stage 1 KC eyes and healthy eyes with

  7. Study on electroplating technology of diamond tools for machining hard and brittle materials

    Science.gov (United States)

    Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue

    2016-10-01

    With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.

  8. The Riley-Day syndrome. Familial dysautonomy, central autonomic dysfunction.

    Science.gov (United States)

    François, J

    1977-01-01

    The Riley-Day syndrome is characterized by a dysfunction of the autonomous nervous system, sensory disturbances, neurological disorders, psychical anomalies and important ophthalmological symptoms, such as absence of tears, corneal anaesthesia, keratinized conjunctiva and cornea; myosis after instillation of methacholine. The diagnosis is based on the absence of fungiform papillae of the tongue and the absence of reaction after intradermic injection of histamine. The inheritance is autosomal recessive. The disease results probably from an enzymatic insufficiency.

  9. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    Science.gov (United States)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  10. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    Science.gov (United States)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  11. Damage Model of Brittle Coal-Rock and Damage Energy Index of Rock Burst

    Institute of Scientific and Technical Information of China (English)

    尹光志; 张东明; 魏作安; 李东伟

    2003-01-01

    Based on the mechanical experiment of brittle coal-rock and the damage mechanical theory, a damage model was established. Coal-Rock damage mechanical characteristic was researched. Furthermore, interior energy transformation mechanism of rock was analyzed from the point of view of damage mechanics and damage energy release rate of brittle coal rock was derived. By analyzing the energy transformation of rock burst, a new conception, damage energy index of rock burst, was put forward. The condition of rock burst was also established.

  12. Plug shear failure in nailed timber connections:avoiding brittle and promoting ductile failures

    OpenAIRE

    Johnsson, Helena

    2004-01-01

    Mechanical timber connections can fail both in a brittle and a ductile manner depending on the joint layout. Plug shear failure in nailed timber connections is a brittle failure mode, which shall be avoided in timber structures. This failure mode occurs in nailed connections loaded in tension parallel to the grain, for instance in the lower chord of a timber truss. The failure mode is not described in the Swedish building code of today, but there is an informative annex in the upcoming Euroco...

  13. Animal study on expression of laminin and fibronectin in cornea during wound healing following alkali burn

    Institute of Scientific and Technical Information of China (English)

    赵桂秋; 马轶群; 梁涛; 姜涛; 王传富; 张妍霞

    2003-01-01

    Objective: To observe the expression of laminin and fibronectin in alkali-burned corneas in rats.Methods: A total of 18 normal Wistar rats were randomly divided into 6 groups (n=3 in each group). For each rat, one eye was injured by alkali burn, the other one was taken as the normal control. Then all the corneas were surgically removed and the expression of laminin and fibronectin was observed with immunohistochemistry respectively at 7 hours, 1 day, 3 days, 7 days, 14 days and 28 days after alkali burn. Results: Compared with that of the normal controls, the expression of laminin and fibronectin of the burned eyes was dramatically higher at 7 hours, reached peak at 14 days and decreased to the normal level at 28 days after alkali burn. Conclusions: In the process of wound healing after alkali burn, the expression of laminin and fibronectin increases dramatically, which suggests that laminin and fibronectin may participate in the process of corneal wound healing.

  14. Chromosome mutations and tissue regeneration in the cornea after the UV laser irradiation

    Science.gov (United States)

    Razhev, Alexander M.; Bagayev, Sergei N.; Lebedeva, Lidya I.; Akhmametyeva, Elena M.; Zhupikov, Andrey A.

    2003-06-01

    In present paper the findings on chromosome mutations, the nature of damage and the repair of the cornea tissue after UV irradiation by excimer lasers at 193, 223 and 248 nm were made. Structural mutations induced by short-pulses UV irradiation were shown to be similar to spontaneous ones by the type, time of formation in the mitotic cycle and location of acentrics. Ten hours after irradiation of the cornea with doses of 0,09 to 1,5 J/cm2 the incidence of cells with chromosome aberrations increased linearly with dose and amounted to 11,7% at 248 nm, 5,5% at 223 nm and 2,6% at 193 nm per 1 J/cm2. No induced chromosome aberrations occurred 72 hour following irradiation. Within the dose range from 3,0 to 18 J/cm2 the cytogenesis effect of radiation was less manifest than that with the doses mentioned above, the frequency of chromosome aberrations being independent of either radiation wavelength or radiation dose and amounted of 2,5 to 3,0%. Thus, large doses of powerful short-pulse UV radiation are safe according to the structural mutation criterion.

  15. Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering.

    Science.gov (United States)

    Wilson, Samantha L; El Haj, Alicia J; Yang, Ying

    2012-09-18

    Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  16. Cornea Collagen Cross-linking for Keratoconus: A Comparison between Accelerated and Conventional Methods

    Science.gov (United States)

    Razmjoo, Hasan; Peyman, Alireza; Rahimi, Ali; Modrek, Hoda Jafari

    2017-01-01

    Background: Keratoconus is a progressive degenerative disorder of the cornea in which structural changes in the cornea cause it to become thin and conical in shape. Recently, collagen cross-linking (CXL) has been introduced as an effective intervention in management of progressive keratoconus. Accelerated CXL is a new protocol of this procedure which reduces corneal ultraviolet irradiation exposure time to 5 min. This study aimed to compare visual acuity, keratometry and topographic criteria of keratoconic eyes after conventional and accelerated CXL with a six-month follow-up. Materials and Methods: In this prospective interventional study we assessed eyes of 40 patients. Patients were divided into two groups randomly. One group underwent accelerated (5 min) CXL and the other underwent conventional (30 min) CXL. Visual acuity, topographic criteria and keratometry were assessed preoperatively and 6 months postoperatively. Results: In the present study we assessed 40 patients, 50% of which were right eye (OD) and 50% were left eye (OS). Mean age of patients in the accelerated group was 22.10 and in the conventional group was 22.80 years. Our results showed no significant differences between visual acuity, keratometric and topographic criteria in the two groups before intervention. Likewise our results manifested no significant difference between visual acuity, keratometric, refractive and topographic criteria after intervention. Conclusion: According to our survey topographic criteria and keratometry improvement in the accelerated and conventional protocol are the same. So accelerated protocol is suggested as a safe and effective option for management of progressive keratoconus. PMID:28299302

  17. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  18. Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia.

    Directory of Open Access Journals (Sweden)

    Francisco Cavas-Martínez

    Full Text Available AIM: To establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characterization of the corneal geometry and establishing a new clinical diagnostic criterion in order to distinguish between healthy corneas and corneas with keratoconus. METHOD: The method for the geometric reconstruction of the cornea consists of the following steps: capture and preprocessing of the spatial point clouds provided by the Sirius topographer that represent both anterior and posterior corneal surfaces, reconstruction of the corneal geometric surfaces and generation of the solid model. Later, geometric variables are extracted from the model obtained and statistically analyzed to detect deformations of the cornea. RESULTS: The variables that achieved the best results in the diagnosis of keratoconus were anterior corneal surface area (ROC area: 0.847, p<0.000, std. error: 0.038, 95% CI: 0.777 to 0.925, posterior corneal surface area (ROC area: 0.807, p<0.000, std. error: 0.042, 95% CI: 0,726 to 0,889, anterior apex deviation (ROC area: 0.735, p<0.000, std. error: 0.053, 95% CI: 0.630 to 0.840 and posterior apex deviation (ROC area: 0.891, p<0.000, std. error: 0.039, 95% CI: 0.8146 to 0.9672. CONCLUSION: Geometric modeling enables accurate characterization of the human cornea. Also, from a clinical point of view, the procedure described has established a new approach for the study of eye-related diseases.

  19. Assessing the viscoelasticity of green light induced CXL in the rabbit cornea by noncontact OCE and FEM

    Science.gov (United States)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Vantipalli, Srilatha; Aglyamov, Salavat R.; Wu, Chen; Liu, Chih-hao; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    The biomechanical properties of the cornea have a profound influence on its health and function. Rose bengal/green light corneal collagen cross-linking (RGX) has been proposed as an alternative to UV-A Riboflavin collagen cross-linking (UV-CXL) for treatment of keratoconus. However, the effects of RGX on the biomechanical properties of the cornea are not as well understood as UV-CXL. In this work, we demonstrate the feasibility of quantifying the viscoelasticity of the rabbit cornea before and after RGX using a noncontact method of phase-stabilized swept source optical coherence elastography (PhS-SSOCE) and finite element modeling (FEM). Viscoelastic FE models of the corneas were constructed to simulate the elastic wave propagation based on the OCE measurements. In addition, the effect of the fluid-structure interface (FSI) between the corneal posterior surface and aqueous humor on the elastic wave group velocity was also investigated. The effect of the FSI was first validated by OCE measurements and FEM simulations on contact lenses, and the OCE and FEM results were in good agreement. The Young's modulus of the rabbit cornea before RGX was assessed as E=80 kPa, and the shear viscosity was η=0.40 Pa•s at an intraocular pressure (IOP) of 15 mmHg. After RGX, the Young's modulus increased to E=112 kPa and shear viscosity decreased to η=0.37 Pa•s. Both the corneal OCE experiments and the FE simulations also demonstrated that the FSI significantly reduced the group velocity of the elastic wave, and thus, the FSI should be considered when determining the biomechanical properties of the cornea.

  20. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Glucaric cornea; Isolamento e caracterizacao do polissacarideo sulfatado soluvel extraido da alga vermelha Gracilaria cornea

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Marcia R.S.; Freitas, Ana L.P. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Bioquimica e Biologia Molecular]. E-mail: rubiamelo@yahoo.com; Feitosa, Judith P.A.; Paula, Regina C.M. de [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: judith@dqoi.ufc.br

    2001-07-01

    The composition, structure and rheological properties of soluble sulphated polysaccharide Glucaric cornea from Brazilian red seaweeds were investigated. The main components of polysaccharide were 3,6-anhydrogalactose (24.7%) and galactose (64.6%). In addition, minor components as 6-O-methyl-galactose (8.5%), glucose (1.5%), xylose (0.7%) and sulfated groups (4.8%) were detected. Comparison between sulphates content determined by Ft-IR spectroscopy and micro elemental analysis was made. Data from {sup 13}C NMR and FT-IR provided evidence of sulphation in C-4 and C-6 of galactose. No gelation with 1.5, 2.0 and 3.0 % (w/v) aqueous solution was observed, even cooled up to 4 deg C. GPC indicated two majors polysaccharide fractions of M{sub pk} 7.4 x 10{sup 4} and 1.8 x 10{sup 4} g/mol and a minor fraction of M{sub pk} 2.1 x 10{sup 6} g/mol. (author)

  1. Interaction between cracking, delamination and buckling in brittle elastic thin films

    NARCIS (Netherlands)

    Vellinga, W. P.; Van den Bosch, M.; Geers, M. G. D.

    2008-01-01

    A discrete lattice based model for the interaction of cracking, delamination and buckling of brittle elastic coatings is presented. The model is unique in its simultaneous incorporation of the coating and of disorder in the interface and material properties, leading to realistic 3D bending (and buck

  2. Study on the cutting mechanism and the brittle ductile transition model of isotropic pyrolyric graphite

    Science.gov (United States)

    Wang, Minghai; Wang, Hujun; Liu, Zhonghai

    2011-05-01

    Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it can be used for sealing the aero-engine turbine shaft and the ethylene high-temperature equipment. It not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn't have. Therefore, it has broad prospects for development. Mechanism of brittle-ductile transition of IPG is the foundation of precision cutting while the plastic deformation of IPG is the essential and the most important mechanical behavior of precision cutting. Using the theory of strain gradient, the mechanism of this material removal during the precision cutting is analyzed. The critical cutting thickness of IPG is calculated for the first time. Furthermore, the cutting process parameters such as cutting depth, feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG are calculated. In the end, based on the theory of micromechanics, the deformation behaviors of IPG such as brittle fracture, plastic deformation and mutual transformation process are all simulated under the Sih.G.C fracture criterion. The condition of the simulation is that the material under the pressure-shear loading conditions .The result shows that the best angle during the IPG precision cutting is -30°. The theoretical analysis and the simulation result are validated by precision cutting experiments.

  3. A map of competing buckling-driven failure modes of substrate-supported thin brittle films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zheng [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, MD 20742 (United States); Peng, Cheng [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Lou, Jun, E-mail: jlou@rice.edu [Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005 (United States); Li, Teng, E-mail: lit@umd.edu [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, MD 20742 (United States)

    2012-08-31

    Our in situ experiments of polyimide-supported thin indium tin oxide (ITO) films reveal buckling-driven film cracking in some samples and buckling-driven interfacial delamination in other samples. Although studies of individual buckling-driven failure mode exist, it still remains unclear what governs the competition between these two different failure modes in a given film/substrate structure. Through theoretical analysis and numerical simulations, we delineate a map of competing buckling-driven failure modes of substrate-supported thin brittle films in the parameter space of interfacial adhesion and interfacial imperfection size. Such a map can offer insight on the mechanical durability of functional thin films. For example, interestingly, we show that strongly bonded thin brittle films are more prone to buckling-driven cracking, a more detrimental failure mode for thin brittle ITO transparent conductors widely used in displays and flexible electronics. - Highlights: Black-Right-Pointing-Pointer Map of buckling-driven failure modes of thin brittle films on substrates. Black-Right-Pointing-Pointer We study key parameters that govern buckling-driven failure modes. Black-Right-Pointing-Pointer The map offers insights on optimal design of functional thin films.

  4. Modelling dynamic tensile failure of quasi-brittle materials using stress-enhanced non local models

    NARCIS (Netherlands)

    Pereira, L.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The development of realistic numerical tools to efficiently model the response of concrete structures subjected to close-in detonations and high velocity impacts has been one of the major quests in defense research. Under these loading conditions, quasi-brittle materials undergo a multitude of failu

  5. Modelling dynamic tensile failure of quasi-brittle materials using stress-enhanced nonlocal models

    NARCIS (Netherlands)

    Magalhaes Pereira, L.F.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The development of realistic numerical tools to efficiently model the response of concrete structures subjected to close-in detonations and high velocity impacts has been one of the major quests in defense research. Under these loading conditions, quasi-brittle materials undergo a multitude of failu

  6. Long-term follow-up of children thought to have temporary brittle bone disease

    Directory of Open Access Journals (Sweden)

    Paterson CR

    2011-06-01

    Full Text Available Colin R Paterson1, Elizabeth A Monk21Department of Medicine (retired, 2School of Accounting and Finance, University of Dundee, Dundee, ScotlandBackground: In addition to nonaccidental injury, a variety of bone disorders may underlie the finding of unexplained fractures in young children. One controversial postulated cause is temporary brittle bone disease, first described in 1990.Methods: Eighty-five patients with fractures showing clinical and radiological features of temporary brittle bone disease were the subject of judicial hearings to determine whether it was appropriate for them to return home. Sixty-three patients did, and follow-up information was available for 61 of these. The mean follow-up period was 6.9 years (range 1–17, median 6.Results: We found that none of the children had sustained any further injuries that were thought to represent nonaccidental injury; no child was re-removed from home. Three children had fractures. In each case there was general agreement that the fractures were accidental. Had the original fractures in these children been the result of nonaccidental injury, it would have been severe and repeated; the average number of fractures was 9.1.Conclusion: The fact that no subsequent suspicious injuries took place after return home is consistent with the view that the fractures were unlikely to have been caused by nonaccidental injury, and that temporary brittle bone disease is a distinctive and identifiable disorder.Keywords: fractures, osteogenesis imperfecta, temporary brittle bone disease, nonaccidental injury

  7. Two-dimensional isotropic damage elastoplastic model for quasi-brittle material

    OpenAIRE

    Beneš, P. (Pavel); Vavřík, D. (Daniel)

    2014-01-01

    Micro-mechanical model for isotropic damage of quasi-brittle material including frictionis presented. Damage is assumed to be isotropic and scalar damage variable is employed . Operatorsplitting method is applied. The article contains derived expressions for derivations necessary forcomputation of coefficients in two dimensions for strain and damage normality rules.

  8. The Influence of Brittle Daniels System Characteristics on the Value of Load Monitoring Information

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Schneider, Ronald

    This paper addresses the influence of deteriorating brittle Daniels system characteristics on the value of structural health monitoring (SHM). The value of SHM is quantified as the difference between the life cycle benefits with and without SHM. A value of SHM analysis is performed within...

  9. Microcosmic analysis of ductile shearing zones of coal seams of brittle deformation domain in superficial lithosphere

    Institute of Scientific and Technical Information of China (English)

    JU; Yiwen; WANG; Guiliang; JIANG; Bo; HOU; Quanlin

    2004-01-01

    The ductile shearing zones of coal seams in a brittle deformation domain in superficial lithosphere are put forward based on the study on bedding shearing and ductile rheology of coal seams. The macrocosmic and microcosmic characteristics include wrinkle fold, mymonitized zones and ductile planar structure of coal seams, etc., while the microcosmic characteristics may also include different optic-axis fabrics and the anisotropy of vitrinite reflectance as well as the change of chemical structure and organic geochemistry components. The forming mechanism is analyzed and the strain environment of ductile shearing zones of coal seams discussed. The result indicates that, in the superficial brittle deformation domain, the coal seams are easy to be deformed, resulting in not only brittle deformation but also ductile shearing deformation under the action of force. Because of simple shearing stress, the interlayer gliding or ductile rheology may take place between coal seams and wall rocks. Therefore, many ductile shearing zones come into being in superficial lithosphere (<5 km). The research on ductile shearing zone of brittle deformation domain in superficial lithosphere is significant not only theoretically for the study of ductile shearing and ductile rheology of the lithosphere but also practically for the structural movement of coal seams, the formation and accumulation of coal-bed methane, and the prevention and harness of gas burst in coal mine.

  10. Brittle fracture phase-field modeling of a short-rod specimen

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ivana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bishop, Joseph E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.

  11. A kinematic measurement for ductile and brittle failure of materials using digital image correlation

    Directory of Open Access Journals (Sweden)

    M.M. Reza Mousavi

    2016-12-01

    Full Text Available This paper addresses some material level test which is done on quasi-brittle and ductile materials in the laboratory. The displacement control experimental program is composed of mortar cylinders under uniaxial compression shows quasi-brittle behavior and seemingly round-section aluminum specimens under uniaxial tension represents ductile behavior. Digital Image Correlation gives full field measurement of deformation in both aluminum and mortar specimens. Likewise, calculating the relative displacement of two points located on top and bottom of virtual LVDT, which is virtually placed on the surface of the specimen, gives us the classical measure of strain. However, the deformation distribution is not uniform all over the domain of specimens mainly due to imperfect nature of experiments and measurement devices. Displacement jumps in the fracture zone of mortar specimens and strain localization in the necking area for the aluminum specimen, which are reflecting different deformation values and deformation gradients, is compared to the other regions. Since the results are inherently scattered, it is usually non-trivial to smear out the stress of material as a function of a single strain value. To overcome this uncertainty, statistical analysis could bring a meaningful way to closely look at scattered results. A large number of virtual LVDTs are placed on the surface of specimens in order to collect statistical parameters of deformation and strain. Values of mean strain, standard deviation and coeffcient of variations for each material are calculated and correlated with the failure type of the corresponding material (either brittle or ductile. The main limiters for standard deviation and coeffcient of variations for brittle and ductile failure, in pre-peak and post-peak behavior are established and presented in this paper. These limiters help us determine whether failure is brittle or ductile without determining of stress level in the material.

  12. Clinical performance of KeraSoft® IC in irregular corneas

    Directory of Open Access Journals (Sweden)

    Su S

    2015-10-01

    Full Text Available Stephanie Su,1 Lynette Johns,2 Marjorie J Rah,3 Robert Ryan,1 Joseph Barr3 1Visionary Eye Associates of Rochester, Rochester, NY, USA; 2Custom Lab Channel Business, Bausch & Lomb Incorporated, Wilmington, MA, USA; 3Medical Affairs – Vision Care, Bausch & Lomb Incorporated, Rochester, NY, USA Purpose: This study evaluated the clinical performance of KeraSoft® IC (KIC soft contact lenses in subjects with irregular corneas.Patients and methods: This was a 12-month, prospective, open-label, observational study, which enrolled 43 subjects who were 18 years of age or older with irregular corneas. Subjects were fit according to the KIC Fitting Manual (kerasoftic.com. After achieving best fit according to the fitting manual, lenses were assessed for comfort, vision, centration, rotation, and movement. Subjects were instructed to wear their lenses between 8 and 16 hours each day. Assessments at the exit visit included logMAR visual acuity with high and low contrast, spherocylindrical overrefraction, slit-lamp findings, adverse events, and subjective outcomes.Results: The average base curve was 8.17±0.32 mm (n=70 eyes, and the average diameter dispensed was 14.53±0.12 mm (n=70 eyes. From the baseline to 12 months, there was statistically significant improvement in logMAR visual acuity with high contrast (P=0.038, but no significant difference in low-contrast visual acuity was observed (P>0.05. Slit-lamp findings were ≤ grade 1 for the majority of subjects (89%. Two nonserious adverse events were reported for two of the 84 enrolled eyes (two subjects. At 12 months, subjects reported improvements from habitual baseline for comfort and vision, both upon insertion and just before removal of lenses.Conclusion: Clinical outcomes at 12 months showed good visual, safety, and subjective outcomes for subjects with corneal irregularities who wore KeraSoft® IC soft contact lenses. Keywords: irregular corneas, keratoconus, soft contact lenses, KeraSoft® IC

  13. Changes in biomechanical properties of the cornea after modified transepithelial crosslinking

    Directory of Open Access Journals (Sweden)

    I. B. Medvedev

    2016-01-01

    Full Text Available The aim of the study was to evaluate changes in biomechanical properties of the cornea after conducting transepithelial crosslinking with the prior application of a 40 % glucose solution.Materials and methods. Just studied the biomechanical properties of the corneas of six rabbits breed Chinchilla (12 eyes. 4 rabbit entered in the experimental group, in which in one eye glucose solution was applied on the cornea and allowed to stay for 10 minutes, followed by the instillation of 0.1 % Riboflavin solution for 30 minutes. On a couple of the rabbit eye was applied a solution of Riboflavin without prior instillation of glucose. Then carried out the procedure of irradiation according to the conventional technology with UV with a wavelength of 370 μm and a beam energy of 3.0 mW / cm2. Two rabbits (4 eyes were included in the control group, in which crosslinking was not performed. After 1 month the euthanasia of the animals was performed with subsequent enucleation for corneal research on a tensile testing machine. In the control and experimental group compared, the relaxation curves and the following parameters were analyzed: initial stress (MPa, equilibrium stress (MPa modulus of elasticity.Results and their discussion. After the crosslinking the rise of the initial stress (in the control group and 0.7+0.1 MPa, in the experimental and 1.5+0.2 1.3+0.3 MPa, respectively. The stress relaxation is fast (equilibrium stress value is reached after 250 sec. and after the administration of glucose for approximately 75 seconds, which means a greater rigidity of experimental group of samples. In the experimental groups significantly changed and the modulus of elasticity: its value has increased approximately in 2 times in comparison with control samples. The equilibrium stress values in the experimental groups were different from the zero value that also indicates a change in the chemical structure of the samples.Conclusions. Holding transepithelial of

  14. Global and local contributions to surface curva- ture of healthy corneas

    Directory of Open Access Journals (Sweden)

    Alan Rubin

    2012-12-01

    Full Text Available This paper demonstrates for several healthy eyes the application of a simple model to understanding local and global contributions to short-term variation in anterior and posterior corneal curvature. Multiple axial anterior and posterior corneal radii and central corneal thicknesses for the right eyes of 10 young subjects were determined over time using a rotating Scheimpflug camera (Oculus Pentacam. The axial radii were transformed to corneal powers, and also to curvatures that were referred to a mid-corneal surface such that local and global contributions to short-term variation could be analyzed quantitatively.When variation of the anterior and posterior corneal surfaces of several healthy eyes are studied in terms of curvatures (rather than powers it is the posterior surfaces that are more variable withthe global or macroscopic rather than local effects dominating. (Harris and Gillan found the same for an eye with mild keratoconus. This finding is opposite to that when variation is considered in terms of dioptric power where the anterior corneal surface usually appears more variable. Possible reasons for this finding includes firstly that the posterior corneal surface has to be measured through the air-tear interface and anterior corneal surface,and thus some uncertainty in measurements of the posterior surface may relate to this limitation. Secondly, no attempt was made here to mathematically align the multiple surfaces as determined per eye and thus we cannot be certain that precisely the same central corneal region was measured each time.Investigators need to carefully consider whether they are more interested in the optical or physical nature of variation in surfaces such as the cornea since studies of the optical effects require theanalysis to be performed in terms of dioptric powers and  symmetric dioptric power space whereas studies of physical variation in the topography of the cornea and the possible reasons for such variability

  15. Dumping Syndrome

    Science.gov (United States)

    ... System & How it Works Digestive Diseases A-Z Dumping Syndrome What is dumping syndrome? Dumping syndrome occurs when food, especially sugar, ... the colon and rectum—and anus. What causes dumping syndrome? Dumping syndrome is caused by problems with ...

  16. Collection, processing and testing of bone, corneas, umbilical cord blood and haematopoietic stem cells by European Blood Alliance members

    DEFF Research Database (Denmark)

    Närhi, M; Natri, O; Desbois, I;

    2013-01-01

    A questionnaire study was carried out in collaboration with the European Blood Alliance (EBA) Tissues and Cells (T&C) working group. The aim was to assess the level of involvement and commonality of processes on the procurement, testing and storage of bone, corneas, umbilical cord blood (UCB...

  17. Induction of morphological and electrophysiological changes in hamster cornea after in vitro interaction with trophozoites of Acanthamoeba spp.

    Science.gov (United States)

    Omaña-Molina, Maritza; Navarro-García, Fernando; González-Robles, Arturo; Serrano-Luna, José de Jesús; Campos-Rodríguez, Rafael; Martínez-Palomo, Adolfo; Tsutsumi, Víctor; Shibayama, Mineko

    2004-06-01

    Acanthamoeba castellani and Acanthamoeba polyphaga are free-living amebae that cause keratitis and granulomatous encephalitis in humans. We have analyzed the early morphological and electrophysiological changes occurring during the in vitro interaction of cultured amebae with intact or physically damaged corneas obtained from hamsters. Both species of Acanthamoeba produced similar cytopathic changes, as seen by light microscopy and scanning electron microscopy. After adhesion to the epithelial surface, trophozoites formed clumps and migrated toward the cell borders, causing the separation of adjacent cells at 1 h of coculture. At later stages (2 to 4 h), some amebae were found under desquamating epithelial cells whereas others were seen associated with damaged cells or forming amebostome-like structures to ingest detached epithelial cells. Control corneas incubated in culture medium conditioned with amebae showed a cytoplasmic vacuolization and blurring of the epithelial-stromal junction. The early stages of corneal epithelial damage caused by amebae were also analyzed by measuring the transepithelial resistance changes in corneas mounted in Ussing chambers. Both species of Acanthamoeba caused a rapid decrease in electrical resistance. The present observations demonstrate that under in vitro conditions, Acanthamoeba trophozoites rapidly cause significant damage to the corneal epithelium. Furthermore, in our experimental model, previous physical damage to the corneas was not a prerequisite for the development of amebic corneal ulcerations.

  18. Force analysis of bacterial transmission from contact lens cases to corneas, with the contact lens as the intermediary

    NARCIS (Netherlands)

    Qu, Wen-wen; Hooymans, Johanna MM; de Vries, Jacob; van der Mei, Henderina; Busscher, Hendrik

    2011-01-01

    PURPOSE. To determine the probability of transmission of a Staphylococcus aureus strain from a contact lens case, to the contact lens (CL) surfaces, to the cornea, on the basis of bacterial adhesion forces measured by using atomic force microscopy (AFM). METHODS. Adhesion forces between S. aureus st

  19. Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

    OpenAIRE

    Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.

    2012-01-01

    In this investigation, we describe differential spatiotemporal expression patterns of glycosaminoglycans KS, DS, and CSA/C during developmental stages of cornea innervation. We show that purified GAGs have divergent effects on trigeminal neuron behavior using in vitro neuronal explant cultures.

  20. Cultured corneas show dendritic spread and restrict herpes simplex virus infection that is not observed with cultured corneal cells

    Science.gov (United States)

    Thakkar, Neel; Jaishankar, Dinesh; Agelidis, Alex; Yadavalli, Tejabhiram; Mangano, Kyle; Patel, Shrey; Tekin, Sati Zeynep; Shukla, Deepak

    2017-01-01

    Herpes simplex virus-1 (HSV-1) causes life-long morbidities in humans. While fever blisters are more common, occasionally the cornea is infected resulting in vision loss. A very intriguing aspect of HSV-1 corneal infection is that the virus spread is normally restricted to only a small fraction of cells on the corneal surface that connect with each other in a dendritic fashion. Here, to develop a comprehensive understanding of the susceptibility of human corneal epithelial (HCE) cells to HSV-1 infection, we infected HCE cells at three different dosages of HSV-1 and measured the outcomes in terms of viral entry, gene and protein expression, viral replication and cytokine induction. In cultured cells, infectivity and cytokine induction were observed even at the minimum viral dosage tested, while a more pronounced dose-restricted infectivity was seen in ex vivo cultures of porcine corneas. Use of fluorescent HSV-1 virions demonstrated a pattern of viral spread ex vivo that mimics clinical findings. We conclude that HCE cell cultures are highly susceptible to infection whereas the cultured corneas demonstrate a higher ability to restrict the infection even in the absence of systemic immune system. The restriction is helped in part by local interferon response and the unique cellular architecture of the cornea. PMID:28198435

  1. Optical properties of the human cornea : Shape and wave aberration measurements using the VU topographer and Scheimpflug photography

    NARCIS (Netherlands)

    Sicam, V.A.D.P.

    2007-01-01

    In this study, the optical properties of the human cornea was investigated. Two major developments were made because current measurement techniques need improvement First, the VU topographer, which uses a color coded pattern, was validated with real eye data showing better performance compare to co

  2. Fibre optic spectrophotometry for the in vitro evaluation of ultraviolet radiation (UVR) spectral transmittance of rabbit corneas.

    Science.gov (United States)

    Walsh, J E; Bergmanson, J P G; Koehler, L V; Doughty, M J; Fleming, D P; Harmey, J H

    2008-03-01

    A fibre optic spectrophotometer front-end system for measuring corneas to overcome shortcomings associated with existing instruments was tested. The system allowed prompt measurement postmortem, minimizing beam pathlength to reduce the effects of scatter and unwanted refraction and eliminated optical interfaces and cuvette media. Rabbit corneas were excised immediately postmortem and placed on a detecting fibre optic coupled to an Ocean Optics spectrophotometer and illuminated by a deuterium-halogen source. The compact instrument with its small beam size allowed tissue profiling at test points across the corneal surface and efficient interchange for comparison of different tissues. This simplified system operation allowed rapid tissue altering to study induced changes on transmittance. The corneal transmittance data showed a consistent sharp cut-off at 320 nm in the ultraviolet radiation (UVR) spectrum, which decayed rapidly from postmortem swelling. Inter- and intra-corneal consistency was demonstrated by comparing data from different regions of the same cornea and those from opposite eyes. Changes to the spectra, particularly in the UVB below 300 nm, were evident when the corneal epithelium was removed, indicating that this layer is not the only corneal UVR filter. The new system reduced much of the variability associated with previous methods, as it rapidly measured corneal transmittance postmortem. Data are in broad agreement with published transmittance curves. The removal of the corneal epithelium revealed a substantial stromal contribution to the overall corneal UVR absorption, suggesting that corneas with pathologically or iatrogenically thinned stromas are less effective UVR blockers.

  3. Cadmium toxicity to the cornea of pregnant rats: Electron microscopy and x-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizuka, M.; McCarthy, K.J.; Kaye, G.I.; Fujimoto, S. (Univ. of Occupational and Environmental Health, School of Medicine, Kitakyushu (Japan))

    1990-05-01

    Cadmium toxicity to the cornea of pregnant rats was studied using the electron microscope and x-ray microanalyzer. In in-vivo experiments, severe corneal edema occurred in pregnant dams that received intraperitoneal injections of cadmium sulphate for 4 days during gestation, but not in nonpregnant rats. Prominent swelling of mitochondria and the occurrence of intra- and intercellular vacuoles in the corneal endothelium were observed only in pregnant dams. In in-vitro experiments, electron-dense deposits consisting of cadmium-oxine complexes were preferentially found in swollen mitochondria of the endothelial cells. Cadmium peaks were obtained from these deposits with x-ray microanalysis. These data suggest that the corneal edema observed after administration of cadmium may imply the disturbance of pump function and barrier function of the corneal endothelium due to the primary toxic effects of this metal on mitochondria.

  4. Automatic pterygium detection on cornea images to enhance computer-aided cortical cataract grading system.

    Science.gov (United States)

    Gao, Xinting; Wong, Damon Wing Kee; Aryaputera, Aloysius Wishnu; Sun, Ying; Cheng, Ching-Yu; Cheung, Carol; Wong, Tien Yin

    2012-01-01

    In this paper, we present a new method to detect pterygiums using cornea images. Due to the similarity of appearances and spatial locations between pterygiums and cortical cataracts, pterygiums are often falsely detected as cortical cataracts on retroillumination images by a computer-aided grading system. The proposed method can be used to filter out the pterygium which improves the accuracy of cortical cataract grading system. This work has three major contributions. First, we propose a new pupil segmentation method for visible wavelength images. Second, an automatic detection method of pterygiums is proposed. Third, we develop an enhanced compute-aided cortical cataract grading system that excludes pterygiums. The proposed method is tested using clinical data and the experimental results demonstrate that the proposed method can improve the existing automatic cortical cataract grading system.

  5. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea.

    Science.gov (United States)

    Alizadeh, Hassan; Tripathi, Trivendra; Abdi, Mahshid; Smith, Ashley Dawn

    2014-01-01

    Free-living amoebae of the Acanthamoeba species are the causative agent of Acanthamoeba keratitis (AK), a sight-threatening corneal infection that causes severe pain and a characteristic ring-shaped corneal infiltrate. Innate immune responses play an important role in resistance against AK. The aim of this study is to determine if Toll-like receptors (TLRs) on corneal epithelial cells are activated by Acanthamoeba, leading to initiation of inflammatory responses in the cornea. Human corneal epithelial (HCE) cells constitutively expressed TLR1, TLR2, TLR3, TLR4, and TLR9 mRNA, and A. castellanii upregulated TLR4 transcription. Expression of TLR1, TLR2, TLR3, and TLR9 was unchanged when HCE cells were exposed to A. castellanii. IL-8 mRNA expression was upregulated in HCE cells exposed to A. castellanii. A. castellanii and lipopolysaccharide (LPS) induced significant IL-8 production by HCE cells as measured by ELISA. The percentage of total cells positive for TLR4 was higher in A. castellanii stimulated HCE cells compared to unstimulated HCE cells. A. castellanii induced upregulation of IL-8 in TLR4 expressing human embryonic kidney (HEK)-293 cells, but not TLR3 expressing HEK-293 cells. TLR4 neutralizing antibody inhibited A. castellanii-induced IL-8 by HCE and HEK-293 cells. Clinical strains but not soil strains of Acanthamoeba activated TLR4 expression in Chinese hamster corneas in vivo and in vitro. Clinical isolates but not soil isolates of Acanthamoeba induced significant (PAcanthamoeba activate TLR4 and induce production of CXCL2 in the Chinese hamster model of AK. TLR4 may be a potential target in the development of novel treatment strategies in Acanthamoeba and other microbial infections that activate TLR4 in corneal cells.

  6. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Kobayashi A

    2014-02-01

    Full Text Available Akira Kobayashi, Tomomi Higashide, Hideaki Yokogawa, Natsuko Yamazaki, Toshinori Masaki, Kazuhisa Sugiyama Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan Objective: To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures. Patients and methods: Two patients (67-year-old male and his 26-year-old son with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results: Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 µm oculus dexter (OD (the right eye and 384 µm oculus sinister (OS (the left eye in the father and 430 µm OD and 425 µm OS in the son. In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion: The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients. Keywords: osteogenesis imperfecta, K-structure, confocal microscopy, Bowman's layer

  7. Turnover of bone marrow-derived cells in the irradiated mouse cornea

    Science.gov (United States)

    Chinnery, Holly R; Humphries, Timothy; Clare, Adam; Dixon, Ariane E; Howes, Kristen; Moran, Caitlin B; Scott, Danielle; Zakrzewski, Marianna; Pearlman, Eric; McMenamin, Paul G

    2008-01-01

    In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation. PMID:18540963

  8. Amniotic membrane covering promotes healing of cornea epithelium and improves visual acuity after debridement for fungal keratitis

    Institute of Scientific and Technical Information of China (English)

    Bo; Zeng; Ping; Wang; Ling-Juan; Xu; Xin-Yu; Li; Hong; Zhang; Gui-Gang; Li

    2014-01-01

    AIM:To investigate the effect of amniotic membrane covering(AMC) on the healing of cornea epithelium and visual acuity for fungal keratitis after debridement.METHODS:Twenty fungal keratitis patients were divided into two groups randomly, the AMC group and the control group, ten patients each group. Both debridement of the infected cornea tissue and standard anti-fungus drugs treatments were given to every patients, monolayer amniotic membrane were sutured to the surface of the entire cornea and bulbar conjunctiva with 10-0 nylon suture for patients in the AMC group.The diameter of the ulcer was determined with slit lamp microscope and the depth of the infiltration was determined with anterior segment optical coherence tomography. Uncorrected visual acuity(UCVA) was tested before surgery and three month after healing of the epithelial layer. The healing time of the cornea epithelium, visual acuity(VA) was compared between the two groups using t- test.RESULTS:There was no statistical difference of the diameter of the ulcer, depth of the infiltration, height of the hypopyon and VA between the two groups beforesurgery(P >0.05). The average healing time of the AMC group was 6.89 ±2.98 d, which was statistically shorter than that of the control group(10.23±2.78d)(P <0.05).The average UCVA of the AMC group was 0.138 ±0.083,which was statistically better than that of the control group(0.053±0.068)(P <0.05).CONCLUSION:AMC surgery could promote healing of cornea epithelium after debridement for fungal keratitis and lead to better VA outcome.

  9. Brown–McLean syndrome: the role of iridodonesis

    Directory of Open Access Journals (Sweden)

    Suwan Y

    2016-04-01

    Full Text Available Yanin Suwan, Chaiwat Teekhasaenee, Kaevalin Lekhanont, Wasu Supakontanasan Department of Ophthalmology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Purpose: The aim of this study was to report a case series of Brown–McLean syndrome (BMS.Methods: The charts of 28 patients with BMS at Ramathibodi and Rutnin Hospital from 1981 to 2015 were reviewed.Results: BMS is a rare condition with corneal edema involving the peripheral cornea with orange-brown pigment deposition underlying the edematous area. The edema typically starts inferiorly and advances circumferentially to superior cornea. Central cornea remains clear in most patients. We report 28 patients with BMS that occurred either spontaneously or after various intraocular procedures. Ultrasound biomicroscopy was performed to demonstrate the iridocorneal relationship.Conclusion: Iridocorneal relationship from the ultrasound biomicroscopy study in four patients did not support previous hypothesis about the role of iridodonesis impact on corneal endothelium. Patients with BMS can rarely progress to corneal decompensation; however, they should be periodically monitored and made aware of early clinical signs of their complications. Keywords: Brown–McLean syndrome, peripheral corneal edema, marginal corneal edema, corneal decompensation

  10. Damage initiation in brittle and ductile materials as revealed from a fractoluminescence study

    Directory of Open Access Journals (Sweden)

    Alexandre Chmel

    2014-10-01

    Full Text Available A set of heterogeneous and homogeneous materials differing in their brittle and ductile characteristics (granite, marble, silica ceramics, silicon carbide, organic glass were subjected to impact damaging by a falling weight. Multiple chemical bond ruptures produced by elastic waves propagating from a damaged zone were accompanied by the photon emission generated throughout the sample (tribo- or fractoluminescence, FL. The statistical analysis of the FL time series detected with high resolution (10 ns showed that the energy release distributions in brittle solids follow the power law typical for the correlated nucleation of primary defects. At the same time, the formation of damaged sites in ductile materials (marble and organic glass was found to be fully random.

  11. Mechanical Properties Degradation at Room Temperature in ZRY-4 by Hydrogen Brittleness

    Directory of Open Access Journals (Sweden)

    Bertolino G.

    2002-01-01

    Full Text Available A hot rolled Zircaloy-4 alloy, annealed with a final cold rolling, presenting rounded grains, was studied. Hydrogen cathodic charge with a homogenization heat treatment was used to pre-charge the specimens with different hydrogen contents. Hydrogen embrittlement susceptibility analysis was held using J integral and J-R curve results from CT specimens (compact tension specimens tested at room temperature. As J IC values showed scatter, toughness was evaluated for deltaa = 1mm. Toughness clearly tended to decrease as hydrogen content increased abruptly for low H contents and gradually for high contents. A few specimens with high hydrogen content failed in brittle mode, or presented instability and posterior crack arrest. Fractographic observations showed that, despite the records had presented no signs of brittle fracture, certain specimens showed cleavage-like zones. More cleavage-like area percentage was present the higher the hydrogen content was.

  12. Numerical Simulation on Failure Process in Brittle and Heterogeneous Matrix Filled with Randomly Distributed Particles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yafang; TANG Chun'an; LIU Hao

    2006-01-01

    Based on an essential assumption of meso-heterogeneity of material, the macro characteristic of composite reinforced with particles, the crack initiation, propagation and the failure process in composite were studied by using a numerical code. The composite is subjected to a uniaxial tension, and stiff or soft particles are distributed at random manner but without overlapping or contacting. The effect of reinforcement particle properties on the fracture process and mechanism of composite with brittle matrix, furthermore, the influence of the particle volumetric fraction is also investigated. Numerical results present the different failure mode and re-produce the crack initiation, propagation and coalescence in brittle and heterogeneous matrix. The mechanism of such failure was also elucidated.

  13. Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Tanushree; Kulkarni, Yashashree, E-mail: ykulkarni@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States)

    2014-11-14

    Nanotwinned metals have opened exciting avenues for the design of high strength and high ductility materials. In this work, we investigate crack propagation along coherent twin boundaries in nanotwinned metals using molecular dynamics. Our simulations reveal that alternating twin boundaries exhibit intrinsic brittleness and ductility owing to the opposite crystallographic orientations of the adjoining twins. This is a startling consequence of the directional anisotropy of an atomically sharp crack along a twin boundary that favors cleavage in one direction and dislocation emission from the crack tip in the opposite direction. We further find that a blunt crack exhibits ductility in all cases albeit with very distinct deformation mechanisms and yield strength associated with intrinsically brittle and ductile coherent twin boundaries.

  14. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  15. Steadiness and stop of brittle fracture driven by the forces in different distances

    Institute of Scientific and Technical Information of China (English)

    和雪松; 李世愚; 滕春凯

    2005-01-01

    Based on the principle of fracture mechanics, the stop criterion of brittle fracture is proposed and the equation of minimal crack stop is given. By using the zero frequency Green function, the steadiness and stop of brittle fracture driven by the concentrated force and simple distributed forces in different locales are analyzed. The critical loading, unsteady boundary line and location of stop points under some typical conditions are calculated. The steady growth caused by the near forces is significant in interpreting the creep and the forming of some tectonics. Whereas the unsteady propagation caused by the forces in different distances from the crack is significant in interpreting the occurring and stop of earthquakes. It is suggested that the strong earthquakes may be the result of compound of the near-field and far-field forces. The results of this paper are also valuable for investigation of the mechanism of induced earthquake.

  16. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    Science.gov (United States)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  17. Semi-brittle rheology and ice dynamics in DynEarthSol3D

    Science.gov (United States)

    Logan, Liz C.; Lavier, Luc L.; Choi, Eunseo; Tan, Eh; Catania, Ginny A.

    2017-01-01

    We present a semi-brittle rheology and explore its potential for simulating glacier and ice sheet deformation using a numerical model, DynEarthSol3D (DES), in simple, idealized experiments. DES is a finite-element solver for the dynamic and quasi-static simulation of continuous media. The experiments within demonstrate the potential for DES to simulate ice failure and deformation in dynamic regions of glaciers, especially at quickly changing boundaries like glacier termini in contact with the ocean. We explore the effect that different rheological assumptions have on the pattern of flow and failure. We find that the use of a semi-brittle constitutive law is a sufficient material condition to form the characteristic pattern of basal crevasse-aided pinch-and-swell geometry, which is observed globally in floating portions of ice and can often aid in eroding the ice sheet margins in direct contact with oceans.

  18. Crack Arrest in Brittle Ceramics Subjected to Thermal Shock and Ablation

    Science.gov (United States)

    Wang, Yan-Wei; Yu, He-Long; Tang, Hong-Xiang; Feng, Xue

    2014-09-01

    Ceramics are suitable for high temperature applications, especially for aerospace materials. When serving in high temperature environments, ceramics usually have to deal with the challenge of both thermal shock and ablation. We report the crack arrest in brittle ceramics during thermal shock and ablation. In our experiment, the specimens of Al2O3 are subjected to oxygen-propane flame heating until the temperature arises up to 1046°C and then are cooled down in air. The crack occurs, however, it does not propagate when arrested by the microstructures (e.g., micro-bridges) of the crack tip. Such micro-bridge enhances the toughness of the brittle ceramics and prevents the crack propagation, which provides a hint for design of materials against the thermal shock.

  19. Analysis of fracture process zone in brittle rock subjected to shear-compressive loading

    Institute of Scientific and Technical Information of China (English)

    ZHOU De-quan; CHEN Feng; CAO Ping; MA Chun-de

    2005-01-01

    An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of KⅡ to KⅠ . The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock.

  20. Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2016-01-01

    Full Text Available Fundamental understandings on the bitumen fracture mechanism are vital to improve the mixture design of asphalt concrete. In this paper, a diffuse interface model, namely, phase-field method is used for modeling the quasi-brittle fracture in bitumen. This method describes the microstructure using a phase-field variable which assumes one in the intact solid and negative one in the crack region. Only the elastic energy will directly contribute to cracking. To account for the growth of cracks, a nonconserved Allen-Cahn equation is adopted to evolve the phase-field variable. Numerical simulations of fracture are performed in bituminous materials with the consideration of quasi-brittle properties. It is found that the simulation results agree well with classic fracture mechanics.

  1. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    Science.gov (United States)

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-08-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ~4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals--dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices.

  2. Characteristics of machined surface controlled by cutting tools and conditions in machining of brittle material

    Institute of Scientific and Technical Information of China (English)

    Yong-Woo KIM; Soo-Chang CHOI; Jeung-Woo PARK; Deug-Woo LEE

    2009-01-01

    One of the ultra-precision machining methods was adapted for brittle material as well as soft material by using multi-arrayed diamond tips and high speed spindle. Conventional machining method is too hard to control surface roughness and surface texture against brittle material because the particles of grinding tools are irregular size and material can be fragile. Therefore, we were able to design tool paths and machine controlled pattern on surface by multi-arrayed diamond tips with uniform size made in MEMS fabrication and high speed spindle, and the maximum speed was about 3×105 r/min. We defined several parameters that can affect the machining surface. Those were multi-array of diamond tips (n×n), speed of air spindle and feeding rate. The surface roughness and surface texture can be controlled by those parameters for micro machining.

  3. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    Science.gov (United States)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  4. Application of percolation model on the brittle to ductile transition for polystyrene and polyolefin elastomer blends

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The percolation model was applied in the study of brittle to ductile transition (BDT of polystyrene (PS and polyolefin elastomer (POE blends. Based on the interparticle distance and percolation model, stress volume (Vs can be expressed by volume fraction (Vr and ratio of the diameter of stress volume and the diameter of the domain (S/d. The percolation threshold (Vsc varied from π/6 to 0.65. From the results of the Charpy impact strength of the blends, the percolation threshold for the brittle to ductile transition of PS/POE blend is 14 wt% POE, corresponding to Vsc~0.5, which is consistent with the calculated value of π/6. Morphology observations show that the percolation point is correlated with the phase inversion of the blend.

  5. Use of Cross-linked Donor Corneas as Carriers for the Boston Keratoprosthesis

    Science.gov (United States)

    2016-10-03

    Chemical Injuries; Unspecified Complication of Corneal Transplant; Autoimmune Diseases; Ocular Cicatricial Pemphigoid; Stevens Johnson Syndrome; Lupus Erythematosus, Systemic; Rheumatoid Arthritis; Other Autoimmune Diseases

  6. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies.

    Science.gov (United States)

    Di Tommaso, Claudia; Bourges, Jean-Louis; Valamanesh, Fatemeh; Trubitsyn, Gregory; Torriglia, Alicia; Jeanny, Jean-Claude; Behar-Cohen, Francine; Gurny, Robert; Möller, Michael

    2012-06-01

    Cornea transplantation is one of the most performed graft procedures worldwide with an impressive success rate of 90%. However, for "high-risk" patients with particular ocular diseases in addition to the required surgery, the success rate is drastically reduced to 50%. In these cases, cyclosporin A (CsA) is frequently used to prevent the cornea rejection by a systemic treatment with possible systemic side effects for the patients. To overcome these problems, it is a challenge to prepare well-tolerated topical CsA formulations. Normally high amounts of oils or surfactants are needed for the solubilization of the very hydrophobic CsA. Furthermore, it is in general difficult to obtain ocular therapeutic drug levels with topical instillations due to the corneal barriers that efficiently protect the intraocular structures from foreign substances thus also from drugs. The aim of this study was to investigate in vivo the effects of a novel CsA topical aqueous formulation. This formulation was based on nanosized polymeric micelles as drug carriers. An established rat model for the prevention of cornea graft rejection after a keratoplasty procedure was used. After instillation of the novel formulation with fluorescent labeled micelles, confocal analysis of flat-mounted corneas clearly showed that the nanosized carriers were able to penetrate into all corneal layers. The efficacy of a 0.5% CsA micelle formulation was tested and compared to a physiological saline solution and to a systemic administration of CsA. In our studies, the topical CsA treatment was carried out for 14 days, and the three parameters (a) cornea transparency, (b) edema, and (c) neovascularization were evaluated by clinical observation and scoring. Compared to the control group, the treated group showed a significant higher cornea transparency and significant lower edema after 7 and 13 days of the surgery. At the end point of the study, the neovascularization was reduced by 50% in the CsA-micelle treated

  7. Micromechanisms of brittle fracture: STM, TEM and electron channeling analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, W.W.

    1997-01-01

    The original thrust of this grant was to apply newly developed techniques in scanning tunneling and transmission electron microscopy to elucidate the mechanism of brittle fracture. This grant spun-off several new directions in that some of the findings on bulk structural materials could be utilized on thin films or intermetallic single crystals. Modeling and material evaluation efforts in this grant are represented in a figure. Out of this grant evolved the field the author has designated as Contact Fracture Mechanics. By appropriate modeling of stress and strain distribution fields around normal indentations or scratch tracks, various measures of thin film fracture or decohesion and brittle fracture of low ductility intermetallics is possible. These measures of fracture resistance in small volumes are still evolving and as such no standard technique or analysis has been uniformly accepted. For brittle ceramics and ceramic films, there are a number of acceptable analyses such as those published by Lawn, Evans and Hutchinson. For more dissipative systems involving metallic or polymeric films and/or substrates, there is still much to be accomplished as can be surmised from some of the findings in the present grant. In Section 2 the author reviews the funding history and accomplishments associated mostly with bulk brittle fracture. This is followed by Section 3 which covers more recent work on using novel techniques to evaluate fracture in low ductility single crystals or thin films using micromechanical probes. Basically Section 3 outlines how the recent work fits in with the goals of defining contact fracture mechanics and gives an overview of how the several examples in Section 4 (the Appendices) fit into this framework.

  8. Pinch and swell structures: evidence for brittle-viscous behaviour in the middle crust

    Directory of Open Access Journals (Sweden)

    R. Gardner

    2015-04-01

    Full Text Available The flow properties of middle to lower crustal rocks are commonly represented by viscous flow. However, examples of pinch and swell structures found in a mid-crustal high strain zone at St. Anne Point (Fiordland, New Zealand suggest pinch and swell structures are initiated by brittle failure of the more competent layer in conjunction with material softening. On this basis we develop a flexible numerical model using brittle-viscous flow where Mohr–Coulomb failure is utilised to initiate pinch and swell structure development. Results show that pinch and swell structures develop in a competent layer in both Newtonian and non-Newtonian flow provided the competent layer has enough viscosity contrast and initially fails brittlely. The degree of material softening after initial failure is shown to impact pinch and swell characteristics with high rates of material softening causing the formation of thick necks between swells by limiting the successful localisation of strain. The flow regime and yielding characteristics of the matrix do not impact pinch and swell structure formation itself, so long as the matrix is less competent. To aid analysis of the structures and help derive the flow properties of rocks in the field, we define three stages of pinch and swell development and offer suggestions for measurements to be made in the field. Our study suggests that Mohr–Coulomb behaviour combined with viscous flow is an appropriate way to represent the heterogeneous rocks of the middle to lower crust. This type of mid-crustal rheological behaviour has significant influence on the localization of strain at all scales. For example, inclusion of Mohr–Coulomb brittle failure with viscous flow in just some mid-crustal layers within a crustal scale model will result in strain localisation throughout the whole crustal section allowing the development of through-going high strain structures from the upper crust into the middle and lower crust. This

  9. From boron carbide to glass: Absorption of an elongated high-speed projectile in brittle materials

    Science.gov (United States)

    Rumyantsev, B. V.

    2016-09-01

    Penetration into boron carbide of an elongated high-speed projectile in the form of a copper jet produced by an explosion of a cumulative charge is studied. The efficiency of absorption of a copper jet in different brittle materials for evaluating their protective ability is compared. Conditions for the absence of the influence of the lateral unloading wave on the penetration zone, which provide the minimum penetration depth, are determined.

  10. Fracture propagation in brittle materials as a standard dissipative process: General theorems and crack tracking algorithms

    Science.gov (United States)

    Salvadori, A.; Fantoni, F.

    2016-10-01

    The present work frames the problem of three-dimensional quasi-static crack propagation in brittle materials into the theory of standard dissipative processes. Variational formulations are stated. They characterize the three dimensional crack front "quasi-static velocity" as minimizer of constrained quadratic functionals. An implicit in time crack tracking algorithm that computationally handles the constraint via the penalty method algorithm is introduced and proof of concept is provided.

  11. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  12. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    exhibit many distinctive physical and mechanical properties, compared to metallic and polymeric materials, but the propensity toward brittle fracture ...copper grid by a FIB micro-probe. (d) Side view of the sliced specimen after a final milling. The TEM foil is welded on the Cu grid using tungsten ...their respective height and fractured micropillars are shown by cross mark (). (b) The measured ultimate (failure) strength and plasticity vs. the

  13. Controlling factors for the brittle-to-ductile transition in tungsten single crystals

    Science.gov (United States)

    Gumbsch; Riedle; Hartmaier; Fischmeister

    1998-11-13

    Materials performance in structural applications is often restricted by a transition from ductile response to brittle fracture with decreasing temperature. This transition is currently viewed as being controlled either by dislocation mobility or by the nucleation of dislocations. Fracture experiments on tungsten single crystals reported here provide evidence for the importance of dislocation nucleation for the fracture toughness in the semibrittle regime. However, it is shown that the transition itself, in general, is controlled by dislocation mobility rather than by nucleation.

  14. OrbscanⅡ角膜地形图系统筛查亚临床期圆锥角膜%Screening of Subclinical Keratoconus by OrbscanⅡ Cornea Topography

    Institute of Scientific and Technical Information of China (English)

    虞林丽; 赵刚平; 朱敏; 王艳华; 李追; 赵岭江; 张亚军

    2012-01-01

    Objective To evaluate the features of cornea topography in subclinical keratoconus. Methods Orbscan II cornea topography system was performed on 15 patients(26 eyes) with subclinical keratoconus. Diff values of cornea anterior surface and posterior surface, thickness of the thinnest cornea, center refractive power of cornea, and simulated keratometry were measured. Results Diff values of cornea anterior surface and posterior surface in subclinical keratoconus were 0. 025 and 0. 050 mm respectively, thickness of the thinnest cornea was (450.65 + 35.67) μm;SimK was (4. 55 + 1. 09)D, and center refractive power of cornea was (47. 1 ±3. 5) D. Diff value of cornea anterior surface had a positive correlation with diff value of cornea posterior surface and center refractive power of cornea. Conclusion Orbscan JJ cornea topography system can provide morphological basis for early diagnosis of subclinical keratoconus.%目的 研究亚临床期圆锥角膜的角膜地形图改变的特点.方法 应用 OrbscanⅡ角膜地形图系统检测15例(26只眼)亚临床期圆锥角膜患者的角膜,得到角膜前表面和后表面Diff 值、角膜最薄点厚度、角膜中央屈光力及角膜模拟镜差值(SimK 值),了解亚临床期圆锥角膜的敏感性指标以及各指标之间的相关关系.结果 亚临床期圆锥角膜的角膜前表面Diff 值是0.025 mm,角膜后表面Diff 值为0.050 mm;角膜最薄点厚度(450.65±35.67)μm;SimK值为(4.55±1.09)D;角膜中央屈光力为(47.1 ±3.5)D.角膜前表面Diff值与角膜后表面Diff值、角膜中央屈光力呈正相关关系;角膜后表面Diff值与角膜中央屈光力呈正相关关系.结论 OrbscanⅡ角膜地形图系统可为早期诊断亚临床期圆锥角膜提供形态学依据.

  15. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  16. Experimental study on the physical and chemical properties of the deep hard brittle shale

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2016-03-01

    Full Text Available In the hard brittle shale formation, rock composition, physical and chemical properties, mechanics property before and after interacting with fluid have direct relation with borehole problems, such as borehole wall collapse, mud loss, hole shrinkage. To achieve hard brittle shale micro-structure, physical–chemical properties and mechanics property, energy-dispersive X-ray diffraction (XRD, cation exchange capacity experiment and hardness test are conducted. The result of laboratory experiments indicates that, clay mineral and quartz is dominated in mineral composition. In clay mineral, illite and illite/semectite mixed layers are abundant and there is no sign of montmorillonite. Value of cation exchange capacity (CEC ranges from 102.5–330 mmol/kg and average value is 199.56 mmol/kg. High value of CEC and content of clay mineral means hard brittle shale has strong ability of hydration. The image of XRD shows well developed micro-cracks and pores, which make rock failure easily, especially when fluid invades rock inside. Shale sample soaked with anti-high temperature KCL drilling fluid on shorter immersing time has stronger strength, whereas shale sample soaked with plugging and film forming KCL drilling fluid on longer immersing time has stronger strength.

  17. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  18. Final report of experimental laboratory-scale brittle fracture studies of glasses and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L.J.; Mecham, W.J.; Reedy, G.T.; Steindler, M.J.

    1982-10-01

    An experimental program was conducted to characterize the fragments generated when brittle glasses and ceramics are impacted. The direct application of the results is to radioactive waste forms for which the effects of accidental impacts must be known or predictable. Two major measurable experimental responses used for characterization of these effects are (1) the size distribution of the fragments, including the sizes that are respirable, and (2) the increase in surface area of the brittle test specimen. This report describes the glass and ceramic materials characterized, the procedures and techniques used for the characterization of size distributions and surface areas, and the results of the two key responses of the impact tests. Five alternative methods of determining size distributions were compared. Also examined were the effects of diametral and axial specimen impact configurations and the use of mechanical stops to eliminate secondary crushing during testing. Microscopic characterizations of Pyrex and SRL 131 simulated waste glass and SYNROC fragments were also performed. Preliminary correlations of impact energy with key size-distribution parameters, fragment surface areas, and respirable fines were proposed as useful for future verification and for use with modeling and scale-up studies of brittle fracture of larger realistic waste forms. The impact fragments of all specimens could be described by lognormal size distributions.

  19. Rock Drilling Performance Evaluation by an Energy Dissipation Based Rock Brittleness Index

    Science.gov (United States)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-08-01

    To reliably estimate drilling performance both tool-rock interaction laws along with a proper rock brittleness index are required to be implemented. In this study, the performance of a single polycrystalline diamond compact (PDC) cutter cutting and different drilling methods including PDC rotary drilling, roller-cone rotary drilling and percussive drilling were investigated. To investigate drilling performance by rock strength properties, laboratory PDC cutting tests were performed on different rocks to obtain cutting parameters. In addition, results of laboratory and field drilling on different rocks found elsewhere in literature were used. Laboratory and field cutting and drilling test results were coupled with values of a new rock brittleness index proposed herein and developed based on energy dissipation withdrawn from the complete stress-strain curve in uniaxial compression. To quantify cutting and drilling performance, the intrinsic specific energy in rotary-cutting action, i.e. the energy consumed in pure cutting action, and drilling penetration rate values in percussive action were used. The results show that the new energy-based brittleness index successfully describes the performance of different cutting and drilling methods and therefore is relevant to assess drilling performance for engineering applications.

  20. A study of fracture in brittle laminar composites that contain weak interlayers

    Science.gov (United States)

    Scott, Colin Stuart

    Ceramics have material properties that make them useful for many industrial applications. They are strong, hard, and chemically inert. Their refractoriness gives them an advantage over metals and polymers for use at high temperature. Unfortunately, the inherent brittleness of ceramics limits their use in structural applications. One way to improve the toughness of ceramics is to combine them with other materials to make composites. The correct combination of materials can lead to synergism, and a significant improvement in properties. In this work, brittle laminates that contain weak interlayers are considered. The weak interlayers lead to crack deflection, and can result in non-catastrophic failure of the material. The requirements for consistent crack deflection and non-catastrophic failure are not fully understood. This work is an attempt to explain the observed fracture behaviour in brittle laminar composites that contain weak interlayers. A combination of experimental work, fracture mechanics modeling and finite element modeling has been used to predict the requirements necessary for non-catastrophic failure. The work shows the size of flaws in the surface of the composite, in the weak interlayer, and in subsequent strong layers in the material, all play an important role in the fracture behaviour. Control and understanding of the effect of the various flaw sizes can be used to achieve non-catastrophic failure and increased work of fracture in these composites.

  1. TENSILE STRENGTH FOR SPLITTING FAILURE OF BRITTLE PARTICLES WITH CONSIDERATION OF POISSON'S RATIO

    Institute of Scientific and Technical Information of China (English)

    Guoming Hu; Yanmin Wang; Pingbo Xie; Zhidong Pan

    2004-01-01

    The core mechanism of comminution could be reduced to the breakage of individual particles that occurs through contact with other particles or with the grinding media, or with the solid walls of the mill. When brittle particles are loaded in compression or by impact, substantial tensile stresses are induced within the particles. These tensile stresses are responsible for splitting failure of brittle particles. Since many engineering materials have Poisson's ratios very close to 0.3, the influence of Poisson's ratio on the tensile strength is neglected in many studies. In this paper, the state of stress in a spherical particle due to two diametrically opposed forces is analyzed theoretically. A simple equation for the tensile stress at the centre of the particle is obtained. It is found reasonable to propose this tensile stress at the instant of failure as the tensile strength of the particle. Moreover, this tensile strength is a function of the Poisson's ratio of the material. As the state of stress along the z-axis in an irregular specimen tends to be similar to that in a spherical particle compressed diametrically with the same force, this tensile strength has some validity for irregular particles as well.Therefore, it could be used as the tensile strength for brittle particles in general. The effect of Poisson's ratio on the tensile strength is discussed.

  2. 3D modelling of salt tectonics with a brittle overburden in an extensional regime

    Science.gov (United States)

    Eichheimer, Philipp; Reuber, Georg; Kaus, Boris

    2016-04-01

    Most previous numerical models of salt tectonics only considered 2D cases or did not taken a brittle sedimentary overburden into account, both of which are likely to be important in nature. To get insights into the dynamics of diapiric rise of salt we here present time-dependent high resolution 3D models of salt tectonics in the presence of a brittle overburden and sedimentation. We focus on the internal deformation of an embedded anhydrite layer within a nonlinear viscous salt layer. As salt in nature tends to rise upwards to the surface along fault zones, the salt layer is overlain by a brittle overburden to simulate faulting. The resulting complex folding of the anhydrite layer obtained in our models is consistent with natural observations, e.g. Gorleben [1]. Regarding field examples we vary the shape of the anhydrite layer to understand different modes of deformation [2]. We test the effect of overburden rheology, extension and sedimentation rates on the 3D salt dome patterns and on its internal deformation. [1] O. Bornemann. Zur Geologie des Salzstocks Gorleben nach den Bohrergebnissen. Bundesamt für Strahlenschutz (1991). [2] Z. Chemia, H. Koyi, and H. Schmeling. Numerical modelling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International 172.2 (2008): 798-816.

  3. Serotonin syndrome

    Science.gov (United States)

    Hyperserotonemia; Serotonergic syndrome; Serotonin toxicity; SSRI - serotonin syndrome; MAO - serotonin syndrome ... two medicines that affect the body's level of serotonin are taken together at the same time. The ...

  4. Microstructures relevant to brittle fracture initiation at the heat-affected zone of weldment of a low carbon steel

    Science.gov (United States)

    Ohya, Kenji; Kim, Jongseop; Yokoyama, Ken'ichi; Nagumo, Michihiko

    1996-09-01

    Charpy toughness of the heat-affected zone (HAZ) of weldment of a low carbon steel has been investigated by means of an instrumented Charpy test and fractographic analysis. Microstructures were varied with thermal cycles simulating double-pass welding. The ductile-brittle transition temperature is the most deteriorated at an intermediate second-cycle heating temperature. The origin of the difference in the transition temperatures has been analyzed to exist in the brittle fracture initiation stage. Fractographic examination correlating with microstructural features has revealed that the brittle fracture initiation site is associated with the intersection of bainitic ferrite areas with different orientations rather than the martensite-austenite constituents. The role of the constraint of plastic deformation on the brittle fracture initiation is discussed.

  5. Deciphering the brittle evolution of SW Norway through a combined structural, mineralogical and geochronological approach

    Science.gov (United States)

    Scheiber, Thomas; Viola, Giulio; Fredin, Ola; Zwingmann, Horst; Wilkinson, Camilla Maya; Ganerød, Morgan

    2016-04-01

    SW Norway has experienced a complex brittle history after cessation of the Caledonian orogeny, and the recent discoveries of major hydrocarbon reserves in heavily fractured and weathered basement offshore SW Norway has triggered a renewed interest in understanding this complex tectonic evolution. In this contribution we present results from a multidisciplinary study combining lineament analysis, field work, paleo-stress inversion, mineralogical characterization and radiometric dating in the Bømlo area of SW Norway in order to develop a tectonic model for the brittle evolution of this important region. The study area mainly consists of the Rolvsnes granodiorite (U-Pb zircon age of ca. 466 Ma), which is devoid of penetrative ductile deformation features. The first identified brittle faults are muscovite-bearing top-to-the-NNW thrusts and E-W striking dextral strike-slip faults decorated with stretched biotite. These are mechanically compatible and are assigned to the same NNW-SSE transpressional regime. Ar-Ar muscovite and biotite dates of ca. 450 Ma (Late Ordovician) indicate fault activity in the course of a Taconian-equivalent orogenic event. During the subsequent Silurian Laurentia-Baltica collision variably oriented, lower-grade chlorite and epidote-coated faults formed in response to a ENE-WSW compressional stress regime. A large number of mainly N-S striking normal faults consist of variably thick fault gouge cores with illite, quartz, kaolinite, calcite and epidote mineralizations, accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges and zones of altered granodiorite constrain deformation ranging from the Permian to the Late Jurassic, indicating a long history of crustal extension where faults were repeatedly activated. In addition, a set of ca. SW-NE striking faults associated with alteration zones give Cretaceous dates, either representing a young phase of NW-SE extension or reactivation of previously formed

  6. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii

    Directory of Open Access Journals (Sweden)

    Vaughn Roy

    2012-09-01

    Full Text Available Abstract Background The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. Methods Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. Results Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared ‘genetic toolkit’ central to the echinoderm gastrula, a key stage in embryonic development, though

  7. Immunogenicity of a Moraxella bovis bacterin containing attachment and cornea-degrading enzyme antigens.

    Science.gov (United States)

    Gerber, J D; Selzer, N L; Sharpee, R L; Beckenhauer, W H

    1988-02-01

    An adjuvanted Moraxella bovis bacterin containing attachment antigens and cornea-degrading enzyme antigens protected cattle from infectious bovine keratoconjunctivitis (IBK) when experimentally challenged with homologous and heterologous challenge cultures of M. bovis. This bacterin also protected cattle against field exposure to M. bovis. Transmission electron microscopy and fluorescein labeled anti-M. bovis pili antiserum showed pili on the M. bovis bacterin strain. Scanning electron microscopy demonstrated a fibrillar glycocalyx. The bacterin strain of M. bovis, but not all strains of M. bovis, destroyed bovine corneal cell monolayers in vitro. Bovine corneal cells began to separate from each other within 5 min after M. bovis organisms were added and adhered to the cell monolayers. Moraxella bovis organisms remained attached to the disintegrating cells as the cell membrane separated and was digested. Vaccination stimulated bacterial agglutination antibodies. However, protection against experimental challenge was more closely related to the cornea-degrading enzyme content of the experimental bacterins. Twenty-two of 29 cattle (76%) vaccinated with bacterins containing a relative enzyme activity (REA) greater than 0.4 were protected in a rigorous challenge of immunity test. Only 1 of 21 non-vaccinated calves (5%) was free of IBK. Ninety-two percent (24/26) of calves vaccinated with a bacterin containing a REA greater than 0.29 remained free of IBK following field exposure, whereas 47% (8/17) non-vaccinated calves developed IBK. Only 8 of 12 calves (67%) vaccinated with a bacterin containing a REA of 0.09 remained free of IBK. In a larger field efficacy test consisting of 32 herds in six states, the incidence of IBK in individual herds ranged from 0% to 55%. The overall rate of infection was 11.2%. Vaccination of calves with an M. bovis bacterin that contained a REA of 0.63 reduced the incidence of IBK from 11.2% (217/1931) in the non-vaccinated controls to 4

  8. In-Vivo Slit Scanning Confocal Microscopy of Normal Corneas in Indian Eyes

    Directory of Open Access Journals (Sweden)

    Vanathi Murugesan

    2003-01-01

    Full Text Available Objective: To study the cellular populations of healthy corneas of Indian eyes using confocal microscopy and to evaluate the correlation with age, gender and laterality. Methods: The central corneas of 100 eyes of 50 healthy subjects were examined using an i n-vivo slit scanning confocal microscope (Confoscan 2. Images were analysed for cell densities of the epithelium, stroma and endothelium. Results: Good quality images enabling analysis of all cell layer populations were obtained in 74 eyes of 43 healthy subjects (22 males and 21 females with a mean age of 31.89 ± 13.47 (range 19-71 years. The basal epithelial cell density was 3601.38 ± 408.19 cells/mm2 (range 3017.3 -4231.1cells/mm2. The mean keratocyte nuclei density in the anterior stroma was 1005.02 ± 396.86 cells/mm2 (range 571.6 - 1249.6 cells/mm2 and in the posterior stroma was 654.32 ± 147.09 cells/mm2 (range 402.6 - 1049.1 cells/mm2. Posterior keratocyte nuclei density was 30.76% less than the anterior stromal keratocyte nuclei density. The difference in keratocyte nuclei density was statistically significant (P=0.001. The mean endothelial cell density was 2818.1 ± 361.03 cells/mm2 (range 2118.9 - 4434 cells/mm2 and the mean endothelial cell area was found to be 385.44 ± 42.66 mm2 (range 268.9 - 489.2 mm2. Hexagonal cells formed 22.5 - 69.4% of the endothelial cell populations (mean 42.04 ± 11.81%. Mean coefficient of cell size variation was 32.29 ± 3.06 (range 27.2 - 39.2. No statistically significant differences were found in cell densities of any corneal layer either between female and male patients or between right and left eyes. Basal epithelial cell density, anterior stromal keratocyte nuclei and posterior stromal keratocyte nuclei density were unaffected by age (r= 0.12, 0.07, - 0.12 respectively (P= 0.001. There was a statistically significant negative correlation between mean endothelial cell density and increase in age (r= - 0.42, P=0.001. Coefficient of cell size

  9. Keratinocyte Growth Factor-2 on the Proliferation of Corneal Epithelial Stem Cells in Rabbit Alkali Burned Cornea

    Institute of Scientific and Technical Information of China (English)

    Liu; Yongping; Shuqi; Huang; Jianxian; Lin; Wenxin; Zhang

    2007-01-01

    Purpose: To determine whether the topical application of keratinocyte growth factor-2 (KGF-2) can enhance corneal epithelial healing in rabbit alkali burned cornea. In addition, the distribution and proliferation of corneal epithelial stem cells in KGF-2-treated and control corneas were investigated to explain their mechanisms of effects on the epithelium.Methods: Twenty-four New Zealand eyes were divided into four groups, treated with KGF-2 solution (1, 50, 100 μg/ml) and PBS solution. Eighth millimeter filter paper discs, produced by standard paper punch, were soaked for 15 sec in 0.5N NaOH solution. The alkali-soaked discs were applied to the central cornea, centered on the pupil and held gently in position with forceps for 1 min. The cornea was finally irrigated over 1 min with 100 ml balanced salt solution (BSS). Keratinocyte growth factor-2 was then applied topically three times a day. The phosphate-buffered saline (PBS) group was served as a control. Each corneal epithelial defect was subsequently photographed every 24 hours with a slit lamp and was measured by computer-assisted digitizer. In each group, two rabbits were sacrificed for light microscopic examination after the interval of 7, 14 and 21 days. Meanwhile, the cornea epithelium was examined by immunohistochemistry for P63, AE5, EGFR.Results: Topical application of 10 μg/ml to 100 μg/ml KGF-2 significantly accelerated corneal epithelial wound healing when compared with controls. After 24 hours,epithelial healing rate of the 100 μg/ml KGF-2 group and the PBS treated group was (74±6)% and (40±8)% (P < 0.05). After 48 hours, the rate of the C group was (94±6)%, whereas in the control group it was (73±12)% (P < 0.05). Epithelial defects were often recurrent, which happened only two times in the 100 μg/ml KGF-2-treated group, but many times in the control group. In the corneal epithelial stem cell analysis, the number of the P63 positive cells was higher in the KGF-2-treated corneal

  10. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  11. Comment on amniotic membrane covering promotes healing of cornea epithelium and improves visual acuity after debridement for fungal keratitis

    Institute of Scientific and Technical Information of China (English)

    Ahmet; Tas; Abdullah; Ilhan; Umit; Yolcu; Uzeyir; Erdem

    2015-01-01

    <正>Dear Editor,We congratulate Zeng et al[1]for their study entitled"Amniotic membrane covering promotes healing of cornea epithelium and improves visual acuity after debridement for fungal keratitis".The authors endeavored to present an alternative method for ophthalmologists in the treatment of a challenging case.We would like to express our reservations and ask for the attitudes of the authors about

  12. The role of connective tissue growth factor, transforming growth factor β1 and Smad signaling pathway in cornea wound healing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The cornea is a highly specialized and unique organ in the human body. Its main function is to project light from the external environment onto the retina, and it has a specific transparency to perform its function properly. The transparency and integrity of the cornea is of vital importance. The corneal wound, especially laceration deep to Bowman's membrane and stroma, which will inevitably cause scar formation, may cause the degeneration or even loss of sight. Injury can activate many biological factors in cornea as a strong stimulating signal. Transforming growth factors (TGF) and connective tissue growth factors (CTGF) are thought to be related to scar formation after injury. TGF can stimulate stroma cells of cornea and promote synthesis of matrix. Over expression of TGF causes scar formation.1,2 CTGF is a 38 kD cysteine-rich protein molecule and belongs to CCN family (CTGF/Fisp12, Cyr 61/CEF-10, Nov). In 1991, CTGF was firstly found in endothelial cells of human umbilical vein cultured in vitro.3,4 CTGF acts as an important molecule that intermediates the processes of fibrosis, scarring, wound repairing, angiogenesis and embryonic development in many cell types. CTGF plays a unique role in proliferation, differentiation and adhesion of fibroblast cells, which in turn produces large amounts of collagen and other extracellular matrix (ECM) proteins.5-8 CTGF is upregulated in fibrotic diseases, including lung-, skin-, pancreas-, liver-and kidney fibrosis.9,10 This study reports the expressions and interactions of TGF-β1 and CTGF in corneal wound in vivo. This study aimed at determining the expressions and interactions of CTGF and TGF-β1 in Smad signaling pathway during the period when corneal wound was healing.

  13. Commercially available rigid gas-permeable contact lens for protecting the cornea from drying during vitrectomy with a wide viewing system

    OpenAIRE

    Kamei M; Matsumura N; Sakaguchi H; Oshima Y; Ikuno Y; Nishida K

    2012-01-01

    Motohiro Kamei, Nagakazu Matsumura, Hirokazu Sakaguchi, Yusuke Oshima, Yasushi Ikuno, Kohji NishidaDepartment of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, JapanPurpose: We evaluated the usefulness of commercially available materials for protecting the cornea from drying during vitrectomy with a wide-angle viewing system.Methods: Three vitreoretinal surgeons evaluated fundus visibility during vitrectomy on the images of five study materials used on the cornea: balance...

  14. Effect of In Vitro Transcorneal Approach of Aceclofenac Eye Drops through Excised Goat, Sheep, and Buffalo Corneas

    Directory of Open Access Journals (Sweden)

    Vivek Dave

    2015-01-01

    Full Text Available The current study involves the evaluation of factors that influence the transcorneal permeation of aqueous drops of aceclofenac ophthalmic formulation through freshly excised goat, sheep, and buffalo corneas. Aceclofenac formulation with different concentrations 0.1–0.5% (w/v and with different pH and different preservatives, was taken into account. The amount of drug permeated from different formulations was estimated using an Franz diffusion cell. A linear increase in drug permeation was observed with increase in pH (5.5 to 7.4. The apparent permeability coefficient was found to be maximum 15.01±0.45 on goat cornea and maximum transport of aceclofenac was observed at physiological pH of tears (i.e., 7. The results advocate that aceclofenac 0.5% (w/v ophthalmic solution (pH 7.0 containing BAK (0.01% provides maximum in vitro ocular permeability through goat, sheep, and buffalo corneas.

  15. Birefringence of the central cornea in children assessed with scanning laser polarimetry.

    Science.gov (United States)

    Irsch, Kristina; Shah, Ashesh A

    2012-08-01

    Corneal birefringence is a well-known confounding factor with all polarization-sensitive technology used for retinal scanning and other intraocular assessment. It has been studied extensively in adults, but little is known regarding age-related differences. Specifically, no information is available concerning corneal birefringence in children. For applications that are geared towards children, such as retinal birefringence scanning for strabismus screening purposes, it is important to know the expected range of both corneal retardance and azimuth in pediatric populations. This study investigated central corneal birefringence in children (ages three and above), by means of scanning laser polarimetry (GDx-VCC™, Carl Zeiss Meditec, Inc.). Children's measures of corneal retardance and azimuth were compared with those obtained in adults. As with previous studies in adults, corneal birefringence was found to vary widely in children, with corneal retardance ranging from 10 to 77 nm, and azimuth (slow axis) ranging from -11° to 71° (measured nasally downward). No significant differences in central corneal birefringence were found between children and adults, nor were significant age-related differences found in general. In conclusion, establishing knowledge of the polarization properties of the central cornea in children allows better understanding, exploitation, or bypassing of these effects in new polarization-sensitive pediatric ophthalmic applications.

  16. Corneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas

    Science.gov (United States)

    Nemeth, Gabor; Szalai, Eszter; Hassan, Ziad; Lipecz, Agnes; Flasko, Zsuzsa; Modis, Laszlo

    2017-01-01

    AIM To analyze the correlations between ocular biomechanical and biometric data of the eye, measured by Scheimpflug-based devices on healthy subjects. METHODS Three consecutive measurements were carried out using the corneal visualization Scheimpflug technology (CorVis ST) device on healthy eyes and the 10 device-specific parameters were recorded. Pentacam HR-derived parameters (corneal curvature radii on the anterior and posterior surfaces; apical pachymetry; corneal volume; corneal aberration data; depth, volume and angle of the anterior chamber) and axial length (AL) from IOLMaster were correlated with the 10 specific CorVis ST parameters. RESULTS Measurements were conducted in 43 eyes of 43 volunteers (age 61.24±15.72y). The 10 specific CorVis ST data showed significant relationships with corneal curvature radii both on the anterior and posterior surface, pachymetric data, root mean square (RMS) data of lower-order aberrations, and posterior RMS of higher-order aberrations and spherical aberration of the posterior cornea. Anterior chamber depth showed a significant relationship, but there were no significant correlations between corneal volume, anterior chamber volume, mean chamber angle or AL and the 10 specific CorVis ST parameters. CONCLUSIONS CorVis ST-generated parameters are influenced by corneal curvature radii, some corneal RMS data, but corneal volume, anterior chamber volume, chamber angle and AL have no correlation with the biomechanical parameters. The parameters measured by CorVis ST seem to refer mostly to corneal properties of the eye. PMID:28251079

  17. Precut cornea for Descemet's stripping endothelial keratoplasty: experience at a single eye bank.

    Science.gov (United States)

    Mohamed, Ashik; Chaurasia, Sunita; Chandragiri, Venkataswamy; Kandhibanda, Srinivas; Gunnam, Srinivas; Garg, Prashant

    2016-07-20

    The aim of the study is to describe the experience with precut facility for endothelial keratoplasty at a single eye bank affiliated to a tertiary eye care center in India. Data on precut tissues from Nov 2012 to Dec 2014 were retrospectively reviewed from the electronic database of the eye bank of a tertiary eye care center in South India. Donor characteristic data including donor age, precut and postcut endothelial cell density (ECD), recipient age, and thickness of graft were collected. The number of precuts increased from 42 in 2012 (Nov and Dec) and 422 in 2013 to 584 in 2014. Of the total of 1048 precuts, seven (0.67 %) were miscut and could not be utilized for transplants. The donor age ranged from 2 to 89 years. A mean change of 43.6 ± 325.2 cells/mm(2) in ECD was noted after cut, proportional increase in mean being 1.9 %. The change in ECD after cut was negatively correlated with ECD before cut. The recipient age ranged from 1 to 89 years. The median thickness of donor lenticule after cut was 148 µm (interquartile range 131-166 µm). Analysis of precut donor corneas from a single eye bank shows that the ECD of the processed tissues was excellent for transplantation. The tissue wastage in the hands of eye bank personal was minimal.

  18. Q pili enhance the attachment of Moraxella bovis to bovine corneas in vitro.

    Science.gov (United States)

    Ruehl, W W; Marrs, C; Beard, M K; Shokooki, V; Hinojoza, J R; Banks, S; Bieber, D; Mattick, J S

    1993-01-01

    Moraxella bovis, the causative agent of infectious bovine keratoconjunctivitis, exhibits several virulence factors, including pili, haemolysin, leukotoxin, and proteases. The pili are filamentous appendages which mediate bacterial adherence. Prior studies have shown that Q-piliated M. bovis Epp63 are more infectious and more pathogenic than I-piliated and non-piliated isogenic variants, suggesting that Q pili per se, or traits associated with Q-pilin expression, promote the early association of Q-piliated bacteria with bovine corneal tissue. In order to better evaluate the role of Q pili in M. bovis attachment, several M. bovis strains and a recombinant P. aeruginosa strain which elaborates M. bovis Q pili but not P. aeruginosa PAK pili, were evaluated using an in vitro corneal attachment assay. For each strain tested, piliated organisms attached better than non-piliated bacteria. M. bovis Epp63 Q-piliated bacteria adhered better than either the I-piliated or non-piliated isogenic variants. Finally, recombinant P. aeruginosa organisms elaborating M. bovis Q pili adhered better than the parent P. aeruginosa strain which did not produce M. bovis pili. These results indicate that the presence of pili, especially Q pili, enhances the attachment of bacteria to bovine cornea in vitro.

  19. Examination of tear film smoothness on corneae after refractive surgeries using a noninvasive interferometric method

    Science.gov (United States)

    Szczesna, Dorota H.; Kulas, Zbigniew; Kasprzak, Henryk T.; Stenevi, Ulf

    2009-11-01

    A lateral shearing interferometer was used to examine the smoothness of the tear film. The information about the distribution and stability of the precorneal tear film is carried out by the wavefront reflected from the surface of tears and coded in interference fringes. Smooth and regular fringes indicate a smooth tear film surface. On corneae after laser in situ keratomileusis (LASIK) or radial keratotomy (RK) surgery, the interference fringes are seldom regular. The fringes are bent on bright lines, which are interpreted as tear film breakups. The high-intensity pattern seems to appear in similar location on the corneal surface after refractive surgery. Our purpose was to extract information about the pattern existing under the interference fringes and calculate its shape reproducibility over time and following eye blinks. A low-pass filter was applied and correlation coefficient was calculated to compare a selected fragment of the template image to each of the following frames in the recorded sequence. High values of the correlation coefficient suggest that irregularities of the corneal epithelium might influence tear film instability and that tear film breakup may be associated with local irregularities of the corneal topography created after the LASIK and RK surgeries.

  20. Richner-Hanhart syndrome (tyrosinemia type II). Case report and literature review.

    Science.gov (United States)

    al-Hemidan, A I; al-Hazzaa, S A

    1995-03-01

    Richner-Hanhart syndrome (Tyrosinemia Type II) is an autosomal recessive disorder of amino acid metabolism characterized by ocular changes, painful palmoplantar hyperkeratosis, and mental retardation. Serum tyrosine increases due to tyrosine aminotransferase deficiency resulting in the deposition of tyrosine crystals in the cornea and in corneal inflammation. Patients are often misdiagnosed as having herpes simplex keratitis. We report on a child who presented with bilateral keratitis secondary to Tyrosinemia Type II diagnosed as herpes simplex keratitis.

  1. A short-term study of corneal collagen cross-linking with hypo-osmolar riboflavin solution in keratoconic corneas

    Institute of Scientific and Technical Information of China (English)

    Shao-Feng; Gu; Zhao-Shan; Fan; Li-Hua; Wang; Xiang-Chen; Tao; Yong; Zhang; Chun-Qin; Wang; Ya; Wang; Guo-Ying; Mu

    2015-01-01

    AIM: To report the 3mo outcomes of collagen crosslinking(CXL) with a hypo-osmolar riboflavin in thin corneas with the thinnest thickness less than 400 μm without epithelium.METHODS: Eight eyes in 6 patients with age 26.2±4.8y were included in the study. All patients underwent CXL using a hypo-osmolar riboflavin solution after its de-epithelization. Best corrected visual acuity, manifest refraction, the thinnest corneal thickness, and endothelial cell density were evaluated before and 3mo after the procedure.RESULTS: The mean thinnest thickness of the cornea was 408.5 ±29.0 μm before treatment and reduced to369.8 ±24.8 μm after the removal of epithelium. With the application of the hypo-osmolar riboflavin solution, the thickness increased to 445.0 ±26.5 μm before CXL and recover to 412.5 ±22.7 μm at 3mo after treatment, P =0.659). Before surgery, the mean K-value of the apex of the keratoconus corneas was 57.6 ±4.0 diopters, and slightly decreased(54.7±4.9 diopters) after surgery(P =0.085). Mean best-corrected visual acuity was 0.55 ±0.23 logarithm of the minimal angle of resolution, and increased to 0.53±0.26 logarithm after surgery(P =0.879).The endothelial cell density was 2706.4 ±201.6 cells/mm2 before treatment, and slightly decreased( 2641. 2 ±218.2 cells/mm2) at last fellow up(P =0.002).CONCLUSION: Corneal collagen cross-linking with a hypo-osmolar riboflavin in thin corneas seems to be a promising treatment. Further study should be done to evaluate the safety and efficiency of CXL in thin corneas for the long-term.

  2. THE VISCOUS TO BRITTLE TRANSITION IN CRYSTAL- AND BUBBLE-BEARING MAGMAS

    Directory of Open Access Journals (Sweden)

    Mattia ePistone

    2015-11-01

    Full Text Available The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K and high-pressure (200 MPa conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1. During the experiments bubbles are deformed (i.e. capillary number are in excess of 1 enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65 and bubble volume fractions (0.09 to 0.12. The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44 promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a potential sudden transition to brittle behaviour, which could result in an explosive volcanic eruption.

  3. Tectonic tremor and brittle seismic events triggered along the Eastern Denali Fault in northwest Canada

    Science.gov (United States)

    Zimmerman, J. P.; Aiken, C.; Peng, Z.

    2013-12-01

    Deep tectonic tremor has been observed in a number of plate-bounding tectonic environments around the world. It can occur both spontaneously (i.e. ambient) and as a result of small stress perturbations from passing seismic waves (i.e. triggered). Because tremor occurs beneath the seismogenic zone (> 15 km), it is important to understand where and how tremor occurs to discern its relationship with shallower earthquakes. In this study, we search for triggered tremor and brittle seismic events along the Eastern Denali Fault (EDF) in northwest Canada, an intraplate strike-slip region where previously tremor has not been observed. We retrieve seismic data for 19 distant earthquakes from 9 broadband stations monitored by the Canadian National Seismograph Network (CNSN). We apply high-pass or band-pass filters to the seismic data to suppress signals from distant events and search for local sources. Triggered tremor signals exhibit high-frequency contents, have long duration (> 15 s), are coincident with passing surface waves of the distant earthquakes, and are observable among nearby stations. Using this simple approach, we have identified 4 mainshocks that triggered tremor in our study region: the 2011/03/11 Mw9.1 Tohoku, 2012/04/11 Mw8.6 Sumatra, 2012/10/28 Mw7.7 Haida Gwaii, and 2013/01/05 Mw7.5 Craige earthquakes. Our initial locations indicate that the tremor source occurs on or near the southeastern portion of the EDF near the fault trace. In addition to the triggered tremor sources, we also identified many 'brittle' events with very short durations triggered by the Rayleigh waves of the 2012/10/28 Mw7.7 Haida Gwaii earthquake. While we were unable to locate these brittle events, they appear to be seismically similar to triggered icequakes observed in Antarctica (Peng et al., 2013) and occur during the dilatational strain changes caused by the Rayleigh waves.

  4. What do we know about the initiation and early stages of brittle faulting in crystalline rocks?

    Science.gov (United States)

    Crider, J. G.

    2011-12-01

    The styles of initiation and subsequent growth of faults control fault length-slip scaling, the internal structure of fault zones, and fault-rock properties, influencing seismogenic behavior and fluid flow along the faults. Observations by many researchers over the last several decades have illustrated that faults in the upper crust initiate on pre-existing (inherited) or precursory (early-formed) structures and grow by the mechanical interaction and linkage of these structures. These pre-existing and precursory structures are typically mode I fractures (joints, veins, dikes) but may also be semi-brittle shear zones (such as deformation bands in porous sandstone). Research in the granitic outcrops of the central Sierra Nevada (California) has provided significant insight into the geometry and fundamental mechanics of the early stages of fault development. This work has shown that faults in plutonic rocks initiate on pre-existing or precursory joints or dikes and that the discontinuous nature of early mode I fractures has a strong influence on the subsequent development of the fault zone. In basalt, we have similarly observed the important influence of preexisting joints, and, at a broader scale, precursory, semi-brittle shear zones in the form of fault-tip monoclines. In metamorphic rocks, foliation appears to control the initial development of faults, influencing fault orientation, or enabling precursory structures such as kink bands. Kink bands, like deformation bands in porous sandstone, accommodate only small strains before locking, but then become strong inclusions in the material, serving to localize brittle fractures. The quasi-static mechanics of isotropic, isothermal linear-elastic materials in two and three dimensions provides first order understanding of controls on interaction and linkage of early structures, including the concentration of stresses and local stress reorientation. Fruitful research directions important to faulting in crystalline rock

  5. Hemolytic and cytotoxic effects of saponin like compounds isolated from Persian Gulf brittle star (Ophiocoma erinaceus)

    Institute of Scientific and Technical Information of China (English)

    Elaheh Amini; Mohammad Nabiuni; Javad Baharara; Kazem Parivar; Javad Asili

    2014-01-01

    Objective: To isolate and characterize the saponin from Persian Gulf brittle star (Ophiocomaerinaceus Methods: In an attempt to prepare saponin from brittle star, collected samples were minced and extracted with ethanol, dichloromethane, n-buthanol. Then, concentrated n-butanol extract were loaded on HP-20 resin and washed with dionized water, 80% ethanol and 100%ethanol respectively. Subsequently, detection of saponin was performed by foaming property, fourier transform infrared spectroscopy and hemolytic analysis on thin layer chromatography. The cytotoxic activity on HeLa cells was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assay and under invert microscopy.Results:) and to evaluate its hemolytic and cytotoxic potential. method. The presence of C-H bond, C-O-C and OH in fourier transform infrared spectrum of fraction 80% ethanol is characteristic feature in the many of saponin compounds. Hemolytic assay revealed HD50 value was 500 µg/mL. MTT assay exhibited that saponin extracted in IC50 value of 25 µg/mL inducsd potent cytotoxic activity against HeLa cells in 24 h and 12.5 µg/mL in 48 h, meanwhile in lower concentration did not have considerable effect against HeLa cells.Conclusions:The existence of saponin in Ophiocoma erinaceus were approved by phytochemical These findings showed that only 80% ethanol fraction Persian Gulf brittle star contained saponin like compounds with hemolytic activity which can be detected simply by phytochemical that can be appreciable for future anticancer research.

  6. An experimental study on semi-brittle and plastic rheology of Panzhihua gabbro

    Institute of Scientific and Technical Information of China (English)

    HE; Changrong(何昌荣); ZHOU; Yongsheng(周永胜); SANG; Zunan(桑祖南)

    2003-01-01

    We have carried out a systematic experimental study on semi-brittle and plastic deformation of fine-grained Panzhihua gabbro under dry condition with temperature range of 700-1100℃, confining pressure of 450-500 MPa, and strain rate of 1×10-4-3.1×10-6 s-1, using a triaxial testing system with a Griggs type solid medium pressure vessel. In terms of the parameters in the flow law and microstructure after deformation, the rate-dependent deformation can be categorized into three modes: (i) In temperature range of 700-800℃, the deformation is accommodated by semi-brittle flow, with activation energy Q = 612 ± 12 kJ/mol, and stress exponent n = 14.6. The deformation in microscopic scale corresponds to the dislocation glide accompanied with microfracturing. (ii) In temperature range of 900-950℃, the predominant deformation mechanisms in this phase are mechanical twinning and dislocation glide, with activation energy Q =720 ± 61 kJ/mol, and stress exponent n = 6.4. (iii) In temperature range of 1000-1150℃, the major deformation mechanisms are dislocation glide and dislocation climb with minor processes of partial melting, with activation energy Q = 699 ± 55 kJ/mol and stress exponent n = 4.1. The microstructure and deformation mechanism of our experiments are comparable to the results of clinopyroxene and diabase as observed in previous studies. The flow stress of a mafic lower crust is calculated based on the rheological parameters of dry fine-grained gabbro, which implies that a lower curst with mafic granulite may be brittle, and it is possible to fracture and produce frictional slips. This may be an important implication for earthquake nucleation in the lower crust.

  7. Brittle versus ductile deformation as the main control of the deep fluid circulation in continental crust

    Science.gov (United States)

    Violay, Marie; Madonna, Claudio; Burg, Jean-Pierre

    2016-04-01

    The Japan Beyond-Brittle Project (JBBP) and the Taupo Volcanic Zone-Deep geothermal drilling project in New Zealand (TVZ-DGDP) proposed a new concept of engineered geothermal development where reservoirs are created in ductile rocks. This system has several advantages including (1) a simpler design and control of the reservoir due to homogeneous rock properties and stress states in the ductile domain ,(2) possible extraction of supercritical fluids (3) less probability for induced earthquakes. However, it is at present unknwon what and how porosity and permeability can be engineered in such environments. It has been proposed that the magmatic chamber is surrounded by a hot and ductile carapace through which heat transfer is conductive because the plastic behaviour of the rock will close possible fluid pathways. Further outward, as temperature declines, the rock will encounter the brittle-ductile transition with a concomitant increase in porosity and permeability. The thickness of the conduction-dominated, ductile boundary zone between the magmatic chamber and the convecting geothermal fluid directly determines the rate of heat transfer. To examine the brittle to ductile transition in the context of the Japanese crust, we conducted deformation experiments on very-fine-grain granite in conventional servocontrolled, gas-medium triaxial apparatus (from Paterson instrument). Temperature ranged from 600° C to 1100° C and effective confining pressure from 100 to 150 MPa. Dilatancy was measured during deformation. The method consisted in monitoring the volume of pore fluid that flows into or out of the sample at constant pore pressure. Permeability was measured under static conditions by transient pressure pulse method. Mechanical and micro-structural observations at experimental constant strain rate of 10-5 s-1 indicated that the granite was brittle and dilatant up to 900 ° C. At higher temperatures the deformation mode becomes macroscopically ductile, i

  8. Film-induced brittle intergranular cracking of silver-gold alloys

    Energy Technology Data Exchange (ETDEWEB)

    Friedersdorf, F. [Bethlehem Steel Corp., PA (United States). Homer Research Labs.; Sieradzki, K. [Arizona State Univ., Tempe, AZ (United States)

    1996-05-01

    Dealloying of a binary noble alloy produces a porous layer rich in the more noble element. Application of a tensile load initiates a brittle intergranular (IG) crack in the dealloyed layer that advances into the unattacked material. This study showed that the crack penetration depth (C{sub d}) is proportional to the thickness of the dealloyed layer (t). For a given value of t, the grain-boundary crack penetration distance was shown to decrease as the dealloying potential increased. The dependence of C{sub d} on t and the dealloying potential, as opposed to the applied potential at the time of fracture, supported the film-induced cleavage model.

  9. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  10. Modeling and mesoscopic damage constitutive relation of brittle short-fiber-reinforced composites

    Institute of Scientific and Technical Information of China (English)

    刘洪秋; 梁乃刚; 夏蒙棼

    1999-01-01

    Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description,damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.

  11. Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea.

    Science.gov (United States)

    Coura, Chistiane O; de Araújo, Ianna W F; Vanderlei, Edfranck S O; Rodrigues, José A G; Quinderé, Ana L G; Fontes, Bruno P; de Queiroz, Ismael N L; de Menezes, Dalgimar B; Bezerra, Mirna M; e Silva, Antonio A R; Chaves, Hellíada V; Jorge, Roberta J B; Evangelista, Janaina S A M; Benevides, Norma M B

    2012-04-01

    Seaweeds have attracted special interest as good sources of sulphated polysaccharides (SP) for use in pharmaceutical industries and biotechnology. In this study, we evaluated the effects of SP from the red seaweed Gracilaria cornea (Gc-TSP) in nociceptive and inflammatory models. In mice, Gc-TSP (3, 9 or 27 mg/kg) significantly reduced nociceptive responses, as measured by the number of writhes, at all tested doses. In a formalin test, Gc-TSP significantly reduced licking time in both phases of the test at a dose of 27 mg/kg. In a hot-plate test, the antinociceptive effect was observed only in animals treated with 27 mg/kg of Gc-TSP, suggesting that the analgesic effect occurs through a central action mechanism at the highest dose. Gc-TSP (3, 9 or 27 mg/kg) caused only a slight reduction in neutrophil migration in the rat peritoneal cavity. However, lower doses of Gc-TSP (3 and 9 mg/kg) significantly inhibited paw oedema induced by carrageenan, especially at 3 hr after treatment. Reduction in oedema was confirmed by myeloperoxidase activity in the affected paw tissue. In addition, treatment (s.c.) of animals with different doses of Gc-TSP inhibited paw oedema induced by dextran within the first hour in all doses tested. After 14 consecutive days of intraperitoneal administration of Gc-TSP (9 mg/kg), we measured the wet weight of the liver, kidney, heart, spleen and thymus and performed biochemical, haematological and histopathological evaluations. No systemic damage was found. These results indicate that Gc-TSP possesses analgesic and anti-inflammatory effects and is a potentially important tool worthy of further study.

  12. Visual pigments, oil droplets, lens, and cornea characterization in the whooping crane (Grus americana)

    Science.gov (United States)

    Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.

    2014-01-01

    Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane, Grus americana (Gruiformes: Gruidae). G. americana (an endangered species) is one of only two North American crane species and represents a large, long-lived bird where ultraviolet sensitivity may be degraded by chromatic aberrations and entrance of ultraviolet light into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate if the ocular media (i.e., the lens and cornea) absorbs UV light. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, while the cone visual pigments λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2), and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cutoff wavelength (λcut) values similarly fell within ranges recorded from other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type), and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system, although based on the λmax of the SWS1 visual pigment (404 nm) may also have some ability for UV sensitivity.

  13. Experiments of Brittle-Plastic Transition and Instability Modes of Juyongguan Granite at Different Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    Zhou Yongsheng; Jiang Haikun; He Changrong

    2003-01-01

    Three groups of experiments on brittle-plastic transition and instability modes of granite wereperformed in a triaxial vessel with solid pressure medium at high temperature and highpressure. The results of experiments show that brittle faulting is the major failure mode attemperature < 300℃, but crystal-plastic deformation is dominate at temperature > 800℃, andthere is a transition with increasing temperature from semi-brittle faulting to cataclnstic flowand semi-brittle flow at temperatures of 300 ~ 800℃. So, temperature is the most influentialfactor in brittle-plastic transition of granite and confining pressure is the second factor. Theresults also show that progressive failure of granite occurs at lower pressure or hightemperature where there is crystal plasticity, and sudden instability occurs at room temperatureand high pressure ( > 300MPa) or high temperature and great pressure(550℃600MPa ~ 650℃700MPa), and a broad regime of quasi-sudden instability exists between the T-P condition ofprogressive failure and sudden instability. So, instability modes of granite dependsimnitaneonsly on the pressure and temperature.

  14. Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique

    Indian Academy of Sciences (India)

    M Rahman; A Senthil Kumar; H S Lim; K Fatima

    2003-10-01

    Recent developments in grinding have opened up new avenues for finishing of hard and brittle materials with nano-surface finish, high tolerance and accuracy. Grinding with superabrasive wheels is an excellent way to produce ultraprecision surface finish. However, superabrasive diamond grits need higher bonding strength while grinding, which metal-bonded grinding wheels can offer. Truing and dressing of the wheels are major problems and they tend to glaze because of wheel loading. When grinding with superabrasive wheels, wheel loading can be avoided by dressing periodically to obtain continuous grinding. Electrolytic inprocess dressing (ELID) is the most suitable process for dressing metal-bonded grinding wheels during the grinding process. Nano-surface finish can be achieved only when chip removal is done at the atomic level. Recent developments of ductile mode machining of hard and brittle materials show that plastically deformed chip removal minimizes the subsurface damage of the workpiece. When chip deformation takes place in the ductile regime, a defect-free nano-surface is possible and it completely eliminates the polishing process. ELID is one of the processes used for atomic level metal removal and nano-surface finish. However, no proper and detailed studies have been carried out to clarify the fundamental characteristics for making this process a robust one. Consequently, an attempt has been made in this study to understand the fundamental characteristics of ELID grinding and their influence on surface finish.

  15. Brittle and Ductile Behavior in Deep-Seated Landslides: Learning from the Vajont Experience

    Science.gov (United States)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-06-01

    This paper analyzes the mechanical behavior of the unstable Mt. Toc slope before the 1963 catastrophic collapse, considering both the measured data (surface displacements and microseismicity) and the updated geological model of the prehistoric rockslide. From February 1960 up to 9 October 1963, the unstable mass behaved as a brittle-ductile `mechanical system,' characterized by remarkable microseismicity as well as by considerable surface displacements (up to 4-5 m). Recorded microshocks were the result of progressive rock fracturing of distinct resisting stiff parts made up of intact rock (indentations, undulations, and rock bridges). The main resisting stiff part was a large rock indentation located at the NE extremity of the unstable mass that acted as a mechanical constraint during the whole 1960-1963 period, inducing a progressive rototranslation toward the NE. This large constraint failed in autumn 1960, when an overall slope failure took place, as emphasized by the occurrence of the large perimetrical crack in the upper slope. In this circumstance, the collapse was inhibited by a reblocking phenomenon of the unstable mass that had been previously destabilized by the first reservoir filling. Progressive failure of localized intact rock parts progressively propagated westwards as a consequence of the two further filling-drawdown cycles of the reservoir (1962 and 1963). The characteristic brittle-ductile behavior of the Vajont landslide was made possible by the presence of a very thick (40-50 m) and highly deformable shear zone underlying the upper rigid rock mass (100-120 m thick).

  16. PREDICTION OF CHARACTERISTIC LENGTH AND FRACTURE TOUGHNESS IN DUCTILE-BRITTLE TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P

    2008-04-15

    Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from -160 to -45 C within the ductile-brittle transition regime. As many researchers have shown, the failure stress ({sigma}{sub f}) of the material could be approximated as a constant. The characteristic length, or the critical distance (r{sub c}) from the crack tip, at which {sigma}{sub f} is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A{sub 2} two-parameter constraint theory in fracture mechanics, the fracture toughness (J{sub C} or K{sub JC}) can be expressed as a function of the constraint level (A{sub 2}) and the critical distance r{sub c}. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant {sigma}{sub f} and a set of temperature-dependent r{sub c}. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W= 0.075) to deep cracks (a/W= 0.5), where a is the crack length and W is the specimen width.

  17. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    Science.gov (United States)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  18. Electromagnetic and neutron emissions from brittle rocks failure: Experimental evidence and geological implications

    Indian Academy of Sciences (India)

    A Carpinteri; G Lacidogna; O Borla; A Manuello; G Niccolini

    2012-02-01

    It has been observed energy emission in the form of electromagnetic radiation, clearly indicating charge redistribution, and neutron bursts, necessarily involving nuclear reactions, during the failure process of quasi-brittle materials such as rocks, when subjected to compression tests. The material used is Luserna stone, which presents a very brittle behaviour during compression failure. The observed phenomenon of high-energy particle emission, i.e., electrons and neutrons, can be explained in the framework of the superradiance applied to the solid state, where individual atoms lose their identity and become part of different plasmas, electronic and nuclear. Since the analysed material contains iron, it can be conjectured that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. These complex phenomenologies are confirmed by Energy Dispersive X-ray Spectroscopy (EDS) tests conducted on Luserna stone specimens, and found additional evidences at the Earth’s Crust scale, where electromagnetic and neutron emissions are observed just in correspondence with major earthquakes. In this context, the effects of piezonuclear reactions can be also considered from a geophysical and geological point of view.

  19. Visco-poroelastic damage model for brittle-ductile failure of porous rocks

    Science.gov (United States)

    Lyakhovsky, Vladimir; Zhu, Wenlu; Shalev, Eyal

    2015-04-01

    The coupling between damage accumulation, dilation, and compaction during loading of sandstones is responsible for different structural features such as localized deformation bands and homogeneous inelastic deformation. We distinguish and quantify the role of each deformation mechanism using new mathematical model and its numerical implementation. Formulation includes three different deformation regimes: (I) quasi-elastic deformation characterized by material strengthening and compaction; (II) cataclastic flow characterized by damage increase and compaction; and (III) brittle failure characterized by damage increase, dilation, and shear localization. Using a three-dimensional numerical model, we simulate the deformation behavior of cylindrical porous Berea sandstone samples under different confining pressures. The obtained stress, strain, porosity changes and macroscopic deformation features well reproduce the laboratory results. The model predicts different rock behavior as a function of confining pressures. The quasi-elastic and brittle regimes associated with formation of shear and/or dilatant bands occur at low effective pressures. The model also successfully reproduces cataclastic flow and homogeneous compaction under high pressures. Complex behavior with overlap of common features of all regimes is simulated under intermediate pressures, resulting with localized compaction or shear enhanced compaction bands. Numerical results elucidate three steps in the formation of compaction bands: (1) dilation and subsequent shear localization, (2) formation of shear enhanced compaction band, and (3) formation of pure compaction band.

  20. Research on Ultrasonic Vibration Grinding of the Hard and Brittle Materials

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-hong; HAN Jie-cai; ZHANG Yu-min; ZUO Hong-bo; ZHANG Xue-jun

    2006-01-01

    It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker wear and tear of grinding tools, lower efficiency and so on. Ultrasonic vibration grinding (UVG) which combines ultrasonic machining and grinding emerged as a developing and promising technique in recent years. In this paper, experimental studies on UVG were conducted on several kinds of hard and brittle material by altering processing parameters such as vibration frequency and its amplitude, diamond abrasive grit size, cutting depth, feeding speed and rotary speed of tools. The experimental results show that alteration in any of above mentioned parameters will bring effects on the processed surface finish of these materials. Of them, the diamond abrasive grit size has the greatest. Moreover, conventional grinding experiments were also carried out on these materials. By comparison, it was found that the UVG is superior to the conventional method in terms of the ground surface quality, the working efficiency and the wear rate of tools.

  1. Brittle Creep Failure, Critical Behavior, and Time-to-Failure Prediction of Concrete under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yingchong Wang

    2015-01-01

    Full Text Available Understanding the time-dependent brittle deformation behavior of concrete as a main building material is fundamental for the lifetime prediction and engineering design. Herein, we present the experimental measures of brittle creep failure, critical behavior, and the dependence of time-to-failure, on the secondary creep rate of concrete under sustained uniaxial compression. A complete evolution process of creep failure is achieved. Three typical creep stages are observed, including the primary (decelerating, secondary (steady state creep regime, and tertiary creep (accelerating creep stages. The time-to-failure shows sample-specificity although all samples exhibit a similar creep process. All specimens exhibit a critical power-law behavior with an exponent of −0.51 ± 0.06, approximately equal to the theoretical value of −1/2. All samples have a long-term secondary stage characterized by a constant strain rate that dominates the lifetime of a sample. The average creep rate expressed by the total creep strain over the lifetime (tf-t0 for each specimen shows a power-law dependence on the secondary creep rate with an exponent of −1. This could provide a clue to the prediction of the time-to-failure of concrete, based on the monitoring of the creep behavior at the steady stage.

  2. Pressure induced stiffening, thermal softening of bulk modulus and brittle nature of mercury chalcogenides

    Science.gov (United States)

    Varshney, Dinesh; Shriya, Swarna; Sapkale, Raju; Varshney, Meenu; Ameri, M.

    2015-07-01

    The pressure and temperature dependent elastic properties of mercury chalcogenides (HgX; X = S, Se and Te) with pressure induced structural transition from ZnS-type (B3) to NaCl-type (B1) structure have been analyzed within the framework of a model interionic interaction potential with long-range Coulomb and charge transfer interactions, short-range overlap repulsion and van der Waals (vdW) interactions as well as zero point energy effects. Emphasis is on the evaluation of the Bulk modulus with pressure and temperature dependency to yield the Poisson's ratio ν, the Pugh ratio ϕ, anisotropy parameter, Shear and Young's modulus, Lamé's constant, Klein man parameter, elastic wave velocity and Debye temperature. The Poisson's ratio behavior infers that HgX are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations.

  3. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    Science.gov (United States)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  4. Analytical and numerical analysis of frictional damage in quasi brittle materials

    Science.gov (United States)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  5. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    Science.gov (United States)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  6. Mixed brittle-plastic deformation behaviour in a slate belt. Examples from the High-Ardenne slate belt (Belgium, Germany)

    Science.gov (United States)

    Sintubin, Manuel; van Baelen, Hervé; van Noten, Koen; Muchez, Philippe

    2010-05-01

    In the High-Ardenne slate belt, part of the Rhenohercynian external fold-and-thrust belt at the northern extremity of the Late Palaeozoic Variscan orogen (Belgium, Germany, France), particular quartz vein occurrences can be observed in predominantly fine-grained siliciclastic metasediments. Detailed structural, petrographical and geochemical studies has revealed that these vein occurrences can be related to a mixed brittle-plastic deformation behaviour in a low-grade metamorphic mid-crustal environment. The first type of quartz veins are bedding-perpendicular, lens-shaped extension veins that are confined to the sandstone layers within the multilayer sequence. Fluid inclusion studies demonstrate high fluid pressures suggesting that the individual sandstone bodies acted as isolated high-pressure compartments in an overpressured basin. Hydraulic fracturing occurred during the tectonic inversion (from extension to compression) in the earliest stages of the Variscan orogeny. The vein fill shows a blocky character indicating crystal growth in open cavities. Both the typical lens shape of the veins and the subsequent cuspate-lobate folding of the bed interfaces in between the quartz veins suggest plastic deformation of cohesionless fluid-filled fissures. Metamorphic grade of the host rock and fluid temperature and pressure clearly indicates mid-crustal conditions below the brittle-plastic transition. This first type of quartz veins exemplifies mixed brittle-plastic deformation behaviour, possibly related to a transient deepening of the brittle-plastic transition. This is in contrast with contemporaneous bedding-perpendicular crack-seal veins observed in higher - upper-crustal - structural levels in the slate belt, reflecting pure brittle deformation behaviour. The second type are discordant quartz veins confined to extensional low-angle detachment shear zones. These very irregular veins transect a pre-existing pervasive cleavage fabric. They show no matching walls and

  7. Estimation of brittle fracture behavior of SA508 carbon steel by considering temperature dependence of damage model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Beom; Jeong, Jae Uk; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of); Chang, Yoon Suk [Kyunghee Univ., Seoul (Korea, Republic of); Kim, Min Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures -60 .deg. C, -80 .deg. C, and -100 .deg. C were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR 6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

  8. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadao; Tsurekawa, Sadahiro

    1999-11-12

    Grain boundaries can be effectively controlled to produce or enhance their beneficial effects and also to diminish or reduce their detrimental effects on bulk properties in polycrystalline materials. Particular attention has been paid to the control of intergranular brittleness which remains a serious problem of material processing and development. Recent studies are presented and discussed, which have been successfully performed to control intergranular brittleness of intrinsically brittle materials such as the refractory metal molybdenum and the ordered intermetallic alloy Ni{sub 3}Al and to produce superplasticity in an Al-Li alloy, by grain boundary engineering through controlling a new microstructural factor termed the grain boundary character distribution (GBCD). The optimization of GBCD and the grain boundary connectivity has been found to be a key to produce desirable bulk mechanical properties in both structural and functional polycrystalline materials.

  9. Marfan Syndrome

    Science.gov (United States)

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, ... fibrillin. A problem with the fibrillin gene causes Marfan syndrome. Marfan syndrome can be mild to severe, ...

  10. Metabolic Syndrome

    Science.gov (United States)

    ... hypertension, hypertriglyceridemia, insulin resistance syndrome, low HDL cholesterol, Metabolic Syndrome, overweight, syndrome x, type 2 diabetes Family Health, Kids and Teens, Men, Women January 2005 Copyright © American Academy of Family PhysiciansThis ...

  11. Williams syndrome

    Science.gov (United States)

    Williams-Beuren syndrome ... Williams syndrome is caused by not having a copy of several genes. Parents may not have any family history of the condition. However, people with Williams syndrome have a 50% chance of passing the ...

  12. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jun [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Sun, Jianguo [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University (China); Hong, Jiaxu [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Wang, Wentao [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Wei, Anji [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Le, Qihua [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Xu, Jianjiang, E-mail: jianjiang-xu@163.com [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China)

    2015-05-01

    Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. - Highlights: • T-style keratoprosthesis was designed and prepared based on a PHEMA hydrogel. • Selective surface modifications effectively regulated cells' selective adhesion. • T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with host tissues.

  13. Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge.

    Science.gov (United States)

    Lee, S D; Hsiue, G H; Kao, C Y; Chang, P C

    1996-03-01

    A method for producing various surfaces of silicone rubber membrane (SR) was developed in this study by grafting various amounts of poly(2-hydroxy ethyl methacrylate) (pHEMA) onto SR by plasma-induced grafted polymerization (PIP) as a homobifunctional membrane. The elemental composition and different carbon bindings on the surface of SR were examined by electron spectroscopy for chemical analysis with the amount of O1s/C1s being approximately 0.7 at 1 min, 60 W, 200 mTorr of Ar-plasma treatment. The peroxide group introduced on SR was measured via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the amount of 6.85 x 10(-8) mol cm-2 reached optimum value at 1 min of Ar-plasma treatment. After Ar-plasma treated SR, the peroxide group (33D peak) was introduced on the surface of SR by negative spectra of secondary ion mass spectroscopy analysis, whereas ester groups (72D peak) were observed for pHEMA-grafted SR. For the in vitro test, the influence of various surfaces of SR on attachment and growth of rabbit corneal epithelial cells (CEC) was studied by cell culture assay. These results indicated that 56-150 micrograms cm-2 of pHEMA grafted onto SR were suitable values for attachment and growth of CEC. On the contrary, the large grafted amounts (500-1650 micrograms cm-2) of pHEMA on SR were insufficient for attachment and growth of CEC. For the in vivo test, the migration of CEC from host cornea to implant was investigated by slit lamp microscopy. The experimental results indicated that SRs grafted with pHEMA were completely covered with CEC 3 weeks after implantation of the membranes into the host cornea. These results provide a valuable reference for developing an artificial cornea.

  14. Innervation of TRPV1-, PGP-, and CGRP-immunoreactive nerve fibers in the subepithelial layer of a whole mount preparation of the rat cornea.

    Science.gov (United States)

    Hiura, Akio; Nakagawa, Hiroshi

    2012-01-01

    The pattern of innervation of capsaicin receptor, TRPV1-(transient receptor protein vanilloid 1), PGP 9.5-(protein gene product, a marker of peripheral nerve fibers)-, and CGRP (calcitonin gene-related peptide)-immunoreactive (IR) nerve fibers was examined by immunohistological staining of whole mount preparations of the adult rat cornea. The outer corneoscleral limbus toward the central cornea in the subepithelial (stromal) layer was richly innervated by a meshwork of PGP- and CGRP-IR nerve fibers. Sparse innervation was observed in the central cornea, presumably owing to insufficient staining. Dense innervation of TRPV1-IR nerve fibers were demonstrated in addition to innervation of PGP- and CGRP-IR nerve fibers, running from the corneoscleral margin to the central cornea. Although the density of TRPV1-IR nerve fibers appeared to gradually diminish, immunostaining of TRPV1-IR nerve fibers was not as clear as that of PGP- and CGRP-IR nerve fibers. The TRPV1-IR nerve fibers appeared to be thinner than the PGP- and CGRP-IR nerve fibers. The TRPV1-IR leash fibers were observed in the basal epithelial layer, presumably ensuring effective corneal reflex, response to noxious stimuli, and repair of cornea injury.

  15. Lymphatic vessels growing apart from blood vessels in transplanted corneas after the blockade of vascular endothelial growth factor C

    Institute of Scientific and Technical Information of China (English)

    Ye Hui; Yan Hao; Zhong Lei; Wang Tao; Deng Juan; Ling Shi-qi

    2016-01-01

    BACKGROUND:Corneal lymphangiogenesis is beneficial to the transport of corneal antigenic materials, and accelerates the process of antigen presentation, thereby playing an important role in corneal immunity. However, due to the paral el outgrowth of corneal blood and lymphatic vessels in transplanted corneas, it is often difficult to accurately evaluate the role of corneal lymphatic vessels in allograft rejection. OBJECTIVE:To explore the development of corneal lymphangiogenesis and angiogenesis in transplanted rat corneas after the blockade of vascular endothelial growth factor C (VEGF-C). METHODS:130 rats used to establish corneal al ogenic transplantation models were equally randomized into two groups:the anti-VEGF-C group and the control group. VEGF-C was blocked in the anti-VEGF-C group by intraperitoneal injection of neutralizing monoclonal anti-VEGF-C antibody every other day for 2 consecutive weeks. Meanwhile, rats in control groups received intraperitoneal injections of saline. Corneal angiogenesis and lymphangiogenesis were characterized using whole mount immunofluorescence, and the immune rejection of the grafts was evaluated by scoring the rejection index (RI). In addition, the expression of VEGF-C was examined by real-time PCR. The relationship of corneal lymphangiogenesis and angiogenesis to RI in transplanted corneas was also characterized. RESULTS AND CONCLUSION:VEGF-C expression was markedly downregulated after VEGF-C blockade. Corneal lymphangiogenesis developed in parallel with corneal angiogenesis in the control group. While there was a mild reduction in blood vessel area (BVA) and a significant decrease in lymphatic vessel area (LVA) in the anti-VEGF-C group (P0.05). the graft survival time in the anti-VEGF-C group was significantly increased compared with that in the control group (P<0.05). Our results show that the outgrowth of lymphatic vessels is separated from that of blood vessels in transplanted corneas by blocking VEGF-C. The blockade

  16. Ultraprecision, high stiffness CNC grinding machines for ductile mode grinding of brittle materials

    Science.gov (United States)

    McKeown, Patrick A.; Carlisle, Keith; Shore, Paul; Read, R. F.

    1990-10-01

    Under certain controlled conditions it is now possible to machine brittle materials such as glasses and ceramics using single or multi-point diamond tools (grinding), so that material is removed by plastic flow, leaving crack-free surfaces. This process is called 'shear' or 'ductile' mode grinding. It represents a major breakthrough in modern manufacturing engineering since it promises to enable: - complex optical components, both transmission and reflecting to be generated by advanced CNC machines with very little (or even zero) subsequent polishing. - complex shaped components such as turbine blades, nozzle guide vanes, etc. to be finish machined after near net shape forming, to high precision in advanced ceramics such as silicon nitride, without inducing micro-cracking and thus lowering ultimate rupture strength and fatigue life. Ductile mode "damage free" grinding occurs when the volume of materials stressed by each grit of the grinding wheel is small enough to yield rather than exhibit brittle fracture, i.e. cracking. In practice, this means maintaining the undeformed chip thickness to below the ductile-brittle transition value; this varies from material to material but is generally in the order of 0.1 pm or 100 nm, (hence the term "nanogrinding" is sometimes used) . Thus the critical factors for operating successfully in the ductile regime are machine system accuracy and dynamic stiffness between each grit and the workpiece. In detail this means: (i) High precision 'truing' of the diamond grits, together with dressing of the wheel bond to ensure adequate ' openness'; (ii) Design and build of the grinding wheel spindle with very high dynamic stiffness; error motions, radial and axial, must be considerably less than 100 nfl. (iii) Design and build of the workpiece carriage motion system with very high dynamic stiffness; error motions, linear or rotary, must be well within 100 nm. (iv) Smooth, rumble-free, high-stiffness servo-drives controlling the motions

  17. Slip transfer across fault discontinuities within granitic rock at the brittle-ductile transition

    Science.gov (United States)

    Nevitt, J. M.; Pollard, D. D.; Warren, J. M.

    2011-12-01

    Fault mechanics are strongly influenced by discontinuities in fault geometry and constitutive differences between the brittle and ductile regions of the lithosphere. This project uses field observations, laboratory analysis and numerical modeling to investigate deformational processes within a contractional step at the brittle-ductile transition, and in particular, how slip is transferred between faults via ductile deformation across the step. The Bear Creek field area (central Sierra Nevada, CA) is comprised of late Cretaceous biotite-hornblende granodiorite and experienced a period of faulting at the brittle-ductile transition. Abundant echelon faults in Bear Creek, some of which were seismically active, provide many textbook examples of contractional steps, which are characterized by well-developed ductile fabrics. The occurrence of hydrothermal alteration halos and hydrothermal minerals in fracture fill documents the presence of water, which we suggest played a weakening role in the constitutive behavior of the granodiorite. Furthermore, the mechanism that accomplishes slip transfer in contractional steps appears to be related to water-enhanced ductile deformation. We focus our investigation on Outcrop SG10, which features a 10cm thick aplite dike that is offset 0.45m through a contractional step between two sub-parallel left-lateral faults. Within the step, the aplite undergoes dramatic thinning (stretch ~1/10) and the granodiorite is characterized by a well-developed mylonitic foliation, in which quartz and biotite plastically flow around larger grains of feldspars, hornblende and opaque minerals. Electron backscatter diffraction (EBSD) analysis gives a more quantitative depiction of the active micromechanics and reveals how slip is accommodated at the crystal scale throughout the step. We use Abaqus, a commercial finite element software, to test several constitutive laws that may account for the deformation observed both macro- and microscopically throughout

  18. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception.

    Directory of Open Access Journals (Sweden)

    Jérôme Delroisse

    Full Text Available Next generation sequencing (NGS technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric and mammal (ciliary classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic

  19. Cracks in random brittle solids:. From fiber bundles to continuum mechanics

    Science.gov (United States)

    Patinet, S.; Vandembroucq, D.; Hansen, A.; Roux, S.

    2014-10-01

    Statistical models are essential to get a better understanding of the role of disorder in brittle disordered solids. Fiber bundle models play a special role as a paradigm, with a very good balance of simplicity and non-trivial effects. We introduce here a variant of the fiber bundle model where the load is transferred among the fibers through a very compliant membrane. This Soft Membrane fiber bundle mode reduces to the classical Local Load Sharing fiber bundle model in 1D. Highlighting the continuum limit of the model allows to compute an equivalent toughness for the fiber bundle and hence discuss nucleation of a critical defect. The computation of the toughness allows for drawing a simple connection with crack front propagation (depinning) models.

  20. Volume Change of Heterogeneous Quasi-brittle Materials in Uniaxial Compression

    Institute of Scientific and Technical Information of China (English)

    WANG Xuebin

    2006-01-01

    The volumetric strain was categorized into elastic and plastic parts. The former composed of axial and lateral strains is uniform and determined by Hooke's law; however, the latter consisting of axial and lateral strains is a function of thickness of shear band determined by gradient-dependent plasticity by considering the heterogeneity of quasi-brittle materials. The non-uniform lateral strain due to the fact that shear band was formed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rock. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters (shear band thickness, elastic and softening moduli) and geometrical size of specimen(height and width of specimen) on the volume dilatancy.

  1. Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials

    Directory of Open Access Journals (Sweden)

    Jamile Salim Fuina

    2010-12-01

    Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.

  2. Successful Treatment of Brittle Diabetes Following Total Pancreatectomy by Islet Allotransplantation: A Case Report

    Directory of Open Access Journals (Sweden)

    Angela Koh

    2013-07-01

    Full Text Available Context Allotransplantation of islets can successfully treat subjects with type 1 diabetes complicated by severehypoglycemia and erratic glycemic control. Insulin independence is often lost over time due to several factors, includingrecurrent autoimmunity. Brittle diabetes (frequent hypoglycemia and labile glycemic control is common afterpancreatectomy. This is ameliorated by auto-islet transplantation in pancreatectomized patients who have better glycemiccontrol, even without insulin independence. Case report We herein report a case where islet allotransplantation was carriedout in a patient who had undergone total pancreatectomy. Following two islet infusions, he became insulin independent withexcellent glycemic control and remains so currently, more than four years after his second islet infusion. Side effects fromimmunosuppressive therapy were minimal. Discussion Islet allotransplantation can be considered in selected individualspost-pancreatectomy. The absence of autoimmunity may be advantageous for long term graft function relative to isletallotransplantation in type 1 diabetic recipients.

  3. MAGNETIC STRIPS TO SIMULATE LAYERED BRITTLE SOLIDS IN CLEAVAGE AND FRACTURE EXPERIMENTS

    Institute of Scientific and Technical Information of China (English)

    Francisco G.Emmerich; Alfredo G.Cunha; Carlos M.A.Girelli; Arnobio I.Vassem

    2008-01-01

    A characteristic of the fracture and cleavage experiments is that they are usually intrinsically destructive.Cracks do not completely heal in an unstressed system,even in crystals such as mica.Here,we used magnetic solids composed of magnetic strips for the non-destructive cleavage and brittle fracture experiments.Between the magnetic strips materials with different mechanical characteristics can be inserted,such as Teflon or foam strips,to change the mechanical properties of the solid.For the cleavage experiments,we developed an apparatus where parameters such as the main involved force can be measured easily.By inserting flaws,the magnetic solid can be used in dynamic fracture experiments,with the advantages of simulating macroscopically a non-destructive experiment in an easier way,that happen in real materials with much higher velocities.The apparatus and the used magnetic solid may be useful for demonstrations of fractures in classes.

  4. The Pore Collapse “Hot-Spots” Model Coupled with Brittle Damage for Solid Explosives

    Directory of Open Access Journals (Sweden)

    L. R. Cheng

    2014-01-01

    Full Text Available This paper is devoted to the building of a numerical pore collapse model with “hot-spots” formation for the impacted damage explosives. According to damage mechanical evolution of brittle material, the one-dimensional elastic-viscoplastic collapse model was improved to incorporate the impact damage during the dynamic collapse of pores. The damage of explosives was studied using the statistical crack mechanics (SCRAM. The effects of the heat conduction and the chemical reaction were taken into account in the formation of “hot-spots.” To verify the improved model, numerical simulations were carried out for different pressure states and used to model a multiple-impact experiment. The results show that repeated weak impacts can lead to the collapse of pores and the “hot-spots” may occur due to the accumulation of internal defects accompanied by the softening of explosives.

  5. Morphological study of elastic-plastic-brittle transitions in disordered media

    Science.gov (United States)

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-10-01

    We use a spring lattice model with springs following a bilinear elastoplastic-brittle constitutive behavior with spatial disorder in the yield and failure thresholds to study patterns of plasticity and damage evolution. The elastic-perfectly plastic transition is observed to follow percolation scaling with the correlation length critical exponent ν ≈1.59 , implying the universality class corresponding to the long-range correlated percolation. A quantitative analysis of the plastic strain accumulation reveals a dipolar anisotropy (for antiplane loading) which vanishes with increasing hardening modulus. A parametric study with hardening modulus and ductility controlled through the spring level constitutive response demonstrates a wide spectrum of behaviors with varying degree of coupling between plasticity and damage evolution.

  6. Nominally brittle cracks in inhomogeneous solids: From microstructural disorder to continuum-level scale

    Directory of Open Access Journals (Sweden)

    Jonathan eBarés

    2014-11-01

    Full Text Available We analyze the intermittent dynamics of cracks in heterogeneous brittle materials and the roughness of the resulting fracture surfaces by investigating theoretically and numerically crack propagation in an elastic solid of spatially-distributed toughness. The crack motion split up into discrete jumps, avalanches, displaying scale-free statistical features characterized by universal exponents. Conversely, the ranges of scales are non-universal and the mean avalanche size and duration depend on the loading microstructure and specimen parameters according to scaling laws which are uncovered. The crack surfaces are found to be logarithmically rough. Their selection by the fracture parameters is formulated in term of scaling laws on the structure functions measured on one-dimensional roughness profiles taken parallel and perpendicular to the direction of crack growth.

  7. Nucleating and propagating of nanocrack in dislocation-free zone in brittle materials

    Institute of Scientific and Technical Information of China (English)

    褚武扬; 高克玮; 陈奇志; 王燕斌; 肖纪美

    1995-01-01

    Nudeating and propagating of nanocrack forming in dislocation-free zone (DFZ) for a brittle material, TiAl alloy, was studied through in situ tensile test in TEM and analyzed using micro-fracture mechanics. The results show that many of dislocations can be emitted from a crack tip when the applied stress intensity KIa is larger than the stress intensity for dislocation emission KIe = 1.4MPa·m1/2 and a DFZ is formed after reaching equilibrium. The stress in a certain site in the DFZ, which is an elastic zone and is thinned gradually through dislocation multiplication and motion in the plastic zone, may be equal to the cohesive strength, resulting in initiating of a nanocrack in the DFZ or sometimes at the notch tip. The nanocrack forming in the DFZ is stable and can propagate into a cleavage microcrack through multiplication and movement of dislocations in the plastic zone under constant displacement condition.

  8. Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study

    Institute of Scientific and Technical Information of China (English)

    Shao Yu-Fei; Yang Xin; Zhao Xing; Wang Shao-Qing

    2012-01-01

    The effects of stacking fault energy,unstable stacking fault energy,and unstable twinning fault energy on the fracture behavior of nanocrystalline Ni are studied via quasicontinuum simulations.Two semi-empirical potentials for Ni are used to vary the values of these generalized planar fault energies.When the above three energies are reduced,a brittle-to-ductile transition of the fracture behavior is observed.In the model with higher generalized planar fault energies,a nanocrack proceeds along a grain boundary,while in the model with lower energies,the tip of the nanocrack becomes blunt.A greater twinning tendency is also observed in the more ductile model.These results indicate that the fracture toughness of nanocrystalline face-centered-cubic metals and alloys might be efficiently improved by controlling the generalized planar fault energies.

  9. Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation

    Directory of Open Access Journals (Sweden)

    M.Q. Jiang

    2015-08-01

    Full Text Available A theoretical model that takes into account the free-volume aided cooperative shearing of shear transformation zones (STZs is developed to quantitatively understand the ductile-to-brittle transition (DBT of metallic glasses. The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself. The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value. This critical temperature is in good agreement with the experimentally measured DBT temperature. Our results suggest that the DBT of metallic glasses is underpinned by the transition of atomic-cluster motions from STZ-type rearrangements to dilatational processes (termed tension transformation zones (TTZs.

  10. Fracture Testing at Small-Length Scales: From Plasticity in Si to Brittleness in Pt

    Science.gov (United States)

    Jaya, B. Nagamani; Jayaram, Vikram

    2016-01-01

    The field of micro-/nano-mechanics of materials has been driven, on the one hand by the development of ever smaller structures in devices, and, on the other, by the need to map property variations in large systems that are microstructurally graded. Observations of `smaller is stronger' have also brought in questions of accompanying fracture property changes in the materials. In the wake of scattered articles on micro-scale fracture testing of various material classes, this review attempts to provide a holistic picture of the current state of the art. In the process, various reliable micro-scale geometries are shown, challenges with respect to instrumentation to probe ever smaller length scales are discussed and examples from recent literature are put together to exhibit the expanse of unusual fracture response of materials, from ductility in Si to brittleness in Pt. Outstanding issues related to fracture mechanics of small structures are critically examined for plausible solutions.

  11. A MIXED MODE FRACTURE CRITERION BASED ON THE MAXIMUM TANGENTIAL STRESS IN BRITTLE INCLUSION

    Institute of Scientific and Technical Information of China (English)

    Ji Changjiang; Li Zhonghua; Sun Jun

    2005-01-01

    A closed-form solution for predicting the tangential stress of an inclusion located in mixed mode Ⅰ and Ⅱ crack tip field was developed based on the Eshelby equivalent inclusion theory. Then a mixed mode fracture criterion, including the fracture direction and the critical load, was established based on the maximum tangential stress in the inclusion for brittle inclusioninduced fracture materials. The proposed fracture criterion is a function of the inclusion fracture stress, its size and volume fraction, as well as the elastic constants of the inclusion and the matrix material. The present criterion will reduce to the conventional one as the inclusion having the same elastic behavior as the matrix material. The proposed solutions are in good agreement with detailed finite element analysis and measurement.

  12. A dimensional analysis approach to fatigue in quasi-brittle materials

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2009-10-01

    Full Text Available In this study, a generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth is proposed in order to highlight and explain the deviations from the classical power-law equations used to characterize the fatigue behaviour of quasi-brittle materials. According to this theoretical approach, the microstructural-size (related to the volumetric content of fibres in fibre-reinforced concrete, the crack-size, and the size-scale effects on the Paris’ law and the Wöhler equation are presented within a unified mathematical framework. Relevant experimental results taken from the literature are used to confirm the theoretical trends and to determine the values of the incomplete self-similarity exponents. All these information are expected to be useful for the design of experiments, since the role of the different dimensionless numbers governing the phenomenon of fatigue is herein elucidated.

  13. A damage mechanics approach for quantifying stress changes due to brittle failure of porous rocks

    Science.gov (United States)

    Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena

    2016-04-01

    Natural fault zones or man-made injection or production of fluid impact the regional stress distribution in Earth's crust and can be responsible for localized stress discontinuities. Understanding the processes controlling fracturing of the porous rocks and mechanical behaviour of fault zones is therefore of interest for several applications including geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes controlling the deformation of porous rocks during and after brittle failure. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To illustrate the model, simulation of a compaction experiment of a sandstone leading to shear failure will be presented which allows to quantify the stress drop accompanying the failure. Finally, we will demonstrate that this approach can also be used at the field scale to simulate hydraulic fracturing and assess the resulting changes in the stress field.

  14. Intraplate brittle deformation and states of paleostress constrained by fault kinematics in the central German platform

    Science.gov (United States)

    Navabpour, Payman; Malz, Alexander; Kley, Jonas; Siegburg, Melanie; Kasch, Norbert; Ustaszewski, Kamil

    2017-01-01

    The structural evolution of Central Europe reflects contrasting tectonic regimes after the Variscan orogeny during Mesozoic - Cenozoic time. The brittle deformation related to each tectonic regime is localized mainly along major fault zones, creating complex fracture patterns and kinematics through time with diverging interpretations on the number and succession of the causing events. By contrast, fracture patterns in less deformed domains often provide a pristine structural inventory. We investigate the brittle deformation of a relatively stable, wide area of the central German platform using fault-slip data to identify the regional stress fields required to satisfy the data. In a non-classical approach, and in order to avoid local stress variations and misinterpretations, the fault-slip data are scaled up throughout the study area into subsets of consistent kinematics and chronology for sedimentary cover and crystalline basement rocks. Direct stress tensor inversion was performed through an iterative refining process, and the computed stress tensors were verified using field-based observations. Criteria on relative tilt geometry and indicators of kinematic change suggest a succession of events, which begins with a post-Triassic normal faulting regime with σ3 axis trending NE-SW. The deformation then follows by strike-slip and thrust faulting regimes with a change of σ1 axis from N-S to NE-SW, supposedly in the Late Cretaceous. Two younger events are characterized by Cenozoic normal and oblique thrust faulting regimes with NW-SE-trending σ3 and σ1 axes, respectively. The fracture patterns of both the cover and basement rocks appear to record the same states of stress.

  15. The "brittle response" to Parkinson's disease medications: characterization and response to deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Daniel Martinez-Ramirez

    Full Text Available OBJECTIVE: Formulate a definition and describe the clinical characteristics of PD patients with a "brittle response" (BR to medications versus a "non-brittle response" (NBR, and characterize the use of DBS for this population. METHODS: An UF IRB approved protocol used a retrospective chart review of 400 consecutive PD patients presenting to the UF Center for Movement Disorders and Neurorestoration. Patient records were anonymized and de-identified prior to analysis. SPSS statistics were used to analyze data. RESULTS: Of 345 included patients, 19 (5.5% met criteria for BR PD. The BR group was comprised of 58% females, compared to 29% in the NBR group (P = .008. The former had a mean age of 63.4 compared to 68.1 in the latter. BR patients had lower mean weight (63.5 vs. 79.6, P = <.001, longer mean disease duration (12.6 vs. 8.9 years, P = .003, and had been on LD for more years compared to NBR patients (9.8 vs. 5.9, P = .001. UPDRS motor scores were higher (40.4 vs. 30.0, P = .001 in BR patients. No differences were observed regarding the Schwab and England scale, PDQ-39, and BDI-II. Sixty-three percent of the BR group had undergone DBS surgery compared to 18% (P = .001. Dyskinesias were more common, severe, and more often painful (P = <.001 in the BR group. There was an overall positive benefit from DBS. CONCLUSION: BR PD occurred more commonly in female patients with a low body weight. Patients with longer disease duration and longer duration of LD therapy were also at risk. The BR group responded well to DBS.

  16. High-definition micropatterning method for hard, stiff and brittle polymers.

    Science.gov (United States)

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers.

  17. Energy transport processes in a brittle ductile intrusive model of the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Weir, Graham J.

    1998-08-01

    The implications of the findings of recent GPS and micro-seismic studies in the Taupo Volcanic Zone (TVZ), New Zealand, on models of processes transporting mass, heat and chemicals are discussed. It is argued that in addition to the well established process of groundwater convection extracting heat and chemicals by interacting with magmatic intrusives under the TVZ, that two other processes may be important. Firstly, the existence of a ductile layer with very low permeability between about 8 to 15 km depth will produce a region of `enhanced conduction' in which very high conductive fluxes of energy arise from a temperature distribution which varies exponentially with depth. Secondly, water may transport up through the ductile layer, as a result of extensional processes in the ductile region. If extension is occurring at about 8 mm/yr, then geothermal heat transfer in the TVZ of about 4200 MW is made up from about 1200 MW from the cooling of intrusives in the brittle region in the upper 8 km; of about an additional 1900 MW of conducted heat entering the brittle region from the ductile region; and about an additional 1100 MW from water transport through the ductile region. Provided this water flow has a chloride concentration similar to that emitted from nearby volcanoes, then the total chloride transport from the TVZ is about 3.5 kg/s, as suggested by average enthalpy to chloride ratios in the TVZ of about 1.2 MJ/g. The present high heat and mass transport processes in the TVZ are assumed to result from the passive filling of volume created from extensional processes under the TVZ, plus conductive and/or convective heating processes below 15 km depth.

  18. Analysis of two precipitation methods on the yield, structural features and activity of sulfated polysaccharides from Gracilaria cornea (Rhodophyta

    Directory of Open Access Journals (Sweden)

    Ricardo Basto Souza

    2015-03-01

    Full Text Available The global demand for natural products from seaweeds has increased worldwide; however, no description of the use of isoamly alcohol (IAA for obtaining of sulfated polysaccharides (SPs has been reported. We investigated the efficiency of two precipitation methods (M in obtaining SPs from the red seaweed Gracilaria cornea. SPs enzymatically isolated were concentrated with cetylpyridinium chloride (M I or IAA (M II and extracts were examined with regard to their yield, structural features and in vitro effects on the activated partial thromboplastin time (APTT using normal human plasma and standard heparin (193 IU mg-1. Yield difference reached 12.99%. Quantitative determination of sulfate was similar between the two methods (̴ 26%, but extracts revealed different pattern on charge density by agarose gel electrophoresis. Whereas both extracts revealed as agarocolloids, alternative M II was also efficient for lipids, proteins and nucleic acids according to the infrared analysis. Extracts had virtually no effect on APPT (1.95 and 2 IU mg-1 for M I and M II, respectively. The results revealed IAA as an alternative solvent for obtaining SPs from the red seaweed G. cornea, depending on the industry’ usage criterion.

  19. The short-term effects of PMMA contact lens wear on keratometric behaviour: results for a single keratoconic cornea*

    Directory of Open Access Journals (Sweden)

    E. Chetty

    2010-12-01

    Full Text Available Keratometric behaviour is a multifaceted issue that many researchers have investigated for years. Many internal and external influences can have an effect on the cornea’s keratometric behaviour. This investigation forms a small part of a larger study that aims at determining the effects that rigid contact lenses might have on keratometric behaviour. This pilot study examined the keratometric behaviour of a single, mildly keratoconic cornea that was fitted with a polymethyl methacrylate (PMMA contact lens. Sixty successive auto-keratometric measurements were taken immediately before and immediately after three hours of contact lens wear. The data obtained was transformed to dioptric power matrices and were analysed using multivariate statistical methods. This study showed that, at least in one keratoconic cornea, there appeared to be a statistically significant change in corneal curvature under the influence of a PMMA contact lens. The contact lens had also appeared to decrease variation in corneal curvature. There was no control study done on this eye therefore the effects of diurnal variation, if any, could not be established. (S Afr Optom 2010 69(2 69-76

  20. Visual outcomes after deep anterior lamellar keratoplasty using donor corneas without removal of Descemet membrane and endothelium

    Directory of Open Access Journals (Sweden)

    Tatiana Moura Bastos Prazeres

    Full Text Available ABSTRACT Purpose: The optical quality of the interface after deep anterior lamellar keratoplasty (DALK using the big-bubble technique has been shown to be excellent, leading to results comparable to penetrating keratoplasty. However, there is little in the literature with respect to the controversy surrounding the preparation of the donor cornea. The purpose of this study was to evaluate visual acuity (VA in patients with keratoconus who underwent DALK without removal of the donor graft endothelium. Methods: The records of 90 patients who underwent DALK without the removal of the Descemet membrane (DM and endothelium were retrospectively reviewed. Data collected included uncorrected VA (UCVA and spectacle-corrected VA (SCVA at 7, 30, 180 days, and 1 year postoperatively. Contact lens-corrected visual acuity (CLVA was evaluated after 1 year of the procedure. Results: UCVA was significantly better than preoperative values at 7 days (p<0.001, 30 days (p<0.001, 180 days (p<0.001, and 1 year (p<0.001 after surgery. The 1-year postoperative mean SCVA and CLVA also improved when compared with preoperative SCVA (p<0.001 for both. Conclusions: DALK utilizing donor corneas with attached Descemet membrane and endothelium results in satisfactory VA in patients with keratoconus.

  1. Quantitative & qualitative analysis of endothelial cells of donor cornea before & after penetrating keratoplasty in different pathological conditions

    Directory of Open Access Journals (Sweden)

    Aruna K.R. Gupta

    2016-01-01

    Full Text Available Background & objectives: Endothelial cells of the donor cornea are known to be affected quantitatively and qualitatively in different pathological conditions after penetrating keratoplasty (PK and this has direct effect on the clarity of vision obtained after PK. This study was undertaken to analyze the qualitative and quantitative changes in donor endothelial cells before and after PK in different pathological conditions. Methods: A prospective investigational analysis of 100 consecutive donor corneas used for penetrating keratoplasty between June 2006 and June 2008, was conducted. The patients were evaluated on the first day, at the end of first week, first month, third and six months and one year. Results: A decrease was observed in endothelial cell count in all pathological conditions. After one year of follow up the loss was 33.1 per cent in corneal opacity, 45.9 per cent in acute infective keratitis (AIK, 58.5 per cent in regrafts, 28.5 per cent in pseudophakic bullous keratopathy (PBK, 37 per cent in descemetocele, 27 per cent in keratoconus and 35.5 per cent in aphakic bullous keratopathy (ABK cases. Interpretation & conclusions: The endothelial cell loss was highest in regraft cases which was significant (P<0.05, while the least endothelial cell loss was seen in keratoconus cases. The cell loss was associated with increase in coefficient of variation (CV, i.e. polymegathism and pleomorphism. Inspite of this polymegathism and pleomorphism, the clarity of the graft was maintained.

  2. In vitro evaluation of the permeation enhancing effect of polycarbophil-cysteine conjugates on the cornea of rabbits.

    Science.gov (United States)

    Hornof, Margit D; Bernkop-Schnürch, Andreas

    2002-12-01

    It was the aim of this study to investigate the permeation enhancing effect of thiolated polycarbophil on the cornea of rabbits in vitro. The proposed reaction mechanism involves the opening of the tight junctions in the corneal epithelium. The modification of polycarbophil was achieved via covalent attachment of L-cysteine mediated by a carbodiimide. Transcorneal permeation studies were performed in Ussing-type diffusion chambers. As model compounds, sodium fluorescein, as a marker for paracellular transport, and dexamethasone phosphate were used. To evaluate potential corneal damage the corneal hydration level of each cornea was determined. Polycarbophil-cysteine was found to increase the permeation of sodium fluorescein 2.2-fold and that of dexamethasone phosphate 2.4-fold in comparison to the unmodified polymer. The concentration of dexamethasone in the acceptor medium was 1.5-fold increased. As evidenced by the corneal hydration level, polycarbophil-cysteine did not damage the corneal tissues. Therefore, polycarbophil-cysteine conjugates seem to be promising excipients for ocular drug delivery systems where they might be used as safe permeation enhancers.

  3. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography

    Science.gov (United States)

    Li, Jiasong; Han, Zhaolong; Singh, Manmohan; Twa, Michael D.; Larin, Kirill V.

    2014-11-01

    Structurally degenerative diseases, such as keratoconus, can significantly alter the stiffness of the cornea, directly affecting the quality of vision. Ultraviolet-induced collagen cross-linking (CXL) effectively increases corneal stiffness and is applied clinically to treat keratoconus. However, measured corneal stiffness is also influenced by intraocular pressure (IOP). Therefore, experimentally measured changes in corneal stiffness may be attributable to the effects of CXL, changes in IOP, or both. We present a noninvasive measurement method using phase-stabilized swept-source optical coherence elastography to distinguish between CXL and IOP effects on measured corneal stiffness. This method compared the displacement amplitude attenuation of a focused air-pulse-induced elastic wave. The damping speed of the displacement amplitudes at each measurement position along the wave propagation were compared for different materials. This method was initially tested on gelatin and agar phantoms of the same stiffness for validation. Consequently, untreated and CXL-treated porcine corneas of the same measured stiffness, but at different IOPs, were also evaluated. The results suggest that this noninvasive method may have the potential to detect the early stages of ocular diseases such as keratoconus or may be applied during CLX procedures by factoring in the effects of IOP on the measured corneal stiffness.

  4. Research progress in scaffolds of tissue engineered cornea%组织工程化角膜支架的研究进展

    Institute of Scientific and Technical Information of China (English)

    张凯

    2012-01-01

    近20年来,应用组织工程技术构建角膜组织——组织工程化角膜的构建取得了较大的进展.然而,能够广泛应用于临床的组织工程化角膜的构建仍不够完善.组织工程化角膜支架是构建组织工程化角膜的重要组成部分之一.探寻生物相容性好、可降解并具有足够生物力学强度的支架材料是组织工程化角膜研究领域亟待解决的课题.就组织工程化角膜支架的发展历程进行概括总结,评价不同支架材料的优缺点,拓展理想支架材料的研发视野,为可广泛用于临床的组织工程化角膜的研制提供信息.%Great progress has been made in tissue engineering cornea construction (i.c.constructing human corneal equivalence by using tissue engineering technique) during the past 20 years.However,a kind of tissue engineering cornea which can be applied to corneal transplantation as human cornea equivalent is yet to be availablc.Scaffold is an indispensable part of tissue engineering cornea.Searching for some kinds of scaffolds with good biocompability,some extent of biodegradation and euough biomechanics property are the issue needing to be resolved immediately in the tissue engineering cornea filed.This article reviewed the development of tissue engineering cornea scaffolds,represented the merits and defects of different scaffolds in order to optimize the project of choosing scaffolds and furthermore lay the foundation for constructing a kind of tissue engineering cornea which may be applied to corneal transplantation as human cornea equivalent in the future.

  5. Microbiological profile of donor corneas stored for tectonic transplantation purposes in rabbits Microbiologia de amostras de bancos de córneas destinadas a transplantes, em coelhos

    Directory of Open Access Journals (Sweden)

    K.K. Kobashigawa

    2013-02-01

    Full Text Available This study aimed to evaluate the microbiota of donor rabbit corneas stored for tectonic transplantation purposes. Swabs from both corneas of 20 rabbits were carefully collected and submitted to microorganism isolation and identification. After this first swab collection, rabbits were euthanized for reasons other than this project and the eyes were enucleated. The corneas were collected and stored to compose the cornea tissue bank. Corneas were stored in a 0.3% tobramycin solution at -20ºC. After 30 days, the corneas were thawed at room temperature and removed from the antibiotic. New swabs were obtained from the corneas and submitted to microorganism isolation and identification. Gram positive organisms were predominant in the rabbit corneal flora before storage and the Staphylococcus sp. was the most common microorganism isolated from those samples. No growth was observed on the samples collected after storage. The methods used for collection and storage of the corneas were efficient to constitute a sterile donor corneal tissue bank.Analisaram-se córneas armazenadas para transplantes tectônicos usando-se suabes coletados de 20 coelhos, visando ao isolamento e à identificação de microrganismos. Após a coleta das amostras, os coelhos foram submetidos à eutanásia, por razões alheias ao estudo, e enucleados. As córneas foram coletadas e armazenadas a fim de se constituir o banco de córneas. O armazenamento deu-se em solução de tobramicina 0,3% a -20ºC, por 30 dias. Após esse período, as córneas foram descongeladas à temperatura ambiente e removidas da solução de antibiótico. Novos suabes foram coletados e submetidos ao isolamento e à identificação dos microrganismos. A flora corneal mostrou-se predominantemente composta por bactérias Gram positivas, sendo o Staphylococcus sp. o mais identificado. Não se verificou crescimento de colônias bacterianas ou fúngicas nas amostras após o armazenamento. Considerando-se a

  6. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  7. Fracture process of a low carbon low alloy steel relevant to charpy toughness at ductile-brittle fracture transition region

    Science.gov (United States)

    Tani, T.; Nagumo, M.

    1995-02-01

    The fracture process that determines the Charpy energy at the ductile-brittle transition region was investigated by means of the instrumented Charpy test and fractographic analysis with a low carbon low alloy steel subjected to different control-rolling conditions. The decomposition of a Charpy energy into the energies dissipated in the course of the notch-tip blunting, stable crack growth, and brittle crack propagation is unique irrespective of the testing temperatures and specimen series. Toughness level can be divided into four regions according to the pre-dominating fracture process. The temperature dependence of toughness and effects of the an-isotropy of a specimen originates in the brittle fracture initiation stage rather than the resistance against the notch-tip blunting or stable crack growth. From fractographic examination referring to the stress analyses, it is discussed that the brittle fracture initiation is controlled by the local deformation microstructures in the plastic zone together with the stress field ahead of the notch or the stable crack front.

  8. Ductile-brittle transition behavior of V-4Cr-4Ti irradiated in the dynamic helium charging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Nowicki, L.J.; Busch, D.E. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objective of this work is to determine the effect of simultaneous displacement damage and dynamically charged helium on the ductile-brittle transition behavior of V-4Cr-4Ti specimens irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE).

  9. Kindler syndrome

    Directory of Open Access Journals (Sweden)

    Kaviarasan P

    2005-01-01

    Full Text Available Kindler syndrome is a rare autosomal recessive disorder associated with skin fragility. It is characterized by blistering in infancy, photosensitivity and progressive poikiloderma. The syndrome involves the skin and mucous membrane with radiological changes. The genetic defect has been identified on the short arm of chromosome 20. This report describes an 18-year-old patient with classical features like blistering and photosensitivity in childhood and the subsequent development of poikiloderma. The differential diagnosis of Kindler syndrome includes diseases like Bloom syndrome, Cockayne syndrome, dyskeratosis congenita, epidermolysis bullosa, Rothmund-Thomson syndrome and xeroderma pigmentosum. Our patient had classical cutaneous features of Kindler syndrome with phimosis as a complication.

  10. 人工角膜及其相关材料%Artificial cornea and related materials

    Institute of Scientific and Technical Information of China (English)

    严拓; 敖宁建; 覃百花; 邓华

    2008-01-01

    学术背景:对于同种异体角膜移植失败的患者,人工角膜移植便成了复明的惟一希望.人工角膜的研究虽然已经跨越2个世纪,但由于各种因素限制,角膜植入术仍然只能在少数中心开展.近年来,由于相关学科的飞速发展,人工角膜也进入了快速发展时期.目的:从材料选择、片型设计、材料改性以及临床试验等角度进行叙述,比较不同结构人工角膜各自特点,并指出目前人工角膜所存在的主要问题,对理想的人工角膜提出了新的见解.检索策略:作者应用计算机检索中国全文期刊数据库(CNKI),Springer,EI,Blackwell数据库1993-01/2007-12与人工角膜相关文献.所用中文检索词有"人工角膜、角膜穿透术";英文榆索词包括"artificial cornea,penetrating keratoplasty".纳入标准:文章内容与人工角膜材料、片型设计、临床研究有关.排除标准:较为陈旧,重复性研究.文献评价:共检索到86篇相关文献,68篇文献符合上述要求,其中12篇为综述性文献,37篇为基础性研究文献,19篇为临床研究文献,从中选择30篇进行综述.资料综合:人工角膜材料包括光学镜柱材料(水凝胶、聚甲基丙烯酸甲酯、硅凝胶、玻璃)和支架材料(氟碳聚合物、羟基磷灰石、生物材料).材料改性包括材料化学改性、材料表面处理、材料表面修饰、材料表面等离子处理.不同的角膜片型设计中,较为成功的是AlphaCor和Osteo-Odonto,并获得了美国食品药品管理局批准,进入临床阶段.结论:提高人工角膜与组织黏附度,减少并发症是长期研究的重点领域,而材料选择、材料改性、片型设计等是解决的关键.

  11. Brittleness Source Identification Model for Cascading Failure of Complex Power Grid Based on Brittle Risk Entropy%基于脆性风险熵的复杂电网连锁故障脆性源辨识模型

    Institute of Scientific and Technical Information of China (English)

    刘文颖; 王佳明; 谢昶; 王维洲

    2012-01-01

    The essence of cascading failure in complex power system, which is the main reason of large-scale blackouts, is brittleness process when the brittleness source is excited. To study how large-scale blackouts take place and the defense measures, meanwhile, find out the high-risk lines, the author proposed a brittleness source identification model for cascading failure based on brittleness theory of complex system. From the view that brittleness is the nature of power system, the model used power flow entropy to measure the condition of power grid, and analyzed the mechanism of cascading failure by brittleness relevance and entropy increase from component and macroscopic aspects respectively. Take the identifying method of brittleness sources and brittleness relevance degree of grid components into consideration, a determining process of high-risk lines was given. Through simulation of cascading failure, brittle risk entropy was applied to assess the impact of component outage from power grid operation and the load removed, and this can provide a basis for defensive strategy making. Taking Gansu power network as an example, the feasibility and effectiveness of the proposed defense model were validated.%复杂电网连锁故障是引发系统大停电的主要原因,其实质是脆性源被激发后系统脆性的传播过程.为研究复杂电网大停电的机理及防御措施,同时找出电网的薄弱环节,提出了一种基于复杂系统脆性理论的连锁故障脆性源辨识模型.模型从电力系统本身具有的脆性出发,用潮流熵来衡量电网所处的状态,通过脆性关联及熵增分别从元件和宏观上阐述连锁故障的传播机理.提出了脆性源的辨识方法,并综合元件脆性关联度的分析给出了对连锁故障影响较大的系统薄弱环节的判定流程,通过对连锁故障过程的模拟,用脆性风险熵来评估元件退出运行对电网状态的影响及造成的负荷切除,为连锁故障防御策

  12. Failure processes in soft and quasi-brittle materials with nonhomogeneous microstructures

    Science.gov (United States)

    Spring, Daniel W.

    Material failure pervades the fields of materials science and engineering; it occurs at various scales and in various contexts. Understanding the mechanisms by which a material fails can lead to advancements in the way we design and build the world around us. For example, in structural engineering, understanding the fracture of concrete and steel can lead to improved structural systems and safer designs; in geological engineering, understanding the fracture of rock can lead to increased efficiency in oil and gas extraction; and in biological engineering, understanding the fracture of bone can lead to improvements in the design of bio-composites and medical implants. In this thesis, we numerically investigate a wide spectrum of failure behavior; in soft and quasi-brittle materials with nonhomogeneous microstructures considering a statistical distribution of material properties. The first topic we investigate considers the influence of interfacial interactions on the macroscopic constitutive response of particle reinforced elastomers. When a particle is embedded into an elastomer, the polymer chains in the elastomer tend to adsorb (or anchor) onto the surface of the particle; creating a region in the vicinity of each particle (often referred to as an interphase) with distinct properties from those in the bulk elastomer. This interphasial region has been known to exist for many decades, but is primarily omitted in computational investigations of such composites. In this thesis, we present an investigation into the influence of interphases on the macroscopic constitutive response of particle filled elastomers undergoing large deformations. In addition, at large deformations, a localized region of failure tends to accumulate around inclusions. To capture this localized region of failure (often referred to as interfacial debonding), we use cohesive zone elements which follow the Park-Paulino-Roesler traction-separation relation. To account for friction, we present a new

  13. Brittle ductile transition in experimentally deformed basalt under oceanic crust conditions

    Science.gov (United States)

    Violay, M.; Gibert, B.; Mainprice, D.; Evans, B.; Pezard, P. A.; Flovenz, O.

    2009-04-01

    The mid-ocean ridge system is the largest continuous volcanic feature on Earth, with significant interactions between tectonic activity, volcanism and sea-water circulation. Iceland is the biggest landmass straddling a mid-ocean ridge. The associated tectonic and volcanic settings resulting from the active rifting provide in this geodynamic context a major heat source for the geothermal exploitation. High-pressure, high-temperature, conventional triaxial compression experiments have been conducted in a Paterson Press to explore the brittle-ductile transition of oceanic crustal rocks under in situ conditions at depth (3-10 Km). The study provides some insights into the prospect of producing geothermal fluids from deep wells drilled into a reservoir at temperatures and pressures of supercritical water (T>400°C). We present a series of 20 axial compression deformation experiments performed on jacketed basalt cores of 10 mm diameter and 20 mm long. The experiments were performed at 100 and 300 MPa, with temperatures ranging from 400°C to 900°C, and pore pressures ranging from 0 to 100 MPa, a constant strain rate of 1 × 10- 5 s- 1 and up to strains of 15%. Two different types of basalts were selected for their simple compositions, low alteration degree and very low porosity (3%). The two samples differed in their percentage of glass, being zero in one case and 15% in the other. For the vitreous sample at a confining pressure of 100 and 300 MPa, our experiments show that deformation takes place by three deformation modes; (1) brittle fracture at 400°C with a maximal strength of 900 MPa, corresponding to failure by localized rupture, (2) strain-hardening at small strains and followed by slipping on a localized fracture plane at a constant strength around 250 MPa at higher strains, for temperatures ranging from 500°C to 700°C, (3) distributed ductile flow at differential stresses from 50 to 100 MPa and temperature from 800 to 900°C. For the non glassy sample, the

  14. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transformation temperature

    Science.gov (United States)

    Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl

    1992-01-01

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though

  15. Oblique impact cratering experiments in brittle targets: Implications for elliptical craters on the Moon

    Science.gov (United States)

    Michikami, Tatsuhiro; Hagermann, Axel; Morota, Tomokatsu; Haruyama, Junichi; Hasegawa, Sunao

    2017-01-01

    Most impact craters observed on planetary bodies are the results of oblique impacts of meteoroids. To date, however, there have only been very few laboratory oblique impact experiments for analogue targets relevant to the surfaces of extraterrestrial bodies. In particular, there is a lack of laboratory oblique impact experiments into brittle targets with a material strength on the order of 1 MPa, with the exception of ice. A strength on the order of 1 MPa is considered to be the corresponding material strength for the formation of craters in the 100 m size range on the Moon. Impact craters are elliptical if the meteoroid's trajectory is below a certain threshold angle of incidence, and it is known that the threshold angle depends largely on the material strength. Therefore, we examined the threshold angle required to produce elliptical craters in laboratory impact experiments into brittle targets. This work aims to constrain current interpretations of lunar elliptical craters and pit craters with sizes below a hundred meters. We produced mortar targets with compressive strength of 3.2 MPa. A spherical nylon projectile (diameter 7.14 mm) was shot into the target surface at a nominal velocity of 2.3 km/s, with an impact angle of 5°-90° from horizontal. The threshold angle of this experiment ranges from 15° to 20°. We confirmed that our experimental data agree with previous empirical equations in terms of the cratering efficiency and the threshold impact angle. In addition, in order to simulate the relatively large lunar pit craters related to underground cavities, we conducted a second series of experiments under similar impact conditions using targets with an underground rectangular cavity. Size and outline of craters that created a hole are similar to those of craters without a hole. Moreover, when observed from an oblique angle, a crater with a hole has a topography that resembles the lunar pit craters. The relation between the impact velocity of meteoroids on

  16. Developing an Experimental Simulation Method for Rock Avalanches: Fragmentation Behavior of Brittle Analogue Material

    Science.gov (United States)

    Thordén Haug, Øystein; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2013-04-01

    Gravitational mass movement on earth and other planets show a scale dependent behavior, of which the physics is not fully understood. In particular, the runout distance for small to medium sized landslides (volume granular material down a chute. Though such granular avalanche models provide important insights into avalanche dynamics, they imply that the material fully disintegrate instantaneously. Observations from nature, however, suggests that a transition from solid to "liquid" occurs over some finite distance downhill, critically controlling the mobility and energy budget of the avalanche. Few experimental studies simulated more realistically the material failing during sliding and those were realized in a labscale centrifuge, where the range of volumes/scales is limited. To develop a new modeling technique to study the scale dependent runout behavior of rock avalanches, we designed, tested and verified several brittle materials allowing fragmentation to occur under normal gravity conditions. According to the model similarity theory, the analogue material must behave dynamically similar to the rocks in natural rock avalanches. Ideally, the material should therefore deform in a brittle manner with limited elastic and ductile strains up to a certain critical stress, beyond which the material breaks and deforms irreversibly. According to scaling relations derived from dimensional analysis and for a model-to-prototype length ratio of 1/1000, the appropriate yield strength for an analogue material is in the order of 10 kPa, friction coefficient around 0.8 and stiffness in the order of MPa. We used different sand (garnet, quartz) in combination with different matrix materials (sugar, salt, starch, plaster) to cement it. The deformation behavior and strength of the samples was tested using triaxial compression tests at atmospheric confining pressures. Proper material properties were obtained using well-sorted, well-rounded, medium grained quartz sand with gypsum

  17. A Raman scattering and FT-IR spectroscopic study on the effect of the solar radiation in Antarctica on bovine cornea

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Murakami, Naoki; Yoshikiyo, Keisuke; Takahashi, Tetsuya; Yamamoto, Naoyuki

    2010-01-01

    The Raman scattering and FT-IR spectra of the corneas, transported to the Syowa station in Antarctica and exposed to the solar radiation of the mid-summer for four weeks, were studied to reveal that type IV collagen involved in corneas were fragmented. The amide I and III Raman bands were observed at 1660 and 1245 cm -1, respectively, and the amide I and II infrared bands were observed at 1655 and 1545 cm -1, respectively, for original corneas before exposure. The background of Raman signals prominently increased and the ratio of amide II infrared band versus amide I decreased by the solar radiation in Antarctica. The control experiment using an artificial UV lamp was also performed in laboratory. The decline rate of the amide II/amide I was utilized for estimating the degree of fragmentation of collagen, to reveal that the addition of vitamin C suppressed the reaction while the addition of sugars promoted it. The effect of the solar radiation in Antarctica on the corneas was estimated as the same as the artificial UV lamp of four weeks (Raman) or one week (FT-IR) exposure.

  18. Development of a serum-free human cornea construct for in vitro drug absorption studies: the influence of varying cultivation parameters on barrier characteristics.

    Science.gov (United States)

    Hahne, Matthias; Reichl, Stephan

    2011-09-15

    The increased use of ophthalmic products in recent years has led to an increased demand for in vitro and in vivo transcorneal drug absorption studies. Cell-culture models of the human cornea can avoid several of the disadvantages of widely used animal experimental models, including ethical concerns and poor standardisation. This study describes the development of a serum-free cultivated, three-dimensional human cornea model (Hemicornea, HC) for drug absorption experiments. The impact of varying cultivation conditions on the corneal barrier function was analysed and compared with excised rabbit and porcine corneas. The HC was cultivated on permeable polycarbonate filters using immortalised human keratocytes and a corneal epithelial cell line. The equivalence to native tissue was investigated through absorption studies using model substances with a wide range of molecular characteristics, including hydrophilic sodium fluorescein, lipophilic rhodamine B and fluorescein isothiocyanate (FITC)-labelled macromolecule dextran. To study the intra-laboratory repeatability and construct cultivation, the permeation studies were performed independently by different researchers. The HC exhibited a permeation barrier in the same range as excised animal corneas, high reproducibility and a lower standard deviation. Therefore, the HC could be a promising in vitro alternative to ex vivo corneal tissues in preclinical permeation studies.

  19. Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL.

    Science.gov (United States)

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-ichiro

    2013-12-01

    Finding in vitro eye irritation testing alternatives to animal testing such as the Draize eye test, which uses rabbits, is essential from the standpoint of animal welfare. It has been developed a reconstructed human corneal epithelial model, the LabCyte CORNEA-MODEL, which has a representative corneal epithelium-like structure. Protocol optimization (pre-validation study) was examined in order to establish a new alternative method for eye irritancy evaluation with this model. From the results of the optimization experiments, the application periods for chemicals were set at 1min for liquid chemicals or 24h for solid chemicals, and the post-exposure incubation periods were set at 24h for liquids or zero for solids. If the viability was less than 50%, the chemical was judged to be an eye irritant. Sixty-one chemicals were applied in the optimized protocol using the LabCyte CORNEA-MODEL and these results were evaluated in correlation with in vivo results. The predictions of the optimized LabCyte CORNEA-MODEL eye irritation test methods were highly correlated with in vivo eye irritation (sensitivity 100%, specificity 80.0%, and accuracy 91.8%). These results suggest that the LabCyte CORNEA-MODEL eye irritation test could be useful as an alternative method to the Draize eye test.

  20. Central corneal thickness measurement using ultrasonic pachymetry, rotating scheimpflug camera, and scanning-slit topography exclusively in thin non-keratoconic corneas

    Directory of Open Access Journals (Sweden)

    Mehrdad Mohammadpour

    2016-01-01

    Conclusion: In normal thin corneas, Pentacam demonstrated better agreement with US pachymetry as compared to corrected Orbscan readings. Results achieved by Orbscan were better consistent with US pachymetry using an AF of 0.94. We speculate that a dynamically graded AF in reverse proportion to CCT constitutes a better approach for correcting Orbscan measurements.

  1. Herpes simplex virus-specific T cells infiltrate the cornea of patients with herpetic stromal keratitis: no evidence for autoreactive T cells

    NARCIS (Netherlands)

    L. Remeijer (Lies); C.M. Mooy (Cornelia); A.D.M.E. Osterhaus (Albert); G.M.G.M. Verjans (George)

    2000-01-01

    textabstractPURPOSE: Herpetic stromal keratitis (HSK) is a T-cell-mediated inflammatory disease initiated by a herpes simplex virus (HSV) infection of the cornea. Recently, studies in the HSK mouse model have shown that the immunopathogenic T cells are directed against the HSV prot

  2. Adenoviral Gene Therapy for Diabetic Keratopathy: Effects on Wound Healing and Stem Cell Marker Expression in Human Organ-cultured Corneas and Limbal Epithelial Cells.

    Science.gov (United States)

    Kramerov, Andrei A; Saghizadeh, Mehrnoosh; Ljubimov, Alexander V

    2016-04-07

    The goal of this protocol is to describe molecular alterations in human diabetic corneas and demonstrate how they can be alleviated by adenoviral gene therapy in organ-cultured corneas. The diabetic corneal disease is a complication of diabetes with frequent abnormalities of corneal nerves and epithelial wound healing. We have also documented significantly altered expression of several putative epithelial stem cell markers in human diabetic corneas. To alleviate these changes, adenoviral gene therapy was successfully implemented using the upregulation of c-met proto-oncogene expression and/or the downregulation of proteinases matrix metalloproteinase-10 (MMP-10) and cathepsin F. This therapy accelerated wound healing in diabetic corneas even when only the limbal stem cell compartment was transduced. The best results were obtained with combined treatment. For possible patient transplantation of normalized stem cells, an example is also presented of the optimization of gene transduction in stem cell-enriched cultures using polycationic enhancers. This approach may be useful not only for the selected genes but also for the other mediators of corneal epithelial wound healing and stem cell function.

  3. New Methods in Exploring Old Topics: Case Studying Brittle Diabetes in the Family Context

    Science.gov (United States)

    Günther, Moritz Philipp; Winker, Peter; Wudy, Stefan A.; Brosig, Burkhard

    2016-01-01

    Background. In questing for a more refined quantitative research approach, we revisited vector autoregressive (VAR) modeling for the analysis of time series data in the context of the so far poorly explored concept of family dynamics surrounding instable diabetes type 1 (or brittle diabetes). Method. We adopted a new approach to VAR analysis from econometrics referred to as the optimized multivariate lag selection process and applied it to a set of raw data previously analyzed through standard approaches. Results. We illustrated recurring psychosomatic circles of cause and effect relationships between emotional and somatic parameters surrounding glycemic control of the child's diabetes and the affective states of all family members. Conclusion. The optimized multivariate lag selection process allowed for more specific, dynamic, and statistically reliable results (increasing R2 tenfold in explaining glycemic variability), which were derived from a larger window of past explanatory variables (lags). Such highly quantitative versus historic more qualitative approaches to case study analysis of psychosomatics surrounding diabetes in adolescents were reflected critically. PMID:26634215

  4. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    Science.gov (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  5. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature

    Science.gov (United States)

    Cullers, Cheryl L.; Antolovich, Stephen D.

    1993-01-01

    The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.

  6. Rice Brittleness Mutants: A Way to Open the 'Black Box' of Monocot Cell Wall Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Baocai Zhang; Yihua Zhou

    2011-01-01

    Rice is a model organism for studying the mechanism of cell wall biosynthesis and remolding in Gramineae.Mechanical strength is an important agronomy trait of rice(Oryza sativa L.)plants that affects crop lodging and grain yield.As a prominent physical property of cell walls,mechanical strength reflects upon the structure of different wall polymers and how they interact.Studies on the mechanisms that regulate the mechanical strength therefore consequently results in uncovering the genes functioning in cell wall biosynthesis and remodeling.Our group focuses on the study of isolation of brittle culm(bc)mutants and characterization of their corresponding genes.To date,several bc mutants have been reported.The identified genes have covered several pathways of cell wall biosynthesis,revealing many secrets of monocot cell wall biosynthesis.Here,we review the progress achieved in this research field and also highlight the perspectives in expectancy.All of those lend new insights into mechanisms of cell wall formation and are helpful for harnessing the waste rice straws for biofuel production.

  7. A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading

    Science.gov (United States)

    Hu, Guangli; Liu, Junwei; Graham-Brady, Lori; Ramesh, K. T.

    2015-05-01

    We present a validated fully 3D mechanism-based micromechanical constitutive model for brittle solids under dynamic multiaxial loading conditions. Flaw statistics are explicitly incorporated through a defect density, and evolving flaw distributions in both orientation and size. Interactions among cracks are modeled by means of a crack-matrix-effective-medium approach. A tensorial damage parameter is defined based upon the crack length and orientation development under local effective stress fields. At low confining stresses, the wing-cracking mechanism dominates, leading to the degradation of the modulus and peak strength of the material, whereas at high enough confining stresses, the cracking mechanism is completely shut-down and dislocation mechanisms become dominant. The model handles general multiaxial stress states, accounts for evolving internal variables in the form of evolving flaw size and orientation distributions, includes evolving anisotropic damage and irreversible damage strains in a thermodynamically consistent fashion, incorporates rate-dependence through the micromechanics, and includes dynamic bulking based on independent experimental data. Simulation results are discussed and compared with experimental results on one specific structural ceramic, aluminum nitride. We demonstrate that this 3D constitutive model is capable of capturing the general constitutive response of structural ceramics.

  8. Standard test method for splitting tensile strength for brittle nuclear waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This test method is used to measure the static splitting tensile strength of cylindrical specimens of brittle nuclear waste forms. It provides splitting tensile-strength data that can be used to compare the strength of waste forms when tests are done on one size of specimen. 1.2 The test method is applicable to glass, ceramic, and concrete waste forms that are sufficiently homogeneous (Note 1) but not to coated-particle, metal-matrix, bituminous, or plastic waste forms, or concretes with large-scale heterogeneities. Cementitious waste forms with heterogeneities >1 to 2 mm and 5 mm can be tested using this procedure provided the specimen size is increased from the reference size of 12.7 mm diameter by 6 mm length, to 51 mm diameter by 100 mm length, as recommended in Test Method C 496 and Practice C 192. Note 1—Generally, the specimen structural or microstructural heterogeneities must be less than about one-tenth the diameter of the specimen. 1.3 This test method can be used as a quality control chec...

  9. A micromechanical basis for partitioning the evolution of grainbridging in brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Foulk III, J.W.; Cannon, R.M.; Johnson, G.C.; Klein, P.A.; Ritchie, R.O.

    2006-10-09

    A micromechanical model is developed for grain bridging inmonolithic ceramics. Specifically, bridge formation of a single,non-equiaxed grain spanning adjacent grains is addressed. A cohesive zoneframework enables crack initiation and propagation along grainboundaries. The evolution of the bridge is investigated through avariance in both grain angle and aspect ratio. We propose that thebridging process can be partitioned into five distinct regimes ofresistance: propagate, kink, arrest, stall, and bridge. Although crackpropagation and kinking are well understood, crack arrest and subsequent"stall" have been largely overlooked. Resistance during the stall regimeexposes large volumes of microstructure to stresses well in excess of thegrain boundary strength. Bridging can occur through continued propagationor reinitiation ahead of the stalled crack tip. The driving forcerequired to reinitiate is substantially greater than the driving forcerequired to kink. In addition, the critical driving force to reinitiateis sensitive to grain aspect ratio but relatively insensitive to grainangle. The marked increase in crack resistance occurs prior to bridgeformation and provides an interpretation for the rapidly risingresistance curves which govern the strength of many brittle materials atrealistically small flaw sizes.

  10. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    Science.gov (United States)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  11. Evaluation of Crashworthiness for SAE Materials under Ductile to Brittle Transition Temperature (DBTT

    Directory of Open Access Journals (Sweden)

    Amol Bhanage

    2014-10-01

    Full Text Available The concept of crashworthy coaches came into existence after a crash. This demands, avoid vehicle deformation of other/central parts. For this, the behaviour of plastic deformation of the material is necessary to be known. So, these results are required to study the crashworthy behaviour of the structure. In this research, Comparative study has been taken on the automotive materials of SAE 1026, SAE 4140, SAE 5120 and SAE8620. This paper presents the results of fracture toughness, impact energy and stress required for crack propagation from Charpy v-notch impact test and tensile test. The mechanical behaviour of SAE 1026, SAE 4140, SAE 5120 and SAE 8620 are important to describe response during actual loading condition properties used in the crash analysis of the component. The Charpy impact test was conducted at temperature ranging from room temperature 24°C, 0°C, -20°C, - 40°C, -60°C. Specimens oriented in T-L direction are tested. The materials SAE 1026, SAE 4140, SAE 5120 and SAE8620 shown that the ductile to brittle transition temperature, based on 19.5 J, 10.5 J, 113 J, 59.5 J, absorbed energy is about 1.2°C, -3°C, -38°C, -10°C respectively.

  12. Thrust-wrench fault interference in a brittle medium: new insights from analogue modelling experiments

    Science.gov (United States)

    Rosas, Filipe; Duarte, Joao; Schellart, Wouter; Tomas, Ricardo; Grigorova, Vili; Terrinha, Pedro

    2015-04-01

    We present analogue modelling experimental results concerning thrust-wrench fault interference in a brittle medium, to try to evaluate the influence exerted by different prescribed interference angles in the formation of morpho-structural interference fault patterns. All the experiments were conceived to simulate simultaneous reactivation of confining strike-slip and thrust faults defining a (corner) zone of interference, contrasting with previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. Different interference angles of 60°, 90° and 120° were experimentally investigated by comparing the specific structural configurations obtained in each case. Results show that a deltoid-shaped morpho-structural pattern is consistently formed in the fault interference (corner) zone, exhibiting a specific geometry that is fundamentally determined by the different prescribed fault interference angle. Such angle determines the orientation of the displacement vector shear component along the main frontal thrust direction, determining different fault confinement conditions in each case, and imposing a complying geometry and kinematics of the interference deltoid structure. Model comparison with natural examples worldwide shows good geometric and kinematic similarity, pointing to the existence of matching underlying dynamic process. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.

  13. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    Science.gov (United States)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-01-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) < 0.3 for the same (a/l); bending begins to play a significant role in failure as (a/w) increases. This experimental and computational work demonstrates that the discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials. PMID:26837581

  14. An ESPI experimental study on the phenomenon of fracture in glass. Is it brittle or plastic?

    Science.gov (United States)

    Ferretti, Daniele; Rossi, Marco; Royer-Carfagni, Gianni

    2011-07-01

    The crack opening displacement (COD) in annealed soda-lime (float) glass has been measured with an electronic speckle pattern interferometry (ESPI) apparatus using coherent laser light. Specimens, naturally pre-cracked with a particular technique, were loaded under strain-driven bending until crack propagated; at regular intervals loading was paused to let the crack reach subcritical equilibrium and the COD measured. By using a post-processing algorithm comparing four images lighted with phase-shifted laser beams, surface displacements could be measured at a resolution of 0.01 μm. Glass transparency has allowed to see through that the propagating crack front is not sharp but curved, jagged and merged in an opaque neighborhood. Numerical simulations show that the measured CODs cannot be reproduced if cohesive surface forces à la Barenblatt-Dugdale bridge the crack lips; instead a plastic-like region must form in a bulk neighborhood of the tip, where inelastic strains are associated with volume increase rather than deviatoric distortion. For this, a Gurson-Tvergaard model of porous plasticity, accounting for the formation of microvoids/microcracks, has been found more efficient than classical von Mises plasticity. This study confirms the formation at the crack tip of a process zone, whose occurrence in brittle materials like glass is still a subject of controversy.

  15. A fiber-bundle model for the continuum deformation of brittle material

    CERN Document Server

    Nanjo, K Z

    2016-01-01

    The deformation of brittle material is primarily accompanied by micro-cracking and faulting. However, it has often been found that continuum fluid models, usually based on a non-Newtonian viscosity, are applicable. To explain this rheology, we use a fiber-bundle model, which is a model of damage mechanics. In our analyses, yield stress was introduced. Above this stress, we hypothesize that the fibers begin to fail and a failed fiber is replaced by a new fiber. This replacement is analogous to a micro-crack or an earthquake and its iteration is analogous to stick-slip motion. Below the yield stress, we assume that no fiber failure occurs, and the material behaves elastically. We show that deformation above yield stress under a constant strain rate for a sufficient amount of time can be modeled as an equation similar to that used for non-Newtonian viscous flow. We expand our rheological model to treat viscoelasticity and consider a stress relaxation problem. The solution can be used to understand aftershock tem...

  16. Mechanical properties and material removal characteristics of soft-brittle HgCdTe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Irwan, R. [School of Mechanical and Mining Engineering, the University of Queensland, Brisbane, QLD 4072 (Australia); Huang, H., E-mail: han.huang@uq.edu.au [School of Mechanical and Mining Engineering, the University of Queensland, Brisbane, QLD 4072 (Australia); Zheng, H.Y.; Wu, H. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2013-01-01

    Mechanical properties and material removal characteristics of mercury cadmium telluride (Hg{sub 0.84}C{sub 0.16}Te) single crystals were investigated by the use of indentation and single point diamond turning. The nanoindentation tests showed that the average values of elastic modulus and hardness were 40 and 0.55 GPa, respectively. The fracture toughness estimated by Vickers indentation fracture toughness test was 0.200 MPa m{sup 1/2}, in the predicted range of 0.204-0.235 MPa m{sup 1/2} by the Bifano model. The diamond turning experiments revealed that there was a threshold value in depth of cut that was responsible for the transition from ductile to brittle removal modes during the cutting of the Hg{sub 0.84}C{sub 0.16}Te single crystals. The measured critical depth of cut was between 1.5 and 2 {mu}m, in agreement with that of 1.541 {mu}m calculated by the Bifano model.

  17. New Methods in Exploring Old Topics: Case Studying Brittle Diabetes in the Family Context

    Directory of Open Access Journals (Sweden)

    Moritz Philipp Günther

    2016-01-01

    Full Text Available Background. In questing for a more refined quantitative research approach, we revisited vector autoregressive (VAR modeling for the analysis of time series data in the context of the so far poorly explored concept of family dynamics surrounding instable diabetes type 1 (or brittle diabetes. Method. We adopted a new approach to VAR analysis from econometrics referred to as the optimized multivariate lag selection process and applied it to a set of raw data previously analyzed through standard approaches. Results. We illustrated recurring psychosomatic circles of cause and effect relationships between emotional and somatic parameters surrounding glycemic control of the child’s diabetes and the affective states of all family members. Conclusion. The optimized multivariate lag selection process allowed for more specific, dynamic, and statistically reliable results (increasing R2 tenfold in explaining glycemic variability, which were derived from a larger window of past explanatory variables (lags. Such highly quantitative versus historic more qualitative approaches to case study analysis of psychosomatics surrounding diabetes in adolescents were reflected critically.

  18. Reliability Analysis of Brittle Material Structures - Including MEMS(?) - With the CARES/Life Program

    Science.gov (United States)

    Nemeth, Noel N.

    2002-01-01

    Brittle materials are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts. thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The CARES/Life code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. For this presentation an interview of the CARES/Life program will be provided. Emphasis will be placed on describing the latest enhancements to the code for reliability analysis with time varying loads and temperatures (fully transient reliability analysis). Also, early efforts in investigating the validity of using Weibull statistics, the basis of the CARES/Life program, to characterize the strength of MEMS structures will be described as as well as the version of CARES/Life for MEMS (CARES/MEMS) being prepared which incorporates single crystal and edge flaw reliability analysis capability. It is hoped this talk will open a dialog for potential collaboration in the area of MEMS testing and life prediction.

  19. Fracture toughness from atomistic simulations: Brittleness induced by emission of sessile dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1998-08-04

    Using atomistic simulations of crack response for intermetallic materials the author shows that when the emitted dislocations are sessile and stay in the immediate vicinity of the crack tip the emitted dislocations can actually lead to brittle failure. She present the results of an atomistic simulation study of the simultaneous dislocation emission and crack propagation process in this class of materials. She used a molecular statics technique with embedded atom (EAM) potentials developed for NiAl. The crystal structure of NiAl is the CsCl type (B2) with a lattice parameter of 0.287 nm, which is reproduced by the potential together with the cohesive energy and elastic constants. The compound stays ordered up to the melting point, indicating a strong tendency towards chemical ordering with a relatively high energy of the antiphase boundary (APB). As a result of this relatively large energy the dislocations of 1/2<111> type Burgers vectors imply a high energy and the deformation process occurs via the larger <100> type dislocations.

  20. Fracture Modes in Curved Brittle Layers Subject to Concentrated Cyclic Loading in Liquid Environments.

    Science.gov (United States)

    Kim, Jae-Won; Thompson, Van P; Rekow, E Dianne; Jung, Yeon-Gil; Zhang, Yu

    2009-03-01

    Damage response of brittle curved structures subject to cyclic Hertzian indentation was investigated. Specimens were fabricated by bisecting cylindrical quartz glass hollow tubes. The resulting hemi-cylindrical glass shells were bonded internally and at the edges to polymeric supporting structures and loaded axially in water on the outer circumference with a spherical tungsten carbide indenter. Critical loads and number of cycles to initiate and propagate near-contact cone cracks and far-field flexure radial cracks to failure were recorded. Flat quartz glass plates on polymer substrates were tested as a control group. Our findings showed that cone cracks form at lower loads, and can propagate through the quartz layer to the quartz/polymer interface at lower number of cycles, in the curved specimens relative to their flat counterparts. Flexural radial cracks require a higher load to initiate in the curved specimens relative to flat structures. These radial cracks can propagate rapidly to the margins, the flat edges of the bisecting plane, under cyclic loading at relatively low loads, owing to mechanical fatigue and a greater spatial range of tensile stresses in curved structures.

  1. Role of indenter material and size in veneer failure of brittle layer structures.

    Science.gov (United States)

    Bhowmick, Sanjit; Meléndez-Martínez, Juan José; Hermann, Ilja; Zhang, Yu; Lawn, Brian R

    2007-07-01

    The roles of indenter material and size in the failure of brittle veneer layers in all-ceramic crown-like structures are studied. Glass veneer layers 1 mm thick bonded to alumina layers 0.5 mm thick on polycarbonate bases (representative of porcelain/ceramic-core/dentin) are subject to cyclic contact loading with spherical indenters in water (representative of occlusal biting environment). Two indenter materials-glass and tungsten carbide-and three indenter radii-1.6, 5.0, and 12.5 mm-are investigated in the tests. A video camera is used to follow the near-contact initiation and subsequent downward propagation of cone cracks through the veneer layer to the core interface, at which point the specimen is considered to have failed. Both indenter material and indenter radius have some effect on the critical loads to initiate cracks within the local Hertzian contact field, but the influence of modulus is weaker. The critical loads to take the veneer to failure are relatively insensitive to either of these indenter variables, since the bulk of the cone crack propagation takes place in the contact far field. Clinical implications of the results are considered, including the issue of single-cycle overload versus low-load cyclic fatigue and changes in fracture mode with loading conditions.

  2. The effect of dopants on the brittle-to-ductile transition in silicon single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Youn Jeong; Tanaka, Masaki; Maeno, Keiki; Higashida, Kenji, E-mail: hong@kyudai-mse.or [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan)

    2010-07-01

    The brittle-to-ductile transition (BDT) in boron, antimony and arsenic doped Cz silicon crystals has been experimentally studied, respectively. The BDT temperatures in antimony and arsenic doped silicon wafers are lower than that in a non-doped wafer while the BDT temperature in a boron doped wafer is almost the same as that in the non-doped wafer. The activation energy was obtained from the strain rate dependence of the BDT temperature. It was found that the values of the activation energy in the antimony and arsenic doped wafers are lower than that in the non-doped and boron doped wafers, indicating that the dislocation velocity in the antimony and arsenic doped silicon is faster than that in the non-doped while the dislocation velocity in the boron doped is the same as that in the non-doped. The effect of increasing in dislocation velocity on the BDT temperature was calculated by two-dimensional discrete dislocation dynamics simulations, indicating that the increasing in dislocation velocity decreases the BDT temperature in silicon single crystals.

  3. Evaluation of Intrastromal Riboflavin Concentration in Human Corneas after Three Corneal Cross-Linking Imbibition Procedures: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Antonella Franch

    2015-01-01

    Full Text Available Purpose. To compare stromal riboflavin concentration after three corneal cross-linking (CXL imbibition procedures: standard (EpiOff, transepithelial corneal (EpiOn, and iontophoresis-assisted technique (Ionto using 0.1% hypotonic riboflavin phosphate. Methods. Randomized open-label pilot clinical study. Twelve corneas/12 patients with advanced keratoconus were randomly divided into 4 groups for CXL (n=3. The corneas underwent imbibition with standard riboflavin EpiOff and with enhanced riboflavin solution (RICROLIN+ EpiOff, EpiOn, and iontophoresis techniques. Thereafter, deep anterior lamellar keratectomy procedure was performed and the obtained debrided corneal tissues were frozen. The maximal intrastromal riboflavin concentration was measured by high-performance liquid chromatography/mass spectrometry (mcg/dg. Results. The mean stromal concentration of riboflavin was 2.02±0.72 mcg/dg in EpiOff group, 4.33±0.12 mcg/g in EpiOff-RICROLIN+ group, 0.63±0.21 mcg/dg in EpiOn-RICROLIN+ group, and 1.15±0.27 mcg/dg in iontophoresis RICROLIN+ group. A 7-fold decrease in intrastromal riboflavin concentration was observed comparing EpiOn-RICROLIN+ and EpiOff-RICROLIN+ groups. Conclusion. The present pilot study indicates that both transepithelial CXL techniques in combination with hypotonic enhanced riboflavin formulation (RICROLIN+ were still inferior to the standard CXL technique; however, larger clinical studies to further validate the results are needed and in progress.

  4. LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas.

    Science.gov (United States)

    Yin, Jia; Yu, Fu-Shin X

    2010-04-01

    Purpose. Patients with diabetes are at higher risk for delayed corneal reepithelialization and infection. Previous studies indicated that high glucose (HG) impairs epidermal growth factor receptor (EGFR) signaling and attenuates ex vivo corneal epithelial wound healing. The authors investigated the effects of antimicrobial peptide LL-37 on HG-attenuated corneal epithelial EGFR signaling and wound closure. Methods. Human corneal epithelial cells (HCECs) were stimulated with LL-37. Heparin-binding EGF-like growth factor (HB-EGF) shedding was assessed by measuring the release of alkaline phosphatase (AP) in a stable HCEC line expressing HB-EGF-AP. Activation of EGFR, phosphoinositide 3-kinase (PI3K), and extracellular signal-regulated kinases 1/2 (ERK1/2) was determined by Western blot analysis. Corneal epithelial wound closure was assessed in cultured HCECs and porcine corneas. LL-37 expression was determined by immune dot blot. Results. LL-37 induced HB-EGF-AP release and EGFR activation in a dose-dependent manner. LL-37 prolonged EGFR signaling in response to wounding. LL-37 enhanced the closure of a scratch wound in cultured HCECs and partially rescued HG-attenuated wound healing in an EGFR- and a PI3K-dependent manner and restored HG-impaired EGFR signaling in cultured porcine corneas. HG attenuated wounding-induced LL-37 expression in cultured HCECs. Conclusions. LL-37 is a tonic factor promoting EGFR signaling and enhancing epithelial wound healing in normal and high glucose conditions. With both antimicrobial and regenerative capabilities, LL-37 may be a potential therapeutic for diabetic keratopathy.

  5. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Science.gov (United States)

    Iannaccone, Stephen; Zhou, Yue; Walterhouse, David; Taborn, Greg; Landini, Gabriel; Iannaccone, Philip

    2012-01-01

    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  6. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Directory of Open Access Journals (Sweden)

    Stephen Iannaccone

    Full Text Available The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  7. Confocal microscopy of epithelial and langerhans cells of the cornea in patients using travoprost drops containing two different preservatives.

    Science.gov (United States)

    Marsovszky, László; Resch, Miklós D; Visontai, Zsuzsanna; Németh, János

    2014-07-01

    The recently developed confocal cornea microscopy offers the opportunity to examine pathologies of the cornea and to gain insight into the activity of innate immunity. We aimed to investigate the corneal epithelial and Langerhans cell (LC) densities along with dry eye parameters in primary open-angle glaucoma (POAG) subjects, treated with either of two commercially available travoprost 0.004 % topical medications containing different preservatives. (1: benzalkonium chloride 0.015 % (TravBAK) and 2: polyquaternium-1 (PQ) 0.001 % (TravPQ). Consecutive case series of nineteen POAG patients on TravBAK (mean age: 64.8 ± 13.6 years), nineteen POAG patients on TravPQ (mean age: 66.8 ± 11.3 years) and nineteen age-matched healthy control subjects (63.8 ± 8.2 years). Ocular surface disease index (OSDI), lid parallel conjunctival folds (LIPCOF), Schirmer test (ST) and tear break up time (TBUT) were assessed, and then corneal epithelial and LC densities were investigated with confocal microscopy. Tear production was significantly reduced in both glaucoma patient groups compared to healthy individuals (p < 0.05). TBUT was significantly reduced and epithelial cell densities were significantly greater in patients treated with TravBAK compared to healthy individuals (p < 0.05 for all). LC densities were greater in both glaucoma groups compared to control subjects (p < 0.05 for all). Travoprost therapy may compromise ocular surface. The limited alertness of the corneal immune system found in patients with TravPQ can be considered as indicators of a less disturbed ocular surface and better controlled corneal homeostasis.

  8. OAS/PKR Pathways and α/β TCR+ T Cells are Required for Ad: IFN-γ Inhibition of HSV-1 in Cornea1

    Science.gov (United States)

    Austin, Bobbie Ann; Halford, William P.; Williams, Bryan R. G.; Carr, Daniel J. J.

    2007-01-01

    An adenoviral vector containing the muIFN-γ transgene (Ad:IFN-γ) was evaluated for its capacity to inhibit HSV-1. To measure effectiveness, viral titers were analyzed in cornea and trigeminal ganglia (TG) during acute ocular HSV-1 infection. Ad: IFN-γ potently suppressed HSV-1 replication in a dose-dependent fashion, requiring IFN-γ R. Moreover, Ad:IFN-γ was effective when delivered -72 and -24 h prior to infection as well as 24 h post infection. Associated with anti-viral opposition, TG from Ad: IFN-γ transduced mice harbored fewer T cells. Also related to T cell involvement, Ad:IFN-γ was effective but attenuated in TG from α/β TCR deficient mice. In corneas, α/β TCR+ T cells were obligatory for protection against viral multiplication. Type I IFN involvement amid anti-viral efficacy of Ad: IFN-γ was further investigated because type I and II IFN pathways have synergistic anti-HSV-1 activity. Ad:IFN-γ inhibited viral reproduction in corneas and TG from IFN-α/β R deficient (CD118 −/−) mice, although viral titers were 2–3 fold higher in cornea and TG, compared to wild type. The absence of IFN-stimulated anti-viral proteins, 2’-5’ oligoadenylate synthetase/RNase L and ds RNA dependent protein kinase R, completely eliminated the anti-viral effectiveness of Ad:IFN-γ. Collectively, the results demonstrate: (1) nonexistence of type I IFN R does not abolish defense of Ad:IFN-γ against HSV-1; (2) anti-viral pathways, OAS/RNase L and PKR are mandatory; and (3) α/β TCR+ T cells are compulsory for Ad: IFN-γ effectiveness against HSV-1 in cornea but not in TG. PMID:17404299

  9. Edwards' syndrome.

    Science.gov (United States)

    Crawford, Doreen; Dearmun, Annette

    2016-12-08

    Edwards' syndrome is a serious genetic condition that affects fetal cellular functions, tissue development and organogenesis. Most infants with the syndrome are female, but there is no race predominance.

  10. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These ... doctors agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  11. Angelman Syndrome

    Science.gov (United States)

    ... this syndrome often display hyperactivity, small head size, sleep disorders, and movement and balance disorders that can cause ... this syndrome often display hyperactivity, small head size, sleep disorders, and movement and balance disorders that can cause ...

  12. Lynch Syndrome

    Science.gov (United States)

    ... colon cancer may include surgery, chemotherapy and radiation therapy. Cancer screening for people with Lynch syndrome If you ... et al. Milestones of Lynch syndrome: 1895-2015. Nature Reviews Cancer. http://www.nature.com/nrc/journal/vaop/ncurrent/ ...

  13. Cushing's Syndrome

    Science.gov (United States)

    Cushing's syndrome is a hormonal disorder. The cause is long-term exposure to too much cortisol, a hormone ... cause your body to make too much cortisol. Cushing's syndrome is rare. Some symptoms are Upper body obesity ...

  14. Paraneoplastic Syndromes

    Science.gov (United States)

    ... dementia, seizures, sensory loss in the limbs, and vertigo or dizziness. Paraneoplastic syndromes include Lambert-Eaton myasthenic ... dementia, seizures, sensory loss in the limbs, and vertigo or dizziness. Paraneoplastic syndromes include Lambert-Eaton myasthenic ...

  15. Turner Syndrome

    Science.gov (United States)

    Turner syndrome is a genetic disorder that affects a girl's development. The cause is a missing or incomplete ... t work properly. Other physical features typical of Turner syndrome are Short, "webbed" neck with folds of skin ...

  16. Dravet Syndrome

    Science.gov (United States)

    ... Craniosynostosis Information Page Creutzfeldt-Jakob Disease Information Page Cushing's Syndrome Information Page Dandy-Walker Syndrome Information Page Deep Brain Stimulation for Parkinson's Disease Information Page Dementia Information ...

  17. Apert Syndrome.

    Science.gov (United States)

    Datta, Saikat; Saha, Sandip; Kar, Arnab; Mondal, Souvonik; Basu, Syamantak

    2014-09-01

    Apert syndrome is one of the craniosynostosis syndromes which, due to its association with other skeletal anomalies, is also known as acrocephalosyndactyly. It is a rare congenital anomaly which stands out from other craniosynostosis due to its characteristic skeletal presentations.

  18. Effect of torsional mode phacoemulsification on cornea in eyes with/without pseudoexfoliation

    Institute of Scientific and Technical Information of China (English)

    Süleyman; Demircan; Mustafa; Atas; Yusufcan; Yurtsever

    2015-01-01

    AIM: To evaluate the effect of torsional mode phacoemulsification on central corneal thickness, corneal endothelial cell density, and morphology in eyes with/without pseudoexfoliation(PEX) syndrome.METHODS: Fourty-two consecutive patients with and42 patients without PEX as a control group scheduled for cataract surgery was studied. Phacoemulsification, using OZi L IP system, was performed with quick chop technique. Using noncontact specular microscopy, the central endothelial cell density(ECD), coefficient of variation, percentage of hexagonal cells, and the central corneal thickness(CCT) were evaluated preoperatively and postoperatively at 1, 7 and 30 d.RESULTS: The ECD in PEX syndrome was statistically significantly lower than that in the control group preoperatively and postoperatively(P ≤0.001).Percentage change in ECD was statistically significantly higher in PEX than that in control group after surgery follow up(P ≤0.04).There was no statistically significant difference between both groups comparing percentage of hexagonal cells and coefficient of variation in the cell size before and after the surgery. At 1 and 7d after surgery, percentage change in CCT was statistically significantly higher in PEX group than that in the control group(P ≤0.041).CONCLUSION: Although torsional mode phacoemulsification and intraocular lens(IOL) implantation provided a safe and favorable surgical outcome in patients with/without PEX, torsional phacoemulsification led to significantly higher ECD loss in the PEX group than that in the control group during the whole follow up period.In addition, more corneal swelling in the PEX group than that in the control group during the early postoperative period has indicated that the corneal endothelium, in presence of PEX endotheliopathy, seems to be more susceptible to the effects of phacoemulsification surgeryin eyes with PEX. The increased risk of anterior chamber manipulations in patients with PEX should be taken into account for

  19. Damage law identification of a quasi brittle ceramic from a b ending test using digital image correlation

    Directory of Open Access Journals (Sweden)

    Meille S.

    2010-06-01

    Full Text Available The quasi brittle ceramics show a non linear mechanical behaviour resulting most of the time in a dissymetry between their tensile and compressive stress-strain laws. The characterization of their fracture strengths might be biased if elastic linear formulae are used to analyze classical tests like bending tests. Based on Digital Image Correlation (DIC, a methodology is proposed to characterize materials with dissymmetric behaviours. Applying specific DIC decomposition functions for bending, compressive and tensile tests, a stress-strain model and its damage law are identified for aluminium titanate, a damageable micro cracked ceramic. This identification method using DIC can obviously be applied to other quasi brittle materials.

  20. [Dry eye syndrome in rheumatoid arthritis patients].

    Science.gov (United States)

    Polanská, V; Hlinomazová, Z; Fojtík, Z; Nemec, P

    2007-11-01

    The aim of this cross-sectional study was to review the incidence of the dry eye syndrome in rheumatoid arthritis (RA) patients, evaluate the association among the incidence of the dry eye syndrome, presence of positive rheumatoid factor (RF), the RA stage, and the duration of the disease. The group consisted of altogether 100 patients, 16 men and 84 women; the average age was 58.9 years (SD 14.6). The average duration of RA was 12.3 years, SD 11.0. In each patient, the Schirmer test I was performed, the presence of the LIPCOF (Lid Parallel Conjunctival Folds) on the slit lamp was assessed, the BUT (Tear Break-Up Time) was measured and vital fluorescein staining was performed. In each patient the data of the presence or absence of the RF in the serum, RA severity according to the X-ray examination, and the disease duration were recorded. The Pearson's association test for nominal variables was used for statistical evaluation of the association between the rheumatoid arthritis presence and the dry eye syndrome. In our group of 100 patients, the Schirmer test I was positive in 67% of patients. Positive BUT was marked in 84 % of patients. The conjunctival folds were present in 45 % of patients only. The pathological findings after cornea fluorescein staining appeared in 18 % of patients. The dry eye syndrome incidence was marked in 74% of patients with RA. Subjective difficulties were declared by 38.3% of patients only. The local treatment was already established in 23.0% of patients only. We did not find statistically significant correlation between the RF positive rheumatoid arthritis appearance and dry eye syndrome, nor between the stage of the rheumatoid arthritis and presence of the dry eye syndrome. We proved statistical connection between the presence of dry eye syndrome and the duration of rheumatoid arthritis longer than 10 years. Keratoconjunctivitis sicca is the most common ocular complication in rheumatoid arthritis patients. We proved the connection

  1. Velocardiofacial Syndrome

    Science.gov (United States)

    Gothelf, Doron; Frisch, Amos; Michaelovsky, Elena; Weizman, Abraham; Shprintzen, Robert J.

    2009-01-01

    Velocardiofacial syndrome (VCFS), also known as DiGeorge, conotruncal anomaly face, and Cayler syndromes, is caused by a microdeletion in the long arm of Chromosome 22. We review the history of the syndrome from the first clinical reports almost half a century ago to the current intriguing molecular findings associating genes from the…

  2. Fraser syndrome

    Directory of Open Access Journals (Sweden)

    Kalpana Kumari M

    2008-04-01

    Full Text Available Fraser syndrome or cryptophthalmos is a rare autosomal recessive disorder characterized by major features such as cryptophthalmos, syndactyly and abnormal genitalia. The diagnosis of this syndrome can be made on clinical examination and perinatal autopsy. We present the autopsy findings of a rare case of Fraser syndrome in a male infant.

  3. Rowell syndrome

    Directory of Open Access Journals (Sweden)

    Ramesh Y Bhat

    2014-01-01

    Full Text Available Rowell syndrome is a rare disease consisting of erythema multiforme-like lesions associated with lupus erythematosus. The syndrome occurs mostly in middle-aged women. The authors describe the syndrome in a 15-year-old boy who responded well to systemic steroids and hydroxychloroquine.

  4. The Ductile to Brittle Transition Behavior of the Modified 9Cr-1Mo Steel and Its Laser Welds

    Institute of Scientific and Technical Information of China (English)

    H.C. Wu; R.K. Shiue; C. Chen

    2004-01-01

    The ductile to brittle transition temperature (DBTT) of the modified 9Cr-1Mo steel and its laser welds was studied. The increase in grain size of the weld structure ascended the DBTT of the steel significantly. The transformation of retained austenite at martensite interlath boundaries into untempered and/or twinned martensite could also contribute to increased DBTTs of the steel and its welds tempered at 540℃.

  5. Simulation of seismic waves at the Earth crust (brittle-ductile transition) based on the Burgers model

    OpenAIRE

    Carcione, J.M.; Poletto, F.; B. Farina; A. Craglietto

    2014-01-01

    The Earth crust presents two dissimilar rheological behaviours depending on the in-situ stress-temperature conditions. The upper, cooler, part is brittle while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behaviour i...

  6. A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale

    Science.gov (United States)

    Guo, Zhiqi; Li, Xiang-Yang; Liu, Cai; Feng, Xuan; Shen, Ye

    2013-04-01

    We construct a rock physics workflow to link the elastic properties of shales to complex constituents and specific microstructure attributes. The key feature in our rock physics model is the degrees of preferred orientation of clay and kerogen particles defined by the proportions of such particles in their total content. The self-consistent approximation method and Backus averaging method are used to consider the isotropic distribution and preferred orientation of compositions and pores in shales. Using the core and well log data from the Barnett Shale, we demonstrate the application of the constructed templates for the evaluation of porosity, lithology and brittleness index. Then, we investigate the brittleness index defined in terms of mineralogy and geomechanical properties. The results show that as clay content increases, Poisson's ratio tends to increase and Young's modulus tends to decrease. Moreover, we find that Poisson's ratio is more sensitive to the variation in the texture of shales resulting from the preferred orientation of clay particles. Finally, based on the constructed rock physics model, we calculate AVO responses from the top and bottom of the Barnett Shale, and the results indicate predictable trends for the variations in porosity, lithology and brittleness index in shales.

  7. A two-scale model for frictional cracks in 3D fractured brittle media with the extended finite element method

    Science.gov (United States)

    Liu, F.; Borja, R. I.

    2009-12-01

    Stress concentration induced by the heterogeneity in brittle geomaterials is generally considered as the driving force in the evolution of the microstructure (such as the crack and pore microstructure). Specifically, modeling heterogeneity is key to properly predicting the nucleation, coalescence and propagation of micro-cracks in brittle solids. In this paper, we propose a two-scale model for frictional cracks in fractured brittle media. The major crack in the study domain is modeled at a macro level, while the micro-cracks are modeled at a finer scale. The macro-scale behavior is described by a standard boundary value problem. The finer-scale problem is modeled using the notion of representative elementary volume (REV) consisting of a solid volume with distributed micro-cracks. Periodic boundary condition and small strain formulation are assumed in the finer-scale analysis. The scale bridging mechanism is borrowed from the standard homogenization technique. The proposed model is implemented with the extended finite element method. The macro stress at each Gauss point in the finite element formulation is computed as the volume average of finer-scale stresses in each corresponding REV. The macro tangent operator is computed using a perturbation method. For 3D problems, six independent linear perturbation analyses are carried out for each numerical integration point. Our numerical examples capture the nucleation and coalescence of micro-cracks, which can be used to infer the potential propagation direction of the major crack.

  8. Numerical simulation of triaxial compression test for brittle rock sample using a modified constitutive law considering degradation and dilation behavior

    Institute of Scientific and Technical Information of China (English)

    谭鑫

    2015-01-01

    The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock (Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.

  9. Simulation of seismic waves at the Earth crust (brittle-ductile transition based on the Burgers model

    Directory of Open Access Journals (Sweden)

    J. M. Carcione

    2014-06-01

    Full Text Available The Earth crust presents two dissimilar rheological behaviours depending on the in-situ stress-temperature conditions. The upper, cooler, part is brittle while deeper zones are ductile. Seismic waves may reveal the presence of the transition but a proper characterization is required. We first obtain a stress–strain relation including the effects of shear seismic attenuation and ductility due to shear deformations and plastic flow. The anelastic behaviour is based on the Burgers mechanical model to describe the effects of seismic attenuation and steady-state creep flow. The shear Lamé constant of the brittle and ductile media depends on the in-situ stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the P-S and SH equations of motion recast in the velocity-stress formulation, including memory variables to avoid the computation of time convolutions. The equations correspond to isotropic anelastic and inhomogeneous media and are solved by a direct grid method based on the Runge–Kutta time stepping technique and the Fourier pseudospectral method. The algorithm is tested with success against known analytical solutions for different shear viscosities. A realistic example illustrates the computation of surface and reverse-VSP synthetic seismograms in the presence of an abrupt brittle-ductile transition.

  10. Refeeding syndrome.

    Science.gov (United States)

    Fernández López, M T; López Otero, M J; Alvarez Vázquez, P; Arias Delgado, J; Varela Correa, J J

    2009-01-01

    Refeeding syndrome is a complex syndrome that occurs as a result of reintroducing nutrition (oral, enteral or parenteral) to patients who are starved or malnourished. Patients can develop fluid-balance abnormalities, electrolyte disorders (hypophosphataemia, hypokalaemia and hypomagnesaemia), abnormal glucose metabolism and certain vitamin deficiencies. Refeeding syndrome encompasses abnormalities affecting multiple organ systems, including neurological, pulmonary, cardiac, neuromuscular and haematological functions. Pathogenic mechanisms involved in the refeeding syndrome and clinical manifestations have been reviewed. We provide suggestions for the prevention and treatment of refeeding syndrome. The most important steps are to identify patients at risk, reintroduce nutrition cautiously and correct electrolyte and vitamin deficiencies properly.

  11. [Metabolic syndrome].

    Science.gov (United States)

    Mitsuishi, Masanori; Miyashita, Kazutoshi; Itoh, Hiroshi

    2009-02-01

    Metabolic syndrome, which is consisted of hypertension, dyslipidemia and impaired glucose tolerance, is one of the most significant lifestyle-related disorders that lead to cardiovascular diseases. Among many upstream factors that are related to metabolic syndrome, obesity, especially visceral obesity, plays an essential role in its pathogenesis. In recent studies, possible mechanisms which connect obesity to metabolic syndrome have been elucidated, such as inflammation, abnormal secretion of adipokines and mitochondrial dysfunction. In this review, we focus on the relationship between obesity and metabolic syndrome; and illustrate how visceral obesity contributes to, and how the treatments for obesity act on metabolic syndrome.

  12. Microstructure evolution of fault rocks at the "brittle-to-plastic" transition

    Science.gov (United States)

    Heilbronner, R.; Pec, M.; Stunitz, H.

    2011-12-01

    In the continental crust, large earthquakes tend to nucleate at the "brittle-to-plastic" transition at depths of ~ 10 - 20 km indicating stress release by rupture at elevated PT. Experimental studies, field observations, and models predict peak strength of the lithosphere at depths where rocks deform by "semi-brittle" flow. Thus, the deformation processes taking place at these conditions are important aspects of the seismic cycle and fault rheology in general. We performed a series of experiments with crushed Verzasca gneiss powder (d ≤ 200 μm), "pre-dried" and 0.2 wt% H2O added, placed between alumina forcing blocks (45° pre-cut) and weld-sealed in Pt jackets. The experiments were performed at Pc = 500, 1000 and 1500 MPa, T = 300°C and 500°C. and shear strain rates of ~10-3 s-1 to ~10-5 s-1 in a solid medium deformation apparatus (Griggs rig). Samples deformed at Pc = 500 MPa attain peak strength (~ 1100-1400 MPa) at γ ~ 2, they weaken by ~20 MPa (300°C) to ~140 MPa (500°C) and reach a steady state. The 300°C experiments are systematically stronger by ~ 330 - 370 MPa than the 500°C experiments, and flow stress increases with increasing strain rate. At Pc = 1000 and 1500 MPa, peak strength (~1300-1600 MPa) is reached at γ = 1 to 1.5 followed by weakening of ~60 (300°C) and ~150 MPa (500°C). The strength difference between 300°C and 500°C samples is 270-330 MPa and does not increase with increasing confining pressure. The peak strength increase with confining pressure is modest (50-150 MPa), indicating that the rocks reach their maximal compressive strength. The microstructure develops as an S-C-C' fabric with dominant C' slip zones. At low strains, the gouge zone is pervasively cut by closely spaced C' shears containing fine-grained material (d < 100 nm). At peak strength, deformation localizes into less densely spaced, ~10 μm thick C'-C slip zones which develop predominantly in feldspars. In TEM, they show no porosity and consist of amorphous

  13. SAFOD Brittle Microstructure and Mechanics Knowledge Base (SAFOD BM2KB)

    Science.gov (United States)

    Babaie, H. A.; Hadizadeh, J.; di Toro, G.; Mair, K.; Kumar, A.

    2008-12-01

    We have developed a knowledge base to store and present the data collected by a group of investigators studying the microstructures and mechanics of brittle faulting using core samples from the SAFOD (San Andreas Fault Observatory at Depth) project. The investigations are carried out with a variety of analytical and experimental methods primarily to better understand the physics of strain localization in fault gouge. The knowledge base instantiates an specially-designed brittle rock deformation ontology developed at Georgia State University. The inference rules embedded in the semantic web languages, such as OWL, RDF, and RDFS, which are used in our ontology, allow the Pellet reasoner used in this application to derive additional truths about the ontology and knowledge of this domain. Access to the knowledge base is via a public website, which is designed to provide the knowledge acquired by all the investigators involved in the project. The stored data will be products of studies such as: experiments (e.g., high-velocity friction experiment), analyses (e.g., microstructural, chemical, mass transfer, mineralogical, surface, image, texture), microscopy (optical, HRSEM, FESEM, HRTEM]), tomography, porosity measurement, microprobe, and cathodoluminesence. Data about laboratories, experimental conditions, methods, assumptions, equipments, and mechanical properties and lithology of the studied samples will also be presented on the website per investigation. The ontology was modeled applying the UML (Unified Modeling Language) in Rational Rose, and implemented in OWL-DL (Ontology Web Language) using the Protégé ontology editor. The UML model was converted to OWL-DL by first mapping it to Ecore (.ecore) and Generator model (.genmodel) with the help of the EMF (Eclipse Modeling Framework) plugin in Eclipse. The Ecore model was then mapped to a .uml file, which later was converted into an .owl file and subsequently imported into the Protégé ontology editing environment

  14. Dynamic response of brittle materials from penetration and split Hopkinson pressure bar experiments

    Science.gov (United States)

    Frew, Danny Joe

    This research began with a study on the penetration of limestone targets with ogive-nose rod projectiles. Three sets of experiments were conducted with geometrically similar, steel rod projectiles that had length-to-diameter ratios of 10 and 7.1, 12.7, and 25.4-mm-diameters. Results from these penetration experiments and previously developed penetration models suggested that the limestone target exhibited strain-rate sensitivity. In order to investigate this hypothesis, an experimental/analytical program to study the dynamic material response of limestone was begun. As a first step, it was decided to focus on the dynamic material responses of brittle materials, such as limestone, under a state of one-dimensional stress. A split Hopkinson pressure bar (SHPB) facility was built at the Geotechnical and Structures Laboratory, U.S. Army Waterways Experiment Station. Early in the experimental program it became clear that new modifications had to be made to the traditional SHPB apparatus and experimental techniques. In addition, it was decided to model the responses of the SHPB apparatus and the sample under test in order to guide the experimental designs and minimize the experimental trials. The conventional split Hopkinson pressure bar apparatus was modified by shaping the incident pulse such that the samples are in dynamic stress equilibrium and have nearly constant strain rate over most of the test duration. A thin disk of annealed or hard C11000 copper is placed on the impact surface of the incident bar in order to shape the incident pulse. After impact by the striker bar, the copper disk deforms plastically and spreads the pulse in the incident bar. An analytical model and data show that a wide variety of incident strain pulses can be produced by varying the geometry of the copper disks and the length and striking velocity of the striker bar. The pulse shaping model predictions are in good agreement with measurements. Analytic models predict that a ramp stress pulse

  15. Benchmarking the Sandbox: Quantitative Comparisons of Numerical and Analogue Models of Brittle Wedge Dynamics (Invited)

    Science.gov (United States)

    Buiter, S.; Schreurs, G.; Geomod2008 Team

    2010-12-01

    When numerical and analogue models are used to investigate the evolution of deformation processes in crust and lithosphere, they face specific challenges related to, among others, large contrasts in material properties, the heterogeneous character of continental lithosphere, the presence of a free surface, the occurrence of large deformations including viscous flow and offset on shear zones, and the observation that several deformation mechanisms may be active simultaneously. These pose specific demands on numerical software and laboratory models. By combining the two techniques, we can utilize the strengths of each individual method and test the model-independence of our results. We can perhaps even consider our findings to be more robust if we find similar-to-same results irrespective of the modeling method that was used. To assess the role of modeling method and to quantify the variability among models with identical setups, we have performed a direct comparison of results of 11 numerical codes and 15 analogue experiments. We present three experiments that describe shortening of brittle wedges and that resemble setups frequently used by especially analogue modelers. Our first experiment translates a non-accreting wedge with a stable surface slope. In agreement with critical wedge theory, all models maintain their surface slope and do not show internal deformation. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. All models show similar cross-sectional evolutions that demonstrate reproducibility to first order. However

  16. Brittle fault analysis from the immediate southern side of the Insubric fault

    Science.gov (United States)

    Pleuger, Jan; Mancktelow, Neil

    2013-04-01

    The Insubric segment of the Periadriatic fault is characterised in its central part between Lago Maggiore and Valle d'Ossola by two greenschist-facies mylonitic belts which together are about 1 km thick. The northern, external belt has a north-side-up kinematics generally with a minor dextral component and the southern internal belt is dextral, locally with a considerable south-side-up component. Overprinting relations locally show that the internal belt is younger than the external one (e.g. Schmid et al., 1987). The absolute age of dextral shearing is probably given by K-Ar white mica ages ranging mostly between from c. 27 to 23 Ma (Zingg and Hunziker, 1990). We analysed fault-slip data from various locations in the Southern Alps immediately south of the Insubric Fault. From the results, two different patterns of orientations of contraction (P-axes) and extension (T-axes) axes can be distinguished. One group (group 1) of analyses is compatible with dextral transpression (i.e. both P- and T-axes are subhorizontal) and the other (group 2) with roughly orogen-perpendicular extension (i.e. subvertical P-axes and subhorizontal T-axes). The orientations of subhorizontal axes (P- and T-axes in group 1, T-axes in group 2) show a tendency to follow the curved shape of the Insubric fault, i.e. P-axes of group 1 and T-axes of group 2 change from NNW-SSE in the east where the Insubric fault trends east-west to WNW-ESE in the west where the Insubric fault trends northeast-southwest. We speculate that group 1 formed at the same time as dextral shearing on in the internal mylonite belt while none of our fault analyses reflects the north-side-up reverse faulting that is observed in the external mylonite belt. The northwest-southeast extension documented in the analyses of group 2 is not associated with a continuous mylonitic belt or brittle fault plane along the Insubric fault. Instead, an uplift of the Southern Alps with respect to the northern block was accommodated by

  17. Predicting the Relationship Between System Vibration with Rock Brittleness Indexes in Rock Sawing Process

    Science.gov (United States)

    Mikaeil, Reza; Ataei, Mohammad; Ghadernejad, Saleh; Sadegheslam, Golsa

    2014-03-01

    The system vibration is a very significant measure of the sawing performance, because it indicates the amount of energy required to saw the rock. The maintenance cost of system is also dependant on system vibration. A few increases in system vibration cause a huge increase in the maintenance cost of the system. In this paper, the vibration of system in terms of RMSa was investigated and models for estimation of vibration by means of rock brittleness indexes and operational specifications were designed via statistical models and multiple curvilinear regression analysis. In this study, the relationships between rock brittleness indexes and operational specifications were investigated by regression analysis in statistical package for social science (SPSS) and the results of determination coefficients have been presented. In the second part, the diagrams show that a point lying on the line indicates an exact estimation. In the plot for model, the points are scattered uniformly about the diagonal line, suggesting that the models are good. It is very useful to evaluate the vibration of system and select the suitable operational characteristics by only some mechanical properties of rock. Drgania układu uważane są za miernik wydajności procesu urabiania, ponieważ pokazują ilość energii niezbędnej do urabiania skały. Od poziomu drgań zależą także koszty eksploatacji systemu. Nieznaczny nawet wzrost poziomu drgań prowadzi do znacznego zwiększenia kosztów eksploatacyjnych urządzenia. W pracy tej przeprowadzono analizę drgań (ich wartości skutecznych) i opracowano model estymacji poziomu drgań w oparciu o współczynnik kruchości skał i parametry eksploatacyjne urządzenia. W pracy wykorzystano modele statystyczne i wielokrotną analizę metodą regresji krzywoliniowej. W pracy obecnej związek pomiędzy współczynnikiem kruchości skał a parametrami eksploatacyjnymi urządzenia badano z wykorzystaniem analizy metodą regresji dostępnej w

  18. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Science.gov (United States)

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  19. A visco-poroelastic damage model for modelling compaction and brittle failure of porous rocks

    Science.gov (United States)

    Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena

    2016-04-01

    Hydraulic stimulation of geothermal wells is often used to increase heat extraction from deep geothermal reservoirs. Initiation and propagation of fractures due to pore pressure build-up increase the effective permeability of the porous medium. Understanding the processes controlling the initiation of fractures, the evolution of their geometries and the hydro-mechanical impact on transport properties of the porous medium is therefore of great interest for geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes occurring during deformation of a porous rock. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To validate and illustrate the model, simulations of the deformation behaviour of cylindrical porous Bentheimer sandstone samples under different confining pressures are compared to experiments. The first experiment under low confining pressure leads to shear failure, the second for high confining pressure leads to cataclastic compaction and the third one with intermediate confining pressure correspond to a transitional regime between the two firsts. Finally, we will demonstrate that this approach can also be used at the field

  20. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  1. ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize.

    Science.gov (United States)

    Giroux, M J; Hannah, L C

    1994-05-25

    The Shrunken-2 (Sh2) and Brittle-2 (Bt2) genes of maize encode subunits of the tetrameric maize endosperm ADPglucose pyrophosphorylase. However, in all sh2 and bt2 mutants so far examined, measurable ADPglucose pyrophosphorylase activity remains. We have investigated the origin of the residual activity found in various sh2 and bt2 mutants as well as tissue specific expression and post-translational modification of the Sh2 and Bt2 proteins. Sh2 and Bt2 cDNAs were expressed in Escherichia coli and antibodies were prepared against the resulting proteins SH2 and BT2 specific antibodies were used to demonstrate that SH2 and BT2 are endosperm specific, are altered or missing in various sh2 or bt2 mutants, and have a mol. wt. of 54 and 51 kDa respectively in the wild type. The Sh2 and Bt2 transcripts are also endosperm specific. Ten sh2 and eight bt2 mutants show varying severity of phenotypes expressed at transcript, protein subunit and kernel level. Synthesis of multiple transcripts and proteins commonly occurs as a result of sh2 or bt2 mutation. While all mutants produce detectable enzymic activity, not all produce detectable transcripts and proteins. To examine the origin of the apparent non-SH2/BT2 endosperm enzymic activity, homologs of Sh2 and Bt2, designated Agp1 and Agp2 respectively, were isolated from an embryo cDNA library and found to hybridize to endosperm transcripts distinct from those of Sh2 and Bt2. Thus Agp1 and Agp2 or closely related genes may be responsible for the residual activity in some sh2 and bt2 mutants. Surprisingly, no evidence of post-translational modification of the SH2 and BT2 protein subunits was detected.

  2. [Autoinflammatory syndrome].

    Science.gov (United States)

    Ida, Hiroaki; Eguchi, Katsumi

    2009-03-01

    The autoinflammatory syndromes include a group of inherited diseases that are characterized by 1) seemingly unprovoked episodes of systemic inflammations, 2) absence of high titer of autoantibody or auto-reactive T cell, and 3) inborn error of innate immunity. In this article, we will focus on the clinical features, the pathogenesis related the genetic defects, and the therapeutic strategies in the representative disorders including familial Mediterranean fever (FMF), TNF receptor associated periodic syndrome (TRAPS), cryopyrin-associated periodic syndrome (CAPS), hyper-IgD with periodic fever syndrome (HIDS), syndrome of pyogenic arthritis with pyoderma gangrenosum and acne (PAPA), and Blau syndrome. Recent advances in genetics and molecular biology have proceeded our understanding of the pathogenesis of autoinflammatory syndromes.

  3. Mucous membrane grafting for the post-Steven-Johnson syndrome symblepharon: A case report

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Das

    2011-01-01

    Full Text Available An 18-year-old woman was referred with late sequelae of chloroquine-induced Steven-Johnson syndrome. At the time of presentation, the symblepharon was involving the upper lids to almost the whole of the cornea, and part of the lower bulbar conjunctiva with the lower lid bilaterally. Other ocular examinations were not possible due to the symblepharon. B-scan ultrasonography revealed acoustically clear vitreous, normal chorioretinal thickness, and normal optic nerve head, with an attached retina. Conjunctivo-corneal adhesion released by superficial lamellar dissection of the cornea. Ocular surface reconstruction was carried out with a buccal mucous membrane. A bandage contact lens was placed over the cornea followed by the symblepharon ring to prevent further adhesion. The mucosal graft was well taken up along with corneal re-epithelization. Best corrected visual acuity of 20/120 in both sides after 1 month and 20/80 after 3 months was achieved and maintained till the 2.5-year follow-up.

  4. Poly (ε-caprolactone nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea

    Directory of Open Access Journals (Sweden)

    Bakhshandeh H

    2011-07-01

    Full Text Available Haleh Bakhshandeh1, Masoud Soleimani2, Saied Shah Hosseini3, Hassan Hashemi3, Iman Shabani4, Abbas Shafiee5, Amir Houshang Behesht Nejad6, Mohammad Erfan1, Rassoul Dinarvand7, Fatemeh Atyabi71Department of Pharmaceutics, School of Pharmacy, Shaheed Beheshti Medical University, Tehran, Iran; 2Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran; 3Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran; 4Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran; 5Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran; 6Ophthalmology Department, Tehran University of Medical Sciences, Tehran, Iran; 7Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: The study aimed to fabricate and characterize a 2-part artificial cornea as a substitute for penetrating keratoplasty in patients with corneal blindness. The peripheral part of the artificial cornea consisted of plasma-treated electrospun poly (ε-caprolactone (PCL nanofibers, which were attached to a hydrogel disc of polyvinyl alcohol (PVA as a central optical part. The physical properties of the prepared artificial cornea, including morphology, mechanical properties, light transmittance, and contact angle, were assessed. Cell attachment and proliferation studies were performed on rabbit limbal stem cells. The SEM image of the polymeric system showed that the peripheral part formed a highly porous scaffold that could facilitate tissue biointegration. Assessment of the mechanical properties of the peripheral nanofibrous part and the hydrogel optical part showed suitable elasticity. Young’s modulus values of the electrospun PCL skirt and PVA hydrogel core were 7.5 and 5.3 MPa, respectively, which is in line with the elasticity range of natural human cornea (0.3–7 MPa. The light transmittance of the central part was >85

  5. Estudo comparativo entre duas plataformas para realização de Lasik personalizado para correção de miopia e astigmatismo: Alcon CustomCornea® versus Bausch & Lomb Zyoptix® Wavefront-Guided Lasik for low to moderate myopia: CustomCornea® versus Zyoptix®

    Directory of Open Access Journals (Sweden)

    Telma Pereira Barreiro

    2009-08-01

    Full Text Available OBJETIVO: Comparar os resultados obtidos após o Lasik personalizado utilizando duas plataformas diferentes. MÉTODOS: Estudo prospectivo, randomizado com 50 pacientes míopes submetidos a cirurgia refrativa em ambos os olhos. Foram selecionados para o estudo, pacientes com equivalente esférico semelhante entre os olhos. Todos foram submetidos a Lasik bilateral e simultâneo, sendo que um olho foi operado pela plataforma CustomCornea® e o outro pela Zyoptix®. Acuidade visual sem e com correção, refração dinâmica e estática, medida das aberrações oculares, teste de sensibilidade ao contraste foram realizados no período pré-operatório e pós-operatório de 1, 3 e 6 meses. RESULTADOS: No período pré-operatório a média do equivalente esférico era de -3,29 ± 1,56 D no grupo CustomCornea® e de -3,22 ± 1,50 D no Zyoptix® (p=0,267. No sexto mês de pós-operatório, a média do equivalente esférico no grupo CustomCornea® era de -0,077 ± 0,23 D e -0,282 ± 0,30 D no Zyoptix® (p 20/20 foi alcançada em 86% dos olhos no grupo CustomCornea® e 70% no grupo Zyoptix® (p=0,094. Nenhum paciente perdeu duas ou mais linhas da melhor acuidade visual corrigida. Cem por cento dos olhos CustomCornea® e 88% dos Zyoptix® ficaram entre ± 0,50 D da emetropia (p=0,014*. Melhora da sensibilidade ao contraste em todas as frequências espaciais testadas foi observada em ambos os grupos. A aberração esférica apresentou aumento em ambos os grupos, porém este foi estatisticamente maior na plataforma Zyoptix® (pPURPOSE: To compare the visual and clinical outcomes of Wavefront-guided laser in situ keratomileusis (Lasik with Alcon CustomCornea® and Zyoptix® systems. METHODS: A prospective, randomized, masked and bilateral study was conducted. Fifty patients with preoperative spherical equivalent ranging from -1.00 to -6.50 D were enrolled for customized ablation in both eyes. All of them were submitted to Lasik CustomCornea® treatment in one

  6. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine

    Science.gov (United States)

    Alarcon, E. I.; Vulesevic, B.; Argawal, A.; Ross, A.; Bejjani, P.; Podrebarac, J.; Ravichandran, R.; Phopase, J.; Suuronen, E. J.; Griffith, M.

    2016-03-01

    Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity.Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity. Electronic supplementary information (ESI) available: Collagen hydrogel, moulded as a cornea, prepared containing collagen protected AgNPs and representative images for collagen hydrogels, moulded as corneas, containing Blue AgNPs either unprotected or protected with LL37-SH; representative TEM images for Green-1 AgNPs prepared in this work; changes on surface plasmon band after synthesis for Green-2 AgNPs without LL37-SH; representative picture of the powder obtained for Green-1 AgNPs capped with LL37-SH after 72 h lyophilization, see main text; representative TEM images for Blue and Green-1 AgNPs prepared in this work; absorption spectra for the supernatants for collagen hydrogels containing Blue AgNPs; absorbance at 600 nm of PAO1 cultures prepared in 25% LB media incubated for 14 h at 37 °C in the presence of different concentrations of AgNPs, Green-1 or Blue, or silver nitrate; HECC cell density (cells per cm2) measured on gels with and without silver nitrate after 1 day of cell incubation; total silver concentration

  7. Wellens' syndrome

    Directory of Open Access Journals (Sweden)

    Franco Lai

    2007-12-01

    Full Text Available We report a case of quite rare cause of thoracic pain suspected by emergency physician as Wellens’ syndrome. Wellens’ syndrome is a pattern of electrocardiographic T-wave changes associated with critical, proximal left anterior descending artery (LAD. This syndrome is about 10-15% of all unstable angina in emergency department (ED. The cardiologic consult was obtained in ED and it was not conclusive for a Wellens’ syndrome, so that the diagnostistic planning was wrong. The authors point out the importance of this syndrome in ED and the necessity of an urgent angiographic study as every acute coronary syndrome presented in ED. We remark the importance in ED to recognize these changes associated with critical LAD obstruction and the high risk for anterior wall myocardial infarction.

  8. [Autoinflammatory syndromes].

    Science.gov (United States)

    Lamprecht, P; Gross, W L

    2009-06-01

    In its strict sense, the term "autoinflammatory syndromes" comprises the hereditary periodic fever syndromes (HPF), which are caused by mutations of pattern-recognition receptors (PRR) and perturbations of the cytokine balance. These include the crypyrinopathies, familial Mediterranean fever, TNF-receptor associated periodic fever syndrome (TRAPS), hyper-IgD and periodic syndrome (HIDS), pyogenic sterile arthritis, pyoderma gangrenosum and acne (PAPA) syndrome, NALP12-HPF, and the Blau syndrome. The diseases are characterized by spontaneous activation of cells of the innate immunity in the absence of ligands. Autoantibodies are usually not found. HPF clinically present with recurrent fever episodes and inflammation, especially of serosal and synovial interfaces and the skin. Intriguingly, PRR-mediated autoinflammtory mechanisms also play a role in a number of chronic inflammatory and autoimmune diseases.

  9. Drilling on Mars---Mathematical Model for Rotary-Ultrasonic Core Drilling of Brittle Materials

    Science.gov (United States)

    Horne, Mera Fayez

    The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet's surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. In 2001, NASA's Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. On August 6, 2012, the team of engineers landed the spacecraft Curiosity on the surface of Mars by using a revolutionary hovering platform. The results from the Curiosity mission suggested the next logical step, which is drilling six meters deep in the red planet in search of life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor or approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing a new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling of brittle materials. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks' material properties, that have effect on rate of penetration is developed. Analytical and experimental

  10. Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars

    Science.gov (United States)

    Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.

    2014-06-01

    High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration

  11. Metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gogia Atul

    2006-02-01

    Full Text Available The Metabolic syndrome is a widely prevalent and multi-factorial disorder. The syndrome has been given several names, including- the metabolic syndrome, the insulin resistance syndrome, the plurimetabolic syndrome, and the deadly quartet. With the formulation of NCEP/ATP III guidelines, some uniformity and standardization has occurred in the definition of metabolic syndrome and has been very useful for epidemiological purposes. The mechanisms underlying the metabolic syndrome are not fully known; however resistance to insulin stimulated glucose uptake seems to modify biochemical responses in a way that predisposes to metabolic risk factors. The clinical relevance of the metabolic syndrome is related to its role in the development of cardiovascular disease. Management of the metabolic syndrome involves patient-education and intervention at various levels. Weight reduction is one of the main stays of treatment. In this article we comprehensively discuss this syndrome- the epidemiology, pathogenesis, clinical relevance and management. The need to do a comprehensive review of this particular syndrome has arisen in view of the ever increasing incidence of this entitiy. Soon, metabolic syndrome will overtake cigarette smoking as the number one risk factor for heart disease among the US population. Hardly any issue of any primary care medical journal can be opened without encountering an article on type 2 diabetes, dyslipidemia or hypertension. It is rare to see type 2 diabetes, dyslipidemia, obesity or hypertension in isolation. Insulin resistance and resulting hyperinsulinemia have been implicated in the development of glucose intolerance (and progression to type 2 diabetes, hypertriglyceridemia, hypertension, polycystic ovary yndrome, hypercoagulability and vascular inflammation, as well as the eventual development of atherosclerotic cardiovascular disease manifested as myocardial infarction, stroke and myriad end organ diseases. Conversely

  12. Revesz syndrome

    Directory of Open Access Journals (Sweden)

    Dayane Cristine Issaho

    2015-04-01

    Full Text Available Revesz syndrome is a rare variant of dyskeratosis congenita and is characterized by bilateral exudative retinopathy, alterations in the anterior ocular segment, intrauterine growth retardation, fine sparse hair, reticulate skin pigmentation, bone marrow failure, cerebral calcification, cerebellar hypoplasia and psychomotor retardation. Few patients with this syndrome have been reported, and significant clinical variations exist among patients. This report describes the first Brazilian case of Revesz syndrome and its ocular and clinical features.

  13. Urofacial syndrome

    Directory of Open Access Journals (Sweden)

    Kamal F Akl

    2012-01-01

    Full Text Available The urofacial syndrome is characterized by functional obstructive uropathy asso-ciated with an inverted smile. The importance of the subject is that it sheds light, not only on the muscles of facial expression, but also on the inheritance of voiding disorders and lower urinary tract malformations. We report a 10-year-old-male patient who had the urofacial syndrome. Early diagnosis of the urofacial syndrome is important to avoid upper urinary tract damage and renal failure.

  14. Gorlin syndrome

    Directory of Open Access Journals (Sweden)

    Basanti Devi

    2013-01-01

    Full Text Available Gorlin Syndrome, a rare genodermatosis, otherwise known as Nevoid basal cell carcinoma syndrome (NBCCS is a multisystem disease affecting skin, nervous system, eyes, endocrine glands, and bones. It is characterized by multiple basal cell carcinomas, palmoplantar pits, jaw cysts, and bony deformities like kyphoscoliosis and frontal bossing. We would like to report a case of Gorlin syndrome with classical features, as this is a rare genodermatosis.

  15. Gorlin syndrome.

    Science.gov (United States)

    Devi, Basanti; Behera, Binodini; Patro, Sibasish; Pattnaik, Subhransu S; Puhan, Manas R

    2013-05-01

    Gorlin Syndrome, a rare genodermatosis, otherwise known as Nevoid basal cell carcinoma syndrome (NBCCS) is a multisystem disease affecting skin, nervous system, eyes, endocrine glands, and bones. It is characterized by multiple basal cell carcinomas, palmoplantar pits, jaw cysts, and bony deformities like kyphoscoliosis and frontal bossing. We would like to report a case of Gorlin syndrome with classical features, as this is a rare genodermatosis.

  16. Determining the Depth of Injury in Bioengineered Tissue Models of Cornea and Conjunctiva for the Prediction of All Three Ocular GHS Categories.

    Directory of Open Access Journals (Sweden)

    Michaela Zorn-Kruppa

    Full Text Available The depth of injury (DOI is a mechanistic correlate to the ocular irritation response. Attempts to quantitatively determine the DOI in alternative tests have been limited to ex vivo animal eyes by fluorescent staining for biomarkers of cell death and viability in histological cross sections. It was the purpose of this study to assess whether DOI could also be measured by means of cell viability detected by the MTT assay using 3-dimensional (3D reconstructed models of cornea and conjunctiva. The formazan-free area of metabolically inactive cells in the tissue after topical substance application is used as the visible correlate of the DOI. Areas of metabolically active or inactive cells are quantitatively analyzed on cryosection images with ImageJ software analysis tools. By incorporating the total tissue thickness, the relative MTT-DOI (rMTT-DOI was calculated. Using the rMTT-DOI and human reconstructed cornea equivalents, we developed a prediction model based on suitable viability cut-off values. We tested 25 chemicals that cover the whole range of eye irritation potential based on the globally harmonized system of classification and labelling of chemicals (GHS. Principally, the MTT-DOI test method allows distinguishing between the cytotoxic effects of the different chemicals in accordance with all 3 GHS categories for eye irritation. Although the prediction model is slightly over-predictive with respect to non-irritants, it promises to be highly valuable to discriminate between severe irritants (Cat. 1, and mild to moderate irritants (Cat. 2. We also tested 3D conjunctiva models with the aim to specifically address conjunctiva-damaging substances. Using the MTT-DOI method in this model delivers comparable results as the cornea model, but does not add additional information. However, the MTT-DOI method using reconstructed cornea models already provided good predictability that was superior to the already existing established in vitro/ex vivo

  17. Corneal thickness changes during corneal collagen cross-linking with UV-A irradiation and hypo-osmolar riboflavin in thin corneas

    Directory of Open Access Journals (Sweden)

    Belquiz Amaral Nassaralla

    2013-06-01

    Full Text Available PURPOSE: To evaluate the thinnest corneal thickness changes during and after corneal collagen cross-linking treatment with ultraviolet-A irradiation, using hypo-osmolar riboflavin solution in thin corneas. METHODS: Eighteen eyes of 18 patients were included in this study. After epithelium removal, iso-osmolar 0.1% riboflavin solution was instilled to the cornea every 3 minutes for 30 minutes. Hypo-osmolar 0.1% riboflavin solution was then applied every 20 seconds for 5 minutes or until the thinnest corneal thickness reached 400 µm. Ultraviolet-A irradiation was performed for 30 minutes. During irradiation, iso-osmolar 0.1% riboflavin drops were applied every 5 minutes. Ultrasound pachymetry was performed at approximately the thinnest point of the cornea preoperatively, after epithelial removal, after iso-osmolar riboflavin instillation, after hypo-osmolar riboflavin instillation, after ultraviolet-A irradiation, and at 1, 6 and 12 months after treatment. RESULTS: Mean preoperative thinnest corneal thickness was 380 ± 11 µm. After epithelial removal it decreased to 341 ± 11 µm, and after 30 minutes of iso-osmolar 0.1% riboflavin drops, to 330 ± 7.6 µm. After hypo-osmolar 0.1% riboflavin drops, mean thinnest corneal thickness increased to 418 ± 11 µm. After UVA irradiation, it was 384 ± 10 µm. At 1, 6 and 12 months after treatment, it was 372 ± 10 µm, 381 ± 12.7, and 379 ± 15 µm, respectively. No intraoperative, early postoperative, or late postoperative complications were noted. CONCLUSIONS: Hypo-osmolar 0.1% riboflavin solution seems to be effective for swelling thin corneas. The swelling effect is transient and short acting. Corneal thickness should be monitored throughout the procedure. Larger sample sizes and longer follow-up are required in order to make meaningful conclusions regarding safety.

  18. Down Syndrome: Eye Problems

    Science.gov (United States)

    ... En Español Read in Chinese What causes Down syndrome? Down syndrome is caused by a duplication of all ... in persons with Down syndrome. How common is Down syndrome? The frequency of Down syndrome is approximately 1 ...

  19. Facts about Down Syndrome

    Science.gov (United States)

    ... Down syndrome. View charts » What is Down Syndrome? Down syndrome is a condition in which a person ... in height as children and adults Types of Down Syndrome There are three types of Down syndrome. People ...

  20. MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjögren syndrome patients.

    Science.gov (United States)

    Yu, D F; Chen, Y; Han, J M; Zhang, H; Chen, X P; Zou, W J; Liang, L Y; Xu, C C; Liu, Z G

    2008-02-01

    This study investigated the expression of MUC19, a newly discovered gel-forming mucin gene, in normal human lacrimal functional unit components and its alteration in Sjögren syndrome patients. Real-time PCR and immunohistochemistry were performed to determine the expression of MUC19 and MUC5AC in human cornea, conjunctiva, and lacrimal gland tissues. Conjunctival impression cytology specimens were collected from normal control subjects and Sjögren syndrome patients for Real-time PCR, PAS staining, and immunohistochemistry assays. In addition, conjunctiva biopsy specimens from both groups were examined for the expression differences of MUC19 and MUC5AC at both mRNA and protein level. The MUC19 mRNA was found to be present in cornea, conjunctiva and lacrimal gland tissues. The immunohistochemical staining of mucins showed that MUC19 was expressed in epithelial cells from corneal, conjunctival, and lacrimal gland tissues. In contrast, MUC5AC mRNA was only present in conjunctiva and lacrimal gland tissues, but not in cornea. Immunostaining demonstrates the co-staining of MUC19 and MUC5AC in conjunctival goblet cells. Consistent with the significant decrease of mucous secretion, both MUC19 and MUC5AC were decreased in conjunctiva of Sjögren syndrome patients compared to normal subjects. Considering the contribution of gel-forming mucins to the homeostasis of the ocular surface, the decreased expression of MUC19 and MUC5AC in Sjögren syndrome patients suggested that these mucins may be involved in the disruption of the ocular surface homeostasis in this disease.

  1. Simultaneous imaging and measurement of tensile stress on cornea by using a common-path optical coherence tomography system with an external contact reference

    Institute of Scientific and Technical Information of China (English)

    Utkarsh Sharma; Jin U. Kang

    2008-01-01

    The objective of this study is to demonstrate that tensile stress resulting due to applied force on cornea can be accurately measured by using a time-domain common-path optical coherence tomography (OCT) system with an external contact reference. The unique design of the common-path OCT is utilized to set up an imaging system in which a chicken eye is placed adjacent to a glass plate serving as the external reference plane for the imaging system. As the force is applied to the chicken eye, it presses against the reference glass plate. The modified OCT image obtained is used to calculate the size of contact area, which is then used to derive the tensile stress on the cornea. The drop in signal levels upon contact of reference glass plate with the tissue are extremely sharp because of the sharp decline in reference power levels itself, thus providing us with an accurate measurement of contact area. The experimental results were in good agreement with the numerical predictions. The results of this study might be useful in providing new insights and ideas to improve the precision and safety of currently used ophthalmic surgical techniques. This research outlines a method which could be used to provide high resolution OCT images and a precise feedback of the forces applied to the cornea simultaneously.

  2. Expressions of matrix metalloproteinases-1 and -9 and opioid growth factor in rabbit cornea after lamellar keratectomy and treatment with 1% nalbuphine

    Directory of Open Access Journals (Sweden)

    Miguel Ladino Silva

    2015-06-01

    Full Text Available ABSTRACT Purposes: To evaluate the effects of nalbuphine 1% on the expression of metalloproteinase 1 (MMP-1, metalloproteinase 9 (MMP-9, and opioid growth factor (OGF in rabbit corneas after lamellar keratectomy. Methods: The rabbits were assigned to two groups: group nalbuphine (GN, n=30, which received 30 µL of nalbuphine 1% in 4 daily applications at regular intervals until corneal epithelialization, and group control (GC, n=30, which received physiological saline solution under the same conditions adopted in GN. The corneas were collected for immunohistochemistry on days 1, 3, 5, 7, and 9 after lamellar keratectomy, and the expressions of MMP-1, MMP-9, and OGF were analyzed. Results: The expressions of MMP-1 and MMP-9 increased until day 5 of the evaluation, with no differences observed between GN and GC (p>0.05. On days 7 and 9, significant reductions were observed in the expression of MMP-1 (p0.05. The expression of OGF was constant in all periods (p>0.05, restricted to the corneal epithelium, and there was no difference between the groups (p>0.05. Conclusions: The study results showed that nalbuphine 1% did not alter the expression patterns of MMP-1, MMP-9, and OGF in rabbit corneas after lamellar keratectomy.

  3. Effect of a pulsed magnetic field on permeability of the cornea and sorption properties of the tissue structures and refractive media of the eye

    Energy Technology Data Exchange (ETDEWEB)

    Skrinnik, A.V.

    1986-03-01

    The author attempts to obtain direct proof of increased permeability of the cornea and enhanced sorption properties of the tissue structures and refractive media of the eye under the influence of a pulsed magnetic field (MF). In the course of the investigation, the method of radioactive indication of two substances (/sup 35/S-streptomycin and /sup 75/Se-methionine), widely used in opthalmologic practice, was used. The radioactivity of the working solution of the preparations was 300,000 cpm in 0.1 ml. Changes in the permeability of the cornea were assessed on the basis of changes in radioactivity of the aqueous humor. The concentration of /sup 35/S-streptomycin in aqueous humor of the animals immediately after exposure to MF was significantly higher than in the control. Analysis of permeability of the cornea for /sup 75/Se-methionine also showed increased penetration of radioactivity into the aqueous. The results are evidence of the greater penetrating power of /sup 75/Se-methionine.

  4. Chronic Electromagnetic Exposure at Occupational Safety Level Does Not Affect the Metabolic Profile nor Cornea Healing after LASIK Surgery.

    Science.gov (United States)

    Crouzier, David; Dabouis, Vincent; Gentilhomme, Edgar; Vignal, Rodolphe; Bourbon, Fréderic; Fauvelle, Florence; Debouzy, Jean-Claude

    2014-01-01

    LASIK eye surgery has become a very common practice for myopic people, especially those in the military. Sometimes undertaken by people who need to keep a specific medical aptitude, this surgery could be performed in secret from the hierarchy and from the institute medical staff. However, even though the eyes have been previously described as one of the most sensitive organs to electromagnetic fields in the human body, no data exist on the potential deleterious effects of electromagnetic fields on the healing eye. The consequences of chronic long-lasting radar exposures at power density, in accordance with the occupational safety standards (9.71 GHz, 50 W/m(2)), were investigated on cornea healing. The metabolic and clinical statuses after experimental LASIK keratotomy were assessed on the different eye segments in a New Zealand rabbit model. The analysis methods were performed after 5 months of exposure (1 hour/day, 3 times/week). Neither clinical or histological examinations, nor experimental data, such as light scattering, (1)H-NMR HRMAS metabolomics, (13)C-NMR spectra of lipidic extracts, and antioxidant status, evidenced significant modifications. It was concluded that withdrawing the medical aptitude of people working in electromagnetic field environments (i.e., radar operators in the navy) after eye surgery was not justified.

  5. Effect of the Multiglycoside of Tripterygium Wilfordii Hookf.(Tii)on Cornea Allograft Rejection Model in Rabbit

    Institute of Scientific and Technical Information of China (English)

    ZhijieLi; ChenLi

    1995-01-01

    Purpose:Toexamine the effect of Tii treatment of cornea graft survival in a rab-bit model.Methods:Tii was administrated orally after eccentrical corneal transplantation.Survival times were determined by biomicroscopy.Cytotoxic T lymphocytes(CTL)and delayed-type hypersensitivity(DTH)responses to donor alloantigens were assessed at ady 16after heterotopic corneal grafts.Results:Administration of Tii reduced the incidence and prologed the graft sur-vival time.Both CTLand DTH responses to donor alloantigens were severely ed-pressed in hosts treated with Tii.However,combination of Tii and cyclosporine further enhanced the immunosuppressive effects described above.Conclusions:Tii is a potent immunosuppressant with the ability to prolong allo-graft survival in the rabbit penetrating keratoplasty model and may have coordi-native effects with CsA through different mechanisms.Further studies are neces-sary to define any potentially coordinative role in the prevention of allograft rejec-tion in human keratoplasty.Eye Science 1995;11:168-172.

  6. KTCNlncDB—a first platform to investigate lncRNAs expressed in human keratoconus and non-keratoconus corneas

    Science.gov (United States)

    Szcześniak, Michał W.; Kabza, Michal; Karolak, Justyna A.; Rydzanicz, Malgorzata; Nowak, Dorota M.; Ginter-Matuszewska, Barbara; Polakowski, Piotr; Ploski, Rafal; Szaflik, Jacek P.; Gajecka, Marzena

    2017-01-01

    Keratoconus (KTCN, OMIM 148300) is a degenerative eye disorder characterized by progressive stromal thinning that leads to a conical shape of the cornea, resulting in optical aberrations and even loss of visual function. The biochemical background of the disease is poorly understood, which motivated us to perform RNA-Seq experiment, aimed at better characterizing the KTCN transcriptome and identification of long non-coding RNAs (lncRNAs) that might be involved in KTCN etiology. The in silico functional studies based on predicted lncRNA:RNA base-pairings led us to recognition of a number of lncRNAs possibly regulating genes with known or plausible links to KTCN. The lncRNA sequences and data regarding their predicted functions in controlling the RNA processing and stability are available for browse, search and download in KTCNlncDB (http://rhesus.amu.edu.pl/KTCNlncDB/), the first online platform devoted to KTCN transcriptome. Database URL: http://rhesus.amu.edu.pl/KTCNlncDB/ PMID:28077570

  7. Dr John Nottingham's 1854 Landmark Treatise on Conical Cornea Considered in the Context of the Current Knowledge of Keratoconus.

    Science.gov (United States)

    Gokul, Akilesh; Patel, Dipika V; McGhee, Charles N J

    2016-05-01

    John Nottingham has been widely credited with the first accurate description of keratoconus in his treatise on conical cornea, published in 1854. Contained within the 270-page treatise are accounts and theories of keratoconus postulated by authors such as Scarpa, von Carion, von Ammon, and Mackenzie, synthesized by Nottingham in a treatise containing his own original observations. Nottingham's work delves deeply into keratoconus, with coverage reminiscent of a modern review, albeit in a far less succinct manner. He extensively describes the epidemiology, clinical presentation, underlying cause, and treatment of keratoconus. However, the concepts put forth are limited largely by the contemporary lack of understanding of the underlying anatomy and physiology of the eye, and the observations, by technological limitations. He postulates a similar treatment algorithm to that used today; optical devices being the management option of choice in the mild stages with surgery being a last resort. None of the surgical methods discussed are used in the modern era, but he does make reference to the possible efficacy of corneal transplantation. Nottingham's treatise was published over 160 years ago, yet his ideas and observations are surprisingly accurate. It is very possible that he was the first person to publish an accurate, comprehensive description of keratoconus.

  8. Late Stage of Corneal Decompensation Caused by Progressive Keratoconus: Can We Treat It and Save the Cornea?

    Directory of Open Access Journals (Sweden)

    Igor Knezović

    2015-01-01

    Full Text Available Aim. To report a case of 40-year-old male with progressive bilateral keratoconus who had undergone transepithelial phototherapeutic keratectomy (TE-PTK and corneal collagen cross-linking (CXL using hypoosmolar riboflavin solution in a same day procedure. Methods. Eye examination showed that UCDVA on both eyes was 0,01 according to Snellen charts, and slit lamp biomicroscopy showed paracentral diffuse intrastromal corneal haze. Anterior OCT marked stromal hyperreflective zones and localized paracentral thinning of the cornea. Scheimpflug tomography noted keratoconus stages III-IV on both eyes. After 40/35 microns TE-PTK, a CXL was performed for 30 minutes using hypoosmolar riboflavin solution. The left eye was treated first and the right eye 1 month after. Follow-up period was 10 months. Results. One month after the treatment both eyes showed improvement in corneal topography and the UCDVA was better. Eight months after the treatment BSCVA improved to 0,6 in both eyes using Rose K2 contact lenses and remained stable. Conclusion. TE-PTK and CXL using hypotonic riboflavin solution as a same day procedure have been shown to be a safe and promising method in this case of progressive keratoconus. It was necessary to consider certain parameters that could influence the safety and the final outcome of this combined protocol.

  9. Combined use of borneol or menthol with labrasol promotes penetration of baicalin through rabbit cornea in vitro.

    Science.gov (United States)

    Huang, Lei; Bai, Jianhai; Yang, Hongbin; Liu, Jingjing; Cui, Hao

    2015-01-01

    The permeability of most drugs through the eyes is very limited, so finding safe and effective penetration enhancers is of high importance in current ophthalmology research. In this paper, we use a new approach that integrates Chinese and Western medicine to improve the corneal permeability of baicalin, a water- and fat-insoluble target drug, in vitro. Rabbits were divided into three groups. The first group was dosed with borneol (0.05%, 0.1%). menthol (0.1%, 0.2%), or Labrasol (1%, 2%) individually, the second was dosed with a combination of Labrasol with either borneol or menthol, and the third group received a control treatment. Compared with the control treatment, borneol, menthol, or Labrasol alone clearly improved the permeability of baicalin in vitro. Furthermore, the penetrating effects were significantly increased by combining the application of Labrasol with menthol or borneol. Among the various combined penetration enhancers, 0.1% borneol with 2% Labrasol achieved the best apparent permeability, approximately 16.35 times that of the control. Additionally, the calculation of corneal hydration level and the Draize test demonstrated the safety of these penetration enhancers to the rabbit corneas in vivo. This study confirms that the combined use of borneol or menthol, compounds both derived from Chinese herbs, with Labrasol can improve the corneal permeability of water- and fat-insoluble drugs.

  10. Chronic Electromagnetic Exposure at Occupational Safety Level Does Not Affect the Metabolic Profile nor Cornea Healing after LASIK Surgery

    Directory of Open Access Journals (Sweden)

    David Crouzier

    2014-01-01

    Full Text Available LASIK eye surgery has become a very common practice for myopic people, especially those in the military. Sometimes undertaken by people who need to keep a specific medical aptitude, this surgery could be performed in secret from the hierarchy and from the institute medical staff. However, even though the eyes have been previously described as one of the most sensitive organs to electromagnetic fields in the human body, no data exist on the potential deleterious effects of electromagnetic fields on the healing eye. The consequences of chronic long-lasting radar exposures at power density, in accordance with the occupational safety standards (9.71 GHz, 50 W/m2, were investigated on cornea healing. The metabolic and clinical statuses after experimental LASIK keratotomy were assessed on the different eye segments in a New Zealand rabbit model. The analysis methods were performed after 5 months of exposure (1 hour/day, 3 times/week. Neither clinical or histological examinations, nor experimental data, such as light scattering, 1H-NMR HRMAS metabolomics, 13C-NMR spectra of lipidic extracts, and antioxidant status, evidenced significant modifications. It was concluded that withdrawing the medical aptitude of people working in electromagnetic field environments (i.e., radar operators in the navy after eye surgery was not justified.

  11. Label-free SHG imaging and spectral FLIM of corneas using a sub-15 fs laser microscope

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Seitz, Berthold; Morgado, António Miguel; König, Karsten

    2014-02-01

    Alterations to the corneal cell metabolism or to the structural organization of collagen fibrils occur in several corneal and systemic pathologies. In this work we resort to multiphoton microscopy corneal imaging to achieve a characterization of the corneal state. Using fluorescence lifetime imaging microscopy (FLIM) the assessment of the metabolic state of corneal cells is possible, whereas second harmonic generation (SHG) imaging can be used to assess corneal structural alterations. A sub-15 fs near-infrared laser source with a broad excitation spectrum was used for SHG imaging and FLIM. The broad spectrum allows simultaneous excitation of both metabolic co-factors. The signals were collected by a photomultiplier tubes (PMT) detector with 16 simultaneous recording channels, which allowed the separation of fluorophores autofluorescence based on their emission wavelengths. We were able to successfully image ex-vivo human and porcine cornea at multiple depths. Simultaneous NADH and flavin autofluorescence, SHG of collagen fibrils, and stroma autofluorescence imaging was performed which may in future allow an improved characterization of the metabolic and structural alterations of the corneal tissue due to pathophysiological conditions. This would be an important step towards a better understanding of corneal dystrophies and systemic metabolic disorders.

  12. Brittle/Ductile deformation at depth during continental crust eclogitization (Mont-Emilius klippe, Western Internal Alps).

    Science.gov (United States)

    Hertgen, Solenn; Yamato, Philippe; Morales, Luiz; Angiboust, Samuel

    2016-04-01

    Eclogitic rocks are important for understanding tectonics at large scale as they provide key constraints on both the evolution (P-T-t-ɛ paths) and the deformation modes of the crust along the subduction interface. We herein focus our study on eclogitized mafic dykes remnants exposed within granulites from the continental basement silver of the Mt. Emilius klippe (Western Internal Alps, Italy). These eclogites exhibit highly deformed garnetite and clinopyroxenite levels. In some places, these rocks with a ± mylonitic aspect can be found as clasts within meter-thick brecciated fault rocks formed close to metamorphic peak conditions in eclogite facies. Especially, the garnet-rich levels tend to behave in a brittle fashion while deformation within clinopyroxene-rich levels is mostly accommodated by creep. This is evidenced by the presence of elongated grains, subgrain boundaries and intense grain size reduction close to rigid garnets. Crystallographic preferred orientation (CPO) measurements in garnets indicate a quasi-random distribution. In most of the clinopyroxenes levels nevertheless, the CPO is relatively strong, with multiples of uniform distribution varying from 4 to 5.5 (value of 1 is random texture). This CPO is characterized by a strong alignment of poles (001) parallel to the lineation and (100) and [010] distributed along girdles cross-cutting the foliation plane. Our study thus attests that the materials along the subduction interface at P~2.0-2.5 GPa and T~500-550°C can locally be brittle where deformation is classically envisioned as ductile. In addition to this deformation analysis, we present a petrological study of these eclogites, from the outcrop to the microscopic scale, tracking the chemical evolution associated to the observed deformation. Based on all these data, we finally propose a tectono-metamorphic history for these rocks allowing to explain the co-existence of ductile and brittle features developed in the same metamorphic facies, and

  13. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    Science.gov (United States)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  14. An Experimental and Numerical Study on Cracking Behavior of Brittle Sandstone Containing Two Non-coplanar Fissures Under Uniaxial Compression

    Science.gov (United States)

    Yang, Sheng-Qi; Tian, Wen-Ling; Huang, Yan-Hua; Ranjith, P. G.; Ju, Yang

    2016-04-01

    To understand the fracture mechanism in all kinds of rock engineering, it is important to investigate the fracture evolution behavior of pre-fissured rock. In this research, we conducted uniaxial compression experiments to evaluate the influence of ligament angle on the strength, deformability, and fracture coalescence behavior of rectangular prismatic specimens (80 × 160 × 30 mm) of brittle sandstone containing two non-coplanar fissures. The experimental results show that the peak strength of sandstone containing two non-coplanar fissures depends on the ligament angle, but the elastic modulus is not closely related to the ligament angle. With the increase of ligament angle, the peak strength decreased at a ligament angle of 60°, before increasing up to our maximum ligament angle of 120°. Crack initiation, propagation, and coalescence were all observed and characterized from the inner and outer tips of pre-existing non-coplanar fissures using photographic monitoring. Based on the results, the sequence of crack evolution in sandstone containing two non-coplanar fissures was analyzed in detail. In order to fully understand the crack evolution mechanism of brittle sandstone, numerical simulations using PFC2D were performed for specimens containing two non-coplanar fissures under uniaxial compression. The results are in good agreement with the experimental results. By analyzing the stress field, the crack evolution mechanism in brittle sandstone containing two non-coplanar fissures under uniaxial compression is revealed. These experimental and numerical results are expected to improve the understanding of the unstable fracture mechanism of fissured rock engineering structures.

  15. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    Science.gov (United States)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  16. Revealing stiffening and brittling of chronic myelogenous leukemia hematopoietic primary cells through their temporal response to shear stress

    Science.gov (United States)

    Laperrousaz, B.; Berguiga, L.; Nicolini, F. E.; Martinez-Torres, C.; Arneodo, A.; Maguer Satta, V.; Argoul, F.

    2016-06-01

    Cancer cell transformation is often accompanied by a modification of their viscoelastic properties. When capturing the stress-to-strain response of primary chronic myelogenous leukemia (CML) cells, from two data sets of CD34+ hematopoietic cells isolated from healthy and leukemic bone marrows, we show that the mean shear relaxation modulus increases upon cancer transformation. This stiffening of the cells comes along with local rupture events, detected as reinforced sharp local maxima of this modulus, suggesting that these cancer cells respond to a local mechanical stress by a cascade of local brittle failure events.

  17. Effect of the features of functionalized structure on elastic properties and strength of partially-filled brittle porous materials

    Science.gov (United States)

    Konovalenko, Igor S.; Shilko, Evgeny V.; Konovalenko, Ivan S.; Vodopjyanov, Egor M.

    2016-11-01

    A two-scale mechanical model of brittle porous material partially filled with plastic filler (inclusions) was developed within the framework of the formalism of movable cellular automaton method. The model was applied to study the mechanical properties of mesoscopic samples with a linear distribution of the local porosity in the depth of the material. Calculation results showed essentially nonlinear dependence of their elastic and strength properties on the degree of pore space filling. It is found that depending on the sign of the gradient of porosity the value of shear strength of partially filled samples can significantly increase or remain constant with increase in the value of the degree of filling.

  18. Laboratory tests and numerical simulations of brittle marble and squeezing schist at Jinping II hydropower station,China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Four 16.7 km-long tunnels with diameters ranging from 12.4 to 14.6 m are now under construction at Jinping II hydropower station along the Yalong River.The tunnels pass through Triassic rocks below Jinping Mountain.The tunnels are characterized with high overburden,long alignment and complex geological conditions.Brittle failure in marble and squeezing in schist are the primary problems in tunnelling.This paper introduces the studies of laboratory tests on Jinping II marble as well as numerical prediction o...

  19. THE EFFECT OF MATRIX TOUGHNESS ON THE BRITTLE-DUCTILE TRANSITION OF HDPE/CaCO3 BLENDS

    Institute of Scientific and Technical Information of China (English)

    FU Qiang; ZHANG Yulin; WANG Guiheng

    1994-01-01

    The effects of HDPE matrix toughness on the brittle-ductile transition of HDPE/CaCO3 blends are investigated. Not all HDPE can be toughened by CaCO3 particles. The ability of the matrix to yield plays a fundamental role in determing whether HDPE can be toughened or not.There exists a critical matrix toughness (Isc≈45J/m) below which HDPE can not be toughened observably by CaCO3 particle at given average size, and above which the critical matrix ligament thickness (τc) is proportional to matrix impact strength.

  20. Distribution of Young's modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Jan Seifert

    Full Text Available Riboflavin/UVA-induced corneal collagen cross-linking has become an effective clinical application to treat keratoconus and other ectatic disorders of the cornea. Its beneficial effects are attributed to a marked stiffening of the unphysiologically weak stroma. Previous studies located the stiffening effect predominantly within the anterior cornea. In this study, we present an atomic force microscopy-derived analysis of the depth-dependent distribution of the Young's modulus with a depth resolution of 5 µm in 8 cross-linked porcine corneas and 8 contralateral controls. Sagittal cryosections were fabricated from every specimen and subjected to force mapping. The mean stromal depth of the zone with effective cross-linking was found to be 219 ± 67 µm. Within this cross-linked zone, the mean Young's modulus declined from 49 ± 18 kPa at the corneal surface to 46 ± 17 kPa, 33 ± 11 kPa, 17 ± 5 kPa, 10 ± 4 kPa and 10 ± 4 kPa at stromal depth intervals of 0-50 µm, 50-100 µm, 100-150 µm, 150-200 µm and 200-250 µm, respectively. This corresponded to a stiffening by a factor of 8.1 (corneal surface, 7.6 (0-50 µm, 5.4 (50-100 µm, 3.0 (100-150 µm, 1.6 (150-200 µm, and 1.5 (200-250 µm, when compared to the Young's modulus of the posterior 100 µm. The mean Young's modulus within the cross-linked zone was 20 ± 8 kPa (2.9-fold stiffening, while it was 11 ± 4 kPa (1.7-fold stiffening for the entire stroma. Both values were significantly distinct from the mean Young's modulus obtained from the posterior 100 µm of the cross-linked corneas and from the contralateral controls. In conclusion, we were able to specify the depth-dependent distribution of the stiffening effect elicited by standard collagen cross-linking in porcine corneas. Apart from determining the depth of the zone with effective corneal cross-linking, we also developed a method that allows for atomic force microscopy-based measurements of gradients of Young's modulus in soft